Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland
1.European Centre for Disease Prevention and Control and European Food Safety Authority. Tick maps [internet]. Stockholm: ECDC. https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps (2020).
Accessed 1 May 2021.2.Zając, Z., Woźniak, A. & Kulisz, J. Density of Dermacentor reticulatus ticks in eastern Poland. Int. J. Environ. Res. Public Health. 17, 2814 (2020).PubMed Central
Article
Google Scholar
3.Levytska, V. A. Seasonal activity of ixodid ticks in Podilskyi region. Sci. Messenger LNU Vet. Med. Biotechnol. Ser. Vet. Sci. 22, 66–70 (2020).
Google Scholar
4.Rybarova, M., Honsová, M., Papousek, I. & Siroky, P. Variability of species of Babesia Starcovici, 1893 in three sympatric ticks (Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna) at the edge of Pannonia in the Czech Republic and Slovakia. Folia Parasitol. (Praha) 64, 028 (2017).Article
CAS
Google Scholar
5.Chisu, V., Foxi, C. & Masala, G. First molecular detection of Francisella-like endosymbionts in Hyalomma and Rhipicephalus tick species collected from vertebrate hosts from Sardinia island, Italy. Exp. Appl. Acarol. 79, 245–254 (2019).PubMed
Article
PubMed Central
Google Scholar
6.Hornok, S. et al. East and west separation of Rhipicephalus sanguineus mitochondrial lineages in the Mediterranean Basin. Parasit. Vectors 10, 1–11 (2017).Article
CAS
Google Scholar
7.Estrada-Peña, A., Mihalca, A. D. & Petney, T. N. Ticks of Europe and North Africa: A Guide to Species Identification 189–196 (Springer, 2018).
Google Scholar
8.Younsi, H. et al. Ixodes inopinatus and Ixodes ricinus (Acari: Ixodidae) are sympatric ticks in North Africa. J. Med. Entomol. 57, 952–956 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Fares, W. et al. Tick-borne encephalitis virus in Ixodes ricinus (Acari: Ixodidae) ticks, Tunisia. Ticks Tick Borne Dis. 12, 101606 (2021).PubMed
Article
PubMed Central
Google Scholar
10.Boularias, G. et al. High-throughput microfluidic real-time PCR for the detection of multiple microorganisms in Ixodid cattle ticks in northeast Algeria. Pathogens 10, 362 (2021).PubMed
PubMed Central
Article
Google Scholar
11.Gunes, T. & Ataş, M. The prevalence of tick-borne pathogens in ticks collected from the northernmost province (Sinop) of Turkey. Vector Borne Zoonotic Dis. 20, 171–176 (2020).PubMed
Article
PubMed Central
Google Scholar
12.Keskin, A., Selçuk, A. Y. & Kefelioğlu, H. Ticks (Acari: Ixodidae) infesting some small mammals from Northern Turkey with new tick–host associations and locality records. Exp. Appl. Acarol. 73, 521–526 (2017).PubMed
Article
PubMed Central
Google Scholar
13.Medlock, J. M. et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasit. Vectors 6, 1–11 (2013).PubMed
PubMed Central
Article
Google Scholar
14.Mancini, F. et al. Prevalence of tick-borne pathogens in an urban park in Rome, Italy. Ann. Agric. Environ. Med. 21, 723–727 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Halos, L. et al. Ecological factors characterizing the prevalence of bacterial tick-borne pathogens in Ixodes ricinus ticks in pastures and woodlands. Appl. Environ. Microbiol. 76, 4413–4420 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
16.Schulz, M., Mahling, M. & Pfister, K. Abundance and seasonal activity of questing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011. J. Vector Ecol. 39, 56–65 (2014).PubMed
Article
PubMed Central
Google Scholar
17.Lees, A. D. The water balance in Ixodes ricinus L. and certain other species of ticks. Parasitology 37, 1–20 (1946).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Milne, A. The ecology of the sheep tick, Ixodes ricinus L.; host relationships of the tick; observations on hill and moorland grazings in northern England. Parasitology 39, 173–197 (1949).CAS
PubMed
Article
PubMed Central
Google Scholar
19.Gassner, F. et al. Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in The Netherlands. Vector Borne Zoonotic Dis. 11, 523–532 (2011).PubMed
Article
PubMed Central
Google Scholar
20.Jongejan, F. & Uilenberg, G. The global importance of ticks. Parasitology 129, S3–S14 (2004).PubMed
Article
PubMed Central
Google Scholar
21.Gustafson, R. Epidemiological studies of Lyme borreliosis and tick-borne encephalitis. Scand. J. Infect. Dis. Suppl. 92, 1–63 (1994).CAS
PubMed
PubMed Central
Google Scholar
22.Atlas o Infectious Diseases. ECDC. https://atlas.ecdc.europa.eu/public/index.aspx. Accessed 1 May 2021.23.Gnativ, B. & Tokarevich, N. K. Long-term monitoring of tick-borne viral encephalitis and tick-borne borreliosis in the Komi Republic. Infektsiia Immun. https://doi.org/10.15789/2220-7619-ROL-1299 (2020).Article
Google Scholar
24.Vandekerckhove, O., De Buck, E. & Van Wijngaerden, E. Lyme disease in Western Europe: An emerging problem? A systematic review. Acta Clin. Belg. 76, 244–252 (2019).PubMed
Article
PubMed Central
Google Scholar
25.Rizzoli, A. P. et al. Lyme borreliosis in Europe. Euro Surveill. 16, 19906 (2011).PubMed
Article
PubMed Central
Google Scholar
26.Hubálek, Z. & Rudolf, I. Tick-borne viruses in Europe. Parasitol. Res. 111, 9–36 (2012).PubMed
Article
PubMed Central
Google Scholar
27.Grankvist, A. et al. Infections with the tick-borne bacterium “Candidatus Neoehrlichia mikurensis” mimic non-infectious conditions in patients with B cell malignancies or autoimmune diseases. Clin. Infect. Dis. 58, 1716–1722 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
28.Rizzoli, A. P. et al. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: New hazards and relevance for public health. Front. Public. Health. 2, 251 (2014).PubMed
PubMed Central
Article
Google Scholar
29.Wójcik-Fatla, A. et al. Occurrence of Francisella spp. in Dermacentor reticulatus and Ixodes ricinus ticks collected in eastern Poland. Ticks Tick Borne Dis. 6, 253–257 (2015).PubMed
Article
PubMed Central
Google Scholar
30.Körner, S. et al. Uptake and fecal excretion of Coxiella burnetii by Ixodes ricinus and Dermacentor marginatus ticks. Parasit. Vectors 13, 75 (2020).PubMed
PubMed Central
Article
CAS
Google Scholar
31.van den Wijngaard, C. C. et al. The cost of Lyme borreliosis. Eur. J. Public Health 27, 538–547 (2017).PubMed
Article
PubMed Central
Google Scholar
32.Muller, I. et al. Evaluating frequency, diagnostic quality, and cost of Lyme borreliosis testing in Germany: A retrospective model analysis. Clin. Dev. Immunol 20, 595427 (2012).
Google Scholar
33.Lohr, B. et al. Epidemiology and cost of hospital care for Lyme borreliosis in Germany: Lessons from a health care utilization database analysis. Ticks Tick Borne Dis 6, 56–62 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
34.Maes, E., Lecomte, P. & Ray, N. A cost-of-illness study of Lyme disease in the United States. Clin. Ther. 20, 993–1008 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Rogalska, A. et al. What are the costs of diagnostics and treatment of Lyme borreliosis in Poland?. Front. Public Health 8, 1022 (2021).Article
Google Scholar
36.Gray, J. S. Ixodes ricinus seasonal activity: Implications of global warming indicated by revisiting tick and weather data. Int. J. Med. Microbiol. 298, 19–24 (2008).Article
Google Scholar
37.Nilsson, A. Seasonal occurrence of Ixodes ricinus (Acari) in vegetation and on small mammals in southern Sweden. Ecography 11, 161–165 (1988).Article
Google Scholar
38.Grigoryeva, L. A., Tokarevich, N. K., Freilikhman, O. A., Samoylova, E. P. & Lunina, G. A. Seasonal changes in populations of sheep tick, Ixodes ricinus (L., 1758) (Acari: Ixodinae) in natural biotopes of St. Petersburg and Leningrad province, Russian Federation. Syst. Appl. Acarol. 24, 701–710 (2019).
Google Scholar
39.Kiewra, D. & Lonc, E. Biology of Ixodes ricinus (L.) and its pathogens in Wrocław area. Wiad. Parazytol. 50, 259–264 (2004).PubMed
Google Scholar
40.Randolph, S. E. Tick ecology: Processes and patterns behind the epidemiological risk posed by Ixodid ticks as vectors. Parasitology 129, S37–S65 (2004).PubMed
Article
PubMed Central
Google Scholar
41.Kiewra, D. & Sobczyński, M. Biometrical analysis of the common tick, Ixodes ricinus, in the Ślęża Massif (Lower Silesia, Poland). J. Vector Ecol. 31, 239–244 (2006).PubMed
Article
PubMed Central
Google Scholar
42.Tagliapietra, V. et al. Saturation deficit and deer density affect questing activity and local abundance of Ixodes ricinus (Acari, Ixodidae) in Italy. Vet. Parasitol. 183, 114–124 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Perret, J. L., Guigoz, E., Rais, O. & Gern, L. Influence of saturation deficit and temperature on Ixodes ricinus tick questing activity in a Lyme borreliosis-endemic area (Switzerland). Parasitol. Res. 86, 554–557 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Kubiak, K. & Dziekonska-Rynko, J. Seasonal activity of the common European tick, Ixodes ricinus [Linnaeus, 1758], in the forested areas of the city of Olsztyn and its sorroundings. Wiad. Parazytol. 52, 59–64 (2006).PubMed
PubMed Central
Google Scholar
45.Welc-Falęciak, R., Bajer, A., Paziewska-Harris, A., Baumann-Popczyk, A. & Siński, E. Diversity of Babesia in Ixodes ricinus ticks in Poland. Adv. Med. Sci. 57, 364–369 (2012).PubMed
Article
PubMed Central
Google Scholar
46.Buczek, A., Ciura, D., Bartosik, K., Zając, Z. & Kulisz, J. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit. Vectors 7, 562 (2014).PubMed
PubMed Central
Article
Google Scholar
47.Bartosik, K. et al. Environmental conditioning of incidence of tick-borne encephalitis in the south-eastern Poland in 1996–2006. Ann. Agric. Environ. Med. 18, 119–126 (2011).PubMed
PubMed Central
Google Scholar
48.Földvári, G. Life cycle and ecology of Ixodes ricinus: The roots of public health importance. In Ecology and Prevention of Lyme borreliosis. Ecology and Control of Vector-Borne Diseases Vol. 4 (eds Braks, M. A. H. et al.) 31–40 (Wageningen Academic Publishers, 2016).Chapter
Google Scholar
49.Tack, W. et al. Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. For. Ecol. Manag. 265, 30–36 (2012).Article
Google Scholar
50.Mihalca, A. D. & Sándor, A. D. The role of rodents in the ecology of Ixodes ricinus and associated pathogens in Central and Eastern Europe. Front. Cell Infect. Microbiol. 3, 56 (2013).PubMed
PubMed Central
Article
Google Scholar
51.Opalińska, P. et al. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci. Rep. 11, 1–10 (2021).Article
CAS
Google Scholar
52.van Oeveren, F. M. The Role of Ungulates in Ixodes ricinus Density in Europe. Master Thesis, Utrecht University, Faculty of Veterinary Medicine (2021).53.Estrada-Peña, A., Gray, J. S., Kahl, O., Lane, R. S. & Nijhof, A. M. Research on the ecology of ticks and tick-borne pathogens-methodological principles and caveats. Front. Cell. Infect. Microbiol. 3, 29 (2013).PubMed
PubMed Central
Article
Google Scholar
54.Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L. & Rego, R. O. Europe-wide meta-analysis of Borrelia burgdorferi sensu lato prevalence in questing Ixodes ricinus ticks. Appl. Environ. Microbiol. 83, e00609-e617 (2017).PubMed
PubMed Central
Article
Google Scholar
55.Cisak, E. et al. Study on Lyme borreliosis focus in the Lublin region (eastern Poland). Ann. Agric. Environ. Med. 15, 327–332 (2008).PubMed
PubMed Central
Google Scholar
56.Wójcik-Fatla, A., Cisak, E., Zając, V., Zwoliński, J. & Dutkiewicz, J. Prevalence of tick-borne encephalitis virus in Ixodes ricinus and Dermacentor reticulatus ticks collected from the Lublin region (eastern Poland). Ticks Tick Borne Dis. 2, 16–19 (2011).PubMed
Article
PubMed Central
Google Scholar
57.National Institute of Public Health, Department of Epidemiology and Surveillance of Infectious Diseases, Laboratory of Monitoring and Epidemiological Analysis. Reports on cases of infectious diseases and poisonings in Poland. http://wwwold.pzh.gov.pl/oldpage/epimeld/index_p.html (2017–2020). Accessed 1 May 2021.58.Barrios, J. M. et al. Relating land cover and spatial distribution of nephropathia epidemica and Lyme borreliosis in Belgium. Int. J. Environ. Health Res. 23, 132–154 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Randolph, S. E. The shifting landscape of tick-borne zoonoses: tick-borne encephalitis and Lyme borreliosis in Europe. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1045–1056 (2001).CAS
PubMed
PubMed Central
Article
Google Scholar
60.Robertson, J. N., Gray, J. S. & Stewart, P. Tick bite and Lyme borreliosis risk at a recreational site in England. Eur. J. Epidemiol. 16, 647–652 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Szekeres, S. Eco-epidemiology of Borrelia miyamotoi and Lyme borreliosis spirochetes in a popular hunting and recreational forest area in Hungary. Parasit. Vectors 8, 309 (2015).PubMed
PubMed Central
Article
Google Scholar
62.Gilbert, L. The impacts of climate change on ticks and tick-borne disease risk. Ann. Rev. Entomol. 66, 373–388 (2021).CAS
Article
Google Scholar
63.Statistical Yearbook of Lubelskie Voivodship. https://lublin.stat.gov.pl/publikacje-i-foldery/roczniki-statystyczne/rocznik-statystyczny-wojewodztwa-lubelskiego-2020,2,20.html (2020). Accessed 1 May 2021.64.Kaszewski, B. M. Climatic Conditions of the Lublin Region 1–42 (Maria Curie-Skłodowska University Publishing House, 2008).
Google Scholar
65.Climate data: Poland, Historical weather data in Poland https://en.tutiempo.net/climate/poland.html (2020). Accessed on 1 May 2021.66.Matuszkiewicz, J. M. Plant landscapes and geobotanical regions 1: 2,500,000. Plant landscapes and geobotanical regions. In Atlas of the Republic of Poland (IGiPZ PAN, Chief National Surveyor, 1994).67.Randolph, S. E. & Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Entomol. 36, 741–748 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar More