More stories

  • in

    Predicting 3D protein structures in light of evolution

    1.Bershtein, S., Serohijos, A. W. & Shakhnovich, E. I. Curr. Opin. Struct. Biol. 42, 31–40 (2017).CAS 
    Article 

    Google Scholar 
    2.Elena, S. F. & Lenski, R. E. Nat. Rev. Genet. 4, 457–469 (2003).CAS 
    Article 

    Google Scholar 
    3.Fowler, D. M. & Fields, S. Nat. Methods 11, 801–807 (2014).CAS 
    Article 

    Google Scholar 
    4.Jasinska, W. et al. Nat. Ecol. Evol. 4, 437–452 (2020).Article 

    Google Scholar 
    5.Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature https://doi.org/10.1038/s41586-021-03819-2 (2021).6.Diss, G. & Lehner, B. eLife 7, e32472 (2018).Article 

    Google Scholar 
    7.Schmiedel, J. M. & Lehner, B. Nat. Genet. 51, 1177–1186 (2019).CAS 
    Article 

    Google Scholar 
    8.Guan, Y., Dunham, M. J. & Troyanskaya, O. G. Genetics 175, 933–943 (2007).CAS 
    Article 

    Google Scholar 
    9.Soria, P. S., McGary, K. L. & Rokas, A. Mol. Biol. Evol. 31, 984–992 (2014).CAS 
    Article 

    Google Scholar 
    10.Gabaldon, T. & Koonin, E. V. Nat. Rev. Genet. 14, 360–366 (2013).CAS 
    Article 

    Google Scholar 
    11.Montelione, G. T. F1000 Biol. Rep. 4, 7 (2012).Article 

    Google Scholar 
    12.Laskowski, R. A., Watson, J. D. & Thornton, J. M. J. Mol. Biol. 351, 614–626 (2005).CAS 
    Article 

    Google Scholar 
    13.Lee, D., Redfern, O. & Orengo, C. Nat. Rev. Mol. Cell Biol. 8, 995–1005 (2007).CAS 
    Article 

    Google Scholar 
    14.Redfern, O. C., Dessailly, B. H., Dallman, T. J., Sillitoe, I. & Orengo, C. A. PLoS Comput. Biol. 5, e1000485 (2009).Article 

    Google Scholar 
    15.Harms, M. J. & Thornton, J. W. Curr. Opin. Struct. Biol. 20, 360–366 (2010).CAS 
    Article 

    Google Scholar 
    16.Levin, L. & Mishmar, D. Nat. Ecol. Evol. 1, 41 (2017).Article 

    Google Scholar 
    17.Aadland, K. & Kolaczkowski, B. Biol. Evol. 12, 1549–1565 (2020).CAS 

    Google Scholar 
    18.Kleiner, D. et al. J. Mol. Biol. 431, 4796–4816 (2019).CAS 
    Article 

    Google Scholar 
    19.Boehr, D. D., Nussinov, R. & Wright, P. E. Nat. Chem. Biol. 5, 789–796 (2009).CAS 
    Article 

    Google Scholar 
    20.Bershtein, S. et al. PLoS Genet. 11, e1005612 (2015).Article 

    Google Scholar 
    21.Senior, A. W. et al. Nature 577, 706–710 (2020).CAS 
    Article 

    Google Scholar 
    22.Gershoni, M. et al. J. Mol. Biol. 404, 158–171 (2010).CAS 
    Article 

    Google Scholar 
    23.Sutto, L., Marsili, S., Valencia, A. & Gervasio, F. L. Proc. Natl Acad. Sci. USA 112, 13567–13572 (2015).CAS 
    Article 

    Google Scholar  More

  • in

    Vulnerability of the North Water ecosystem to climate change

    Marine sediment recordThe Calypso Square gravity core AMD15-CASQ1 (77°15.035′ N, 74°25.500′ W, 692 m water depth) and accompanying box core (BC; same location) were retrieved aboard the CCGS Amundsen during the ArcticNet 2015 Leg 4a expedition in 2015, in accordance with relevant permits and local laws. The CASQ corer recovered a sequence 543 cm long, while the box core was 40 cm long. Sediment material from these cores is stored at the Geological Survey of Denmark and Greenland and available upon reasonable request to the first and corresponding author (SRI).Computed Tomography (CT) scanning of the core was performed using a Siemens SOMATOM Definition AS + 128 at the Institut National de la Recherche Scientifique (INRS), Quebec, Canada. The tomograms were converted into digital DICOM format using a standard Hounsfield scale (HU scale) from −1024 to 3071, where −1024 corresponds to the density of air, 0 to the density of water and 2500 to the density of calcite.The age control on the marine sediment record was provided by 11 accelerator mass spectrometry (AMS) radiocarbon dates on mollusc shells (Supplementary. Table 1) at the Keck Carbon Cycle AMS Facility, University of California, Irvine, US, and 210Pb/137Cs measurements conducted on 20 samples at the Gamma Dating Center, Copenhagen University, Denmark. In the box core, the content of unsupported 210Pb showed a clear exponential decline with depth (Supplementary Fig. 1). A clear 137Cs peak was not detected, but the 210Pb-based chronology dates the earliest sample with 137Cs to 1969 ± 2 years, which is close to the expected date, 1963, for the global 137Cs peak induced by nuclear weapons testing in the atmosphere. This, and the very uniform exponential decline in unsupported 210Pb with depth, gives confidence in the calculated chronology. A mixed age-depth model, using both 210Pb and 14C dates, was constructed using BACON, an open-source package of ‘R’54. This Bayesian accumulation model code allows for greater flexibility in sedimentation rates between dated intervals than traditional linear age-depth models54. The AMS radiocarbon dates were calibrated with the Marine13 IntCal1355, and the regional marine reservoir offset was estimated based on existing 14C data from marine specimens collected before the mid-1950s. Distinct regional offset values have been proposed for Arctic Canada, but do not include the Smith Sound region56. Existing data from NW Greenland show local reservoir correction (ΔR) values ranging from -40 years in the Inglefield Fjord to +320 years in Ellesmere Island (the latter consistent with the proposed 335 ± 85 years for the Canadian Arctic Archipelago56). However, these samples have been retrieved from shallow sites ( More

  • in

    Ecological effects on female bill colour explain plastic sexual dichromatism in a mutually-ornamented bird

    1.Darwin, C. The Descent of Man, and Selection in Relation to Sex (Jon Murray, 1871).Book 

    Google Scholar 
    2.Andersson, M. Sexual Selection (Princeton University Press, 1994).Book 

    Google Scholar 
    3.McGraw, K. J. & Ardia, D. R. Carotenoids, immunocompetence, and the information content of sexual colors: An experimental test. Am. Nat. 162, 704–712 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Clutton-Brock, T. Sexual selection in females. Anim. Behav. 77, 3–11 (2009).Article 

    Google Scholar 
    5.Amundsen, T. Why are female birds ornamented?. TREE 15, 149–155 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    7.Gazda, M. et al. A genetic mechanism for sexual dichromatism in birds. Science 368, 1270–1274 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    8.Kraaijeveld, K. Genetic architecture of novel ornamental traits and the establishment of sexual dimorphism: Insights from domestic birds. J. Ornithol. 160, 861–868 (2019).Article 

    Google Scholar 
    9.Kimball, R. T. & Ligon, J. D. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154, 182–193 (1999).Article 

    Google Scholar 
    10.West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).Article 

    Google Scholar 
    11.Lyon, B. E. & Montgomerie, R. Sexual selection is a form of social selection. Philos. Trans. R. Soc. B 367, 2266–2273 (2012).Article 

    Google Scholar 
    12.Faivre, B., Grégoire, A., Préault, M., Cézilly, F. & Sorci, G. Immune activation rapidly mirrored in a secondary sexual trait. Science 300, 103 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Gautier, P. et al. The presence of females modulates the expression of a carotenoid-based sexual signal. Behav. Ecol. Sociobiol. 62, 1159–1166 (2008).Article 

    Google Scholar 
    14.Hill, G. E., Hood, W. R. & Huggins, K. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches. J. Exp. Biol. 212, 1225–1233 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rosenthal, M. F., Murphy, T. G., Darling, N. & Tarvin, K. A. Ornamental bill color rapidly signals changing condition. J. Avian Biol. 43, 553–564 (2012).Article 

    Google Scholar 
    16.Eraud, C. et al. Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. J. Exp. Biol. 210, 3571–3578 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Kelly, R. J., Murphy, T. G., Tarvin, K. A. & Burness, G. Carotenoid-based ornaments of female and male American goldfinches (Spinus tristis) show sex-specific correlations with immune function and metabolic rate. Physiol. Biochem. Zool. 85, 348–363 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Funghi, C., Trigo, S., Gomes, A. C. R., Soares, M. C. & Cardoso, G. C. Release from ecological constraint erases sex difference in social ornamentation. Behav. Ecol. Sociobiol. 72, 67 (2018).Article 

    Google Scholar 
    19.DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. TREE 13, 77–81 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    20.West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    21.Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    22.von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. Biol. Sci. 266, 1–12 (1999).Article 

    Google Scholar 
    23.Møller, A. P. et al. Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability?. Avian Poult. Biol. Rev. 11, 137–159 (2000).
    Google Scholar 
    24.Garratt, M. & Brooks, R. C. Oxidative stress and condition-dependent sexual signals: More than just seeing red. Proc. Biol. Sci. 279, 3121–3130 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    25.Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7, e43088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    26.Hõrak, P., Ots, I., Vellau, H., Spottiswoode, C. & Møller, A. P. Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126, 166–173 (2001).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    27.Clement, P., Harris, A. & Davies, J. Finches and Sparrows: An Identification Guide (Princeton University Press, 1993).
    Google Scholar 
    28.Cardoso, G. C., Batalha, H. R., Reis, S. & Lopes, R. J. Increasing sexual ornamentation during a biological invasion. Behav. Ecol. 25, 916–923 (2014).Article 

    Google Scholar 
    29.Cardoso, G. C. et al. Similar preferences for ornamentation in opposite- and same-sex choice experiments. J. Evol. Biol. 27, 2798–2806 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Marques, C. I. J., Batalha, H. R. & Cardoso, G. C. Signalling with a cryptic trait: The regularity of barred plumage in common waxbills. R. Soc. Open. Sci. 3, 160195 (2016).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    31.Funghi, C., Leitão, A. V., Ferreira, A. C., Mota, P. G. & Cardoso, G. C. Social dominance in a gregarious bird is related to body size but not to standard personality assays. Ethology 121, 84–93 (2015).
    Article 

    Google Scholar 
    32.Navara, K. J. & Hill, G. E. Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behav. Ecol. 14, 909–916 (2003).Article 

    Google Scholar 
    33.McGraw, K. J. & Schuetz, J. G. The evolution of carotenoid coloration in estrildid finches: A biochemical analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 45–51 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Karu, U., Saks, L. & Hõrak, P. Carotenoid-based plumage coloration is not affected by vitamin E supplementation in male greenfinches. Ecol. Res. 23, 931–935 (2008).CAS 
    Article 

    Google Scholar 
    35.Pérez, C., Lores, M. & Velando, A. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav. Ecol. 19, 967–973 (2008).Article 

    Google Scholar 
    36.Hartley, R. C. & Kennedy, M. W. Are carotenoids a red herring in sexual display?. TREE 19, 353–354 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    37.Alonso-Alvarez, C. et al. An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am. Nat. 164, 651–659 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Jouventin, P., McGraw, K. J., Morel, M. & Célerier, A. Dietary carotenoid supplementation affects orange beak but not foot coloration in gentoo penguins Pygoscelis papua. Waterbirds 30, 573–578 (2007).Article 

    Google Scholar 
    39.Saino, N. et al. Better red than dead: Carotenoid-based mouth coloration reveals infection in barn swallow nestlings. Proc. Biol. Sci. 267, 57–61 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Thorogood, R., Kilner, R. M., Karadaş, F. & Ewen, J. G. Spectral mouth color of nestlings changes with carotenoid availability. Funct. Ecol. 22, 1044–1051 (2008).Article 

    Google Scholar 
    41.Koch, R., Wilson, A. & Hill, G. The importance of carotenoid dose in supplementation studies with songbirds. Physiol. Biochem. Zool. 89, 61–71 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Hill, G. E. Proximate basis of variation in carotenoid pigmentation in male House Finches. Auk 109, 1–12 (1992).Article 

    Google Scholar 
    43.Biard, C., Surai, P. F. & Møller, A. P. Carotenoid availability in diet and phenotype of blue and great tit nestlings. J. Exp. Biol. 209, 1004–1015 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Giraudeau, M., Sweazea, K., Butler, M. W. & McGraw, K. J. Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 166, 406–413 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Goodwin, T. W. Distribution of carotenoids. Method Enzymol. 213, 167–172 (1992).CAS 
    Article 

    Google Scholar 
    46.Hill, G. E. Female house finches prefer colourful males: Sexual selection for a condition-dependent trait. Anim. Behav. 40, 563–572 (1990).Article 

    Google Scholar 
    47.Olson, V. A. & Owens, I. P. F. Costly sexual signals: Are carotenoids rare, risky or required?. TREE 13, 510–514 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Koch, R. E. & Hill, G. E. Do carotenoid-based ornaments entail resource trade-offs? An evaluation of theory and data. Funct. Ecol. 32, 1908–1920 (2018).Article 

    Google Scholar 
    49.Krinsky, N. I. Carotenoids as antioxidants. Nutrition 17, 815–817 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.El-Agamey, A. et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430, 37–48 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Costantini, D. & Møller, A. P. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2007).Article 

    Google Scholar 
    52.Leclaire, S. et al. Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird. Behav. Ecol. Sociobiol. 69, 1097–1111 (2015).Article 

    Google Scholar 
    53.Benito, M., González-Solís, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Surai, P. F. Natural Antioxidants in Avian Nutrition and Reproduction (Nottingham University Press, 2002).
    Google Scholar 
    55.Bertrand, S., Faivre, B. & Sorci, G. Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?. J. Exp. Biol. 209, 4414–4419 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Marri, V. & Richner, H. Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits. J. Exp. Biol. 217, 1478–1484 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    57.Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).Article 

    Google Scholar 
    58.Pike, T. W., Blount, J. D., Lindström, J. & Metcalfe, N. B. Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol. Lett. 3, 353–356 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Stiels, D., Schidelko, K., Engler, J. & Rödder, D. Predicting the potential distribution of the invasive Common Waxbill Estrilda astrild (Passeriformes: Estrildidae). J. Ornithol. 152, 769–780 (2011).Article 

    Google Scholar 
    60.Beltrão, P. et al. European breeding phenology of the common waxbill, a sub-Saharan opportunistic breeder. Acta Ethol. https://doi.org/10.1007/s10211-021-00376-9 (2021).Article 

    Google Scholar 
    61.Pan, J. Q., Tan, X., Li, J. C., Sun, W. D. & Wang, X. L. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperature. Br. Poultry Sci. 46, 374–381 (2005).CAS 
    Article 

    Google Scholar 
    62.Zhang, Z. W. et al. Effects of cold stress on nitric oxide in duodenum of chicks. Poultry Sci. 90, 1555–1561 (2011).CAS 
    Article 

    Google Scholar 
    63.Beaulieu, M., Haas, A. & Schaefer, M. H. Self-supplementation and effects of dietary antioxidants during acute thermal stress. J. Exp. Biol. 217, 370–375 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    64.Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Beamonte-Barrientos, R. & Verhulst, S. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches. J. Comp. Physiol. B 183, 675–683 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Moreno, J., Cantarero, A., Plaza, M. & López-Arrabé, J. Phenotypic plasticity in breeding plumage signals in both sexes of a migratory bird: Responses to breeding conditions. J. Avian Biol. 50, e01855 (2019).Article 

    Google Scholar 
    67.del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 15: Weavers to New World Warblers (Lynx Edicions, 2010).68.Larcombe, S. D., Mullen, W., Alexander, L. & Arnold, K. E. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus. Naturwissenschaften 97, 903–913 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    69.Hudon, J. Showiness, carotenoids, and captivity: A comment on Hill (1992). Auk 111, 218–221 (1994).Article 

    Google Scholar 
    70.Dykes, L. & Rooney, L. W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44, 236–251 (2006).CAS 
    Article 

    Google Scholar 
    71.Cardoso, G. C. & Gomes, A. C. R. Using reflectance ratios to study animal coloration. Evol. Biol. 42, 387–394 (2015).Article 

    Google Scholar 
    72.Montgomerie, R. Analyzing colors. Analyzing colors. In Bird Coloration, Vol. 1. Mechanisms and Measurements (eds Hill, G. E. & McGraw, K. J.) 90–147 (Harvard University Press, 2006).
    Google Scholar  More

  • in

    Pelagic organisms avoid white, blue, and red artificial light from scientific instruments

    1.Berge, J. et al. Artificial light during the polar night disrupts Arctic fish and zooplankton behaviour down to 200 m depth. Commun. Biol. 3, 102. https://doi.org/10.1038/s42003-020-0807-6 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Davies, T. W., McKee, D., Fishwick, J., Tidau, S. & Smyth, T. Biologically important artificial light at night on the seafloor. Sci. Rep. 10, 12545. https://doi.org/10.1038/s41598-020-69461-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Ludvigsen, M. et al. Use of an autonomous surface vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance. Sci. Adv. 4, eaap9887. https://doi.org/10.1126/sciadv.aap9887 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Utne-Palm, A. C., Breen, M., Løkkeborg, S. & Humborstad, O. B. Behavioural responses of krill and cod to artificial light in laboratory experiments. PLoS One https://doi.org/10.1371/journal.pone.0190918 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Marchesan, M., Spoto, M., Verginella, L. & Ferrero, E. A. Behavioural effects of artificial light on fish species of commercial interest. Fish. Res. 73, 171–185. https://doi.org/10.1016/j.fishres.2004.12.009 (2005).Article 

    Google Scholar 
    6.Stickney, A. P. Factors influencing the attraction of Atlantic Herring. Fish. Bull. 68, 73–85 (1969).
    Google Scholar 
    7.Nguyen, K. Q. et al. Application of luminescent netting in traps to improve the catchability of the snow crab Chionoecetes opilio. Mar. Coast. Fish. 11, 295–304. https://doi.org/10.1002/mcf2.10084 (2019).Article 

    Google Scholar 
    8.Wiebe, P. H. et al. Using a high-powered strobe light to increase the catch of Antarctic krill. Mar. Biol. 144, 493–502. https://doi.org/10.1007/s00227-003-1228-z (2004).Article 

    Google Scholar 
    9.Nguyen, T. T. et al. Artificial light pollution increases the sensitivity of tropical zooplankton to extreme warming. Environ. Technol. Innov. 20, 101179. https://doi.org/10.1016/j.eti.2020.101179 (2020).Article 

    Google Scholar 
    10.Kaartvedt, S., Røstad, A., Opdal, A. F. & Aksnes, D. L. Herding mesopelagic fish by light. Mar. Ecol. Prog. Ser. 625, 225–231 (2019).ADS 
    Article 

    Google Scholar 
    11.Underwood, M. J., Utne Palm, A. C., Øvredal, J. T. & Bjordal, Å. The response of mesopelagic organisms to artificial lights. Aquac. Fish. https://doi.org/10.1016/j.aaf.2020.05.002 (2020).Article 

    Google Scholar 
    12.Peña, M., Cabrera-Gámez, J. & Domínguez-Brito, A. C. Multi-frequency and light-avoiding characteristics of deep acoustic layers in the North Atlantic. Mar. Environ. Res. 154, 104842. https://doi.org/10.1016/j.marenvres.2019.104842 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Ryer, C. H., Stoner, A. W., Iseri, P. J. & Spencer, M. L. Effects of simulated underwater vehicle lighting on fish behavior. Mar. Ecol. Prog. Ser. 391, 97–106 (2009).ADS 
    Article 

    Google Scholar 
    14.Bicknell, A. W. J., Godley, B. J., Sheehan, E. V., Votier, S. C. & Witt, M. J. Camera technology for monitoring marine biodiversity and human impact. Front. Ecol. Environ. 14, 424–432. https://doi.org/10.1002/fee.1322 (2016).Article 

    Google Scholar 
    15.Picheral, M. et al. The Underwater Vision Profiler 5: An advanced instrument for high spatial resolution studies of particle size spectra and zooplankton. Limnol. Oceanogr. Meth. 8, 462–547. https://doi.org/10.4319/lom.2010.8.462 (2010).Article 

    Google Scholar 
    16.Herman, A. W. & Harvey, M. Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions. J. Geophys. Res. Oceans. https://doi.org/10.1029/2005JC002948 (2006).Article 

    Google Scholar 
    17.Basedow, S. L., Tande, K. S., Norrbin, M. F. & Kristiansen, S. A. Capturing quantitative zooplankton information in the sea: Performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog. Oceanogr. 108, 72–80. https://doi.org/10.1016/j.pocean.2012.10.005 (2013).ADS 
    Article 

    Google Scholar 
    18.Sainmont, J. et al. Inter- and intra-specific diurnal habitat selection of zooplankton during the spring bloom observed by Video Plankton Recorder. Mar. Biol. 161, 1931–1941. https://doi.org/10.1007/s00227-014-2475-x (2014).Article 

    Google Scholar 
    19.Schulz, J. et al. Imaging of plankton specimens with the lightframe on-sight key species investigation (LOKI) system. J. Eur. Opt. Soc. 5, 10017s (2010).Article 

    Google Scholar 
    20.Schmid, M. S., Aubry, C., Grigor, J. & Fortier, L. The LOKI underwater imaging system and an automatic identification model for the detection of zooplankton taxa in the Arctic Ocean. Meth. Oceanogr. 15–16, 129–160. https://doi.org/10.1016/j.mio.2016.03.003 (2016).Article 

    Google Scholar 
    21.Williams, K., Rooper, C. N. & Towler, R. Use of stereo camera systems for assessment of rockfish abundance in untrawlable areas and for recording pollock behavior during midwater trawls. Fish. Bull. 108, 352–362 (2010).
    Google Scholar 
    22.Boldt, J. L., Williams, K., Rooper, C. N., Towler, R. H. & Gauthier, S. Development of stereo camera methodologies to improve pelagic fish biomass estimates and inform ecosystem management in marine waters. Fish. Res. 198, 66–77. https://doi.org/10.1016/j.fishres.2017.10.013 (2018).Article 

    Google Scholar 
    23.Mallet, D. & Pelletier, D. Underwater video techniques for observing coastal marine biodiversity: A review of sixty years of publications (1952–2012). Fish. Res. 154, 44–62. https://doi.org/10.1016/j.fishres.2014.01.019 (2014).Article 

    Google Scholar 
    24.Easton, R. R., Heppell, S. S. & Hannah, R. W. Quantification of habitat and community relationships among nearshore temperate fishes through analysis of drop camera video. Mar. Coast. Fish. 7, 87–102. https://doi.org/10.1080/19425120.2015.1007184 (2015).Article 

    Google Scholar 
    25.McLean, D. L. et al. Using industry ROV videos to assess fish associations with subsea pipelines. Cont. Shelf Res. 141, 76–97. https://doi.org/10.1016/j.csr.2017.05.006 (2017).ADS 
    Article 

    Google Scholar 
    26.Devine, B. M., Wheeland, L. J., de Moura Neves, B. & Fisher, J. A. D. Baited remote underwater video estimates of benthic fish and invertebrate diversity within the eastern Canadian Arctic. Polar Biol. 42, 1323–1341. https://doi.org/10.1007/s00300-019-02520-5 (2019).Article 

    Google Scholar 
    27.Trenkel, V. M., Lorance, P. & Mahévas, S. Do visual transects provide true population density estimates for deepwater fish?. ICES J. Mar. Sci. 61, 1050–1056. https://doi.org/10.1016/j.icesjms.2004.06.002 (2004).Article 

    Google Scholar 
    28.Widder, E. A., Robison, B. H., Reisenbichler, K. R. & Haddock, S. H. D. Using red light for in situ observations of deep-sea fishes. Deep-Sea Res. Part I(52), 2077–2085. https://doi.org/10.1016/j.dsr.2005.06.007 (2005).ADS 
    Article 

    Google Scholar 
    29.Benoit-Bird, K. J., Moline, M. A., Schofield, O. M., Robbins, I. C. & Waluk, C. M. Zooplankton avoidance of a profiled open-path fluorometer. J. Plankton Res. 32, 1413–1419. https://doi.org/10.1093/plankt/fbq053 (2010).Article 

    Google Scholar 
    30.Doya, C. et al. Diel behavioral rhythms in sablefish (Anoplopoma fimbria) and other benthic species, as recorded by the Deep-sea cabled observatories in Barkley canyon (NEPTUNE-Canada). J. Mar. Syst. 130, 69–78. https://doi.org/10.1016/j.jmarsys.2013.04.003 (2014).Article 

    Google Scholar 
    31.Stoner, A. W., Ryer, C. H., Parker, S. J., Auster, P. J. & Wakefield, W. W. Evaluating the role of fish behavior in surveys conducted with underwater vehicles. Can. J. Fish. Aquat. Sci. 65, 1230–1243. https://doi.org/10.1139/f08-032 (2008).Article 

    Google Scholar 
    32.Rooper, C. N., Williams, K., De Robertis, A. & Tuttle, V. Effect of underwater lighting on observations of density and behavior of rockfish during camera surveys. Fish. Res. 172, 157–167. https://doi.org/10.1016/j.fishres.2015.07.012 (2015).Article 

    Google Scholar 
    33.Hop, H. et al. The marine ecosystem of Kongsfjorden, Svalbard. Polar Res. 21, 167–208 (2002).Article 

    Google Scholar 
    34.Bandara, K. et al. Seasonal vertical strategies in a high-Arctic coastal zooplankton community. Mar. Ecol. Prog. Ser. 555, 49–64 (2016).ADS 
    Article 

    Google Scholar 
    35.Hop, H. et al. In The Ecosystem of Kongsfjorden, Svalbard (eds Hop, H. & Wiencke, C.) 229–300 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    36.Cusa, M., Berge, J. & Varpe, Ø. Seasonal shifts in feeding patterns: Individual and population realized specialization in a high Arctic fish. Ecol. Evol. 9, 11112–11121. https://doi.org/10.1002/ece3.5615 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Sakshaug, E., Johnsen, G. & Volent, Z. In Ecosystem Barents Sea (eds Sakshaug, E. et al.) 117–138 (Tapir Academic Press, 2009).
    Google Scholar 
    38.Gordon, H. R. Can the Lambert–Beer law be applied to the diffuse attenuation coefficient of ocean water?. Limnol. Oceanogr. 34, 1389–1409. https://doi.org/10.4319/lo.1989.34.8.1389 (1989).ADS 
    Article 

    Google Scholar 
    39.McKee, D., Cunningham, A. & Craig, S. Estimation of absorption and backscattering coefficients from in situ radiometric measurements: Theory and validation in case II waters. App. Opt. 42, 2804–2810. https://doi.org/10.1364/AO.42.002804 (2003).ADS 
    Article 

    Google Scholar 
    40.Demer, D. A. et al. Calibration of acoustic instruments. ICES Cooperative Research Report No. 326. 133 (2015).41.Mackenzie, K. V. Nine-term equation for sound speed in the oceans. J. Acoust. Soc. Am. 70, 807 (1981).ADS 
    Article 

    Google Scholar 
    42.François, R. E. & Garrison, G. R. Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption. J. Acoust. Soc. Am. 72, 1879–1890 (1982).ADS 
    Article 

    Google Scholar 
    43.De Robertis, A. & Higginbottom, I. A post-processing technique to estimate the signal-to-noise ratio and remove echosounder background noise. ICES J. Mar. Sci. 64, 1282–1291. https://doi.org/10.1093/icesjms/fsm112 (2007).Article 

    Google Scholar 
    44.Ryan, T. E., Downie, R. A., Kloser, R. J. & Keith, G. Reducing bias due to noise and attenuation in open-ocean echo integration data. ICES J. Mar. Sci. 72, 2482–2493. https://doi.org/10.1093/icesjms/fsv121 (2015).Article 

    Google Scholar 
    45.Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    46.Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. TREE 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008 (2009).Article 
    PubMed 

    Google Scholar 
    47.Berge, J. et al. Unexpected levels of biological activity during the polar night offer new perspectives on a warming Arctic. Curr. Biol. 25, 2555–2561. https://doi.org/10.1016/j.cub.2015.08.024 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Dalpadado, P. et al. Distribution and abundance of euphausiids and pelagic amphipods in Kongsfjorden, Isfjorden and Rijpfjorden (Svalbard) and changes in their relative importance as key prey in a warming marine ecosystem. Polar Biol. 39, 1765–1784. https://doi.org/10.1007/s00300-015-1874-x (2016).Article 

    Google Scholar 
    49.Geoffroy, M. et al. Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol. 41, 2615–2619. https://doi.org/10.1007/s00300-018-2368-4 (2018).Article 

    Google Scholar 
    50.Jarms, G., Tiemann, H. & Båmstedt, U. Development and biology of Periphylla periphylla (Scyphozoa: Coronatae) in a Norwegian fjord. Mar. Biol. 141, 647–657. https://doi.org/10.1007/s00227-002-0858-x (2002).Article 

    Google Scholar 
    51.Pepin, P., Colbourne, E. & Maillet, G. Seasonal patterns in zooplankton community structure on the Newfoundland and Labrador Shelf. Prog. Oceanogr. 91, 273–285. https://doi.org/10.1016/j.pocean.2011.01.003 (2011).ADS 
    Article 

    Google Scholar 
    52.Cohen, J. H. & Epifanio, C. E. In Developmental Biology and Larval Ecology, Ch. 12 (eds Anger, K. et al.) 332–359 (Oxford University Press, 2020).
    Google Scholar 
    53.Orr, M. H. Remote acoustic detection of zooplankton response to field processes, oceanographic instrumentation, and predators. Can. J. Fish. Aquat. Sci. 38, 1096–1105. https://doi.org/10.1139/f81-149 (1981).Article 

    Google Scholar 
    54.Farmer, D. D., Crawford, G. B. & Osborn, T. R. Temperature and velocity microstructure caused by swimming fish1. Limnol. Oceanogr. 32, 978–983. https://doi.org/10.4319/lo.1987.32.4.0978 (1987).ADS 
    Article 

    Google Scholar 
    55.Koslow, J. A., Kloser, R. & Stanley, C. A. Avoidance of a camera system by a deepwater fish, the orange roughy (Hoplostethus atlanticus). Deep-Sea Res Part I 42, 233–244. https://doi.org/10.1016/0967-0637(95)93714-P (1995).Article 

    Google Scholar 
    56.Raymond, E. H. & Widder, E. A. Behavioral responses of two deep-sea fish species to red, far-red, and white light. Mar. Ecol. Prog. Ser. 350, 291–298 (2007).ADS 
    Article 

    Google Scholar 
    57.Bassett, D. K. & Montgomery, J. C. Investigating nocturnal fish populations in situ using baited underwater video: With special reference to their olfactory capabilities. J. Exp. Mar. Biol. Ecol. 409, 194–199. https://doi.org/10.1016/j.jembe.2011.08.019 (2011).Article 

    Google Scholar 
    58.Brill, R., Magel, C., Davis, M., Hannah, R. & Rankin, P. Effects of rapid decompression and exposure to bright light on visual function in black rockfish (Sebastes melanops) and Pacific halibut (Hippoglossus stenolepis). Fish. Bull. 106, 427–437 (2008).
    Google Scholar 
    59.Turner, J. R., White, E. M., Collins, M. A., Partridge, J. C. & Douglas, R. H. Vision in lanternfish (Myctophidae): Adaptations for viewing bioluminescence in the deep-sea. Deep-Sea Res. Part I 56, 1003–1017. https://doi.org/10.1016/j.dsr.2009.01.007 (2009).CAS 
    Article 

    Google Scholar 
    60.de Busserolles, F. & Marshall, N. J. Seeing in the deep-sea: Visual adaptations in lanternfishes. Philos. Trans. R Soc. Lond. B Biol. Sci. 372, 20160070. https://doi.org/10.1098/rstb.2016.0070 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Valen, R., Edvardsen, R. B., Søviknes, A. M., Drivenes, Ø. & Helvik, J. V. Molecular evidence that only two opsin subfamilies, the blue light- (SWS2) and green light-sensitive (RH2), drive colour vision in Atlantic cod (Gadus morhua). PLoS One 9, e115436. https://doi.org/10.1371/journal.pone.0115436 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    62.Anthony, P. D. & Hawkins, A. D. Spectral sensitivity of the cod, Gadus morhua L. Mar. Behav. Physiol. 10, 145–166. https://doi.org/10.1080/10236248309378614 (1983).Article 

    Google Scholar 
    63.Govardovskii, V. I., Fyhrquist, N., Reuter, T., Kuzmin, D. G. & Donner, K. In search of the visual pigment template. Vis. Neurosci. 17, 509–528. https://doi.org/10.1017/s0952523800174036 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Frank, T. M. & Widder, E. A. Comparative study of the spectral sensitivities of mesopelagic crustaceans. J. Comp. Physiol. A 185, 255–265. https://doi.org/10.1007/s003590050385 (1999).Article 

    Google Scholar 
    65.Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M. & Johnsen, G. Quantifying the light sensitivity of Calanus spp. during the polar night: Potential for orchestrated migrations conducted by ambient light from the sun, moon, or aurora borealis?. Polar Biol. 38, 1–15. https://doi.org/10.1007/s00300-013-1415-4 (2015).Article 

    Google Scholar 
    66.Cohen, J. H. et al. Is ambient light during the high Arctic polar night sufficient to act as a visual cue for zooplankton?. PLoS ONE https://doi.org/10.1371/journal.pone.0126247 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Jinks, R. N. et al. Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab. Nature 420, 68–70. https://doi.org/10.1038/nature01144 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Aguzzi, J. et al. The potential of video imagery from worldwide cabled observatory networks to provide information supporting fish-stock and biodiversity assessment. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsaa169 (2020).Article 

    Google Scholar  More

  • in

    Novel Antarctic yeast adapts to cold by switching energy metabolism and increasing small RNA synthesis

    1.Goordial J, Davila A, Lacelle D, Pollard W, Marinova MM, Greer CW, et al. Nearing the cold-arid limits of microbial life in permafrost of an upper dry valley, Antarctica. ISME J. 2016;10:1613.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Mykytczuk NC, Foote SJ, Omelon CR, Southam G, Greer CW, Whyte LG. Bacterial growth at −15 C; molecular insights from the permafrost bacterium Planococcus halocryophilus Or1. ISME J. 2013;7:1211.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Margesin R, Miteva V. Diversity and ecology of psychrophilic microorganisms. Res Microbiol. 2011;162:346–61.PubMed 
    Article 

    Google Scholar 
    4.De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15:508–17.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Hassan N, Rafiq M, Hayat M, Shah AA, Hasan F. Psychrophilic and psychrotrophic fungi: a comprehensive review. Rev Environ Sci Bio. 2016;15:147–72.Article 

    Google Scholar 
    6.Christner BC, Mosley‐Thompson E, Thompson LG, Reeve JN. Bacterial recovery from ancient glacial ice. Environ Microbiol. 2003;5:433–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Raymond-Bouchard I, Goordial J, Zolotarov Y, Ronholm J, Stromvik M, Bakermans C, et al. Conserved genomic and amino acid traits of cold adaptation in subzero-growing Arctic permafrost bacteria. FEMS Microbiol Ecol. 2018;94:fiy023.Article 
    CAS 

    Google Scholar 
    8.Raymond-Bouchard I, Tremblay J, Altshuler I, Greer CW, Whyte LG. Comparative transcriptomics of cold growth and adaptive features of a eury-and steno-psychrophile. Front Microbiol. 2018;9:1565.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Buzzini P, Margesin R. Cold-adapted yeasts: a lesson from the cold and a challenge for the XXI century. In: Buzzini P, Margesin R, editors. Cold-adapted yeasts. Heidelberg: Springer; 2014. p. 3–22.Chapter 

    Google Scholar 
    10.Altshuler I, Goordial J, Whyte LG. Microbial life in permafrost. In: Margesin R, editor. Psychrophiles: from biodiversity to biotechnology. 2nd edn. Cham: Springer; 2017. p. 153–79.Chapter 

    Google Scholar 
    11.Gilichinsky D, Wilson G, Friedmann E, McKay C, Sletten R, Rivkina E, et al. Microbial populations in Antarctic permafrost: biodiversity, state, age, and implication for astrobiology. Astrobiology. 2007;7:275–311.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.de Menezes GCA, Porto BA, Amorim SS, Zani CL, de Almeida Alves TM, Junior PAS, et al. Fungi in glacial ice of Antarctica: diversity, distribution and bioprospecting of bioactive compounds. Extremophiles. 2020;24:367–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Zhang T, Wang N, Yu L. Soil fungal community composition differs significantly among the Antarctic, Arctic, and Tibetan Plateau. Extremophiles. 2020;24:821–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Coleine C, Zucconi L, Onofri S, Pombubpa N, Stajich JE, Selbmann L. Sun exposure shapes functional grouping of fungi in cryptoendolithic Antarctic communities. Life. 2018;8:19.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Gunde-Cimerman N, Zalar P, de Hoog S, Plemenitaš A. Hypersaline waters in salterns–natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol. 2000;32:235–40.CAS 

    Google Scholar 
    16.Perini L, Gostinčar C, Anesio AM, Williamson C, Tranter M, Gunde-Cimerman N. Darkening of the Greenland Ice Sheet: fungal abundance and diversity are associated with algal bloom. Front Microbiol. 2019;10:557.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Tojo M, Newsham KK. Snow moulds in polar environments. Fungal Ecol. 2012;5:395–402.Article 

    Google Scholar 
    18.Rosa LH, Vaz AB, Caligiorne RB, Campolina S, Rosa CA. Endophytic fungi associated with the Antarctic grass Deschampsia antarctica Desv.(Poaceae). Polar Biol. 2009;32:161–7.Article 

    Google Scholar 
    19.Gianoli E, Inostroza P, Zúñiga-Feest A, Reyes-Díaz M, Cavieres LA, Bravo LA, et al. Ecotypic differentiation in morphology and cold resistance in populations of Colobanthus quitensis (Caryophyllaceae) from the Andes of central Chile and the maritime Antarctic. Arct Antarct Alp Res. 2004;36:484–9.Article 

    Google Scholar 
    20.Duncan SM, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, et al. Endoglucanase‐producing fungi isolated from Cape Evans historic expedition hut on Ross Island, Antarctica. Environ Microbiol. 2006;8:1212–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Starmer WT, Lachance M-A. Yeast ecology. In: Kurtzman CP, Fell JW, Boekhout T, eds. The yeasts. 5ft ed. London: Elsevier; 2011. p. 65–83.Chapter 

    Google Scholar 
    22.Shivaji S, Prasad G. Antarctic yeasts: biodiversity and potential applications. In: Satyanarayana T, Kunze G, editors. Yeast biotechnology: diversity and applications. New Delhi: Springer; 2009. p. 3–18.Chapter 

    Google Scholar 
    23.Gunde-Cimerman N, Plemenitaš A, Buzzini P. Changes in lipids composition and fluidity of yeast plasma membrane as response to cold. In: Buzzini P, Margesin R, editors. Cold-adapted yeasts. Heidelberg: Springer; 2014. p. 225–42.Chapter 

    Google Scholar 
    24.Goordial J, Raymond-Bouchard I, Riley R, Ronholm J, Shapiro N, Woyke T, et al. Improved high-quality draft genome sequence of the eurypsychrophile Rhodotorula sp. JG1b, isolated from permafrost in the hyperarid upper-elevation mcmurdo dry valleys, Antarctica. Genome Announc. 2016;4:e00069–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Yen H-W, Liao Y-T, Liu YX. Cultivation of oleaginous Rhodotorula mucilaginosa in airlift bioreactor by using seawater. J Biosci Bioeng. 2016;121:209–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Buzzini P, Turk M, Perini L, Turchetti B, Gunde-Cimerman N. Yeasts in polar and subpolar habitats. In: Buzzini P, Lachance M-A, Yurkov A, editors. Yeasts in natural ecosystems: diversity. Cham: Springer; 2017. p. 331–65.Chapter 

    Google Scholar 
    27.Margesin R, Fonteyne P-A, Schinner F, Sampaio JP. Rhodotorula psychrophila sp. nov., Rhodotorula psychrophenolica sp. nov. and Rhodotorula glacialis sp. nov., novel psychrophilic basidiomycetous yeast species isolated from alpine environments. Int J Syst Evol Micr. 2007;57:2179–84.CAS 
    Article 

    Google Scholar 
    28.Sabri A, Jacques P, Weekers F, Bare G, Hiligsmann S, Moussaif M, et al. Effect of temperature on growth of psychrophilic and psychrotrophic members of Rhodotorula aurantiaca. In: Walt DR, editor. Applied biochemistry and biotechnology. New York: Springer Science+Business Media; 2000. p. 391–9.
    Google Scholar 
    29.Marchant DR, Head JW III. Antarctic dry valleys: microclimate zonation, variable geomorphic processes, and implications for assessing climate change on Mars. Icarus 2007;192:187–222.Article 

    Google Scholar 
    30.Kurtzman C, Fell JW, Boekhout T, editors. The yeasts: a taxonomic study. 5ft ed. London: Elsevier; 2011.
    Google Scholar 
    31.Kornerup A, Wanscher JH, editors. Methuen handbook of colour. 2nd ed. London: Methuen and Co.; 1967.
    Google Scholar 
    32.Xing W, Yin M, Lv Q, Hu Y, Liu C, Zhang J. Oxygen solubility, diffusion coefficient, and solution viscosity. In: Xing W, Yin G, Zhang J, editors. Rotating electrode methods and oxygen reduction electrocatalysts. London: Elsevier; 2014. p. 1–31.
    Google Scholar 
    33.Viti C, Decorosi F, Marchi E, Galardini M, Giovannetti L. High-throughput phenomics. In: Mengoni A, Galardini M, Fondi M, editors. Bacterial pangenomics. Methods and protocols. New York: Springer; 2015. p. 99–123.Chapter 

    Google Scholar 
    34.Rico A, Preston GM. Pseudomonas syringae pv. tomato DC3000 uses constitutive and apoplast-induced nutrient assimilation pathways to catabolize nutrients that are abundant in the tomato apoplast. Mol Plant Microbe. 2008;21:269–82.CAS 
    Article 

    Google Scholar 
    35.Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol. 2016;428:726–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    39.Krüger J, Rehmsmeier M. RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 2006;34:W451–54.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R. Fast and effective prediction of microRNA/target duplexes. RNA. 2004;10:1507–17.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Greetham D. Phenotype microarray technology and its application in industrial biotechnology. Biotechnol Lett. 2014;36:1153–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bochner BR. Global phenotypic characterization of bacteria. FEMS Microbiol Rev. 2008;33:191–205.PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Maldonado F, Packard T, Gómez M. Understanding tetrazolium reduction and the importance of substrates in measuring respiratory electron transport activity. J Exp Mar Biol Ecol. 2012;434:110–8.Article 
    CAS 

    Google Scholar 
    44.Barclay BJ, DeHaan CL, Hennig UG, Iavorovska O, von Borstel RW, Von, et al. A rapid assay for mitochondrial DNA damage and respiratory chain inhibition in the yeast Saccharomyces cerevisiae. Environ Mol Mutagen. 2001;38:153–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Jenkins CL, Lawrence SJ, Kennedy AI, Thurston P, Hodgson JA, Smart KA. Incidence and formation of petite mutants in lager brewing yeast Saccharomyces cerevisiae (syn. S. pastorianus) populations. J Am Soc Brew Chem. 2009;67:72–80.CAS 

    Google Scholar 
    46.Glab N, Wise R, Pring D, Jacq C, Slonimski P. Expression in Saccharomyces cerevisiae of a gene associated with cytoplasmic male sterility from maize: respiratory dysfunction and uncoupling of yeast mitochondria. Mol Gen Genet. 1990;223:24–32.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Goldring ES, Grossman LI, Krupnick D, Cryer DR, Marmur J. The petite mutation in yeast: loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J Mol Biol. 1970;52:323–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Pinatel E, Peano C. RNA sequencing and analysis in microorganisms for metabolic network reconstruction. In: Fondi M, editor. Metabolic network reconstruction and modeling. Methods and protocols. New York: Springer; 2018. p. 239–65.Chapter 

    Google Scholar 
    50.Raymond‐Bouchard I, Chourey K, Altshuler I, Iyer R, Hettich RL, Whyte LG. Mechanisms of subzero growth in the cryophile Planococcus halocryophilus determined through proteomic analysis. Environ Microbiol. 2017;19:4460–79.PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Bhuiyan M, Tucker D, Watson K. Gas chromatography–mass spectrometry analysis of fatty acid profiles of Antarctic and non-Antarctic yeasts. Anton Leeuw. 2014;106:381–9.CAS 
    Article 

    Google Scholar 
    52.López-Malo M, Chiva R, Rozes N, Guillamon JM. Phenotypic analysis of mutant and overexpressing strains of lipid metabolism genes in Saccharomyces cerevisiae: implication in growth at low temperatures. Int J Food Microbiol. 2013;162:26–36.PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Rossi M, Buzzini P, Cordisco L, Amaretti A, Sala M, Raimondi S, et al. Growth, lipid accumulation, and fatty acid composition in obligate psychrophilic, facultative psychrophilic, and mesophilic yeasts. FEMS Microbiol Ecol. 2009;69:363–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Contreras G, Barahona S, Sepúlveda D, Baeza M, Cifuentes V, Alcaíno J. Identification and analysis of metabolite production with biotechnological potential in Xanthophyllomyces dendrorhous isolates. World J Micro Biot. 2015;31:517–26.CAS 
    Article 

    Google Scholar 
    55.Libkind D, Arts M, Van Broock M. Fatty acid composition of cold-adapted carotenogenic basidiomycetous yeasts. Rev Argent Microbiol. 2008;40:193–7.CAS 
    PubMed 

    Google Scholar 
    56.Thomas-Hall S, Watson K. Cryptococcus nyarrowii sp. nov., a basidiomycetous yeast from Antarctica. Int J Syst Evol Micr. 2002;52:1033–8.CAS 

    Google Scholar 
    57.López-Malo M, García-Ríos E, Chiva R, Guillamon JM. Functional analysis of lipid metabolism genes in wine yeasts during alcoholic fermentation at low temperature. Micro Cell. 2014;1:365.Article 
    CAS 

    Google Scholar 
    58.Tai SL, Daran-Lapujade P, Walsh MC, Pronk JT, Daran J-M. Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis. Mol Biol Cell. 2007;18:5100–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Mao C, Wadleigh M, Jenkins GM, Hannun YA, Obeid LM. Identification and characterization of Saccharomyces cerevisiae dihydrosphingosine-1-phosphate phosphatase. J Biol Chem. 1997;272:28690–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Mata-Gómez LC, Montañez JC, Méndez-Zavala A, Aguilar CN. Biotechnological production of carotenoids by yeasts: an overview. Micro Cell Fact. 2014;13:12.Article 
    CAS 

    Google Scholar 
    61.Moliné M, Flores MR, Libkind D. del Carmen Diéguez M, Farías ME, van Broock M. Photoprotection by carotenoid pigments in the yeast Rhodotorula mucilaginosa: the role of torularhodin. Photoch Photobio Sci. 2010;9:1145–51.Article 
    CAS 

    Google Scholar 
    62.Liu GY, Nizet V. Color me bad: microbial pigments as virulence factors. Trends Microbiol. 2009;17:406–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Rodrigues DF, Tiedje JM. Coping with our cold planet. Appl Environ Micro. 2008;74:1677–86.CAS 
    Article 

    Google Scholar 
    64.Villarreal P, Carrasco M, Barahona S, Alcaíno J, Cifuentes V, Baeza M. Tolerance to ultraviolet radiation of psychrotolerant yeasts and analysis of their carotenoid, mycosporine, and ergosterol content. Curr Microbiol. 2016;72:94–101.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Moliné M, Libkind D, del Carmen DiéguezM, van Broock M. Photoprotective role of carotenoids in yeasts: response to UV-B of pigmented and naturally-occurring albino strains. J Photoch Photobio B 2009;95:156–61.Article 
    CAS 

    Google Scholar 
    66.Huang G-T, Ma S-L, Bai L-P, Zhang L, Ma H, Jia P, et al. Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep. 2012;39:969–87.PubMed 
    Article 
    CAS 

    Google Scholar 
    67.Heino P, Palva ET. Signal transduction in plant cold acclimation. In: Hirt H, Shinozaki K, editors. Plant responses to abiotic stress. Berlin: Springer; 2003. p. 151–86.Chapter 

    Google Scholar 
    68.Storey KB, Storey JM. Signal transduction and gene expression in the regulation of natural freezing survival. In: Storey KB, Storey JM, editors. Protein adaptations and signal transduction. London: Elsevier; 2001. p. 1–19.
    Google Scholar 
    69.Li W-H, Yang J, Gu X. Expression divergence between duplicate genes. Trends Genet. 2005;21:602–7.PubMed 
    Article 
    CAS 

    Google Scholar 
    70.Vollmers J, Voget S, Dietrich S, Gollnow K, Smits M, Meyer K, et al. Poles apart: arctic and Antarctic Octadecabacter strains share high genome plasticity and a new type of xanthorhodopsin. Plos One. 2013;8:e63422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Wagner A. Asymmetric functional divergence of duplicate genes in yeast. Mol Biol Evol. 2002;19:1760–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Varki A, Gagneux P. Biological functions of glycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    73.Colley K, Varki A, Kinoshita T. Cellular organization of glycosylation. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    74.Pavlova K, Panchev I, Hristozova T. Physico-chemical characterization of exomannan from Rhodotorula acheniorum MC. World J Micro Biot. 2005;21:279–83.CAS 
    Article 

    Google Scholar 
    75.Cho DH, Chae HJ, Kim EY. Synthesis and characterization of a novel extracellular polysaccharide by Rhodotorula glutinis. Appl Biochem Biotech. 2001;95:183–93.CAS 
    Article 

    Google Scholar 
    76.Flemming HC, Neu TR, Wingender J. The perfect slime. Microbial extracellular polymeric substances (EPS). London: IWA Publishing; 2016.Book 

    Google Scholar 
    77.Nichols WW, Evans MJ, Slack MP, Walmsley HL. The penetration of antibiotics into aggregates of mucoid and non-mucoid Pseudomonas aeruginosa. Microbiology. 1989;135:1291–303.CAS 
    Article 

    Google Scholar 
    78.Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M. Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol. 2002;153:585–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Rini JM, Esko JD. Glycosyltransferases and glycan-processing enzymes. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. editors. Essentials of glycobiology. 3rd ed. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2017.
    Google Scholar 
    80.Strassburg K, Walther D, Takahashi H, Kanaya S, Kopka J. Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress. Omics. 2010;14:249–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Becerra M, Lombardia L, Gonzalez-Siso M, Rodriguez-Belmonte E, Hauser N, Cerdán M. Genome-wide analysis of the yeast transcriptome upon heat and cold shock. Int J Genomics. 2003;4:366–75.CAS 

    Google Scholar 
    82.Homma T, Iwahashi H, Komatsu Y. Yeast gene expression during growth at low temperature. Cryobiology. 2003;46:230–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Sahara T, Goda T, Ohgiya S. Comprehensive expression analysis of time-dependent genetic responses in yeast cells to low temperature. J Biol Chem. 2002;277:50015–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. Cold adaptation in budding yeast. Mol Biol Cell. 2004;15:5492–502.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Mikami K, Kanesaki Y, Suzuki I, Murata N. The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol. 2002;46:905–15.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Tsuji M. Cold-stress responses in the Antarctic basidiomycetous yeast Mrakia blollopis. R Soc Open Sci. 2016;3:160106.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Sarkar D, Bhowmik PC, Kwon Y-I, Shetty K. Clonal response to cold tolerance in creeping bentgrass and role of proline-associated pentose phosphate pathway. Bioresour Technol. 2009;100:5332–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Bura R, Vajzovic A, Doty SL. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 I: production of xylitol and ethanol. J Ind Microbiol Biot. 2012;39:1003–11.CAS 
    Article 

    Google Scholar 
    89.da Silva TL, Feijão D, Roseiro JC, Reis A. Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry. Bioresour Technol. 2011;102:2998–3006.PubMed 
    Article 
    CAS 

    Google Scholar 
    90.Johansson B, Hahn-Hägerdal B. The non-oxidative pentose phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res. 2002;2:277–82.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    91.Eliasson A, Boles E, Johansson B, Österberg M, Thevelein J, Spencer-Martins I, et al. Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biot. 2000;53:376–82.CAS 
    Article 

    Google Scholar 
    92.Mohamad N, Mustapa Kamal S, Mokhtar M. Xylitol biological production: a review of recent studies. Food Rev Int. 2015;31:74–89.CAS 
    Article 

    Google Scholar 
    93.Shetty K, Wahlqvist M. A model for the role of the proline-linked pentose-phosphate pathway in phenolic phytochemical bio-synthesis and mechanism of action for human health and environmental applications. Asia Pac J Clin Nutr. 2004;13:1–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Fonseca P, Moreno R, Rojo F. Growth of Pseudomonas putida at low temperature: global transcriptomic and proteomic analyses. Environ Microbiol Rep. 2011;3:329–39.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Rao R, Bhadra B, Shivaji S. Isolation and characterization of ethanol‐producing yeasts from fruits and tree barks. Lett Appl Microbiol. 2008;47:19–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Kourkoutas Y, Komaitis M, Koutinas A, Kaliafas A, Kanellaki M, Marchant R, et al. Wine production using yeast immobilized on quince biocatalyst at temperatures between 30 and 0 C. Food Chem. 2003;82:353–60.CAS 
    Article 

    Google Scholar 
    97.Kanellaki M, Koutinas AA. Low temperature fermentation of wine and beer by cold-adapted and immobilized yeast cells. In: Margesin R, Schinner F, editors. Biotechnological applications of cold-adapted organisms. Berlin: Springer; 1999. p. 117–45.Chapter 

    Google Scholar 
    98.Bakoyianis V, Kanellaki M, Kaliafas A, Koutinas A. Low-temperature wine making by immobilized cells on mineral kissiris. J Agr Food Chem. 1992;40:1293–6.CAS 
    Article 

    Google Scholar 
    99.Tiwari R, Singh S, Shukla P, Nain L. Novel cold temperature active β-glucosidase from Pseudomonas lutea BG8 suitable for simultaneous saccharification and fermentation. RSC Adv. 2014;4:58108–15.CAS 
    Article 

    Google Scholar 
    100.Tang W, Wang Y, Zhang J, Cai Y, He Z. Biosynthetic pathway of carotenoids in Rhodotorula and strategies for enhanced their production. J Microbiol Biotechn. 2019;29:507–17.CAS 
    Article 

    Google Scholar 
    101.Steven B, Briggs G, McKay CP, Pollard WH, Greer CW, Whyte LG. Characterization of the microbial diversity in a permafrost sample from the Canadian high Arctic using culture-dependent and culture-independent methods. FEMS Microbiol Ecol. 2007;59:513–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Dozmorov MG, Giles CB, Koelsch KA, Wren JD. Systematic classification of non-coding RNAs by epigenomic similarity. BMC Bioinforma. 2013;14:S2.Article 

    Google Scholar 
    103.Sunkar R, Li Y-F, Jagadeeswaran G. Functions of microRNAs in plant stress responses. Trends Plant Sci. 2012;17:196–203.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Ambros V. MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 2003;113:673–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Lau SK, Chow W-N, Wong AY, Yeung JM, Bao J, Zhang N, et al. Identification of microRNA-like RNAs in mycelial and yeast phases of the thermal dimorphic fungus Penicillium marneffei. Plos Negl Trop D. 2013;7:e2398.Article 
    CAS 

    Google Scholar 
    106.Zhou Q, Wang Z, Zhang J, Meng H, Huang B. Genome-wide identification and profiling of microRNA-like RNAs from Metarhizium anisopliae during development. Fungal Biol UK. 2012;116:1156–62.CAS 
    Article 

    Google Scholar 
    107.Lambert M, Benmoussa A, Provost P. Small non-coding RNAs derived from eukaryotic ribosomal RNA. Noncoding RNA 2019;5:16.CAS 
    PubMed Central 

    Google Scholar 
    108.Thompson DM, Lu C, Green PJ, Parker R. tRNA cleavage is a conserved response to oxidative stress in eukaryotes. RNA. 2008;14:2095–103.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.Gebetsberger J, Wyss L, Mleczko AM, Reuther J, Polacek N. A tRNA-derived fragment competes with mRNA for ribosome binding and regulates translation during stress. RNA Biol. 2017;14:1364–73.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Bąkowska-Żywicka K, Kasprzyk M, Twardowski T. tRNA-derived short RNAs bind to Saccharomyces cerevisiae ribosomes in a stress-dependent manner and inhibit protein synthesis in vitro. FEMS Yeast Res. 2016;16:fow077.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.McCool MA, Bryant CJ, Baserga SJ. MicroRNAs and long non-coding RNAs as novel regulators of ribosome biogenesis. Biochem Soc T. 2020;48:595–612.CAS 
    Article 

    Google Scholar 
    112.Wei H, Zhou B, Zhang F, Tu Y, Hu Y, Zhang B, et al. Profiling and identification of small rDNA-derived RNAs and their potential biological functions. Plos One. 2013;8:e56842.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Lee H-C, Chang S-S, Choudhary S, Aalto AP, Maiti M, Bamford DH, et al. qiRNA is a new type of small interfering RNA induced by DNA damage. Nature. 2009;459:274–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Zhu C, Yan Q, Weng C, Hou X, Mao H, Liu D, et al. Erroneous ribosomal RNAs promote the generation of antisense ribosomal siRNA. P Natl Acad Sci USA. 2018;115:10082–7.CAS 
    Article 

    Google Scholar 
    115.Zhou X, Chen X, Wang Y, Feng X, Guang S. A new layer of rRNA regulation by small interference RNAs and the nuclear RNAi pathway. RNA Biol. 2017;14:1492–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Zhou X, Feng X, Mao H, Li M, Xu F, Hu K, et al. RdRP-synthesized antisense ribosomal siRNAs silence pre-rRNA via the nuclear RNAi pathway. Nat Struct Mol Biol. 2017;24:258.CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Evolutionarily recent dual obligatory symbiosis among adelgids indicates a transition between fungus- and insect-associated lifestyles

    Profftia and Vallotia are related to free-living bacteria and fungus-associated endosymbiontsPrevious 16S rRNA-based phylogenetic analyses suggested an affiliation of Profftia with free-living gammaproteobacteria and a close phylogenetic relationship between Vallotia and betaproteobacterial endosymbionts of Rhizopus fungi [14]. Biased nucleotide composition and accelerated sequence evolution of endosymbiont genomes [2, 3] often result in inconsistent phylogenies and may cause grouping of unrelated taxa [55, 56]. Thus, to further investigate the phylogenetic relationships of the A. laricis/tardus symbionts, we used conserved marker genes for maximum likelihood and Bayesian phylogenetic analyses.Phylogenetic analysis of 45 single-copy proteins demonstrated that Profftia opens up a novel insect symbiont lineage most similar to Hafnia species and an isolate from the human gastrointestinal tract within the Hafniaceae, which has been recently designated as a distinct family within the Enterobacteriales [57] (Fig. S2). Hafnia strains are frequently identified in the gastrointestinal tract of humans and animals and were also found in insects [58, 59]. The phylogenomic placement of Profftia in our analysis is in agreement with previous 16S rRNA-based analyses [14].Vallotia formed a monophyletic group with Mycetohabitans endofungorum and M. rhizoxinica, endosymbionts of Rhizopus fungi within the Burkholderiaceae [60, 61] with strong support in phylogenetic analyses based on a concatenated set of 108 proteins (Figs. 1 and S3; previous taxonomic assignments of the fungus-associated symbionts were as Burkholderia/Paraburkholderia endofungorum and rhizoxinica, respectively). Interestingly, Vallotia and M. endofungorum appeared as well-supported sister taxa within this clade. This implies a closer phylogenetic relationship between Vallotia and M. endofungorum and a common origin of adelgid endosymbionts from within a clade of fungus-associated bacterial symbionts. Lengths of branches leading to the fungus-associated endosymbionts were similar to those of free-living bacteria in the data set; however, Vallotia had a remarkably longer branch marking a rapid rate of sequence evolution characteristic of obligate intracellular bacteria [2, 3]. M. endofungorum and M. rhizoxinica have been identified in the cytosol of the zygomycete Rhizopus microsporus, best known as the causative agent of rice seedling blight [61, 62]. The necrotrophic fungus secretes potent toxins, rhizoxin and rhizonin, which are produced by the endosymbionts. The bacterial partners are obligatory for their host as they tightly control its sporulation, while they benefit from host nutrients and spread with the fungal spores [63, 64]. Additionally, related bacterial strains have also been found in association with Rhizopus fungi worldwide in a diverse set of environments, including other plant species, soil, food, and even human tissues [65, 66].Fig. 1: Phylogenomic analysis showing the affiliation of the adelgid endosymbiont “Candidatus Vallotia tarda” and its closest relatives, the fungus-associated endosymbionts M. rhizoxinica and M. endofungorum within the Burkholderiaceae.Selected members of Oxalobacteraceae (Janthinobacterium agaricidamnosum [HG322949], Collimonas pratensis [CP013234], and Herbaspirillum seropedicae [CP011930]) were used as outgroup. Maximum likelihood and Bayesian analyses were performed based on a concatenated alignment of 108 proteins. Maximum likelihood tree is shown. SH-aLRT support (%) and ultrafast bootstrap support (%) values based on 1000 replicates, and Bayesian posterior probabilities are indicated on the internal nodes. Asterisks stand for a maximal support in each analysis (100%/1).Full size imageTaken together, phylogenomic analyses support that Profftia and Vallotia open up novel insect symbionts lineages most closely related to free-living bacteria within the Hafniaceae and a clade of fungus-associated endosymbionts within the Burkholderiaceae, respectively. Given the well-supported phylogenetic positioning of “Candidatus Vallotia tarda” nested within a clade formed by Mycetohabitans species, we propose the transfer of “Candidatus Vallotia tarda” to the Mycetohabitans genus, as “Candidatus Mycetohabitans vallotii” (a detailed proposal for the re-classification is given in the Supplementary Material).
    Vallotia and Profftia are evolutionary young symbionts of adelgidsThe complete sequence of the Profftia chromosome had a length of 1,225,795 bp and a G + C content of 31.9% (Table 1). It encoded for 645 proteins, one copy of each rRNA, 35 transfer RNAs (tRNAs), and 10 non-coding RNAs (ncRNAs). It had tRNAs and amino acid charging potential for all 20 standard amino acids. However, protein-coding sequences (CDSs) made up only 52.4% of the genome, and 21 pseudogenes indicated an ongoing gene inactivation.Table 1 Genomic features of Profftia and Vallotia.Full size tableThe Vallotia chromosome had a length of 1,123,864 bp. It had a G + C content and a coding density of 42.9 and 64.9%, respectively. However, a 72,431-bp-long contig showed a characteristically lower G + C content (36.1%) and contained only 46.2% putative CDSs. This contig had identical repeats at its ends, and genome annotation revealed neighboring genes for a plasmid replication initiation protein, and ParA/ParB partitioning proteins, which function in plasmid and chromosome segregation between daughter cells before cell division [67]. We thus assume that this contig corresponds to a circular plasmid of Vallotia. Vallotia has three rRNA operons, similarly to its close relative, M. rhizoxinica [68]. In total, the Vallotia genome encoded 780 proteins (29 on the putative plasmid), 41 tRNAs, and 52 predicted pseudogenes (5 on the putative plasmid).The host-restricted lifestyle has a profound influence on bacterial genomes. Relaxed purifying selection on many redundant functions and increased genetic drift can lead to the accumulation of slightly deleterious mutations and the proliferation of mobile genetic elements [69,70,71,72]. Disruption of DNA repair genes can increase mutation rates, which promote gene inactivation [73]. Non-functional genomic regions get subsequently lost, and ancient obligate endosymbionts typically have tiny (≪0.8 Mb), gene-dense genomes with AT-biased nucleotide composition [2, 74, 75]. Facultative symbionts also possess accelerated rates of sequence evolution but have larger genomes ( >2 Mb) with variable coding densities following the age of their host-restricted lifestyle [76]. The number of pseudogenes in Vallotia and Profftia is higher than in ancient intracellular symbionts, which suggests an intermediate state of genomic reduction [2]. The only moderately reduced size and AT bias together with the low protein-coding density of the Vallotia and Profftia genomes was most similar to those of evolutionary young co-obligate partners of insects [76], for instance, “Ca. Pseudomonas adelgestsugas” in A. tsugae [23], Serratia symbiotica in Cinara cedri [77, 78], and the Sodalis-like symbiont of Philaenus spumarius, the meadow spittlebug [79].The evolutionary link between Vallotia and fungus-associated endosymbiontsHigh level of genomic synteny between Vallotia and M. rhizoxinica
    Intracellular symbionts usually show a low level of genomic similarity to related bacteria. Rare examples of newly emerged bacteriocyte-associated symbionts of herbivorous insects pinpoint their source from plant-associated bacteria [4], gut bacteria [5], and other free-living bacteria [6].Genome alignments showed a low level of collinearity between the genomes of Profftia and its closest relatives. Among the relatives of Vallotia, a closed genome is available for M. rhizoxinica [68]. We therefore mostly focused on this fungus-associated symbiont as a reference for comparison with Vallotia.The Vallotia chromosome showed a surprisingly high level of synteny with the chromosome of M. rhizoxinica (Fig. 2A). However, its size was only ~40% of the fungus-associated symbiont chromosome. The putative plasmid of Vallotia was perfectly syntenic with the larger of the two plasmids of M. rhizoxinica (pBRH01), although the Vallotia plasmid was >90% smaller in size (72,431 bp versus 822,304 bp) [68]. Thus, the Vallotia plasmid showed a much higher level of reduction than the chromosome, which together with its lower G + C content and gene density suggests differential evolutionary constraints on these replicons.Fig. 2: High level of collinearity between the genomes of Vallotia and M. rhizoxinica.A Circos plot showing the synteny between the chromosome and plasmid of Vallotia and M. rhizoxinica, an endosymbiont of Rhizopus fungi. The outermost and the middle rings show genes in forward and reverse strand orientation, respectively. These include rRNA genes in red and tRNA genes in dark orange. The innermost ring indicates single-copy genes shared by M. rhizoxinica and Vallotia in black. Purple and dark yellow lines connect forward and reverse matches between the genomes, respectively. B Close up of the largest deletion on the chromosome of M. rhizoxinica and the syntenic region on the Vallotia chromosome. Genes are colored according to COG categories. Yellow: secondary metabolite biosynthesis; red: transposase; gray: unknown function; khaki: replication, recombination and repair; pink: lipid transport and metabolism; brown: protein turnover and chaperones; dark green: amino acid transport and metabolism; light green: cell envelope biogenesis; black: transcription. The figure was generated by Easyfig.Full size imageThe conservation of genome structure contrasts with the elevated number of transposases and inactive derivatives making up ~6% of the fungus-associated symbiont genome [68]. Transition to a host-restricted lifestyle is usually followed by a sharp proliferation of mobile genetic elements coupled with many genomic rearrangements [80,81,82]. However, mobile genetic elements get subsequently purged out of the genomes of strictly vertically transmitted symbionts via a mutational bias toward deletion and because of lack of opportunity for horizontal acquisition of novel genetic elements [71, 74]. Independent origins of the fungus and adelgid symbioses from free-living precursors would have likely resulted in extensive genome rearrangements due to the accumulation of mobile genetic elements, as seen, for instance, between different S. symbiotica strains in aphids [81]. In contrast to the fungus-associated symbiont, mobile elements are notably absent from the Vallotia genome, suggesting that they might have been lost early after the establishment of the adelgid symbiosis conserving high collinearity between the fungus- and adelgid-associated symbiont genomes. M. rhizoxinica is transmitted also horizontally among fungi and might have more exposure to foreign DNA, therefore at least part of the mobile elements could possibly be inserted into its genome after the host switch of the Vallotia precursor [61, 62].The observed high level of genome synteny between Vallotia and M. rhizoxinica genomes is consistent with the phylogenetic position of Vallotia interleaved within the clade of Rhizopus endosymbionts. This points toward a direct evolutionary link between these symbioses and a symbiont transition between the fungus and insect hosts.Shrinkage of the insect symbiont genomeDeletion of large genomic fragments—spanning many functionally unrelated genes—represents an important driving force of genome erosion especially at early stages of symbioses when selection on many functions is weak [3, 83]. Besides, gene loss also occurs individually and is ongoing, albeit at a much lower rate, even in ancient symbionts [75, 84, 85]. Both small and large deletions could be seen when comparing the Vallotia and M. rhizoxinica genomes. Several small deletions as small as one gene were observed sparsely in the entire length of the Vallotia genome within otherwise collinear regions. The largest genomic region missing from Vallotia encompassed 165 kbp on the M. rhizoxinica chromosome (Fig. 2B). The corresponding intergenic spacer was only 3843-bp long on the Vallotia genome between a phage shock protein and the Mfd transcription-repair-coupling factor, present both in Vallotia and M. rhizoxinica. Interestingly, this large genomic fragment included the large rhizoxin biosynthesis gene cluster (rhiIGBCDHEF), which is responsible for the production of rhizoxin, a potent antimitotic macrolide serving as a virulence factor for R. microsporus, the host of M. rhizoxinica [86]. A homologous gene cluster was also found in Pseudomonas fluorescens, and it has been suggested that it has been horizontally acquired by M. rhizoxinica [68, 86]. The rhi cluster is also present in M. endofungorum, therefore it was most likely already present in the genome of the common ancestor of the fungus- and adelgid-associated symbionts and got subsequently lost in Vallotia. Rhizoxin blocks microtubule formation in various types of eukaryotic cells [86, 87], thus the loss of this gene cluster in ancestral Vallotia could have contributed to the establishment of the adelgid symbiosis. However, this large deleted genomic region also contained several transposases and many other genes, such as argE and ilvA, coding for the final enzymes for ornithine and 2-oxobutanoate productions, which were located adjacent to each other at the beginning of this fragment. The largest deletion between the plasmids encompassed nearly 137 kbp of the megaplasmid of M. rhizoxinica and involved several non-ribosomal peptide synthetases (NRPS), insecticidal toxin complex (Tc) proteins, and a high number of transposases among others. M. rhizoxinica harbors 15 NRPS gene clusters [68] in total, all of which are absent in Vallotia. NRPSs are large multienzyme machineries that assemble various peptides, which might function as antibiotics, signal molecules, or virulence factors [88]. Insecticidal toxin complexes are bacterial protein toxins, which exhibit powerful insecticidal activity [89]. Two of such proteins are also present in the large deleted chromosomal region in close proximity to the rhizoxin biosynthesis gene cluster (Fig. 2B); however, their role in M. rhizoxinica remains elusive.The Vallotia genome encodes a subset of functions of the fungus-associated endosymbiontsThe number of protein-coding genes of Vallotia is less than one-third of those of M. rhizoxinica and M. endofungorum, although metabolic functions are already reduced in the fungus-associated endosymbionts compared to free-living Burkholderia species [68] (Figs. S4 and S5). When compared to the two genomes of the fungus-associated endosymbionts, only 53 proteins were specific to Vallotia (Fig. S6). All of these were short (on average 68 amino acid long) hypothetical proteins and most of them showed no significant similarity to other proteins in public databases. Whether these Vallotia-specific hypothetical proteins might be over-annotated/non-functional open reading frames or orphan genes with a yet unknown function [90, 91] needs further investigation. Four genes were present in Vallotia and M. rhizoxinica but were missing in M. endofungorum. These encoded for BioA and BioD in biotin biosynthesis, NagZ in cell wall recycling, and an MFS transporter. Fifteen genes, including, for instance, the MreB rod-shape-determining protein, glycosyltransferase and hit family proteins, genes in lipopolysaccharide, lipoate synthesis, and the oxidative pentose phosphate pathway, were shared between Vallotia and M. endofungorum only. The rest of the Vallotia genes, coding for 91% of all of its proteins, were shared among the fungus- and insect-associated endosymbionts.Comparing the genes present in both endosymbionts to those shared only by the fungus-associated endosymbionts (Fig. S7), we can infer selective functions maintained or lost during transition to insect endosymbiosis. Translation-related functions have been retained in the greatest measure in the group shared by all endosymbionts. Functions, where higher proportion of genes were specific to the fungus endosymbioses, were related to transcription, inorganic ion transport and metabolism, secondary metabolite biosynthesis, signal transduction, intracellular trafficking, secretion, vesicular transport, and defense mechanisms. Most of the proteins specific to either of the fungus-associated symbionts were homologous to transposases and integrases, transcriptional regulators, or had an unknown function.Fungus-associated endosymbionts encode a high number of transcriptional regulators (~5% of all genes in M. rhizoxinica) [68], but Vallotia has retained only a handful of such genes, which is a feature similar to other insect symbionts and might facilitate the overproduction of essential amino acids [75, 92].M. rhizoxinica is resistant against various β-lactams and has an arsenal of efflux pumps that might provide defense against antibacterial fungal molecules, the latter might also excrete virulence factors to the fungus cytosol (type I secretion) [68]. Besides, M. rhizoxinica encodes several genes for pilus formation; adhesion proteins; and type II, type III, and type IV secretion systems, which likely play a central role in host infection and manipulation in the bacteria–fungus symbiosis [68, 93, 94]. However, all of the corresponding genes are missing in Vallotia. Thus, neither of these mechanisms likely play a role in the adelgid symbiosis. Indeed, we could not even detect remnants of these genes in the Vallotia genome, except for a type II secretion system protein as a pseudogene. Loss of these functions is consistent with a strictly vertical transmission of Vallotia between host generations. Transovarial transmission likely does not require active infection mechanisms, and the endosymbionts rather move between the insect cells in a passive manner via an endocytic/exocytic vesicular route [12, 95]. In contrast, M. rhizoxinca is also able to spread horizontally among fungi and re-infect cured Rhizopus strains under laboratory conditions [61, 62].Differential reduction of metabolic pathways in Vallotia and Profftia
    Although compared to their closest free-living relatives both Vallotia and Profftia have lost many genes in all functional categories, both retained the highest number of genes in translation-related functions (Fig. S4). Besides, functions related to cell division, nucleotide and coenzyme transport and metabolism, DNA replication and repair, posttranslational modification, and cell envelope biogenesis are reduced to a lesser extent in both endosymbionts. As a consequence, most of the genes of Vallotia and Profftia are devoted to translation and cell envelope biogenesis, which make up higher proportions of their genomes than in related bacteria (Fig. S5). Retention of a minimal set of genes involved in central cellular functions such as translation, transcription, and replication is a typical feature of reduced genomes, even extremely tiny ones of long-term symbionts [75]. However, ancient intracellular symbionts usually miss a substantial number of genes for the production of the cell envelope and might rely on host-derived membrane compounds [96,97,98].Based on pathway reconstructions, both Vallotia (Fig. S8) and Profftia (Fig. S9) have a complete gene set for peptidoglycan, fatty acid, and phospholipid biosynthesis and retained most of the genes for the production of lipid A, LPS core, and the Lpt LPS transport machinery. Besides, we found a partial set of genes for O antigen biosynthesis in the Vallotia genome. Regarding the membrane protein transport and assembly, both adelgid endosymbionts have the necessary genes for Sec and signal recognition particle translocation and the BAM outer membrane protein assembly complex. Profftia also has a complete Lol lipoprotein trafficking machinery (lolABCDE), which can deliver newly matured lipoproteins from the inner membrane to the outer membrane [99]. In addition, Profftia has a near-complete gene set for the Tol-Pal system; however, tolA has been pseudogenized suggesting an ongoing reduction of this complex. Further, both adelgid endosymbionts have retained mrdAB and mreBCD having a role in the maintenance of cell wall integrity and morphology [100, 101]. The observed well-preserved cellular functions for cell envelope biogenesis and integrity are consistent with the rod-shaped cell morphology of Profftia and Vallotia [14], contrasting the spherical/pleomorphic cell shape of ancient endosymbionts, such as Annandia in A. tsugae and Pineus species [10, 11, 15].Regarding the central metabolism, Vallotia lacks 6-phosphofructokinase but has a complete gene set for gluconeogenesis and the tricarboxylic acid (TCA) cycle. TCA cycle genes are typically lost in long-term symbionts but are present in facultative and evolutionarily recent obligate endosymbionts [79, 82, 102]. Interestingly, Vallotia does not have a recognized sugar transporter. Similarly to M. rhizoxinica [68], a glycerol kinase gene next to a putative glycerol uptake facilitator protein is present on its plasmid. However, the latter gene has a frameshift mutation and a premature stop codon in the first 40% of the sequence and whether it can still produce a functional protein remains unknown.Profftia can convert acetyl-CoA to acetate for energy but lacks TCA cycle genes, a feature characteristic to more reduced genomes, such as, for instance, Annandia in A. tsugae [23]. Profftia has import systems for a variety of organic compounds, such as murein tripeptides, phospholipids, thiamine, spermidine and putrescine, 3-phenylpropionate, and a complete phosphotransferase system for the uptake of sugars.NADH dehydrogenase, ATP synthase, and cytochrome oxidases (bo/bd-1) are encoded on both adelgid symbiont genomes. However, Vallotia is not able to produce ubiquinone and six pseudogenes in its genome indicate a recent inactivation of this pathway (Fig. S10).Profftia retained more functions in inorganic ion transport and metabolism, while Vallotia had a characteristically higher number of genes related to amino acid biosynthesis (see its function below) and nucleotide transport and metabolism (Fig. S4). For instance, Profftia can take up sulfate and use it for assimilatory sulfate reduction and cysteine production, and it has also retained many genes for heme biosynthesis (Fig. S9). However, it cannot produce inosine-5-phosphate and uridine 5’-monophosphate precursors for the de novo synthesis of purine and pyrimidine nucleotides and thus would need to import these compounds.Notably, although core genes in DNA replication and repair [70] are well preserved, multiple pseudogenes may indicate an ongoing erosion of DNA repair functions in the genomes. These include genes for the UvrABC nucleotide excision repair complex in both adelgid symbionts, helicases (recG, recQ), mismatch repair genes (mutL, mutS; the MutHLS complex is also missing in Profftia), and alkA encoding a DNA glycosylase in Vallotia.Taken together, their moderately reduced, gene-sparse genomes but still versatile metabolic capabilities support that Vallotia and Profftia are evolutionarily recently acquired endosymbionts. This is following their occurrence in lineages of adelgids, which likely diversified relatively recently, ~60 and ~47 million years ago, respectively, from the remaining clades of Adelgidae [8].
    Vallotia and Profftia are both obligatory nutritional symbiontsComplementary functions in essential amino acid provisionVallotia and Profftia complement each other’s role in the essential amino acid synthesis, thus have a co-obligatory status in the A. laricis/A. tardus symbiosis (Fig. 3). Although Vallotia likely generates most essential amino acids, solely Profftia can produce chorismate, a key precursor for the synthesis of phenylalanine and tryptophan. Profftia is likely responsible for the complete biosynthesis of phenylalanine as it has a full set of genes for this pathway. It can also convert chorismate to anthranilate; however, further genes for tryptophan biosynthesis are only present in the Vallotia genome. Thus, Vallotia likely takes up anthranilate for tryptophan biosynthesis. Anthranilate synthase (trpEG), is subject to negative feedback regulation by tryptophan [103], thus partition of this rate-limiting step between the co-symbionts can enhance overproduction of the amino acid and might stabilize dual symbiotic partnerships at an early stage of coexistence. The production of tryptophan is partitioned between Vallotia and Profftia similarly as seen in other insect symbioses [77, 78, 104], and it is also shared but is more redundant between the Annandia and Pseudomonas symbionts of A. tsugae [23]. The Vallotia–Profftia system generally shows a lower level of functional overlap between the symbionts and is more unbalanced than the Annandia–Pseudomonas association. In the latter, redundant genes are present also in the synthesis of phenylalanine, threonine, lysine, and arginine, and Annandia can produce seven and the Pseudomonas partner five essential amino acids with the contribution of host genes [23].Fig. 3: Division of labor in amino acid biosynthesis and transport between Vallotia and Profftia showing co-obligatory status of endosymbionts of A. laricis/tardus.Amino acids produced by Vallotia and Profftia are shown in blue and red, respectively. Bolded texts indicate essential amino acids. The insect host likely supplies ornithine, homocysteine, 2-oxobutanoate, and glutamine. Other compounds that cannot be synthesized by the symbionts are shown in gray italics.Full size imageThe Vallotia genome encodes for all the enzymes for the synthesis of five essential amino acids (histidine, leucine, valine, lysine, threonine). ArgG and tyrB among the essential amino acid synthesis-related genes are only present on the plasmid of Vallotia, which might be a reason that the plasmid is still part of its genome. However, neither of the endosymbionts can produce ornithine, 2-oxobutanoate, and homocysteine de novo, which are key for the biosynthesis of arginine, isoleucine, and methionine, respectively. The corresponding functions are also missing from the Annandia–Pseudomonas system [23]. These compounds are thus likely supplied by the insect host, as seen for instance in aphids, mealybugs, and psyllids, where the respective genes are present in the insect genomes and are typically overexpressed within the bacteriome [97, 105, 106]. The metC and argA genes are still present as pseudogenes in Vallotia suggesting a recent loss of these functions in methionine and arginine biosynthesis, respectively.In most plant sap-feeding insects harboring a dual symbiotic system, typically the more ancient symbiont provides most of the essential amino acids [77, 107]. Given its prominent role in nutrient provision and its presence in both larch- and Douglas fir-associated adelgids, Vallotia might be the older symbiont. Loss of functions in chorismate and anthranilate biosynthesis might have led to the fixation of Profftia in the system.Vallotia and Profftia have more redundant functions in non-essential amino acid production (Fig. 3). Only Profftia can produce cysteine and tyrosine, while none of the symbionts can build up glutamine, thus this latter amino acid is likely supplied by the insect bacteriocytes.The presence of relevant transporters can complement missing functions in amino acid synthesis (Fig. 3). For instance, Profftia has a high-affinity glutamine ABC transporter and three symporters (BrnQ, Mtr, TdcC), which can import five among the essential amino acids that can be produced by Vallotia. Vallotia might excrete isoleucine, valine, and leucine via AzICD, a putative branched-chain amino acid efflux pump [108], and these amino acids could be taken up by Profftia via BrnQ and would be readily available also for the insect host.B vitamin provision by Vallotia
    Regarding the B vitamin synthesis, Vallotia is likely able to produce thiamine (B1), riboflavin (B2), pantothenate (B5), pyridoxine (B6), biotin (B7), and folic acid (B9) (Fig. S11). Although Vallotia misses some genes of the canonical pathways, alternative enzymes and host-derived compounds might bypass these reactions, as detailed in the Supplementary Material. Profftia has only a few genes related to B vitamin biosynthesis. Three pseudogenes (ribAEC) in the riboflavin synthesis pathway indicate that these functions might have been lost recently in this symbiont (Fig. S11). More

  • in

    Evolutionary dynamics of the elevational diversity gradient in passerine birds

    1.Lomolino, M. V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    2.McCain, C. M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 19, 541–553 (2010).
    Google Scholar 
    3.Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Wiens, J. J., Parra-Olea, G., García-París, M. & Wake, D. B. Phylogenetic history underlies elevational biodiversity patterns in tropical salamanders. Proc. R. Soc. B 274, 919–928 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Pigot, A. L., Trisos, C. H. & Tobias, J. A. Functional traits reveal the expansion and packing of ecological niche space underlying an elevational diversity gradient in passerine birds. Proc. R. Soc. B 283, 20152013 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Körner, C. & Spehn, E. M. (eds) Mountain Biodiversity: A Global Assessment (CRC Press, 2002).9.Merckx, V. S. F. T. et al. Evolution of endemism on a young tropical mountain. Nature 524, 347–350 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Fjeldsa, J. Geographical patterns for relict and young species of birds in Africa and South America and implications for conservation priorities. Biodivers. Conserv. 3, 207–226 (1994).Article 

    Google Scholar 
    11.Jetz, W., Rahbek, C. & Colwell, R. K. The coincidence of rarity and richness and the potential signature of history in centres of endemism. Ecol. Lett. 7, 1180–1191 (2004).Article 

    Google Scholar 
    12.Weir, J. T. Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution 60, 842–855 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 10334–10339 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Cozzarolo, C.-S. et al. Biogeography and ecological diversification of a mayfly clade in New Guinea.Front. Ecol. Evol. 7, 233 (2019).Article 

    Google Scholar 
    15.Davies, T. J., Savolainen, V., Chase, M. W., Moat, J. & Barracloug, T. G. Environmental energy and evolutionary rates in flowering plants. Proc. R. Soc. B 271, 2195–2200 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Graves, G. R. Linearity of geographic range and its possible effect on the population structure of andean birds. Auk 105, 47–52 (1988).Article 

    Google Scholar 
    17.Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    18.Cai, T. et al. What makes the Sino-Himalayan mountains the major diversity hotspots for pheasants? J. Biogeogr. 45, 640–651 (2018).Article 

    Google Scholar 
    19.Rana, S. K., Gross, K. & Price, T. D. Drivers of elevational richness peaks, evaluated for trees in the east Himalaya. Ecology 100, e02548 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 1114–1119 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Ribas, C. C., Moyle, R. G., Miyaki, C. Y. & Cracraft, J. The assembly of montane biotas: linking Andean tectonics and climatic oscillations to independent regimes of diversification in Pionus parrots. Proc. R. Soc. B 274, 2399–2408 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Schwery, O. et al. As old as the mountains: the radiations of the Ericaceae. N. Phytologist 207, 355–367 (2015).Article 

    Google Scholar 
    23.Bates, J. M. & Zink, R. M. Evolution into the Andes: molecular evidence for species relationships in the genus Leptopogon. Auk 111, 507–515 (1994).
    Google Scholar 
    24.Roy, M. S. Recent diversification in African greenbuls (Pycnonotidae: Andropadus) supports a montane speciation model. Proc. R. Soc. B 264, 1337–1344 (1997).PubMed Central 
    Article 

    Google Scholar 
    25.Garcia-Moreno, J. et al. Pre-Pleistocene differentiation among chat-tyrants. Condor 100, 629–640 (1998).Article 

    Google Scholar 
    26.Oliveros, C. H. et al. Earth history and the passerine superradiation. Proc. Natl Acad. Sci. USA 116, 7916–7925 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).CAS 
    Article 

    Google Scholar 
    28.Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: what are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).Article 

    Google Scholar 
    29.Herrera-Alsina, L., van Els, P. & Etienne, R. S. Detecting the dependence of diversification on multiple traits from phylogenetic trees and trait data. Syst. Biol. 68, 317–328 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Derryberry, E. P. et al. Lineage diversification and morphological evolution in a large-scale continental radiation: the Neotropical ovenbirds and woodcreepers (Aves: Furnariidae). Evolution 65, 2973–2986 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Fjeldså, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249–265 (2012).Article 

    Google Scholar 
    33.Chazot, N. et al. Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Mol. Ecol. 25, 5765–5784 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Elias, M. et al. Out of the Andes: oatterns of diversification in clearwing butterflies. Mol. Ecol. 18, 1716–1729 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.McGuire, J. A., Witt, C. C., Altshuler, D. L. & Remsen, J. V. Phylogenetic systematics and biogeography of hummingbirds: Bayesian and maximum likelihood analyses of partitioned data and selection of an appropriate partitioning strategy. Syst. Biol. 56, 837–856 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Brumfield, R. T. & Edwards, S. V. Evolution into and out of the Andes: a Bayesian analysis of historical diversification in Thamnophilus antshrikes. Evolution 61, 346–367 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Zhou, C. et al. Genome-wide analysis sheds light on the high-altitude adaptation of the buff-throated partridge (Tetraophasis szechenyii). Mol. Genet. Genom. 295, 31–46 (2020).CAS 
    Article 

    Google Scholar 
    38.Xu, Z., He, J. & Wang, J. Hypoxia affects the resistance of Scylla paramamosain to Vibrio alginolyticus via changes of energy metabolism. Aquac. Rep. 19, 100565 (2021).Article 

    Google Scholar 
    39.Storz, J. F., Scott, G. R. & Cheviron, Z. A. Phenotypic plasticity and genetic adaptation to high-altitude hypoxia in vertebrates. J. Exp. Biol. 213, 4125–4136 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Scott, G. R. Elevated performance: the unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Projecto-Garcia, J. et al. Repeated elevational transitions in hemoglobin function during the evolution of Andean hummingbirds. Proc. Natl Acad. Sci. USA 110, 20669–20674 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Scott, G. R. et al. Molecular evolution of cytochrome C oxidase underlies high-altitude adaptation in the bar-headed goose. Mol. Biol. Evol. 28, 351–363 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Schumm, M., White, A. E., Supriya, K. & Price, T. D. Ecological limits as the driver of bird species richness patterns along the east Himalayan elevational gradient. Am. Nat. 195, 802–817 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Malpica, A., Covarrubias, S., Villegas-Patraca, R. & Herrera-Alsina, L. Ecomorphological structure of avian communities changes upon arrival of wintering species. Basic Appl. Ecol. 24, 60–67 (2017).Article 

    Google Scholar 
    45.Etienne, R. S. et al. A minimal model for the latitudinal diversity gradient suggests a dominant role for ecological limits. Am. Nat. 194, E122–E133 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Freeman, B. G., Scholer, M. N., Ruiz-Gutierrez, V. & Fitzpatrick, J. W. Climate change causes upslope shifts and mountaintop extirpations in a tropical bird community. Proc. Natl Acad. Sci. USA 115, 11982–11987 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Braun, E. L., Cracraft, J. & Houde, P. in Avian Genomics in Ecology and Evolution (ed. Kraus, R. H. S.) 151–210 (Springer, 2019).49.del Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A. & Kirwan, G. Handbook of the Birds of the World (Lynx Edicions, 2016).50.Chapman, F. M. et al. The distribution of bird life in Ecuador: a contribution to a study of the origin of Andean bird-life. Bull. Am. Mus. Nat. Hist. 55, 1–784 (1926).
    Google Scholar 
    51.Maddison, W. P., Midford, P. E. & Otto, S. P. Estimating a binary character’s effect on speciation and extinction. Syst. Biol. 56, 701–710 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Daru, B., Karunarathne, P. & Schliep, K. phyloregion: R package for biogeographic regionalization and spatial conservation. Methods Ecol. Evol. 11, 1483–1491 (2020).Article 

    Google Scholar  More

  • in

    Shoot-soil ecological stoichiometry of alfalfa under nitrogen and phosphorus fertilization in the Loess Plateau

    1.Bai, X. J., Wang, B. R., An, S. S., Zeng, Q. C. & Zhang, H. X. Response of forest species to C:N:P in the plant–litter–soil system and stoichiometric homeostasis of plant tissue during afforestation on the Loess Plateau, China. CATENA 183, 104186 (2019).CAS 
    Article 

    Google Scholar 
    2.Zhao, X. N., Wu, P. T., Gao, X. D. & Persaud, N. Soil quality indicators in relation to land use and topography in a small catchment on the Loess Plateau of China. Land Degrad. Dev. 26(1), 54–61 (2015).Article 

    Google Scholar 
    3.Penuelas, J., Sardans, J., Rivas-Ubach, A. & Janssens, I. A. The human-induced imbalance between C, N, and P in Earth’s life system. GCB Bioenergy 18(1), 3–6 (2012).
    Google Scholar 
    4.Zhao, Z. P. et al. Effects of chemical fertilizer combined with organic manure on Fuji apple quality, yield and soil fertility in apple orchard on the Loess Plateau of China. Int. J. Agric. Biol. Eng. 7(2), 45–55 (2014).CAS 

    Google Scholar 
    5.Treseder, K. K. & Vitousek, P. M. Effects of soil nutrient availability on investment in acquisition of N and P in Havaiian rain forests. Ecology 82(4), 946–954 (2001).Article 

    Google Scholar 
    6.Vitousek, P. M. Nutrient cycling and nutrient use efficiency. Am. Nat. 119(4), 553–573 (1984).Article 

    Google Scholar 
    7.Zhong, Y. Q. W., Yan, W. M., Xu, X. B. & Shangguan, Z. P. Influence of nitrogen fertilization on wheat, and soil carbon, nitrogen and phosphorus stoichiometry characteristics. Int. J. Agric. Biol. 17, 1179–2118 (2015).CAS 
    Article 

    Google Scholar 
    8.Cui, Q., Lü, X. T., Wang, Q. B. & Han, X. G. Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant Soil 334, 209–219 (2010).CAS 
    Article 

    Google Scholar 
    9.Louis, A. S. et al. Decadal changes in soil carbon and nitrogen under a range of irrigation and phosphorus fertilizer treatments. Soil Sci. Soc. Am. J. 77(1), 246–256 (2012).
    Google Scholar 
    10.Ostertag, R. Foliar nitrogen and phosphorus accumulation responses after fertilization: An example from nutrient-limited Hawaiian forests. Plant Soil 334, 85–98 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Hu, Q. J., Sheng, M. Y., Bai, Y. X., Jie, Y. & Xiao, H. L. Response of C, N, and P stoichiometry characteristics of Broussonetia papyrifera to altitude gradients and soil nutrients in the karst rocky ecosystem, SW China. Plant Soil https://doi.org/10.1007/s11104-020-04742-7 (2020).Article 

    Google Scholar 
    12.Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    13.Zhang, G. Q., Zhang, P., Peng, S. Z., Chen, Y. M. & Cao, Y. The coupling of leaf, litter, and soil nutrients in warm temperate forests in northwestern China. Sci. Rep. 7(1), 11754 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Pang, Y. et al. The linkages of plant, litter and soil C:N:P stoichiometry and nutrient stock in different secondary mixed forest types in the Qinling Mountains, China. PeerJ 8(4), e9274 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Heyburn, J., Mckenzie, P., Crawlwy, M. J. & Fornara, D. A. Effects of grassland management on plant C:N:P stoichiomtry: Implications for soil elment cycling and storage. Ecosphere 8(10), e01963 (2017).Article 

    Google Scholar 
    16.Sun, X. et al. Initial responses of grass litter tissue chemistry and N:P stoichiometry to varied N and P input rates and ratios in Inner Mongolia. Agric. Ecosyst. Environ. 252, 114–125 (2018).CAS 
    Article 

    Google Scholar 
    17.Ding, F. et al. Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem. J. Plant Ecol. 12(4), 682–692 (2019).Article 

    Google Scholar 
    18.Ye, Y. S. et al. Carbon, nitrogen and phosphorus accumulation and partitioning, and C:N:P stoichiometry in late-season rice under different water and nitrogen managements. PLoS ONE 9(7), e101776 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Sistla, S. A., Appling, A. P., Lewandowska, A. M., Taylor, B. N. & Wolf, A. A. Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124(7), 949–959 (2015).CAS 
    Article 

    Google Scholar 
    20.Ladanai, S., Ågren, G. I. & Olsson, B. A. Relationships between tree and soil properties in Picea abies and Pinus sylvestris forests in Sweden. Ecosystems 13(2), 302–316 (2010).CAS 
    Article 

    Google Scholar 
    21.Lu, J. Y. et al. Leaf resorption and stoichiometry of N and P of 1, 2 and 3 year-old alfalfa under one-time P fertilization. Soil Till. Res. 197, 104481 (2020).Article 

    Google Scholar 
    22.Lu, J. Y., Yang, M., Liu, M. G., Lu, Y. X. & Yang, H. M. Nitrogen and phosphorus fertilizations alter nitrogen, phosphorus and potassium resorption of alfalfa in the Loess Plateau of China. J. Plant Nutr. 42(18), 2234–2246 (2019).CAS 
    Article 

    Google Scholar 
    23.Jiang, H. M., Jiang, J. P., Jia, Y., Li, F. M. & Xu, J. Z. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem. 38(8), 2350–2358 (2006).CAS 
    Article 

    Google Scholar 
    24.Gu, Y. J. et al. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop Res. 215, 94–103 (2018).Article 

    Google Scholar 
    25.Herbert, D. A., Williams, M. & Rastetter, E. B. A model analysis of N and P limitaiton on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 65, 121–150 (2003).CAS 
    Article 

    Google Scholar 
    26.Zhang, L. X., Bai, Y. F. & Han, X. G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Bot. Sin. 46, 259–270 (2004).
    Google Scholar 
    27.Stewart, J. R., Kennedy, G. J., Landes, R. D. & Dawson, J. Foliar-nitrogen and phosphorus resorption patterns differ among nitrogen-fixing and nonfixing temperate-deciduous trees and shrubs. Int. J. Plant Sci. 169(4), 495–502 (2008).CAS 
    Article 

    Google Scholar 
    28.Vance, C. P., Uhde-Stone, C. & Allan, D. L. Phosphorus acquisition and use: Critical adaptations by plant for securing a non renewable resource. New Phytol. 157, 423–447 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Han, W. X., Fang, J. Y., Guo, D. L. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168(2), 377–385 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Ma, H. M. et al. Moderate clipping stimulates over-compensatory growth of Leymus chinensis under saline-alkali stress throuth high allocation of biomass and nitrogen to shoots. Plant Growth Regul. 92, 95–106 (2020).CAS 
    Article 

    Google Scholar 
    31.Sophie, Z. B. et al. The application of ecological stoichiometry to plant–microbial-soil organic matter transformations. Ecol. Monogr. 85(2), 133–155 (2015).Article 

    Google Scholar 
    32.Schmitt, A., Pausch, J. & Kuzyakov, Y. C and N allocation in soil under ryegrass and alfalfa extimated by 13C and 15N labelling. Plant Soil 368, 581–590 (2013).CAS 
    Article 

    Google Scholar 
    33.Koerselman, W. & Meuleman, A. F. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 33, 1441–1450 (1996).Article 

    Google Scholar 
    34.Tian, H. G., Chen, G. S., Zhang, C., Melillo, J. M. & Hall, C. A. S. Pattern and variation of C:N:P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 98, 139–151 (2010).CAS 
    Article 

    Google Scholar 
    35.Ding, X. Q. et al. Establishing P fertilization reconmendation index of different vegetables by STP with the “3414” field experiments in South China. Int. J. Agric. Biol. 16, 603–608 (2014).CAS 

    Google Scholar 
    36.Suo, Y. Y. et al. Local-scale determinants of elemental stoichiometry of soil in an old-growth temperate forest. Plant Soil 408, 401–414 (2016).CAS 
    Article 

    Google Scholar 
    37.Qiu, W. H., Liu, J. S., Li, B. Y. & Wang, Z. H. N2O and CO2 emissions from a dryland wheat cropping system with long-term N fertilization and their relationships with soil C, N and bacterial community. Environ. Sci. Pollut. Res. 27, 8673–8683 (2020).CAS 
    Article 

    Google Scholar 
    38.Appelhans, S. C., Barbagelata, P. A., Melchiori, R. J. M. & Boem, F. G. Assessing soil P fractions changes with long-term phosphorus fertilization related to crop yield of soybean and maize. Soil Use Manag. 36(3), 524–535 (2020).Article 

    Google Scholar 
    39.Marklein, A. R. & Houlton, B. Z. Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol. 193, 696–704 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Chen, X. D. et al. Soil alkaline phosphatase activity and bacterial phoD gene abundance and diversity under long-term nitrogen and manure inputs. Geoderma 349, 36–44 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Van Huysen, T. L., Perakis, S. S. & Harmon, M. K. Decomposition drives convergence of forest litter nutrient stoichiometry following phosphorus addition. Plant Soil 406(1–2), 1–14 (2016).Article 
    CAS 

    Google Scholar 
    42.Li, M. et al. Role of plant species and soil phosphorus concentrations in determining phosphorus: Nutrient stoichiometry in leaves and fine roots. Plant Soil 445, 231–242 (2019).Article 
    CAS 

    Google Scholar 
    43.Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in fresh water, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    44.Shaver, G. R. & Melillo, J. M. Nutrient budgets of marsh plant: Efficiency concepts and relation to availability. Ecology 65, 1491–1510 (1984).Article 

    Google Scholar 
    45.De Vos, B., Van Meirvenne, M., Quataert, P. & Muys, B. Predictive quality of pedotransfer functions for estimating bulk density of forest soils. Soil Sci. Soc. Am. J. 69(2), 500–510 (2005).Article 

    Google Scholar  More