More stories

  • in

    Effects of eliminating interactions in multi-layer culture on survival, food utilization and growth of small sea urchins Strongylocentrotus intermedius at high temperatures

    Sea urchins and experimental designSeven hundred small S. intermedius (31.9 ± 0.4 mm of test diameter, mean ± SD) were chosen from an aquaculture farm in Changhai County, Dalian (122° 63′ N, 39° 25′ E) on 23 July 2020. They were subsequently transported to the Key Laboratory of Mariculture and Stock Enhancement in North China’s Sea, Ministry of Agriculture and Rural Affairs at Dalian Ocean University (121° 56′ N, 38° 87′ E) and maintained in a fiberglass tank (a closed culture system, length × width × height: 150 × 100 × 60 cm) with aeration for 7 days to acclimatize to laboratory conditions. The kelp Saccharina japonica, which is the most common food used for S. intermedius culture58, was fed ad libitum under the neutral photoperiod (12 h light:12 h dark). One-half of the seawater was changed daily. Water temperature, pH and salinity were 22.6 ± 0.2 °C, 7.7 ± 0.3 and 30.7 ± 0.1 ‰ (Mean ± SD) according to the daily measurement using a portable water quality monitor (YSI Incorporated, OH, USA), respectively.The rearing space was defined as the ratio of culture volume to the number of sea urchins (cm3 ind−1). Rearing assemblage is the main factor being tested in this study. To simulate the currently used rearing assemblage in longline culture, 24 individuals were placed at plastic devices without layer divisions (length × width × height: 24.5 × 16.8 × 6 cm for culture volume; 25 holes of 0.5 cm diameter/100 cm2) as group A (the control group, 102.9 cm3 ind−1 of initial rearing space, Fig. 7a). To investigate whether multi-layer rearing assemblage improves the survival, food utilization and growth, 24 sea urchins were equally put into the cages where were evenly divided into three layers (8 sea urchins in each layer and length × width × height: 24.5 × 16.8 × 6 cm for each layer, 308.7 cm3 ind−1 of initial rearing space; 25 holes of 0.5 cm diameter/100 cm2; group B; Fig. 7b). Further, to evaluate whether eliminating interaction further contributes to the improvement of these commercially important traits of sea urchins in multi-layer rearing assemblage, 8 sea urchins were divided into eight divisions for each layer in the cages as group C (length × width × height: 8.3 × 5.9 × 6 cm for each division, 297.36 cm3 ind−1 of initial rearing space; 25 holes of 0.5 cm diameter/100 cm2; Fig. 7c). Each treatment had 8 replicates. All devices were placed in a fiberglass tank (length × width × height: 150 × 100 × 60 cm) and immersed in water for ~ 30 cm with aeration. They were easily disassembled for the experimental management.Figure 7Diagrams of the experimental cages used for the groups A (a), B (b) and C (c), the sea urchin with the spotting disease (d) and without the disease (e) and the devices used for measuring the Aristotle’s lantern reflex (f).Full size imageThe experimental period was about ~ 7 weeks (from 31 July 2020 to 20 September 2020) under the neutral photoperiod (12 h light: 12 h dark). The kelp, which was regularly collected in the intertidal waters at Heishijiao, Dalian (121° 58′ E, 38° 87′ N), was daily provided to sea urchins in abundance for all the groups. The remained kelp, feces and dead sea urchins were removed daily. One-half of the seawater was replaced daily by the fresh and filtered seawater which was pumped from the coast of Heishijiao, Dalian. Water temperature was not controlled, ranging from 22.2 to 24.5 °C (the natural seasonal cycle of increasing temperature during summer in the region). Water quality parameters were measured weekly as salinity 29.3 ± 0.6 ‰, pH 7.8 ± 0.2 (mean ± SD) using a portable water quality monitor (YSI Incorporated, OH, USA).To ensure the random sampling, sea urchins were taken out from the experimental device and placed in 24 plastic boxes (labeled from number 1 to number 24, length × width × height: 6 × 6 × 4 cm for each box). Individuals were chosen corresponding to the number (within 24) generated by the “sample” function in R studio (1.1.463). Sampling was re-conducted if the number corresponds to empty, dead or diseased sea urchins.Mortality and morbiditySpotting disease, which appears as spotting lesions with red, purple or blackish color on the test (Fig. 7d), is the most common lethal disease in S. intermedius aquaculture12. Sea urchin without disease is shown in Fig. 7e. Dead sea urchins were removed daily and the number of survivor and diseased sea urchins was recorded weekly for each cage during the experiment (N = 8).Food consumptionThe measurement of food consumption (g dry weight) was conducted once a week (24 h from Tuesday to Wednesday) (N = 8). The total supplied and remained diets were weighted wet by an electric balance (G & G Co., San Diego, USA) after the removal of the surface moisture. The dried weights of feces and samples of supplied and uneaten kelp were determined after 4 days at 80 °C in a convection oven (Yiheng Co., Shanghai, China).Food consumption was calculated as follows (revised from Hu et al.9 for being more concise):$${text{F}} = frac{{{text{A}}_{0} times frac{{{text{A}}_{1} }}{{{text{A}}_{2} }} – {text{B}}_{0} times frac{{{text{B}}_{1} }}{{{text{B}}_{2} }}}}{{text{N}}}$$F = dry food intake per sea urchin (g ind−1 day−1), A0 = wet weight of total supplied diets (g), B0 = wet weight of total uneaten diets (g), A1 = dried weight of sample supplied diets (g), A2 = wet weight of sample supplied diets (g), B1 = dry weight of sample uneaten diets (g), B2 = wet weight of sample uneaten diets (g), N = the number of sea urchins.GrowthTest diameter and lantern length were measured using a digital vernier caliper (Mahr Co., Ruhr, Germany). Body, lantern and gut were weighted wet using an electric balance (G & G Co., San Diego, USA). Test diameter and body weight were evaluated every Wednesday. The average value of the three individuals was considered as the trait value for each replicate (N = 8). Lantern length, wet lantern weight and wet gut weight were recorded in week 4 (29 August 2020) and week 7 (20 September 2020) (N = 8).Aristotle’s lantern reflexAristotle’s lantern reflex, which refers to one cycle from the opening to the closing of the teeth59, was measured using a simple device according to the method of Ding et al.38. There were small compartments (length × width × height: 4.8 × 5.6 × 4.5 cm) with a film (made by 3 g agar and 2 g kelp powder) on the bottom of the device38 (Fig. 7f). The frequency of Aristotle’s lantern reflex was counted within 5 min using a digital camera (Canon Co., Shenzhen, China) under the device in week 4 (29 August 2020) and week 7 (20 September 2020). The average value of all the 5 individuals was considered as Aristotle’s lantern reflex for each replicate (N = 8).5-HT concentrationThe 5-HT is a signaling molecule, playing an important role in regulating feeding behavior52. To evaluate whether 5-HT is involved in Aristotle’s lantern reflex, 5-HT concentration of muscle in lantern was measured for each treatment in week 4 and week 7. 5-HT concentration was considered as the average value of all the 3 healthy individuals for each replicate (N = 8).The concentration of 5-HT was measured using ELISA kits (Nanjing Jiancheng Bio-engineering Institute, Nanjing, China) according to the instructions of the manufacturer. After adding the enzyme-labeled antibody, the substrate became a colored product that was directly related to the amount of the substance tested. The concentrations of 5-HT were calculated by comparing the optical density (O.D.) value of the samples to the standard curve and calculated according to the following formula (according to the kit’s instructions):$${text{Y}} = frac{1}{{({text{a }} + {text{bx}}^{{text{c}}} )}}$$Y = the concentration of 5-HT (ng mL−1), x = the O.D. value of the samples, a = 0.00027, b = 0.12086, c = 1.36806.Pepsin activityPepsin is important for sea urchins to digest protein-rich algae40,60. Pepsin activity was analyzed using the pepsin kits (Nanjing Jiancheng Bio-engineering Institute, Nanjing, China) in week 4 and week 7, following the instructions of the manufacturer. The average value of all the 3 individuals was considered as the pepsin activity for each replicate (N = 8). The procedures include enzyme reaction and color development reaction39. The temperature of reaction was 37 °C and pepsin activities were counted as U mg protein−1. The formula of pepsin activity is shown as follows (according to the kit’s instructions):$${text{P}} = frac{{{text{M}}_{0} – {text{M}}_{1} }}{{{text{M}}_{2} – {text{M}}_{3} }} times frac{{{text{S}}_{0} }}{{{text{S}}_{1} }} times frac{{{text{V}}_{1} times {text{V}}_{2} }}{{{text{V}}_{3} }}$$P = pepsin activity (U/mg prot), M0 = the O.D. value of the sample, M1 = the O.D. value of comparison, M2 = the standard O.D. value, M3 = blank O.D. value, S0 = the standard concentration (50 μg mL−1), S1 = reaction time (10 min), V1 = total volume of reaction solution (0.64 mL), V2 = sample protein concentration (0.04 mL), V3 = sampling volume (mg prot/mL).Gut morphological examinationAfter sea urchins were dissected on week 4 and week 7, all gut tissue samples (~ 1 g for each sample) were fixed in Bouin’s solution (glacial acetic acid: formaldehyde: saturated picric acid solution = 1:5:15) according to the method of Wu et al.61. They were subsequently transferred for gradient dehydration, embedding, cutting, staining and observation62 (N = 24).Statistical analysisKolmogorov–Smirnov test and Levene test were used to analyze the normal distribution and homogeneity of the data, respectively. Rearing assemblage was set as the main factor in the one-way ANOVA with three levels: the control system without layer divisions (group A), a second system with divisions in the cages to simulate the three layers cages (group B) and a third system with individual divisions for each sea urchin (group C). One-way ANOVA was used to analyze the mortality (in weeks 3, 4, 5, 6, 7), morbidity (in weeks 3, 6, 7), food consumption (in weeks 2, 5, 7), test diameter (in weeks 1, 2, 3, 4, 5, 6), body weight (in weeks 1, 4, 5, 7), 5-HT, pepsin activity, lantern length, lantern weight and gut weight. Duncan multiple comparison analysis was performed when significant differences were found in the one-way ANOVA. Kruskal–Wallis test was carried out to compare the differences of mortality (weeks 1, 2), morbidity (weeks 1, 2, 4, 5), food consumption (weeks 1, 3, 4, 6), test diameter (week 7), body weight (weeks 2, 3, 6) and Aristotle’s lantern reflex, because of non-normal distribution and/or heterogeneity of variance. A non-parametric post-hoc test was carried out when significant differences were found in the Kruskal–Wallis test. All data analyses were performed using SPSS 19.0 statistical software. A probability level of P  More

  • in

    Pelagic organisms avoid white, blue, and red artificial light from scientific instruments

    1.Berge, J. et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 3, 102. https://doi.org/10.1038/s42003-020-0807-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Davies, T. W., McKee, D., Fishwick, J., Tidau, S. & Smyth, T. Biologically important artificial light at night on the seafloor. Sci. Rep. 10, 12545. https://doi.org/10.1038/s41598-020-69461-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Ludvigsen, M. et al. Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, eaap9887. https://doi.org/10.1126/sciadv.aap9887 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Utne-Palm, A. C., Breen, M., Løkkeborg, S. & Humborstad, O. B. Behavioural responses of krill and cod to artificial light in laboratory experiments. PLoS One https://doi.org/10.1371/journal.pone.0190918 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Marchesan, M., Spoto, M., Verginella, L. & Ferrero, E. A. Behavioural effects of artificial light on fish species of commercial interest. Fish. Res. 73, 171–185. https://doi.org/10.1016/j.fishres.2004.12.009 (2005).Article 

    Google Scholar 
    6.Stickney, A. P. Factors influencing the attraction of Atlantic Herring. Fish. Bull. 68, 73–85 (1969).
    Google Scholar 
    7.Nguyen, K. Q. et al. Application of luminescent netting in traps to improve the catchability of the snow crab Chionoecetes opilio. Mar. Coast. Fish. 11, 295–304. https://doi.org/10.1002/mcf2.10084 (2019).Article 

    Google Scholar 
    8.Wiebe, P. H. et al. Using a high-powered strobe light to increase the catch of Antarctic krill. Mar. Biol. 144, 493–502. https://doi.org/10.1007/s00227-003-1228-z (2004).Article 

    Google Scholar 
    9.Nguyen, T. T. et al. Artificial light pollution increases the sensitivity of tropical zooplankton to extreme warming. Environ. Technol. Innov. 20, 101179. https://doi.org/10.1016/j.eti.2020.101179 (2020).Article 

    Google Scholar 
    10.Kaartvedt, S., Røstad, A., Opdal, A. F. & Aksnes, D. L. Herding mesopelagic fish by light. Mar. Ecol. Prog. Ser. 625, 225–231 (2019).ADS 
    Article 

    Google Scholar 
    11.Underwood, M. J., Utne Palm, A. C., Øvredal, J. T. & Bjordal, Å. The response of mesopelagic organisms to artificial lights. Aquac. Fish. https://doi.org/10.1016/j.aaf.2020.05.002 (2020).Article 

    Google Scholar 
    12.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Ryer, C. H., Stoner, A. W., Iseri, P. J. & Spencer, M. L. Effects of simulated underwater vehicle lighting on fish behavior. Mar. Ecol. Prog. Ser. 391, 97–106 (2009).ADS 
    Article 

    Google Scholar 
    14.Bicknell, A. W. J., Godley, B. J., Sheehan, E. V., Votier, S. C. & Witt, M. J. Camera technology for monitoring marine biodiversity and human impact. Front. Ecol. Environ. 14, 424–432. https://doi.org/10.1002/fee.1322 (2016).Article 

    Google Scholar 
    15.Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Meth. 8, 462–547. https://doi.org/10.4319/lom.2010.8.462 (2010).Article 

    Google Scholar 
    16.Herman, A. W. & Harvey, M. Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions. J. Geophys. Res. Oceans. https://doi.org/10.1029/2005JC002948 (2006).Article 

    Google Scholar 
    17.Basedow, S. L., Tande, K. S., Norrbin, M. F. & Kristiansen, S. A. Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog. Oceanogr. 108, 72–80. https://doi.org/10.1016/j.pocean.2012.10.005 (2013).ADS 
    Article 

    Google Scholar 
    18.Sainmont, J. et al. Inter- and intra-specific diurnal habitat selection of zooplankton during the spring bloom observed by Video Plankton Recorder. Mar. Biol. 161, 1931–1941. https://doi.org/10.1007/s00227-014-2475-x (2014).Article 

    Google Scholar 
    19.Schulz, J. et al. Imaging of plankton specimens with the lightframe on-sight key species investigation (LOKI) system. J. Eur. Opt. Soc. 5, 10017s (2010).Article 

    Google Scholar 
    20.Schmid, M. S., Aubry, C., Grigor, J. & Fortier, L. The LOKI underwater imaging system and an automatic identification model for the detection of zooplankton taxa in the Arctic Ocean. Meth. Oceanogr. 15–16, 129–160. https://doi.org/10.1016/j.mio.2016.03.003 (2016).Article 

    Google Scholar 
    21.Williams, K., Rooper, C. N. & Towler, R. Use of stereo camera systems for assessment of rockfish abundance in untrawlable areas and for recording pollock behavior during midwater trawls. Fish. Bull. 108, 352–362 (2010).
    Google Scholar 
    22.Boldt, J. L., Williams, K., Rooper, C. N., Towler, R. H. & Gauthier, S. Development of stereo camera methodologies to improve pelagic fish biomass estimates and inform ecosystem management in marine waters. Fish. Res. 198, 66–77. https://doi.org/10.1016/j.fishres.2017.10.013 (2018).Article 

    Google Scholar 
    23.Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62. https://doi.org/10.1016/j.fishres.2014.01.019 (2014).Article 

    Google Scholar 
    24.Easton, R. R., Heppell, S. S. & Hannah, R. W. Quantification of habitat and community relationships among nearshore temperate fishes through analysis of drop camera video. Mar. Coast. Fish. 7, 87–102. https://doi.org/10.1080/19425120.2015.1007184 (2015).Article 

    Google Scholar 
    25.McLean, D. L. et al. Using industry ROV videos to assess fish associations with subsea pipelines. Cont. Shelf Res. 141, 76–97. https://doi.org/10.1016/j.csr.2017.05.006 (2017).ADS 
    Article 

    Google Scholar 
    26.Devine, B. M., Wheeland, L. J., de Moura Neves, B. & Fisher, J. A. D. Baited remote underwater video estimates of benthic fish and invertebrate diversity within the eastern Canadian Arctic. Polar Biol. 42, 1323–1341. https://doi.org/10.1007/s00300-019-02520-5 (2019).Article 

    Google Scholar 
    27.Trenkel, V. M., Lorance, P. & Mahévas, S. Do visual transects provide true population density estimates for deepwater fish?. ICES J. Mar. Sci. 61, 1050–1056. https://doi.org/10.1016/j.icesjms.2004.06.002 (2004).Article 

    Google Scholar 
    28.Widder, E. A., Robison, B. H., Reisenbichler, K. R. & Haddock, S. H. D. Using red light for in situ observations of deep-sea fishes. Deep-Sea Res. Part I(52), 2077–2085. https://doi.org/10.1016/j.dsr.2005.06.007 (2005).ADS 
    Article 

    Google Scholar 
    29.Benoit-Bird, K. J., Moline, M. A., Schofield, O. M., Robbins, I. C. & Waluk, C. M. Zooplankton avoidance of a profiled open-path fluorometer. J. Plankton Res. 32, 1413–1419. https://doi.org/10.1093/plankt/fbq053 (2010).Article 

    Google Scholar 
    30.Doya, C. et al. Diel behavioral rhythms in sablefish (Anoplopoma fimbria) and other benthic species, as recorded by the Deep-sea cabled observatories in Barkley canyon (NEPTUNE-Canada). J. Mar. Syst. 130, 69–78. https://doi.org/10.1016/j.jmarsys.2013.04.003 (2014).Article 

    Google Scholar 
    31.Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243. https://doi.org/10.1139/f08-032 (2008).Article 

    Google Scholar 
    32.Rooper, C. N., Williams, K., De Robertis, A. & Tuttle, V. Effect of underwater lighting on observations of density and behavior of rockfish during camera surveys. Fish. Res. 172, 157–167. https://doi.org/10.1016/j.fishres.2015.07.012 (2015).Article 

    Google Scholar 
    33.Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).Article 

    Google Scholar 
    34.Bandara, K. et al. Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar. Ecol. Prog. Ser. 555, 49–64 (2016).ADS 
    Article 

    Google Scholar 
    35.Hop, H. et al. In The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 229–300 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    36.Cusa, M., Berge, J. & Varpe, Ø. Seasonal shifts in feeding patterns: Individual and population realized specialization in a high Arctic fish. Ecol. Evol. 9, 11112–11121. https://doi.org/10.1002/ece3.5615 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Sakshaug, E., Johnsen, G. & Volent, Z. In Ecosystem Barents Sea (eds Sakshaug, E. et al.) 117–138 (Tapir Academic Press, 2009).
    Google Scholar 
    38.Gordon, H. R. Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water?. Limnol. Oceanogr. 34, 1389–1409. https://doi.org/10.4319/lo.1989.34.8.1389 (1989).ADS 
    Article 

    Google Scholar 
    39.McKee, D., Cunningham, A. & Craig, S. Estimation of absorption and backscattering coefficients from in situ radiometric measurements: Theory and validation in case II waters. App. Opt. 42, 2804–2810. https://doi.org/10.1364/AO.42.002804 (2003).ADS 
    Article 

    Google Scholar 
    40.Demer, D. A. et al. Calibration of acoustic instruments. ICES Cooperative Research Report No. 326. 133 (2015).41.Mackenzie, K. V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 70, 807 (1981).ADS 
    Article 

    Google Scholar 
    42.François, R. E. & Garrison, G. R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 72, 1879–1890 (1982).ADS 
    Article 

    Google Scholar 
    43.De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291. https://doi.org/10.1093/icesjms/fsm112 (2007).Article 

    Google Scholar 
    44.Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493. https://doi.org/10.1093/icesjms/fsv121 (2015).Article 

    Google Scholar 
    45.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    46.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. TREE 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008 (2009).Article 
    PubMed 

    Google Scholar 
    47.Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561. https://doi.org/10.1016/j.cub.2015.08.024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Dalpadado, P. et al. Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol. 39, 1765–1784. https://doi.org/10.1007/s00300-015-1874-x (2016).Article 

    Google Scholar 
    49.Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619. https://doi.org/10.1007/s00300-018-2368-4 (2018).Article 

    Google Scholar 
    50.Jarms, G., Tiemann, H. & Båmstedt, U. Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar. Biol. 141, 647–657. https://doi.org/10.1007/s00227-002-0858-x (2002).Article 

    Google Scholar 
    51.Pepin, P., Colbourne, E. & Maillet, G. Seasonal patterns in zooplankton community structure on the Newfoundland and Labrador Shelf. Prog. Oceanogr. 91, 273–285. https://doi.org/10.1016/j.pocean.2011.01.003 (2011).ADS 
    Article 

    Google Scholar 
    52.Cohen, J. H. & Epifanio, C. E. In Developmental Biology and Larval Ecology, Ch. 12 (eds Anger, K. et al.) 332–359 (Oxford University Press, 2020).
    Google Scholar 
    53.Orr, M. H. Remote acoustic detection of zooplankton response to field processes, oceanographic instrumentation, and predators. Can. J. Fish. Aquat. Sci. 38, 1096–1105. https://doi.org/10.1139/f81-149 (1981).Article 

    Google Scholar 
    54.Farmer, D. D., Crawford, G. B. & Osborn, T. R. Temperature and velocity microstructure caused by swimming fish1. Limnol. Oceanogr. 32, 978–983. https://doi.org/10.4319/lo.1987.32.4.0978 (1987).ADS 
    Article 

    Google Scholar 
    55.Koslow, J. A., Kloser, R. & Stanley, C. A. Avoidance of a camera system by a deepwater fish, the orange roughy (Hoplostethus atlanticus). Deep-Sea Res Part I 42, 233–244. https://doi.org/10.1016/0967-0637(95)93714-P (1995).Article 

    Google Scholar 
    56.Raymond, E. H. & Widder, E. A. Behavioral responses of two deep-sea fish species to red, far-red, and white light. Mar. Ecol. Prog. Ser. 350, 291–298 (2007).ADS 
    Article 

    Google Scholar 
    57.Bassett, D. K. & Montgomery, J. C. Investigating nocturnal fish populations in situ using baited underwater video: With special reference to their olfactory capabilities. J. Exp. Mar. Biol. Ecol. 409, 194–199. https://doi.org/10.1016/j.jembe.2011.08.019 (2011).Article 

    Google Scholar 
    58.Brill, R., Magel, C., Davis, M., Hannah, R. & Rankin, P. Effects of rapid decompression and exposure to bright light on visual function in black rockfish (Sebastes melanops) and Pacific halibut (Hippoglossus stenolepis). Fish. Bull. 106, 427–437 (2008).
    Google Scholar 
    59.Turner, J. R., White, E. M., Collins, M. A., Partridge, J. C. & Douglas, R. H. Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea. Deep-Sea Res. Part I 56, 1003–1017. https://doi.org/10.1016/j.dsr.2009.01.007 (2009).CAS 
    Article 

    Google Scholar 
    60.de Busserolles, F. & Marshall, N. J. Seeing in the deep-sea: Visual adaptations in lanternfishes. Philos. Trans. R Soc. Lond. B Biol. Sci. 372, 20160070. https://doi.org/10.1098/rstb.2016.0070 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Valen, R., Edvardsen, R. B., Søviknes, A. M., Drivenes, Ø. & Helvik, J. V. Molecular evidence that only two opsin subfamilies, the blue light- (SWS2) and green light-sensitive (RH2), drive colour vision in Atlantic cod (Gadus morhua). PLoS One 9, e115436. https://doi.org/10.1371/journal.pone.0115436 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Anthony, P. D. & Hawkins, A. D. Spectral sensitivity of the cod, Gadus morhua L. Mar. Behav. Physiol. 10, 145–166. https://doi.org/10.1080/10236248309378614 (1983).Article 

    Google Scholar 
    63.Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528. https://doi.org/10.1017/s0952523800174036 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Frank, T. M. & Widder, E. A. Comparative study of the spectral sensitivities of mesopelagic crustaceans. J. Comp. Physiol. A 185, 255–265. https://doi.org/10.1007/s003590050385 (1999).Article 

    Google Scholar 
    65.Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M. & Johnsen, G. Quantifying the light sensitivity of Calanus spp. during the polar night: Potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis?. Polar Biol. 38, 1–15. https://doi.org/10.1007/s00300-013-1415-4 (2015).Article 

    Google Scholar 
    66.Cohen, J. H. et al. Is ambient light during the high Arctic polar night sufficient to act as a visual cue for zooplankton?. PLoS ONE https://doi.org/10.1371/journal.pone.0126247 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Jinks, R. N. et al. Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab. Nature 420, 68–70. https://doi.org/10.1038/nature01144 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Aguzzi, J. et al. The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa169 (2020).Article 

    Google Scholar  More

  • in

    Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis

    1.Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, et al. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 2016;10:1613.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG. Bacterial growth at −15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 2013;7:1211.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 2011;162:346–61.PubMed 
    Article 

    Google Scholar 
    4.De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15:508–17.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Bio. 2016;15:147–72.Article 

    Google Scholar 
    6.Christner BC, Mosley‐Thompson E, Thompson LG, Reeve JN. Bacterial recovery from ancient glacial ice. Environ Microbiol. 2003;5:433–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Raymond-Bouchard I, Goordial J, Zolotarov Y, Ronholm J, Stromvik M, Bakermans C, et al. Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiol Ecol. 2018;94:fiy023.Article 
    CAS 

    Google Scholar 
    8.Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG. Comparative transcriptomics of cold growth and adaptive features of a eury-and steno-psychrophile. Front Microbiol. 2018;9:1565.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Buzzini P, Margesin R. Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R, editors. Cold-adapted yeasts. Heidelberg: Springer; 2014. p. 3–22.Chapter 

    Google Scholar 
    10.Altshuler I, Goordial J, Whyte LG. Microbial life in permafrost. In: Margesin R, editor. Psychrophiles: from biodiversity to biotechnology. 2nd edn. Cham: Springer; 2017. p. 153–79.Chapter 

    Google Scholar 
    11.Gilichinsky D, Wilson G, Friedmann E, McKay C, Sletten R, Rivkina E, et al. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology. 2007;7:275–311.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS, et al. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles. 2020;24:367–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Zhang T, Wang N, Yu L. Soil fungal community composition differs significantly among the Antarctic, Arctic, and Tibetan Plateau. Extremophiles. 2020;24:821–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Coleine C, Zucconi L, Onofri S, Pombubpa N, Stajich JE, Selbmann L. Sun exposure shapes functional grouping of fungi in cryptoendolithic Antarctic communities. Life. 2018;8:19.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A. Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol. 2000;32:235–40.CAS 

    Google Scholar 
    16.Perini L, Gostinčar C, Anesio AM, Williamson C, Tranter M, Gunde-Cimerman N. Darkening of the Greenland Ice Sheet: fungal abundance and diversity are associated with algal bloom. Front Microbiol. 2019;10:557.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Tojo M, Newsham KK. Snow moulds in polar environments. Fungal Ecol. 2012;5:395–402.Article 

    Google Scholar 
    18.Rosa LH, Vaz AB, Caligiorne RB, Campolina S, Rosa CA. Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv.(Poaceae). Polar Biol. 2009;32:161–7.Article 

    Google Scholar 
    19.Gianoli E, Inostroza P, Zúñiga-Feest A, Reyes-Díaz M, Cavieres LA, Bravo LA, et al. Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of central Chile and the maritime Antarctic. Arct Antarct Alp Res. 2004;36:484–9.Article 

    Google Scholar 
    20.Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, et al. Endoglucanase‐producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol. 2006;8:1212–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Starmer WT, Lachance M-A. Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T, eds. The yeasts. 5ft ed. London: Elsevier; 2011. p. 65–83.Chapter 

    Google Scholar 
    22.Shivaji S, Prasad G. Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G, editors. Yeast biotechnology: diversity and applications. New Delhi: Springer; 2009. p. 3–18.Chapter 

    Google Scholar 
    23.Gunde-Cimerman N, Plemenitaš A, Buzzini P. Changes in lipids composition and fluidity of yeast plasma membrane as response to cold. In: Buzzini P, Margesin R, editors. Cold-adapted yeasts. Heidelberg: Springer; 2014. p. 225–42.Chapter 

    Google Scholar 
    24.Goordial J, Raymond-Bouchard I, Riley R, Ronholm J, Shapiro N, Woyke T, et al. Improved high-quality draft genome sequence of the eurypsychrophile Rhodotorula sp. JG1b, isolated from permafrost in the hyperarid upper-elevation mcmurdo dry valleys, Antarctica. Genome Announc. 2016;4:e00069–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yen H-W, Liao Y-T, Liu YX. Cultivation of oleaginous Rhodotorula mucilaginosa in airlift bioreactor by using seawater. J Biosci Bioeng. 2016;121:209–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N. Yeasts in polar and subpolar habitats. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer; 2017. p. 331–65.Chapter 

    Google Scholar 
    27.Margesin R, Fonteyne P-A, Schinner F, Sampaio JP. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Micr. 2007;57:2179–84.CAS 
    Article 

    Google Scholar 
    28.Sabri A, Jacques P, Weekers F, Bare G, Hiligsmann S, Moussaif M, et al. Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca. In: Walt DR, editor. Applied biochemistry and biotechnology. New York: Springer Science+Business Media; 2000. p. 391–9.
    Google Scholar 
    29.Marchant DR, Head JW III. Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 2007;192:187–222.Article 

    Google Scholar 
    30.Kurtzman C, Fell JW, Boekhout T, editors. The yeasts: a taxonomic study. 5ft ed. London: Elsevier; 2011.
    Google Scholar 
    31.Kornerup A, Wanscher JH, editors. Methuen handbook of colour. 2nd ed. London: Methuen and Co.; 1967.
    Google Scholar 
    32.Xing W, Yin M, Lv Q, Hu Y, Liu C, Zhang J. Oxygen solubility, diffusion coefficient, and solution viscosity. In: Xing W, Yin G, Zhang J, editors. Rotating electrode methods and oxygen reduction electrocatalysts. London: Elsevier; 2014. p. 1–31.
    Google Scholar 
    33.Viti C, Decorosi F, Marchi E, Galardini M, Giovannetti L. High-throughput phenomics. In: Mengoni A, Galardini M, Fondi M, editors. Bacterial pangenomics. Methods and protocols. New York: Springer; 2015. p. 99–123.Chapter 

    Google Scholar 
    34.Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe. 2008;21:269–82.CAS 
    Article 

    Google Scholar 
    35.Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    39.Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34:W451–54.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Greetham D. Phenotype microarray technology and its application in industrial biotechnology. Biotechnol Lett. 2014;36:1153–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev. 2008;33:191–205.PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Maldonado F, Packard T, Gómez M. Understanding tetrazolium reduction and the importance of substrates in measuring respiratory electron transport activity. J Exp Mar Biol Ecol. 2012;434:110–8.Article 
    CAS 

    Google Scholar 
    44.Barclay BJ, DeHaan CL, Hennig UG, Iavorovska O, von Borstel RW, Von, et al. A rapid assay for mitochondrial DNA damage and respiratory chain inhibition in the yeast Saccharomyces cerevisiae. Environ Mol Mutagen. 2001;38:153–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Jenkins CL, Lawrence SJ, Kennedy AI, Thurston P, Hodgson JA, Smart KA. Incidence and formation of petite mutants in lager brewing yeast Saccharomyces cerevisiae (syn. S. pastorianus) populations. J Am Soc Brew Chem. 2009;67:72–80.CAS 

    Google Scholar 
    46.Glab N, Wise R, Pring D, Jacq C, Slonimski P. Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize: respiratory dysfunction and uncoupling of yeast mitochondria. Mol Gen Genet. 1990;223:24–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J. The petite mutation in yeast: loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970;52:323–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Pinatel E, Peano C. RNA sequencing and analysis in microorganisms for metabolic network reconstruction. In: Fondi M, editor. Metabolic network reconstruction and modeling. Methods and protocols. New York: Springer; 2018. p. 239–65.Chapter 

    Google Scholar 
    50.Raymond‐Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol. 2017;19:4460–79.PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Bhuiyan M, Tucker D, Watson K. Gas chromatography–mass spectrometry analysis of fatty acid profiles of Antarctic and non-Antarctic yeasts. Anton Leeuw. 2014;106:381–9.CAS 
    Article 

    Google Scholar 
    52.López-Malo M, Chiva R, Rozes N, Guillamon JM. Phenotypic analysis of mutant and overexpressing strains of lipid metabolism genes in Saccharomyces cerevisiae: implication in growth at low temperatures. Int J Food Microbiol. 2013;162:26–36.PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, et al. Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol. 2009;69:363–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Micro Biot. 2015;31:517–26.CAS 
    Article 

    Google Scholar 
    55.Libkind D, Arts M, Van Broock M. Fatty acid composition of cold-adapted carotenogenic basidiomycetous yeasts. Rev Argent Microbiol. 2008;40:193–7.CAS 
    PubMed 

    Google Scholar 
    56.Thomas-Hall S, Watson K. Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Micr. 2002;52:1033–8.CAS 

    Google Scholar 
    57.López-Malo M, García-Ríos E, Chiva R, Guillamon JM. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature. Micro Cell. 2014;1:365.Article 
    CAS 

    Google Scholar 
    58.Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, Daran J-M. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell. 2007;18:5100–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Mao C, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem. 1997;272:28690–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Micro Cell Fact. 2014;13:12.Article 
    CAS 

    Google Scholar 
    61.Moliné M, Flores MR, Libkind D. del Carmen Diéguez M, Farías ME, van Broock M. Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photoch Photobio Sci. 2010;9:1145–51.Article 
    CAS 

    Google Scholar 
    62.Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 2009;17:406–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Rodrigues DF, Tiedje JM. Coping with our cold planet. Appl Environ Micro. 2008;74:1677–86.CAS 
    Article 

    Google Scholar 
    64.Villarreal P, Carrasco M, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr Microbiol. 2016;72:94–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Moliné M, Libkind D, del Carmen DiéguezM, van Broock M. Photoprotective role of carotenoids in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photoch Photobio B 2009;95:156–61.Article 
    CAS 

    Google Scholar 
    66.Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, et al. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. 2012;39:969–87.PubMed 
    Article 
    CAS 

    Google Scholar 
    67.Heino P, Palva ET. Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K, editors. Plant responses to abiotic stress. Berlin: Springer; 2003. p. 151–86.Chapter 

    Google Scholar 
    68.Storey KB, Storey JM. Signal transduction and gene expression in the regulation of natural freezing survival. In: Storey KB, Storey JM, editors. Protein adaptations and signal transduction. London: Elsevier; 2001. p. 1–19.
    Google Scholar 
    69.Li W-H, Yang J, Gu X. Expression divergence between duplicate genes. Trends Genet. 2005;21:602–7.PubMed 
    Article 
    CAS 

    Google Scholar 
    70.Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, et al. Poles apart: arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. Plos One. 2013;8:e63422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Wagner A. Asymmetric functional divergence of duplicate genes in yeast. Mol Biol Evol. 2002;19:1760–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Varki A, Gagneux P. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    73.Colley K, Varki A, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    74.Pavlova K, Panchev I, Hristozova T. Physico-chemical characterization of exomannan from Rhodotorula acheniorum MC. World J Micro Biot. 2005;21:279–83.CAS 
    Article 

    Google Scholar 
    75.Cho DH, Chae HJ, Kim EY. Synthesis and characterization of a novel extracellular polysaccharide by Rhodotorula glutinis. Appl Biochem Biotech. 2001;95:183–93.CAS 
    Article 

    Google Scholar 
    76.Flemming HC, Neu TR, Wingender J. The perfect slime. Microbial extracellular polymeric substances (EPS). London: IWA Publishing; 2016.Book 

    Google Scholar 
    77.Nichols WW, Evans MJ, Slack MP, Walmsley HL. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. Microbiology. 1989;135:1291–303.CAS 
    Article 

    Google Scholar 
    78.Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol. 2002;153:585–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Rini JM, Esko JD. Glycosyltransferases and glycan-processing enzymes. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    80.Strassburg K, Walther D, Takahashi H, Kanaya S, Kopka J. Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress. Omics. 2010;14:249–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Becerra M, Lombardia L, Gonzalez-Siso M, Rodriguez-Belmonte E, Hauser N, Cerdán M. Genome-wide analysis of the yeast transcriptome upon heat and cold shock. Int J Genomics. 2003;4:366–75.CAS 

    Google Scholar 
    82.Homma T, Iwahashi H, Komatsu Y. Yeast gene expression during growth at low temperature. Cryobiology. 2003;46:230–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Sahara T, Goda T, Ohgiya S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem. 2002;277:50015–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. Cold adaptation in budding yeast. Mol Biol Cell. 2004;15:5492–502.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Mikami K, Kanesaki Y, Suzuki I, Murata N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol. 2002;46:905–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Tsuji M. Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci. 2016;3:160106.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Sarkar D, Bhowmik PC, Kwon Y-I, Shetty K. Clonal response to cold tolerance in creeping bentgrass and role of proline-associated pentose phosphate pathway. Bioresour Technol. 2009;100:5332–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Bura R, Vajzovic A, Doty SL. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol. J Ind Microbiol Biot. 2012;39:1003–11.CAS 
    Article 

    Google Scholar 
    89.da Silva TL, Feijão D, Roseiro JC, Reis A. Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry. Bioresour Technol. 2011;102:2998–3006.PubMed 
    Article 
    CAS 

    Google Scholar 
    90.Johansson B, Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002;2:277–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Eliasson A, Boles E, Johansson B, Österberg M, Thevelein J, Spencer-Martins I, et al. Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biot. 2000;53:376–82.CAS 
    Article 

    Google Scholar 
    92.Mohamad N, Mustapa Kamal S, Mokhtar M. Xylitol biological production: a review of recent studies. Food Rev Int. 2015;31:74–89.CAS 
    Article 

    Google Scholar 
    93.Shetty K, Wahlqvist M. A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pac J Clin Nutr. 2004;13:1–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Fonseca P, Moreno R, Rojo F. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ Microbiol Rep. 2011;3:329–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Rao R, Bhadra B, Shivaji S. Isolation and characterization of ethanol‐producing yeasts from fruits and tree barks. Lett Appl Microbiol. 2008;47:19–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Kourkoutas Y, Komaitis M, Koutinas A, Kaliafas A, Kanellaki M, Marchant R, et al. Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and 0 C. Food Chem. 2003;82:353–60.CAS 
    Article 

    Google Scholar 
    97.Kanellaki M, Koutinas AA. Low temperature fermentation of wine and beer by cold-adapted and immobilized yeast cells. In: Margesin R, Schinner F, editors. Biotechnological applications of cold-adapted organisms. Berlin: Springer; 1999. p. 117–45.Chapter 

    Google Scholar 
    98.Bakoyianis V, Kanellaki M, Kaliafas A, Koutinas A. Low-temperature wine making by immobilized cells on mineral kissiris. J Agr Food Chem. 1992;40:1293–6.CAS 
    Article 

    Google Scholar 
    99.Tiwari R, Singh S, Shukla P, Nain L. Novel cold temperature active β-glucosidase from Pseudomonas lutea BG8 suitable for simultaneous saccharification and fermentation. RSC Adv. 2014;4:58108–15.CAS 
    Article 

    Google Scholar 
    100.Tang W, Wang Y, Zhang J, Cai Y, He Z. Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. J Microbiol Biotechn. 2019;29:507–17.CAS 
    Article 

    Google Scholar 
    101.Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol. 2007;59:513–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Dozmorov MG, Giles CB, Koelsch KA, Wren JD. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinforma. 2013;14:S2.Article 

    Google Scholar 
    103.Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Lau SK, Chow W-N, Wong AY, Yeung JM, Bao J, Zhang N, et al. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. Plos Negl Trop D. 2013;7:e2398.Article 
    CAS 

    Google Scholar 
    106.Zhou Q, Wang Z, Zhang J, Meng H, Huang B. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol UK. 2012;116:1156–62.CAS 
    Article 

    Google Scholar 
    107.Lambert M, Benmoussa A, Provost P. Small non-coding RNAs derived from eukaryotic ribosomal RNA. Noncoding RNA 2019;5:16.CAS 
    PubMed Central 

    Google Scholar 
    108.Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA. 2008;14:2095–103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017;14:1364–73.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Bąkowska-Żywicka K, Kasprzyk M, Twardowski T. tRNA-derived short RNAs bind to Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro. FEMS Yeast Res. 2016;16:fow077.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.McCool MA, Bryant CJ, Baserga SJ. MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc T. 2020;48:595–612.CAS 
    Article 

    Google Scholar 
    112.Wei H, Zhou B, Zhang F, Tu Y, Hu Y, Zhang B, et al. Profiling and identification of small rDNA-derived RNAs and their potential biological functions. Plos One. 2013;8:e56842.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Lee H-C, Chang S-S, Choudhary S, Aalto AP, Maiti M, Bamford DH, et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature. 2009;459:274–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Zhu C, Yan Q, Weng C, Hou X, Mao H, Liu D, et al. Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA. P Natl Acad Sci USA. 2018;115:10082–7.CAS 
    Article 

    Google Scholar 
    115.Zhou X, Chen X, Wang Y, Feng X, Guang S. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol. 2017;14:1492–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, et al. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol. 2017;24:258.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Evolutionarily recent dual obligatory symbiosis among adelgids indicates a transition between fungus- and insect-associated lifestyles

    Profftia and Vallotia are related to free-living bacteria and fungus-associated endosymbiontsPrevious 16S rRNA-based phylogenetic analyses suggested an affiliation of Profftia with free-living gammaproteobacteria and a close phylogenetic relationship between Vallotia and betaproteobacterial endosymbionts of Rhizopus fungi [14]. Biased nucleotide composition and accelerated sequence evolution of endosymbiont genomes [2, 3] often result in inconsistent phylogenies and may cause grouping of unrelated taxa [55, 56]. Thus, to further investigate the phylogenetic relationships of the A. laricis/tardus symbionts, we used conserved marker genes for maximum likelihood and Bayesian phylogenetic analyses.Phylogenetic analysis of 45 single-copy proteins demonstrated that Profftia opens up a novel insect symbiont lineage most similar to Hafnia species and an isolate from the human gastrointestinal tract within the Hafniaceae, which has been recently designated as a distinct family within the Enterobacteriales [57] (Fig. S2). Hafnia strains are frequently identified in the gastrointestinal tract of humans and animals and were also found in insects [58, 59]. The phylogenomic placement of Profftia in our analysis is in agreement with previous 16S rRNA-based analyses [14].Vallotia formed a monophyletic group with Mycetohabitans endofungorum and M. rhizoxinica, endosymbionts of Rhizopus fungi within the Burkholderiaceae [60, 61] with strong support in phylogenetic analyses based on a concatenated set of 108 proteins (Figs. 1 and S3; previous taxonomic assignments of the fungus-associated symbionts were as Burkholderia/Paraburkholderia endofungorum and rhizoxinica, respectively). Interestingly, Vallotia and M. endofungorum appeared as well-supported sister taxa within this clade. This implies a closer phylogenetic relationship between Vallotia and M. endofungorum and a common origin of adelgid endosymbionts from within a clade of fungus-associated bacterial symbionts. Lengths of branches leading to the fungus-associated endosymbionts were similar to those of free-living bacteria in the data set; however, Vallotia had a remarkably longer branch marking a rapid rate of sequence evolution characteristic of obligate intracellular bacteria [2, 3]. M. endofungorum and M. rhizoxinica have been identified in the cytosol of the zygomycete Rhizopus microsporus, best known as the causative agent of rice seedling blight [61, 62]. The necrotrophic fungus secretes potent toxins, rhizoxin and rhizonin, which are produced by the endosymbionts. The bacterial partners are obligatory for their host as they tightly control its sporulation, while they benefit from host nutrients and spread with the fungal spores [63, 64]. Additionally, related bacterial strains have also been found in association with Rhizopus fungi worldwide in a diverse set of environments, including other plant species, soil, food, and even human tissues [65, 66].Fig. 1: Phylogenomic analysis showing the affiliation of the adelgid endosymbiont “Candidatus Vallotia tarda” and its closest relatives, the fungus-associated endosymbionts M. rhizoxinica and M. endofungorum within the Burkholderiaceae.Selected members of Oxalobacteraceae (Janthinobacterium agaricidamnosum [HG322949], Collimonas pratensis [CP013234], and Herbaspirillum seropedicae [CP011930]) were used as outgroup. Maximum likelihood and Bayesian analyses were performed based on a concatenated alignment of 108 proteins. Maximum likelihood tree is shown. SH-aLRT support (%) and ultrafast bootstrap support (%) values based on 1000 replicates, and Bayesian posterior probabilities are indicated on the internal nodes. Asterisks stand for a maximal support in each analysis (100%/1).Full size imageTaken together, phylogenomic analyses support that Profftia and Vallotia open up novel insect symbionts lineages most closely related to free-living bacteria within the Hafniaceae and a clade of fungus-associated endosymbionts within the Burkholderiaceae, respectively. Given the well-supported phylogenetic positioning of “Candidatus Vallotia tarda” nested within a clade formed by Mycetohabitans species, we propose the transfer of “Candidatus Vallotia tarda” to the Mycetohabitans genus, as “Candidatus Mycetohabitans vallotii” (a detailed proposal for the re-classification is given in the Supplementary Material).
    Vallotia and Profftia are evolutionary young symbionts of adelgidsThe complete sequence of the Profftia chromosome had a length of 1,225,795 bp and a G + C content of 31.9% (Table 1). It encoded for 645 proteins, one copy of each rRNA, 35 transfer RNAs (tRNAs), and 10 non-coding RNAs (ncRNAs). It had tRNAs and amino acid charging potential for all 20 standard amino acids. However, protein-coding sequences (CDSs) made up only 52.4% of the genome, and 21 pseudogenes indicated an ongoing gene inactivation.Table 1 Genomic features of Profftia and Vallotia.Full size tableThe Vallotia chromosome had a length of 1,123,864 bp. It had a G + C content and a coding density of 42.9 and 64.9%, respectively. However, a 72,431-bp-long contig showed a characteristically lower G + C content (36.1%) and contained only 46.2% putative CDSs. This contig had identical repeats at its ends, and genome annotation revealed neighboring genes for a plasmid replication initiation protein, and ParA/ParB partitioning proteins, which function in plasmid and chromosome segregation between daughter cells before cell division [67]. We thus assume that this contig corresponds to a circular plasmid of Vallotia. Vallotia has three rRNA operons, similarly to its close relative, M. rhizoxinica [68]. In total, the Vallotia genome encoded 780 proteins (29 on the putative plasmid), 41 tRNAs, and 52 predicted pseudogenes (5 on the putative plasmid).The host-restricted lifestyle has a profound influence on bacterial genomes. Relaxed purifying selection on many redundant functions and increased genetic drift can lead to the accumulation of slightly deleterious mutations and the proliferation of mobile genetic elements [69,70,71,72]. Disruption of DNA repair genes can increase mutation rates, which promote gene inactivation [73]. Non-functional genomic regions get subsequently lost, and ancient obligate endosymbionts typically have tiny (≪0.8 Mb), gene-dense genomes with AT-biased nucleotide composition [2, 74, 75]. Facultative symbionts also possess accelerated rates of sequence evolution but have larger genomes ( >2 Mb) with variable coding densities following the age of their host-restricted lifestyle [76]. The number of pseudogenes in Vallotia and Profftia is higher than in ancient intracellular symbionts, which suggests an intermediate state of genomic reduction [2]. The only moderately reduced size and AT bias together with the low protein-coding density of the Vallotia and Profftia genomes was most similar to those of evolutionary young co-obligate partners of insects [76], for instance, “Ca. Pseudomonas adelgestsugas” in A. tsugae [23], Serratia symbiotica in Cinara cedri [77, 78], and the Sodalis-like symbiont of Philaenus spumarius, the meadow spittlebug [79].The evolutionary link between Vallotia and fungus-associated endosymbiontsHigh level of genomic synteny between Vallotia and M. rhizoxinica
    Intracellular symbionts usually show a low level of genomic similarity to related bacteria. Rare examples of newly emerged bacteriocyte-associated symbionts of herbivorous insects pinpoint their source from plant-associated bacteria [4], gut bacteria [5], and other free-living bacteria [6].Genome alignments showed a low level of collinearity between the genomes of Profftia and its closest relatives. Among the relatives of Vallotia, a closed genome is available for M. rhizoxinica [68]. We therefore mostly focused on this fungus-associated symbiont as a reference for comparison with Vallotia.The Vallotia chromosome showed a surprisingly high level of synteny with the chromosome of M. rhizoxinica (Fig. 2A). However, its size was only ~40% of the fungus-associated symbiont chromosome. The putative plasmid of Vallotia was perfectly syntenic with the larger of the two plasmids of M. rhizoxinica (pBRH01), although the Vallotia plasmid was >90% smaller in size (72,431 bp versus 822,304 bp) [68]. Thus, the Vallotia plasmid showed a much higher level of reduction than the chromosome, which together with its lower G + C content and gene density suggests differential evolutionary constraints on these replicons.Fig. 2: High level of collinearity between the genomes of Vallotia and M. rhizoxinica.A Circos plot showing the synteny between the chromosome and plasmid of Vallotia and M. rhizoxinica, an endosymbiont of Rhizopus fungi. The outermost and the middle rings show genes in forward and reverse strand orientation, respectively. These include rRNA genes in red and tRNA genes in dark orange. The innermost ring indicates single-copy genes shared by M. rhizoxinica and Vallotia in black. Purple and dark yellow lines connect forward and reverse matches between the genomes, respectively. B Close up of the largest deletion on the chromosome of M. rhizoxinica and the syntenic region on the Vallotia chromosome. Genes are colored according to COG categories. Yellow: secondary metabolite biosynthesis; red: transposase; gray: unknown function; khaki: replication, recombination and repair; pink: lipid transport and metabolism; brown: protein turnover and chaperones; dark green: amino acid transport and metabolism; light green: cell envelope biogenesis; black: transcription. The figure was generated by Easyfig.Full size imageThe conservation of genome structure contrasts with the elevated number of transposases and inactive derivatives making up ~6% of the fungus-associated symbiont genome [68]. Transition to a host-restricted lifestyle is usually followed by a sharp proliferation of mobile genetic elements coupled with many genomic rearrangements [80,81,82]. However, mobile genetic elements get subsequently purged out of the genomes of strictly vertically transmitted symbionts via a mutational bias toward deletion and because of lack of opportunity for horizontal acquisition of novel genetic elements [71, 74]. Independent origins of the fungus and adelgid symbioses from free-living precursors would have likely resulted in extensive genome rearrangements due to the accumulation of mobile genetic elements, as seen, for instance, between different S. symbiotica strains in aphids [81]. In contrast to the fungus-associated symbiont, mobile elements are notably absent from the Vallotia genome, suggesting that they might have been lost early after the establishment of the adelgid symbiosis conserving high collinearity between the fungus- and adelgid-associated symbiont genomes. M. rhizoxinica is transmitted also horizontally among fungi and might have more exposure to foreign DNA, therefore at least part of the mobile elements could possibly be inserted into its genome after the host switch of the Vallotia precursor [61, 62].The observed high level of genome synteny between Vallotia and M. rhizoxinica genomes is consistent with the phylogenetic position of Vallotia interleaved within the clade of Rhizopus endosymbionts. This points toward a direct evolutionary link between these symbioses and a symbiont transition between the fungus and insect hosts.Shrinkage of the insect symbiont genomeDeletion of large genomic fragments—spanning many functionally unrelated genes—represents an important driving force of genome erosion especially at early stages of symbioses when selection on many functions is weak [3, 83]. Besides, gene loss also occurs individually and is ongoing, albeit at a much lower rate, even in ancient symbionts [75, 84, 85]. Both small and large deletions could be seen when comparing the Vallotia and M. rhizoxinica genomes. Several small deletions as small as one gene were observed sparsely in the entire length of the Vallotia genome within otherwise collinear regions. The largest genomic region missing from Vallotia encompassed 165 kbp on the M. rhizoxinica chromosome (Fig. 2B). The corresponding intergenic spacer was only 3843-bp long on the Vallotia genome between a phage shock protein and the Mfd transcription-repair-coupling factor, present both in Vallotia and M. rhizoxinica. Interestingly, this large genomic fragment included the large rhizoxin biosynthesis gene cluster (rhiIGBCDHEF), which is responsible for the production of rhizoxin, a potent antimitotic macrolide serving as a virulence factor for R. microsporus, the host of M. rhizoxinica [86]. A homologous gene cluster was also found in Pseudomonas fluorescens, and it has been suggested that it has been horizontally acquired by M. rhizoxinica [68, 86]. The rhi cluster is also present in M. endofungorum, therefore it was most likely already present in the genome of the common ancestor of the fungus- and adelgid-associated symbionts and got subsequently lost in Vallotia. Rhizoxin blocks microtubule formation in various types of eukaryotic cells [86, 87], thus the loss of this gene cluster in ancestral Vallotia could have contributed to the establishment of the adelgid symbiosis. However, this large deleted genomic region also contained several transposases and many other genes, such as argE and ilvA, coding for the final enzymes for ornithine and 2-oxobutanoate productions, which were located adjacent to each other at the beginning of this fragment. The largest deletion between the plasmids encompassed nearly 137 kbp of the megaplasmid of M. rhizoxinica and involved several non-ribosomal peptide synthetases (NRPS), insecticidal toxin complex (Tc) proteins, and a high number of transposases among others. M. rhizoxinica harbors 15 NRPS gene clusters [68] in total, all of which are absent in Vallotia. NRPSs are large multienzyme machineries that assemble various peptides, which might function as antibiotics, signal molecules, or virulence factors [88]. Insecticidal toxin complexes are bacterial protein toxins, which exhibit powerful insecticidal activity [89]. Two of such proteins are also present in the large deleted chromosomal region in close proximity to the rhizoxin biosynthesis gene cluster (Fig. 2B); however, their role in M. rhizoxinica remains elusive.The Vallotia genome encodes a subset of functions of the fungus-associated endosymbiontsThe number of protein-coding genes of Vallotia is less than one-third of those of M. rhizoxinica and M. endofungorum, although metabolic functions are already reduced in the fungus-associated endosymbionts compared to free-living Burkholderia species [68] (Figs. S4 and S5). When compared to the two genomes of the fungus-associated endosymbionts, only 53 proteins were specific to Vallotia (Fig. S6). All of these were short (on average 68 amino acid long) hypothetical proteins and most of them showed no significant similarity to other proteins in public databases. Whether these Vallotia-specific hypothetical proteins might be over-annotated/non-functional open reading frames or orphan genes with a yet unknown function [90, 91] needs further investigation. Four genes were present in Vallotia and M. rhizoxinica but were missing in M. endofungorum. These encoded for BioA and BioD in biotin biosynthesis, NagZ in cell wall recycling, and an MFS transporter. Fifteen genes, including, for instance, the MreB rod-shape-determining protein, glycosyltransferase and hit family proteins, genes in lipopolysaccharide, lipoate synthesis, and the oxidative pentose phosphate pathway, were shared between Vallotia and M. endofungorum only. The rest of the Vallotia genes, coding for 91% of all of its proteins, were shared among the fungus- and insect-associated endosymbionts.Comparing the genes present in both endosymbionts to those shared only by the fungus-associated endosymbionts (Fig. S7), we can infer selective functions maintained or lost during transition to insect endosymbiosis. Translation-related functions have been retained in the greatest measure in the group shared by all endosymbionts. Functions, where higher proportion of genes were specific to the fungus endosymbioses, were related to transcription, inorganic ion transport and metabolism, secondary metabolite biosynthesis, signal transduction, intracellular trafficking, secretion, vesicular transport, and defense mechanisms. Most of the proteins specific to either of the fungus-associated symbionts were homologous to transposases and integrases, transcriptional regulators, or had an unknown function.Fungus-associated endosymbionts encode a high number of transcriptional regulators (~5% of all genes in M. rhizoxinica) [68], but Vallotia has retained only a handful of such genes, which is a feature similar to other insect symbionts and might facilitate the overproduction of essential amino acids [75, 92].M. rhizoxinica is resistant against various β-lactams and has an arsenal of efflux pumps that might provide defense against antibacterial fungal molecules, the latter might also excrete virulence factors to the fungus cytosol (type I secretion) [68]. Besides, M. rhizoxinica encodes several genes for pilus formation; adhesion proteins; and type II, type III, and type IV secretion systems, which likely play a central role in host infection and manipulation in the bacteria–fungus symbiosis [68, 93, 94]. However, all of the corresponding genes are missing in Vallotia. Thus, neither of these mechanisms likely play a role in the adelgid symbiosis. Indeed, we could not even detect remnants of these genes in the Vallotia genome, except for a type II secretion system protein as a pseudogene. Loss of these functions is consistent with a strictly vertical transmission of Vallotia between host generations. Transovarial transmission likely does not require active infection mechanisms, and the endosymbionts rather move between the insect cells in a passive manner via an endocytic/exocytic vesicular route [12, 95]. In contrast, M. rhizoxinca is also able to spread horizontally among fungi and re-infect cured Rhizopus strains under laboratory conditions [61, 62].Differential reduction of metabolic pathways in Vallotia and Profftia
    Although compared to their closest free-living relatives both Vallotia and Profftia have lost many genes in all functional categories, both retained the highest number of genes in translation-related functions (Fig. S4). Besides, functions related to cell division, nucleotide and coenzyme transport and metabolism, DNA replication and repair, posttranslational modification, and cell envelope biogenesis are reduced to a lesser extent in both endosymbionts. As a consequence, most of the genes of Vallotia and Profftia are devoted to translation and cell envelope biogenesis, which make up higher proportions of their genomes than in related bacteria (Fig. S5). Retention of a minimal set of genes involved in central cellular functions such as translation, transcription, and replication is a typical feature of reduced genomes, even extremely tiny ones of long-term symbionts [75]. However, ancient intracellular symbionts usually miss a substantial number of genes for the production of the cell envelope and might rely on host-derived membrane compounds [96,97,98].Based on pathway reconstructions, both Vallotia (Fig. S8) and Profftia (Fig. S9) have a complete gene set for peptidoglycan, fatty acid, and phospholipid biosynthesis and retained most of the genes for the production of lipid A, LPS core, and the Lpt LPS transport machinery. Besides, we found a partial set of genes for O antigen biosynthesis in the Vallotia genome. Regarding the membrane protein transport and assembly, both adelgid endosymbionts have the necessary genes for Sec and signal recognition particle translocation and the BAM outer membrane protein assembly complex. Profftia also has a complete Lol lipoprotein trafficking machinery (lolABCDE), which can deliver newly matured lipoproteins from the inner membrane to the outer membrane [99]. In addition, Profftia has a near-complete gene set for the Tol-Pal system; however, tolA has been pseudogenized suggesting an ongoing reduction of this complex. Further, both adelgid endosymbionts have retained mrdAB and mreBCD having a role in the maintenance of cell wall integrity and morphology [100, 101]. The observed well-preserved cellular functions for cell envelope biogenesis and integrity are consistent with the rod-shaped cell morphology of Profftia and Vallotia [14], contrasting the spherical/pleomorphic cell shape of ancient endosymbionts, such as Annandia in A. tsugae and Pineus species [10, 11, 15].Regarding the central metabolism, Vallotia lacks 6-phosphofructokinase but has a complete gene set for gluconeogenesis and the tricarboxylic acid (TCA) cycle. TCA cycle genes are typically lost in long-term symbionts but are present in facultative and evolutionarily recent obligate endosymbionts [79, 82, 102]. Interestingly, Vallotia does not have a recognized sugar transporter. Similarly to M. rhizoxinica [68], a glycerol kinase gene next to a putative glycerol uptake facilitator protein is present on its plasmid. However, the latter gene has a frameshift mutation and a premature stop codon in the first 40% of the sequence and whether it can still produce a functional protein remains unknown.Profftia can convert acetyl-CoA to acetate for energy but lacks TCA cycle genes, a feature characteristic to more reduced genomes, such as, for instance, Annandia in A. tsugae [23]. Profftia has import systems for a variety of organic compounds, such as murein tripeptides, phospholipids, thiamine, spermidine and putrescine, 3-phenylpropionate, and a complete phosphotransferase system for the uptake of sugars.NADH dehydrogenase, ATP synthase, and cytochrome oxidases (bo/bd-1) are encoded on both adelgid symbiont genomes. However, Vallotia is not able to produce ubiquinone and six pseudogenes in its genome indicate a recent inactivation of this pathway (Fig. S10).Profftia retained more functions in inorganic ion transport and metabolism, while Vallotia had a characteristically higher number of genes related to amino acid biosynthesis (see its function below) and nucleotide transport and metabolism (Fig. S4). For instance, Profftia can take up sulfate and use it for assimilatory sulfate reduction and cysteine production, and it has also retained many genes for heme biosynthesis (Fig. S9). However, it cannot produce inosine-5-phosphate and uridine 5’-monophosphate precursors for the de novo synthesis of purine and pyrimidine nucleotides and thus would need to import these compounds.Notably, although core genes in DNA replication and repair [70] are well preserved, multiple pseudogenes may indicate an ongoing erosion of DNA repair functions in the genomes. These include genes for the UvrABC nucleotide excision repair complex in both adelgid symbionts, helicases (recG, recQ), mismatch repair genes (mutL, mutS; the MutHLS complex is also missing in Profftia), and alkA encoding a DNA glycosylase in Vallotia.Taken together, their moderately reduced, gene-sparse genomes but still versatile metabolic capabilities support that Vallotia and Profftia are evolutionarily recently acquired endosymbionts. This is following their occurrence in lineages of adelgids, which likely diversified relatively recently, ~60 and ~47 million years ago, respectively, from the remaining clades of Adelgidae [8].
    Vallotia and Profftia are both obligatory nutritional symbiontsComplementary functions in essential amino acid provisionVallotia and Profftia complement each other’s role in the essential amino acid synthesis, thus have a co-obligatory status in the A. laricis/A. tardus symbiosis (Fig. 3). Although Vallotia likely generates most essential amino acids, solely Profftia can produce chorismate, a key precursor for the synthesis of phenylalanine and tryptophan. Profftia is likely responsible for the complete biosynthesis of phenylalanine as it has a full set of genes for this pathway. It can also convert chorismate to anthranilate; however, further genes for tryptophan biosynthesis are only present in the Vallotia genome. Thus, Vallotia likely takes up anthranilate for tryptophan biosynthesis. Anthranilate synthase (trpEG), is subject to negative feedback regulation by tryptophan [103], thus partition of this rate-limiting step between the co-symbionts can enhance overproduction of the amino acid and might stabilize dual symbiotic partnerships at an early stage of coexistence. The production of tryptophan is partitioned between Vallotia and Profftia similarly as seen in other insect symbioses [77, 78, 104], and it is also shared but is more redundant between the Annandia and Pseudomonas symbionts of A. tsugae [23]. The Vallotia–Profftia system generally shows a lower level of functional overlap between the symbionts and is more unbalanced than the Annandia–Pseudomonas association. In the latter, redundant genes are present also in the synthesis of phenylalanine, threonine, lysine, and arginine, and Annandia can produce seven and the Pseudomonas partner five essential amino acids with the contribution of host genes [23].Fig. 3: Division of labor in amino acid biosynthesis and transport between Vallotia and Profftia showing co-obligatory status of endosymbionts of A. laricis/tardus.Amino acids produced by Vallotia and Profftia are shown in blue and red, respectively. Bolded texts indicate essential amino acids. The insect host likely supplies ornithine, homocysteine, 2-oxobutanoate, and glutamine. Other compounds that cannot be synthesized by the symbionts are shown in gray italics.Full size imageThe Vallotia genome encodes for all the enzymes for the synthesis of five essential amino acids (histidine, leucine, valine, lysine, threonine). ArgG and tyrB among the essential amino acid synthesis-related genes are only present on the plasmid of Vallotia, which might be a reason that the plasmid is still part of its genome. However, neither of the endosymbionts can produce ornithine, 2-oxobutanoate, and homocysteine de novo, which are key for the biosynthesis of arginine, isoleucine, and methionine, respectively. The corresponding functions are also missing from the Annandia–Pseudomonas system [23]. These compounds are thus likely supplied by the insect host, as seen for instance in aphids, mealybugs, and psyllids, where the respective genes are present in the insect genomes and are typically overexpressed within the bacteriome [97, 105, 106]. The metC and argA genes are still present as pseudogenes in Vallotia suggesting a recent loss of these functions in methionine and arginine biosynthesis, respectively.In most plant sap-feeding insects harboring a dual symbiotic system, typically the more ancient symbiont provides most of the essential amino acids [77, 107]. Given its prominent role in nutrient provision and its presence in both larch- and Douglas fir-associated adelgids, Vallotia might be the older symbiont. Loss of functions in chorismate and anthranilate biosynthesis might have led to the fixation of Profftia in the system.Vallotia and Profftia have more redundant functions in non-essential amino acid production (Fig. 3). Only Profftia can produce cysteine and tyrosine, while none of the symbionts can build up glutamine, thus this latter amino acid is likely supplied by the insect bacteriocytes.The presence of relevant transporters can complement missing functions in amino acid synthesis (Fig. 3). For instance, Profftia has a high-affinity glutamine ABC transporter and three symporters (BrnQ, Mtr, TdcC), which can import five among the essential amino acids that can be produced by Vallotia. Vallotia might excrete isoleucine, valine, and leucine via AzICD, a putative branched-chain amino acid efflux pump [108], and these amino acids could be taken up by Profftia via BrnQ and would be readily available also for the insect host.B vitamin provision by Vallotia
    Regarding the B vitamin synthesis, Vallotia is likely able to produce thiamine (B1), riboflavin (B2), pantothenate (B5), pyridoxine (B6), biotin (B7), and folic acid (B9) (Fig. S11). Although Vallotia misses some genes of the canonical pathways, alternative enzymes and host-derived compounds might bypass these reactions, as detailed in the Supplementary Material. Profftia has only a few genes related to B vitamin biosynthesis. Three pseudogenes (ribAEC) in the riboflavin synthesis pathway indicate that these functions might have been lost recently in this symbiont (Fig. S11). More

  • in

    Evolutionary dynamics of the elevational diversity gradient in passerine birds

    1.Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    2.McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).
    Google Scholar 
    3.Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Wiens, J. J., Parra-Olea, G., García-París, M. & Wake, D. B. Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proc. R. Soc. B 274, 919–928 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B 283, 20152013 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Körner, C. & Spehn, E. M. (eds) Mountain Biodiversity: A Global Assessment (CRC Press, 2002).9.Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Fjeldsa, J. Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodivers. Conserv. 3, 207–226 (1994).Article 

    Google Scholar 
    11.Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol. Lett. 7, 1180–1191 (2004).Article 

    Google Scholar 
    12.Weir, J. T. Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution 60, 842–855 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 10334–10339 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Cozzarolo, C.-S. et al. Biogeography and ecological diversification of a mayfly clade in New Guinea.Front. Ecol. Evol. 7, 233 (2019).Article 

    Google Scholar 
    15.Davies, T. J., Savolainen, V., Chase, M. W., Moat, J. & Barracloug, T. G. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. B 271, 2195–2200 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Graves, G. R. Linearity of geographic range and its possible effect on the population structure of andean birds. Auk 105, 47–52 (1988).Article 

    Google Scholar 
    17.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    18.Cai, T. et al. What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? J. Biogeogr. 45, 640–651 (2018).Article 

    Google Scholar 
    19.Rana, S. K., Gross, K. & Price, T. D. Drivers of elevational richness peaks, evaluated for trees in the east Himalaya. Ecology 100, e02548 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Ribas, C. C., Moyle, R. G., Miyaki, C. Y. & Cracraft, J. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. R. Soc. B 274, 2399–2408 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Schwery, O. et al. As old as the mountains: the radiations of the Ericaceae. N. Phytologist 207, 355–367 (2015).Article 

    Google Scholar 
    23.Bates, J. M. & Zink, R. M. Evolution into the Andes: molecular evidence for species relationships in the genus Leptopogon. Auk 111, 507–515 (1994).
    Google Scholar 
    24.Roy, M. S. Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc. R. Soc. B 264, 1337–1344 (1997).PubMed Central 
    Article 

    Google Scholar 
    25.Garcia-Moreno, J. et al. Pre-Pleistocene differentiation among chat-tyrants. Condor 100, 629–640 (1998).Article 

    Google Scholar 
    26.Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916–7925 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    Article 

    Google Scholar 
    28.Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).Article 

    Google Scholar 
    29.Herrera-Alsina, L., van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).Article 

    Google Scholar 
    33.Chazot, N. et al. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol. Ecol. 25, 5765–5784 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Elias, M. et al. Out of the Andes: oatterns of diversification in clearwing butterflies. Mol. Ecol. 18, 1716–1729 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.McGuire, J. A., Witt, C. C., Altshuler, D. L. & Remsen, J. V. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst. Biol. 56, 837–856 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346–367 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Zhou, C. et al. Genome-wide analysis sheds light on the high-altitude adaptation of the buff-throated partridge (Tetraophasis szechenyii). Mol. Genet. Genom. 295, 31–46 (2020).CAS 
    Article 

    Google Scholar 
    38.Xu, Z., He, J. & Wang, J. Hypoxia affects the resistance of Scylla paramamosain to Vibrio alginolyticus via changes of energy metabolism. Aquac. Rep. 19, 100565 (2021).Article 

    Google Scholar 
    39.Storz, J. F., Scott, G. R. & Cheviron, Z. A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213, 4125–4136 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Scott, G. R. Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Projecto-Garcia, J. et al. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc. Natl Acad. Sci. USA 110, 20669–20674 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Scott, G. R. et al. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28, 351–363 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Schumm, M., White, A. E., Supriya, K. & Price, T. D. Ecological limits as the driver of bird species richness patterns along the east Himalayan elevational gradient. Am. Nat. 195, 802–817 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Malpica, A., Covarrubias, S., Villegas-Patraca, R. & Herrera-Alsina, L. Ecomorphological structure of avian communities changes upon arrival of wintering species. Basic Appl. Ecol. 24, 60–67 (2017).Article 

    Google Scholar 
    45.Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Braun, E. L., Cracraft, J. & Houde, P. in Avian Genomics in Ecology and Evolution (ed. Kraus, R. H. S.) 151–210 (Springer, 2019).49.del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the Birds of the World (Lynx Edicions, 2016).50.Chapman, F. M. et al. The distribution of bird life in Ecuador: a contribution to a study of the origin of Andean bird-life. Bull. Am. Mus. Nat. Hist. 55, 1–784 (1926).
    Google Scholar 
    51.Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Daru, B., Karunarathne, P. & Schliep, K. phyloregion: R package for biogeographic regionalization and spatial conservation. Methods Ecol. Evol. 11, 1483–1491 (2020).Article 

    Google Scholar  More

  • in

    Shoot-soil ecological stoichiometry of alfalfa under nitrogen and phosphorus fertilization in the Loess Plateau

    1.Bai, X. J., Wang, B. R., An, S. S., Zeng, Q. C. & Zhang, H. X. Response of forest species to C:N:P in the plant–litter–soil system and stoichiometric homeostasis of plant tissue during afforestation on the Loess Plateau, China. CATENA 183, 104186 (2019).CAS 
    Article 

    Google Scholar 
    2.Zhao, X. N., Wu, P. T., Gao, X. D. & Persaud, N. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 26(1), 54–61 (2015).Article 

    Google Scholar 
    3.Penuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N, and P in Earth’s life system. GCB Bioenergy 18(1), 3–6 (2012).
    Google Scholar 
    4.Zhao, Z. P. et al. Effects of chemical fertilizer combined with organic manure on Fuji apple quality, yield and soil fertility in apple orchard on the Loess Plateau of China. Int. J. Agric. Biol. Eng. 7(2), 45–55 (2014).CAS 

    Google Scholar 
    5.Treseder, K. K. & Vitousek, P. M. Effects of soil nutrient availability on investment in acquisition of N and P in Havaiian rain forests. Ecology 82(4), 946–954 (2001).Article 

    Google Scholar 
    6.Vitousek, P. M. Nutrient cycling and nutrient use efficiency. Am. Nat. 119(4), 553–573 (1984).Article 

    Google Scholar 
    7.Zhong, Y. Q. W., Yan, W. M., Xu, X. B. & Shangguan, Z. P. Influence of nitrogen fertilization on wheat, and soil carbon, nitrogen and phosphorus stoichiometry characteristics. Int. J. Agric. Biol. 17, 1179–2118 (2015).CAS 
    Article 

    Google Scholar 
    8.Cui, Q., Lü, X. T., Wang, Q. B. & Han, X. G. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant Soil 334, 209–219 (2010).CAS 
    Article 

    Google Scholar 
    9.Louis, A. S. et al. Decadal changes in soil carbon and nitrogen under a range of irrigation and phosphorus fertilizer treatments. Soil Sci. Soc. Am. J. 77(1), 246–256 (2012).
    Google Scholar 
    10.Ostertag, R. Foliar nitrogen and phosphorus accumulation responses after fertilization: An example from nutrient-limited Hawaiian forests. Plant Soil 334, 85–98 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Hu, Q. J., Sheng, M. Y., Bai, Y. X., Jie, Y. & Xiao, H. L. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China. Plant Soil https://doi.org/10.1007/s11104-020-04742-7 (2020).Article 

    Google Scholar 
    12.Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    13.Zhang, G. Q., Zhang, P., Peng, S. Z., Chen, Y. M. & Cao, Y. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Sci. Rep. 7(1), 11754 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Pang, Y. et al. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. PeerJ 8(4), e9274 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Heyburn, J., Mckenzie, P., Crawlwy, M. J. & Fornara, D. A. Effects of grassland management on plant C:N:P stoichiomtry: Implications for soil elment cycling and storage. Ecosphere 8(10), e01963 (2017).Article 

    Google Scholar 
    16.Sun, X. et al. Initial responses of grass litter tissue chemistry and N:P stoichiometry to varied N and P input rates and ratios in Inner Mongolia. Agric. Ecosyst. Environ. 252, 114–125 (2018).CAS 
    Article 

    Google Scholar 
    17.Ding, F. et al. Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem. J. Plant Ecol. 12(4), 682–692 (2019).Article 

    Google Scholar 
    18.Ye, Y. S. et al. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS ONE 9(7), e101776 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Sistla, S. A., Appling, A. P., Lewandowska, A. M., Taylor, B. N. & Wolf, A. A. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124(7), 949–959 (2015).CAS 
    Article 

    Google Scholar 
    20.Ladanai, S., Ågren, G. I. & Olsson, B. A. Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13(2), 302–316 (2010).CAS 
    Article 

    Google Scholar 
    21.Lu, J. Y. et al. Leaf resorption and stoichiometry of N and P of 1, 2 and 3 year-old alfalfa under one-time P fertilization. Soil Till. Res. 197, 104481 (2020).Article 

    Google Scholar 
    22.Lu, J. Y., Yang, M., Liu, M. G., Lu, Y. X. & Yang, H. M. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China. J. Plant Nutr. 42(18), 2234–2246 (2019).CAS 
    Article 

    Google Scholar 
    23.Jiang, H. M., Jiang, J. P., Jia, Y., Li, F. M. & Xu, J. Z. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem. 38(8), 2350–2358 (2006).CAS 
    Article 

    Google Scholar 
    24.Gu, Y. J. et al. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop Res. 215, 94–103 (2018).Article 

    Google Scholar 
    25.Herbert, D. A., Williams, M. & Rastetter, E. B. A model analysis of N and P limitaiton on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 65, 121–150 (2003).CAS 
    Article 

    Google Scholar 
    26.Zhang, L. X., Bai, Y. F. & Han, X. G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Bot. Sin. 46, 259–270 (2004).
    Google Scholar 
    27.Stewart, J. R., Kennedy, G. J., Landes, R. D. & Dawson, J. Foliar-nitrogen and phosphorus resorption patterns differ among nitrogen-fixing and nonfixing temperate-deciduous trees and shrubs. Int. J. Plant Sci. 169(4), 495–502 (2008).CAS 
    Article 

    Google Scholar 
    28.Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: Critical adaptations by plant for securing a non renewable resource. New Phytol. 157, 423–447 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Han, W. X., Fang, J. Y., Guo, D. L. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168(2), 377–385 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Ma, H. M. et al. Moderate clipping stimulates over-compensatory growth of Leymus chinensis under saline-alkali stress throuth high allocation of biomass and nitrogen to shoots. Plant Growth Regul. 92, 95–106 (2020).CAS 
    Article 

    Google Scholar 
    31.Sophie, Z. B. et al. The application of ecological stoichiometry to plant–microbial-soil organic matter transformations. Ecol. Monogr. 85(2), 133–155 (2015).Article 

    Google Scholar 
    32.Schmitt, A., Pausch, J. & Kuzyakov, Y. C and N allocation in soil under ryegrass and alfalfa extimated by 13C and 15N labelling. Plant Soil 368, 581–590 (2013).CAS 
    Article 

    Google Scholar 
    33.Koerselman, W. & Meuleman, A. F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    34.Tian, H. G., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).CAS 
    Article 

    Google Scholar 
    35.Ding, X. Q. et al. Establishing P fertilization reconmendation index of different vegetables by STP with the “3414” field experiments in South China. Int. J. Agric. Biol. 16, 603–608 (2014).CAS 

    Google Scholar 
    36.Suo, Y. Y. et al. Local-scale determinants of elemental stoichiometry of soil in an old-growth temperate forest. Plant Soil 408, 401–414 (2016).CAS 
    Article 

    Google Scholar 
    37.Qiu, W. H., Liu, J. S., Li, B. Y. & Wang, Z. H. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N and bacterial community. Environ. Sci. Pollut. Res. 27, 8673–8683 (2020).CAS 
    Article 

    Google Scholar 
    38.Appelhans, S. C., Barbagelata, P. A., Melchiori, R. J. M. & Boem, F. G. Assessing soil P fractions changes with long-term phosphorus fertilization related to crop yield of soybean and maize. Soil Use Manag. 36(3), 524–535 (2020).Article 

    Google Scholar 
    39.Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Chen, X. D. et al. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma 349, 36–44 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Van Huysen, T. L., Perakis, S. S. & Harmon, M. K. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant Soil 406(1–2), 1–14 (2016).Article 
    CAS 

    Google Scholar 
    42.Li, M. et al. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots. Plant Soil 445, 231–242 (2019).Article 
    CAS 

    Google Scholar 
    43.Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh water, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    44.Shaver, G. R. & Melillo, J. M. Nutrient budgets of marsh plant: Efficiency concepts and relation to availability. Ecology 65, 1491–1510 (1984).Article 

    Google Scholar 
    45.De Vos, B., Van Meirvenne, M., Quataert, P. & Muys, B. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci. Soc. Am. J. 69(2), 500–510 (2005).Article 

    Google Scholar  More

  • in

    Drivers of seedling establishment success in dryland restoration efforts

    1.Hobbs, R. J. et al. Restoration ecology: the challenge of social values and expectations. Front. Ecol. Environ. 2, 43–38 (2004).Article 

    Google Scholar 
    2.Harris, J. A., Hobbs, R. J., Higgs, E. & Aronson, J. C. Ecological restoration and global climate change. Restor. Ecol. 14, 170–176 (2006).3.Aronson, J. C. & Vallejo, R. in Restoration Ecology: The New Frontier (eds. van Andel, J. & Aronson, J. C.) (John Wiley & Sons, 2009).4.Suding, K. et al. Committing to ecological restoration. Science 348, 638–640 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Plaza, C. et al. Soil resources and element stocks in drylands to face global issues. Sci. Rep. 8, 13788 (2018).6.Aronson, J., Goodwin, N., Orlando, L., Eisenberg, C. & Cross, A. T. A world of possibilities: six restoration strategies to support the United Nation’s Decade on Ecosystem Restoration. Restor. Ecol. 28, 730–736 (2020).Article 

    Google Scholar 
    7.Drylands and Land Degradation (IUCN, 2017).8.Bainbridge, D. A. A Guide for Desert and Dryland Restoration: New Hope for Arid Lands (Island Press, 2012).9.Millennium Ecosystem Assessment Findings (Millennium Ecosystem Assessment, 2005).10.Reynolds, J. F., Maestre, F. T., Kemp, P. R., Stafford-Smith, D. M. & Lambin, E. in Terrestrial Ecosystems in a Changing World (eds. Canadell, J. G., Pataki, D. E. & Pitelka, L. F.) 247–257 (Springer, 2007); https://doi.org/10.1007/978-3-540-32730-1_2011.Hoover, D. L. et al. Traversing the wasteland: a framework for assessing ecological threats to drylands. BioScience 70, 35–47 (2020).Article 

    Google Scholar 
    12.Hardegree, S. P., Jones, T. A., Roundy, B. A., Shaw, N. L. & Monaco, T. A. in Conservation Benefits of Rangeland Practices 171–213 (United States Department of Agriculture, 2011).13.James, J. J., Svejcar, T. J. & Rinella, M. J. Demographic processes limiting seedling recruitment in arid grassland restoration. J. Appl. Ecol. 48, 961–969 (2011).Article 

    Google Scholar 
    14.Okin, G. S. et al. Connectivity in dryland landscapes: shifting concepts of spatial interactions. Front. Ecol. Environ. 13, 20–27 (2015).Article 

    Google Scholar 
    15.Svejcar, L. N. & Kildisheva, O. A. The age of restoration: challenges presented by dryland systems. Plant Ecol. 218, 1–6 (2017).Article 

    Google Scholar 
    16.Safriel, U. et al. Dryland Systems. Ecosystems and Human Well-being: Current State and Trends.: Findings of the Condition and Trends Working Group 623–662 (Millennium Ecosystem Assessment, 2005).17.Ward, D. The Biology of Deserts (Oxford Univ. Press, 2016).18.Li, Y., Chen, Y. & Li, Z. Dry/wet pattern changes in global dryland areas over the past six decades. Glob. Planet. Change 178, 184–192 (2019).Article 

    Google Scholar 
    19.Prăvălie, R., Bandoc, G., Patriche, C. & Sternberg, T. Recent changes in global drylands: evidences from two major aridity databases. Catena 178, 209–231 (2019).Article 

    Google Scholar 
    20.Yao, J. et al. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 11, 1665 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aridity Zones and Dryland Populations: An Assessment of Population Levels in the World’s Drylands with Reference to Africa (UNSO/UNDP, 1997); http://digitallibrary.un.org/record/43231222.van den Berg, L. & Kellner, K. Restoring degraded patches in a semi-arid rangeland of South Africa. J. Arid. Environ. 61, 497–511 (2005).Article 

    Google Scholar 
    23.Valkó, O. et al. Cultural heritage and biodiversity conservation – plant introduction and practical restoration on ancient burial mounds. Nat. Conserv. 24, 65–80 (2018).Article 

    Google Scholar 
    24.Louhaichi, M., Clifton, K. & Hassan, S. Direct seeding of Salsola vermiculata for rehabilitation of degraded arid and semi-arid rangelands. Range Manag. Agrofor. 35, 182–187 (2014).
    Google Scholar 
    25.Pérez, D. R., González, F., Ceballos, C., Oneto, M. E. & Aronson, J. Direct seeding and outplantings in drylands of Argentinean Patagonia: estimated costs, and prospects for large-scale restoration and rehabilitation. Restor. Ecol. 27, 1105–1116 (2019).Article 

    Google Scholar 
    26.Kiehl, K., Kirmer, A., Donath, T. W., Rasran, L. & Hölzel, N. Species introduction in restoration projects: evaluation of different techniques for the establishment of semi-natural grasslands in Central and Northwestern Europe. Basic Appl. Ecol. 11, 285–299 (2010).Article 

    Google Scholar 
    27.Miguel, M. F., Butterfield, H. S. & Lortie, C. J. A meta-analysis contrasting active versus passive restoration practices in dryland agricultural ecosystems. PeerJ 8, e10428 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kildisheva, O. A., Erickson, T. E., Merritt, D. J. & Dixon, K. W. Setting the scene for dryland recovery: an overview and key findings from a workshop targeting seed-based restoration. Restor. Ecol. 24, S36–S42 (2016).Article 

    Google Scholar 
    29.Lewandrowski, W., Erickson, T. E., Dixon, K. W. & Stevens, J. C. Increasing the germination envelope under water stress improves seedling emergence in two dominant grass species across different pulse rainfall events. J. Appl. Ecol. 54, 997–1007 (2017).CAS 
    Article 

    Google Scholar 
    30.Ladouceur, E. & Shackelford, N. The power of data synthesis to shape the future of the restoration community and capacity. Restor. Ecol. 29, e13251 (2020).
    Google Scholar 
    31.Temperton, V. M., Baasch, A., von Gillhaussen, P. & Kirmer, A. in Foundations of Restoration Ecology (eds. Palmer, M. A., Zedler, J. B. & Falk, D. A.) 245–270 (Island Press/Center for Resource Economics, 2016); https://doi.org/10.5822/978-1-61091-698-1_932.Hulvey, K. B. & Aigner, P. A. Using filter-based community assembly models to improve restoration outcomes. J. Appl. Ecol. 51, 997–1005 (2014).Article 

    Google Scholar 
    33.van Wilgen, B. W. The evolution of fire and invasive alien plant management practices in fynbos. S. Afr. J. Sci. 105, 335–342 (2009).
    Google Scholar 
    34.Arianoutsoua, M. & Vilà, M. Fire and invasive plant species in the Mediterranean Basin. Isr. J. Ecol. Evol. 58, 195–203 (2012).
    Google Scholar 
    35.Leger, E. A. & Baughman, O. W. What seeds to plant in the Great Basin? Comparing traits prioritized in native plant cultivars and releases with those that promote survival in the field. Nat. Areas. J. 35, 54–68 (2015).Article 

    Google Scholar 
    36.Porensky, L. M., Vaughn, K. J. & Young, T. P. Can initial intraspecific spatial aggregation increase multi-year coexistence by creating temporal priority? Ecol. Appl. 22, 927–936 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.FAOSTAT Statistical Database (Food and Agriculture Organization of the United Nations, 1997).38.Balazs, K. R. et al. The right trait in the right place at the right time: matching traits to environment improves restoration outcomes. Ecol. Appl. 30, e02110 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Knutson, K. C. et al. Long-term effects of seeding after wildfire on vegetation in Great Basin shrubland ecosystems. J. Appl. Ecol. 51, 1414–1424 (2014).Article 

    Google Scholar 
    40.Brown, C. S. & Bugg, R. L. Effects of established perennial grasses on introduction of native forbs in California. Restor. Ecol. 9, 38–48 (2001).Article 

    Google Scholar 
    41.Porensky, L. M. et al. Arid old-field restoration: native perennial grasses suppress weeds and erosion, but also suppress native shrubs. Agric. Ecosyst. Environ. 184, 135–144 (2014).Article 

    Google Scholar 
    42.Hardegree, S. P. et al. Hydrothermal assessment of temporal variability in seedbed microclimate. Rangel. Ecol. Manag. 66, 127–135 (2013).Article 

    Google Scholar 
    43.Copeland, S. M. et al. Long-term trends in restoration and associated land treatments in the southwestern United States. Restor. Ecol. 26, 311–322 (2018).Article 

    Google Scholar 
    44.Abella, S. R., Craig, D. J., Smith, S. D. & Newton, A. C. Identifying native vegetation for reducing exotic species during the restoration of desert ecosystems. Restor. Ecol. 20, 781–787 (2012).Article 

    Google Scholar 
    45.Mulroy, T. W. & Rundel, P. W. Annual plants: adaptations to desert environments. BioScience 27, 109–114 (1977).Article 

    Google Scholar 
    46.Leger, E. A., Goergen, E. M. & Forbis de Queiroz, T. Can native annual forbs reduce Bromus tectorum biomass and indirectly facilitate establishment of a native perennial grass? J. Arid. Environ. 102, 9–16 (2014).Article 

    Google Scholar 
    47.Gutiérrez, J. R., Arancio, G. & Jaksic, F. M. Variation in vegetation and seed bank in a Chilean semi-arid community affected by ENSO 1997. J. Veg. Sci. 11, 641–648 (2000).Article 

    Google Scholar 
    48.Venable, D. L. Bet hedging in a guild of desert annuals. Ecology 88, 1086–1090 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Baskin, C. C. Seed ecology: a diverse and vibrant field of study. Seed Sci. Res. 27, 61–64 (2017).Article 

    Google Scholar 
    50.Padilla, F. M., Ortega, R., Sánchez, J. & Pugnaire, F. I. Rethinking species selection for restoration of arid shrublands. Basic Appl. Ecol. 10, 640–647 (2009).Article 

    Google Scholar 
    51.SER International Primer on Ecological Restoration (SER, 2004).52.The Plant List (WFO, 2013).53.Seed Information Database (Royal Botanic Gardens, Kew, 2019).54.Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).Article 

    Google Scholar 
    55.USDA, NRCS. The PLANTS Database (National Plant Data Team, 2020).56.Western Australian Herbarium. FloraBase—the Western Australian Flora (Department of Biodiversity, Conservation and Attractions, 1998).57.Fick, S. E. & Hijmans, R. J. Worldclim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).58.Trabucco, A. & Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database, v3 (CGIAR Consortium for Spatial Information, 2019).59.Barrow, C. J. World atlas of desertification (United Nations Environment Programme). Land Degrad. Dev. 3, 249–249 (1992).Article 

    Google Scholar 
    60.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    61.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).62.Crawley, M. J. in The R Book 569–591 (Wiley, 2007).63.Wortley, L., Hero, J.-M. & Howes, M. Evaluating ecological restoration success: a review of the literature. Restor. Ecol. 21, 537–543 (2013).Article 

    Google Scholar  More

  • in

    Powered flight in hatchling pterosaurs: evidence from wing form and bone strength

    1.Bennett, S. C. The ontogeny of Pteranodon and other pterosaurs. Paleobiology 19, 92–106 (1993).Article 

    Google Scholar 
    2.Bennett, S. C. A statistical study of Rhamphorhynchus from the Solnhofen Limestone of Germany: Year-classes of a single large species. J. Paleontol. 69, 569–580 (1995).Article 

    Google Scholar 
    3.Bennett, S. C. Year-classes of pterosaurs from the Solnhofen Limestone of Germany: Taxonomic and systematic implications. J. Vertebr. Paleontol. 16, 432–444 (1996).Article 

    Google Scholar 
    4.Bennett, S. C. New smallest specimen of the pterosaur Pteranodon and ontogenetic niches in pterosaurs. J. Paleontol. 92, 254–271 (2018).Article 

    Google Scholar 
    5.Kellner, A. W. A. Comments on Triassic pterosaurs with discussion about ontogeny and description of new taxa. An. Acad. Bras. Ciênc. 87, 669–689 (2015).PubMed 
    Article 

    Google Scholar 
    6.Chiappe, L. M., Codorniú, L., Grellet-Tinner, G. & Rivarola, D. Argentinian unhatched pterosaur fossil. Nature 432, 571–572 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Wang, X. & Zhou, Z. Pterosaur embryo from the Early Cretaceous. Nature 429, 521 (2004).Article 
    CAS 

    Google Scholar 
    8.Manzig, P. C. et al. Discovery of a rare pterosaur bone bed in a Cretaceous desert with insights on ontogeny and behavior of flying reptiles. PLoS ONE 9, e100005. https://doi.org/10.1371/journal.pone.0100005 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Wang, X. et al. Sexually dimorphic tridimensionally preserved pterosaurs and their eggs from China. Curr. Biol. 24, 1323–1330 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Codorniú, L., Chiappe, L. & Rivarola, D. Neonate morphology and development in pterosaurs: evidence from a ctenochasmatid embryo from the Early Cretaceous of Argentina. In New Perspectives on Pterosaur Palaeobiology Vol. 455 (eds Hone, D. W. E. et al.) 83–94 (Geological Society London Special Publications, 2018).11.Wang, X. et al. Egg accumulation with 3D embryos provides insight into the life history of a pterosaur. Science 358, 1197–1201 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Unwin, D. M. The Pterosaurs from Deep Time (Pi Press, 2005).13.Prondvai, E., Stein, K., Ősi, A. & Sander, M. P. Life history of Rhamphorhynchus inferred from bone histology and the diversity of pterosaurian growth strategies. PLoS ONE 7, e31392. https://doi.org/10.1371/journal.pone.0031392 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Heij, C. J., Rompas, C. F. E. & Moeliker, C. W. The biology of the Mollucan megapode Eulipoa wallacei (Aves, Galliformes, Megapodiidae) on Haruku and other Mollucan Islands; part 2. Deinsea 3, 1–120 (1997).
    Google Scholar 
    15.Jackson, B. E., Segre, P. & Dial, K. P. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): Negotiating a three-dimensional terrestrial environment. Proc. R. Soc. B 276, 3457–3466 (2009).PubMed 
    Article 

    Google Scholar 
    16.Healey, C. Dispersal of newly hatched orange-footed scrubfowl Megapodius reinwardt. Emu 94, 220–221 (1994).Article 

    Google Scholar 
    17.Starck, J. M. Structural variants and invariants in avian embryonic and postnatal development. Oxford Ornithol. Ser. 8, 59–88 (1998).
    Google Scholar 
    18.Chinsamy, A., Codorniú, L. & Chiappe, L. Developmental growth patterns of the filter-feeder pterosaur, Pterodaustro guinazui. Biol. Lett. 4, 282–285 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Hone, D. W. E., Ratcliffe, J. M., Riskin, D. K., Hermanson, J. W. & Reisz, R. R. Unique near isometric ontogeny in the pterosaur Rhamphorhynchus suggests hatchlings could fly. Lethaia 54, 106–112 (2020).Article 

    Google Scholar 
    20.Habib, M. B. Comparative evidence for quadrupedal launch in pterosaurs. Zitteliana B28, 159–166 (2008).
    Google Scholar 
    21.Codorniú, L. & Chiappe, L. M. Early juvenile pterosaurs (Pterodactyloidea: Pterodaustro guinazui) from the Lower Cretaceous of central Argentina. Can. J. Earth Sci. 41, 9–18 (2004).ADS 
    Article 

    Google Scholar 
    22.Kellner, A. W. A. Pterosaur phylogeny and comments on the evolutionary history of the group. In Evolution and Palaeobiology of Pterosaurs Vol. 217 (eds Buffetaut, E. & Mazin, J.-M.) 105–137 (Geol. Soc. Spec. Publ, 2003).23.Wang, X., Kellner, A. W. A., Zhou, Z. & Campos, D. D. A. Discovery of a rare arboreal forest-dwelling flying reptile (Pterosauria, Pterodactyloidea) from China. Proc. Natl. Acad. Sci. USA 105, 1983–1987 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Andres, B., Clark, J. & Xu, X. The earliest pterodactyloid and the origin of the group. Curr. Biol. 24, 1011–1016 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Witton, M. P. Pterosaurs: Natural History, Evolution, Anatomy (Princeton University Press, 2013).26.Hone, D. W. E., Farke, A. A. & Wedel, M. J. Ontogeny and the fossil record: What, if anything, is an adult dinosaur?. Biol. Lett. 12, 20150947 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Campione, N. E., Brink, K. S., Freedman, E. A., McGarrity, C. T. & Evans, D. C. ‘Glishades ericksoni’, an indeterminate juvenile hadrosaurid from the Two Medicine Formation of Montana: Implications for hadrosauroid diversity in the latest Cretaceous (Campanian-Maastrichtian) of western North America. Palaeobio. Palaeoenv. 93, 65–75 (2013).
    Google Scholar 
    28.Wellnhofer, P. & Kellner, A. W. A. The skull of Tapejara wellnhoferi Kellner (Reptilia, Pterosauria) from the Lower Cretaceous Santana Formation of the Araripe Basin, Northeastern Brazil. Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Historische Geologie 31, 89–106 (1991).
    Google Scholar 
    29.Unwin, D. M. On the phylogeny and evolutionary history of pterosaurs. In Evolution and Palaeobiology of Pterosaurs Vol. 217 (eds Buffetaut, E. & Mazin, J.-M.) 139–190 (Geol. Soc. Spec. Publ, 2003).30.Kellner, A. W. A. New information on the Tapejaridae (Pterosauria, Pterodactyloidea) and discussion of the relationships of this clade. Ameghiniana 41, 521–534 (2004).
    Google Scholar 
    31.Lü, J. et al. A new species of Huaxiapterus (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Western Liaoning, China with comments on the systematics of tapejarid pterosaurs. Acta Geol. Sin. 80, 315–326 (2006).
    Google Scholar 
    32.Eck, K., Elgin, R. & Frey, E. On the osteology of Tapejara wellnhoferi KELLNER 1989 and the first occurrence of a multiple specimen assemblage from the Santana Formation, Araripe Basin, NE-Brazil. Swiss J. Paleontol. 130, 277–296 (2011).Article 

    Google Scholar 
    33.Bennett, S. C. Sexual dimorphism in Pteranodon and other pterosaurs, with comments on cranial crests. J. Vertebr. Paleontol. 12, 422–434 (1992).Article 

    Google Scholar 
    34.Tomkins, J. L., LeBas, N. R., Witton, M. P., Martill, D. M. & Humphries, S. Positive allometry and the prehistory of sexual selection. Am. Nat. 176, 141–148 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Pinheiro, F. L. & Rodrigues, T. Anhanguera taxonomy revisited: Is our understanding of Santana Group pterosaur diversity biased by poor biological and stratigraphic control?. PeerJ 5, e3285. https://doi.org/10.7717/peerj.3285 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Li, J. J., Lü, J. & Zhang, B. K. A new sinopterid pterosaur from the Mesozoic of western Liaoning Province, China. Acta Palaeontologica Sinica 42, 442–447 (2003).
    Google Scholar 
    37.Bennett, S. C. Juvenile specimens of the pterosaur Germanodactylus cristatus, with a review of the genus. J. Vertebr. Paleontol. 26, 872–878 (2006).Article 

    Google Scholar 
    38.Bennett, S. C. New information on body size and cranial display structures of Pterodactylus antiquus, with a revision of the genus. Palaeontol. Z. 87, 269–289 (2013).Article 

    Google Scholar 
    39.Bennett, S. C. Soft tissue preservation of the cranial crest of the pterosaur Germanodactylus from Solnhofen. J. Vertebr. Paleontol. 22, 43–48 (2002).Article 

    Google Scholar 
    40.Wang, X. & Zhou, Z. A new pterosaur (Pterodactyloidea, Tapejaridae) from the Early Cretaceous Jiufotang Formation of western Liaoning, China and its implications for biostratigraphy. Chin. Sci. Bull. 48, 16–23 (2003).Article 

    Google Scholar 
    41.Jouve, S. Description of the skull of a Ctenochasma (Pterosauria) from the latest Jurassic of eastern France, with a taxonomic revision of European Tithonian Pterodactyloidea. J. Vertebr. Paleontol. 24, 542–554 (2004).Article 

    Google Scholar 
    42.McGuire, J. A. Allometric prediction of locomotor performance: An example from Southeast Asian flying lizards. Am. Nat. 161, 337–349 (2003).PubMed 
    Article 

    Google Scholar 
    43.McGuire, J. A. & Dudley, R. The biology of gliding in flying lizards (genus Draco) and their fossil and extant analogs. Integr. Comp. Biol. 51, 983–990 (2011).PubMed 
    Article 

    Google Scholar 
    44.Witton, M. P. A new approach to determining pterosaur body mass and its implications for pterosaur flight. Zitteliana B28, 143–158 (2008).
    Google Scholar 
    45.Henderson, D. M. Pterosaur body mass estimates from three-dimensional mathematical slicing. J. Vertebr. Paleontol. 30, 768–785 (2010).Article 

    Google Scholar 
    46.Witton, M. P. Flight performance and lifestyle of Dimorphodon macronyx. Flugsaurier 2015 Portsmouth abstract volume, 57–60 (2015).47.Martin, E. G. & Palmer, C. A novel method of estimating pterosaur skeletal mass using computed tomography scans. J. Vertebr. Paleontol. 34, 1466–1469 (2014).Article 

    Google Scholar 
    48.Martin-Silverstone, E. et al. Exploring the relationship between skeletal mass and total body mass in birds. PLoS ONE 10, e0141794. https://doi.org/10.1371/journal.pone.0141794 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Elgin, R., Hone, D. W. E. & Frey, E. The extent of the pterosaur flight membrane. Acta Palaeontol. Pol. 56, 99–111 (2011).Article 

    Google Scholar 
    50.Pennycuick, C. J. Modelling the Flying Bird (Academic, 2008).51.Witton, M. P. & Habib, M. B. On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness. PLoS ONE 5, e13982. https://doi.org/10.1371/journal.pone.0013982 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Bennett, S. C. New interpretation of the wings of the pterosaur Rhamphorhynchus muensteri based on the Zittel and Marsh specimens. J. Paleont. 1, 1–25 (2016).
    Google Scholar 
    53.Palmer, C. & Dyke, G. J. Biomechanics of the unique pterosaur pteroid. P. Roy. Soc. B 277, 1121–1127 (2010).
    Google Scholar 
    54.Currey, J. D. Bones: Structure and Mechanics (Princeton University Press, 2002).55.Vernes, K. Gliding performance of the Northern flying squirrel (Glaucomys sabrinus) in mature mixed forest of eastern Canada. J. Mammal. 82, 1026–1033 (2001).Article 

    Google Scholar 
    56.Socha, J. J. Gliding flight in the paradise tree snake. Nature 418, 603–604 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Jackson, S. M. Gliding Mammals of the World (Csiro Publishing, 2012).58.Alexander, D. E. Nature’s Flyers: Birds, Insects, and the Biomechanics of Flight (JHU Press, 2004).59.Socha, J. J., Jafari, F., Munk, Y. & Byrnes, G. How animals glide: From trajectory to morphology. Can. J. Zoo. 93, 901–924 (2015).Article 

    Google Scholar 
    60.Biewener, A. A. Bone strength in small mammals and bipedal birds: Do safety factors change with body size?. J. Exp. Biol. 98, 289–301 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Currey, J. D. & Alexander, R. M. The thickness of the walls of tubular bones. J. Zool. 206, 453–468 (1985).Article 

    Google Scholar 
    62.Habib, M. Constraining the air giants: Limits on size in flying animals as an example of constraint-based biomechanical theories of form. Biol. Theory 8, 245–252 (2013).Article 

    Google Scholar 
    63.Vidovic, S. U. & Martill, D. M. Pterodactylus scolopaciceps Meyer, 1860 (Pterosauria, Pterodactyloidea) from the Upper Jurassic of Bavaria, Germany: The problem of cryptic pterosaur taxa in early ontogeny. PLoS ONE 9, e110646. https://doi.org/10.1371/journal.pone.0110646 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Grigg, G. & Kirshner, D. Biology and Evolution of Crocodylians (CSIRO Publishing, 2015).65.Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. & Hellgren, O. Flight speeds among bird species: Allometric and phylogenetic effects. PLoS Biol. 5, e197. https://doi.org/10.1371/journal.pbio.0050197 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Dial, K. P. & Jackson, B. E. When hatchlings outperform adults: locomotor development in Australian brush turkeys (Alectura lathami, Galliformes). Proc. R. Soc. B 278, 1610–1616 (2010).PubMed 
    Article 

    Google Scholar 
    67.Rayner, J. M. Form and function in avian flight. Curr. Ornithol. 5, 1–66 (1988).
    Google Scholar 
    68.Marden, J. H. From damselflies to pterosaurs: How burst and sustainable flight performance scale with size. Am. J. Physiol. Reg. I 266, R1077–R1084 (1994).CAS 
    Article 

    Google Scholar 
    69.Tobalske, B. W., Altshuler, D. L. & Powers, D. R. Take-off mechanics in hummingbirds (Trochilidae). J. Exp. Biol. 207, 1345–1352 (2004).PubMed 
    Article 

    Google Scholar 
    70.Unwin, D. M. & Deeming, D. C. Pterosaur eggshell structure and its implications for pterosaur reproductive biology. Zitteliana B28, 199–207 (2008).
    Google Scholar 
    71.Unwin, D. M. & Martill, D. M. Pterosaurs of the Crato formation. In The Crato Fossil Beds of Brazil: Window into an Ancient World (eds Martill, D. M. et al.) 475–524 (Cambridge University Press, 2007).72.Lü, J. et al. An egg-adult association, gender, and reproduction in pterosaurs. Science 331, 321–324 (2011).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Naish, D. & Witton, M. P. Neck biomechanics indicate that giant Transylvanian azhdarchid pterosaurs were short-necked arch predators. PeerJ 5, e2908. https://doi.org/10.7717/peerj.2908 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Wellnhofer, P. The Illustrated Encyclopedia of Pterosaurs (Crescent Books, 1991).75.Witton, M. P. & Naish, D. A reappraisal of azhdarchid pterosaur functional morphology and paleoecology. PLoS ONE 3, e2271. https://doi.org/10.1371/journal.pone.0002271 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More