More stories

  • in

    Microbial drivers of methane emissions from unrestored industrial salt ponds

    1.Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, et al. The value of the world’s ecosystem services and natural capital. Ecol Econ. 1998;25:3–15.Article 

    Google Scholar 
    2.Grimsditch G, Alder J, Nakamura T, Kenchington R, Tamelander J. The blue carbon special edition—introduction and overview. Ocean Coast Manag. 2013;83:1–4.Article 

    Google Scholar 
    3.Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N. The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change. 2013;3:961–8.CAS 
    Article 

    Google Scholar 
    4.Mcleod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ. 2011;9:552–60.Article 

    Google Scholar 
    5.Neef L, Weele M van, Velthoven P van. Optimal estimation of the present-day global methane budget. Glob Biogeochem Cycles. 2010;24:GB4024.6.Schlesinger WH, Bernhardt ES. Biogeochemistry: an analysis of global change. 3rd ed. Waltham, MA: Academic Press; 2013.7.Lessner DJ. Methanogenesis biochemistry. eLS. John Wiley & Sons, Hoboken, NJ, USA; 2009.8.Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.Article 

    Google Scholar 
    9.Herbert ER, Boon P, Burgin AJ, Neubauer SC, Franklin RB, Ardón M, et al. A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands. Ecosphere. 2015;6:art206.Article 

    Google Scholar 
    10.Wicke B, Smeets E, Dornburg V, Vashev B, Gaiser T, Turkenburg W, et al. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ Sci. 2011;4:2669–81.Article 

    Google Scholar 
    11.Kristjansson JK, Schönheit P. Why do sulfate-reducing bacteria outcompete methanogenic bacteria for substrates? Oecologia. 1983;60:264–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Karl DM, Beversdorf L, Björkman KM, Church MJ, Martinez A, Delong EF. Aerobic production of methane in the sea. Nat Geosci. 2008;1:473–8.CAS 
    Article 

    Google Scholar 
    13.Mcgenity T, Sorokin D. Methanogens and methanogenesis in hypersaline environments. Biogenesis of hydrocarbons. Springer International Publishing, New York, NY, USA; 2018. p. 1–27.14.Repeta DJ, Ferrón S, Sosa OA, Johnson CG, Repeta LD, Acker M, et al. Marine methane paradox explained by bacterial degradation of dissolved organic matter. Nat Geosci. 2016;9:884–7.CAS 
    Article 

    Google Scholar 
    15.Oremland RS, Polcin S. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl Environ Microbiol. 1982;44:1270–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.van der Gon HACD, Neue H-U. Methane emission from a wetland rice field as affected by salinity. Plant Soil. 1995;170:307–13.Article 

    Google Scholar 
    17.Gómez-Villegas P, Vigara J, León R. Characterization of the microbial population inhabiting a solar saltern pond of the Odiel Marshlands (SW Spain). Mar Drugs. 2018;16:332.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    18.Ley RE, Harris JK, Wilcox J, Spear JR, Miller SR, Bebout BM, et al. Unexpected diversity and complexity of the Guerrero Negro hypersaline microbial mat. Appl Environ Microbiol. 2006;72:3685–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Thombre RS, Shinde VD, Oke RS, Dhar SK, Shouche YS. Biology and survival of extremely halophilic archaeon Haloarcula marismortui RR12 isolated from Mumbai salterns, India in response to salinity stress. Sci Rep. 2016;6:25642.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Takekawa JY, Miles AK, Schoellhamer DH, Athearn ND, Saiki MK, Duffy WD, et al. Trophic structure and avian communities across a salinity gradient in evaporation ponds of the San Francisco Bay estuary. Hydrobiologia. 2006;567:307–27.CAS 
    Article 

    Google Scholar 
    21.Ver Planck WE. Salt in California. State of California Deparment of Natural Resources, Division of Mines. Mines Bull 175. San Francisco, CA, USA: 1958.22.Johnck EJ. The South Bay Salt Pond Restoration Project: a cultural landscape approach for the resource management plan. Sonoma State University, Rohnert Park, CA, USA; 2008.23.Ackerman JT, Marvin-DiPasquale M, Slotton D, Eagles-Smith CA, Hartman A, Agee JL, et al. The South Bay Mercury Project: using biosentinels to monitor effects of wetland restoration for the South Bay Salt Pond Restoration Project. South Bay Salt Pond Restoration Project and Resources Legacy Fund, San Francisco, CA, USA; 2013.24.Valoppi L. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California. Phase 1 studies summary of major findings of the South Bay Salt Pond Restoration Project, South San Francisco Bay, California. Reston, VA: U.S. Geological Survey; 2018.25.Callaway JC, Parker VT, Vasey MC, Schile LM, Herbert ER. Tidal wetland restoration in San Francisco Bay: history and current issues. San Franc Estuary Watershed Sci. 2011;9: Article 2.26.Cargill. San Francisco Bay salt ponds. Cargill, Newark, CA, USA; 2020. https://www.cargill.com/page/sf/sf-bay-salt-ponds.27.Levey JR, Vasicek P, Fricke H, Archer J, Henry RF. Salt pond SF2 restoration, wildlife, and habitat protection. American Society of Civil Engineers, Reston, VA; 2012.520−9.28.Dugan HA, Summers JC, Skaff NK, Krivak-Tetley FE, Doubek JP, Burke SM, et al. Long-term chloride concentrations in North American and European freshwater lakes. Sci Data. 2017;4:170101.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, et al. Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 2015;6:771.30.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Wang Q, Garrity GM, Tiedje JM, Cole JR. A naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 2007;73:5264−67.32.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    35.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29:1072–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Wu Y-W, Tang Y-H, Tringe SG, Simmons BA, Singer SW. MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome. 2014;2:26.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Kang DD, Froula J, Egan R, Wang Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015;3:e1165.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:24175.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation, and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Yu FB, Blainey PC, Schulz F, Woyke T, Horowitz MA, Quake SR. Microfluidic-based mini-metagenomics enables discovery of novel microbial lineages from complex environmental samples. eLife. 2017;6:e26580.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.von Meijenfeldt FAB, Arkhipova K, Cambuy DD, Coutinho FH, Dutilh BE. Robust taxonomic classification of uncharted microbial sequences and bins with CAT and BAT. Genome Biol. 2019;20:217.Article 
    CAS 

    Google Scholar 
    46.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R package version 2.5-6. 2019. https://CRAN.R-project.org/package=vegan.47.Vu VQ. ggbiplot: a ggplot2 based biplot. R package version 0.55. 2011. http://github.com/vqv/ggbiplot.48.De Cáceres M, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.PubMed 
    Article 

    Google Scholar 
    49.Prestat E, David MM, Hultman J, Taş N, Lamendella R, Dvornik J, et al. FOAM (functional ontology assignments for metagenomes): a hidden Markov model (HMM) database with environmental focus. Nucleic Acids Res. 2014;42:e145.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Liu J, Cade-Menun BJ, Yang J, Hu Y, Liu CW, Tremblay J, et al. Long-term land use affects phosphorus speciation and the composition of phosphorus cycling genes in agricultural soils. Front Microbiol. 2018;9:1643.51.Manor O, Borenstein E. MUSiCC: a marker genes based framework for metagenomic normalization and accurate profiling of gene abundances in the microbiome. Genome Biol. 2015;16:53.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Banerjee S, Schlaeppi K, van der Heijden MGA. Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol. 2018;16:567–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Girvan M, Newman MEJ. Community structure in social and biological networks. Proc Natl Acad Sci USA. 2002;99:7821–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Jurasinski G, Koebsch F, Guenther A, Beetz S. flux: flux rate calculation from dynamic closed chamber measurements. R package version 0.3-0. 2014. https://CRAN.R-project.org/package=flux.55.Culkin F, Smith N. Determination of the concentration of potassium chloride solution having the same electrical conductivity, at 15 °C and infinite frequency, as standard seawater of salinity 35.0000 ‰ (chlorinity 19.37394 ‰). IEEE J Ocean Eng. 1980;5:22–23.Article 

    Google Scholar 
    56.Kuever J. The Family Desulfohalobiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 87–95.57.López-Pérez M, Rodriguez-Valera F. The Family Alteromonadaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Gammaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 69–92.58.Oren A. The Order Halanaerobiales, and the Families Halanaerobiaceae and Halobacteroidaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Firmicutes and Tenericutes. Berlin, Heidelberg: Springer; 2014. p. 153−77.59.Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The Family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Alphaproteobacteria and Betaproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 439–512.60.Kuever J. The Family Desulfobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 45–73.61.Kuever J. The Family Desulfobulbaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 75–86.62.Kuever J. The Family Syntrophobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: Deltaproteobacteria and Epsilonproteobacteria. Berlin, Heidelberg: Springer; 2014. p. 289−99.63.Oren A. The Family Methanosarcinaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds). The Prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer; 2014. p. 259−81.64.Bonin AS, Boone DR. The Order Methanobacteriales. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds). The Prokaryotes: Volume 3: Archaea. Bacteria: Firmicutes, Actinomycetes. New York, NY: Springer; 2006. p. 231−43.65.Kathuria S, Martiny AC. Prevalence of a calcium-based alkaline phosphatase associated with the marine cyanobacterium Prochlorococcus and other ocean bacteria. Environ Microbiol. 2011;13:74–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Kamat SS, Williams HJ, Dangott LJ, Chakrabarti M, Raushel FM. The catalytic mechanism for aerobic formation of methane by bacteria. Nature. 2013;497:132–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Yu X, Doroghazi JR, Janga SC, Zhang JK, Circello B, Griffin BM, et al. Diversity and abundance of phosphonate biosynthetic genes in nature. Proc Natl Acad Sci USA. 2013;110:20759–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.69.Metcalf WW, Griffin BM, Cicchillo RM, Gao J, Janga SC, Cooke HA, et al. Synthesis of methylphosphonic acid by marine microbes: a source for methane in the aerobic ocean. Science. 2012;337:1104–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Poffenbarger HJ, Needelman BA, Megonigal JP. Salinity influence on methane emissions from tidal marshes. Wetlands. 2011;31:831–42.Article 

    Google Scholar 
    71.Oremland RS, Boone DR. Methanolobus taylorii sp. nov., a new methylotrophic, estuarine methanogen. Int J Syst Bacteriol. 1994;44:573–5.Article 

    Google Scholar 
    72.Zhang G, Jiang N, Liu X, Dong X. Methanogenesis from methanol at low temperatures by a novel psychrophilic methanogen, “Methanolobus psychrophilus” sp. nov., prevalent in Zoige Wetland of the Tibetan Plateau. Appl Environ Microbiol. 2008;74:6114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Antony CP, Murrell JC, Shouche YS. Molecular diversity of methanogens and identification of Methanolobus sp. as active methylotrophic Archaea in Lonar crater lake sediments. FEMS Microbiol Ecol. 2012;81:43–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.König H, Stetter KO. Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralblatt Für Bakteriol Mikrobiol Hyg Abt Orig C Allg Angew Ökol Mikrobiol. 1982;3:478–90.
    Google Scholar 
    75.Doerfert SN, Reichlen M, Iyer P, Wang M, Ferry JG. Methanolobus zinderi sp. nov., a methylotrophic methanogen isolated from a deep subsurface coal seam. Int J Syst Evol Microbiol. 2009;59:1064–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Ni S, Boone DR. Isolation and characterization of a dimethyl sulfide-degrading methanogen, methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int J Syst Bacteriol. 1991;41:410–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Mochimaru H, Tamaki H, Hanada S, Imachi H, Nakamura K, Sakata S, et al. Methanolobus profundi sp. nov., a methylotrophic methanogen isolated from deep subsurface sediments in a natural gas field. Int J Syst Evol Microbiol. 2009;59:714–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Orphan VJ, Jahnke LL, Embaye T, Turk KA, Pernthaler A, Summons RE, et al. Characterization and spatial distribution of methanogens and methanogenic biosignatures in hypersaline microbial mats of Baja California. Geobiology. 2008;6:376–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Smith JM, Green SJ, Kelley CA, Prufert‐Bebout L, Bebout BM. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ Microbiol. 2008;10:386–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Zhuang G-C, Elling FJ, Nigro LM, Samarkin V, Joye SB, Teske A, et al. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim Cosmochim Acta. 2016;187:1–20.CAS 
    Article 

    Google Scholar 
    81.Zhuang G-C, Heuer VB, Lazar CS, Goldhammer T, Wendt J, Samarkin VA, et al. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim Cosmochim Acta. 2018;224:171–86.CAS 
    Article 

    Google Scholar 
    82.Oremland RS, Marsh LM, Polcin S. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature. 1982;296:143–5.CAS 
    Article 

    Google Scholar 
    83.Wanner BL, Metcalf WW. Molecular genetic studies of a 10.9 kb operon in Escherichia coli for phosphonate uptake and biodegradation. FEMS Microbiol Lett. 1992;100:133–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Dyhrman ST, Chappell PD, Haley ST, Moffett JW, Orchard ED, Waterbury JB, et al. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature. 2006;439:68–71.CAS 
    PubMed 
    Article 

    Google Scholar 
    85.White AK, Metcalf WW. Microbial metabolism of reduced phosphorus compounds. Annu Rev Microbiol. 2007;61:379–400.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Carini P, White AE, Campbell EO, Giovannoni SJ. Methane production by phosphate-starved SAR11 chemoheterotrophic marine bacteria. Nat Commun. 2014;5:4346.CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Damm E, Helmke E, Thoms S, Schauer U, Nothig E, Bakker K, et al. Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences. 2010;7:1099–108.CAS 
    Article 

    Google Scholar 
    88.Martínez A, Ventouras L-A, Wilson ST, Karl DM, Delong EF. Metatranscriptomic and functional metagenomic analysis of methylphosphonate utilization by marine bacteria. Front Microbiol. 2013;4:340.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Yao M, Henny C, Maresca JA. Freshwater bacteria release methane as a by-product of phosphorus acquisition. Appl Environ Microbiol. 2016;82:6994–7003.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Sosa OA, Repeta DJ, DeLong EF, Ashkezari MD, Karl DM. Phosphate-limited ocean regions select for bacterial populations enriched in the carbon–phosphorus lyase pathway for phosphonate degradation. Environ Microbiol. 2019;21:2402–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Fisher J, Acreman MC. Wetland nutrient removal: a review of evidence. Hydrol Earth Syst Sci Discuss Eur Geosci Union. 2004;8:673–85.CAS 
    Article 

    Google Scholar 
    92.Kadlec RH. Constructed marshes for nitrate removal. Crit Rev Environ Sci Technol. 2012;42:934–1005.CAS 
    Article 

    Google Scholar 
    93.He S, Malfatti SA, McFarland JW, Anderson FE, Pati A, Huntemann M, et al. Patterns in wetland microbial community composition and functional gene repertoire associated with methane emissions. mBio. 2015;6:e00066–15.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Energetic and health effects of protein overconsumption constrain dietary adaptation in an apex predator

    1.Fuller, A. et al. Physiological mechanisms in coping with climate change. Phys. Biochem. Zool. 83, 713–720. https://doi.org/10.1086/652242 (2010).Article 

    Google Scholar 
    2.Raubenheimer, D., Simpson, S. J. & Tait, A. H. Match and mismatch: Conservation physiology, nutritional ecology and the timescales of biological adaptation. Philos. Trans. R. Soc. B 367, 1628–1646. https://doi.org/10.1098/rstb.2012.0007 (2012).CAS 
    Article 

    Google Scholar 
    3.Tracy, C. R. et al. The importance of physiological ecology in conservation biology. Integr. Comp. Biol. 46, 1191–1205. https://doi.org/10.1093/icb/icl054 (2006).Article 
    PubMed 

    Google Scholar 
    4.Parker, K. L., Barboza, P. S. & Gillingham, M. P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 23, 57–69. https://doi.org/10.1111/j.1365-2435.2009.01528.x (2009).Article 

    Google Scholar 
    5.Morris, J. G. Idiosyncratic nutrient requirements of cats appear to be diet-induced evolutionary adaptations. Nutr. Res. Rev. 15, 153–168. https://doi.org/10.1079/NRR200238 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Hofmann, R. R. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: A comparative view of their digestive system. Oecologia 78, 443–457. https://doi.org/10.1007/BF00378733 (1989).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Rode, K. D., Chapman, C. A., McDowell, L. R. & Stickler, C. Nutritional correlates of population density across habitats and logging intensities in redtail monkeys (Cercopithecus Ascanius). Biotropica 38, 625–634. https://doi.org/10.1111/j.1744-7429.2006.00183.x (2006).Article 

    Google Scholar 
    8.Birnie-Gauvin, K., Peiman, K. S., Raubenheimer, D. & Cooke, S. J. Nutritional physiology and ecology of wildlife in a changing world. Cons Phys. 5, cox030. https://doi.org/10.1093/conphys/cox030 (2017).CAS 
    Article 

    Google Scholar 
    9.Rode, K. D. & Robbins, C. T. Why bears consume mixed diets during fruit abundance. Can. J. Zool. 78, 1640–1645. https://doi.org/10.1139/z00-082 (2000).Article 

    Google Scholar 
    10.Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1683. https://doi.org/10.1111/j.0030-1299.2007.16140.x (2007).Article 

    Google Scholar 
    11.Erlenbach, J. A., Rode, K. D., Raubenheimer, D. & Robbins, C. T. Macronutrient optimization and energy maximization determine diets of brown bears. J. Mamm. 95, 160–168. https://doi.org/10.1644/13-MAMM-A-161 (2014).Article 

    Google Scholar 
    12.Nie, Y. et al. Giant pandas are macronutritional carnivores. Curr. Biol. 29, 1677–1682. https://doi.org/10.1016/j.cub.2019.03.067 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Sponheimer, M., Clauss, M. & Codron, D. Dietary evolution: The panda paradox. Curr. Biol. 29, R417–R419. https://doi.org/10.1016/j.cub.2019.04.045 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Stirling, I. & McEwan, E. H. The caloric value of whole ringed seals (Phoca hispida) in relation to polar bear (Ursus maritimus) ecology and hunting behavior. Can. J. Zool. 53, 1021–1027. https://doi.org/10.1139/z75-117 (1975).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Liu, S. P. et al. Population genomics reveal recent speciation and rapid evolutionary adaptation in Polar Bears. Cell 157, 785–794. https://doi.org/10.1016/j.cell.2014.03.054 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Kohl, K. D., Coogan, S. C. P. & Raubenheimer, D. Do wild carnivores forage for prey or for nutrient? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37, 701–709. https://doi.org/10.1002/bies.201400171 (2015).Article 
    PubMed 

    Google Scholar 
    17.Machovsky-Capuska, G. E. & Raubenheimer, D. The nutritional ecology of marine apex predators. Ann. Rev. Mar. Sci. 12, 361–387. https://doi.org/10.1146/annurev-marine-010318-095411 (2020).Article 
    PubMed 

    Google Scholar 
    18.Hewson-Hughes, A. K., Colyer, A., Simpson, S. J. & Raubenheimer, D. Balancing macronutrient intake in a mammalian carnivore: Disentangling the influences of flavor and nutrition. R. Soc. Open 3, 160081. https://doi.org/10.1098/rsos.160081 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    19.McKinney, M. A., Atwood, T. C., Iverson, S. J. & Peacock, E. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8, e01633. https://doi.org/10.1002/ecs2.1633 (2017).Article 

    Google Scholar 
    20.Rode, K. D. et al. Spring fasting behavior in a marine apex predator provides an index of ecosystem productivity. Glob. Change Biol. 24, 410–423. https://doi.org/10.1111/gcb.13933 (2018).ADS 
    Article 

    Google Scholar 
    21.Rode, K. D. et al. Variation in the response of an arctic top predator experiencing habitat loss: Feeding and reproductive ecology of two polar bear populations. Glob. Change Biol. 20, 76–88. https://doi.org/10.1111/gcb.12339 (2014).ADS 
    Article 

    Google Scholar 
    22.Rode, K. D. et al. Seal body condition and atmospheric circulation patterns in the Chukchi Sea influence polar bear body condition, recruitment, and feeding ecology. Glob. Change Biol. https://doi.org/10.1111/gcb.15572 (2021).Article 

    Google Scholar 
    23.Yurkowski, D. J., Hussey, N. E., Semeniuk, C., Ferguson, S. H. & Fisk, A. T. Effects of fat extraction and the utility of fat normalization models on δ13C and δ15N values in Arctic marine mammal tissues. Pol. Biol. 38, 131–143. https://doi.org/10.1007/s00300-014-1571-1 (2014).Article 

    Google Scholar 
    24.Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77, 1623–1630. https://doi.org/10.1139/z99-133 (1999).Article 

    Google Scholar 
    25.McCullough, D. R. & Ullrey, D. E. Proximate mineral and gross energy composition of white-tailed deer. J. Wildl. Manag. 47, 430–441. https://doi.org/10.2307/3808516 (1983).Article 

    Google Scholar 
    26.Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and black bears. Can. J. Zool. 68, 1645–1651. https://doi.org/10.1139/z90-244 (1990).Article 

    Google Scholar 
    27.LaDouceur, E. E. B., Garner, M. M., Davis, B. & Tseng, F. A retrospective study of end-stage renal disease in captive polar bears (Ursus maritimus). J. Zoo Wildl. Med. 45, 69–77. https://doi.org/10.1638/2013-0071R.1 (2014).Article 
    PubMed 

    Google Scholar 
    28.Derocher, A. E. & Stirling, I. Aspects of survival in juvenile polar bears. Can. J. Zool. 74, 1246–1252. https://doi.org/10.1139/z96-138 (1996).Article 

    Google Scholar 
    29.Hedberg, G. E. et al. Milk composition in free-ranging polar bears (Ursus maritimus) as a model for captive rearing milk formula. Zoo Biol. 30, 550–565. https://doi.org/10.1002/zoo.20375 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Jensen, K. et al. Nutrient-specific compensatory feeding in a mammalian carnivore, the mink, Neovison vison. Br. J. Nutr. 112, 1226–1233. https://doi.org/10.1017/S0007114514001664 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Rosen, D. A. S. & Trites, A. W. Examining the potential for nutritional stress in young Stellar sea lions: Physiological effects of prey composition. J. Comp. Phys. B 175, 265–273. https://doi.org/10.1007/s00360-005-0481-5 (2005).CAS 
    Article 

    Google Scholar 
    32.Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive juvenile harp seals (Phoca groenlandica). Phys. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).CAS 
    Article 

    Google Scholar 
    33.Zhao, L., Schell, D. M. & Castellini, M. A. Dietary macronutrients influence 13C and 15N signatures of pinnipeds: Captive feeding studies with harbor seals (Phoca vitulina). Physiol. Part A Mol. Integr. Phys. 143, 469–478. https://doi.org/10.1016/j.cbpa.2005.12.032 (2006).CAS 
    Article 

    Google Scholar 
    34.Diaz Gomez, M., Rosen, D. A. S. & Trites, A. W. Net energy gained by northern fur seals (Callorhinus ursinus) is impacted more by diet quality than diet diversity. Can. J. Zool. 94, 12–135. https://doi.org/10.1139/cjz-2015-0143 (2016).CAS 
    Article 

    Google Scholar 
    35.Le Bellego, L., van Milgen, J. & Noblet, J. Effect of high temperature and low-protein diets on performance of growing pigs. J. Anim. Sci. 79, 1259–1271. https://doi.org/10.2527/2001.7951259x (2002).Article 

    Google Scholar 
    36.Anton, S. D. et al. Effects of popular diets without specific calorie targets on weight loss outcomes: Systematic review of findings from clinical trials. Nutrients 9, 822. https://doi.org/10.3390/nu9080822 (2017).Article 
    PubMed Central 

    Google Scholar 
    37.Bininda-Emonds, O. R. P., Gittleman, J. L. & Purvis, A. Building large trees by combining phylogenetic information: A complete phylogeny of the extant Carnivora (Mammalia). Biol. Rev. 74, 143–175. https://doi.org/10.1017/S0006323199005307 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Plantinga, E. A., Bosch, G. & Hendriks, W. H. Estimation of the dietary nutrient profile of free-roaming feral cats: Possible implications for nutrition of domestic cats. Br. J. Nutr. 106, S35–S48. https://doi.org/10.1017/S0007114511002285 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Hewson-Hughes, A. K. et al. Geometric analysis of macronutrient selection in breeds of the domestic dog, Canis lupus familiaris. Behav. Ecol. 24, 293–304. https://doi.org/10.1093/beheco/ars168 (2013).Article 
    PubMed 

    Google Scholar 
    40.Trites, A. W. & Donnelly, C. P. The decline of Steller sea lions Eumetopias jubatus in Alaska: A review of the nutritional stress hypothesis. Mamm. Rev. 33, 3–28. https://doi.org/10.1046/j.1365-2907.2003.00009.x (2003).Article 

    Google Scholar 
    41.Hauser, D. D. W., Allen, C. S., Rich, H. B. Jr. & Quinn, T. P. Resident harbor seals (Phoca vitulina) in Iliamna Lake, Alaska: Summer diet and partial consumption of adult sockeye salmon (Oncorhynchus nerka). Aquat. Mamm. 34, 303–309. https://doi.org/10.1578/AM.34.3.2008.303 (2008).Article 

    Google Scholar 
    42.Jia, Y. et al. Long-term high intake of whole proteins results in renal damage in pigs. J. Nutr. 140, 1646–1652. https://doi.org/10.3945/jn.110.123034 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Wakefield, A. P., House, J. D., Ogborn, M. R., Weiler, H. A. & Aukema, H. M. A diet of 35% of energy from protein leads to kidney damage in female Sprague–Dawley rats. Br. J. Nutr. 106, 656–663. https://doi.org/10.1017/S0007114511000730 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Ko, G.-J., Rhee, C. M., Kalantar-Zadeh, K. & Joshi, S. The effects of high-protein diets on kidney health and longevity. J. Am. Soc. Nephrol. 31, 1667–1679. https://doi.org/10.1681/ASN.2020010028 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Bӧswald, L. F., Kienzle, E. & Dobenecker, B. Observation about phosphorus and protein supply in cats and dogs prior to the diagnosis of chronic kidney disease. J. Phys. Anim. Nutr. 102, 31–36. https://doi.org/10.1111/jpn.12886 (2017).CAS 
    Article 

    Google Scholar 
    46.Ioannou, G. N., Morrow, O. B., Connole, M. L. & Lee, S. P. Association between dietary nutrient composition and the incidence of cirrhosis or liver cancer in the united states population. Hepatology 50, 175–184. https://doi.org/10.1002/hep.22941 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Tryland, M. et al. Plasma biochemical values from apparently healthy free-ranging polar bears from Svalbard. J. Wildl. Dis. 38, 566–575. https://doi.org/10.7589/0090-3558-38.3.566 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Thiemann, G. W., Iverson, S. J. & Stirling, I. Polar bear diets and Arctic marine food webs: Insights from fatty acid analysis. Ecol. Monogr. 78, 591–613. https://doi.org/10.1890/07-1050.1 (2008).Article 

    Google Scholar 
    49.Ryg, M., Smith, T. G. & Oritsland, N. A. Seasonal changes in body mass and body composition of ringed seals (Phoca hispida) on Svalbard. Can. J. Zool. 68, 470–475. https://doi.org/10.1139/z90-069 (1990).Article 

    Google Scholar 
    50.Ferguson, S. H. et al. Demographic, ecological, and physiological responses of ringed seals to an abrupt decline in sea ice availability. Peer J. 5, e2957. https://doi.org/10.7717/peerj.2957 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Atwood, T. C. et al. Rapid environmental change drives increased land use by an Arctic marine predator. PLoS One 11, 30155932. https://doi.org/10.1371/journal.pone.0155932 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Molnar, P. K. et al. Fasting season length sets temporal limits for global polar bear persistence. Nat. Clim. Change 10, 732–738. https://doi.org/10.1038/s41558-020-0818-9 (2020).ADS 
    Article 

    Google Scholar 
    53.Rode, K. D., Robbins, C. T., Nelson, L. & Amstrup, S. C. Can polar bears use terrestrial foods to offset lost ice-based hunting opportunities?. Front. Ecol. Environ. 13, 138–145. https://doi.org/10.1890/140202 (2015).Article 

    Google Scholar 
    54.McArt, S. H. et al. Summer nitrogen availability as a bottom-up constraint on moose in south-central Alaska. Ecology 90, 1400–1411. https://doi.org/10.1890/08-1435.1 (2009).Article 
    PubMed 

    Google Scholar 
    55.Lahtinen, M., Clinnick, D., Mannermaa, K., Salonen, J. S. & Viranta, S. Excess protein enabled dog domestication during severe Ice Age winters. Sci. Rep. 11, 7. https://doi.org/10.1038/s41598-020-78214-4 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Regehr, E. V., Hostetter, N. J., Wilson, R. R. & Rode, K. D. Integrated population modeling provides the first empirical estimates of vital rates and abundance for polar bears in the Chukchi Sea. Sci. Rep. 8, 16780. https://doi.org/10.1038/s41598-018-34824-7 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Crawford, J. A., Quakenbush, L. T. & Citta, J. J. A comparison of ringed seal and bearded seal diet, condition, and productivity between historical (1975–19480 and recent (2003–2012) periods in the Alaskan Bering and Chukchi Seas. Progr. Oceanogr. 136, 133–150. https://doi.org/10.1016/j.pocean.2015.05.011 (2015).ADS 
    Article 

    Google Scholar 
    58.Germain, L. R., McCarthy, M. D., Koch, P. L. & Harvey, J. T. Stable carbon and nitrogen isotopes in multiple tissues of wild and captive harbor seals (Phoca vitulina) off the California coast. Mar. Mamm. Sci. 28, 542–560. https://doi.org/10.1111/j.1748-7692.2011.00516.x (2011).CAS 
    Article 

    Google Scholar 
    59.Erlenbach, J. A. Nutritional and landscape ecology of brown bears (Ursus arctos). PhD dissertation. Washington State University, Pullman, WA, USA (2020).60.Laidre, K. L., Stirling, I., Estes, J. A., Kochnev, A. & Roberts, J. Historical and potential future importance of large whales as food for polar bears. Front. Ecol. Environ. 16, 515–524. https://doi.org/10.1002/fee.1963 (2018).Article 

    Google Scholar 
    61.Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using carbon and nitrogen isotope values to investigate maternal strategies in northeast Pacific otariids. Mar. Mamm. Sci. 22, 556–572. https://doi.org/10.1111/j.1748-7692.2006.00043.x (2006).Article 

    Google Scholar 
    62.Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracker mixing models. Peer J. 6, e5096. https://doi.org/10.7717/peerj.5096 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Rode, K. D. et al. Isotopic incorporation and the effects of fasting and dietary fat content on isotopic discrimination in large carnivorous mammals. Phys. Biochem. Zool. 89, 182–197. https://doi.org/10.1086/686490 (2016).CAS 
    Article 

    Google Scholar 
    64.Merrill, A. L. & Watt, B. K. Energy Value of Foods: Basis and Derivation, Revised. Agriculture Handbook 74 (United States Department of Agriculture, 1973).65.Dyck, M. G. & Morin, P. In vivo digestibility trials of a captive polar bear (Ursus maritimus) feeding on harp seal (Pagophilus growenlandicus) and Arctic charr (Salvelinus alpinus). Pak. J. Zool. 43, 759–767 (2011).CAS 

    Google Scholar  More

  • in

    Tracking the rising extinction risk of sharks and rays in the Northeast Atlantic Ocean and Mediterranean Sea

    1.McClenachan, L., Cooper, A. B., Carpenter, K. E. & Dulvy, N. K. Extinction risk and bottlenecks in the conservation of charismatic marine species. Conserv. Lett. 5, 1–8 (2011).
    Google Scholar 
    2.Dulvy, N. K., Jennings, S., Rogers, S. I. & Maxwell, D. L. Threat and decline in fishes: An indicator of marine biodiversity. Can. J. Fish. Aquat. Sci. 63, 1267–1275 (2006).Article 

    Google Scholar 
    3.CBD & UNEP. Strategic Plan for Biodiversity 2011–2020 and the Aichi Targets ‘Living in Harmony with Nature’. 2pp. https://www.cbd.int/doc/strategic-plan/2011-2020/Aichi-Targets-EN.pdf (Secretariat of the Convention on Biological Diversity, Montreal, Quebec, 2011).4.Butchart, S. H. M. et al. Improvements to the Red List Index. PLoS ONE 2, 1–8 (2007).Article 

    Google Scholar 
    5.Butchart, S. H. M. et al. Measuring global trends in the status of biodiversity: Red List Indices for birds. PLoS Biol. 2, 2294–2304 (2004).CAS 
    Article 

    Google Scholar 
    6.Butchart, S. H. M. et al. Using Red List Indices to measure progress towards the 2010 target and beyond. Philos. Trans. R. Soc. B Biol. Sci. 360, 255–268 (2005).CAS 
    Article 

    Google Scholar 
    7.Hoffmann, M. et al. The changing fates of the world’s mammals. Philos. Trans. R. Soc. B Biol. Sci. 366, 2598–2610 (2011).Article 

    Google Scholar 
    8.Marler, P. N. & Marler, T. E. An assessment of Red List data for the cycadales. Trop. Conserv. Sci. 8, 1114–1125 (2015).Article 

    Google Scholar 
    9.Carpenter, K. E. et al. One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science (80-. ) 321, 560–563 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Gärdenfors, U. Classifying threatened species at national versus global levels. Trends Ecol. Evol. 16, 511–516 (2001).Article 

    Google Scholar 
    11.Szabo, J. K., Butchart, S. H. M., Possingham, H. P. & Garnett, S. T. Adapting global biodiversity indicators to the national scale: A Red List Index for Australian birds. Biol. Conserv. 148, 61–68 (2012).Article 

    Google Scholar 
    12.Juslén, A., Hyvärinen, E. & Virtanen, L. K. Application of the Red-List Index at a national level for multiple species groups. Conserv. Biol. 27, 398–406 (2013).PubMed 
    Article 

    Google Scholar 
    13.Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science (80-. ) 330, 1503–1509 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    14.IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. 56pp. https://ipbes.net/document-library-catalogue/summary-policymakers-global-assessment-laid-out (IPBES Secretariat, Bonn, Germany, 2019).15.Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003).Article 

    Google Scholar 
    16.Lawson, J. M. et al. Global extinction risk and conservation of Critically Endangered angel sharks in the Eastern Atlantic and Mediterranean Sea. Int. Counc. Explor. Seas J. Mar. Sci. 77, 12–29 (2020).
    Google Scholar 
    17.WGEF. Report of the Working Group on Elasmobranch Fishes (WGEF). 671pp. https://www.ices.dk/community/groups/pages/wgef.aspx (ICES CM, Lisbon, Portugal, 2018).18.Dulvy, N. K., Allen, D. J., Ralph, G. M. & Walls, R. H. L. The conservation status of sharks, rays and chimaeras in the Mediterranean Sea. 14pp. https://portals.iucn.org/library/node/47636 (IUCN, Malaga, Spain, 2016)19.Cavanagh, R. D. & Gibson, C. Overview of the Conservation Status of Cartilaginous Fishes (Chondrichthyans) in the Mediterranean Sea (IUCN, 2007). https://doi.org/10.2305/IUCN.CH.2007.MRA.3.en.Book 

    Google Scholar 
    20.Gibson, C., Valenti, S. V., Fowler, S. L. & Fordham, S. V. The Conservation Status of Northeast Atlantic Chondrichthyans: Report of the IUCN Shark Specialist Group Northeast Atlantic Regional Red List Workshop (IUCN Species Survival Commission Shark Specialist Group, 2008).
    Google Scholar 
    21.Nieto, A. et al. European Red List of Marine Fishes. 88pp. https://doi.org/10.2779/082723 (Publications Office of the European Union, Luxembourg, 2015).22.Barrett, J. H., Locker, A. M. & Roberts, C. M. The origins of intensive marine fishing in medieval Europe: The English evidence. Proc. R. Soc. B Biol. Sci. 271, 2417–2421 (2004).Article 

    Google Scholar 
    23.Rousseau, Y., Watson, R. A., Blanchard, J. L. & Fulton, E. A. Evolution of global marine fishing fleets and the response of fished resources. Proc. Natl. Acad. Sci. U.S.A. 116, 12238–12243 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Fernandes, P. G. et al. Coherent assessments of Europe’s marine fishes show regional divergence and megafauna loss. Nat. Ecol. Evol. 1, 1–9 (2017).Article 

    Google Scholar 
    25.Walls, R. H. L. & Dulvy, N. K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 246, 1–14 (2020).Article 

    Google Scholar 
    26.Kyne, P. M. et al. The thin edge of the wedge: Extremely high extinction risk in wedgefishes and giant guitarfishes. Aquat. Conserv. Mar. Freshw. Ecosyst. 30, 1337–1361 (2020).Article 

    Google Scholar 
    27.Jennings, S., Reynolds, J. D. & Mills, S. C. Life history correlates of responses to fisheries exploitation. Proc. R. Soc. B Biol. Sci. 265, 333–339 (1998).Article 

    Google Scholar 
    28.Frisk, M. G., Miller, T. J. & Fogarty, M. J. Estimation and analysis of biological parameters in elasmobranch fishes: A comparative life history study. Can. J. Fish. Aquat. Sci. 58, 969–981 (2001).Article 

    Google Scholar 
    29.Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O. & Kuparinen, A. Life-history correlates of extinction risk and recovery potential. Ecol. Appl. 22, 1061–1067 (2012).PubMed 
    Article 

    Google Scholar 
    30.Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–35 (2014).Article 

    Google Scholar 
    31.Cardoso, P. Package ‘red’. 32pp. Available at: https://cran.r-project.org/web/packages/red/red.pdf (2020).32.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    33.IUCN 2021. The IUCN Red List of Threatened Species. Version 2021–1. Web page: https://www.iucnredlist.org. Accessed 7 April 2021.34.European Environment Agency. Red List Index for European species. 23pp. https://www.eea.europa.eu/data-and-maps/indicators/red-list-index-for-european-species/red-list-index-for-european (EEA, Copenhagen, Denmark, 2010).35.Bolam, F. C. et al. How many bird and mammal extinctions has recent conservation action prevented?. bioRxiv https://doi.org/10.1101/2020.02.11.943902 (2020).Article 

    Google Scholar 
    36.GFCM. Recommendation GFCM/29/2005/1 on the Management of Certain Fisheries Exploiting Demersal and Deep-Water Species and the Establishment of a Fisheries Restricted Area Below 1000 m. 2pp. https://www.cbd.int/doc/meetings/mar/soiom-2016-01/other/soiom-2016-01-gfcm-02-en.pdf (2005).37.Morato, T., Watson, R., Pitcher, T. J. & Pauly, D. Fishing down the deep. Fish Fish. 7, 23–33 (2006).Article 

    Google Scholar 
    38.Abernethy, K. E., Trebilcock, P., Kebede, B., Allison, E. H. & Dulvy, N. K. Fuelling the decline in UK fishing communities?. ICES J. Mar. Sci. 67, 1076–1085 (2010).Article 

    Google Scholar 
    39.Campana, S. E. Transboundary movements, unmonitored fishing mortality, and ineffective international fisheries management pose risks for pelagic sharks in the Northwest Atlantic. Can. J. Fish. Aquat. Sci. 73, 1599–1607 (2016).Article 

    Google Scholar 
    40.Queiroz, N. et al. Global spatial risk assessment of sharks under the footprint of fisheries. Nature 572, 461–466 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Fredston-Hermann, A., Selden, R., Pinsky, M., Gaines, S. D. & Halpern, B. S. Cold range edges of marine fishes track climate change better than warm edges. Glob. Change Biol. 26, 2908–2922 (2020).ADS 
    Article 

    Google Scholar 
    42.Yan, H. F. et al. Overfishing and habitat loss drives range contraction of iconic marine fishes to near extinction. Sci. Adv. 7, 1–11 (2021).Article 

    Google Scholar 
    43.De Oliveira, J. A., Ellis, J. R. & Dobby, H. Incorporating density dependence in pup production in a stock assessment of NE Atlantic spurdog Squalus acanthias. ICES J. Mar. Sci. 70, 1341–1353 (2013).Article 

    Google Scholar 
    44.Bailey, D. M., Collins, M. A., Gordon, J. D. M., Zuur, A. F. & Priede, I. G. Long-term changes in deep-water fish populations in the northeast Atlantic: A deeper reaching effect of fisheries?. Proc. R. Soc. B Biol. Sci. 276, 1965–1969 (2009).CAS 
    Article 

    Google Scholar 
    45.IUCN. IUCN Red List Categories and Criteria: Version 3.1. Second Edition. iv + 32pp. https://www.iucnredlist.org/resources/grid (IUCN, Gland, Switzerland and Cambridge, UK, 2012).46.Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science (80-. ) 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Smith, A. D. M. & Garcia, S. M. Fishery management: Contrasts in the Mediterranean and the Atlantic. Curr. Biol. 24, 810–812 (2014).Article 
    CAS 

    Google Scholar 
    48.Caddy, J. F. Practical issues in choosing a framework for resource assessment and management of Mediterranean and Black Sea fisheries. Mediterr. Mar. Sci. 10, 83–119 (2009).Article 

    Google Scholar 
    49.Colloca, F. et al. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 14, 89–109 (2013).Article 

    Google Scholar 
    50.Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Brander, K. Disappearance of common skate Raia batis from Irish Sea. Nature 290, 48–49 (1981).ADS 
    Article 

    Google Scholar 
    52.Vasilakopoulos, P., Maravelias, C. D. & Tserpes, G. The alarming decline of Mediterranean fish stocks. Curr. Biol. 24, 1643–1648 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Oliver, S., Braccini, M., Newman, S. J. & Harvey, E. S. Global patterns in the bycatch of sharks and rays. Mar. Policy 54, 86–97 (2015).Article 

    Google Scholar 
    54.Harrison, A. L. et al. The political biogeography of migratory marine predators. Nat. Ecol. Evol. 2, 1571–1578 (2018).PubMed 
    Article 

    Google Scholar 
    55.White, C. & Costello, C. Close the high seas to fishing?. PLoS Biol. 12, 1–5 (2014).Article 
    CAS 

    Google Scholar 
    56.Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science (80-. ) 317, 810–813 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Demirel, N., Zengin, M. & Ulman, A. First large-scale eastern Mediterranean and black sea stock assessment reveals a dramatic decline. Front. Mar. Sci. 7, 1–13 (2020).Article 

    Google Scholar 
    58.Clarke, M. W. Sharks, skates and rays in the northeast Atlantic: Population status, advice and management. J. Appl. Ichthyol. 25, 3–8 (2009).Article 

    Google Scholar 
    59.Abudaya, M. et al. Speak of the devil ray (Mobula mobular) fishery in Gaza. Rev. Fish Biol. Fish. 28, 229–239 (2018).Article 

    Google Scholar 
    60.CMS. Appendices I and II of the Convention on the Conservation of Migratory Species of Wild Animals (CMS). 16pp. Available at: https://www.cms.int/en/species/appendix-i-ii-cms (2020).61.Jabado, R. W. et al. The Conservation Status of Sharks, Rays, and Chimaeras in the Arabian Sea and Adjacent Waters (Environment Agency – Abu Dhabi, UAE and IUCN Species Survival Commission Shark Specialist Group, 2017).
    Google Scholar 
    62.Iglésias, S. P., Toulhoat, L. & Sellos, D. Y. Taxonomic confusion and market mislabelling of threatened skates: Important consequences for their conservation status. Aquat. Conserv. Mar. Freshw. Ecosyst. 20, 319–333 (2010).Article 

    Google Scholar 
    63.Ferretti, F., Myers, R. A., Serena, F. & Lotze, H. K. Loss of large predatory sharks from the Mediterranean Sea. Conserv. Biol. 22, 952–964 (2008).PubMed 
    Article 

    Google Scholar 
    64.Iglésias, S. P. & Mollen, F. H. Cold case: The early disappearance of the Bramble shark (Echinorhinus brucus) in European and adjacent waters. Oceans Past News 10, 1–5 (2018).
    Google Scholar 
    65.IUCN. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0 (IUCN, 2012).
    Google Scholar 
    66.CBD. Indicators for Assessing Progress Towards the 2010 Target: Change in Status of Threatened Species. Convention on Biological Diversity, UNEP/CBD/AHTEG-2010-Ind/1/INF/9. 10pp. Available at: https://www.cbd.int/meetings/TEGIND-01 (2004).67.Brooks, T. M. et al. Harnessing biodiversity and conservation knowledge products to track the Aichi targets and sustainable development goals. Biodiversity 16, 157–174 (2015).Article 

    Google Scholar 
    68.Bland, L. M. et al. Toward reassessing data-deficient species. Conserv. Biol. 31, 531–539 (2017).PubMed 
    Article 

    Google Scholar 
    69.Bland, L. M. et al. Cost-effective assessment of extinction risk with limited information. J. Appl. Ecol. 52, 861–870 (2015).Article 

    Google Scholar 
    70.White, W. T., Kyne, P. M. & Harris, M. Lost before found: A new species of whaler shark Carcharhinus obsolerus from the Western Central Pacific known only from historic records. PLoS ONE 14, 1–24 (2019).
    Google Scholar 
    71.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    72.IUCN. IUCN Red List Categories and Criteria: Version 3.1. IUCN Species Survival Commission (IUCN, 2001).
    Google Scholar 
    73.Regan, T. J. et al. The consistency of extinction risk classification protocols. Conserv. Biol. 19, 1969–1977 (2005).Article 

    Google Scholar 
    74.Hiddink, J. G., Shepperson, J., Bater, R., Goonesekera, D. & Dulvy, N. K. Near disappearance of the Angelshark Squatina squatina over half a century of observations. Conserv. Sci. Pract. 1, 1–9 (2019).Article 

    Google Scholar 
    75.Bom, R. A., van de Water, M., Camphuysen, K. C. J., van der Veer, H. W. & van Leeuwen, A. The historical ecology and demise of the iconic Angelshark Squatina squatina in the southern North Sea. Mar. Biol. 167, 1–10 (2020).Article 

    Google Scholar 
    76.Shephard, S., Wögerbauer, C., Green, P., Ellis, J. R. & Roche, W. K. Angling records track the near extirpation of angel shark Squatina squatina from two Irish hotspots. Endanger. Species Res. 38, 153–158 (2019).Article 

    Google Scholar 
    77.Martin, C. S. et al. Spatio-temporal patterns in demersal elasmobranchs from trawl surveys in the eastern English Channel (1988–2008). Mar. Ecol. Prog. Ser. 417, 211–228 (2010).ADS 
    Article 

    Google Scholar 
    78.Burt, G. J., Ellis, J. R., Harley, B. F. & Kupschus, S. The FV Carhelmar Beam Trawl Survey of the Western English Channel (1989–2011): History of the Survey, Data Availability and the Distribution and Relative Abundance of Fish and Commercial Shellfish. CEFAS, Norwich, UK. Science Series, Technical Report no. 151. 139pp. (2013).79.Marandel, F., Lorance, P. & Trenkel, V. M. Determining long-term changes in a skate assemblage with aggregated landings and limited species data. Fish. Manag. Ecol. 26, 365–373 (2019).Article 

    Google Scholar 
    80.IUCN Standards and Petitions Subcommittee. Guidelines for Using the IUCN Red List Categories and Criteria, Version 11. Prepared by the Standards and Petitions Subcommittee. 87pp. Available at: http://www.iucnredlist.org/documents/RedListGuidelines.pdf (2014).81.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: https://www.r-project.org/. (2018).82.Bates, D. et al. Package ‘lme4’. 126pp. Available at: https://cran.r-project.org/web/packages/lme4/index.html (2020).83.Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R Statistics for Biology and Health (Springer, 2009). https://doi.org/10.1007/978-0-387-87458-6.Book 
    MATH 

    Google Scholar 
    84.Zuur, A. F., Hilbe, J. M. & Ieno, E. N. A Beginner’s Guide to GLM and GLMM with R: A Frequentist and Bayesian Perspective for Ecologists (Highland Statistic Ltd., 2013).
    Google Scholar 
    85.Gelman, A. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873 (2008).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    86.Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    87.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    88.Bartoń, K. Package ‘MuMIn’. 75pp. Available at: https://cran.r-project.org/web/packages/MuMIn/index.html (2019).89.John, A. et al. Package ‘car’. 149pp. Available at: https://cran.r-project.org/web/packages/car/index.html (2020).90.Zuur, A. F., Ieno, E. N. & Smith, G. M. Analysing Ecological Data. Statistics for Biology and Health (Springer, 2007). https://doi.org/10.1198/016214508000000715.Book 
    MATH 

    Google Scholar  More

  • in

    Author Correction: Drivers of seedling establishment success in dryland restoration efforts

    School of Environmental Studies, University of Victoria, Victoria, British Columbia, CanadaNancy ShackelfordEcology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USANancy Shackelford, Nichole Barger, Julie E. Larson & Katharine L. SudingDepartamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, BrazilGustavo B. PaternoDepartment of Ecology and Ecosystem Management, Restoration Ecology Research Group, Technical University of Munich, Freising, GermanyGustavo B. PaternoUS Geological Survey, Southwest Biological Science Center, Moab, UT, USADaniel E. Winkler & Stephen E. FickSchool of Biological Sciences, The University of Western Australia, Crawley, Western Australia, AustraliaTodd E. EricksonKings Park Science, Department of Biodiversity Conservation and Attractions, Kings Park, Western Australia, AustraliaTodd E. Erickson & Peter J. GolosDepartment of Biology, University of Nevada, Reno, Reno, NV, USAElizabeth A. LegerUSDA Agricultural Research Service, Eastern Oregon Agricultural Research Center, Burns, OR, USALauren N. Svejcar, Chad S. Boyd & Kirk W. DaviesCollege of Science and Engineering, Flinders University, Bedford Park, South Australia, AustraliaMartin F. BreedDepartment of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USAAkasha M. FaistSchool of Natural Sciences and ARC Training Centre for Forest Value, University of Tasmania, Hobart, Tasmania, AustraliaPeter A. HarrisonProgram in Ecology, University of Wyoming, Laramie, WY, USAMichael F. CurranUSDA FS – Southern Research Station, Research Triangle Park, NC, USAQinfeng GuoDepartment of Nature Conservation and Landscape Planning, Anhalt University of Applied Sciences, Bernburg, GermanyAnita Kirmer & Sandra DullauSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USADarin J. LawDepartment of Agricultural Sciences, South Eastern Kenya University, Kitui, KenyaKevin Z. MgangaUS Geological Survey, Southwest Biological Science Center, Flagstaff, AZ, USASeth M. Munson & Hannah L. FarrellUS Department of Agriculture – Agricultural Research Service Rangeland Resources and Systems Research Unit, Fort Collins, CO, USALauren M. PorenskyInstituto Nacional de Tecnología Agropecuaria, Estación Experimental Agropecuaria Catamarca, Catamarca, ArgentinaR. Emiliano QuirogaCátedra de Manejo de Pastizales Naturales, Facultad de Ciencias Agrarias, Universidad Nacional de Catamarca, Catamarca, ArgentinaR. Emiliano QuirogaMTA-DE Lendület Functional and Restoration Ecology Research Group, Debrecen, HungaryPéter TörökTennessee Department of Environment and Conservation, Division of Water Resources, Nashville, TN, USAClaire E. WainwrightHirola Conservation Programme, Nairobi, KenyaAli AbdullahiUSDA Natural Resources Conservation Service, Merced Field Office, Merced, CA, USAMatt A. BahmNational Park Service, Southeast Utah Group, Moab, UT, USAElizabeth A. BallengerThe Nature Conservancy of Oregon, Burns, OR, USAOwen W. BaughmanPlant Conservation Unit, Biological Sciences, University of Cape Town, Rondebosch, South AfricaCarina BeckerUniversity of Castilla-La Mancha, Campus Universitario, Albacete, SpainManuel Esteban Lucas-BorjaUniversity of Northern British Columbia, 3333 University Way, Prince George, British Columbia, CanadaCarla M. Burton & Philip J. BurtonInstitute of Applied Sciences, Malta College for Arts, Sciences and Technology, Fgura, MaltaEman Calleja & Alex CaruanaPlant Conservation Unit, Department of Biological Sciences, University of Cape Town, Rondebosch, South AfricaPeter J. CarrickUSDA, Agricultural Research Service, Great Basin Rangelands Research Unit, Reno, NV, USACharlie D. ClementsLendület Seed Ecology Research Group, Institute of Ecology and Botany, Centre for Ecological Research, Debrecen, HungaryBalázs Deák, Réka Kiss & Orsolya ValkóMurrang Earth Sciences, Ngunnawal Country, Canberra, Australian Capital Territory, AustraliaJessica DrakeGreat Ecology, Denver, CO, USAJoshua EldridgeUSDA-ARS Pest Management Research Unit, Northern Plains Agricultural Research Laboratory, Sidney, MT, USAErin EspelandGerman Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, GermanyMagda GarbowskiDepartment of Ecology, Brandenburg University of Technology, Cottbus, GermanyEnrique G. de la RivaBiodiversity Management Branch, Environmental Resource Management Department, Cape Town, South AfricaPenelope A. GreyGreening Australia, Melbourne, Victoria, AustraliaBarry HeydenrychDepartment of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch Central, Stellenbosch, South AfricaPatricia M. HolmesNatural Resource Management and Environmental Sciences, Cal Poly State University, San Luis Obispo, CA, USAJeremy J. JamesDepartment of Biology, University of Nebraska-Kearney, Kearney, NE, USAJayne Jonas-BrattenNegaunee Institute for Plant Conservation Science and Action, Chicago Botanic Garden, Glencoe, IL, USAAndrea T. KramerDepartment of Botany, University of Granada, Granada, SpainJuan LoriteInteruniversity Institute for Earth System Research, University of Granada, Granada, SpainJuan LoriteNew Zealand Department of Conservation, Christchurch, New ZealandC. Ellery MayenceDepartamento de Biología y Geología, Física y Química inorgánica, ESCET, Universidad Rey Juan Carlos, Madrid, SpainLuis Merino-MartínÖMKi – Research Institute of Organic Agriculture, Budapest, HungaryTamás MigléczHadison Park, Kimberley, South AfricaSuanne Jane MiltonWolwekraal Conservation and Research Organisation (WCRO), Prince Albert, South AfricaSuanne Jane MiltonUS Department of Agriculture, Agricultural Research Service, Forage and Range Research Laboratory, Utah State University, Logan, UT, USAThomas A. MonacoUniversity of California, Riverside, Riverside, CA, USAArlee M. MontalvoDepartment of Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA-CSIC), Madrid, SpainJose A. Navarro-CanoForest and Rangeland Stewardship Department, Colorado State University, Fort Collins, CO, USAMark W. PaschkeInstituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Cruz, ArgentinaPablo Luis PeriUSDA – NRCS, Bozeman, MT, USAMonica L. PokornyUSDA Agricultural Research Service, Fort Keogh Livestock and Range Research Laboratory, Miles City, MT, USAMatthew J. RinellaPlant Science, Western Cape Department of Agriculture, Elsenburg, South AfricaNelmarie SaaymanRed Rock Resources LLC, Miles City, MT, USAMerilynn C. SchantzBush Heritage Australia, Eurardy, Western Australia, AustraliaTina ParkhurstDeptartment of Ecology, Evolution, and Behavior, University of Minnesota, St Paul, MN, USAEric W. SeabloomHolden Arboretum, Kirtland, OH, USAKatharine L. StubleDepartment of Natural Resources and Environmental Science, University of Nevada, Reno, NV, USAShauna M. UselmanDepartment of Wildland Resources & Ecology Center, Utah State University, Logan, UT, USAKari VeblenDepartment of Biology, University of Regina, Regina, Saskatchewan, CanadaScott WilsonCentre of eResearch and Digital Innovation, Federation University Australia, Ballarat, Victoria, AustraliaMegan WongSchool of Geography and Ocean Science, Nanjing University, Nanjing, ChinaZhiwei XuInstitute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USAKatharine L. Suding More

  • in

    Climatic suitability of the eastern paralysis tick, Ixodes holocyclus, and its likely geographic distribution in the year 2050

    Tick paralysis is a common tick-borne illness in humans and animals throughout the world, caused by neurotoxins produced in the salivary glands of ticks and secreted into a host during the course of feeding by females and immature stages19. Fifty-nine ixodid and fourteen argasid ticks are currently believed to be involved in the transmission of tick paralysis worldwide19, 20. In Australia, I. holocyclus is considered to be the leading tick species implicated in the transmission of tick paralysis primarily in dogs, but also other species, viz. cats, sheep, cattle, goats, swine and horses. Humans are also occasionally affected, and the disease can be fatal2, 21. A second tick species, I. cornuatus has also been implicated in the transmission of tick paralysis in Australia; however, it is also considered a minor player in this disease22. Given the differences in their biology, distribution, and natural history of these two species, we focused on estimating the spatial distribution of I. holocyclus in the present study. We recognize, however, that it is important to consider the distributions of both species for proper epidemiological planning and management of tick paralysis in Australia.Ecological niche modeling is a well-tested approach for estimating species distributions based on abiotic factors13, 23. Several new recommendations have been made in recent years for proper construction of niche models; such as the appropriate thinning of occurrence data24, consideration of an accessible area for a species being studied (M)25, thorough exploration of model complexity26, 27, and use of multiple statistical criteria for model selection28, 29. We carefully considered all these recommendations to produce a robust spatial distribution model for I. holocyclus. The resulting replicated models were fairly consistent in predicting suitability for I. holocyclus, as indicated by moderate range estimates (Fig. 2B). Further, the MOP analysis indicated satisfactory performance of the present-day model with extrapolation only in small areas outside the predicted suitable areas. These qualities, along with the model’s very low omission rate (0.044%) gives high confidence in the predicted suitable area for this species in Australia. It will be essential, however, to confirm the actual presence of I. holocyclus outside the traditionally known areas through acarological surveys to assess our findings.The present-day spatial distribution predicted in this study (Fig. 2A) indicates that the geographic areas suitable for I. holocyclus match the currently known distribution of this species along the eastern seaboard, but the suitability also extends through most of the coastal areas in the south, and up to the Kimbolton Peninsula in Western Australia in the north. Highly suitable areas are present around and south of Perth, extending towards Albany, Western Australia. Most areas in Tasmania are also highly suitable for this species. The current distribution in the Eastern Seaboard may be wider than the traditionally known extents in some areas compared to Roberts30. It is likely that I. holocyclus will succeed in establishing permanent populations if introduced into areas that are currently free of them along the southern and northern coasts, and along the southwestern coast of Western Australia and Tasmania. Appropriate prevention of tick movement including pet inspections and quarantine will be necessary to avoid introductions.Future potential distribution of I. holocyclus in year 2050 based on both low- and high-emissions scenarios indicate moderate increases in climatic suitability from the present-day prediction (Fig. 4A,B); but noticeably also moderate to low loss of climatically suitable areas in 2050. This loss could be at least partly attributed to potential future temperature and precipitation conditions exceeding suitable ranges for these ticks in these areas, limiting their ability to survive. Predicted loss of suitable areas in future can also be observed to be irregular, and in some areas, particularly along northern Queensland and in Northern Territory, enveloped between stretches of suitable areas. Our use of relatively coarse resolution data (1 km2) limits our ability to thoroughly interpret such phenomenon, but this is likely due to variations in the geography in these areas that respond differently to future climate, as well as the potential increase in ocean temperature and subsequent influences on areas along the coast that may render them unsuitable for this species. Despite the noticeable loss in climatically suitable areas, likely no net loss in area will accrue for this species by 2050.Teo et al.31 assessed present and future potential distribution for I. holocyclus using both CLIMEX32, 33 and a novel, as-yet unpublished “climatic-range” approach to determine the suitability on monthly intervals. CLIMEX allows users to specify different upper and lower thresholds for climatic parameters, some of which were derived for their study from laboratory evaluations of I. holocyclus34. The present-day distribution reported in that study resembles our results in identification of a relatively narrow area along the East Coast as suitable; however, much of the northern and northeastern areas along the coast, the coasts of South Australia and southwestern Australia, and Tasmania are reported unsuitable. Their future predictions (2050) of the species’ potential distribution were based on two GCMs (CSIRO MK3 and MIROC-H) climate models, were also markedly different from our predictions, anticipating rather dramatic distributional loss for the species. Such model transfers are challenging, with many factors potentially producing inconsistencies35. However, the two studies reflect two fundamentally different classes of ecological niche models; CLIMEX is deterministic, whose predictions are largely constrained by user supplied threshold values for model inputs of physiological tolerance limits of a species33, whereas Maxent is a machine-learning correlative approach, in which known occurrences of a species is used in conjunction with environmental layers to determine conditions that meet a species’ environmental requirements, and therefore the suitability of geographic spaces. Although the former (CLIMEX) approach is appealing conceptually, scaling environmental dimensions between the micro-scales of physiological measurements and the macro-scales of geography is well-known to present practical and conceptual challenges36.Different ixodid ticks employ different life-history strategies in response to adverse environmental conditions, including behavioral adaptations, active uptake of atmospheric moisture, restriction of water-loss, and tolerance towards extreme temperatures37. Precisely which of these mechanisms I. holocyclus utilizes, if any at all, for its survival during diverse temperature and humidity conditions is not clearly known, but it is likely to involve multiple mechanisms. In this sense, the threshold values used by Teo et al.31, based purely on laboratory observations may have been overly restrictive, leading to a conservative distributional estimate for this species. Further, because relationships between abiotic variables and species’ occurrences are fairly complex and highly dimensional, a physiological thresholding approach wherein values are set independently for different abiotic parameters may not capture species’ relationships with environments adequately. The correlative approaches employed in the present study are data-driven, and as such may capture more of this complexity, with fewer problems of scaling across orders of magnitude of space and time.In conclusion, ticks are poikilothermic ectoparasites, whose survival, reproduction and other biological functions are regulated by ambient climatic conditions. Although ixodid ticks are known to regulate their body temperatures by moving about their habitat (vegetation), attempts to model their spatial distribution has resulted in models largely based on climate variables. Nevertheless, other factors such as host availability play a significant role in tick distribution, which unfortunately cannot be readily included in correlative ecological niche models largely because such data are rarely available. These suitability predictions, in addition to being entirely based on large-scale climate, also do not reveal the highly likely heterogeneity in abundance or density in different geographic areas within the realized climatically suitable areas. For these reasons, the distribution maps produced in this study must be used with some caution, and perhaps as a guide to target sampling and not as a substitute for thorough acarological surveys. More

  • in

    Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility

    Biostimulation of ureolytic communitiesEnrichmentThe native communities of the soils were successfully grown in the enrichment media (NB5U). The cultivated communities after two subcultures were serially diluted (10–2 to 10–6) and were spread with a sterile loop over Nutrient agar plates supplemented with 2% urea. Later, 36 morphologically distinct single colonies were obtained on the urea agar base plates based on visual observation.Isolation, identification, and characterization of the ureolytic isolatesOut of 36 isolated bacteria, six isolates (BS1, BS2, BS3, BS4, LS1, and LS2) were selected after checking for the urease activity test on the urea agar base (UAB) plate. These selected isolates turned the color of the UAB plate from orange to pink within 12 h. The 16 s rRNA sequence revealed the isolates as relatives of Sporosarcina pasteurii (SP). The details of the identified isolates are provided by NCMR (details in Supplementary Table 1). The biochemical characterization (details in Supplementary Table 2) of the isolates revealed that all the isolates are Gram-positive. All the isolates were rod-shaped, endospore-forming, urease, and oxidase positive. All the isolates were not able to utilize the Lysine and ONPG, contrary to SP.Further investigation of the isolated sequence was done via the NCBI database. The sequences were submitted to the GenBank database of the NCBI (National Center for Biotechnology Information) under the accession number MW024144 to MW024149. The BLAST analysis suggested that these strains are close relatives and indicate the possibility of being novel strains of the Sporosarcina family. We found that the isolate BS1 and BS2 had 96.62% (coverage 100%) and 96.22% (coverage 99%) identity with Sporosarcina siberinisis (NCBI accession number NR 134188). BS3 had 98.8% identity (coverage 97%) with Sporosarcina pasteurii (NCBI accession number NR 104923). BS4 and LS1 had 97.4% (coverage 99%) and 97.37% identity (coverage 100%) with Sporosarcina soli (NCBI accession number NR 043527). Contrarily, LS2 was found to be related to the Pseudogracilibacillus family. LS2 was observed to be closely related to Pseudogracilibacillus auburnensis P-207 with 97.06% identity (96% coverage). Based on these findings, the Phylogenetic tree was constructed with bootstrap (1000 replicates) considering the reference sequences obtained from the BLAST analysis, as shown in Fig. 3. The threshold criteria to differentiate two species is defined as 98.65% similarity score with the reference culture from databank40, while another study has suggested that in case of similarity index is  > 99%, the unknown isolate should be assigned to a species, and if the unknown isolates have similarity score between 95 to 99% to a reference sequence, the isolate should be assigned to the genus41. However, further investigation is suggested to conclude if the reported strains are novel or merely mutants of the reference strains of the databank. Similar observations were made at Graddy et al.22, where the majority of the isolated strains (47 out of 57) from bio-stimulation soil tanks were found to be strains of the Sporosarcina genus. It is worth noting that the soil enrichment media for stimulation was rich in urea, similar to Gomez et al.42 and Graddy et al.22, which is conditional stress for selective stimulation of ureolytic microorganisms. Moreover, the isolated strains were screened based on morphology and qualitative urease activity.Figure 3Neighbor-joining phylogenetic tree based on the 16S rRNA sequence of the isolates and reference sequence from the GenBank database (NCBI).Full size imageEvaluation of biocementation potential of the isolated strainsGrowth and pHThe various parameters of the biocementation potential of the isolated strains in comparison with Sporosarcina pasteurii (SP) have been plotted in Fig. 4. The growth characteristics of the isolates in NBU media and pH during growth have been represented in Fig. 4a and b. The initial pH of the growth media is kept at 7.5. It was observed that the pH of the growth media rises to 9.5 within 24 h of growth, indicating that these strains favor an alkaline environment to grow similar to SP43. All the isolates start growing when the pH of the media rises to 8.5 or above. Isolate LS2 was observed to have slower growth when compared with other isolates. This can be explained as LS2 belongs to different genera (Pseudogracilibacillus).Figure 4(a) Growth characteristics, (b) pH, (c) specific urease activity, (d) calcium utilization rate, and (e) carbonate precipitation rate of the isolates and consortia.Full size imageSpecific urease activityThe specific urease activities of the isolates were found to be comparable with SP (shown in Fig. 4c). Based on the provided NBU media and growth condition, the specific urease activity of SP is found to be 173.44 mM urea hydrolyzed h−1 (OD600)−1, which is around 2.9 mM urea hydrolyzed min−1 (OD600)−1. The specific urease activity of the isolate BS3 was observed to be maximum as 186.6 mM urea hydrolyzed h−1 (OD600)−1 during a growth period of 24 h and pH  > 9. Consortia also demonstrated significant urease activity as 160 mM urea hydrolyzed h−1 (OD600)−1 at a growth period of 48 h. The maximum ureolytic activity in BS1 was observed after 72 h of growth with a value of 106.67 mM urea hydrolyzed h−1 (OD600)−1. Maximum specific urease activity of the isolate BS2, BS4, and LS1 was observed to be 160.2, 120, and 173.4 mM urea hydrolyzed h−1 (OD600)−1 respectively after a growth duration of 48 h. LS2 demonstrated the maximum specific urease activity of 146.4 mM urea hydrolyzed h−1 (OD600)−1. The observed order of specific urease activity at 24 h of growth period is BS3  > SP  > Consortia  > LS1  > BS2  > BS4  > LS2  > BS1. As the urease activity of the strains depends on the growth media, urea content, and environmental conditions such as pH and Temperature44, we considered the conditions at the riverbank at the time of isolation, and the pH and temperature of the growth media were set at 7.5 and 37 degrees Celsius. The specific urease measured by the electrical conductivity method is reported to be between 3 to 9.7 mM urea hydrolyzed min−1 (OD600)−1 in yeast-extract urea media at pH 7 and temperature 30 degrees Celsius43. It is reported around 5 mM urea hydrolyzed min−1 (OD600)−1 in the nutrient broth urea (2%) media at a temperature of 25 degrees Celsius44. The comparative analysis of the urease activity (measured by electrical conductivity method) was done considering SP as positive control in this study. The maximum specific urease activities of all isolates were found to be in a range of 106.67 to 186.67 mM urea hydrolyzed h−1 (OD600)−1 (1.78 to 3.11 mM urea hydrolyzed min−1 OD600–1), which indicates that all of the isolated strains are capable of biocementation43,45.Calcium utilization and carbonate precipitation potentialIt was experimentally observed that the depletion of the supplemented soluble calcium in the precipitation media (PM) was corresponding to the ureolytic activities of the isolated strains. Within 48 h of introducing 1% bacteria (OD600 = 1) in the precipitation media, the soluble calcium chloride (50 mM) was utilized to precipitate carbonate crystals, as illustrated in Fig. 4d. Within 12 h of the inoculation period, BS3 was able to utilize 75% of the supplied calcium, while SP was able to utilize only 62.5% of the soluble calcium. The order of the calcium utilization potential in the isolates was observed as BS3 ≥ LS2  > L.S.1  > Consortia  > SP  > BS4  > BS2  > BS1 during the inoculation period. Contrarily, LS2, despite being a comparatively slow urease-producing bacteria, was able to utilize calcium ions at par with other isolates. Negligible changes were observed in the soluble calcium concentration of the control group eliminating the possibility of abiotic precipitation.The carbonate precipitation rate for each isolate (1% at OD600 = 1) for the 50 mM cementation media is plotted in Fig. 4e. The isolate BS3 with maximum ureolytic activity (specific urease activity 186.6 mM urea hydrolyzed min−1 OD600–1) precipitated the highest carbonate crystals after 96 h of the incubation period. BS3 precipitated 438 mg/100 ml of carbonate crystals, which is around 87.66% precipitation from the total supplied CaCl2, while precipitation with SP was quantified as 389 mg/100 ml (78%). The precipitation in consortia was observed to be 407 mg/100 ml (81%), which is slightly higher than SP. Precipitation in other isolates was found to be significantly lower than isolate BS3. Isolate BS1and BS2 precipitated 334 mg/100 ml (67%) and 343 mg/100 ml (69%) of carbonate crystals respectively, whereas isolate LS1 and LS2 precipitated around 357 mg/100 (71%) ml of carbonate crystals each. Isolate BS4 precipitated minimum carbonate crystals 292 mg/100 ml (58%). No precipitation was observed in the negative control set. Low concentrations of bacterial cells (1%) were considered in this experiment to slow down the urea hydrolysis in order to differentiate the calcium utilization potential of the isolated strains. This approach was modified from Dhami et al.46, and our results show agreement with their finding where 1% of SP cells depletes the 25 mM of CaCl2 within 24 h. It was observed that all the isolates took approximately 48 h to deplete the 50 mM CaCl2. The depletion of soluble calcium concentration was rapid in the initial 24 h in all the isolates. After 48 h, the residual soluble calcium was observed to be in the range of 2.5–5 mM in all the isolates (except BS1 and BS2), which might be due to loss of super-saturation caused by the unavailability of nutrient for bacterial cells to continue urea hydrolysis in the precipitation media13,43,47. The mineralogy of precipitated carbonate polymorphs (calcite, aragonite, vaterite) and the residual calcium are also influenced by pH, temperature, saturation index, dissolved organic carbon concentration, and the Ca2+ /CO32−ratio along with the presence of metabolites in the precipitation media13,47,48. As maximum precipitation was recovered with the isolate BS3, the isolate BS3 was selected for further investigation on soil improvement.Microstructure analysis of the precipitatesThe FESEM images of the carbonate crystal precipitated from BS3 were investigated further. The shape of the precipitated crystals was observed to be rhombohedral and trigonal (Fig. 5a). The average size of the crystals was observed in a range of 25 to 50 microns. The entrapped bacteria and rod-shaped bacterial imprints were identified (Fig. 5b), indicating that the bacteria acted as a nucleation site14. The smaller crystals were observed to coagulate in layers to develop larger calcite crystals. The entrapped bacteria were noticed on the grown and coagulated calcite crystal in Fig. 5c. After taking the FESEM image (Fig. 5a) of the precipitate, EDX analysis was conducted, and the elemental composition suggested an abundance of calcium, carbon, and oxygen, which indicates the presence of calcium carbonate crystals (Supplementary Fig. 1). XRD analysis was conducted to confirm the mineralogy of the precipitates, and the majority of the observed peaks of the XRD plot belonged to calcite, which is consistent with the observation of rhombohedral crystal shapes in the FESEM image. The XRD analysis also suggested an insignificant presence of aragonite in the precipitates.Figure 5FESEM images of the calcite precipitated from BS3 (a) Coagulated crystals (b) Bacterial imprints, (c) Entrapped bacteria on the precipitates.Full size imageApplication of native communities on riverbank soil and its influence on soil strengthNeedle penetration resistance of treated soilThe average NPI (N/mm) for different cases has been shown in Fig. 6a. No notable resistance was observed in the loose untreated sand (control) against the needle penetration. With one bio cementation cycle treatment, the consortia-treated soil sample (Consortia-BC1) demonstrated a higher value of NPI (5.15 N/mm) than SP-BC1 (4.19 N/mm) and BS3-BC1 (4.64 N/mm). The increase in the biocementation cycle treatment significantly improved the needle penetration resistance. Sample BS3-BC2 showed 116% improvement with the NPI value of 10.03 N/mm when compared to one cycle treated sample BS3-BC1. A similar trend was observed in the sample BS3-BC3 (NPI = 16.12 N/mm), which showed around 347% improvement in NPI when compared to sample BS3-BC1. From the needle penetration test, it was evident that the penetration resistance of treated soil improves significantly with the increased level of biocementation cycles, indirectly indicating an improvement in the soil erodibility resilience. Since non-uniformity is one of the undesired traits of MICP, a contour was plotted corresponding to the 25 points NPI, as shown in Fig. 6b. The contrasting color difference in the contours of the samples BS3-BC1, BS3-BC2, and BS-BC3 clearly demonstrates the stark difference in the strength of treated samples. The non-uniformity in the strength of treated soil crust of sample BS3-BC2 and BS3-BC3 can also be realized with the contrasting color gradient of the NPI contours.Figure 6Comparison of the Needle penetration resistance (N/mm) of the treated soil specimen (a) average values and (b) the contours.Full size imageSince the rate of penetration has an insignificant influence on the test results, the needle penetration test is recommended by the International Society of Rock Mechanics (ISRM) for quick, non-destructive testing of the strength of the stabilized soils and soft rocks49. As a large number of tests can be conducted due to the small diameter of the needle without destroying the sample, the needle penetration test is a better alternative to evaluate the local grain bonding in the biocemented soil than bulk strength properties like unconfined compressive strength and calcite content. Another rationale for choosing needle penetration test over conventional soil strength evaluation tests was that a pocket type penetrometer could be developed with the configuration in the present study for non-destructive monitoring of the soil strength improvement with biocementation application in the field. The response of the needle penetration resistance in terms of nominal strain (ratio of penetration to rod diameter) also indicated that the measured responses are independent of needle diameter for a small range, i.e., 1 to 3 mm49,50. A portable penetrometer of Maruto. Co. ltd. (needle maximum diameter 0.84 mm at 12 mm from the tip) have been correlated with high confidence value to conventional physicochemical parameters such as unconfined compressive strength (UCS), elasticity modulus, and elastic wave velocity in several studies50. In our setup, we have utilized a similar configuration chenille 22 needle with (maximum diameter 0.86 mm at 9 mm from the tip) and a penetration rate of 15 mm/minute for measuring the strength properties of cemented soil. Adopting the UCS and NPI correlation suggested by Ulusay et al.51, the UCS of samples BS3-BC1, BS3-BC2, and BS3-BC3 are around 1.67 MPa, 3.4 Mpa, and 5.3 Mpa.It is worth noting that in the needle penetration resistance tests, the boundary of the Petri dish can influence the test results. Therefore, trials were conducted and based on the findings, all penetrations were conducted at points at least five times the diameter of the needle away from the boundary to negate the influence of boundary conditions. The maximum penetration was conducted only up to 50% of the depth of prepared biocemented soil samples in the Petri dishes to avoid inference from the bottom of the Petri dish.Erodibility test in the hydraulic flumeTo investigate the influence of hydraulic current on different levels of biocementation, all the treated samples were exposed to hydraulic current gradually varying from gentle flow (0.06 m/s) to five times the critical velocity (0.75 m/s) in a 45-min duration test and soil mass loss percentage by the initial dry mass of the treated sample is presented as a measure of soil erodibility in Fig. 7. As expected, with an increase of biocementation cycles, i.e., calcite content, the soil erodibility reduced substantially. The initial dry weight of the samples control, BC1, BC2, and BC3, were measured as 398, 403, 406, and 410 g, respectively. Approximately 7.3% of calcite content resulted in a drastic reduction in erodibility (12% mass loss), while 56% soil mass loss was recorded for control (untreated sand). One biocementation cycle treatment (sample BS3-BC1) produced an average of 2.5% of calcite, reducing the soil loss to 31%. Sample BS3-BC2 with 4.93% calcite content resulted in 22% soil mass loss during the hydraulic flume test. It is worth noting that higher precipitation in the soil pores may hinder the flow of water in the soil matrix and increase the pore water pressure resulting in catastrophic failures. However, the MICP technique is reported to be a great tool to improve soil strength, maintaining an adequate hydraulic conductivity to prevent the build-up of the excess pore water pressure11. Theoretically, the percentage pore volume filled with precipitates for samples BS3-BC1, BS3-BC2, and BS3-BC3 considering the observed calcite contents and pore volume (100 ml) is around 3.7, 7.14, and 11.08%. The influence of pore water pressure on erodibility has not been established in the present study, and it certainly is one of the exciting parameters to consider for future studies.Figure 7Weight of the eroded soil (%) after the hydraulic flume test.Full size imageFrom the visual observation of the soil specimen after the flume test, it was evident that the soil particles start bonding with an increased level of bio cementation. A tough crust was formed on the top of BS3-BC2 and BS3-BC3 the samples, which got eroded with the fluvial current. Insignificant aggregation was observed in the sample BS3-BC1. However, with two and three cycles of biocementation treatment (BS3-BC2 and BS3-BC3), the biocemented soil particles (BCS) were evidently noticed (photos are shown in Supplementary Fig. 4).Clarà Saracho et al.27 addressed the erosion due to tangential flow (similar to river current) by treating the soil specimen with ten pore volume of low concentration of cementation media (0.02 M to 0.1 M) by injection strategy and tested the specimen in the flow velocity ranging from 0.035 to 0.185 m/sec for 120 min in a modified erosion function apparatus (EFA). The study concluded that the treatment with 0.08 M cementation media (calcite content varying from 1.2 to 4%) resulted in negligible erosion in the stated test conditions, and with the increase in MICP treatment, a shift in the erosion mode from particulate mode to block failure was observed indicating that with the increase in calcite content and needle penetration resistance, there might be a threshold for biocemented soil, where the soil erosion might be catastrophic due to block failure. However, in this study, a consistent decrease in soil erodibility is observed with the increase in needle penetration resistance. We found that 7.3% of calcite content was required to control the soil erodibility substantially in the test flow range (0.06 m/s to 0.75 m/s). A similar trend was observed by Kou et al.52 and Chung et al.53, where consistent reduction in wave-induced erosion and rainfall-induced erosion was observed with an increase in needle penetration resistance for biocemented fine sand treated with the exogenous bacteria.Another aspect to note in the context of the applied treatment is the produced ammonia which can be toxic for riparian flora and fauna15. From stochiometric calculations, for each biocementation cycle, the produced ammonia is evaluated as 8.5 kg per metric ton of soil treated, and for the best performing treatment approach, i.e., BS3-BC3, the ammonia generated is evaluated as 2.63% by weight of the retained soil. The acceptable limit of ammonia in the surface water was recommended as 17 mg per liter for acute exposure and 1.9 mg/l for chronic exposure for protecting the aquatic life in the freshwater as per the environmental protection agency54. With the MICP technique, the threat of produced ammonia crossing the maximum acceptable quantity is highly plausible; however, for the field application, the ammonia generated can be reduced by reducing the quantity of reagents and increasing the period of applications. It is to be noted that the produced ammonia will also be subjected to dilution in the river stream. The average discharge of the Brahmaputra river is around 19.8 megaliters per second in the Assam valley33. Therefore, the area of the riverbank to be biocemented must be decided judiciously with the context of the produced ammonia quantity and its possible dilution to non-toxic levels.Microstructure and mineralogical analysis of the biocemented samplesTo investigate the influence of different biocementation levels on the erodibility of the treated sand grains, FESEM imaging was conducted for light biocemented samples (BS3-BC1) and heavy biocemented samples (BS3-BC3). While precipitated crystals were observed to be growing on the grooves of sand grains in the light biocemented sample (BS3-BC1), bridging of sand grains with rhombohedral crystals was observed in the heavy biocemented sample (BS3-BC3), as shown in Fig. 8. The effective calcium carbonate bridging between sand grains increases the frictional and cohesive property of sand grains55,56, leading to a substantial reduction in the erodibility of the soil. Bacterial imprints were observed in both cases, suggesting the precipitation to be biodgenic14. Further EDX analysis on a bridged sand grain (Supplementary Fig. 5) suggested an abundance of silicon and oxygen on the sand grains with a trace amount of chlorine and calcium. This indicates the presence of residual calcium chloride on silica grains. The EDX analysis on the grain bridge indicated the presence of calcium, carbon, and oxygen, suggesting CaCO3 precipitation. XRD analysis on treated and untreated sand confirmed the precipitation of calcite. Most of the peaks correspond to quartz (silica). In the biocemented sand sample, a visible peak of calcite was observed at around 29 degrees of 2Ɵ (Details in Supplementary Fig. 6). Therefore, the incorporation of microbial calcite as a binding agent for loose grain silica soil was found to reduce the soil erodibility.Figure 8FESEM images of the treated sand grains (a). Calcite crystal growing on the sand grains on BS3- BC1 sample (b). Calcite bridging in BS3-BC3 samples.Full size image More

  • in

    Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris)

    1.Pagano, M. C. & Miransari, M. The importance of soybean production worldwide. In Abiotic and Biotic Stresses in Soybean Production Vol. 1 (ed. Miransari, M.) 1–26 (Academic Press, 2016).
    Google Scholar 
    2.FAOSTAT. Food and Agriculture Organisation Statistical Database http://www.apps.fao.org/faostat. Accessed 23 May 2021.3.MacDonald, R. S. et al. Environmental influences on isoflavones and saponins in soybeans and their role in colon cancer. J. Nutr. 135, 1239–1242 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Tidke, S. A. et al. Assessment of anticancer, anti-inflammatory and antioxidant properties of isoflavones present in soybean. Res. J. Phytochem. 12, 35–42 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Hill, J. H. & Whitham, S. A. Control of virus diseases in soybeans. Adv. Virus Res. 90, 355–390 (2014).PubMed 
    Article 

    Google Scholar 
    6.Tian, B. et al. Host adaptation of soybean dwarf virus following serial passages on pea (Pisum sativum) and soybean (Glycine max). Viruses 9, 155 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    7.Wang, R. Y., Kritzman, A., Hershman, D. E. & Ghabrial, S. A. Aphis glycines as a vector of persistently and nonpersistently transmitted viruses and potential risks for soybean and other crops. Plant Dis. 90, 920–926 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Hesler, L. S., Dashiell, E., Jonathan, A. E. & Lundgren, G. Characterization of resistance to Aphis glycines in soybean accessions. Euphytica 154, 91–99 (2007).Article 

    Google Scholar 
    9.Baldin, E. L. L. et al. Feeding behavior of Aphis glycines (Hemiptera: Aphididae) on soybeans exhibiting antibiosis, antixenosis, and tolerance resistance. Fla. Entomol. 101, 223–228 (2018).Article 

    Google Scholar 
    10.Chang, H.-X. & Hartman, G. L. Characterization of insect resistance loci in the USDA soybean germplasm collection using genome-wide association studies. Front. Plant Sci. 8, 670. https://doi.org/10.3389/fpls.2017.00670 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Bansal, R., Mian, M. A. R. & Michel, A. Characterizing resistance to soybean aphid (Hemiptera: Aphididae): Antibiosis and antixenosis assessment. J. Econ. Entomol. https://doi.org/10.1093/jee/toab038 (2021).Article 
    PubMed 

    Google Scholar 
    12.Klein, A. T. et al. Investigation of the chemical interface in the soybean−aphid and rice−bacteria interactions using MALDI-Mass Spectrometry Imaging. Anal. Chem. 87, 5294–5301 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Hohenstein, J. D. et al. Transcriptional and chemical changes in soybean leaves in response to long-term aphid colonization. Front. Plant Sci. 10, 310 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Blackman, R. L. & Eastop, V. F. Taxonomic issues. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 1–36 (CABI, 2017).
    Google Scholar 
    15.Wale, M., Jembere, B. & Seyoum, E. Occurrence of the pea aphid, Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on wild leguminous plants in West Gojam, Ethiopia, Sinet. Ethiopian J. Sci. 26, 83–87 (2003).
    Google Scholar 
    16.Chan, C. K., Forbes, A. R. & Raworth, D. A. Aphid-transmitted viruses and their vectors of the world. Agric. Can. Tech. Bull. 3E, 1–216 (1991).
    Google Scholar 
    17.Rashed, A. et al. Vector-borne viruses of pulse crops, with a particular emphasis on North American cropping system. Ann. Entomol. Soc. Am. 111, 205–227 (2018).CAS 
    Article 

    Google Scholar 
    18.Stavrinides, J., McCloskey, J. K. & Ochman, H. Pea Aphid as both host and vector for the phytopathogenic bacterium Pseudomonas syringae. Appl. Environ. Microbiol. 75, 2230–2235 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Peccoud, J., Ollivier, A., Plantegenest, M. & Simon, J.-C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. PNAS 106, 7495–7500 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Caillaud, M. C. & Via, S. Specialized feeding behavior influences both ecological specialization and assortative mating in sympatric host races of pea aphids. Am. Nat. 156, 606–621 (2000).PubMed 
    Article 

    Google Scholar 
    21.Ferrari, J., Godfray, H. C., Faulconbridge, A. S., Prior, K. & Via, S. Population differentiation and genetic variation in host choice among pea aphids from eight host plant genera. Evolution 60, 1574–1584 (2006).PubMed 
    Article 

    Google Scholar 
    22.Mitku, G. & Damte, T. Development, reproduction, and host preference of Acyrthosiphon pisum (Harris) (Homoptera: Aphididae) on selected lentil genotypes and resistance index of these selected lentil genotypes to pea aphid. Int. J. Entomol. Res. 4, 16–22 (2019).
    Google Scholar 
    23.Powell, G., Tosh, C. R. & Hardie, J. Host plant selection by aphids: behavioral, evolutionary, and applied perspectives. Annu. Rev. Entomol. 51, 309–330 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Kordan, B. et al. European yellow lupine Lupinus luteus and narrow-leaf lupine Lupinus angustifolius as hosts for the pea aphid Acyrthosiphon pisum. Entomol. Exp. Appl. 128, 139–146 (2008).Article 

    Google Scholar 
    25.Kordan, B. et al. Susceptibility of forage legumes to infestation by the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Crop Pasture Sci. 69, 775–784 (2018).Article 

    Google Scholar 
    26.Kordan, B. et al. Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J. Econ. Entomol. 112, 465–474 (2019).PubMed 
    Article 

    Google Scholar 
    27.Pettersson, J., Tjallingii, W. F. & Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 173–195 (CABI, 2017).Chapter 

    Google Scholar 
    28.Martin, B., Collar, J. L., Tjallingi, W. F. & Fereres, A. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. J. Gen. Virol. 78, 2701–2705 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Garzo, E., Moreno, A., Plaza, M. & Fereres, A. Feeding behavior and virus-transmission ability of insect vectors exposed to systemic insecticides. Plants 9, 895. https://doi.org/10.3390/plants9070895 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    30.Onstad, D. W. & Knolhoff, L. Arthropod resistance to crops. In Insect Resistance Management (ed. Onstad, D. W.) 293–326 (Academic Press, 2014).Chapter 

    Google Scholar 
    31.Smith, C. M. & Clement, S. L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 57, 309–328 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).PubMed 
    Article 

    Google Scholar 
    33.Smith, C. M. & Chuang, W. P. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Manag. Sci. 70, 528–540 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    34.Dogimont, C., Bendahmane, A., Chovelon, V. & Boissot, N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. C. R. Biol 333, 566–573 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Chandran, P. et al. Feeding behavior comparison of soybean aphid (Hemiptera: Aphididae) biotypes on different soybean genotypes. J. Econ. Entomol. 106, 2234–2240 (2013).PubMed 
    Article 

    Google Scholar 
    36.Simmonds, M. S. J. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 64, 21–30 (2003).CAS 
    Article 

    Google Scholar 
    37.Mai, V. C. et al. Differential induction of Pisum sativum defense signaling molecules in response to pea aphid infestation. Plant Sci. 221–222, 1–12 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Morkunas, I. et al. Pea aphid infestation induces changes in flavonoids, antioxidative defence, soluble sugars and sugar transporter expression in leaves of pea seedlings. Protoplasma 253, 1063–1079 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Woźniak, A. et al. The dynamics of the defense strategy of pea induced by exogenous nitric oxide in response to aphid infestation. Int. J. Mol. Sci. 18, 329. https://doi.org/10.3390/ijms18020329 (2017).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    40.Buer, C. S., Muday, G. K. & Djordjevic, M. A. Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signal. Behav. 3, 415–417 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Petrussa, E. et al. Plant flavonoids: Biosynthesis, transport and involvement in stress responses. Int. J. Mol. Sci. 14, 14950–14973 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Zhao, J. Flavonoid transport mechanisms: How to go, and with whom. Trends Plant Sci. 20, 576–585 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Alseekh, S., de Souza, L. P., Benina, M. & Fernie, A. L. The style and substance of plant flavonoid decoration; Towards defining both structure and function. Phytochemistry 174, 112347. https://doi.org/10.1016/j.phytochem.2020.112347 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Klingauf, F. A. Host plant finding and acceptance. In Aphids, Their Biology, Natural Enemies and Control Vol. 2 (eds Minks, A. K. & Harrewijn, P.) 209–223 (Elsevier, 1987).
    Google Scholar 
    45.Tjallingii, W. F. & Mayoral, A. M. Criteria for host plant acceptance by aphids. In Proceeding 8th International Symposium Insect–Plant Relationships (eds Menken, S. B. J. et al.) 280–282 (Kluwer Academic Publishers, 1992).Chapter 

    Google Scholar 
    46.Wensler, R. J. & Filshie, B. K. Gustatory sense organs in the food canal of aphids. J. Morph. 129, 473–492 (1969).Article 

    Google Scholar 
    47.Gabryś, B. & Tjallingii, W. F. The role of sinigrin in host plant recognition by aphids during initial plant penetration. Entomol. Exp. Appl. 104, 89–93 (2002).Article 

    Google Scholar 
    48.Philippi, J. et al. Correlation of the alkaloid content and composition of narrow-leafed lupins (Lupinus angustifolius L.) to aphid susceptibility. J. Pest Sci. 89, 359–373 (2016).Article 

    Google Scholar 
    49.Van Hoof, H. A. An investigation of the biological transmission of a non-persistent virus. Doctoral thesis (Van Putten and Oortmijer, 1958).50.Dancewicz, K., Szumny, A., Wawrzeńczyk, C. & Gabryś, B. Repellent and antifeedant activities of citral-derived lactones against the peach potato aphid. Int. J. Mol. Sci. 21, 8029. https://doi.org/10.3390/ijms21218029 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    51.Kordan, B. et al. Variation in susceptibility of rapeseed cultivars to the peach potato aphid. J. Pest. Sci. 94, 435–449 (2021).Article 

    Google Scholar 
    52.Pritchard, J. & Vickers, L. H. Aphids and stress. In Aphids as Crop Pests (eds Van Emden, H. F. & Harrington, R.) 132–147 (CABI, 2017).Chapter 

    Google Scholar 
    53.Pompon, J. & Pelletier, Y. Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bull. Entomol. Res. 102, 550–557 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.van Emden, H. F. Host-plant resistance. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 515–532 (CABI, 2017).Chapter 

    Google Scholar 
    55.Gould, K. S. & Lister, C. Flavonoid functions in plants. In Flavonoids, Chemistry, Biochemistry and Applications (eds Andersen, Ø. M. & Markham, K. R.) 397–442 (CRC Press, 2006).
    Google Scholar 
    56.Goławska, S., Kapusta, I., Łukasik, I. & Wójcicka, A. Effect of phenolics on the pea aphid, Acyrthosiphon pisum (Harris) population on Pisum sativum L. (Fabaceae). Pestycydy. 3–4, 71–77 (2008).
    Google Scholar 
    57.Goławska, S. & Łukasik, I. Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. J. Pest Sci. 85, 443–450 (2012).Article 

    Google Scholar 
    58.Goławska, S. et al. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Polish J. Environ. Stud. 19, 913–919 (2010).
    Google Scholar 
    59.Johnson, A. D. & Singh, A. Larvicidal activity and biochemical effects of apigenin against filarial vector Culex quinquefasciatus. Int. J. Life. Sci. Sci. Res. 3, 1315–1321 (2017).
    Google Scholar 
    60.Boué, S. M. & Raina, A. K. Effects of plant flavonoids on fecundity, survival, and feeding of the formosan subterranean termite. J. Chem. Ecol. 29, 2575–2584 (2003).PubMed 
    Article 

    Google Scholar 
    61.Xu, D. et al. Antifeedant activities of secondary metabolites from Ajuga nipponensis against adult of striped flea beetles, Phyllotreta striolata. J. Pest Sci. 82, 195–202 (2009).Article 

    Google Scholar 
    62.Goławska, S., Sprawka, I. & Łukasik, I. Effect of saponins and apigenin mixtures on feeding behavior of the pea aphid, Acyrthosiphon pisum Harris. Biochem. Syst. Ecol. 55, 137–144 (2014).Article 
    CAS 

    Google Scholar 
    63.Zavala, J. A., Scopel, A. L. & Ballaré, C. L. Effects of ambient UV-B radiation on soybean crops: Impact on leaf herbivory by Anticarsia gemmatalis. Plant Ecol. 156, 121–130 (2001).Article 

    Google Scholar 
    64.Bentivenha, J. P. F. et al. Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod Plant Interact. 12, 311–320 (2018).Article 

    Google Scholar 
    65.Hoffmann-Campo, C. B., Harborne, J. B. & McCaffery, A. R. Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Appl. 98, 181–194 (2001).Article 

    Google Scholar 
    66.Yuan, E. et al. Increases in genistein in Medicago sativa confer resistance against the Pisum host race of Acyrthosiphon pisum. Insects. 10, 97. https://doi.org/10.3390/insects10040097 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    67.Meng, F. et al. QTL underlying the resistance to soybean aphid (Aphis glycines Matsumura) through isoflavone-mediated antibiosis in soybean cultivar ‘Zhongdou 27’. Theor Appl. Genet. 123, 1459–1465 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Murakami, S. et al. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4, 532–546 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Lattanzio, V. et al. Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J. Agric. Food Chem. 48, 5316–5320 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Delgado-Núñez, E. J. et al. Isorhamnetin: A nematocidal flavonoid from Prosopis laevigata leaves against Haemonchus contortus eggs and larvae. Biomolecules 10, 773 (2020).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    71.Gómez, J. D., Vital, C. E., Oliveira, M. G. A. & Ramos, H. J. O. Broad range flavonoid profiling by LC/MS of soybean genotypes contrasting for resistance to Anticarsia gemmatalis (Lepidoptera: Noctuidae). PLoS ONE https://doi.org/10.1371/journal.pone.0205010 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Khan, M. A. M., Ulrichs, C. & Mewis, I. Effect of water stress and aphid herbivory on flavonoids in broccoli (Brassica oleracea var. italica Plenck). J. Appl. Bot. Food Qual. 84, 178–182 (2011).CAS 

    Google Scholar 
    73.Bale, J. S., Ponder, K. L. & Pritchard, J. Coping with stress. In Aphids as Crop Pests (eds van Emden, H. F. & Harrington, R.) 287–309 (CABI, 2007).Chapter 

    Google Scholar 
    74.Atteyat, M., Abu-Romman, S., Abu-Darwish, M. & Ghabeish, I. Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald). J. Agric. Sci. 4, 227–236 (2012).
    Google Scholar 
    75.Tjallingii, W. F. & Hogen Esch, T. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 18, 317–328 (1993).Article 

    Google Scholar 
    76.Cherqui, A. & Tjallingii, W. F. Salivary proteins of aphids, a pilot study on identification, separation and immunolocalisation. J. Insect Physiol. 46, 1177–1186 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Silva-Sanzana, C., Estevez, J. M. & Blanco-Herrera, F. Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. J. Exp. Bot. 71, 3854–3864 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Alvarez, A. E. et al. Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to aphid Myzus persicae. Entomol. Exp. Appl. 121, 145–157 (2006).Article 

    Google Scholar 
    79.Alvarez, A. E. et al. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomol. Exp. Appl. 125, 135–144 (2007).Article 

    Google Scholar 
    80.Machado-Assefh, C. R. & Alvarez, A. E. Probing behavior of aposymbiotic green peach aphid (Myzus persicae) on susceptible Solanum tuberosum and resistant Solanum stoloniferum plants. Insect Sci. 25, 127–136 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Common Catalogue of Varieties of Agricultural Plant Species [CCA]. 37th complete edition. Official Journal of the European Union C 13/1 (2019). Accessed 23 May 2021.82.Porejestrowe doświadczalnictwo odmianowe. Charakterystyka odmian. http://www.coboru.gov.pl/Polska/Rejestr/odm_w_rej.aspx?kodgatunku=SOS. Accessed 23 May 2021.83.Meier, U. Growth stages of mono- and dicotyledonous plants: BBCH. Monograph (Julius Kühn-Institut, 2018).84.Beer, K., Joschinski, J., Sastre, A. A., Kraus, J. & Helfrich-Forster, C. A damping circadian clock drives weak oscillations in metabolism and locomotor activity of aphids (Acyrthosiphon pisum). Sci. Rep. 7, 1–5. https://doi.org/10.1038/s41598-017-15014-3 (2017).CAS 
    Article 

    Google Scholar 
    85.Joschinski, J., Beer, K., Helfrich-Forster, C. & Krauss, J. Pea aphids (Hemiptera: Aphididae) have diurnal rhythms when raised independently of a host plant. J. Insect. Sci. 16, 1–5 (2016).Article 

    Google Scholar 
    86.Graham, T. L. Flavonoid and isoflavonoid distribution in developing soybean seedling tissues and in seed and root exudates. Plant Physiol. 95, 594–603 (1991).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Lee, J. H. et al. Characterization of isoflavones accumulation in developing leaves of soybean (Glycine max) cultivars. J. Korean Soc. Appl. Biol. Chem. 52(2), 139–143 (2009).CAS 
    Article 

    Google Scholar 
    88.Magarelli, G. et al. Rutin and total isoflavone determination in soybean at different growth stages by using voltammetric methods. Microchem. J. 117, 149–155 (2014).CAS 
    Article 

    Google Scholar 
    89.Perlatti, B. et al. Application of a quantitative HPLC-ESI-MS/MS method for flavonoids in different vegetables matrices. J. Braz. Chem. Soc. 27(3), 475–483 (2016).CAS 

    Google Scholar 
    90.Biesaga, M. & Pyrzyńska, K. Stability of bioactive polyphenols from honey during different extraction methods. Food Chem. 136, 46–54 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Sergiel, I., Pohl, P. & Biesaga, M. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chem. 145, 404–408 (2014).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    The bifidobacterial distribution in the microbiome of captive primates reflects parvorder and feed specialization of the host

    1.Arbour, J. H. & Santana, S. E. A major shift in diversification rate helps explain macroevolutionary patterns in primate species diversity. Evolution 71, 1600–1613 (2017).PubMed 
    Article 

    Google Scholar 
    2.Groves, C. Primates (Taxonomy) in The International Encyclopedia of Primatology (ed Augustin Fuentes) (John Wiley & Sons, Inc., 2016).3.Cotton, A., Clark, F., Boubli, J. & Schwitzer, C. IUCN red list of threatened primate species in An Introduction to Primate Conservation 31–18 (Oxford University Press, 2016).
    Google Scholar 
    4.Stumpf, R. M. et al. Microbiomes, metagenomics, and primate conservation: New strategies, tools, and applications. Biol. Conserv. 199, 56–66 (2016).Article 

    Google Scholar 
    5.West, A. G. et al. The microbiome in threatened species conservation. Biol. Conserv. 229, 85–98 (2019).Article 

    Google Scholar 
    6.Cunningham, A. A., Daszak, P. & Wood, J. L. N. One Health, emerging infectious diseases and wildlife: two decades of progress?. Philos. Trans. R. Soc. B: Biol. Sci. 372, 20160167 (2017).Article 

    Google Scholar 
    7.Ramey, A. M. & Ahlstrom, C. A. Antibiotic resistant bacteria in wildlife: Perspectives on trends, acquisition and dissemination, data gaps, and future directions. J. Wildl. Dis. 56, 1–15 (2020).PubMed 
    Article 

    Google Scholar 
    8.Clayton, J. B. et al. Captivity humanizes the primate microbiome. Proc. Natl. Acad. Sci. 113, 10376–10381 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys. Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CAS 
    PubMed 

    Google Scholar 
    10.Kriss, M., Hazleton, K. Z., Nusbacher, N. M., Martin, C. G. & Lozupone, C. A. Low diversity gut microbiota dysbiosis: drivers, functional implications and recovery. Curr. Opin. Microbiol. 44, 34–40 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    12.Amato, K. R. et al. Using the gut microbiota as a novel tool for examining colobine primate GI health. Glob. Ecol. Conserv. 7, 225–237 (2016).Article 

    Google Scholar 
    13.Zhu, H. et al. Diarrhea-associated intestinal microbiota in captive Sichuan golden snub-nosed monkeys (Rhinopithecus roxellana). Microbes Environ. ME17163 (2018).14.Campbell, T. P. et al. The microbiome and resistome of chimpanzees, gorillas, and humans across host lifestyle and geography. ISME J. 14, 1584–1599 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Buzzard, P. J. Ecological partitioning of Cercopithecus campbelli, C. petaurista, and C. diana in the Taï Forest. Int. J. Primatol. 27, 529–558 (2006).Article 

    Google Scholar 
    16.Chapman, C. A. et al. The guenons: diversity and adaptation in African monkeys. 325–350 (Springer, 2004).17.Krishnadas, M., Chandrasekhara, K. & Kumar, A. The response of the frugivorous lion-tailed macaque (Macaca silenus) to a period of fruit scarcity. Am. J. Primatol. 73, 1250–1260 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Swedell, L., Hailemeskel, G. & Schreier, A. Composition and seasonality of diet in wild hamadryas baboons: preliminary findings from Filoha. Folia Primatol. 79, 476–490 (2008).Article 

    Google Scholar 
    19.Basabose, A. K. Diet composition of chimpanzees inhabiting the montane forest of Kahuzi, Democratic Republic of Congo. Am. J. Primatol. 58, 1–21 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.McLennan, M. R. & Ganzhorn, J. U. Nutritional characteristics of wild and cultivated foods for chimpanzees (Pan troglodytes) in agricultural landscapes. Int. J. Primatol. 38, 122–150 (2017).Article 

    Google Scholar 
    21.Newton-Fisher, N. E. The diet of chimpanzees in the Budongo Forest Reserve Uganda. Afr. J. Ecol. 37, 344–354 (1999).Article 

    Google Scholar 
    22.Bach, T. H., Chen, J., Hoang, M. D., Beng, K. C. & Nguyen, V. T. Feeding behavior and activity budget of the southern yellow-cheeked crested gibbons (Nomascus gabriellae) in a lowland tropical forest. Am. J. Primatol. 79, e22667 (2017).Article 

    Google Scholar 
    23.Fan, P.-F., Fei, H.-L., Scott, M. B., Zhang, W. & Ma, C.-Y. Habitat and food choice of the critically endangered cao vit gibbon (Nomascus nasutus) in China: implications for conservation. Biol. Conserv. 144, 2247–2254 (2011).Article 

    Google Scholar 
    24.Fan, P. F., Fei, H. L. & Ma, C. Y. Behavioral responses of cao vit gibbon (Nomascus nasutus) to variations in food abundance and temperature in Bangliang, Jingxi China. Am. J. Primatol. 74, 632–641 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.McConkey, K. R., Ario, A., Aldy, F. & Chivers, D. J. Influence of forest seasonality on gibbon food choice in the rain forests of Barito Ulu Central Kalimantan. Int. J. Primatol. 24, 19–32 (2003).Article 

    Google Scholar 
    26.Amora, T. D., BeltrÃO-Mendes, R. & Ferrari, S. F. Use of alternative plant resources by common marmosets (Callithrix jacchus) in the semi-arid Caatinga scrub forests of northeastern Brazil. Am. J. Primatol. 75, 333–341 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Dietz, J. M., Peres, C. A. & Pinder, L. Foraging ecology and use of space in wild golden lion tamarins (Leontopithecus rosalia). Am. J. Primatol. 41, 289–305 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Garber, P. A. Feeding ecology and behaviour of the genus Saguinus. Marmosets and tamarins: systematics behaviour and ecology (1993).29.Heymann, E. W., Knogge, C. & Tirado Herrera, E. R. Vertebrate predation by sympatric tamarins, Saguinus mystax and Saguinus fuscicollis. Am. J. Primatol. 51, 153–158 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Porter, L. M. Dietary differences among sympatric Callitrichinae in northern Bolivia: Callimico goeldii, Saguinus fuscicollis and S. labiatus. Int. J. Primatol. 22, 961–992 (2001).Article 

    Google Scholar 
    31.Anapol, F. & Lee, S. Morphological adaptation to diet in platyrrhine primates. Am. J. Phys. Anthropol. 94, 239–261 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Nash, L. T. Dietary, behavioral, and morphological aspects of gummivory in primates. Am. J. Phys. Anthropol. 29, 113–137 (1986).Article 

    Google Scholar 
    33.Abreu, F., De la Fuente, M. F. C., Schiel, N. & Souto, A. Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate (Callithrix jacchus) to survive in a semiarid environment. Mammal Res. 61, 221–229 (2016).Article 

    Google Scholar 
    34.Cunha, A. A., Vieira, M. V. & Grelle, C. E. V. Preliminary observations on habitat, support use and diet in two non-native primates in an urban Atlantic forest fragment: the capuchin monkey (Cebus sp.) and the common marmoset (Callithrix jacchus) in the Tijuca forest Rio de Janeiro. Urban Ecosyst. 9, 351–359 (2006).Article 

    Google Scholar 
    35.Passamani, M. & Rylands, A. B. Feeding behavior of Geoffroy’s marmoset (Callithrix geoffroyi) in an Atlantic forest fragment of south-eastern Brazil. Primates 41, 27–38 (2000).PubMed 
    Article 

    Google Scholar 
    36.Veracini, C. Habitat use and ranging behavior of the silvery marmoset (Mico argentatus) at Caxiuanã National Forest (eastern Brazilian Amazonia) in The smallest anthropoids 221–240 (Springer, 2009).37.Yépez, P., De La Torre, S. & Snowdon, C. T. Interpopulation differences in exudate feeding of pygmy marmosets in Ecuadorian Amazonia. Am. J. Primatol. 66, 145–158 (2005).PubMed 
    Article 

    Google Scholar 
    38.Hale, V. L. et al. Diet versus phylogeny: a comparison of gut microbiota in captive colobine monkey species. Microb. Ecol. 75, 515–527 (2018).PubMed 
    Article 

    Google Scholar 
    39.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Frankel, J. S., Mallott, E. K., Hopper, L. M., Ross, S. R. & Amato, K. R. The effect of captivity on the primate gut microbiome varies with host dietary niche. Am. J. Primatol. 81, e23061 (2019).PubMed 
    Article 

    Google Scholar 
    41.McKenzie, V. J. et al. The effects of captivity on the mammalian gut microbiome. Integr. Comp. Biol. 57, 690–704 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Lugli, G. A. et al. Evolutionary development and co‐phylogeny of primate‐associated bifidobacteria. Environ. Microbiol. (2020).43.Milani, C. et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 11, 2834–2847 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Lugli, G. A. et al. Comparative genomic and phylogenomic analyses of the Bifidobacteriaceae family. BMC Genom. 18, 568 (2017).Article 
    CAS 

    Google Scholar 
    45.Pokusaeva, K., Fitzgerald, G. F. & van Sinderen, D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 6, 285–306 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Stewart, C. J. et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 562, 583–588 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Orkin, J. D. et al. Seasonality of the gut microbiota of free-ranging white-faced capuchins in a tropical dry forest. ISME J. 13, 183–196 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Neuzil-Bunesova, V. et al. Five novel bifidobacterial species isolated from faeces of primates in two Czech zoos: Bifidobacterium erythrocebi sp. nov., Bifidobacterium moraviense sp. nov., Bifidobacterium oedipodis sp. nov., Bifidobacterium olomucense sp. nov. and Bifidobacterium panos sp. nov. Int. J. Syst. Evol. Microbiol. (2020).49.Duranti, S. et al. Characterization of the phylogenetic diversity of two novel species belonging to the genus Bifidobacterium: Bifidobacterium cebidarum sp. Nov. and Bifidobacterium leontopitheci sp. nov.. Int. J. Syst. Evol. Microbiol. 70, 2288–2297 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Modesto, M. et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst. Appl. Microbiol. (2018).51.Neuzil-Bunesova, V. et al. Bifidobacterium canis sp nov a novel member of the Bifidobacterium pseudolongum phylogenetic group isolated from faeces of a dog (Canis lupus f. familiaris). Int. J. Syst. Evol. Microbiol. 70, 5040–5047 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Vlková, E. et al. A new medium containing mupirocin, acetic acid, and norfloxacin for the selective cultivation of bifidobacteria. Anaerobe 34, 27–33 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M. & Owen, L. J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191 (2015).
    Google Scholar 
    54.WagnerMackenzie, B. et al. Bacterial community collapse: a meta-analysis of the sinonasal microbiota in chronic rhinosinusitis. Environ. Microbiol. 19, 381–392 (2017).CAS 
    Article 

    Google Scholar 
    55.Arboleya, S., Watkins, C., Stanton, C. & Ross, R. P. Gut bifidobacteria populations in human health and aging. Front. Microbiol. 7 (2016).56.Binda, C. et al. Actinobacteria: a relevant minority for the maintenance of gut homeostasis. Dig. Liver Dis. 50, 421–428 (2018).MathSciNet 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Tojo, R. et al. Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J. Gastroenterol. 20, 15163 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Rodriguez, C. I. & Martiny, J. B. H. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genom. 21, 1–12 (2020).Article 

    Google Scholar 
    59.Sharma, V., Mobeen, F. & Prakash, T. Exploration of survival traits, probiotic determinants, host interactions, and functional evolution of bifidobacterial genomes using comparative genomics. Genes 9, 477 (2018).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Sun, Z. et al. Comparative genomic analysis of 45 type strains of the genus Bifidobacterium. a snapshot of its genetic diversity and evolution. PLoS One 10, 0117912 (2015).
    Google Scholar 
    61.Frey, J. C. et al. Fecal bacterial diversity in a wild gorilla. Appl. Environ. Microbiol. 72, 3788–3792 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Makovska, M., Modrackova, N., Bolechova, P., Drnkova, B. & Neuzil-Bunesova, V. Antibiotic susceptibility screening of primate-associated Clostridium ventriculi. Anaerobe, 102347 (2021).63.Ushida, K. et al. Draft genome sequences of Sarcina ventriculi strains isolated from wild Japanese macaques in Yakushima Island. Genome announcements 4 (2016).64.Owens, L. A. et al. A Sarcina bacterium linked to lethal disease in sanctuary chimpanzees in Sierra Leone. Nat. Commun. 12, 1–16 (2021).ADS 
    Article 
    CAS 

    Google Scholar 
    65.Vlková, E., Rada, V., Šmehilová, M. & Killer, J. Auto-aggregation and co-aggregation ability in bifidobacteria and clostridia. Folia Microbiol. 53, 263–269 (2008).Article 
    CAS 

    Google Scholar 
    66.Wang, L. et al. Adhesive Bifidobacterium induced changes in cecal microbiome alleviated constipation in mice. Front. Microbiol. 10, 1721 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Wei, Y. et al. Protective effects of bifidobacterial strains against toxigenic Clostridium difficile. Front. Microbiol. 9, 888 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Guittar, J., Shade, A. & Litchman, E. Trait-based community assembly and succession of the infant gut microbiome. Nature Commun. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    69.Moore, R. E. & Townsend, S. D. Temporal development of the infant gut microbiome. Open Biol. 9, 190128 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Korpela, K. et al. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome 6, 1–11 (2018).Article 

    Google Scholar 
    71.Timperio, A. M., Gorrasi, S., Zolla, L. & Fenice, M. Evaluation of MALDI-TOF mass spectrometry and MALDI BioTyper in comparison to 16S rDNA sequencing for the identification of bacteria isolated from Arctic sea water. PloS One 12, 0181860 (2017).Article 
    CAS 

    Google Scholar 
    72.Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17, 690–703 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    73.Brown, C. J. et al. Comparative genomics of Bifidobacterium species isolated from marmosets and humans. Am. J. Primatol. 81, e983 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Killer, J. et al. Gene encoding the CTP synthetase as an appropriate molecular tool for identification and phylogenetic study of the family Bifidobacteriaceae. MicrobiologyOpen 7, e00579 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Milani, C. et al. Evaluation of bifidobacterial community composition in the human gut by means of a targeted amplicon sequencing (ITS) protocol. FEMS Microbiol. Ecol. 90, 493–503 (2014).CAS 
    PubMed 

    Google Scholar 
    76.Srinivasan, R. et al. Use of 16S rRNA gene for identification of a broad range of clinically relevant bacterial pathogens. PloS One 10, e0117617 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Maiden, M. C. J. et al. MLST revisited: the gene-by-gene approach to bacterial genomics. Nature Rev. Microbiol. 11, 728–736 (2013).CAS 
    Article 

    Google Scholar 
    78.Lugli, G. A. et al. Phylogenetic classification of six novel species belonging to the genus Bifidobacterium comprising Bifidobacterium anseris sp. nov., Bifidobacterium criceti sp. nov., Bifidobacterium imperatoris sp. nov., Bifidobacterium italicum sp. nov., Bifidobacterium margollesii sp. nov. and Bifidobacterium parmae sp. nov. Syst. Appl. Microbiol. 41, 173–183 (2018).PubMed 
    Article 

    Google Scholar 
    79.Malukiewicz, J. et al. The effects of host taxon, hybridization, and environment on the gut microbiome of Callithrix marmosets. BioRxiv, 708255 (2019).80.Amato, K. R. et al. Phylogenetic and ecological factors impact the gut microbiota of two Neotropical primate species. Oecologia 180, 717–733 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Hernández‐Rodríguez, D., Vásquez‐Aguilar, A. A., Serio‐Silva, J. C., Rebollar, E. A. & Azaola‐Espinosa, A. Molecular detection of Bifidobacterium spp. in faeces of black howler monkeys (Alouatta pigra). J. Med. Primatol. 48, 99–105 (2019).82.Zhu, L. et al. Sex bias in gut microbiome transmission in newly paired marmosets (Callithrix jacchus). Msystems 5, e00910-00919 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Kap, Y. S. et al. Targeted diet modification reduces multiple sclerosis–like disease in adult marmoset monkeys from an outbred colony. J. Immunol. 201, 3229–3243 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Ren, T., Grieneisen, L. E., Alberts, S. C., Archie, E. A. & Wu, M. Development, diet and dynamism: longitudinal and cross-sectional predictors of gut microbial communities in wild baboons. Environ. Microbiol. 18, 1312–1325 (2016).PubMed 
    Article 

    Google Scholar 
    85.Xu, B. et al. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. BMC Genom. 16, 1–11 (2015).Article 
    CAS 

    Google Scholar 
    86.Baumann, P. Biology of bacteriocyte-associated endosymbionts of plant sap-sucking insects. Annu. Rev. Microbiol. 59, 155–189 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Killer, J. et al. Bifidobacterium actinocoloniiforme sp. nov. and Bifidobacterium bohemicum sp. nov., from the bumblebee digestive tract. Int. J. Syst. Evol. Microbiol. 61, 1315–1321 (2011).88.Amato, K. R. et al. Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J. 13, 576–587 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    89.Garber, P. A., Mallott, E. K., Porter, L. M. & Gomez, A. The gut microbiome and metabolome of saddleback tamarins (Leontocebus weddelli): Insights into the foraging ecology of a small‐bodied primate. Am. J. Primatol. 81, e23003 (2019).90.Gralka, M., Szabo, R., Stocker, R. & Cordero, O. X. Trophic interactions and the drivers of microbial community assembly. Curr. Biol. 30, R1176–R1188 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 1–16 (2018).CAS 
    Article 

    Google Scholar 
    92.Koo, B. S. et al. Idiopathic chronic diarrhea associated with dysbiosis in a captive cynomolgus macaque (Macaca fascicularis). J. Med. Primatol. 49, 56–59 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Krynak, K. L., Burke, D. J., Martin, R. A. & Dennis, P. M. Gut microbiome composition is associated with cardiac disease in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). FEMS Microbiol. Lett. 364 (2017).94.Modrackova, N. et al. Prebiotic potential of natural gums and starch for bifidobacteria of variable origins. Bioact. Carbohydr. Diet. Fibre 20, 100199 (2019).95.McKenzie, V. J., Kueneman, J. G. & Harris, R. N. Probiotics as a tool for disease mitigation in wildlife: insights from food production and medicine. Ann. N. Y. Acad. Sci. 1429, 18–30 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Hicks, A. L. et al. Gut microbiomes of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 1–18 (2018).CAS 
    Article 

    Google Scholar 
    97.Hungate, R. E. & Macy, J. The roll-tube method for cultivation of strict anaerobes. Bulletins from the ecological research committee, 123–126 (1973).98.Rada, V. & Petr, J. A new selective medium for the isolation of glucose non-fermenting bifidobacteria from hen caeca. J. Microbiol. Methods 43, 127–132 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Orban, J. I. & Patterson, J. A. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J. Microbiol. Methods 40, 221–224 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Kim, B. J., Kim, H.-Y., Yun, Y.-J., Kim, B.-J. & Kook, Y.-H. Differentiation of Bifidobacterium species using partial RNA polymerase β-subunit (rpoB) gene sequences. Int. J. Syst. Evol. Microbiol. 60, 2697–2704 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. 41 edn 95–98 ([London]: Information Retrieval Ltd., c1979-c2000.).102.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    103.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Ress 41, D590–D596 (2012).Article 
    CAS 

    Google Scholar 
    105.Shannon, C. E. & Weaver, W. The mathematical theory of information. Urbana: University of Illinois Press 97 (1949).106.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144 (1966).ADS 
    Article 

    Google Scholar 
    107.Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    108.fundamental algorithms for scientific computing in Python. Virtanen, P. et al. SciPy 1.0. Nat. Methods 17, 261–272 (2020).Article 
    CAS 

    Google Scholar 
    109.Seabold, S. & Perktold, J. Statsmodels: Econometric and statistical modeling with python in Proceedings of the 9th Python in Science Conference 57 (Austin, TX, 2010).110.MacKinnon, J. G. & White, H. Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. J. Econom. 29, 305–325 (1985).Article 

    Google Scholar  More