More stories

  • in

    Geodiversity impacts plant community structure in a semi-arid region

    1.Gray, M., Gordon, J. & Brown, E. Geodiversity and the ecosystem approach: The contribution of geoscience in delivering integrated environmental management. Proc. Geol. Assoc. 124, 659–673 (2013).Article 

    Google Scholar 
    2.Gray, M. Valuing geodiversity in an ‘ecosystem services’ context. Scott. Geogr. J. 128, 177–194 (2012).Article 

    Google Scholar 
    3.Warren, A. & French, J. R. Habitat Conservation: Managing the Physical Environment (Wiley, Hoboken, 2001).
    Google Scholar 
    4.Gordon, J. E., Barron, H. F., Hansom, J. D. & Thomas, M. F. Engaging with geodiversity—Why it matters. Proc. Geol. Assoc. 123, 1–6 (2012).Article 

    Google Scholar 
    5.Hjort, J., Gordon, J. E., Gray, M. & Hunter, M. L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 29, 630–639 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Gray, M. Geodiversity: Valuing and Conserving Abiotic Nature 448 (Wiley, 2004).
    Google Scholar 
    7.Serrano, E. & Ruiz-Flano, P. Geodiversity. A theoretical and applied concept. Geogr. Helv. Jg 62, 140–147 (2007).Article 

    Google Scholar 
    8.Comer, P. J. et al. Incorporating geodiversity into conservation decisions. Conserv. Biol. 29, 692–701 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Pătru-Stupariu, I. et al. Integrating geo-biodiversity features in the analysis of landscape patterns. Ecol. Indic. 80, 363–375 (2017).Article 

    Google Scholar 
    10.Chakraborty, A. & Gray, M. A call for mainstreaming geodiversity in nature conservation research and praxis. J. Nat. Conserv. 56, 125862 (2020).Article 

    Google Scholar 
    11.Poesen, J., Torri, D. & Bunte, K. Effects of rock fragments on soil erosion by water at different spatial scales: A review. CATENA 23, 141–166 (1994).Article 

    Google Scholar 
    12.Zhang, Y., Zhang, M., Niu, J., Li, H. & Xiao, R. Rock fragments and soil hydrological processes: Significance and progress. CATENA 147, 153–166 (2016).Article 

    Google Scholar 
    13.Xia, L. et al. Effects of rock fragment cover on hydrological processes under rainfall simulation in a semi-arid region of China. Hydrol. Process. 32, 792–804 (2018).ADS 
    Article 

    Google Scholar 
    14.Lavee, H. & Poesen, J. W. A. Overland flow generation and continuity on stone-covered soil surfaces. Hydrol. Process. 5, 345–360 (1991).ADS 
    Article 

    Google Scholar 
    15.Agassi, M. & Levy, G. Stone cover and rain intensity—Effects on infiltration, erosion and water splash. Soil Res. 29, 565–575 (1991).Article 

    Google Scholar 
    16.Mandal, U. K. et al. Soil infiltration, runoff and sediment yield from a shallow soil with varied stone cover and intensity of rain. Eur. J. Soil Sci. 56, 435–443 (2005).Article 

    Google Scholar 
    17.Cerdà, A. Effects of rock fragment cover on soil infiltration, interrill runoff and erosion. Eur. J. Soil Sci. 52, 59–68 (2001).Article 

    Google Scholar 
    18.Jury, W. A. & Bellantuoni, B. Heat and water movement under surface rocks in a field soil: I. Thermal effects. Soil Sci. Soc. Am. J. 40, 505–509 (1976).ADS 
    Article 

    Google Scholar 
    19.Yuan, C., Lei, T., Mao, L., Liu, H. & Wu, Y. Catena soil surface evaporation processes under mulches of different sized gravel. CATENA 78, 117–121 (2009).CAS 
    Article 

    Google Scholar 
    20.Poesen, J. & Lavee, H. Rock fragments in top soils: Significance and processes. CATENA 23, 1–28 (1994).Article 

    Google Scholar 
    21.Yizhaq, H., Stavi, I., Shachak, M. & Bel, G. Geodiversity increases ecosystem durability to prolonged droughts. Ecol. Complex. 31, 96–103 (2017).Article 

    Google Scholar 
    22.Stavi, I., Rachmilevitch, S. & Yizhaq, H. Geodiversity effects on soil quality and geo-ecosystem functioning in drylands. CATENA 176, 372–380 (2019).CAS 
    Article 

    Google Scholar 
    23.Preisler, Y. et al. Mortality versus survival in drought-affected Aleppo pine forest depends on the extent of rock cover and soil stoniness. Funct. Ecol. 33, 901–912 (2019).Article 

    Google Scholar 
    24.Sauer, T. J. & Logsdon, S. D. Hydraulic and Physical Properties of Stony Soils in a Small Watershed. Soil Sci. Soc. Am. J. 66, 1947–1956 (2002).25.Arnau-Rosalén, E., Calvo-Cases, A., Boix-Fayos, C., Lavee, H. & Sarah, P. Analysis of soil surface component patterns affecting runoff generation. An example of methods applied to Mediterranean hillslopes in Alicante (Spain). Geomorphology 101, 595–606 (2008).ADS 
    Article 

    Google Scholar 
    26.Ceacero, C. J., Díaz-Hernández, J. L., de Campo, A. D. & Navarro-Cerrillo, R. M. Soil rock fragment is stronger driver of spatio-temporal soil water dynamics and efficiency of water use than cultural management in holm oak plantations. Soil Tillage Res. 197, 104495 (2020).Article 

    Google Scholar 
    27.Burnett, M. R., August, P. V., Brown, J. H. & Killingbeck, K. T. The influence of geomorphological heterogeneity on biodiversity I. A patch-scale perspective. Conserv. Biol. 12, 363–370 (2008).Article 

    Google Scholar 
    28.Engelbrecht, B. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Stavi, I., Rachmilevitch, S. & Yizhaq, H. Small-scale geodiversity regulates functioning, connectivity, and productivity of shrubby, semi-arid rangelands. L. Degrad. Dev. 29, 205–209 (2018).Article 

    Google Scholar 
    30.Dubinin, V., Stavi, I., Svoray, T., Dorman, M. & Yizhaq, H. Hillslope geodiversity improves the resistance of shrubs to prolonged droughts in semiarid ecosystems. J. Arid Environ. 188, 104462 (2021).ADS 
    Article 

    Google Scholar 
    31.Ochoa-Hueso, R. et al. Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. J. Ecol. 106, 242–253 (2018).CAS 
    Article 

    Google Scholar 
    32.Stavi, I., Rachmilevitch, S., Hjazin, A. & Yizhaq, H. Geodiversity decreases shrub mortality and increases ecosystem tolerance to droughts and climate change. Earth Surf. Process. Landforms 43, 2808–2817 (2018).ADS 
    Article 

    Google Scholar 
    33.Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).ADS 
    Article 

    Google Scholar 
    34.Bailey, J. J., Boyd, D. S. & Field, R. Models of upland species’ distributions are improved by accounting for geodiversity. Landscape Ecol. https://doi.org/10.1007/s10980-018-0723-z (2018).Article 

    Google Scholar 
    35.Lenoir, J. et al. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe. Glob. Change Biol. 19, 1470–1481 (2013).ADS 
    Article 

    Google Scholar 
    36.Lawler, J. J. et al. The theory behind, and the challenges of, conserving nature’s stage in a time of rapid change. Conserv. Biol. 29, 618–629 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Nichols, W. F., Killingbeck, K. T. & August, P. V. The influence biodiversity of geomorphological heterogeneity: II. A landscape perspective. Soc. Conserv. Biol. 12, 371–397 (1998).Article 

    Google Scholar 
    38.Alahuhta, J., Toivanen, M. & Hjort, J. Geodiversity–biodiversity relationship needs more empirical evidence. Nat. Ecol. Evol. 4, 2–3 (2020).PubMed 
    Article 

    Google Scholar 
    39.Evenari, M., Shanan, L., Tadmor, N. & Shkolnik, A. The Negev: The Challenge of a Desert (Harvard University Press, 1982).Book 

    Google Scholar 
    40.Akttani, H., Trimborn, P. & Ziegler, H. Photosynthetic pathways in Chenopodiaceae from Africa, Asia and Europe with their ecological, phytogeographical and taxonomical importance. Plant Syst. Evol. 206, 187–221 (1997).Article 

    Google Scholar 
    41.Harley, J. The Biology of Mycorrhiza (Leonard Hill, 1969).
    Google Scholar 
    42.Mejsti, V. K. & Cudlin, P. Mycorrhiza in some plant desert species in Algeria. Plant Soil 71, 363–366 (1983).Article 

    Google Scholar 
    43.Segoli, M., Ungar, E. D. & Shachak, M. Shrubs enhance resilience of a semi-arid ecosystem by engineering and regrowth. Ecohydrology 1, 330–339 (2008).Article 

    Google Scholar 
    44.Gilad, E., Von Hardenberg, J., Provenzale, A., Shachak, M. & Meron, E. Ecosystem engineers: From pattern formation to habitat creation. Phys. Rev. Lett. 93, 098105 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Wright, J. P., Jones, C. G., Boeken, B. & Shachak, M. Predictability of ecosystem engineering effects on species richness across environmental variability and spatial scales. J. Ecol. 94, 815–824 (2006).Article 

    Google Scholar 
    46.Katra, I., Blumberg, D. G., Lavee, H. & Sarah, P. Spatial distribution dynamics of topsoil moisture in shrub microenvironment after rain events in arid and semi-arid areas by means of high-resolution maps. Geomorphology 86, 455–464 (2007).ADS 
    Article 

    Google Scholar 
    47.Hoffman, O., de Falco, N., Yizhaq, H. & Boeken, B. Annual plant diversity decreases across scales following widespread ecosystem engineer shrub mortality. J. Veg. Sci. 27, 578–586 (2016).Article 

    Google Scholar 
    48.Shachak, M. et al. Woody species as landscape modulators and their effect on biodiversity patterns. Bioscience 58, 209–221 (2008).Article 

    Google Scholar 
    49.Madrigal-González, J., García-Rodríguez, J. A. & Alarcos-Izquierdo, G. Testing general predictions of the stress gradient hypothesis under high inter- and intra-specific nurse shrub variability along a climatic gradient. J. Veg. Sci. 23, 52–61 (2012).Article 

    Google Scholar 
    50.Boeken, B. & Shachak, M. The dynamics of abundance and incidence of annual plant species during colonization in a desert. Ecography (Cop.) 21, 63–73 (1998).Article 

    Google Scholar 
    51.Golodets, C. & Boeken, B. Moderate sheep grazing in semiarid shrubland alters small-scale soil surface structure and patch properties. CATENA 65, 285–291 (2006).Article 

    Google Scholar 
    52.Boeken, B. & Shachak, M. Desert plant communities in human-made patches-implications for management. Ecol. Appl. 4, 702–716 (1994).Article 

    Google Scholar 
    53.Hoffman, O., Yizhaq, H. & Boeken, B. Small-scale effects of annual and woody vegetation on sediment displacement under field conditions. CATENA 109, 157–163 (2013).Article 

    Google Scholar 
    54.Zaady, E., Arbel, S., Barkai, D. & Sarig, S. Long-term impact of agricultural practices on biological soil crusts and their hydrological processes in a semiarid landscape. J. Arid Environ. 90, 5–11 (2013).ADS 
    Article 

    Google Scholar 
    55.Zaady, E., Stavi, I. & Yizhaq, H. Hillslope geodiversity effects on properties and composition of biological soil crusts in drylands. Eur. J. Soil Sci. https://doi.org/10.1111/ejss.13097 (2021).Article 

    Google Scholar 
    56.Feinbrun-Dothan, N. & Danin, A. Analytical Flora of Eretz-Israel (Cana Publishing Ltd, 1991).
    Google Scholar 
    57.Solovchenko, A., Merzlyak, M. N., Khozin-Goldberg, I., Cohen, Z. & Boussiba, S. Coordinated carotenoid and lipid syntheses induced in parietochloris incisa (chlorophyta, trebouxiophyceae) mutant deficient in δ5 desaturase by nitrogen starvation and high light. J. Phycol. 46, 763–772 (2010).CAS 
    Article 

    Google Scholar 
    58.Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Simpson, E. Measurement of diversity. Nature 163, 688 (1949).ADS 
    MATH 
    Article 

    Google Scholar 
    60.R Core Team. R: A language and environment for statistical Computing. R Foundation for Statistical  Computing, Vienna, Austria (2020).61.Richerson, P. J. & Lum, K. Patterns of plant species diversity in California: Relation to weather and topography. Am. Nat. 116, 504–536 (1980).Article 

    Google Scholar 
    62.Kerr, J. T. & Packer, L. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature 385, 252–254 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Alahuhta, J. et al. The role of geodiversity in providing ecosystem services at broad scales. Ecol. Indic. 91, 47–56 (2018).Article 

    Google Scholar 
    64.Zarnetske, P. L. et al. Towards connecting biodiversity and geodiversity across scales with satellite remote sensing. Wiley Online Libr. 28, 548–556 (2019).
    Google Scholar 
    65.Schrodt, F. et al. To advance sustainable stewardship, we must document not only biodiversity but geodiversity. Proc. Natl. Acad. Sci. U. S. A. 116, 16155–161658 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Read, Q. D. et al. Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Wiley Online Libr. 29, 696–710 (2020).
    Google Scholar 
    67.Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718–725 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Knudson, C., Kay, K. & Fisher, S. Appraising geodiversity and cultural diversity approaches to building resilience through conservation. Nat. Clim. Change 8, 678–685 (2018).ADS 
    Article 

    Google Scholar 
    69.Beier, P., Hunter, M. L. & Anderson, M. Special section: Conserving nature’s stage. Conserv. Biol. 29, 613–617 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Dubinin, V., Svoray, T., Stavi, I. & Yizhaq, H. Using LANDSAT 8 and VENµS data to study the effect of geodiversity on soil moisture dynamics in a semiarid shrubland. Remote Sens. 12, 3377 (2020).ADS 
    Article 

    Google Scholar 
    71.Renne, R. R. et al. Soil and stand structure explain shrub mortality patterns following global change–type drought and extreme precipitation. Ecology 100, e02889 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    72.Gutterman, Y., Golan, T. & Garsani, M. Porcupine diggings as a unique ecological system in a desert environment. Oecologia 85, 122–127 (1990).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Armas, C., Pugnaire, F. I. & Sala, O. E. Patch structure dynamics and mechanisms of cyclical succession in a Patagonian steppe (Argentina). J. Arid Environ. 72, 1552–1561 (2008).ADS 
    Article 

    Google Scholar 
    74.Pickett, S. & White, P. The Ecology of Natural Disturbance and Patch Dynamics (Academic Press, 1985). https://doi.org/10.1016/C2009-0-02952-3.Book 

    Google Scholar 
    75.Segoli, M., Ungar, E. D., Giladi, I., Arnon, A. & Shachak, M. Untangling the positive and negative effects of shrubs on herbaceous vegetation in drylands. Landsc. Ecol. 27, 899–910 (2012).Article 

    Google Scholar 
    76.Rodríguez, F., Mayor, Á. G., Rietkerk, M. & Bautista, S. A null model for assessing the cover-independent role of bare soil connectivity as indicator of dryland functioning and dynamics. Ecol. Indic. 94, 512–519 (2018).Article 

    Google Scholar 
    77.Zelnik, Y. R., Kinast, S., Yizhaq, H., Bel, G. & Meron, E. Regime shifts in models of dryland vegetation. Philos. Trans. R. Soc. A https://doi.org/10.1098/rsta.2012.0358 (2013).Article 
    MATH 

    Google Scholar 
    78.Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. PNAS 103, 1342–1346 (2006).79.Kardol, P. et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old-field ecosystem. Glob. Change Biol. 16, 2676–2687 (2010).ADS 
    Article 

    Google Scholar 
    80.Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: A review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Stavi, I., Yizhaq, H., Szitenberg, A. & Zaady, E. Patch-scale to hillslope-scale geodiversity alleviates susceptibility of dryland ecosystems to climate change: Insights from the Israeli Negev. Curr. Opin. Environ. Sustain. 50, 129–137 (2021).Article 

    Google Scholar 
    82.Loarie, S. R. et al. Climate change and the future of California’s endemic flora. PLoS ONE 3, 2502 (2008).ADS 
    Article 
    CAS 

    Google Scholar 
    83.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Ashcroft, M. B., Chisholm, L. A. & French, K. O. Climate change at the landscape scale: Predicting fine-grained spatial heterogeneity in warming and potential refugia for vegetation. Glob. Change Biol. 15, 656–667 (2009).ADS 
    Article 

    Google Scholar 
    85.Correa-Metrio, A., Meave, J. A., Lozano-García, S. & Bush, M. B. Environmental determinism and neutrality in vegetation at millennial time scales. J. Veg. Sci. 25, 627–635 (2014).Article 

    Google Scholar 
    86.Baumgartner, J., Esperon-Rodriguez, M. & Beaumont, L. Identifying in situ climate refugia for plant species. Ecography (Cop.) 41, 1850–1863 (2018).Article 

    Google Scholar 
    87.Alahuhta, J. et al. The Role of Geodiversity in Providing Ecosystem Services at Broad Scales (Elsevier, 2018).Book 

    Google Scholar 
    88.Parks, K. E. & Mulligan, M. On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers. Conserv. 19, 2751–2766 (2010).Article 

    Google Scholar 
    89.Keppel, G. et al. The capacity of refugia for conservation planning under climate change. Front. Ecol. Environ. 13, 106–112 (2015).Article 

    Google Scholar 
    90.Mokany, K. et al. Past, present and future refugia for Tasmania’s palaeoendemic flora. J. Biogeogr. 44, 1537–1546 (2017).Article 

    Google Scholar  More

  • in

    Plant mixture balances terrestrial ecosystem C:N:P stoichiometry

    Data collectionWe systematically searched all peer-reviewed publications that were published prior to May 2021, which investigated the effects of plant diversity on terrestrial C:N:P ratios (i.e., plants, soils, soil microbial biomass, and extracellular enzymes) using the Web of Science (Core Collection; http://www.webofknowledge.com), Google Scholar (http://scholar.google.com), and the China National Knowledge Infrastructure (CNKI; https://www.cnki.net) using the search term: “C:N or C:P or N:P or C:N:P AND plant OR soil OR microbial biomass OR extracellular enzyme OR exoenzyme AND plant diversity OR richness OR mixture OR pure OR polyculture OR monoculture OR overyielding”, and also searched for references within these papers. Our survey also included studies summarized in previously published diversity-ecosystem functioning meta-analyses15,17,20,33. The literature search was performed following the guidelines of PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) (Moher, Liberati44; Supplementary Fig. 5).We employed the following criteria to select the studies: (i) they were purposely designed to test the effects of plant diversity on C:N:P ratios, (ii) they had at least one species mixture treatment and corresponding monocultures, (iii) they had the same initial climatic and soil properties in the monoculture and mixture treatment plots. In thirteen publications, several experiments, each with independent controls, were conducted at different locations and were considered to be distinct studies. In total, 169 studies met these criteria (Supplementary Fig. 5 and Supplementary Table 3). When different publications included the same data, we recorded the data only once. When a study included plant species mixtures of different numbers of species, we considered them as distinct observations.For each site, we extracted the means, the number of replications, and standard deviations of the C:N, N:P, and C:P ratios of plants (including leaves, shoots, fine roots, total roots), soils, soil enzymes as well as soil microbial biomass C:N ratios, if reported. Similar to Zhou and Staver45, we collected nine types of soil enzymes and integrated individual soil enzymes into combined enzymes to represent proxies targeting specific resource acquisitions: C-acquisition (average of Invertase, α-Glucosidase, β-1,4-Glucosidase, Cellobiohydrolase, β-1,4-Xylosidase), N-acquisition (average of β-1,4-N-acetylglucosaminidase, Leucine-aminopeptidase, Urease), and P-acquisition (phosphatase). The ratios of each type of enzyme were subsequently calculated, referred to as soil enzyme C:N, C:P, and N:P. When an original study reported the results graphically, we used Plot Digitizer version 2.0 (Department of Physics at the University of South Alabama, Mobile, AL, USA) to extract data from the figures. This resulted in 52 studies for plant C:N ratios, 35 studies for plant N:P ratios, 17 studies for plant C:P ratios, 83 studies for soil C:N ratios, 42 studies for soil N:P ratios, 19 studies for soil C:P ratios, 33 studies for soil microbial biomass C:N ratios, 41 studies for soil enzyme C:N ratios, 40 studies for soil enzyme N:P ratios and 34 studies for soil enzyme C:P ratios (Supplementary Table 3).We also extracted species compositions in mixtures, latitude, longitude, stand age, ecosystem type (i.e, forest, grassland, cropland, pot), mean annual temperature (MAT, °C), management practice (fertilization or not), soil type (FAO classification) and sampled soil depth from original or cited papers, or cited data sources. The mean annual aridity index and solar radiation data were retrieved from the CGIAR-CSI Global Aridity Index data set46 and WorldClim Version 247 using location information. The annual aridity index was calculated as the ratio of the mean annual precipitation to mean annual potential evapotranspiration48. Stand age (SA) was recorded as the number of years since stand establishment following stand-replacing disturbances in forests, and the number of years between the initiation and measurements of the experiments in grasslands, croplands, and pots. Observations were averaged if multiple measurements were conducted during different seasons within a year. The species proportions in plant mixtures were based on the stem density in forests and pots, coverage in croplands, and sown seeds in grasslands. Soil depth was recorded as the midpoint of each soil depth interval49. We employed the weighted averages of soil C:N, C:P, and N:P ratios of monocultures in each study as proxies for the status of background nutrients. For studies that did not report soil C:N, C:P, and N:P ratios of monocultures, we used the initial soil C:N, C:P, and N:P ratios (before experiment establishment, if reported) as proxies for the status of background nutrients. When a study reported the soils, soil microbial biomass or soil enzyme C:N:P data from multiple soil depths, we used the soil C:N, C:P, and N:P ratios of the corresponding depths as background nutrient proxies. For plant C:N:P data, we used the uppermost soil layer C:N, C:P, and N:P ratios as background nutrient proxies, since it contains the majority of the available nutrients essential for plant growth50. We compared the estimates for the data sets with and without pot studies and found that both data sets yielded qualitatively similar results (Supplementary Tables 2 and 4). Thus, we reported results based on the whole data set.We employed two key functional traits to describe the functional composition: ‘leaf nitrogen content per leaf dry mass’ (Nmass, mg g−1), and “specific leaf area” (SLA, mm2 mg−1; i.e., leaf area per leaf dry mass), as they are expected to be related to plant growth rate, resource uptake and use efficiency27, and are available for large numbers of species. We obtained the mean trait values of Nmass and SLA data by using all available measurements for each plant species from the TRY Plant Trait Database51 except for two studies that included the data in their original publication52, or related publications in the same sites53. Functional diversity (FDis) was calculated as functional dispersion, which is the mean distance of each species to the centroid of all species in the functional trait space, based on the two traits together54. The calculation of FDis was conducted using the FD package54.Data analysisThe natural log-transformed response ratio (lnRR) was employed to quantify the effects of plant mixture following Hedges, Gurevitch55:$${{{{{{mathrm{ln}}}}}}}{RR}={{{{{{mathrm{ln}}}}}}}({bar{X}}_{{{{{{mathrm{t}}}}}}}/{bar{X}}_{{{{{{mathrm{c}}}}}}})={{{{{{{mathrm{ln}}}}}}}bar{X}}_{{{{{{mathrm{t}}}}}}}-{{{{{{{mathrm{ln}}}}}}}bar{X}}_{{{{{{mathrm{c}}}}}}}$$
    (1)
    where ({overline{X}}_{{{{{{rm{t}}}}}}}) and ({overline{X}}_{{{{{{rm{c}}}}}}}) are the observed values of a selected variable in the mixture and the expected value of the mixture in each study, respectively. If a study has multiple richness levels in mixtures (for example, 1, 4, 8, and 16), lnRR was calculated for the species richness levels 4, 8, and 16, respectively. We calculated ({overline{X}}_{{{{{{rm{c}}}}}}}) based on weighted values of the component species in monocultures following Loreau and Hector39:$$overline{{X}_{{{{{{mathrm{c}}}}}}}}=sum ({p}_{i}times {m}_{i})$$
    (2)
    where mi is the observed value of the selected variable of the monoculture of species i and pi is the proportion of species i density in the corresponding mixture. When a study reported multiple types of mixtures (species richness levels) and experimental years, ({overline{X}}_{{{{{{rm{t}}}}}}}) and ({overline{X}}_{{{{{{rm{c}}}}}}}) were calculated separately for each mixture type and experimental year.In our data set, sampling variances were not reported in 37 of the 169 studies, and no single control group mean estimate is present with standard deviation or the standard error reported. Like the previous studies6,56, we employed the number of replications for weighting:$${W}_{{{{{{mathrm{r}}}}}}}=({N}_{{{{{{mathrm{c}}}}}}}times {N}_{{{{{{mathrm{t}}}}}}})/({N}_{{{{{{mathrm{c}}}}}}}+{N}_{{{{{{mathrm{t}}}}}}})$$
    (3)
    where Wr is the weight associated with each lnRR observation, and Nc and Nt are the number of replications in monocultures and corresponding mixtures, respectively.The C:N, N:P, and C:P ratios of plants, soils, and soil enzymes, as well as soil microbial biomass C:N ratios were considered as response variables and analyzed separately. To validate the linearity assumption for the continuous predictors, we initially graphically plotted the lnRR vs. individual predictors, including FDis, SA, and background nutrient status (N, i.e., C:N, C:P, and N:P ratios of soil) and identified logarithmic functions as an alternative to linear functions. We also statistically compared the linear and logarithmic functions with the predictor of interest as the fixed effect, and “study” and measured plant parts (i.e., leaves, shoots, fine roots, total roots) or soil depth as the random effects, using Akaike information criterion (AIC). The random factors were used to account for the autocorrelation among observations within each “Study”, and potential influences of variation in measured plant parts and soil depth. We found that the linear FDis, SA, and N resulted in lower, or similar AIC values (∆AIC  More

  • in

    Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities

    AOA kinetic propertiesIn this study we investigated the kinetic properties of 12 AOA strains, including representatives from all four described AOA phylogenetic lineages: Nitrosopumilales (Group I.1a), ‘Ca. Nitrosotaleales’ (Group I.1a-associated), Nitrososphaerales (Group I.1b), and ‘Ca. Nitrosocaldales’ (thermophilic AOA clade) [58, 59] (Fig. 1). These AOA isolates and enrichments were obtained from a variety of habitats (marine, soil, sediment, hot spring) and have optimal growth pH and temperatures ranging from 5.3–7.8 to 25–72 °C, respectively (Table S2). The substrate-dependent oxygen consumption rates for all AOA tested followed Michaelis–Menten kinetics. Below, the kinetic properties of these AOA are put into a broader context with comparisons to previously characterized AOM. It is important to note that the whole cell kinetic properties, such as substrate competitiveness, detailed here were generated from instantaneous activity measurements in the absence of growth. It is unknown how the substrate competitiveness of nitrifiers may or may not differ from their competitiveness when cellular processes such as growth, division, stress, and repair are involved.Fig. 1: Phylogenetic reconstruction of ammonia oxidizing archaea (AOA) rooted on closely related non-AOA members of the “Thaumarchaeota”.Black taxon labels correspond to AOA from cultures or enrichments. Gray taxon labels correspond to representative metagenome assembled genomes from release 05-RS95 of the genome taxonomy database [41]. AOA that were kinetically characterized in the current study are highlighted in gray and AOA that were previously characterized are indicated with an asterisk (*). The phylogeny was calculated with IQ-TREE under model LG + F + R6 using an alignment of 34 universal genes (43 markers) produced by CheckM [42]. Support values (UFboot) greater than 95% for bipartitions are shown with a black circle and support values between 80% and 95% are shown with a gray circle. Order designations reflect lineages proposed by Alves et al. [59]. The scale bar indicates amino acids changes per site.Full size imageNitrosopumilales (Group I.1a)From this lineage, three mesophilic marine (N. piranensis D3C, N. adriaticus NF5, and N. maritimus SCM1) [3, 60], two agricultural soil (N. koreense MY1 and ‘Ca. N. chungbukensis’ MY2) [61, 62] and one thermal spring isolate (‘Ca. N. uzonensis’ N4) [40] were kinetically characterized (Fig. S1). These AOA all displayed a high substrate affinity for NH3, ranging from ~2.2 to 24.8 nM. Thus, all characterized Nitrosopumilales, and not just marine isolates, are adapted to oligotrophic conditions. All possess substrate affinities several orders of magnitude higher (lower Km(app)) than any characterized AOB, with the exception of the recently characterized acidophilic gammaproteobacterial AOB ‘Ca. Nitrosacidococcus tergens’ [55] (Fig. 2a). This finding appears to support the widely reported hypothesis that regardless of the environment, AOA in general are adapted to lower substrate concentrations than AOB [22, 29, 30]. However, as described later, this trend does not apply to all AOA.Fig. 2: Substrate-dependent oxidation kinetics of ammonia-oxidizing microorganisms.The (a) apparent substrate affinity (Km(app)) for NH3, (b) specific substrate affinity (a°) for NH3, (c) Km(app) for total ammonium, (d) a° for total ammonium, and (e) maximum oxidation rate (Vmax), of AOA (red), comammox (blue), and AOB (black) are provided. Symbols filled with light gray represent previously published values from reference studies (references provided in Materials and Methods). The four different gradations of red differentiate the four AOA phylogenetic lineages: (I) Nitrosopumilales, (II) ‘Ca. Nitrosotaleales’, (III) Nitrososphaerales, and (IV) ‘Ca. Nitrosocaldales’. Measurements were performed with either pure (circles) or enrichment (diamonds) cultures. Multiple symbols per strain represent independent measurements performed in this study and/or in the literature. The individual Michaelis–Menten plots for each AOM determined in this study are presented in Figs. S1, S3–5, and S8. Note the different scales.Full size imageAs the substrate oxidation kinetics of the marine AOA strain, N. maritimus SCM1, originally characterized by Martens-Habbena et al. [29] have recently been disputed [63], they were revisited in this study (Fig. S2). With the same strain of N. maritimus used in Hink et al. [63] (directly obtained by the authors), we were able to reproduce (Figs. S1 and S2) the original kinetic properties of N. maritimus SCM1 reported in Martens-Habbena et al. [29] ruling out strain domestication during lab propagation as cause for the observed discrepancy. Therefore, the reported differences in the literature possibly reflect the measurements of two distinct cellular properties, Km(app) [29] and Ks [63], representing the half saturation of activity and growth, respectively. In addition, differences in pre-measurement cultivation and growth conditions could also contribute to these unexpected differences [63, 64]. More details are provided in the Supplementary Results and Discussion.‘Ca. Nitrosotaleales’ (Group I.1a-associated)The only isolated AOA strains in this lineage ‘Ca. Nitrosotalea devanaterra’ Nd1 and ‘Ca. Nitrosotalea sinensis’ Nd2, are highly adapted for survival in acidic environments and grow optimally at pH 5.3 [25, 65]. Both display a relatively low affinity for total ammonium (Km(app) = 3.41–11.23 μM), but their affinity for NH3 is among the highest calculated of any AOA characterized (Km(app) = ~0.6–2.8 nM) (Fig. 2a,c, and Fig. S3). This seemingly drastic difference in substrate affinity for total ammonium versus NH3 is due to the combination of the high acid dissociation constant of ammonium (pKa = 9.25) and the kinetic properties of these strains being carried out at pH 5.3. The very limited availability of NH3 under acidic conditions has led to the hypothesis that these acidophilic AOA should be highly adapted to very low NH3 concentrations and possess a high substrate affinity (low Km(app)) for NH3 [66, 67]. Our data corroborate this hypothesis.Nitrososphaerales (Group I.1b)The AOA strains ‘Ca. N. nevadensis’ GerE (culture information provided in Supplementary Results and Discussion), ‘Ca. N. oleophilus’ MY3 [68] and ‘Ca. N. franklandus’ C13 [69] were kinetically characterized, and contextualized with the previously published kinetic characterization of Nitrososphaera viennensis EN76 and ‘Ca. Nitrososphaera gargensis’ [5]. Together, the Nitrososphaerales AOA possess a wide range of affinities for NH3 (Km(app) = ~0.14–31.5 µM) (Fig. 2a and Fig. S4). Although this range of NH3 affinities spans more than two orders of magnitude, none of the Nitrososphaerales AOA possess an affinity for NH3 as high as any Nitrosopumilales or ‘Ca. Nitrosotaleales’ AOA (Fig. 2a).The moderately thermophilic enrichment culture ‘Ca. N. nevadensis’ GerE displayed a higher substrate affinity (lower Km(app)) for NH3 (0.17 ± 0.03 µM) than the other characterized AOA strains within the genus Nitrososphaera (Fig. 2a). In contrast, ‘Ca. N. oleophilus’ MY3 and ‘Ca. N. franklandus’ C13, which belong to the genus Nitrosocosmicus, had the lowest affinity (highest Km(app)) for NH3 (12.37 ± 6.78 μM and 16.32 ± 14.11 μM, respectively) of any AOA characterized to date. In fact, their substrate affinity is comparable to several characterized AOB (Fig. 2a). In this context it is interesting to note that several Nitrosocosmicus species have been shown to tolerate very high ammonium concentrations [68,69,70], a trait usually associated with AOB [24, 54]. The low substrate affinity observed in Nitrosocosmicus AOA correlates with the absence of a putative Amt-type high affinity ammonium transporter in the genome of any sequenced Nitrosocosmicus species to date [68, 69, 71].
    ‘Ca. Nitrosocaldales’ (Thermophilic AOA lineage)The thermophilic AOA enrichment cultures, ‘Ca. Nitrosocaldus yellowstonensis’ HL72 [72] and ‘Ca. N. tenchongensis’ DRC1 (culture information provided in Supplementary Results and Discussion), possess affinities for NH3 (Km(app) = ~1.36 ± 0.53 μM and ~0.83 ± 0.01 μM; respectively comparable to AOA within the genus Nitrososphaera (Fig. 2a). Notably, the substrate oxidation rate of these two AOA quickly dropped with increasing substrate concentrations after Vmax was reached (Fig. S5). This trend was not observed with any other AOA tested here and may reflect an increased susceptibly to NH3 stress at high temperatures, as the free NH3 concentration increases with increasing temperatures [33]. It should be noted that both of these AOA cultures are enrichment cultures, as no member of the ‘Ca. Nitrosocaldales’ has been isolated to date.Together, these results highlight that the substrate affinity for NH3 among AOA species is much more variable than previously hypothesized, spanning several orders of magnitude and in some cases overlapping with the substrate affinity values of characterized non-oligotrophic AOB. In addition, the substrate affinity of AOA is related, to a certain degree, to their phylogenetic placement within each of the four AOA phylogenetic lineages mentioned above (Fig. 2). Although the substrate affinity ranges of these AOA lineages overlap, the link between AOA phylogeny and kinetic properties provides deeper insights into the physiological and evolutionary differences among AOA species. As a limited number of AOA have been isolated and characterized to date, the continued isolation and characterization of AOA from underrepresented phylogenetic lineages and new habitats is needed. While substrate affinity is certainly one of multiple factors that contribute to niche differentiation between AOM in general, it may also present a previously under acknowledged factor in AOA niche differentiation.Maximum substrate oxidation rates (V
    max)The normalized maximum substrate oxidation rate of all the AOA characterized to date only span about one order of magnitude from 4.27 to 54.68 μmol N mg protein−1 h−1. These normalized AOA Vmax values are in the same range as the recorded Vmax for the comammox N. inopinata (~12 μmol N mg protein−1 h−1) and the marine AOB strain Nitrosococcus oceani ATCC 19707 (~38 μmol N mg protein−1 h−1) but are lower than the normalized Vmax of the AOB Nitrosomonas europaea ATCC 19718 (average of 84.2 μmol N mg protein−1 h−1; Fig. 2e). The high Vmax value for N. europaea is the only real outlier among the AOM characterized to date and it remains to be determined whether other AOB related to N. europaea also possess such a high Vmax or if members of the Nitrosomonadales possess a broad range of Vmax values. Similarly, as additional comammox strains become available as pure cultures their kinetic characterization will be vital in understanding the variability of these ecologically important parameters within this guild.Specific substrate affinity (a°)Although the Km(app) and Vmax of AOM can be compared by themselves and provide useful information on cellular properties, the ability of an AOM to scavenge (and compete for) substrate from a dilute solution is most appropriately represented by the a°, which takes into account both the cellular Km(app) and Vmax [28]. In previous studies, the a° of AOM has been calculated using the Km(app) value for total ammonium (NH3 + NH4+) and not the Km(app) value for NH3 [5, 29]. Calculating the a° based on the Km(app) value for total ammonium allows for the a° of AOM to be compared with the a° of microorganisms that do not use NH3 as a sole energy generating substrate, such as ammonium assimilating heterotrophic bacteria or diatoms [29]. While this is useful when evaluating competition for total ammonium in mixed communities or environmental settings, an a° calculated using the Km(app) value for NH3 may be more useful when directly comparing the interspecies competitiveness of AOM for the following reasons: (i) our data support the hypothesis that the substrate for all AOM is NH3 and not NH4+ (see below) and (ii) the Km(app) value for total ammonium is more dependent on the environmental factors it was measured at (e.g., pH, temperature, salinity) than the Km(app) for NH3.All characterized AOA (with the exception of representatives of the genus Nitrosocosmicus) and the comammox bacterium N. inopinata possess much higher a° for total ammonium or NH3 (~10–3000×) than the AOB, N. oceani or N. europaea (Fig. 2b–d), indicating that they are highly competitive in environments limited in either total ammonium or only NH3. However, due to the low number of published normalized Vmax values for AOB, a° could only be calculated for these two AOB representatives. Thus, extrapolations to the a° of all AOB species, based solely on these observations should be approached with caution.The low variation in experimentally measured Vmax values (Fig. 2e) across all measured AOM in combination with the high variation in Km(app) values leads to a strong relationship between cellular a° and the reciprocal of Km(app) (Fig. 3) according to Eq. 2 (see Materials and Methods). AOM adapted to oligotrophic (low substrate) conditions should possess both a high substrate affinity (low Km(app)) and a high ao [28]. Therefore, the AOM best suited for environments limited in total ammonium are the AOA belonging to the Nitrosopumilales and the comammox isolate N. inopinata, (top right corner of Fig. 3a). Overall, when looking at solely NH3 or total ammonium, the separation of species in these plots remains similar, with the exception that the acidophilic AOA belonging to the ‘Ca. Nitrosotaleales’ are predicted to be best suited for life in environments limited in NH3 (Fig. 3b). The adaptation correlates well with the fact the AOA ‘Ca. Nitrosotalea devanaterra’ Nd1 and ‘Ca. Nitrosotalea sinensis’ Nd2 were isolated from acidic soils with a pH of 4.5 and 4.7, respectively [25, 65], where the NH3:NH4+ equilibrium is heavily shifted toward NH4+.Fig. 3: The reciprocal relationship between the substrate affinity (Km(app)) and specific substrate affinity (a°) of ammonia-oxidizing microorganisms (AOM).Reciprocal plots for both (a) total ammonium and (b) NH3 are depicted. The Km(app) and a° values correspond to the values presented for pure AOM isolates in Fig. 2. Data for AOA (red), comammox (blue), and AOB (black) are shown. The correlation (R2) indicates the linear relationship between the logarithmically transformed data points.Full size imageIn either case, when looking at NH3 or total ammonium, the AOA belonging to the genus Nitrosocosmicus (‘Ca. N. oleophilus’ MY3 and ‘Ca. N. franklandus’ C13) and AOB populate the lower left section of these plots, indicating that they are not strong substrate competitors in NH3 or total ammonium limited environments (Fig. 3). Here, the Vmax of all the AOM reported spans ~10×, whereas the difference in Km(app) spans about five orders of magnitude. If the cellular kinetic property of Vmax really is so similar across all AOB, AOA, and comammox species (Fig. 2e) compared to the large differences in Km(app) values, then substrate competitiveness can be predicted from an AOMs Km(app) for either NH3 or total ammonium (Fig. 2a–c). This may prove especially helpful when characterizing enrichment cultures, where normalizing ammonia-oxidizing activity to cellular protein in order to obtain a comparable Vmax value is not possible. However, there is also a need for more kinetically characterized AOB and comammox species to confirm this hypothesis. In addition, when comparing AOM, differences in the Vmax cellular property will play a larger role, the closer the Km(app) values of the AOM strains are. This is important to consider when comparing AOM from similar habitats and likely adapted to similar substrate concentrations.The effect of environmental and cellular factors on AOA kinetic propertiesThe concentration of NH3 present in a particular growth medium or environment can vary by orders of magnitude, based solely on the pH, temperature, or salinity of the system [73]. This is notable because at a given total ammonium concentration, the concentration of NH3 is ~10 times higher at 70 °C versus 30 °C and ~1000 times lower at pH 5.3 versus pH 8.4 (representative of maximum ranges tested). While it should be recognized that in our dataset no AOM were included that have a pH optimum between 5.3 and 7.0, the effect of pH and temperature on the ammonia oxidation kinetics of AOM must be considered in order to understand their ecophysiological niches. However, there was no correlation between the kinetic properties of AOM (Km(app), Vmax, and a°) measured in this study and their optimal growth temperature or pH. This lack of correlation between AOM species kinetic properties and growth conditions does not imply that the cellular kinetic properties of an individual AOM species will remain the same over a range of pH and temperature conditions. Therefore, we investigated the effect of pH and temperature variation on the substrate-dependent kinetic properties of the AOA strain ‘Ca. N. oleophilus’ MY3, and the effect of pH on the comammox strain N. inopinata. Here, the AOA ‘Ca. N. oleophilus’ MY3 was selected based on the fact that it is a non-marine, mesophilic, pure culture, that does not require external hydrogen peroxide scavengers for growth. These traits are shared with the previously characterized AOB, N. europaea [35], and the comammox organism, N. inopinata (this study) and thus facilitate comparison.The effect of temperatureThe effects of short-term temperature changes on the substrate-dependent kinetic properties of ‘Ca. N. oleophilus’ MY3 were determined. Temperature shifts of 5 °C above and below the optimal growth temperature (30 °C) had no effect on the Km(app) for total ammonium. However, the Km(app) for NH3, Vmax, and a° of ‘Ca. N. oleophilus’ MY3 all increased with increasing temperatures (Fig. S6). Therefore, as temperature increased, ‘Ca. N. oleophilus’ MY3 displayed a lower substrate affinity (higher Km(app) for NH3) but would be able to turnover substrate with a higher Vmax and better compete for substrate with a higher a°. Increasing AOA Km(app) values for NH3 with increasing temperatures have also been observed across studies with N. viennensis EN76 (Fig. S2), and this is discussed in more detail in the Supplementary Results and Discussion. In addition, similar observations have previously been made for AOB strains belonging to the genus Nitrosomonas [33, 34]. The increase in Vmax and a° can be explained in terms of the Van’t Hoff rule (reaction velocity increases with temperature) [74], or in terms of a temperature sensitivity coefficient (Q10; change in reaction velocity over 10 °C) [75]. Here, the maximal reaction velocity of ‘Ca. N. oleophilus’ MY3, displays a relative Q10 of 2.17 between 25 and 35 °C, which is in line with more general microbial respiration measurements [75, 76].The increase in Km(app) for NH3 (lower NH3 affinity) with increasing temperature is less straightforward to interpret. As this is a whole cell measurement, the observed differences may result from either broad cellular changes or from changes in individual enzymes involved in the ammonia oxidation pathway specifically. At the cellular level, changes in the proteinaceous surface layer (S-layer) or lipid cell membrane could affect substrate movement/transport and enzyme complex stability. It has been suggested that the negatively charged AOA S-layer proteins act as a substrate reservoir, trapping NH4+ and consequently increasing the NH3 concentration in the AOA pseudo-periplasmic space [77]. It is interesting to note that sequenced representatives from the genus ‘Ca. Nitrosocosmicus’ lack the main S-layer protein (slp1) found in all Nitrosopumilales, Nitrososphaerales, and ‘Ca. Nitrosotaleales’ sequenced isolates [71], although it remains to be demonstrated whether ‘Ca. Nitrosocosmicus’ members actually lack a S-layer or form S-layers composed of other proteins. In addition, it has been demonstrated that elevated temperatures significantly alter the lipid composition in the AOA cell membrane [78, 79]. However, it is unclear how differences in the cell membrane or S-layer composition between AOA species may affect the observed kinetic properties. In this context it is important to note that on the single enzyme level, previous studies have shown the same trend of decreasing substrate affinity and increasing maximal reaction velocity with increasing temperatures, due to altered protein structures and an increased enzyme-substrate dissociation constant [80, 81].Notably, differing optimum growth and activity conditions were previously determined for the marine AOB strain Nitrosomonas cryotolerans [34]. These observations raise interesting, albeit unanswered, questions about why the growth and activity temperature optima are or can be uncoupled in AOM, and what this means for AOM niche differentiation and their competitiveness in-situ. Moving forward, investigations into the growth and cellular kinetic properties of AOM across a range of environmental factor gradients will be essential in understanding competition between AOM in engineered and environmental systems.The effect of pHThe effects of short-term pH changes on the substrate-dependent kinetics of ‘Ca. N. oleophilus’ MY3 and N. inopinata were determined. The Vmax of both ‘Ca. N. oleophilus MY3’ and N. inopinata were stable at 37.3 ± 6.6 μmol N mg protein−1 h−1 and 11.2 ± 2.5 μmol N mg protein−1 h−1, respectively, in medium with a pH between ~6.5 and ~8.5 (Table S3). The Km(app) for total ammonium of ‘Ca. N. oleophilus MY3’ and N. inopinata decreased by more than an order of magnitude (~11×) across this pH range, while the Km(app) for NH3 remained more stable, increasing only 3–4 times (Fig. 4). This stability of the Km(app) for NH3 compared with the larger change in the Km(app) for total ammonium across this pH range suggests that the actual substrate used by AOA and comammox is indeed the undissociated form (NH3) rather than the ammonium ion (NH4+), as previously demonstrated for AOB [34, 35, 54, 82]. As these kinetic measurements were performed with whole cells, the change in Km(app) for NH3 across this pH range may be due to cellular effects of the differing pH values unrelated to the direct ammonia oxidation pathway. The changes in Km(app) for NH3 and Km(app) for total ammonium demonstrated here for ‘Ca. N. oleophilus’ MY3 and N. inopinata are similar to what has been observed for AOB. That AOA and AOB utilize the NH3 as a substrate, aligns with the fact that both are competitively inhibited by the non-polar acetylene compound [83, 84].Fig. 4: The effect of medium pH on the substrate affinity of ‘Ca. N. oleophilus MY3’ and N. inopinata.The substrate affinities for both (a,b) NH3 and (c,d) total ammonium (NH3 + NH4+) are provided. Individual substrate affinity values determined at each pH are shown as single points (circles). The boxes represent the first and third quartiles (25–75%) of the substrate affinity range under each condition. The median (line within the boxes) and mean substrate affinity (black diamonds) values are also indicated. The whiskers represent the most extreme values within 1.58× of quartile range. The variation of the substrate affinity values across the entire tested pH range are indicated in each panel. In all four instances there was a significant difference between the affinity at the lowest pH and the highest pH, as determined by a Student’s t test (p  More

  • in

    Individual environmental niches in mobile organisms

    1.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    3.Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B: Biol. Sci. 285, 20180792 (2018).Article 

    Google Scholar 
    4.IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services. https://zenodo.org/record/3553579#.XxWzvZ5Kh-U, https://doi.org/10.5281/zenodo.3553579 (2019).5.Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Climate Change 1. https://doi.org/10.1038/s41558-019-0406-z (2019).6.Kendall, B. E. & Fox, G. A. Variation among individuals and reduced demographic stochasticity. Conserv. Biol. 16, 109–116 (2002).Article 

    Google Scholar 
    7.Bonnot, T. W., Cox, W. A., Thompson, F. R. & Millspaugh, J. J. Threat of climate change on a songbird population through its impacts on breeding. Nat. Clim. Change 8, 718–722 (2018).ADS 
    Article 

    Google Scholar 
    8.Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 
    Article 

    Google Scholar 
    9.Bestion, E., Clobert, J. & Cote, J. Dispersal response to climate change: scaling down to intraspecific variation. Ecol. Lett. 18, 1226–1233 (2015).Article 

    Google Scholar 
    10.Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Uriarte, M. & Menge, D. Variation between individuals fosters regional species coexistence. Ecol. Lett. 21, 1496–1504 (2018).PubMed 
    Article 

    Google Scholar 
    12.Banitz, T. Spatially structured intraspecific trait variation can foster biodiversity in disturbed, heterogeneous environments. Oikos 128, 1478–1491 (2019).13.Bailey, J. K. Incorporating eco-evolutionary dynamics into global change research. Funct. Ecol. 28, 3–4 (2014).Article 

    Google Scholar 
    14.Cianciaruso, M. V., Batalha, M. A., Gaston, K. J. & Petchey, O. L. Including intraspecific variability in functional diversity. Ecology 90, 81–89 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Bolnick, D. I. et al. The ecology of individuals: incidence and implications of individual specialization. Am. Naturalist 161, 1–28 (2003).MathSciNet 
    Article 

    Google Scholar 
    16.Bolnick, D. I., Svanbäck, R., Araújo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Araújo, M. S., Bolnick, D. I. & Layman, C. A. The ecological causes of individual specialisation. Ecol. Lett. 14, 948–958 (2011).PubMed 
    Article 

    Google Scholar 
    18.Van Valen, L. Morphological variation and width of ecological niche. Am. Naturalist 99, 377–390 (1965).Article 

    Google Scholar 
    19.Hocking, M. D., Darimont, C. T., Christie, K. S. & Reimchen, T. E. Niche variation in burying beetles (Nicrophorus spp.) associated with marine and terrestrial carrion. Can. J. Zool. 85, 437–442 (2007).Article 

    Google Scholar 
    20.Iguchi, K., Matsubara, N., Yodo, T. & Maekawa, K. Individual food niche specialization in stream-dwelling charr. Ichthyol. Res. 51, 321–326 (2004).Article 

    Google Scholar 
    21.Araújo, M. S., Bolnick, D. I., Machado, G., Giaretta, A. A. & dos Reis, S. F. Using δ13C stable isotopes to quantify individual-level diet variation. Oecologia 152, 643–654 (2007).ADS 
    Article 

    Google Scholar 
    22.Costa, G. C., Mesquita, D. O., Colli, G. R. & Vitt, L. J. Niche expansion and the niche variation hypothesis: does the degree of individual variation increase in depauperate assemblages? Am. Naturalist 172, 868–877 (2008).Article 

    Google Scholar 
    23.Sheppard, C. E. et al. Intragroup competition predicts individual foraging specialisation in a group-living mammal. Ecol. Lett. 21, 665–673 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Pol, M. V. D., Brouwer, L., Ens, B. J., Oosterbeek, K. & Tinbergen, J. M. Fluctuating selection and the maintenance of individual and sex-specific diet specialization in free-living oystercatchers. Evolution 64, 836–851 (2010).PubMed 
    Article 

    Google Scholar 
    25.Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).PubMed 
    Article 

    Google Scholar 
    26.Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677 (2009).Article 

    Google Scholar 
    27.Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Svanbäck, R. & Bolnick, D. I. Intraspecific competition affects the strength of individual specialization: an optimal diet theory method. Evol. Ecol. Res 7, 993–1012 (2005).
    Google Scholar 
    29.Sanz-Aguilar, A., Jovani, R., Melián, C. J., Pradel, R. & Tella, J. L. Multi-event capture–recapture analysis reveals individual foraging specialization in a generalist species. Ecology 96, 1650–1660 (2015).Article 

    Google Scholar 
    30.Orłowski, G. et al. Linking land cover satellite data with dietary variation and reproductive output in an opportunistic forager: Arable land use can boost an ontogenetic trophic bottleneck in the White Stork Ciconia ciconia. Sci. Total Environ. 646, 491–502 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    31.Teuschl, Y., Taborsky, B. & Taborsky, M. How do cuckoos find their hosts? The role of habitat imprinting. Anim. Behav. 56, 1425–1433 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Davis, J. M. & Stamps, J. A. The effect of natal experience on habitat preferences. Trends Ecol. Evolution 19, 411–416 (2004).Article 

    Google Scholar 
    33.Fretwell, S. D. Populations in a Seasonal Environment (Princeton University Press, 1972).34.Ingram, T., Costa‐Pereira, R. & Araújo, M. S. The dimensionality of individual niche variation. Ecology 99, 536–549 (2018).PubMed 
    Article 

    Google Scholar 
    35.Abrahms, B. et al. Climate mediates the success of migration strategies in a marine predator. Ecol. Lett. 21, 63–71 (2018).PubMed 
    Article 

    Google Scholar 
    36.Courbin, N. et al. Short-term prey field lability constrains individual specialisation in resource selection and foraging site fidelity in a marine predator. Ecol. Lett. 21, 1043–1054 (2018).PubMed 
    Article 

    Google Scholar 
    37.Montgomery, R. A. et al. Evaluating the individuality of animal-habitat relationships. Ecol. Evol. 8, 10893–10901 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Harris, S. M. et al. Personality predicts foraging site fidelity and trip repeatability in a marine predator. J. Anim. Ecol. 89, 68–79 (2020).PubMed 
    Article 

    Google Scholar 
    39.Hutchinson Concluding remarks. Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    40.Hutchinson, G. E. An Introduction to Population Ecology (Yale University Press, 1978).41.Lele, S. R., Merrill, E. H., Keim, J. & Boyce, M. S. Selection, use, choice and occupancy: clarifying concepts in resource selection studies. J. Anim. Ecol. 82, 1183–1191 (2013).PubMed 
    Article 

    Google Scholar 
    42.Leclerc, M. et al. Quantifying consistent individual differences in habitat selection. Oecologia 180, 697–705 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    43.Hertel, A. G. et al. Don’t poke the bear: using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).Article 

    Google Scholar 
    44.Bastille‐Rousseau, G. & Wittemyer, G. Leveraging multidimensional heterogeneity in resource selection to define movement tactics of animals. Ecol. Lett. 22, 1417–1427 (2019).PubMed 
    Article 

    Google Scholar 
    45.Costa‐Pereira, R., Rudolf, V. H. W., Souza, F. L. & Araújo, M. S. Drivers of individual niche variation in coexisting species. J. Anim. Ecol. 87, 1452–1464 (2018).46.Bolnick, D. I., Yang, L. H., Fordyce, J. A., Davis, J. M. & Svanbäck, R. Measuring individual-level resource specialization. Ecology 83, 2936–2941 (2002).Article 

    Google Scholar 
    47.Araújo, M. S. et al. Nested diets: a novel pattern of individual-level resource use. Oikos 119, 81–88 (2010).Article 

    Google Scholar 
    48.Dunne, J. A. in: Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford University Press, 2006).49.Hart, S. P., Schreiber, S. J. & Levine, J. M. How variation between individuals affects species coexistence. Ecol. Lett. https://doi.org/10.1111/ele.12618 (2016).50.Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Tinker, M. T. et al. Structure and mechanism of diet specialisation: testing models of individual variation in resource use with sea otters. Ecol. Lett. 15, 475–483 (2012).Article 

    Google Scholar 
    52.Dáttilo, W., Serio‐Silva, J. C., Chapman, C. A. & Rico‐Gray, V. Highly nested diets in intrapopulation monkey–resource food webs. Am. J. Primatol. 76, 670–678 (2014).PubMed 
    Article 

    Google Scholar 
    53.Durell, S. E. A. L. V. D., Goss-Custard, J. D. & Caldow, R. W. G. Sex-related differences in diet and feeding method in the oystercatcher Haematopus ostralegus. J. Anim. Ecol. 62, 205–215 (1993).Article 

    Google Scholar 
    54.Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among-individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: a practical guide for biologists. Biol. Rev. 85, 935–956 (2010).PubMed 

    Google Scholar 
    56.Fortin, D., Morris, D. W. & McLoughlin, P. D. Habitat selection and the evolution of specialists in heterogeneous environments. Isr. J. Ecol. Evolution 54, 311–328 (2008).Article 

    Google Scholar 
    57.Pires, M. M. et al. The nested assembly of individual-resource networks. J. Anim. Ecol. 80, 896–903 (2011).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Cantor, M., Pires, M. M., Longo, G. O., Guimarães, P. R. & Setz, E. Z. F. Individual variation in resource use by opossums leading to nested fruit consumption. Oikos 122, 1085–1093 (2013).Article 

    Google Scholar 
    59.Santamaría, S. et al. Diet composition of the lizard Podarcis lilfordi (Lacertidae) on 2 small islands: an individual-resource network approach. Curr. Zool. 66, 39–49 (2020).PubMed 
    Article 

    Google Scholar 
    60.Carrascal, L. M., Alonso, J. C. & Alonso, J. A. Aggregation size and foraging behaviour of white storks Ciconia ciconia during the breeding season. Ardea 78, 399–404 (1990).
    Google Scholar 
    61.Piper, W. H. In: Current Ornithology (eds. Nolan, V., Ketterson, E. D. & Thompson, C. F.) 125–187 https://doi.org/10.1007/978-1-4757-9915-6_4 (Springer US, 1997).62.Marzlufi, J. M. & Heinrich, B. Foraging by common ravens in the presence and absence of territory holders: an experimental analysis of social foraging. Anim. Behav. 42, 755–770 (1991).Article 

    Google Scholar 
    63.van Overveld, T. et al. Food predictability and social status drive individual resource specializations in a territorial vulture. Sci. Rep. 8, 15155 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Moore, S. A. & Bronte, C. R. Delineation of sympatric morphotypes of Lake Trout in Lake Superior. Trans. Am. Fish. Soc. 130, 1233–1240 (2001).Article 

    Google Scholar 
    65.Toscano, B. J., Gownaris, N. J., Heerhartz, S. M. & Monaco, C. J. Personality, foraging behavior and specialization: integrating behavioral and food web ecology at the individual level. Oecologia 182, 55–69 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    66.Johnson, D. H. The comparison of usage and availability measurements for evaluating resource preference. Ecology 61, 65–71 (1980).Article 

    Google Scholar 
    67.Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.van Toor, M. L. et al. Flexibility of habitat use in novel environments: insights from a translocation experiment with lesser black-backed gulls. R. Soc. Open Sci. 4, 160164 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Yates, K. L. et al. Outstanding challenges in the transferability of ecological models. Trends Ecol. Evolution 33, 790–802 (2018).Article 

    Google Scholar 
    70.ICARUS. Homepage—Animal Sensors Website. https://www.icarus.mpg.de/en (2020).71.Toledo, S. et al. Cognitive map-based navigation in wild bats revealed by a new high-throughput tracking system. Science 369, 188–193 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Wikelski, M. & Kays, R. Movebank: Archive, Analysis and Sharing of Animal Movement Data (World Wide Web Electronic Publication, 2014).73.Leitão, P. J. & Santos, M. J. Improving models of species ecological niches: a remote sensing overview. Front. Ecol. Evol. 7, 9 (2019).74.Oeser, J. et al. Habitat metrics based on multi-temporal Landsat imagery for mapping large mammal habitat. Remote Sens. Ecol. Conserv. 6, 52–69 (2020).Article 

    Google Scholar 
    75.Valerio, F. et al. Predicting microhabitat suitability for an endangered small mammal using sentinel-2 data. Remote Sens. 12, 562 (2020).ADS 
    Article 

    Google Scholar 
    76.Rotics, S. et al. The challenges of the first migration: movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 
    Article 

    Google Scholar 
    77.Werner, T. K. & Sherry, T. W. Behavioral feeding specialization in Pinaroloxias inornata, the “Darwin’s Finch” of Cocos Island, Costa Rica. Proc. Natl Acad. Sci. USA 84, 5506–5510 (1987).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Zurell, D. et al. Home range size and resource use of breeding and non-breeding white storks along a land use gradient. Front. Ecol. Evol. 6, 1–11 (2018).79.Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).PubMed 
    Article 

    Google Scholar 
    80.Fleming, C. H. et al. Rigorous home range estimation with movement data: a new autocorrelated kernel density estimator. Ecology 96, 1182–1188 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: an r package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    82.Thurfjell, H., Ciuti, S. & Boyce, M. S. Applications of step-selection functions in ecology and conservation. Mov. Ecol. 2, 4 (2014).83.Blonder, B. et al. New approaches for delineating n-dimensional hypervolumes. Methods Ecol. Evolution 9, 305–319 (2018).Article 

    Google Scholar 
    84.Elliot, A., Garcia, E. F. J. & Boesman, P. F. D. In: Birds of the World (eds. del Hoyo, J. Elliott, A., Sargatal, J. Christie, D. A. & de Juana, E.) (Cornell Lab of Ornithology, 2020).85.Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on the movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 1 (2016).Article 

    Google Scholar 
    86.Alonso, J. C., Alonso, J. A. & Carrascal, L. M. Habitat selection by foraging White Storks, Ciconia ciconia, during the breeding season. Can. J. Zool. https://doi.org/10.1139/z91-270 (2011).87.Barbaro, L., Giffard, B., Charbonnier, Y., Halder, Ivan & Brockerhoff, E. G. Bird functional diversity enhances insectivory at forest edges: a transcontinental experiment. Diversity Distrib. 20, 149–159 (2014).Article 

    Google Scholar 
    88.Fisher, R. J. & Davis, S. K. From Wiens to Robel: a review of grassland-bird habitat selection. J. Wildl. Manag. 74, 265–273 (2010).Article 

    Google Scholar 
    89.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    90.Gorelick, N. et al. Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    91.Manly, B. F. L., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer Science & Business Media, 2002).92.Johnson, D. S., Thomas, D. L., Hoef, J. M. V. & Christ, A. A general framework for the analysis of animal resource selection from telemetry data. Biometrics 64, 968–976 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    93.Signer, J., Fieberg, J. & Avgar, T. Animal movement tools (amt): R package for managing tracking data and conducting habitat selection analyses. Ecol. Evol. 9, 880–890 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Rosenberg, D. K. & McKelvey, K. S. Estimation of habitat selection for central-place foraging animals. J. Wildl. Manag. 63, 1028–1038 (1999).Article 

    Google Scholar 
    95.Roughgarden, J. Evolution of niche width. American Naturalist 106, 683–718 (1972).96.Sargeant, B. L. Individual foraging specialization: niche width versus niche overlap. Oikos 116, 1431–1437 (2007).Article 

    Google Scholar 
    97.Opsahl, T. & Panzarasa, P. Clustering in weighted networks. Soc. Netw. 31, 155–163 (2009).Article 

    Google Scholar 
    98.Almeida‐Neto, M., Guimarães, P., Guimarães, P. R., Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).Article 

    Google Scholar 
    99.Opsahl, T. Structure and Evolution of Weighted Networks (University of London (Queen Mary College), 2009).100.Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, 30 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Data from: Individual environmental niches in mobile organisms. Movebank Data Repository. https://doi.org/10.5441/001/1.rj21g1p1 (2021).102.Carlson, B., Rotics, S., Nathan, R., Wikelski, M. & Jetz, W. Code from: Individual environmental niches in mobile organisms. Zenodo. https://doi.org/10.5281/zenodo.5032460 (2021). More

  • in

    Genetic diversity and population structure analysis of Lateolabrax maculatus from Chinese coastal waters using polymorphic microsatellite markers

    1.Jiang, X., Yang, G. P., Wei, Q. W. & Zou, G. W. Analysis of the genetic structure of spotted sea bass (Lateolabrax maculatus) inhabiting the Chinese Coast. Period. Ocean Univ. China 39, 271–274 (2009) (In Chinese with English abstract).
    Google Scholar 
    2.Clifford, S. L., McGinnity, P. & Ferguson, A. Genetic changes in Atlantic salmon (Salmo salar) populations of northwest Irish rivers resulting from escapes of adult farm salmon. Can. J. Fish. Aquat. Sci. 55, 358–363 (1998).Article 

    Google Scholar 
    3.Bourret, V., O’Reilly, P. T., Carr, J. W., Berg, P. R. & Bernatchez, L. Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106, 500–510 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Hutchings, J. A. & Fraser, D. J. The nature of fisheries- and farming-induced evolution. Mol. Ecol. 17, 294–313 (2008).PubMed 
    Article 

    Google Scholar 
    5.Reiss, H., Hoarau, G., Dickey-Collas, M. & Wolff, W. J. Genetic population structure of marine fish: Mismatch between biological and fisheries management units. Fish Fish. 10, 361–395 (2009).Article 

    Google Scholar 
    6.Giantsis, I. A., Mucci, N., Randi, E., Abatzopoulos, T. J. & Apostolidis, A. P. Microsatellite variation of mussels (Mytius galloprovincialis) in Central and Eastern Mediterranean: Genesc panmixia in the Aegean and the Ionian Sea. J. Mar. Biol. Assoc. U.K. 94, 797–809 (2014).Article 

    Google Scholar 
    7.Liu, J. X., Gao, T. X., Yokogawa, K. & Zhang, Y. P. Differential population structuring and demographic history of two closely related fish species, Japanese sea bass (Lateolabrax japonicus) and spotted sea bass (Lateolabrax maculatus) in Northwestern Pacific. Mol. Phylogenet. Evol. 39(3), 799–811 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Hu, Z. M., Gao, T. X., Han, Z. Q. & Song, L. Studies on genetic differentiation of the spotted sea bass (Lateolabrax maculatus) and Japanese sea bass (Lateolabrax japonicus). Period. Ocean Uni. China 37(3), 413–418 (2007) (In Chinese with English abstract).CAS 

    Google Scholar 
    9.Nakayama, K., Kineshita, I. & Seikai, T. Morphologlcal comparisons during early stage rearing of Chinese and Japanese forms of the temperate bass, Lateolabrax japonicus. Jpn. J. Ichthyol. 43(1), 13–20 (1996).
    Google Scholar 
    10.Lou, D., Gao, T. X. & Zhang, X. M. The advances on germplasm resources study of Lateolabrax. J. Zhejiang Ocean Univ. (Natural Science) 19(2), 162–167 (2000) (Chinese in English abstract).
    Google Scholar 
    11.Lou, D. et al. Study on genetic variation in Chinese and Japanese sea bass. Journal of Ocean University of Qingdao 33(1), 22–28 (2003) (In Chinese in English abstract).
    Google Scholar 
    12.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. The analysis of genetic variation of Lateolabrax japonicus from Rizhao of Shandong and Xiamen of Fujian by isozyme and RAPD methods. Acta Oceanol. Sin. 27(3), 119–123 (2005) (In Chinese with English abstract).CAS 

    Google Scholar 
    13.Liu, M. Y., Jiang, Q. C. & Yang, J. X. Analysis on mitochondrial DNA cytochrome b gene of Lateolabrax japonicas from different seas. J. Nanjing Normal Univ. (Natural Science Edition) 33(1), 102–106 (2010) (In Chinese with English abstract).
    Google Scholar 
    14.Wang, W. et al. Population genetic diversity of Chinese sea bass (Lateolabrax maculatus) from southern coastal regions of China based on mitochondrial COI gene sequences. Biochem. Syst. Ecol. 71, 114–140 (2017).CAS 
    Article 

    Google Scholar 
    15.Wang, G. X. et al. Genetic variability in six Lateolabrax maculatus populations inhabiting the Chinese coast. J. Fish. Sci. China 24(2), 395–402 (2017) (In Chinese with English abstract).
    Google Scholar 
    16.Chapuis, M. P., Loiseau, A., Michalakis, Y., Lecoq, M. & Estoup, A. Characterization and PCR multiplexing of polymorphic microsatellite loci for the locust Locusta migratoria. Mol. Ecol. Notes 5(3), 554–557 (2005).CAS 
    Article 

    Google Scholar 
    17.Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Tan, Y., Fang, L., Qiu, M., Huo, Z. M. & Yan, Y. W. Population genetic of the Manila clam (Ruditapes philippinarum) in East Asia. Sci. Rep. 10, 21890 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Agulló, M. et al. Genetic analyses reveal temporal stability and connectivity pattern in blue and red shrimp Aristeus antennatus populations. Sci. Rep. 10, 21505 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.An, H. S., Lee, J. W. & Kim, H. Y. Genetic differences between wild and hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) inferred from microsatellite markers. Genes Genom. 35(5), 671–680 (2013).Article 

    Google Scholar 
    21.An, H. S., Kim, H. Y. & Kim, J. B. Genetic characterization of hatchery populations of Korean spotted sea bass (Lateolabrax maculatus) using multiplex polymerase chain reaction assays. Genet. Mol. Res. 13(3), 6701–6715 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Shaw, P. W., Turan, C., Wright, J. M., O’Connell, M. & Carvalho, G. R. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses. Heredity 83, 490–499 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Shao, C. W., Chen, S. L., Xu, G. B., Liao, X. L. & Tian, Y. S. Eighteen novel microsatellite markers for the Chinese sea perch, Lateolabrax maculatus. Conserv. Genet. 10, 623–625 (2009).CAS 
    Article 

    Google Scholar 
    24.Zhang, H. R., Niu, S. F., Wu, R. X., Zhai, Y. & Tian, L. T. Development and characterization of 26 polymorphic microsatellite markers in Lateolabrax maculatus and cross-species amplification for the phylogenetically related taxa. Biochem. Syst. Ecol. 66, 326–330 (2016).CAS 
    Article 

    Google Scholar 
    25.Zhao, Y. et al. Isolation of microsatellite markers for Lateolabrax japonicus and polymorphic analysis. Zool. Res. 32(5), 515–520 (2011) (In Chinese with English abstract).CAS 

    Google Scholar 
    26.Botstein, D., White, R. L., Skolnick, M. & Davis, R. W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331 (1980).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Wan, N. W., Rolland, J. L., Bonhomme, F. & Phongdara, A. Population genetic structure of Penaeus merguiensis, Thailand based on nuclear DNA variation. J. Exp. Mar. Biol. Ecol. 311(1), 63–78 (2004).Article 
    CAS 

    Google Scholar 
    28.Xiao, Q. Z. et al. Genetic diversity analysis of wild and cultured megalopa population of Eriocheir sinensis from Yangtze River. Genom. Appl. Biol. 36(5), 1935–1945 (2017) (In Chinese with English abstract).
    Google Scholar 
    29.Liu, F. et al. High genetic diversity and substantial population differentiation in grass carp (Ctenopharyngodon idella) revealed by microsatellite analysis. Aquaculture 297, 51–56 (2009).CAS 
    Article 

    Google Scholar 
    30.Halasz, J., Pedryc, A., Ercisli, S., Yilmaz, K. U. & Hegedus, A. S-genotyping supports the genetic relationships between Turkish and Hungarian apricot germplasm. J. Am. Soc. Hortic. Sci. 135(5), 410–417 (2010).Article 

    Google Scholar 
    31.Wang, S. H., Zhang, C., Shang, M., Wu, X. G. & Cheng, Y. X. Genetic diversity and population structure of native mitten crab (Eriocheir sensu stricto) by microsatellite markers and mitochondrial COI gene sequence. Gene 693, 101–113 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of genetic variation by isozymes between two stocks of the sea Bass (Lateolabrax japonicus) from Rizhao & Xiamen sea areas, China. J. Zhejiang Ocean Univ. Nat. Sci. 22(2), 121–124 (2003) (In Chinese with English abstract).CAS 

    Google Scholar 
    33.Li, M. Y., Zhao, M. Z., Zhong, A. H. & Xue, L. Y. Comparative analysis of RAPD genetic variation between two stocks of sea bass (Lateolabrax aponicus) from Shandong Rizhao and Fujian Xiamen sea areas. Oceanol. Limnol. Sin. 34(6), 618–624 (2003) (In Chinese with English abstract).CAS 

    Google Scholar 
    34.Machado-Schiaffino, G. & Garcia-Vazquez, E. Isolation and characterization of microsatellite loci in Merluccius australis and cross-species amplification. Mol. Ecol. Resour. 9(2), 585–587 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Freeland, J. R. Molecular ecology 112–116 (Wiley, Chichester, 2005).
    Google Scholar 
    36.Li, D. Y., Yin, Q. Q., Hou, N., Sun, X. W. & Liang, L. Q. Genetic diversity of different ecologo-geographical populations of yellow catfish Pelteobagrus eupogon. Oceanol. Limnol. Sin. 40(4), 460–469 (2009) (In Chinese with English abstract).CAS 

    Google Scholar 
    37.Shoji, J. & Tanaka, M. Influence of spring river flow on the recruitment of Japanese sea perch Lateolabrax japonicus into the Chikugo estuary, Japan. . Sci. Mar. 70(2), 159–164 (2006).Article 

    Google Scholar 
    38.Liu, B., Kuang, Y. Y., Tong, G. X. & Yin, J. S. Analysis of genetic diversity on 9 wild stocks of Taimen (Hucho taimen) by microsatellite markers. Zool. Res. 32(6), 597–604 (2011) (In Chinese with English abstract).CAS 

    Google Scholar 
    39.Clegg, S. M. et al. Genetic consequences of sequential founder events by an island-colonizing bird. Proc. Natl. Acad. Sci. USA 99, 8127–8132 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Pruett, C. L. & Winker, K. Northwestern song sparrow populations show genetic effects of sequential colonization. Mol. Ecol. 14, 1421–1434 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.An, H. S. et al. Population genetic structure of the sea bass (Lateolabrax japonicus) in Korea based on multiplex PCR assays with 12 polymorphic microsatellite markers. Genes Genom. 36, 247–259 (2014).CAS 
    Article 

    Google Scholar 
    42.Van Oosterhout, C., Hutchinson, W. F., Willis, D. P. M. & Shipley, P. F. Microchecker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 
    CAS 

    Google Scholar 
    43.Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B 39, 1–38 (1977).MathSciNet 
    MATH 

    Google Scholar 
    44.Raymond, M. & Rousset, F. GENEPOP (version 12): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    45.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    Article 

    Google Scholar 
    46.Wang, S. H. et al. Identification and genetic diversity analysis of Chinese mitten crab (Eriocheir sinensis) in the Liao river area. J. Northeast. Agric. Univ. 25, 43–53 (2018).
    Google Scholar 
    47.Tamura, K. et al. MEGA 5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526 (1993).CAS 
    PubMed 

    Google Scholar 
    49.Maruyama, T. & Fuerst, P. A. Population bottlenecks and nonequilibrium models in population genetics. I. Allele numbers when populations evolve from zero variability. Genetics 111, 675–689 (1985).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multi locus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Jombart, T. Adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Warming Arctic summers unlikely to increase productivity of shorebirds through renesting

    1.Smith, P. A. et al. Status and trends of tundra birds across the circumpolar Arctic. Ambio 49, 732–748 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Callaghan, T. V. et al. Arctic tundra and polar desert ecosystems. In Arctic Climate Impact Assessment (eds Symon, C. et al.) 243–352 (Cambridge University Press, 2005).
    Google Scholar 
    3.Serreze, M. C. & Francis, J. A. The Arctic amplification debate. Clim. Change 76, 241–264 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Hodgkins, R. The twenty-first-century Arctic environment: Accelerating change in the atmospheric, oceanic and terrestrial spheres. Geogr. J. 180, 429–436 (2014).Article 

    Google Scholar 
    5.Meltofte, H. et al. Effects of climate variation on the breeding ecology of Arctic shorebirds. Medd. Grønl. Biosci. 59, 1–48 (2007).
    Google Scholar 
    6.Saalfeld, S. T. et al. Phenological mismatch in Arctic-breeding shorebirds: Impact of snowmelt and unpredictable weather conditions on food availability and chick growth. Ecol. Evol. 9, 6693–6707 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.McKinnon, L., Picotin, M., Bolduc, E., Juillet, C. & Bêty, J. Timing of breeding, peak food availability, and effects of mismatch on chick growth in birds nesting in the High Arctic. Can. J. Zool. 90, 961–971 (2012).Article 

    Google Scholar 
    8.Kwon, E. et al. Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecol. Monogr. https://doi.org/10.1002/ecm.1383 (2019).Article 

    Google Scholar 
    9.Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Senner, N. R., Stager, M. & Sandercock, B. K. Ecological mismatches are moderated by local conditions for two populations of a long-distance migratory bird. Oikos 126, 61–72 (2017).Article 

    Google Scholar 
    11.Grabowski, M. M., Doyle, F. I., Reid, D. G., Mossop, D. & Talarico, D. Do Arctic-nesting birds respond to earlier snowmelt? A multi-species study in north Yukon, Canada. Polar Biol. 36, 1097–1105 (2013).Article 

    Google Scholar 
    12.Gill, J. A. et al. Why is timing of bird migration advancing when individuals are not?. Proc. R. Soc. Biol. Sci. Ser. B https://doi.org/10.1098/rspb.2013.2161 (2014).Article 

    Google Scholar 
    13.Liebezeit, J. R., Gurney, K. E. B., Budde, M., Zack, S. & Ward, D. Phenological advancement in Arctic bird species: Relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014).Article 

    Google Scholar 
    14.Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: A role for life- history characteristics?. Ecol. Evol. 7, 10492–10502 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Tulp, I. & Schekkerman, H. Has prey availability for Arctic birds advanced with climate change? Hindcasting the abundance of tundra arthropods using weather and seasonal variation. Arctic 61, 48–60 (2008).Article 

    Google Scholar 
    16.Braegelman, S. D. Seasonality of Some Arctic Alaskan Chironomids (North Dakota State University, 2016).
    Google Scholar 
    17.Piersma, T., Brugge, M., Spaans, B. & Battley, P. F. Endogenous circannual rhythmicity in body mass, molt, and plumage of Great Knots (Calidris tenuirostris). Auk 125, 140–148 (2008).Article 

    Google Scholar 
    18.Karagicheva, J. et al. Seasonal time keeping in a long-distance migrating shorebird. J. Biol. Rhythms 31, 509–521 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Danks, H. V. Life cycles in polar arthropods—Flexible or programmed?. Eur. J. Entomol. 96, 83–102 (1999).
    Google Scholar 
    20.Bolduc, E. et al. Terrestrial arthropod abundance and phenology in the Canadian Arctic: Modelling resource availability for Arctic-nesting insectivorous birds. Can. Entomol. 145, 155–170 (2013).Article 

    Google Scholar 
    21.McKinnon, L., Nol, E. & Juillet, C. Arctic-nesting birds find physiological relief in the face of trophic constraints. Sci. Rep. https://doi.org/10.1038/srep01816 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Ruthrauff, D. R. & McCaffery, B. J. Survival of Western Sandpiper broods on the Yukon-Kuskokwim Delta, Alaska. Condor 107, 597–604 (2005).Article 

    Google Scholar 
    23.Pearce-Higgins, J. W. & Yalden, D. W. Variation in the growth and survival of Golden Plover Pluvialis apricaria chicks. Ibis 144, 200–209 (2002).Article 

    Google Scholar 
    24.Holmes, R. T. Breeding ecology and annual cycle adaptations of the Red-backed Sandpiper (Calidris alpina) in northern Alaska. Condor 68, 3–46 (1966).Article 

    Google Scholar 
    25.Lanctot, R. B. Blood sampling in juvenile Buff-breasted Sandpipers: Movement, mass change and survival. J. Field Ornithol. 65, 534–542 (1994).
    Google Scholar 
    26.Jamieson, S. E. Pacific Dunlin Calidris alpina pacifica show a high propensity for second clutch production. J. Ornithol. 152, 1013–1021 (2011).Article 

    Google Scholar 
    27.Colwell, M. A. Shorebird Ecology, Conservation, and Management (University of California Press, 2010).Book 

    Google Scholar 
    28.Machín, P., Fernández-Elipe, J. & Klaassen, R. H. G. The relative importance of food abundance and weather on the growth of a sub-arctic shorebird chick. Behav. Ecol. Sociobiol. 72, 42. https://doi.org/10.1007/s00265-018-2457-y (2018).Article 

    Google Scholar 
    29.Corkery, C. A., Nol, E. & McKinnon, L. No effects of asynchrony between hatching and peak food availability on chick growth in Semipalmated Plovers (Charadrius semipalmatus) near Churchill, Manitoba. Polar Biol. 42, 593–601 (2019).Article 

    Google Scholar 
    30.Naves, L. C., Lanctot, R. B., Taylor, A. R. & Coutsoubos, N. P. How often do Arctic shorebirds lay replacement clutches?. Wader Study Gr. Bull. 115, 2–9 (2008).
    Google Scholar 
    31.Swift, R. J., Anteau, M. J., Ring, M. M., Toy, D. L. & Sherfy, M. H. Low renesting propensity and reproductive success make renesting unproductive for the threatened Piping Plover (Charadrius melodus). Condor https://doi.org/10.1093/condor/duz066 (2020).Article 

    Google Scholar 
    32.Gates, H. R., Lanctot, R. B. & Powell, A. N. High renesting rates in Arctic-breeding Dunlin (Calidris alpina): A clutch-removal experiment. Auk 130, 372–380 (2013).Article 

    Google Scholar 
    33.Richter-Menge, J., Druckenmiller, M. L. & Jeffries, M. (eds.) Arctic Report Card 2019. https://www.arctic.noaa.gov/Report-Card. (2019).34.Weiser, E. L. et al. Annual adult survival drives trends in Arctic-breeding shorebirds but knowledge gaps in other vital rates remain. Condor https://doi.org/10.1093/condor/duaa026 (2020).Article 

    Google Scholar 
    35.Sandercock, B. K. Estimation of survival rates for wader populations: A review of mark-recapture methods. Wader Study Gr. Bull. 100, 163–174 (2003).
    Google Scholar 
    36.Ottvall, R. & Härdling, R. Sensitivity analysis of a migratory population of Redshanks Tringa totanus: A forewarning of a population decline?. Wader Study Gr. Bull. 107, 40–45 (2005).
    Google Scholar 
    37.Hitchcock, C. L. & Gratto-Trevor, C. Diagnosing a shorebird local population decline with a stage-structured population model. Ecology 78, 522–534 (1997).Article 

    Google Scholar 
    38.Weiser, E. L. et al. Environmental and ecological conditions at Arctic breeding sites have limited effects on true survival rates of adult shorebirds. Auk 135, 29–43 (2018).Article 

    Google Scholar 
    39.Studds, C. E. et al. Rapid population decline in migratory shorebirds relying on Yellow Sea tidal mudflats as stopover sites. Nat. Commun. 8, 14895 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Piersma, T. et al. Simultaneous declines in summer survival of three shorebird species signals a flyway at risk. J. Appl. Ecol. 53, 479–490 (2016).Article 

    Google Scholar 
    41.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway. Biol. Conserv. 143, 2238–2247 (2010).Article 

    Google Scholar 
    42.Amano, T., Székely, T., Koyama, K., Amano, H. & Sutherland, W. J. Addendum to “A framework for monitoring the status of populations: An example from wader populations in the East Asian-Australasian flyway”. Biological Conservation, 143, 2238–2247. Biol. Conserv. 145, 278–295 (2012).Article 

    Google Scholar 
    43.Pearce-Higgins, J. W. & Yalden, D. W. Habitat selection, diet, arthropod availability and growth of a moorland wader: The ecology of European Golden Plover Pluvialis apricaria chicks. Ibis 146, 335–346 (2004).Article 

    Google Scholar 
    44.Schekkerman, H., Tulp, I., Piersma, T. & Visser, G. H. Mechanisms promoting higher growth rate in Arctic than in temperate shorebirds. Oecologia 134, 332–342 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Tulp, I. & Schekkerman, H. Studies on Breeding Shorebirds at Medusa Bay, Taimyr, in Summer 2000 (Alterra, Green World Research, 2001).
    Google Scholar 
    46.Schekkerman, H., van Roomen, M. W. J. & Underhill, L. G. Growth, behaviour of broods and weather-related variation in breeding productivity of Curlew Sandpipers Calidris ferruginea. Ardea 86, 153–168 (1998).
    Google Scholar 
    47.Tjørve, K. M. C. et al. Growth and energetics of a small shorebird species in a cold environment: The Little Stint Calidris minuta on the Taimyr Peninsula, Siberia. J. Avian Biol. 38, 552–563 (2007).Article 

    Google Scholar 
    48.Pearce-Higgins, J. W. & Yalden, D. W. Golden Plover Pluvialis apricaria breeding success on a moor managed for shooting Red Grouse Lagopus lagopus. Bird Study 50, 170–177 (2003).Article 

    Google Scholar 
    49.Loonstra, A. H. J., Verhoeven, M. A. & Piersma, T. Sex-specific growth in chicks of the sexually dimorphic Black-tailed Godwit. Ibis 160, 89–100 (2018).Article 

    Google Scholar 
    50.Taylor, A. R., Lanctot, R. B., Powell, A. N., Kendall, S. J. & Nigro, D. A. Residence time and movements of postbreeding shorebirds on the northern coast of Alaska. Condor 113, 779–794 (2011).Article 

    Google Scholar 
    51.Meltofte, H., Høye, T. T., Schmidt, N. M. & Forchhammer, M. C. Differences in food abundance cause inter-annual variation in the breeding phenology of High Arctic waders. Polar Biol. 30, 601–606 (2007).Article 

    Google Scholar 
    52.Visser, G. H. & Ricklefs, R. E. Development of temperature regulation in shorebirds. Physiol. Zool. 66, 771–792 (1993).Article 

    Google Scholar 
    53.Colwell, M. A., Hurley, S. J., Hall, J. N. & Dinsmore, S. J. Age-related survival and behavior of Snowy Plover chicks. Condor 109, 638–647 (2007).Article 

    Google Scholar 
    54.Powell, A. N. The Effects of Early Experience on the Development, Behavior, and Survival of Shorebirds (University of Minnesota, 1992).
    Google Scholar 
    55.Ackerman, J. T., Herzog, M. P., Takekawa, J. Y. & Hartman, C. A. Comparative reproductive biology of sympatric species: Nest and chick survival of American Avocets and Black-necked Stilts. J. Avian Biol. 45, 609–623 (2014).Article 

    Google Scholar 
    56.Catlin, D. H., Fraser, J. D. & Felio, J. H. Demographic responses of Piping Plovers to habitat creation on the Missouri River. Wildl. Monogr. 192, 1–42 (2015).Article 

    Google Scholar 
    57.Dinsmore, S. J., Gaines, E. P., Pearson, S. F., Lauten, D. J. & Castelein, K. A. Factors affecting Snowy Plover chick survival in a managed population. Condor 119, 34–43 (2017).Article 

    Google Scholar 
    58.Dinsmore, S. J. Influence of drought on annual survival of the Mountain Plover in Montana. Condor 110, 45–54 (2008).Article 

    Google Scholar 
    59.Soikkeli, M. Breeding cycle and population dynamics in the Dunlin (Calidris alpina). Ann. Zool. Fenn. 4, 158–198 (1967).
    Google Scholar 
    60.Blomqvist, D. & Johansson, O. C. Distribution, reproductive success, and population trend in the Dunlin Calidris alpina schinzii on the Swedish west coast. Ornis Svec. 1, 39–46 (1991).
    Google Scholar 
    61.Jönsson, P. E. Reproduction and survival in a declining population of the southern Dunlin Calidris alpina schinzii. Wader Study Gr. Bull. 61, 56–68 (1991).
    Google Scholar 
    62.Pienkowski, M. W. Behaviour of young Ringed Plovers Charadrius hiaticula and its relationship to growth and survival to reproductive age. Ibis 126, 133–155 (1984).Article 

    Google Scholar 
    63.Liebezeit, J. R. & Zack, S. Point counts underestimate the importance of arctic foxes as avian nest predators: Evidence from remote video cameras in Arctic Alaskan oil fields. Arctic 61, 153–161 (2008).
    Google Scholar 
    64.Bentzen, R. et al. Assessing development impacts on Arctic nesting birds using real and artificial nests. Polar Biol. 40, 1527–1536 (2017).Article 

    Google Scholar 
    65.McKinnon, L. & Bêty, J. Effect of camera monitoring on survival rates of High-Arctic shorebird nests. J. Field Ornithol. 80, 280–288 (2009).Article 

    Google Scholar 
    66.Bolton, M., Tyler, G., Smith, K. & Bamford, R. The impact of predator control on Lapwing Vanellus vanellus breeding success on wet grassland nature reserves. J. Appl. Ecol. 44, 534–544 (2007).Article 

    Google Scholar 
    67.Fletcher, K., Aebischer, N. J., Baines, D., Foster, R. & Hoodless, A. N. Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J. Appl. Ecol. 47, 263–272 (2010).Article 

    Google Scholar 
    68.McGuire, R. L., Lanctot, R. B., Saalfeld, S. T., Ruthrauff, D. R. & Liebezeit, J. R. Shorebird reproductive response to exceptionally early and late springs varies across sites in Arctic Alaska. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2020.577652 (2020).Article 

    Google Scholar 
    69.Lackmann, A. R. Chironomids Then and Now: Climate Change Effects on a Tundra Food Web in the Alaskan Arctic (North Dakota State University, 2019).
    Google Scholar 
    70.McEwen, D. C. & Butler, M. G. Growing-season temperature change across four decades in an Arctic tundra pond. Arctic 71, 281–291 (2018).Article 

    Google Scholar 
    71.Shaftel, R. et al. Predictors of invertebrate biomass and rate of advancement of invertebrate phenology across eight sites in the North American Arctic. Polar Biol. 44, 237–257 (2021).Article 

    Google Scholar 
    72.Butler, M., Miller, M. C. & Mozley, S. Macrobenthos. In Limnology of Tundra Ponds, Barrow, Alaska (ed. Hobbie, J. E.) 297–339 (Dowden, Hutchinson, and Ross, Inc., 1980).
    Google Scholar 
    73.Kingsolver, J. G. & Huey, R. B. Size, temperature, and fitness: Three rules. Evol. Ecol. Res. 10, 251–268 (2008).
    Google Scholar 
    74.Schekkerman, H. & Boele, A. Foraging in precocial chicks of the Black-tailed Godwit Limosa limosa: Vulnerability to weather and prey size. J. Avian Biol. 40, 369–379 (2009).Article 

    Google Scholar 
    75.Krijgsveld, K. L., Reneerkens, J. W. H., McNett, G. D. & Ricklefs, R. E. Time budgets and body temperatures of American Golden-Plover chicks in relation to ambient temperature. Condor 105, 268–278 (2003).Article 

    Google Scholar 
    76.Cosgrove, J., Dugger, B. & Lanctot, R. B. No renesting observed after experimental clutch removal in Red Phalaropes breeding near Utqiaģvik, Alaska. Wader Study 127, 236–243 (2020).Article 

    Google Scholar 
    77.Fernández, G., Buchanan, J. B., Gill, R. E. Jr., Lanctot, R. & Warnock, N. Conservation Plan for Dunlin with Breeding Populations in North America (Calidris alpina arcticola, C. a. pacifica, and C. a. hudsonia), Version 1.1 (Manomet Center for Conservation Sciences, 2010).
    Google Scholar 
    78.Lagassé, B. J. et al. Dunlin subspecies exhibit regional segregation and high site fidelity along the East Asian-Australasian flyway. Condor https://doi.org/10.1093/condor/duaa054 (2020).Article 

    Google Scholar 
    79.Andres, B. A. et al. Population estimates of North American shorebirds, 2012. Wader Study Gr. Bull. 119, 178–194 (2012).
    Google Scholar 
    80.Warnock, N. The Alaska WatchList 2017 (Audubon Alaska, 2017).
    Google Scholar 
    81.Alaska Shorebird Group. Alaska Shorebird Conservation Plan. Version III (Alaska Shorebird Group, 2019).
    Google Scholar 
    82.CAFF. Arctic Migratory Birds Initiative (AMBI): Workplan 2019–2023. CAFF Strategies Series No. 30. (Conservation of Arctic Flora and Fauna, ISBN: 978-9935-431-79-0, 2019).83.Warnock, N. D. & Gill, R. E. Dunlin (Calidris alpina), version 1.0. In Birds of the World (ed. Billerman, S. M.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    84.Saalfeld, S. T. & Lanctot, R. B. Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234 (2015).Article 

    Google Scholar 
    85.Weiser, E. L. et al. Life-history tradeoffs revealed by seasonal declines in reproductive traits of Arctic-breeding shorebirds. J. Avian Biol. https://doi.org/10.1111/jav.01531 (2017).Article 

    Google Scholar 
    86.Villarreal, S. et al. Tundra vegetation change near Barrow, Alaska (1972–2010). Environ. Res. Lett. https://doi.org/10.1088/1748-9326/7/1/015508 (2012).Article 

    Google Scholar 
    87.Liebezeit, J. R. et al. Assessing the development of shorebird eggs using the flotation method: Species-specific and generalized regression models. Condor 109, 32–47 (2007).Article 

    Google Scholar 
    88.Priklonsky, S. G. Application of small automatic bows for catching birds. Zool. Zh. 39, 623–624 (1960).
    Google Scholar 
    89.Gates, H. R. et al. Differentiation of subspecies and sexes of Beringian Dunlin using morphometric measures. J. Field Ornithol. 84, 389–402 (2013).Article 

    Google Scholar 
    90.Warnock, N. & Warnock, S. Attachment of radio-transmitters to sandpipers: Review and methods. Wader Study Gr. Bull. 70, 28–30 (1993).
    Google Scholar 
    91.Bart, J., Battaglia, D. & Senner, N. Effects of color bands on Semipalmated Sandpipers banded at hatch. J. Field Ornithol. 72, 521–526 (2001).Article 

    Google Scholar 
    92.Whittier, J. B. & Leslie, D. M. Jr. Efficacy of using radio transmitters to monitor Least Tern chicks. Wilson Bull. 117, 85–91 (2005).Article 

    Google Scholar 
    93.Lees, D. et al. An assessment of radio telemetry for monitoring shorebird chick survival and causes of mortality. Wildl. Res. 46, 622–627 (2019).Article 

    Google Scholar 
    94.Schekkerman, H., Teunissen, W. & Oosterveld, E. Mortality of Black-tailed Godwit Limosa limosa and Northern Lapwing Vanellus vanellus chicks in wet grasslands: Influence of predation and agriculture. J. Ornithol. 150, 133–145 (2009).Article 

    Google Scholar 
    95.Johnson, M., Aref, S. & Walters, J. R. Parent-offspring communication in the Western Sandpiper. Behav. Ecol. 19, 489–501 (2008).Article 

    Google Scholar 
    96.Brown, R. G. B. The aggressive and distraction behavior of the Western Sandpiper Ereunetes mauri. Ibis 104, 1–12 (1962).Article 

    Google Scholar 
    97.Rogers, L. E., Buschbom, R. L. & Watson, C. R. Length-weight relationships of shrub-steppe invertebrates. Ann. Entomol. Soc. Am. 70, 51–53 (1977).Article 

    Google Scholar 
    98.Cooch, E. G. & White, G. C. (eds.) Program MARK: A Gentle Introduction, 19th ed. http://www.phidot.org/software/mark/docs/book/ (2019).99.Rotella, J. J., Dinsmore, S. J. & Shaffer, T. L. Modeling nest-survival data: A comparison of recently developed methods that can be implemented in MARK and SAS. Anim. Biodivers. Conserv. 27, 187–205 (2004).
    Google Scholar 
    100.Dinsmore, S. J., White, G. C. & Knopf, F. L. Advanced techniques for modeling avian nest survival. Ecology 83, 3476–3488 (2002).Article 

    Google Scholar 
    101.Hill, B. L. Factors Affecting Survival of Arctic-Breeding Dunlin (Calidris alpina arcticola) Adults and Chicks (University of Alaska Fairbanks, 2012).
    Google Scholar 
    102.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    103.Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar  More

  • in

    Madrepora oculata forms large frameworks in hypoxic waters off Angola (SE Atlantic)

    1.Roberts, J. M., Wheeler, A. J., Freiwald, A. & Cairns, S. D. Cold-Water Corals. The Biology and Geology of Deep-Sea Coral Habitats. (Cambridge University Press, 2009).2.Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. Plos One 6, e18483 (2011).3.Morato, T. et al. Climate-induced changes in the suitable habitat of cold-water corals and commercially important deep-sea fishes in the North Atlantic. Glob. Chang. Biol. 26, 2181–2202. https://doi.org/10.1111/gcb.14996 (2020).ADS 
    Article 
    PubMed Central 

    Google Scholar 
    4.Arnaud-Haond, S. et al. Two “pillars” of cold-water coral reefs along Atlantic European margins: Prevalent association of Madrepora oculata with Lophelia pertusa, from reef to colony scale. Deep-Sea Res. Pt. II(145), 110–119 (2017).Article 

    Google Scholar 
    5.Buhl-Mortensen, L., Olafsdottir, S. H., Buhl-Mortensen, P., Burgos, J. M. & Ragnarsson, S. A. Distribution of nine cold-water coral species (Scleractinia and Gorgonacea) in the cold temperate North Atlantic: Effects of bathymetry and hydrography. Hydrobiologia 759, 39–61. https://doi.org/10.1007/s10750-014-2116-x (2015).CAS 
    Article 

    Google Scholar 
    6.Gori, A. et al. Bathymetrical distribution and size structure of cold-water coral populations in the Cap de Creus and Lacaze-Duthiers canyons (northwestern Mediterranean). Biogeosciences 10, 2049–2060. https://doi.org/10.5194/bg-10-2049-2013 (2013).ADS 
    Article 

    Google Scholar 
    7.Orejas, C. et al. Cold-water corals in the Cap de Creus canyon (north-western Mediterranean): Spatial distribution, density and anthropogenic impact. Mar. Ecol. Prog. Ser. 397, 37–51 (2009).ADS 
    Article 

    Google Scholar 
    8.Buhl-Mortensen, P. Coral reefs in the Southern Barents Sea: Habitat description and the effects of bottom fishing. Mar. Biol. Res. 13, 1027–1040. https://doi.org/10.1080/17451000.2017.1331040 (2017).Article 

    Google Scholar 
    9.Cairns, S. Antarctic and subantarctic Scleractinia. Antarctic Res. Ser. 34. https://doi.org/10.1029/AR034p0001 (1983).10.Cairns, S. D. & Zibrowius, H. Cnidaria Anthozoa: Azooxanthellate Scleractinia from the Philippine and Indonesian regions. Mém. Mus. Natl. Hist. Nat. 172, 27–243 (1997).
    Google Scholar 
    11.Tracey, D., Rowden, A., Mackay, K. & Compton, T. Habitat-forming cold-water corals show affinity for seamounts in the New Zealand region. Mar. Ecol. Prog. Ser. 430, 1–22. https://doi.org/10.3354/meps09164 (2011).ADS 
    Article 

    Google Scholar 
    12.Auscavitch, S. R. et al. Oceanographic drivers of deep-sea coral species distribution and community assembly on seamounts, islands, atolls, and reefs within the Phoenix Islands protected area. Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00042 (2020).13.Angeletti, L., Castellan, G., Montagna, P., Remia, A. & Taviani, M. “The Corsica channel cold-water coral province” (Mediterranean Sea). Front. Mar. Sci. 7. https://doi.org/10.3389/fmars.2020.00661 (2020).14.Chimienti, G., Bo, M., Taviani, M. & Mastrototaro, F. in Mediterranean Cold-Water Corals: Past, Present and Future, Springer Series: Coral Reefs of the World (eds. Covadonga Orejas Saco del Valle & C. Jiménez) 213–243 (Springer, 2019).15.Corbera, G. et al. Ecological characterisation of a Mediterranean cold-water coral reef: Cabliers Coral Mound Province (Alboran Sea, western Mediterranean). Prog. Oceanogr. 175, 245–262. https://doi.org/10.1016/j.pocean.2019.04.010 (2019).ADS 
    Article 

    Google Scholar 
    16.Freiwald, A. et al. The White Coral Community in the Central Mediterranean Sea revealed by ROV surveys. Oceanography 22, 58–74 (2009).Article 

    Google Scholar 
    17.Fabri, M. C. et al. Megafauna of vulnerable marine ecosystems in French Mediterranean submarine canyons: Spatial distribution and anthropogenic impacts. Deep-Sea Res. Pt. II(104), 184–207. https://doi.org/10.1016/j.dsr2.2013.06.016 (2014).Article 

    Google Scholar 
    18.Brooke, S. & Ross, S. W. First observations of the cold-water coral Lophelia pertusa in mid-Atlantic canyons of the USA. Deep-Sea Res. Pt. II(104), 245–251 (2014).Article 

    Google Scholar 
    19.Cordes, E. E. et al. Coral communities of the deep Gulf of Mexico. Deep-Sea Res. Pt. II(55), 777–787 (2008).Article 

    Google Scholar 
    20.Frederiksen, R., Jensen, A. & Westerberg, H. The distribution of scleratinian coral Lophelia pertusa around the Faroe Islands and the relation to intertidal mixing. Sarsia 77, 157–171 (1992).Article 

    Google Scholar 
    21.Hebbeln, D. et al. Environmental forcing of the Campeche cold-water coral province, southern Gulf of Mexico. Biogeosciences 11, 1799–1815. https://doi.org/10.5194/bg-11-1799-2014 (2014).ADS 
    Article 

    Google Scholar 
    22.Wienberg, C. et al. Franken Mound: Facies and biocoenoses on a newly-discovered “carbonate mound” on the western Rockall Bank, NE Atlantic. Facies 54, 1–24. https://doi.org/10.1007/s10347-007-0118-0 (2008).Article 

    Google Scholar 
    23.Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Cont. Shelf Res. 54, 37–51. https://doi.org/10.1016/j.csr.2012.12.013 (2013).ADS 
    Article 

    Google Scholar 
    24.Fanelli, E. et al. Cold-water coral Madrepora oculata in the eastern Ligurian Sea (NW Mediterranean): Historical and recent findings. Aquat. Conserv. 27, 965–975. https://doi.org/10.1002/aqc.2751 (2017).Article 

    Google Scholar 
    25.Naumann, M. S., Orejas, C. & Ferrier-Pagès, C. Species-specific physiological response by the cold-water corals Lophelia pertusa and Madrepora oculata to variations within their natural temperature range. Deep-Sea Res. Pt. II(99), 36–41. https://doi.org/10.1016/j.dsr2.2013.05.025 (2014).CAS 
    Article 

    Google Scholar 
    26.Movilla, J. et al. Resistance of two mediterranean cold-water coral species to low-pH conditions. Water 6, 59–67 (2014).ADS 
    Article 

    Google Scholar 
    27.Dodds, L. A., Roberts, J. M., Taylor, A. C. & Marubini, F. Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxgen change. J. Exp. Mar. Biol. Ecol. 349, 205–214 (2007).CAS 
    Article 

    Google Scholar 
    28.Lunden, J. J., McNicholl, C. G., Sears, C. R., Morrison, C. L. & Cordes, E. E. Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front. Mar. Sci. 1. https://doi.org/10.3389/fmars.2014.00078 (2014).29.Ramos, A., Sanz, J. L., Ramil, F., Agudo, L. M. & Presas-Navarro, C. in Deep-Sea Ecosystems Off Mauritania: Research of Marine Biodiversity and Habitats in the Northwest African Margin (eds. Ramos, A., Ramil, F., & Sanz, J.L.) 481–525 (Springer, 2017).30.Wienberg, C. et al. The giant Mauritanian cold-water coral mound province: Oxygen control on coral mound formation. Quat. Sci. Rev. 185, 135–152. https://doi.org/10.1016/j.quascirev.2018.02.012 (2018).ADS 
    Article 

    Google Scholar 
    31.Hanz, U. et al. Environmental factors influencing cold-water coral ecosystems in the oxygen minimum zones on the Angolan and Namibian margins. Biogeosciences 16, 4337–4356 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    32.Hebbeln, D. et al. Cold-water coral reefs thriving under hypoxia. Coral Reefs 39, 853–859. https://doi.org/10.1007/s00338-020-01934-6 (2020).Article 

    Google Scholar 
    33.Montero-Serrano, J.-C. et al. Decadal changes in the mid-depth water mass dynamic of the Northeastern Atlantic margin (Bay of Biscay). Earth Planet. Sci. Lett. 364, 134–144. https://doi.org/10.1016/j.epsl.2013.01.012 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Orejas, C., Gori, A. & Gili, J. M. Growth rates of live Lophelia pertusa and Madrepora oculata cold-water coral species maintained in aquaria. Coral Reefs 27, 255 (2008).ADS 
    Article 

    Google Scholar 
    35.Sabatier, P. et al. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef. Biogeosciences 9, 1253–1265. https://doi.org/10.5194/bg-9-1253-2012 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Sweetman, A. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa-Sci. Anthrop. 5, 4. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    37.Lexerød, N. L. Recruitment models for different tree species in Norway. For. Ecol. Manag. 206, 91–108. https://doi.org/10.1016/j.foreco.2004.11.001 (2005).Article 

    Google Scholar 
    38.Georgian, S. et al. Biogeographic variability in the physiological response of the cold-water coral Lophelia pertusa to ocean acidification. Mar. Ecol. 37. https://doi.org/10.1111/maec.12373 (2016).39.Tamborrino, L. et al. Mid-Holocene extinction of cold-water corals on the Namibian shelf steered by the Benguela oxygen minimum zone. Geology 47, 1185–1188. https://doi.org/10.1130/g46672.1 (2019).ADS 
    Article 

    Google Scholar 
    40.Büscher, J., Form, A. & Riebesell, U. Interactive effects of ocean acidification and warming on growth, fitness and survival of the cold-water coral Lophelia pertusa under different food availabilities. Front. Mar. Sci. 4. https://doi.org/10.3389/fmars.2017.00101 (2017).41.Connolly, S., Lopez-Yglesias, M. & Anthony, K. Food availability promotes rapid recovery from thermal stress in a scleractinian coral. Coral Reefs 31. https://doi.org/10.1007/s00338-012-0925-9 (2012).42.Middelburg, J. J. et al. Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci. Rep. 5, 17962. https://doi.org/10.1038/srep17962 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Wienberg, C. & Titschack, J. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds. Rossi, S., Bramanti, L., Gori, A., & del Valle, C.O.S.) 699–732 (Springer, 2017).44.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Levitus, S. & Mishonov, A. World Ocean Atlas 2013 (Vers. 2). NOAA Atlas NESDIS 73. National Oceanographic Data Center, Ocean Climate Laboratory United States, National Environmental Satellite Data Information Service (2013).46.Mienis, F. et al. Hydrodynamic controls on cold-water coral growth and carbonate-mound development at the SW and SE Rockall Trough Margin, NE Atlantic Ocean. Deep-Sea Res. Pt. I(54), 1655–1674 (2007).Article 

    Google Scholar 
    47.Sanfilippo, R. et al. Serpula aggregates and their role in deep-sea coral communities in the southern Adriatic Sea. Facies 59. https://doi.org/10.1007/s10347-012-0356-7 (2013).48.Hoey, J. A. & Pinsky, M. L. Genomic signatures of environmental selection despite near-panmixia in summer flounder. Evolut. Appl. 11, 1732–1747. https://doi.org/10.1111/eva.12676 (2018).CAS 
    Article 

    Google Scholar 
    49.Boavida, J., Becheler, R., Addamo, A. M., Sylvestre, F. & Arnaud-Haond, S. in Mediterranean Cold-Water Corals: Past, Present and Future, Springer Series: Coral Reefs of the World (eds. Covadonga Orejas Saco del Valle & C. Jiménez) (Springer, 2019).50.Sanford, E. & Kelly, M. W. Local adaptation in marine invertebrates. Ann. Rev. Mar. Sci. 3, 509–535. https://doi.org/10.1146/annurev-marine-120709-142756 (2011).Article 
    PubMed 

    Google Scholar 
    51.Frank, N. et al. Northeastern Atlantic cold-water coral reefs and climate. Geology 39, 743–746. https://doi.org/10.1130/g31825.1 (2011).ADS 
    Article 

    Google Scholar 
    52.Hebbeln, D. et al. ANNA cold-water coral ecosystems off Angola and Namibia. Cruise No. M122, December 30, 2015–January 31, 2016, Walvis Bay (Namibia) – Walvis Bay (Namibia). METEOR-Berichte, M122. DFG-Senatskommission Ozeanogr. 74. https://doi.org/10.2312/cr_m122 (2017).53.Vad, J., Orejas, C., Moreno-Navas, J., Findlay, H. S. & Roberts, J. M. Assessing the living and dead proportions of cold-water coral colonies: Implications for deep-water marine protected area monitoring in a changing ocean. PeerJ 5, e3705. https://doi.org/10.7717/peerj.3705 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Computational sustainability meets materials science

    Computational sustainability research has been supported by an Expedition in Computing from the US National Science Foundation (NSF; CCF-1522054). eBird has been supported by the Leon Levy Foundation, the Wolf Creek Foundation, and NSF (DBI-1939187). Materials science research has also been supported by the AFOSR Multidisciplinary University Research Initiative (MURI) Program FA9550-18-1-0136, US DOE Award No.DE-SC0020383, and an award from the Toyota Research Institute. More