More stories

  • in

    Root exudate chemical cues of an invasive plant modulate oviposition behavior and survivorship of a malaria mosquito vector

    Experiments using P. hysterophorus root exudate water samplesInsects for oviposition bioassayAnopheles gambiae mosquitoes (Mbita strain) used in this study were from a colony established in 2018 and maintained at the International Centre of Insect Physiology and Ecology (icipe), Duduville Campus, Nairobi, Kenya. The adults were reared using standard insectary conditions at 28 ± 2 °C, and 72% relative humidity (RH) under a photoperiod of 12 h: 12 h (L:D). For egg development, the mosquitoes were offered human blood through arm feeding, one to two times weekly and had ad libitum access to a 6% glucose solution (wt:vol). The blood fed females were kept together with males for 2 days and used on the third day for the oviposition experiment. Eggs were laid in oviposition cups (7 cm top diameter, 4 cm base diameter and 7 cm depth) lined with filter paper (Whatman 90 mm, GE Healthcare UK Ltd, Buckinghamshire, London, UK) and transferred to larval rearing trays (39 × 28 × 4 cm depth). Upon hatching, the larvae were separated into groups of ~ 500 larvae per rearing tray and fed on commercial Tetramin® fish food (Tetra, Germany). The rearing room was maintained at 32 ± 2 °C, and 52% RH during the day, and 24 ± 2 °C and 72% RH at night with a photoperiod of L:D 12:12 h15. The rearing water was changed after every 2 days. Pupae were transferred daily to emergence cups containing 15 mL water and placed in a new cage (15 × 15 × 15 cm). Emerged adults (1 day old) were maintained on 6% glucose solution as described above.Collection of root exudate water samples from wild growing P. hysterophorus
    Root exudate water samples were collected from wild growing P. hysterophorus (~ 30, 60 and 90 cm tall) on the icipe campus and used in various biological assays (i.e., oviposition response, mosquito growth and development assays). Briefly, wild growing P. hysterophorus were transplanted into a plastic pot (23 cm top diameter, 12 cm base diameter and 22 cm depth; batches of ten plants per pot in garden soil from the icipe campus) and watered with rainwater to obtain root exudate water. The root exudate water was collected from the plants after 1 week: to allow the plants to stabilize and to eliminate possible contamination of it with defense compounds released in response to uprooting. Water obtained from potted soil (same volume as used for the potted P. hysterophorus) without P. hysterophorus plants but from the same site, served as control water.Oviposition response assay with root exudate waterRoot exudate water was evaluated for its ability to influence oviposition response of gravid females in a dual-choice assay (Fig. 1A). The gravid females (n = 12 as described in Dieter et al.18; electronic supplementary material, methods) were presented a choice between the treatment and distilled water contained in similar polypropylene cups and the number of eggs laid counted using a microscope (Leica M127, Switzerland) after every 24 h for four consecutive days7. The cups were placed in opposite corners of the experimental cages and their positions interchanged every 24 h to avoid positional bias. Each cup was lined with a filter paper (Whatman 90 mm, GE Healthcare UK Ltd, Buckinghamshire, London, UK) and filled with 30 mL of the test solution (to keep the filter paper moist; as previously described in19) or an equivalent volume of distilled water as the control. A similar experiment was performed using water obtained from soil without P. hysterophorus plants (Fig. 1A). The bioassays were performed in triplicate as previously described in Ilahi et al.20 and repeated once.Figure 1Effect of root exudate water on oviposition response and aquatic stage development of An. gambiae. (A) A schematic representation showing the setup of the oviposition experiment using root exudate water and soil water. (B) Oviposition activity of root exudate water and soil water. (C) Table summarizing median number of eggs laid and the range. (D) Egg hatch rates was low in root exudate water compared to soil water. (E) Time to pupation (days) for larvae exposed to root exudate water relative to soil water.Full size imageHeadspace collection and analysis of root exudate volatilesTo collect headspace volatiles, 500 mL of the root exudate water were placed in air-tight glass jars and activated charcoal-filtered and humidified air passed over it. The volatiles were collected for 24 h on three pre-cleaned (dichloromethane (DCM) and nitrogen-dried) Super Q adsorbent filters (30 mg each, Analytical Research System, Gainesville, Florida, USA) at a flow rate of 170 mL/min. The three Super-Q filters (each treatment), were each eluted with 200 µL GC-grade DCM (Sigma Aldrich, St. Louis, Missouri, USA) into 2 mL clear glass vials, each containing 250 µL conical point glass inserts (Supelco, Bellefonte, PA, USA) and immediately analyzed by coupled gas chromatography/mass spectrometry (GC/MS). Also, natural water from depressions harboring growing P. hysterophorus in the field was sampled during the rainy season (described under parthenin detection) to allow comparison of its volatiles with that of the root exudate water. Volatiles collected from distilled water served as negative controls. Compounds were identified by comparison of their mass spectral data with library data: Adams2, Chemeco and NIST11 and confirmed with those of authentic samples. The relative peak area (%) of each constituent as generated by the NIST11 software, following GC/MS analysis was used to determine the natural ratio of the volatiles in the component blend. The volatiles were stored in glass vials at − 80 °C until used for oviposition assays.Oviposition bioassay with identified volatilesDual choice bioassay was performed to determine the role of root exudate volatiles in egg laying behavior of An. gambiae. Of the volatiles identified, seven compounds: α-pinene, β-pinene, 3-carene, (E)-caryophyllene, camphor, α-phellandrene, β-phellandrene were selected and tested based on results obtained from Random Forest Analysis (RFA) (see electronic supplementary material, methods) and their commercial availability21. In dose–response assays, several tests were carried out: (i) a blend of the seven components (7-component blend) mimicking their naturally-occurring ratio in the root exudate volatile extract based on their GC/MS peak areas, (ii) single compounds, and (iii) a blend of the attractive components (5-component blend) guided by the positive attractive responses obtained from (ii). The compounds were dissolved in dimethyl sulfoxide (DMSO) and serially diluted from a stock solution to generate a concentration ranging from 0.25 to 4 µg/µL. Thereafter, for each concentration tested, 50 µL of each compound or blend solution were dispensed into the oviposition cup containing distilled (50 mL) water and monitored for egg laying. Each concentration was tested against a control (distilled water (50 mL) containing 50 µL of DMSO). The bioassays were performed in triplicate.Mosquito growth and development assaysThe root exudate water and the control water (water from soil) were used separately for mosquito rearing. First, mosquitoes were provided with root exudate water to lay eggs in a no-choice oviposition bioassay. Thereafter, a total of 200 eggs were counted and placed into each rearing tray (24 × 34 × 4 cm) and the number of hatched eggs was determined by counting the first instars larvae that emerged in each tray. The larvae were fed daily on a standardized regimen of ground fish food (Tetramin, Tetra, Germany) and water was changed every other day. Daily survival of larvae (from first instar (L1) to pupation) was recorded, and pupae transferred into cups in experimental cages (30 × 30 × 30 cm) until adult emergence. The conditions of the bioassay room were the same as that of the rearing room described above. All experiments were performed in four replicates.Experiments using partheninDetection of parthenin in root exudate waterOne liter (1 L) of water was collected from flooded depressions/open puddles in which wild P. hysterophorus was growing on the icipe campus and pooled (the field collection was repeated twice, 1 week apart). The habitat had other non P. hysterophorus plants such as grasses. The water was filtered using a muslin cloth and stored at − 80 °C overnight and then freeze-dried (VirTis SP scientific, Model Advantage EL-85) for 72 h to obtain 38 mg of root exudate. This was extracted with dichloromethane (DCM) and analyzed by GC/MS as described under chemical analysis. A similar analysis was carried out on the root exudate water (four replicates) obtained from potted plants described above.Preparation of parthenin stock solutionA sample of parthenin obtained from a methanolic extract of P. hysterophorus from a previous study conducted in our laboratory22, was used as a standard. A sample of this isolate (300 mg) was dissolved in 0.3 mL DMSO and then diluted to 300 mL with distilled water to obtain a stock solution of 1000 ppm.Oviposition response assay with partheninParthenin was evaluated at a concentration of 0.13 µg/µL corresponding to the estimated amount of the root exudate tested (described above). The amount of parthenin in the root exudate was estimated by comparing the relative peak area (%) of parthenin in the root exudate to that recorded for the standard parthenin of known concentration. The oviposition assays were performed as described for root exudate. However, the distilled water which served as a negative control was prepared in 0.1% DMSO. A similar experiment was performed using parthenin water spiked with 50 µL of headspace volatiles collected for 24 h from the plant root exudate. All experiments were performed in triplicates.Mosquito growth and development assays using partheninParthenin prepared as described for the oviposition bioassay was used for mosquito rearing. Mosquitoes reared on distilled water prepared in 0.1% DMSO served as the control group. The experiment was performed as described for root exudate water.To determine the effect of exposure to parthenin on mosquito adult survival, the female mosquitoes that emerged from parthenin treated water and controls were monitored separately in different cages. The mosquitoes were maintained on P. hysterophorus potted plant until their natural death (survival). The conditions in the bioassay rooms were the same as those of the rearing room described above.Chemical analysisGas chromatography/mass spectrometry (GC/MS)To detect parthenin in the root exudate, the sample was freeze-dried and prepared at a concentration of 600 ng/µL in dichloromethane (DCM) and dried over anhydrous Na2SO4 (Sigma Aldrich, St Louis, MO USA). The standard parthenin sample was prepared at a concentration of 300 ng/µL in DCM. For GC/MS analysis, 1 µL of each sample (parthenin and root exudate) was analyzed on a 7890B gas chromatograph (Agilent Technologies, Inc., Santa Clara, CA, USA) linked to a 5977A mass selective detector under the following conditions: Inlet temperature 270 °C, transfer line temperature 280 °C, and column oven temperature programmed from 35 to 285 °C, with the initial temperature maintained for 5 min then 10 °C/min to 280 °C for 5.5 min and finally 5 °C/min to 285 °C for 34.9 min. The GC was fitted with a HP-5 MS low bleed capillary column (30 m × 0.25 mm i.d., 0.25 µm) (J&W, Folsom, CA USA). Helium at a flow rate of 1.2 mL/min served as the carrier gas. The mass selective detector was maintained at ion source temperature of 230 °C and a quadrupole temperature of 180 °C. Electron impact (EI) mass spectra were obtained at the acceleration energy of 70 eV. Compounds were injected in the splitless mode using an auto-sampler 7693 (Agilent Technologies, Inc., Beijing, China). Fragment ions were analyzed over 38–550 m/z mass range in the full scan mode. The filament delay time was set at 3.0 min. Parthenin was identified based on its general fragmentation pattern and compared also with previously published results23. The root exudate samples were analyzed in triplicate, with each replicate collected from a different batch of plants.Statistical analysisThe oviposition activity index (OAI) for dual choice oviposition assay data was calculated according to the formula described in19;$$OAI=frac{mathrm{Nt}-mathrm{Nc}}{mathrm{Nt}+mathrm{Nc}}$$
    where Nt is number of eggs laid in the treatment and Nc the number of eggs laid in the control. The OAI ranges from − 1 to + 1, with 0 indicating neutral response, positive value indicating an attraction towards the treatment and a negative value indicating the converse. The oviposition data was analyzed by generalized linear model using negative binomial. The model validity was assessed by inspection of residuals24: Number of eggs deposited served as the response variable while the treatments were used as the predictor variable.Hatch rate of mosquito eggs exposed to different treatments was calculated as follows:$$% hatchability=left(frac{number ; of ; hatched ; eggs}{total ;number ; of ; eggs}right) times 100$$The % hatchability data was also analyzed using generalized linear model with negative binomial error structure. The variation in survival was analyzed by the Kaplan-Meir method and statistical significance comparisons made using log-ranks test. All statistical analyses were performed using SPSS 23.0 software (IBM SPSS Statistics) and results considered significance at p  More

  • in

    Temperature heterogeneity correlates with intraspecific variation in physiological flexibility in a small endotherm

    Field data and analysisField samplingWe captured adult juncos by mist net or potter trap at sites in Arizona (breeding season), Colorado (breeding), Illinois (non-breeding), Montana (breeding), New Mexico (non-breeding), New York (breeding), South Dakota (non-breeding), and Wyoming (breeding), spanning 16° in latitude and 37° in longitude (Fig. 1). This work was completed with approval from the U.S. Fish and Wildlife Service (MB84376B-1 to M.S.; MB01543B-0 to Z.A.C.; MB758442 to D.L.S.; MB06336A-4 to M.D.C.; MB757670-1 to David Winkler; and MB094297-0 to Christopher Witt,), the State of Arizona Game and Fish Department (SP590760 and SP707897 to D.L.S.), Colorado Parks and Wildlife (10TRb2030A15 to M.D.C.), the Illinois Department of Natural Resources (NH13.5667 to Z.A.C.), the Montana Department of Fish Wildlife and Parks (2016-013 and 2017-067-W to M.S.), the New Mexico Department of Game & Fish (3217 to Christopher Witt), the New York State Division of Fish, Wildlife, & Marine Resources (LCP 1477 to David Winkler), the State of South Dakota Department of Game, Fish, and Parks (06-03, 07-02, 08-03 to D.L.S.), Wyoming Game and Fish (754 to M.D.C.), and the Institutional Animal Care and Use Committees at Cornell University (2001-0051 to David Winkler), the University of Illinois (13385 to Z.A.C.), the University of Montana (010-16ZCDBS-020916 to Z.A.C.), the University of South Dakota (03-08-06-08B to D.L.S), and the University of Wyoming (A-3216-01 to M.D.C.). We classified individuals to taxonomic unit based on plumage (J. h. caniceps, J. h. hyemalis, J. h. mearnsi, J. h. oreganus group, and J. p. palliatus). The J. h. oreganus group encompasses seven subspecies (J. h. montanus, J. h. oreganus, J. h. pinosus, J. h. pontilis, J. h. shufeldti, J. h. thurberi, and J. h. townsendii) with similar plumages and overlapping nonbreeding ranges26,27. For this reason, we were unable to distinguish subspecies of nonbreeding individuals within this group, though all breeding individuals were collected from the J. h. montanus range.Field metabolic assaysBirds were transported from the site of capture to a nearby laboratory ( More

  • in

    Andes foothills protected by carbon-offset fund

    CORRESPONDENCE
    20 July 2021

    Andes foothills protected by carbon-offset fund

    Evert Thomas

    0
    ,

    Marleni Ramirez

    1
    ,

    Lily Rodriguez

    2
    &

    Manuel Glave

    3

    Evert Thomas

    CIMA Cordillera Azul, Lima, Peru

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Marleni Ramirez

    CIMA Cordillera Azul, Lima, Peru

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Lily Rodriguez

    CIMA Cordillera Azul, Lima, Peru

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Manuel Glave

    CIMA Cordillera Azul, Lima, Peru

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    At its creation in 2008, the United Nations REDD (‘reducing emissions from degradation and deforestation’) programme was hailed as a way to finance conservation with tools such as carbon offsets. Thirteen years on, little of that promise has been realized. A REDD transaction signed in March for the Cordillera Azul National Park, in the foothills of the Andes in Peru, offers hope.The deal will support the conservation in perpetuity of the 13,500-square-kilometre park and its rich and pristine biodiversity. A trust fund to cover all expenses is being set up by the non-governmental organization CIMA Cordillera Azul, which manages the park, and the Peruvian Service for Natural Protected Areas.Investments in sustainable livelihoods will strengthen efforts to curb and reverse deforestation in the 23,000‑km2 buffer zone around the park — home to more than 300,000 people. Notably, they will boost development of sustainable products from forest restoration and agroforestry. For example, CIMA has built a cacao-processing plant to promote cacao agroforestry as an alternative to land use that relies on deforestation.To our knowledge, this is the first REDD transaction to ensure that all conservation costs for a national park of this size are financed by private-sector carbon-credit sales, with minimal transaction costs. Similar deals around the globe could help to catalyse the carbon market.

    Nature 595, 494 (2021)
    doi: https://doi.org/10.1038/d41586-021-01958-0

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Climate change

    Environmental sciences

    Sustainability

    Latest on:

    Climate change

    Solar geoengineering research needs formal global debate
    Correspondence 20 JUL 21

    Vulnerable nations lead by example on Sustainable Development Goals research
    Editorial 20 JUL 21

    China launches world’s largest carbon market: but is it ambitious enough?
    News 20 JUL 21

    Environmental sciences

    Huge gaps in detection networks plague emissions monitoring
    Comment 19 JUL 21

    Southeast Amazonia is no longer a carbon sink
    News & Views 14 JUL 21

    Pollution from hydrogen fuel could widen inequality
    Correspondence 13 JUL 21

    Jobs

    Postdoctoral Research Fellow (Columbia University Irving Medical Center, NY)

    Columbia University Medical Center (CUMC), CU
    New York, NY, United States

    Professorships (W2) in Molecular Plant Sciences

    Philipps-Universität Marburg
    Marburg, Germany

    Assistant Editor – Food Science and Nutrition

    John Wiley & Sons, Inc.
    Multiple locations

    Early Detection Research Programme Manager

    Cancer Research UK (CRUK)
    London, United Kingdom

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Seasonal niche differentiation among closely related marine bacteria

    1.Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Falkowski P. Ocean science: the power of plankton. Nature. 2012;483:S17–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Bunse C, Pinhassi J. Marine bacterioplankton seasonal succession dynamics. Trends Microbiol. 2017;25:1–12.Article 
    CAS 

    Google Scholar 
    4.Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D-using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.PubMed 
    Article 

    Google Scholar 
    5.Eiler A, Hayakawa DH, Rappé MS. Non-random assembly of bacterioplankton communities in the subtropical North Pacific Ocean. Front Microbiol. 2011;2.6.Gilbert JA, Steele JA, Caporaso JG, Steinbrück L, Reeder J, Temperton B, et al. Defining seasonal marine microbial community dynamics. ISME J. 2012;6:298–308.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.PubMed 
    Article 

    Google Scholar 
    8.Giner CR, Balagué V, Krabberød AK, Ferrera I, Reñé A, Garcés E, et al. Quantifying long‐term recurrence in planktonic microbial eukaryotes. Mol Ecol. 2019;28:923–35.PubMed 
    Article 

    Google Scholar 
    9.Alonso-Sáez L, Díaz-Pérez L, Morán XAG. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol. 2015;17:3766–80.PubMed 
    Article 

    Google Scholar 
    10.Lambert S, Tragin M, Lozano J-C, Ghiglione J-F, Vaulot D, Bouget F-Y, et al. Rhythmicity of coastal marine picoeukaryotes, bacteria and archaea despite irregular environmental perturbations. ISME J. 2019;13:388–401.PubMed 
    Article 

    Google Scholar 
    11.Martin-Platero AM, Cleary B, Kauffman K, Preheim SP, McGillicuddy DJ, Alm EJ, et al. High resolution time series reveals cohesive but short-lived communities in coastal plankton. Nat Commun. 2018;9:266.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Needham DM, Fuhrman JA. Pronounced daily succession of phytoplankton, archaea and bacteria following a spring bloom. Nat Microbiol. 2016;1:16005.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Needham DM, Fichot EB, Wang E, Berdjeb L, Cram JA, Fichot CG, et al. Dynamics and interactions of highly resolved marine plankton via automated high-frequency sampling. ISME J. 2018;12:2417–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.PubMed 
    Article 

    Google Scholar 
    15.Lemonnier C, Perennou M, Eveillard D, Fernandez-Guerra A, Leynaert A, Marié L, et al. Linking spatial and temporal dynamic of bacterioplankton communities with ecological strategies across a coastal frontal area. Front Mar Sci. 2020;7:376.Article 

    Google Scholar 
    16.Lambert S, Lozano J-C, Bouget F-Y, Galand PE. Seasonal marine microorganisms change neighbours under contrasting environmental conditions. Environ Microbiol. 2021;23:2592–604.PubMed 
    Article 

    Google Scholar 
    17.Auladell A, Sánchez P, Sánchez O, Gasol JM, Ferrera I. Long-term seasonal and interannual variability of marine aerobic anoxygenic photoheterotrophic bacteria. ISME J. 2019;13:1975–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Hutchinson GE. Concluding remarks. Cold Spring Harb Sym. 1957;22:415–27.Article 

    Google Scholar 
    19.Cordero OX, Polz MF. Explaining microbial genomic diversity in light of evolutionary ecology. Nat Rev Microbiol. 2014;12:263–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Hammarlund SP, Gedeon T, Carlson RP, Harcombe WR. Limitation by a shared mutualist promotes coexistence of multiple competing partners. Nat Commun. 2021;12:619.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Schloss PD. Reintroducing mothur: 10 years later. Appl Environ Microbiol. 2020;86:13.
    Google Scholar 
    22.Johnson JS, Spakowicz DJ, Hong B-Y, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10:5029.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.VanInsberghe D, Arevalo P, Chien D, Polz MF. How can microbial population genomics inform community ecology? Philos Trans R Soc B. 2020;375:20190253.Article 

    Google Scholar 
    24.Tromas N, Taranu ZE, Martin BD, Willis A, Fortin N, Greer CW, et al. Niche separation increases with genetic distance among bloom-forming Cyanobacteria. Front Microbiol. 2018;9:438.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8:523–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Martiny JBH, Jones SE, Lennon JT, Martiny AC. Microbiomes in light of traits: a phylogenetic perspective. Science. 2015;350:aac9323.PubMed 
    Article 
    CAS 

    Google Scholar 
    27.Ladau J, Eloe-Fadrosh EA. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 2019;27:662–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Gasol JM, Cardelús C, Morán XAG, Balagué V, Forn I, Marrasé C, et al. Seasonal patterns in phytoplankton photosynthetic parameters and primary production at a coastal NW Mediterranean site. Sci Mar. 2016;80S1:63–77.Article 

    Google Scholar 
    29.Yentsch CS, Menzel DW. A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence. Deep-Sea Res Oceanogr Abstr. 1963;10:221–31.CAS 
    Article 

    Google Scholar 
    30.Grasshoff K, Ehrhardt M, Kremling K. Methods of seawater analysis. 2nd ed. Weinheim: Verlag Chemie; 1983.31.Gasol JM, Morán XAG. Flow cytometric determination of microbial abundances and its use to obtain indices of community structure and relative activity. In: McGenity TJ, Timmis KN, Nogales B, editors. Hydrocarbon and lipid microbiology protocols: single-cell and single-molecule methods. Berlin, Heidelberg: Springer; 2016. p. 159–87.32.Massana R, Murray AE, Preston CM, Delong EF. Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol. 1997;63:50–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Apprill A, McNally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Micro Ecol. 2015;75:129–37.Article 

    Google Scholar 
    35.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10.Article 

    Google Scholar 
    37.Wright ES. Using DECIPHER v2.0 to analyze big biological sequence data in R. R J. 2016;8:352.Article 

    Google Scholar 
    38.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil P-A, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 

    Google Scholar 
    39.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    Article 

    Google Scholar 
    40.Garczarek L, Guyet U, Doré H, Farrant GK, Hoebeke M, Brillet-Guéguen L, et al. Cyanorak v2.1: a scalable information system dedicated to the visualization and expert curation of marine and brackish picocyanobacteria genomes. Nucleic Acids Res 2020;49:gkaa958.
    Google Scholar 
    41.R Core Team. R: A language and environment for statistical computing. 2014. R Foundation for Statistical Computing, Vienna, Austria.42.McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Wickham H, Averick M, Bryan J, Chang W, McGowan LD, François R, et al. Welcome to the tidyverse. J Open Source Softw. 2019;4:1686.Article 

    Google Scholar 
    44.Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.45.Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci USA. 2011;108:12776–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:1–9.Article 
    CAS 

    Google Scholar 
    47.Willis A, Bunge J, Whitman T.Improved detection of changes in species richness in high diversity microbial communities.J R Stat Soc Ser C-App Stat. 2017;66:963–77.Article 

    Google Scholar 
    48.Willis AD, Martin BD. Estimating diversity in networked ecological communities. Biostatistics 2020;kxaa015.49.Ruf T. The Lomb-Scargle periodogram in biological rhythm research: analysis of incomplete and unequally spaced time-series. Biol Rhythm Res. 1999;30:178–201.Article 

    Google Scholar 
    50.Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc Ser C-Appl Stat. 2001;63:411–23.Article 

    Google Scholar 
    51.Hastie T, Tibshirani R. Generalized additive models. Stat Sci. 1986;1:297–310.
    Google Scholar 
    52.Pedersen EJ, Miller DL, Simpson GL, Ross N. Hierarchical generalized additive models in ecology: an introduction with mgcv. PeerJ. 2019;7:e6876.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: an R-package for Identifying proportionally abundant features using compositional data analysis. Sci Rep. 2017;7:1–9.Article 
    CAS 

    Google Scholar 
    54.Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Heiberger RM. HH: statistical analysis and data display: Heiberger and Holland. 2020.56.Martin BD, Witten D, Willis AD. Modeling microbial abundances and dysbiosis with beta-binomial regression. Ann Appl Stat. 2020;14:94–115.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Farrant GK, Doré H, Cornejo-Castillo FM, Partensky F, Ratin M, Ostrowski M, et al. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc Natl Acad Sci USA. 2016;113:E3365–E3374.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Alonso-Sáez L, Balagué V, Sà EL, Sánchez O, González JM, Pinhassi J, et al. Seasonality in bacterial diversity in north-west Mediterranean coastal waters: assessment through clone libraries, fingerprinting and FISH. FEMS Microbiol Ecol. 2007;60:98–112.PubMed 
    Article 
    CAS 

    Google Scholar 
    59.Mestre M, Höfer J, Sala MM, Gasol JM. Seasonal variation of bacterial diversity along the marine particulate matter continuum. Front Microbiol. 2020;11:1590.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Nunes S, Latasa M, Gasol JM, Estrada M. Seasonal and interannual variability of phytoplankton community structure in a Mediterranean coastal site. Mar Ecol Prog Ser. 2018;592:57–75.CAS 
    Article 

    Google Scholar 
    61.Lindh MV, Sjöstedt J, Andersson AF, Baltar F, Hugerth LW, Lundin D, et al. Disentangling seasonal bacterioplankton population dynamics by high-frequency sampling: High-resolution temporal dynamics of marine bacteria. Environ Microbiol. 2015;17:2459–76.PubMed 
    Article 

    Google Scholar 
    62.Viklund J, Martijn J, Ettema TJG, Andersson SGE. Comparative and phylogenomic evidence that the Alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade. PLoS One. 2013;8:e78858.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Martijn J, Vosseberg J, Guy L, Offre P, Ettema TJG. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature. 2018;557:101–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Salter I, Galand PE, Fagervold SK, Lebaron P, Obernosterer I, Oliver MJ, et al. Seasonal dynamics of active SAR11 ecotypes in the oligotrophic Northwest Mediterranean Sea. ISME J. 2015;9:347–60.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Guizien K, Charles F, Lantoine F, Naudin J-J. Nearshore dynamics of nutrients and chlorophyll during Mediterranean-type flash-floods. Aquat Living Resour. 2007;20:3–14.CAS 
    Article 

    Google Scholar 
    66.Giovannoni SJ. SAR11 bacteria: the most abundant plankton in the oceans. Annu Rev Mar Sci. 2017;9:231–55.Article 

    Google Scholar 
    67.Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    68.Cadotte MW, Tucker CM. Should environmental filtering be abandoned? Trends Ecol Evol. 2017;32:429–37.PubMed 
    Article 

    Google Scholar 
    69.Tromas N, Taranu ZE, Castelli M, Pimentel JSM, Pereira DA, Marcoz R, et al. The evolution of realized niches within freshwater Synechococcus. Environ Microbiol. 2020;22:1238–50.PubMed 
    Article 

    Google Scholar 
    70.Grote J, Thrash JC, Huggett MJ, Landry ZC, Carini P, Giovannoni SJ, et al. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. mBio. 2012;3:e00252–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa: the ecological function of microdiversity. Env Microbiol Rep. 2017;9:55–70.CAS 
    Article 

    Google Scholar 
    72.Mestre M, Borrull E, Sala MM, Gasol JM. Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J. 2017;11:999–1010.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 2016;10:596–608.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Faust K, Lahti L, Gonze D, de Vos WM, Raes J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol. 2015;25:56–66.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Lee J, Kwon KK, Lim S-I, Song J, Choi AR, Yang S-H, et al. Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322. J Microbiol. 2019;57:676–87.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar  More

  • in

    Effects of nitrogen fertilization on protein and carbohydrate fractions of Marandu palisadegrass

    In our studies with Marandu palisadegrass, a grazing management strategy with continuous stocking where 95% of the light is intercepted by the canopy resulted in forage at a height of 25 cm, a high green leaf proportion, and low amounts of dead material during the growing season23,24. The use of N fertilization4, different stocking rates, and supplementation25,26,27 are crucial for obtaining forage with a high nutritional value, resulting in a high weight gain per animal and area, and a reduction in slaughter age and greenhouse gas emissions. In the present study we did not find any interection N doses with years. Therefore, only the significative effects of N fertilization or variation within year are presented and discussed.Total and non-fibrous carbohydrates and total digestible nutrientsTotal carbohydrate concentrations decreased linearly with increasing N levels (P  More

  • in

    Landscape transformations produce favorable roosting conditions for turkey vultures and black vultures

    1.Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Meyer, W. B. & Turner, B. L. Human population growth and global land-use/cover change. Annu. Rev. Ecol. Syst. 23, 39–61 (1992).Article 

    Google Scholar 
    3.Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar. Freshw. Res. 65, 934–941 (2014).Article 

    Google Scholar 
    4.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    5.Maitima, J. M. et al. The linkages between land use change, land degradation and biodiversity across East Africa. Afr. J. Environ. Sci. Technol. 3, 2 (2009).
    Google Scholar 
    6.Gaston, K. J., Blackburn, T. M. & Goldewijk, K. K. Habitat conversion and global avian biodiversity loss. Proc. R. Soc. Lond. Ser. B Biol. Sci. 270, 1293–1300 (2003).Article 

    Google Scholar 
    7.Cereghetti, E., Scherler, P., Fattebert, J. & Grüebler, M. U. Quantification of anthropogenic food subsidies to an avian facultative scavenger in urban and rural habitats. Landsc. Urban Plann. 190, 103606 (2019).Article 

    Google Scholar 
    8.Clergeau, P. & Quenot, F. Roost selection flexibility of European starlings aids invasion of urban landscape. Landsc. Urban Plann. 80, 56–62 (2007).Article 

    Google Scholar 
    9.Wolff, A., Paul, J. P., Martin, J. L. & Bretagnolle, V. The benefits of extensive agriculture to birds: The case of the little bustard. J. Appl. Ecol. 38, 963–975 (2001).Article 

    Google Scholar 
    10.Howell, C. A., Dijak, W. D. & Thompson, F. R. Landscape context and selection for forest edge by breeding Brown-headed Cowbirds. Landsc. Ecol. 22, 273–284 (2007).Article 

    Google Scholar 
    11.Sauer, J. et al. The North American Breeding Bird Survey, results and analysis 2015–2017. (US Geological Survey Patuxent Wildlife Research Center, Laurel, Maryland USA, 2017).12.Kiff, L. F. The current status of North American vultures. Raptors at risk. Surrey: World Working Group on Birds of Prey and Owls, Berlin, and Hancock House Publishers (2000).13.Zimmerman, G. S. et al. Allowable take of black vultures in the eastern United States. J. Wildl. Manag. 83, 272–282 (2019).Article 

    Google Scholar 
    14.Carrete, M. et al. Winners and losers in human-made habitats: interspecific competition outcomes in two Neotropical vultures. Anim. Conserv. 13, 390–398 (2010).Article 

    Google Scholar 
    15.Buechley, E. R. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).Article 

    Google Scholar 
    16.Sweeney, T. M. & Fraser, J. D. Vulture roost dynamics and monitoring techniques in southwest Virginia. Wildl. Soc. Bull. 1973–2006(14), 49–54 (1986).
    Google Scholar 
    17.Kc, K. B. et al. Factors influencing the presence of the endangered Egyptian vulture Neophron percnopterus in Rukum Nepal. Glob. Ecol. Conserv. 20, e00727 (2019).Article 

    Google Scholar 
    18.Thompson, W. L., Yahner, R. H. & Storm, G. L. Winter use and habitat characteristics of vulture communal roosts. J. Wildl. Manag. 54, 77–83 (1990).Article 

    Google Scholar 
    19.Evans, B. A. Dynamics of a problematic vulture roost in southwest Florida and responses of vultures to roost-dispersal management efforts, Florida Gulf Coast University, (2013).20.Novaes, W. G. & Cintra, R. Factors influencing the selection of communal roost sites by the Black Vulture Coragyps atratus (Aves: Cathartidae) in an urban area in Central Amazon. Zoologia (Curitiba) 30, 607–614 (2013).Article 

    Google Scholar 
    21.Coleman, J. S. & Fraser, J. D. Habitat use and home ranges of black and turkey vultures. J. Wildl. Manag. 53, 782–792 (1989).Article 

    Google Scholar 
    22.Hill, J. E., DeVault, T. L., Beasley, J. C., Rhodes, O. E. & Belant, J. L. Roads do not increase carrion use by a vertebrate scavenging community. Sci. Rep. 8, 16331 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    23.Novoselova, N. S., Novoselov, A. A., Macarrão, A., Gallo-Ortiz, G. & Silva, W. R. Remote sensing applications for abating aircraft–bird strike risks in southeast Brazil. Hum.-Wildl. Interact. 14, 8 (2020).
    Google Scholar 
    24.Novaes, W. G. & Cintra, R. Anthropogenic features influencing occurrence of Black Vultures (Coragyps atratus) and Turkey Vultures (Cathartes aura) in an urban area in central Amazonian Brazil. Condor 117, 650–659 (2015).Article 

    Google Scholar 
    25.Campbell, M. O. N. The impact of urbanization and agricultural development on vultures in El Salvador. Vulture News 66, 16–28 (2014).
    Google Scholar 
    26.Cone, C. D. The soaring flight of birds. Sci. Am. 206, 130–142 (1962).Article 

    Google Scholar 
    27.Mallon, J. M., Bildstein, K. L. & Katzner, T. E. In-flight turbulence benefits soaring birds. Auk 133, 79–85 (2016).Article 

    Google Scholar 
    28.Holland, A. E. et al. Evidence of niche differentiation for two sympatric vulture species in the Southeastern United States. Mov. Ecol. 7, 31 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Avery, M. L. et al. Vulture flight behavior and implications for aircraft safety. J. Wildl. Manag. 75, 1581–1587 (2011).Article 

    Google Scholar 
    30.Lowney, M. S. Damage by black and turkey vultures in Virginia, 1990–1996. Wildl. Soc. Bull. 27, 715–719 (1999).
    Google Scholar 
    31.Tillman, E. A., Humphrey, J. S. & Avery, M. L. Use of vulture carcasses and effigies to reduce vulture damage to property and agriculture in Proceedings of the Vertebrate Pest Conference. (eds RM Timm & RH Schmidt) 123–128 (University of California, Davis).32.Holland, A. E. et al. Fine-scale assessment of home ranges and activity patterns for resident black vultures (Coragyps atratus) and turkey vultures (Cathartes aura). PLoS ONE 12, e0179819 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Avery, M. L., Humphrey, J. S., Tillman, E. A. & Milleson, M. P. Responses of black vultures to roost dispersal in Radford, Virginia in Proceedings of the Vertebrate Pest Conference. (eds RM Timm & JM O’Brien) 239–243 (University of California, Davis).34.Avery, M. L., Humphrey, J. S., Tillman, E. A., Phares, K. O. & Hatcher, J. E. Dispersing vulture roosts on communication towers. J. Rapt. Res. 36, 45–50 (2002).
    Google Scholar 
    35.Walter, W. D. et al. Using three-dimensional flight patterns at airfields to identify hotspots for avian–aircraft collisions. Appl. Geogr. 35, 53–59 (2012).Article 

    Google Scholar 
    36.NOAA. Climate Data Online, (2021).37.Humphrey, J. S., Avery, M. L. & McGrane, A. P. Evaluating relocation as a vulture management tool in north Florida in Proceedings of the Vertebrate Pest Conference. (eds TP Salmon & AC Crabb) 49–53 (University of California, Davis).38.Wallace, M. P., Parker, P. G. & Temple, S. A. An evaluation of patagial markers for cathartid vultures. J. Field Ornithol. 51, 309–314 (1980).
    Google Scholar 
    39.Sweeney, T. M., Fraser, J. D. & Coleman, J. S. Further evaluation of marking methods for black and turkey vultures. J. Field Ornithol. 56, 251–257 (1985).
    Google Scholar 
    40.Humphrey, J. S. & Avery, M. L. Improved satellite transmitter harness attachment technique. J. Rapt. Res. 48, 289–291 (2014).Article 

    Google Scholar 
    41.McVey, K. J., Skrade, P. D. & Sordahl, T. A. Use of a communal roost by Turkey Vultures in northeastern Iowa. J. Field Ornithol. 79, 170–175 (2008).Article 

    Google Scholar 
    42.Tabor, S. P. & McAllister, C. T. Nocturnal flight by Turkey Vultures (Cathartes aura) in southcentral Texas. J. Rapt. Res. 22, 91 (1988).
    Google Scholar 
    43.Yang, L. et al. A new generation of the United States national land cover database: Requirements, research priorities, design, and implementation strategies. ISPRS J. Photogramm. Remote. Sens. 146, 108–123 (2018).ADS 
    Article 

    Google Scholar 
    44.Elías, E. E. I. Feeding habits and ingestion of synthetic products in a Black Vulture population from Chiapas, Mexico. Acta Zool. Mex. 19, 1–15 (1987).
    Google Scholar 
    45.Amazon. Terrain Tiles on AWS. https://registry.opendata.aws/terrain-tiles (2017).46.US Census Bureau. TIGER/Line Shapefiles. https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html (2019).47.Lehman, C. P. et al. Elk resource selection at parturition sites, Black Hills, South Dakota. J. Wildl. Manag. 80, 465–478 (2016).Article 

    Google Scholar 
    48.Pan, W. Akaike’s information criterion in generalized estimating equations. Biometrics 57, 120–125 (2001).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96, 2370–2382 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Survival: survival analyses. R package version 3–2–3 (2020).51.R: A language and environment for statistical computing. R Foundation for Statistical Computing (Vienna, Austria, 2020).52.Fieberg, J. R. et al. Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models. Ecography 41, 737–752 (2018).Article 

    Google Scholar 
    53.Harrell, F. E. Jr., Lee, K. L. & Mark, D. B. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387 (1996).Article 

    Google Scholar 
    54.Muff, S., Signer, J. & Fieberg, J. Accounting for individual-specific variation in habitat-selection studies: Efficient estimation of mixed-effects models using Bayesian or frequentist computation. J. Anim. Ecol. 89, 80–92 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    56.Lambertucci, S. A., Speziale, K. L., Rogers, T. E. & Morales, J. M. How do roads affect the habitat use of an assemblage of scavenging raptors?. Biodivers. Conserv. 18, 2063–2074 (2009).Article 

    Google Scholar 
    57.DeVault, T. L., Blackwell, B. F., Seamans, T. W., Lima, S. L. & Fernández-Juricic, E. Effects of vehicle speed on flight initiation by turkey vultures: implications for bird-vehicle collisions. PLoS ONE 9, e87944 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Bautista, L. M. et al. Effect of weekend road traffic on the use of space by raptors. Conserv. Biol. 18, 726–732 (2004).Article 

    Google Scholar 
    59.Wallace, M. P. & Temple, S. A. Competitive interactions within and between species in a guild of avian scavengers. Auk 104, 290–295 (1987).Article 

    Google Scholar 
    60.de Araujo, G. M., Peres, C. A., Baccaro, F. B. & Guerta, R. S. Urban waste disposal explains the distribution of Black Vultures (Coragyps atratus) in an Amazonian metropolis: management implications for birdstrikes and urban planning. PeerJ 6, e5491 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Hill, J. R. III. & Neto, P. S. Black Vultures Nesting on Skyscrapers in Southern Brazil (Buitres Anidando en Rascacielos en el Sur de Brasil). J. Field Ornithol. 62, 173–176 (1991).
    Google Scholar 
    62.U.S Fish and Wildlife Service. Communication Tower and Antenna Consultation in New Jersey. (U.S. Fish and Wildlife Service, New Jersey Field Office, Pleasantville, New Jersey, 2001).63.Bohrer, G. et al. Estimating updraft velocity components over large spatial scales: Contrasting migration strategies of golden eagles and turkey vultures. Ecol. Lett. 15, 96–103 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Coleman, J. S. & Fraser, J. D. Food habits of black and turkey vultures in Pennsylvania and Maryland. J. Wildl. Manag. 51, 733–739 (1987).Article 

    Google Scholar 
    65.Turner, K., Abernethy, E., Conner, L. M., Rhodes, O. E. & Beasley, J. C. Abiotic and biotic factors modulate carrion fate and vertebrate scavenging communities. Ecology 98, 2413–2424 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Grigg, N. P. et al. Anatomical evidence for scent guided foraging in the turkey vulture. Sci. Rep. 7, 17408 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Rabenold, P. P. Recruitment to food in black vultures: evidence for following from communal roosts. Anim. Behav. 35, 1775–1785 (1987).Article 

    Google Scholar 
    68.Buckley, N. J. Food finding and the influence of information, local enhancement, and communal roosting on foraging success of North American vultures. Auk 113, 473–488 (1996).Article 

    Google Scholar 
    69.Buckley, N. J. Experimental tests of the information-center hypothesis with black vultures (Coragypsatratus) and turkey vultures (Cathartesaura). Behav. Ecol. Sociobiol. 41, 267–279 (1997).Article 

    Google Scholar 
    70.Rodríguez-Estrella, R., Donázar, J. A. & Hiraldo, F. Raptors as indicators of environmental change in the scrub habitat of Baja California Sur, Mexico. Conserv. Biol. 12, 921–925 (1998).Article 

    Google Scholar 
    71.DeVault, T. L. et al. Estimating interspecific economic risk of bird strikes with aircraft. Wildl. Soc. Bull. 42, 94–101 (2018).Article 

    Google Scholar 
    72.Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    73.Pebesma, E. J. Simple features for R: Standardized support for spatial vector data. R J. 10, 439 (2018).Article 

    Google Scholar  More

  • in

    Social familiarity improves fast-start escape performance in schooling fish

    1.Ward, A. J. W. & Hart, P. J. B. The effects of kin and familiarity on interactions between fish. Fish Fish 4, 348–358 (2003).Article 

    Google Scholar 
    2.Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, 2016).3.Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).4.Kohn, G. M. Friends give benefits: autumn social familiarity preferences predict reproductive output. Anim. Behav. 132, 201–208 (2017).Article 

    Google Scholar 
    5.Seppä, T., Laurila, A., Peuhkuri, N., Piironen, J. & Lower, N. Early familiarity has fitness consequences for Arctic char (Salvelinus alpinus) juveniles. Can. J. Fish. Aquat. Sci. 58, 1380–1385 (2001).Article 

    Google Scholar 
    6.Oesch, N. & Dunbar, R. I. M. Group size, communication, and familiarity effects in foraging human teams. Ethology 124, 483–495 (2018).Article 

    Google Scholar 
    7.Edenbrow, M. & Croft, D. P. Kin and familiarity influence association preferences and aggression in the mangrove killifish Kryptolebias marmoratus. J. Fish. Biol. 80, 503–518 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kavaliers, M. & Choleris, E. Out-Group threat responses, in-group bias, and nonapeptide involvement are conserved across vertebrates: (A comment on Bruintjes et al., “out-group threat promotes within-group affiliation in a cooperative fish”). Am. Nat. 189, 453–458 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.McCarter, M. W. & Sheremeta, R. M. You can’t put old wine in new bottles: the effect of newcomers on coordination in groups. PLoS ONE 8, e55058 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Silk, J. B. in Sociality, Hierarchy, Health: Comparative Biodemography (eds Weinstein, M. & Lane, M. A.) 121–144 (National Academies Press, 2014).11.Thompson, A. B. & Hare, J. F. Neighbourhood watch: multiple alarm callers communicate directional predator movement in Richardson’s ground squirrels, Spermophilus richardsonii. Anim. Behav. 80, 269–275 (2010).Article 

    Google Scholar 
    12.Micheletta, J. et al. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra. Proc. R. Soc. Lond. B Biol. Sci. 279, 4042–4050 (2012).
    Google Scholar 
    13.Strodl, M. & Schausberger, P. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation. PLoS ONE 7, e43590 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Versace, E., Damini, S., Caffini, M. & Stancher, G. Born to be asocial: Newly hatched tortoises avoid unfamiliar individuals. Anim. Behav. 138, 187–192 (2018).Article 

    Google Scholar 
    15.Strodl, M. A. & Schausberger, P. Social familiarity modulates group living and foraging behaviour of juvenile predatory mites. Die Naturwissenschaften 99, 303–311 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Gutmann, A. K., Špinka, M. & Winckler, C. Long-term familiarity creates preferred social partners in dairy cows. Appl. Anim. Behav. Sci. 169, 1–8 (2015).Article 

    Google Scholar 
    17.Engelmann, J. M. & Herrmann, E. Chimpanzees trust their friends. Curr. Biol. 26, 252–256 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Ward, A. J. W., Axford, S. & Krause, J. Mixed-species shoaling in fish: The sensory mechanisms and costs of shoal choice. Behav. Ecol. Sociobiol. 52, 182–187 (2002).Article 

    Google Scholar 
    19.Vickruck, J. L. & Richards, M. H. Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees. Behav. Proc. 145, 73–80 (2017).CAS 
    Article 

    Google Scholar 
    20.Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11–20 (2017).Article 

    Google Scholar 
    21.Domenici, P. & Blake, R. W. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Eaton, R. C., Lavender, W. A. & Wieland, C. M. Identification of Mauthner-initiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology. J. Comp. Phys. A 144, 521–531 (1981).Article 

    Google Scholar 
    23.Gerlotto, F., Bertrand, S., Bez, N. & Gutierrez, M. Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J. Mar. Sci. 63, 1405–1417 (2006).Article 

    Google Scholar 
    24.Domenici, P. & Batty, R. S. Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar. Biol. 128, 29–38 (1997).Article 

    Google Scholar 
    25.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690–4695 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Korn, H. & Faber, D. S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47, 13–28 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Domenici, P. & Hale, M. E. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J. Exp. Biol. 222, jeb166009 (2019).PubMed 
    Article 

    Google Scholar 
    28.Kohashi, T. & Oda, Y. Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J. Neurosci. 28, 10641–10653 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Hecker, A., Schulze, W., Oster, J., Richter, D. O. & Schuster, S. Removing a single neuron in a vertebrate brain forever abolishes an essential behavior. Proc. Natl Acad. Sci. USA 117, 3254–3260 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. & Reznick, D. N. Do faster starts increase the probability of evading predators? Funct. Ecol. 19, 808–815 (2005).Article 

    Google Scholar 
    31.McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958–969 (2018).Article 

    Google Scholar 
    32.Chivers, D. P., Brown, G. E. & Smith, J. F. R. Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): Implications for antipredator behavior. Can. J. Zool. 73, 955–960 (1995).Article 

    Google Scholar 
    33.Griffiths, S. W., Brockmark, S., Hojesjo, J. & Johnsson, J. I. Coping with divided attention: the advantage of familiarity. Proc. R. Soc. B Biol. Sci. 271, 695–699 (2004).CAS 
    Article 

    Google Scholar 
    34.Clément, R. J. G., Wolf, M., Snijders, L., Krause, J. & Kurvers, R. H. J. M. Information transmission via movement behaviour improves decision accuracy in human groups. Anim. Behav. 105, 85–93 (2015).Article 

    Google Scholar 
    35.Beauchamp, G. & Ruxton, G. D. False alarms and the evolution of antipredator vigilance. Anim. Behav. 74, 1199–1206 (2007).Article 

    Google Scholar 
    36.Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but can improve decision accuracy. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180378 (2019).Article 

    Google Scholar 
    37.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl Acad. Sci. USA 116, 20556–20561 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bohorquez-Herrera, J., Kawano, S. M. & Domenici, P. Foraging behavior delays mechanically-stimulated escape responses in fish. Integr. Comp. Biol. 53, 780–786 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Furtbauer, I. & Heistermann, M. Cortisol coregulation in fish. Sci. Rep. 6, 30334 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.DeVries, A. C., Glasper, E. R. & Detillion, C. E. Social modulation of stress responses. Phys. Behav. 79, 399–407 (2003).CAS 
    Article 

    Google Scholar 
    41.McEwen, B. S. Brain on stress: How the social environment gets under the skin. Proc. Natl Acad. Sci. USA 109, 17180–17185 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Furukawa, T. & Furshpan, E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophys. 26, 140–176 (1963).CAS 
    Article 

    Google Scholar 
    43.Pratchett, M. S., Coker, D. J., Jones, G. P. & Munday, P. L. Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol. Evol. 2, 2168–2180 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Nadler, L. E., McNeill, D. C., Alwany, M. A. & Bailey, D. M. Effect of habitat characteristics on the distribution and abundance of damselfish within a Red Sea reef. Environ. Biol. Fishes 97, 1265–1277 (2014).Article 

    Google Scholar 
    45.Ohman, M. C., Munday, P. L., Jones, G. P. & Caley, M. J. Settlement strategies and distribution patterns of coral-reef fishes. J. Exp. Mar. Biol. Ecol. 225, 219–238 (1998).Article 

    Google Scholar 
    46.Killen, S. S., Marras, S., Nadler, L. & Domenici, P. The role of physiological traits in assortment among and within fish shoals. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160233 (2017).47.Lassig, B. R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 9, 55–63 (1983).Article 

    Google Scholar 
    48.Yoon, J.-D., Jang, M.-H. & Joo, G.-J. Effect of flooding on fish assemblages in small streams in South Korea. Limnol 12, 197–203 (2011).Article 

    Google Scholar 
    49.Taborsky, M., Frommen, J. G. & Riehl, C. Correlated pay-offs are key to cooperation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Johansen, J. L. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia. PLoS ONE 9, e83240 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Griffiths, S. W. & Magurran, A. E. Familiarity in schooling fish: how long does it take to acquire? Anim. Behav. 53, 945–949 (1997).Article 

    Google Scholar 
    52.Eaton, R. & Emberley, D. How stimulus direction determines the trajectory of the mauthner-initiated escape response in a teleost fish. J. Exp. Biol. 161, 469–487 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Domenici, P. et al. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale. Biol. Open 4, 79–85 (2015).Article 

    Google Scholar 
    54.Nadler, L. E., Killen, S. S., Domenici, P. & McCormick, M. I. Role of water flow regime in the swimming behaviour and escape performance of a schooling fish. Biol. Open 7, bio031997 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Nissanov, J. & Eaton, R. C. Reticulospinal control of rapid escape turning maneuvers in fishes. Am. Zool. 29, 103–121 (1989).Article 

    Google Scholar 
    56.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adap. Behav. 20, 44–56 (2012).Article 

    Google Scholar 
    57.Vila Pouca, C. & Brown, C. Contemporary topics in fish cognition and behaviour. Curr. Opin. Behav. Sci. 16, 46–52 (2017).Article 

    Google Scholar 
    58.Eaton, R., Lee, R. & Foreman, M. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63, 467–485 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Nakayama, H. & Oda, Y. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.DiDomenico, R., Nissanov, J. & Eaton, R. C. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron. Brain Res. 473, 15–28 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Medan, V. & Preuss, T. The Mauthner-cell circuit of fish as a model system for startle plasticity. J. Physiol. Paris 108, 129–140 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dukas, R. Behavioural and ecological consequences of limited attention. Philos. Trans. R. Soc. B. Biol. Sci. 357, 1539–1547 (2002).Article 

    Google Scholar 
    63.Yue, S., Duncan, I. J. H. & Moccia, R. D. Do differences in conspecific body size induce social stress in domestic rainbow trout? Environ. Biol. Fishes 76, 425–431 (2006).Article 

    Google Scholar 
    64.Korn, H., Triller, A. & Faber, D. S. Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell. Proc. R. Soc. B Biol. Sci. 202, 533–538 (1978).CAS 

    Google Scholar 
    65.Whitaker, K. W. et al. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J. Neurophys. 106, 127–137 (2011).CAS 
    Article 

    Google Scholar 
    66.Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T. & Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. Proc. Natl Acad. Sci. USA 108, 2312–2315 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl Acad. Sci. USA 108, 18726–18731 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Conradt, L. & Roper, T. J. Activity synchrony and social cohesion: a fission-fusion model. Proc. R. Soc. B, Biol. Sci. 267, 2213–2218 (2000).CAS 
    Article 

    Google Scholar 
    69.Sogard, S. M. & Olla, B. L. The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environ. Biol. Fishes 50, 405–413 (1997).Article 

    Google Scholar 
    70.Domenici, P. Spacing of wild schooling herring while encircled by killer whales. J. Fish. Biol. 57, 831–836 (2000).Article 

    Google Scholar 
    71.Miller, N., Garnier, S., Hartnett, A. T. & Couzin, I. D. Both information and social cohesion determine collective decisions in animal groups. Proc. Natl Acad. Sci. USA 110, 5263–5268 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Granroth-Wilding, H. M. & Magurran, A. E. Asymmetry in pay-off predicts how familiar individuals respond to one another. Biol. Lett. 9, 20130025 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380 (1986).Article 

    Google Scholar 
    74.Ruxton, G. D., Jackson, A. L. & Tosh, C. R. Confusion of predators does not rely on specialist coordinated behavior. Behav. Ecol. 18, 590–596 (2007).Article 

    Google Scholar 
    75.Wolcott, H. L., Ojanguren, A. F. & Barbosa, M. The effects of familiarity on escape responses in the Trinidadian guppy (Poecilia reticulata). PeerJ 5, e3899 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Guayasamin, O. L., Couzin, I. D. & Miller, N. Y. Behavioural plasticity across social contexts is regulated by the directionality of inter-individual differences. Behav. Proc. 141, 196–204 (2016).Article 

    Google Scholar 
    77.Jacoby, D. M. P., Sims, D. W. & Croft, D. P. The effect of familiarity on aggregation and social behaviour in juvenile small spotted catsharks Scyliorhinus canicula. J. Fish. Biol. 81, 1596–1610 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. R. Soc. B. Biol. Sci. 284, 20171126 (2017).Article 

    Google Scholar 
    80.Romenskyy, M. et al. Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions. Behav. Ecol. 31, 311–321 (2020).Article 

    Google Scholar 
    81.Couzin, I. D. Collective cognition in animal groups. Trends Cog. Sci. 13, 36–43 (2009).Article 

    Google Scholar 
    82.Bshary, R., Gingins, S. & Vail, A. L. Social cognition in fishes. Trends Cogn. Sci. 18, 465–471 (2014).PubMed 
    Article 

    Google Scholar 
    83.Gil, M. A., Emberts, Z., Jones, H. & St Mary, C. M. Social Information on fear and food drives animal grouping and fitness. Am. Nat. 189, 227–241 (2017).PubMed 
    Article 

    Google Scholar 
    84.May, R. M. The evolution of cooperation. Nature 292, 291–292 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Munday, P. L. & Wilson, S. K. Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. J. Fish. Biol. 51, 931–938 (1997).CAS 

    Google Scholar 
    86.Domenici, P., Turesson, H., Brodersen, J. & Bronmark, C. Predator-induced morphology enhances escape locomotion in crucian carp. Proc. R. Soc. B. Biol. Sci. 275, 195–201 (2008).Article 

    Google Scholar 
    87.Turesson, H. & Domenici, P. Escape latency is size independent in grey mullet. J. Fish. Biol. 71, 253–259 (2007).Article 

    Google Scholar 
    88.Webb, P. W. Fast-start performance and body form in seven species of teleost fish. J. Exp. Biol. 74, 211–226 (1978).Article 

    Google Scholar 
    89.Marras, S. & Domenici, P. Schooling fish under attack are not all equal: some lead, others follow. PLoS ONE 8, e65784 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Bachelet, E. Circular Statistics in Biology (Academic Press, 1981).91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016). More