Metagenomic approaches reveal differences in genetic diversity and relative abundance of nitrifying bacteria and archaea in contrasting soils
1.Spiertz, J. H. J. Nitrogen, sustainable agriculture and food security: a review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064 (2010).CAS
Article
Google Scholar
2.Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529. https://doi.org/10.1146/annurev.micro.55.1.485 (2001).CAS
Article
PubMed
Google Scholar
3.Zumft, W. G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61, 533–616 (1997).CAS
PubMed
PubMed Central
Google Scholar
4.Gelfand, I. & Yakir, D. Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biol. Biochem. 40, 415–424. https://doi.org/10.1016/j.soilbio.2007.09.005 (2008).CAS
Article
Google Scholar
5.Subbarao, G. V. et al. Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities. Crit. Rev. Plant Sci. 25, 303–335. https://doi.org/10.1080/07352680600794232 (2006).CAS
Article
Google Scholar
6.Shen, T., Stieglmeier, M., Dai, J., Urich, T. & Schleper, C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol. Lett. 344, 121–129, https://doi.org/10.1111/1574-6968.12164 (2013).7.Prosser, J. I., Head, I. M. & Stein, L. Y. in The Prokaryotes – Alphaproteobacteria and Betaproteobacteria (ed DeLong Rosenberg E., E.F., Lory, S., Stackebrandt, E., Thompson, F.) 901–918 (Springer-Verlag, 2014).8.Hayatsu, M. et al. An acid-tolerant ammonia-oxidizing gamma-proteobacterium from soil. ISME J. 11, 1130–1141. https://doi.org/10.1038/ismej.2016.191 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
9.Alves, R.J.E., Minh, B.Q, Urich, T., von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, https://doi.org/10.1038/s41467-018-03861-1 (2018).10.Wang, H. Et al. Distinct distribution of archaea from soil to freshwater to estuary: implications of archaeal composition and function in different environments. Front. Microbiol. 11. https://doi.org/10.3389/fmicb.2020.576661 (2020).11.Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531. https://doi.org/10.1016/j.tim.2012.08.001 (2012).CAS
Article
PubMed
Google Scholar
12.Pester, M. et al. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ. Microbiol. 14, 525–539. https://doi.org/10.1111/j.1462-2920.2011.02666.x (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
13.Spang, A. et al. The genome of the ammonia-oxidizing Candidatus Nitrososphaera gargensis: insights into metabolic versatility and environmental adaptations. Environ. Microbiol. 14, 3122–3145. https://doi.org/10.1111/j.1462-2920.2012.02893.x (2012).CAS
Article
PubMed
Google Scholar
14.Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509. https://doi.org/10.1038/nature16461 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
15.van Kessel, M. A. et al. Complete nitrification by a single microorganism. Nature 528, 555–559. https://doi.org/10.1038/nature16459 (2015).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
16.Junier, P. et al. Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment. Appl. Microbiol. Biotechnol. 85, 425–440. https://doi.org/10.1007/s00253-009-2228-9 (2010).CAS
Article
PubMed
Google Scholar
17.Leininger, S. et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–809. https://doi.org/10.1038/nature04983 (2006).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
18.Zhalnina, K. et al. Ca. Nitrososphaera and Bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 104, https://doi.org/10.3389/fmicb.2013.00104 (2013).19.Pjevac, P. et al. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Front. Microbiol. 8, 1508. https://doi.org/10.3389/fmicb.2017.01508 (2017).Article
PubMed
PubMed Central
Google Scholar
20.Palomo, A., Dechesne, A. & Smets, B. F. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. bioRxiv, 612226, https://doi.org/10.1101/612226 (2019).21.Poghosyan, L. et al. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ. Microbiol. 21, 3627–3637. https://doi.org/10.1111/1462-2920.14691 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
22.Palomo, A. et al. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 12, 1779–1793. https://doi.org/10.1038/s41396-018-0083-3 (2018).Article
PubMed
PubMed Central
Google Scholar
23.Strous, M. et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440, 790–794. https://doi.org/10.1038/nature04647 (2006).ADS
Article
PubMed
Google Scholar
24.De Boer, W. & Kowalchuk, G. A. Nitrification in acid soils: micro-organisms and mechanisms. Soil Biol. Biochem. 33, 853–866. https://doi.org/10.1016/s0038-0717(00)00247-9 (2001).Article
Google Scholar
25.Tourna, M. et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA. 108, 8420–8425. https://doi.org/10.1073/pnas.1013488108 (2011).ADS
Article
PubMed
PubMed Central
Google Scholar
26.Arp, D. J., Chain, P. S. G. & Klotz, M. G. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu. Rev. Microbiol. 61, 503–528 (2007).CAS
Article
Google Scholar
27.Simon, J. & Klotz, M. G. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochim. Biophys. Acta 114–135, 2013. https://doi.org/10.1016/j.bbabio.2012.07.005 (1827).CAS
Article
Google Scholar
28.Walker, C. B. et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc. Natl. Acad. Sci. USA 107, 8818–8823. https://doi.org/10.1073/pnas.0913533107 (2010).ADS
Article
PubMed
PubMed Central
Google Scholar
29.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biol. Biochem. 138, https://doi.org/10.1016/j.soilbio.2019.107609 (2019).30.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Niche differentiation of clade A comammox Nitrospira and canonical ammonia oxidizers in selected forest soils. Soil Biol. Biochem. 149, https://doi.org/10.1016/j.soilbio.2020.107925 (2020).31.Daims, H., Lucker, S. & Wagner, M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria. Trends Microbiol. 24, 699–712. https://doi.org/10.1016/j.tim.2016.05.004 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
32.Castelle, C. J. et al. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nat. Commun. 4, 2120. https://doi.org/10.1038/ncomms3120 (2013).ADS
Article
PubMed
Google Scholar
33.Sorokin, D. Y. et al. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J. 6, 2245–2256. https://doi.org/10.1038/ismej.2012.70 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
34.Lucker, S. et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. USA. 107, 13479–13484. https://doi.org/10.1073/pnas.1003860107 (2010).ADS
Article
PubMed
PubMed Central
Google Scholar
35.Mendum, T. A., Sockett, R. E. & Hirsch, P. R. Use of molecular and isotopic techniques to monitor the response of autotrophic ammonia-oxidizing populations of the beta subdivision of the class Proteobacteria in arable soils to nitrogen fertilizer. Appl. Environ. Microbiol. 65, 4155–4162 (1999).ADS
CAS
Article
Google Scholar
36.Hirsch, P. R. et al. Soil resilience and recovery: rapid community responses to management changes. Plant Soil 412, 283–297. https://doi.org/10.1007/s11104-016-3068-x (2017).CAS
Article
PubMed
Google Scholar
37.Hirsch, P. R., Mauchline, T. H. & Clark, I. M. Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42, 878–887. https://doi.org/10.1016/j.soilbio.2010.02.019 (2010).CAS
Article
Google Scholar
38.Vetrovsky, T. & Baldrian, P. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS ONE 8, e57923. https://doi.org/10.1371/journal.pone.0057923 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
39.Fu, Q.L., Clark, I.M., Zhu, J., Hu, H.Q. & Hirsch, P.R The short-term effects of nitrification inhibitors on the abundance and expression of ammonia. and nitrite oxidizers in a long-term field experiment comparing land management. Biol Fertil Soils. 54, 163–172. https://doi.org/10.1007/s00374-017-1249-2 (2018).40.Bollmann, A., Schmidt, I., Saunders, A. M. & Nicolaisen, M. H. Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis. Appl. Environ. Microbiol. 71, 1276–1282. https://doi.org/10.1128/aem.71.3.1276-1282.2005 (2005).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
41.Li, C. Y., Hu, H. W., Chen, Q. L., Chen, D. L. & He, J. Z. Growth of comammox Nitrospira is inhibited by nitrification inhibitors in agricultural soils. J. Soils Sediments 20, 621–628. https://doi.org/10.1007/s11368-019-02442-z (2020).CAS
Article
Google Scholar
42.Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189. https://doi.org/10.1007/s00253-018-9486-3 (2019).CAS
Article
PubMed
Google Scholar
43.Placella, S. A. & Firestone, M. K. Transcriptional response of nitrifying communities to wetting of dry soil. Appl. Environ. Microbiol. 79, 3294–3302. https://doi.org/10.1128/AEM.00404-13 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
44.Hirsch, P. R. et al. Starving the soil of plant inputs for 50 years reduces abundance but not diversity of soil bacterial communities. Soil Biol. Biochem. 41, 2021–2024. https://doi.org/10.1016/j.soilbio.2009.07.011 (2009).CAS
Article
Google Scholar
45.Clark, I. M., Buchkina, N., Jhurreea, D., Goulding, K. W. & Hirsch, P. R. Impacts of nitrogen application rates on the activity and diversity of denitrifying bacteria in the Broadbalk Wheat Experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367, 1235–1244, https://doi.org/10.1098/rstb.2011.0314 (2012).46.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Meth. 12, 59–60 (2015).CAS
Article
Google Scholar
47.Huson, D. H., Auch, A. F., Qi, J. & Schuster, S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–386. https://doi.org/10.1101/gr.5969107 (2007).CAS
Article
PubMed
PubMed Central
Google Scholar
48.Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar More