Ecological effects on female bill colour explain plastic sexual dichromatism in a mutually-ornamented bird
1.Darwin, C. The Descent of Man, and Selection in Relation to Sex (Jon Murray, 1871).Book
Google Scholar
2.Andersson, M. Sexual Selection (Princeton University Press, 1994).Book
Google Scholar
3.McGraw, K. J. & Ardia, D. R. Carotenoids, immunocompetence, and the information content of sexual colors: An experimental test. Am. Nat. 162, 704–712 (2003).PubMed
Article
PubMed Central
Google Scholar
4.Clutton-Brock, T. Sexual selection in females. Anim. Behav. 77, 3–11 (2009).Article
Google Scholar
5.Amundsen, T. Why are female birds ornamented?. TREE 15, 149–155 (2000).CAS
PubMed
PubMed Central
Google Scholar
6.Coyne, J. A., Kay, E. H. & Pruett-Jones, S. The genetic basis of sexual dimorphism in birds. Evolution 62, 214–219 (2008).PubMed
PubMed Central
Google Scholar
7.Gazda, M. et al. A genetic mechanism for sexual dichromatism in birds. Science 368, 1270–1274 (2020).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
8.Kraaijeveld, K. Genetic architecture of novel ornamental traits and the establishment of sexual dimorphism: Insights from domestic birds. J. Ornithol. 160, 861–868 (2019).Article
Google Scholar
9.Kimball, R. T. & Ligon, J. D. Evolution of avian plumage dichromatism from a proximate perspective. Am. Nat. 154, 182–193 (1999).Article
Google Scholar
10.West-Eberhard, M. J. Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983).Article
Google Scholar
11.Lyon, B. E. & Montgomerie, R. Sexual selection is a form of social selection. Philos. Trans. R. Soc. B 367, 2266–2273 (2012).Article
Google Scholar
12.Faivre, B., Grégoire, A., Préault, M., Cézilly, F. & Sorci, G. Immune activation rapidly mirrored in a secondary sexual trait. Science 300, 103 (2003).CAS
PubMed
Article
PubMed Central
Google Scholar
13.Gautier, P. et al. The presence of females modulates the expression of a carotenoid-based sexual signal. Behav. Ecol. Sociobiol. 62, 1159–1166 (2008).Article
Google Scholar
14.Hill, G. E., Hood, W. R. & Huggins, K. A multifactorial test of the effects of carotenoid access, food intake and parasite load on the production of ornamental feathers and bill coloration in American goldfinches. J. Exp. Biol. 212, 1225–1233 (2009).PubMed
Article
PubMed Central
Google Scholar
15.Rosenthal, M. F., Murphy, T. G., Darling, N. & Tarvin, K. A. Ornamental bill color rapidly signals changing condition. J. Avian Biol. 43, 553–564 (2012).Article
Google Scholar
16.Eraud, C. et al. Environmental stress affects the expression of a carotenoid-based sexual trait in male zebra finches. J. Exp. Biol. 210, 3571–3578 (2007).PubMed
Article
PubMed Central
Google Scholar
17.Kelly, R. J., Murphy, T. G., Tarvin, K. A. & Burness, G. Carotenoid-based ornaments of female and male American goldfinches (Spinus tristis) show sex-specific correlations with immune function and metabolic rate. Physiol. Biochem. Zool. 85, 348–363 (2012).PubMed
Article
PubMed Central
Google Scholar
18.Funghi, C., Trigo, S., Gomes, A. C. R., Soares, M. C. & Cardoso, G. C. Release from ecological constraint erases sex difference in social ornamentation. Behav. Ecol. Sociobiol. 72, 67 (2018).Article
Google Scholar
19.DeWitt, T. J., Sih, A. & Wilson, D. S. Costs and limits of phenotypic plasticity. TREE 13, 77–81 (1998).CAS
PubMed
PubMed Central
Google Scholar
20.West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).Book
Google Scholar
21.Weaver, R. J., Santos, E. S. A., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).PubMed
PubMed Central
Article
ADS
CAS
Google Scholar
22.von Schantz, T., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition-dependent sexual signals. Proc. Biol. Sci. 266, 1–12 (1999).Article
Google Scholar
23.Møller, A. P. et al. Carotenoid-dependent signals: Indicators of foraging efficiency, immunocompetence or detoxification ability?. Avian Poult. Biol. Rev. 11, 137–159 (2000).
Google Scholar
24.Garratt, M. & Brooks, R. C. Oxidative stress and condition-dependent sexual signals: More than just seeing red. Proc. Biol. Sci. 279, 3121–3130 (2012).PubMed
PubMed Central
Google Scholar
25.Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds-a meta-analysis. PLoS One 7, e43088 (2012).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
26.Hõrak, P., Ots, I., Vellau, H., Spottiswoode, C. & Møller, A. P. Carotenoid-based plumage coloration reflects hemoparasite infection and local survival in breeding great tits. Oecologia 126, 166–173 (2001).PubMed
Article
ADS
PubMed Central
Google Scholar
27.Clement, P., Harris, A. & Davies, J. Finches and Sparrows: An Identification Guide (Princeton University Press, 1993).
Google Scholar
28.Cardoso, G. C., Batalha, H. R., Reis, S. & Lopes, R. J. Increasing sexual ornamentation during a biological invasion. Behav. Ecol. 25, 916–923 (2014).Article
Google Scholar
29.Cardoso, G. C. et al. Similar preferences for ornamentation in opposite- and same-sex choice experiments. J. Evol. Biol. 27, 2798–2806 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Marques, C. I. J., Batalha, H. R. & Cardoso, G. C. Signalling with a cryptic trait: The regularity of barred plumage in common waxbills. R. Soc. Open. Sci. 3, 160195 (2016).PubMed
PubMed Central
Article
ADS
Google Scholar
31.Funghi, C., Leitão, A. V., Ferreira, A. C., Mota, P. G. & Cardoso, G. C. Social dominance in a gregarious bird is related to body size but not to standard personality assays. Ethology 121, 84–93 (2015).
Article
Google Scholar
32.Navara, K. J. & Hill, G. E. Dietary carotenoid pigments and immune function in a songbird with extensive carotenoid-based plumage coloration. Behav. Ecol. 14, 909–916 (2003).Article
Google Scholar
33.McGraw, K. J. & Schuetz, J. G. The evolution of carotenoid coloration in estrildid finches: A biochemical analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 139, 45–51 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
34.Karu, U., Saks, L. & Hõrak, P. Carotenoid-based plumage coloration is not affected by vitamin E supplementation in male greenfinches. Ecol. Res. 23, 931–935 (2008).CAS
Article
Google Scholar
35.Pérez, C., Lores, M. & Velando, A. Availability of nonpigmentary antioxidant affects red coloration in gulls. Behav. Ecol. 19, 967–973 (2008).Article
Google Scholar
36.Hartley, R. C. & Kennedy, M. W. Are carotenoids a red herring in sexual display?. TREE 19, 353–354 (2004).PubMed
PubMed Central
Google Scholar
37.Alonso-Alvarez, C. et al. An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity. Am. Nat. 164, 651–659 (2004).PubMed
Article
PubMed Central
Google Scholar
38.Jouventin, P., McGraw, K. J., Morel, M. & Célerier, A. Dietary carotenoid supplementation affects orange beak but not foot coloration in gentoo penguins Pygoscelis papua. Waterbirds 30, 573–578 (2007).Article
Google Scholar
39.Saino, N. et al. Better red than dead: Carotenoid-based mouth coloration reveals infection in barn swallow nestlings. Proc. Biol. Sci. 267, 57–61 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Thorogood, R., Kilner, R. M., Karadaş, F. & Ewen, J. G. Spectral mouth color of nestlings changes with carotenoid availability. Funct. Ecol. 22, 1044–1051 (2008).Article
Google Scholar
41.Koch, R., Wilson, A. & Hill, G. The importance of carotenoid dose in supplementation studies with songbirds. Physiol. Biochem. Zool. 89, 61–71 (2015).PubMed
Article
PubMed Central
Google Scholar
42.Hill, G. E. Proximate basis of variation in carotenoid pigmentation in male House Finches. Auk 109, 1–12 (1992).Article
Google Scholar
43.Biard, C., Surai, P. F. & Møller, A. P. Carotenoid availability in diet and phenotype of blue and great tit nestlings. J. Exp. Biol. 209, 1004–1015 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Giraudeau, M., Sweazea, K., Butler, M. W. & McGraw, K. J. Effects of carotenoid and vitamin E supplementation on oxidative stress and plumage coloration in house finches (Haemorhous mexicanus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 166, 406–413 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Goodwin, T. W. Distribution of carotenoids. Method Enzymol. 213, 167–172 (1992).CAS
Article
Google Scholar
46.Hill, G. E. Female house finches prefer colourful males: Sexual selection for a condition-dependent trait. Anim. Behav. 40, 563–572 (1990).Article
Google Scholar
47.Olson, V. A. & Owens, I. P. F. Costly sexual signals: Are carotenoids rare, risky or required?. TREE 13, 510–514 (1998).CAS
PubMed
PubMed Central
Google Scholar
48.Koch, R. E. & Hill, G. E. Do carotenoid-based ornaments entail resource trade-offs? An evaluation of theory and data. Funct. Ecol. 32, 1908–1920 (2018).Article
Google Scholar
49.Krinsky, N. I. Carotenoids as antioxidants. Nutrition 17, 815–817 (2001).CAS
PubMed
Article
PubMed Central
Google Scholar
50.El-Agamey, A. et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch. Biochem. Biophys. 430, 37–48 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
51.Costantini, D. & Møller, A. P. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2007).Article
Google Scholar
52.Leclaire, S. et al. Carotenoids increase immunity and sex specifically affect color and redox homeostasis in a monochromatic seabird. Behav. Ecol. Sociobiol. 69, 1097–1111 (2015).Article
Google Scholar
53.Benito, M., González-Solís, J. & Becker, P. H. Carotenoid supplementation and sex-specific trade-offs between colouration and condition in common tern chicks. J. Comp. Physiol. B 181, 539–549 (2011).CAS
PubMed
PubMed Central
Google Scholar
54.Surai, P. F. Natural Antioxidants in Avian Nutrition and Reproduction (Nottingham University Press, 2002).
Google Scholar
55.Bertrand, S., Faivre, B. & Sorci, G. Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?. J. Exp. Biol. 209, 4414–4419 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Marri, V. & Richner, H. Differential effects of vitamins E and C and carotenoids on growth, resistance to oxidative stress, fledging success and plumage colouration in wild great tits. J. Exp. Biol. 217, 1478–1484 (2014).PubMed
PubMed Central
Google Scholar
57.Kopena, R., López, P. & Martín, J. Relative contribution of dietary carotenoids and vitamin E to visual and chemical sexual signals of male Iberian green lizards: An experimental test. Behav. Ecol. Sociobiol. 68, 571–581 (2014).Article
Google Scholar
58.Pike, T. W., Blount, J. D., Lindström, J. & Metcalfe, N. B. Availability of non-carotenoid antioxidants affects the expression of a carotenoid-based sexual ornament. Biol. Lett. 3, 353–356 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Stiels, D., Schidelko, K., Engler, J. & Rödder, D. Predicting the potential distribution of the invasive Common Waxbill Estrilda astrild (Passeriformes: Estrildidae). J. Ornithol. 152, 769–780 (2011).Article
Google Scholar
60.Beltrão, P. et al. European breeding phenology of the common waxbill, a sub-Saharan opportunistic breeder. Acta Ethol. https://doi.org/10.1007/s10211-021-00376-9 (2021).Article
Google Scholar
61.Pan, J. Q., Tan, X., Li, J. C., Sun, W. D. & Wang, X. L. Effects of early feed restriction and cold temperature on lipid peroxidation, pulmonary vascular remodelling and ascites morbidity in broilers under normal and cold temperature. Br. Poultry Sci. 46, 374–381 (2005).CAS
Article
Google Scholar
62.Zhang, Z. W. et al. Effects of cold stress on nitric oxide in duodenum of chicks. Poultry Sci. 90, 1555–1561 (2011).CAS
Article
Google Scholar
63.Beaulieu, M., Haas, A. & Schaefer, M. H. Self-supplementation and effects of dietary antioxidants during acute thermal stress. J. Exp. Biol. 217, 370–375 (2013).PubMed
PubMed Central
Google Scholar
64.Stier, A., Massemin, S. & Criscuolo, F. Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds. J. Comp. Physiol. B 184, 1021–1029 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
65.Beamonte-Barrientos, R. & Verhulst, S. Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches. J. Comp. Physiol. B 183, 675–683 (2013).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Moreno, J., Cantarero, A., Plaza, M. & López-Arrabé, J. Phenotypic plasticity in breeding plumage signals in both sexes of a migratory bird: Responses to breeding conditions. J. Avian Biol. 50, e01855 (2019).Article
Google Scholar
67.del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World, Vol. 15: Weavers to New World Warblers (Lynx Edicions, 2010).68.Larcombe, S. D., Mullen, W., Alexander, L. & Arnold, K. E. Dietary antioxidants, lipid peroxidation and plumage colouration in nestling blue tits Cyanistes caeruleus. Naturwissenschaften 97, 903–913 (2010).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
69.Hudon, J. Showiness, carotenoids, and captivity: A comment on Hill (1992). Auk 111, 218–221 (1994).Article
Google Scholar
70.Dykes, L. & Rooney, L. W. Sorghum and millet phenols and antioxidants. J. Cereal Sci. 44, 236–251 (2006).CAS
Article
Google Scholar
71.Cardoso, G. C. & Gomes, A. C. R. Using reflectance ratios to study animal coloration. Evol. Biol. 42, 387–394 (2015).Article
Google Scholar
72.Montgomerie, R. Analyzing colors. Analyzing colors. In Bird Coloration, Vol. 1. Mechanisms and Measurements (eds Hill, G. E. & McGraw, K. J.) 90–147 (Harvard University Press, 2006).
Google Scholar More