More stories

  • in

    Factors associated with baseline mortality in Norwegian Atlantic salmon farming

    1.SERNAPESCA (Servicio Nacional de Pesca y Acuicultura). Informe Sanitario de Salmonicultura. http://www.sernapesca.cl/sites/default/files/informe_sanitario_salmonicultura_en_centros_marinos_2018_final.pdf (2018).2.Bang Jensen, B., Qviller, L. & Toft, N. Spatio-temporal variations in mortality during the seawater production phase of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 43, 445–457 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Moriarty, M. et al. Modelling temperature and fish biomass data to predict annual Scottish farmed salmon, Salmo salar L., losses: Development of an early warning tool. Prev. Vet. Med. 178, 104985. https://doi.org/10.1016/j.prevetmed.2020.104985 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Sommerset, I. et al. The Health Situation in Norwegian Aquaculture 2019. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2020/fiskehelserapporten-2019 (2020).5.Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2021—risikovurdering. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2021-8 (2021).6.Overton, K. et al. Salmon lice treatments and salmon mortality in Norwegian aquaculture: A review. Rev. Aquac. 11, 1398–1417 (2019).Article 

    Google Scholar 
    7.Soares, S., Green, D. M., Turnbull, J. F., Crumlish, M. & Murray, A. G. A baseline method for benchmarking mortality losses in Atlantic salmon (Salmo salar) production. Aquaculture 314, 7–12 (2011).Article 

    Google Scholar 
    8.Santurtun, E., Broom, D. & Phillips, C. A review of factors affecting the welfare of Atlantic salmon (Salmo salar). Anim. Welf. 27, 193–204 (2018).Article 

    Google Scholar 
    9.Ellis, T., Berrill, I., Lines, J., Turnbull, J. F. & Knowles, T. G. Mortality and fish welfare. Fish Physiol. Biochem. 38, 189–199 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Crockford, T., Menzies, F., McLoughlin, M., Wheatley, S. & Goodall, E. Aspects of the epizootiology of pancreas disease in farmed Atlantic salmon Salmo salar in Ireland. Dis. Aquat. Organ. 36, 113–119 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Stormoen, M., Kristoffersen, A. B. & Jansen, P. A. Mortality related to pancreas disease in Norwegian farmed salmonid fish, Salmo salar L. and Oncorhynchus mykiss (Walbaum). J. Fish Dis. 36, 639–645 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Taksdal, T. et al. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J. Fish Dis. 38, 1047–1061 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hammell, K. L. & Dohoo, I. R. Mortality patterns in infectious salmon anaemia virus outbreaks in New Brunswick, Canada. J. Fish Dis. 28, 639–650 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Glover, K. A. et al. Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture 254, 82–91 (2006).Article 

    Google Scholar 
    15.Roberts, R. J. & Pearson, M. D. Infectious pancreatic necrosis in Atlantic salmon, Salmo salar L. J. Fish Dis. 28, 383–390 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bang Jensen, B. & Kristoffersen, A. Risk factors for outbreaks of infectious pancreatic necrosis (IPN) and associated mortality in Norwegian salmonid farming. Dis. Aquat. Organ. 114, 177–187 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Brun, E., Poppe, T., Skrudland, A. & Jarp, J. Cardiomyopathy syndrome in farmed Atlantic salmon Salmo salar: Occurrence and direct financial losses for Norwegian aquaculture. Dis. Aquat. Organ. 56, 241–247 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bang Jensen, B., Brun, E., Fineid, B., Larssen, R. & Kristoffersen, A. Risk factors for cardiomyopathy syndrome (CMS) in Norwegian salmon farming. Dis. Aquat. Organ. 107, 141–150 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Løvoll, M. et al. Atlantic salmon bath challenged with Moritella viscosa—Pathogen invasion and host response. Fish Shellfish Immunol. 26, 877–884 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Delghandi, M. R., El-Matbouli, M. & Menanteau-Ledouble, S. Renibacterium salmoninarum—The causative agent of bacterial kidney disease in salmonid fish. Pathogens 9, 845. https://doi.org/10.3390/pathogens9100845 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lhorente, J. P., Gallardo, J. A., Villanueva, B., Carabaño, M. J. & Neira, R. Disease resistance in Atlantic Salmon (Salmo salar): Coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the Sea Louse Caligus rogercresseyi. PLoS ONE 9, e95397. https://doi.org/10.1371/journal.pone.0095397 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Kristoffersen, A. B. et al. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon. Epidemics 23, 19–33 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: Insights from an individual-based model. Sci. Rep. 9, 17377. https://doi.org/10.1038/s41598-019-53871-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Taylor, R. S., Kube, P. D., Muller, W. J. & Elliott, N. G. Genetic variation of gross gill pathology and survival of Atlantic salmon (Salmo salar L.) during natural amoebic gill disease challenge. Aquaculture 294, 172–179 (2009).Article 

    Google Scholar 
    25.Carvalho, L. A. et al. Impact of co-infection with Lepeophtheirus salmonis and Moritella viscosa on inflammatory and immune responses of Atlantic salmon (Salmo salar). J. Fish Dis. 43, 459–473 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Barker, S. E. et al. Sea lice, Lepeophtheirus salmonis (Krøyer 1837), infected Atlantic salmon (Salmo salar L.) are more susceptible to infectious salmon anemia virus. PLoS ONE 14, e0209178. https://doi.org/10.1371/journal.pone.0209178 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Staurnes, M., Sigholt, T., Åsgård, T. & Baeverfjord, G. Effects of a temperature shift on seawater challenge test performance in Atlantic salmon (Salmo salar) smolt. Aquaculture 201, 153–159 (2001).Article 

    Google Scholar 
    28.Ytrestøyl, T. et al. Performance and welfare of Atlantic salmon, Salmo salar L. post-smolts in recirculating aquaculture systems: Importance of salinity and water velocity. J. World Aquac. Soc. 51, 373–392 (2020).Article 
    CAS 

    Google Scholar 
    29.Montes, R. M., Rojas, X., Artacho, P., Tello, A. & Quiñones, R. A. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.León-Muñoz, J., Urbina, M. A., Garreaud, R. & Iriarte, J. L. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci. Rep. 8, 1330. https://doi.org/10.1038/s41598-018-19461-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Groner, M. L., McEwan, G. F., Rees, E. E., Gettinby, G. & Revie, C. W. Quantifying the influence of salinity and temperature on the population dynamics of a marine ectoparasite. Can. J. Fish. Aquat. Sci. 73, 1281–1291 (2016).Article 

    Google Scholar 
    32.Sievers, M., Oppedal, F., Ditria, E. & Wright, D. W. The effectiveness of hyposaline treatments against host-attached salmon lice. Sci. Rep. 9, 6976. https://doi.org/10.1038/s41598-019-43533-8 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Tunsjø, H. S. et al. Adaptive response to environmental changes in the fish pathogen Moritella viscosa. Res. Microbiol. 158, 244–250 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    34.Guomundsdóttir, S. et al. Measures applied to control Renibacterium salmoninarum infection in Atlantic salmon: A retrospective study of two sea ranches in Iceland. Aquaculture 186, 193–203 (2000).Article 

    Google Scholar 
    35.Jansen, M. D. et al. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. J. Fish Dis. 33, 391–402 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Jensen, B. B., Kristoffersen, A. B., Myr, C. & Brun, E. Cohort study of effect of vaccination on pancreas disease in Norwegian salmon aquaculture. Dis. Aquat. Organ. 102, 23–31 (2012).Article 

    Google Scholar 
    37.Karlsen, C., Thorarinsson, R., Wallace, C., Salonius, K. & Midtlyng, P. J. Atlantic salmon winter-ulcer disease: Combining mortality and skin ulcer development as clinical efficacy criteria against Moritella viscosa infection. Aquaculture 473, 538–544 (2017).Article 

    Google Scholar 
    38.Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).Article 

    Google Scholar 
    39.Overton, K., Samsing, F., Oppedal, F., Stien, L. H. & Dempster, T. Lowering treatment temperature reduces salmon mortality: A new way to treat with hydrogen peroxide in aquaculture. Pest Manag. Sci. 74, 535–540 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Helgesen, K. O., Romstad, H., Aaen, S. M. & Horsberg, T. E. First report of reduced sensitivity towards hydrogen peroxide found in the salmon louse Lepeophtheirus salmonis in Norway. Aquac. Rep. 1, 37–42 (2015).Article 

    Google Scholar 
    41.Walde, C. S., Bang Jensen, B., Pettersen, J. M. & Stormoen, M. Estimating cage level mortality distributions following different delousing treatments of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 44, jfd.13348. https://doi.org/10.1111/jfd.13348 (2021).Article 

    Google Scholar 
    42.Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: A threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Gismervik, K., Nielsen, K. V., Lind, M. B. & Viljugrein, H. Mekanisk avlusing med FLS-avlusersystem—dokumentasjon av fiskevelferd og effekt mot lus. Veterinærinstituttets rapportserie 6–2017. See https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2017/mekanisk-avlusing-dokumentasjon-av-fiskevelferd-og-effekt-mot-lus (2017).44.Grøntvedt, R. N. et al. Thermal de-licing of salmonid fish—Documentation of fish welfare and effect. Norwegian Veterinary Institute`s Report series 13–2015. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2015/thermal-de-licing-of-salmonid-fish-documentation-of-fish-welfare-and-effect (2015).45.Gismervik, K. et al. Thermal injuries in Atlantic salmon in a pilot laboratory trial. Vet. Anim. Sci. 8, 100081. https://doi.org/10.1016/j.vas.2019.100081 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    48.Auguie B. gridExtra: Miscellaneous functions for “grid” graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra (2017).49.Salama, N. K. G., Murray, A. G., Christie, A. J. & Wallace, I. S. Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture 450, 283–288 (2016).Article 

    Google Scholar 
    50.Aunsmo, A. et al. Methods for investigating patterns of mortality and quantifying cause-specific mortality in sea-farmed Atlantic salmon Salmo salar. Dis. Aquat. Organ. 81, 99–107 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Usher, M. L., Talbot, C. & Eddy, F. B. Effects of transfer to seawater on growth and feeding in Atlantic salmon smolts (Salmo salar L.). Aquaculture 94, 309–326 (1991).Article 

    Google Scholar 
    52.Johansson, L.-H., Timmerhaus, G., Afanasyev, S., Jørgensen, S. M. & Krasnov, A. Smoltification and seawater transfer of Atlantic salmon (Salmo salar L.) is associated with systemic repression of the immune transcriptome. Fish Shellfish Immunol. 58, 33–41 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Ellis, T., Turnbull, J. F., Knowles, T. G., Lines, J. A. & Auchterlonie, N. A. Trends during development of Scottish salmon farming: An example of sustainable intensification?. Aquaculture 458, 82–99 (2016).Article 

    Google Scholar 
    54.Kristensen, T. et al. Effects of production intensity and production strategies in commercial Atlantic salmon smolt (Salmo salar L.) production on subsequent performance in the early sea stage. Fish Physiol. Biochem. 38, 273–282 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Handeland, S. O., Björnsson, B. T., Arnesen, A. M. & Stefansson, S. O. Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220, 367–384 (2003).Article 

    Google Scholar 
    56.Bjørndal, T. & Tusvik, A. Economic analysis of on-growing of salmon post-smolts. Aquac. Econ. Manag. 24, 355–386 (2020).Article 

    Google Scholar 
    57.Bang Jensen, B., Mårtensson, A. & Kristoffersen, A. B. Estimating risk factors for the daily risk of developing clinical cardiomyopathy syndrome (CMS) on a fishgroup level. Prev. Vet. Med. 175, 104852. https://doi.org/10.1016/j.prevetmed.2019.104852 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Iversen, M. et al. Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 243, 373–382 (2005).Article 

    Google Scholar 
    59.Intorre, L. Safety of azamethiphos in eel, seabass and trout. Pharmacol. Res. 49, 171–176 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Olsvik, P. A., Ørnsrud, R., Lunestad, B. T., Steine, N. & Fredriksen, B. N. Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 162, 23–33 (2014).CAS 
    Article 

    Google Scholar 
    61.Johnson, S., Constible, J. & Richard, J. Laboratory investigations on the efficacy of hydrogen peroxide against the salmon louse Lepeophtheirus salmonis and its lexicological and histopathological effects on Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Organ. 17, 197–204 (1993).CAS 
    Article 

    Google Scholar 
    62.Nilsson, J. et al. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Vet. Anim. Sci. 8, 100076. https://doi.org/10.1016/j.vas.2019.100076 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Stien, L. H., Lind, M. B., Oppedal, F., Wright, D. W. & Seternes, T. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture 490, 281–287 (2018).Article 

    Google Scholar 
    64.Barrett, L. T., Oppedal, F., Robinson, N. & Dempster, T. Prevention not cure: A review of methods to avoid sea lice infestations in salmon aquaculture. Rev. Aquac. 12, 2527–2543 (2020).Article 

    Google Scholar 
    65.Overton, K., Barrett, L. T., Oppedal, F., Kristiansen, T. S. & Dempster, T. Sea lice removal by cleaner fish in salmon aquaculture: A review of the evidence base. Aquac. Environ. Interact. 12, 31–44 (2020).Article 

    Google Scholar 
    66.Tully, O., Daly, P., Lysaght, S., Deady, S. & Varian, S. J. A. Use of cleaner-wrasse (Centrolabrus exoletus (L.) and Ctenolabrus rupestris (L.)) to control infestations of Caligus elongatus Nordmann on farmed Atlantic salmon. Aquaculture 142, 11–24 (1996).Article 

    Google Scholar 
    67.Imsland, A. K. D. et al. It works! Lumpfish can significantly lower sea lice infestation in large-scale salmon farming. Biol. Open 7, bio036301. https://doi.org/10.1242/bio.036301 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Erkinharju, T., Dalmo, R. A., Hansen, M. & Seternes, T. Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac. 13, 189–237 (2021).Article 

    Google Scholar 
    69.Elliott, J. M. & Elliott, J. A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 77, 1793–1817 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Finstad, T. & Sigholt, B. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84, 167–172 (1990).Article 

    Google Scholar 
    71.Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2018. https://www.hi.no/resources/publikasjoner/risikorapport-norsk-fiskeoppdrett/2018/risikorapport_2018.pdf (2018).72.Hvas, M., Folkedal, O. & Oppedal, F. Fish welfare in offshore salmon aquaculture. Rev. Aquac. 13, 836–852 (2021).Article 

    Google Scholar 
    73.Dórea, F. C. & Vial, F. Animal health syndromic surveillance: A systematic literature review of the progress in the last 5 years (2011–2016). Vet. Med. Res. Rep. 7, 157–170 (2016).
    Google Scholar 
    74.Fernández-Fontelo, A. et al. Enhancing the monitoring of fallen stock at different hierarchical administrative levels: An illustration on dairy cattle from regions with distinct husbandry, demographical and climate traits. BMC Vet. Res. 16, 110 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Samsing, F., Johnsen, I., Dempster, T., Oppedal, F. & Treml, E. A. Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landsc. Ecol. 32, 1953–1967 (2017).Article 

    Google Scholar 
    76.Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Myksvoll, M. S. et al. Evaluation of a national operational salmon lice monitoring system—From physics to fish. PLoS ONE 13, e0201338. https://doi.org/10.1371/journal.pone.0201338 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    79.Tennekes, M. tmap: Thematic maps in R. J. Stat. Softw. 84, 1–39 (2018).Article 

    Google Scholar 
    80.NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/SF/forskrift/2012-12-05-1140 (2012).81.NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/LTI/forskrift/2012-12-05-1140 (2012).82.Asplin, L., Albretsen, J., Johnsen, I. A. & Sandvik, A. D. The hydrodynamic foundation for salmon lice dispersion modeling along the Norwegian coast. Ocean Dyn. 70, 1151–1167 (2020).ADS 
    Article 

    Google Scholar 
    83.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. CRAN. https://cran.r-project.org/web/packages/ncdf4/ncdf4.pdf (2019).84.Dohoo I., Martin W. & Stryhn H. Veterinary Epidemiologic Research (2nd edn) Charlottetown, Prince Edward Island (VER Inc., 2009).85.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    86.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. CRAN. https://easystats.github.io/performance (2020).87.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. CRAN. https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf (2020). More

  • in

    Changes in climate drive recent monarch butterfly dynamics

    1.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    2.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    6.Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    7.Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Google Scholar 
    8.Brower, L. P. et al. Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv. Divers. 5, 95–100 (2012).
    Google Scholar 
    9.Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 214, 343–346 (2017).
    Google Scholar 
    11.Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Boyle, J. H., Dalgleish, H. J. & Puzey, J. R. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. Proc. Natl Acad. Sci. USA 116, 3006–3011 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Hann, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).
    Google Scholar 
    14.Oberhauser, K. S. et al. Temporal and spatial overlap between monarch larvae and corn pollen. Proc. Natl Acad. Sci. USA 98, 11913–11918 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135–144 (2013).
    Google Scholar 
    16.Ries, L., Taron, D. J. & Rendón-Salinas, E. The disconnect between summer and winter monarch trends for the eastern migratory population: possible links to differing drivers. Ann. Entomol. Soc. Am. 108, 691–699 (2015).
    Google Scholar 
    17.Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125, 1081–1091 (2016).
    Google Scholar 
    18.Saunders, S. P. et al. Multiscale seasonal factors drive the size of winter monarch colonies. Proc. Natl Acad. Sci. USA 116, 8609–8614 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Zalucki, M. P. Temperature and rate of development in Danaus plexippus L. and D. chrysippus L. (Lepidoptera: Nymphalidae). Aust. J. Entomol. 21, 241–246 (1982).
    Google Scholar 
    20.Zipkin, E. F., Ries, L., Reeves, R., Regetz, J. & Oberhauser, K. S. Tracking climate impacts on the migratory monarch butterfly. Glob. Change Biol. 18, 3039–3049 (2012).
    Google Scholar 
    21.Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies. Ecography 41, 278–290 (2018).
    Google Scholar 
    22.Batalden, R. V., Oberhauser, K. & Peterson, A. T. Ecological niches in sequential generations of eastern North American monarch butterflies: the ecology of migration and likely climate change implications. Environ. Entomol. 36, 1365–1373 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    23.Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs via range expansion of Asclepias host plants. PLoS ONE 10, e0118614 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    24.Vidal, O. & Rendón-Salinas, E. Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol. Conserv. 180, 165–175 (2014).
    Google Scholar 
    25.Thogmartin, W. E. et al. Density estimates of monarch butterflies overwintering in central Mexico. PeerJ 5, e3221 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Flockhart, D. T. T., Pichancourt, J.-B., Norris, D. R. & Martin, T. G. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84, 155–165 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Oberhauser, K. et al. A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol. Entomol. 42, 51–60 (2017).
    Google Scholar 
    28.Wilcox, A. A. E., Flockhart, D. T. T., Newman, A. E. M. & Norris, D. R. An evaluation of studies on the potential threats contributing to the decline of eastern migratory North American monarch butterflies (Danaus plexippus). Front. Ecol. Evol. 7, 99 (2019).
    Google Scholar 
    29.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    30.Dai, S., Shulski, M. D., Hubbard, K. G. & Takle, E. S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Climatol. 36, 517–525 (2016).
    Google Scholar 
    31.Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Crimmins, T. M. & Crimmins, M. A. Biologically-relevant trends in springtime temperatures across the United States. Geophys. Res. Lett. 46, 12377–12387 (2019).
    Google Scholar 
    33.Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2001).
    Google Scholar 
    34.Nelson, W. A., Bjørnstad, O. N. & Yamanaka, T. Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 341, 796–799 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) (Cambridge Univ. Press, 2014).36.Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    37.Cook, K. H., Vizy, E. K., Launer, Z. S. & Patricola, C. M. Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Clim. 21, 6321–6340 (2008).
    Google Scholar 
    38.Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Wagner, D. L. Insect declines in the Anthropocene. Ann. Rev. Entomol. 65, 457–480 (2020).CAS 

    Google Scholar 
    40.Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Flockhart, D. T. T. et al. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. Glob. Change Biol. 23, 2565–2576 (2017).
    Google Scholar 
    43.Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436–15439 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Oberhauser, K. S. et al. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 13–30 (Cornell Univ. Press, 2015).45.Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).
    Google Scholar 
    46.Saunders, S. P., Ries, L., Obserhauser, K. S. & Zipkin, E. F. Evaluating confidence in climate-based predictions of population change in a migratory species. Glob. Ecol. Biogeogr. 25, 1000–1012 (2016).
    Google Scholar 
    47.Missrie, M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 141–150 (Cornell Univ. Press, 2004).48.García-Serrano, E., Reyes, J. L. & Alvarez, B. X. M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 129–133 (Cornell Univ. Press, 2004).49.Ramírez, M. I., Sáenz-Romero, C., Rehfeldt, G. & Salas-Canela, L. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 157–168 (Cornell Univ. Press, 2015).50.Howard, E. & Davis, A. K. Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from Journey North, a citizen science program. Ann. Entomol. Soc. Am. 108, 664–669 (2015).
    Google Scholar 
    51.McMaster, G. S. & Wilhelm, W. Growing degree-days: one equation, two interpretations. Agric. Meteorol. 87, 291–300 (1997).
    Google Scholar 
    52.Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/132853.Hartzler, R. G. & Buhler, D. D. Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot. 19, 363–366 (2000).
    Google Scholar 
    54.Hartzler, R. G. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544 (2010).
    Google Scholar 
    55.Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar 
    56.Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    58.Pesticide National Synthesis Project (US Geological Survey, 2020); https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/59.Quick Stats (US Department of Agriculture, National Agricultural Statistics Service, 2020); http://quickstats.nass.usda.gov60.Crops (Ontario Ministry of Agriculture, Food and Rural Affairs, 2020); http://www.omafra.gov.on.ca/english/crops/61.Batalden, R. V. & Oberhauser, K. S. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 215–224 (Cornell Univ. Press, 2015).62.Alonso-Mejía, A., Rendón-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation. Ecol. Appl. 7, 934–947 (1997).
    Google Scholar 
    63.Brower, L. P., Fink, L. S. & Walford, P. Fueling the fall migration of the monarch butterfly. Integr. Comp. Biol. 46, 1123–1142 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    64.Tracy, J. L., Kantola, T., Baum, K. A. & Coulson, R. N. Modeling fall migration pathways and spatially identifying potential migratory hazards for the eastern monarch butterfly. Landsc. Ecol. 34, 443–458 (2019).
    Google Scholar 
    65.Feldman, R. E. & McGill, B. J. How important is nectar in shaping spatial variation in the abundance of temperate breeding hummingbirds? J. Biogeogr. 41, 489–500 (2014).
    Google Scholar 
    66.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD13Q1.00667.Vidal, O., López-García, J. & Rendón-Salinas, E. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv. Biol. 28, 177–186 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    68.Williams, E. H. & Brower, L. P. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 109–116 (Cornell Univ. Press, 2015).69.Brower, L. P. et al. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 151–166 (Cornell Univ. Press, 2004).70.Brower, L. P. et al. Butterfly mortality and salvage logging from the March 2016 storm in the Monarch Butterfly Biosphere Reserve in Mexico. Am. Entom. 63, 151–164 (2017).
    Google Scholar 
    71.Farfán-Gutiérrez, M. et al. Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera y Bosques 24, e2431591 (2018).
    Google Scholar 
    72.Ramírez, M. I., López-Sánchez, J. G. & Barrasa, S. Mapa de Vegetación y Cubiertas del Suelo, Reserva de la Biosfera Mariposa Monarca Vol. II (CIGA-UNAM, 2019).73.Flores-Martínez, J. J. et al. Recent forest cover loss in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico. Front. Ecol. Evol. 7, 167 (2019).
    Google Scholar 
    74.Ramírez, M. I., Gímenez-Azcárate, J. & Luna, L. Effects of human activities on monarch butterfly habitat in protected mountain forests, Mexico. For. Chron. 79, 242–246 (2003).
    Google Scholar 
    75.Ramírez, M. I., Miranda, R., Zubieta, R. & Jiménez, M. Land cover and road network map for the Monarch Butterfly Biosphere Reserve in Mexico 2003. J. Maps 3, 181–190 (2007).
    Google Scholar 
    76.Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Ltd, 2016).77.Yackulic, C. B., Dodrill, M., Dzul, M., Sanderlin, J. S. & Reid, J. A. A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states. Ecol. Appl. 30, e02112 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    78.Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    79.Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Austral Ecol. 21, 224–228 (1996).
    Google Scholar 
    80.Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 73, 307–309 (2019).
    Google Scholar 
    81.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017).
    Google Scholar 
    82.Stan Development Team. rstan: the R Interface to Stan. R package version 2.17.3 http://mc-stan.org/ (2018).83.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/84.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
    Google Scholar 
    85.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007). More

  • in

    Benefit of woodland and other natural environments for adolescents’ cognition and mental health

    1.Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).Article 

    Google Scholar 
    2.World Urbanization Prospects: The 2018 Revision ST/ESA/SER.A/420 (UN DESA, 2019).3.Okkels, N., Kristiansen, C. B., Munk-Jørgensen, P. & Sartorius, N. Urban mental health. Curr. Opin. Psychiatry 31, 258–264 (2018).Article 

    Google Scholar 
    4.Robbins, R. N., Scott, T., Joska, J. A. & Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 32, 210–217 (2019).Article 

    Google Scholar 
    5.Sarkar, C., Webster, C. & Gallacher, J. Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Health 2, e162–e173 (2018).Article 

    Google Scholar 
    6.Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/PNAS.1807504116 (2019).7.Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).CAS 
    Article 

    Google Scholar 
    8.Franco, L. S., Shanahan, D. F. & Fuller, R. A. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health 14, 864 (2017).Article 

    Google Scholar 
    9.Cox, D. T. C. et al. Skewed contributions of individual trees to indirect nature experiences. Landsc. Urban Plan. 185, 28–34 (2019).Article 

    Google Scholar 
    10.Irvine, K. N. et al. Green space, soundscape and urban sustainability: an interdisciplinary, empirical study. Local Environ. 14, 155–172 (2009).Article 

    Google Scholar 
    11.Weber, S. T. & Heuberger, E. The impact of natural odors on affective states in humans. Chem. Senses 33, 441–447 (2008).Article 

    Google Scholar 
    12.Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 15, 9–17 (2010).CAS 
    Article 

    Google Scholar 
    13.Rook, G. A., Raison, C. L. & Lowry, C. A. Can we vaccinate against depression? Drug Discov. Today 17, 451–458 (2012).Article 

    Google Scholar 
    14.Markevych, I. et al. Access to urban green spaces and behavioural problems in children: results from the GINIplus and LISAplus studies. Environ. Int. 71, 29–35 (2014).Article 

    Google Scholar 
    15.Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: urban street tree density and antidepressant prescription rates—a cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).16.Akpinar, A., Barbosa-Leiker, C. & Brooks, K. R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 20, 407–418 (2016).Article 

    Google Scholar 
    17.Cox, D. T. C., Shanahan, D. F., Hudson, H. L., Fuller, R. A. & Gaston, K. J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 179, 72–80 (2018).Article 

    Google Scholar 
    18.Amoly, E. et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE Project. Environ. Health Perspect. 122, 1351–1358 (2014).Article 

    Google Scholar 
    19.Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, e198209 (2019).Article 

    Google Scholar 
    20.Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).CAS 
    Article 

    Google Scholar 
    21.Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379 (2015).Article 

    Google Scholar 
    22.The Mental Health of Children and Young People in London (PHE, 2016).23.Bijnens, E. M., Derom, C., Thiery, E., Weyers, S. & Nawrot, T. S. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: a longitudinal birth cohort study of twins. PLoS Med. 17, e1003213 (2020).Article 

    Google Scholar 
    24.Milligan, C. & Bingley, A. Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. Health Place 13, 799–811 (2007).Article 

    Google Scholar 
    25.Toledano, M. B. et al. Cohort profile: the study of cognition, adolescents and mobile phones (SCAMP). Int. J. Epidemiol. 48, 25–26l (2018).Article 

    Google Scholar 
    26.Afifi, M. Gender differences in mental health. Singapore Med. J. 48, 385–391 (2007).CAS 

    Google Scholar 
    27.Guhn, M., Emerson, S. D., Mahdaviani, D. & Gadermann, A. M. Associations of birth factors and socio-economic status with indicators of early emotional development and mental health in childhood: a population-based linkage study. Child Psychiatry Hum. Dev. 51, 80–93 (2020).Article 

    Google Scholar 
    28.Morita, E. et al. Psychological effects of forest environments on healthy adults: shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 121, 54–63 (2007).CAS 
    Article 

    Google Scholar 
    29.Thompson, C. W. et al. Health impacts of environmental and social interventions designed to increase deprived communities’ access to urban woodlands: a mixed-methods study. Public Health Res. 27, 1–172 (2019).Article 

    Google Scholar 
    30.Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).Article 

    Google Scholar 
    31.Liao, J. et al. Residential exposure to green space and early childhood neurodevelopment. Environ. Int. 128, 70–76 (2019).Article 

    Google Scholar 
    32.Picavet, H. S. J. et al. Greener living environment healthier people? Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev. Med. 89, 7–14 (2016).Article 

    Google Scholar 
    33.Francis, J., Wood, L. J., Knuiman, M. & Giles-Corti, B. Quality or quantity? Exploring the relationship between public open space attributes and mental health in Perth, Western Australia. Soc. Sci. Med. 74, 1570–1577 (2012).Article 

    Google Scholar 
    34.Nutsford, D., Pearson, A. L., Kingham, S. & Reitsma, F. Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health Place 39, 70–78 (2016).Article 

    Google Scholar 
    35.Little, S. & Derr, V. in Research Handbook on Childhoodnature (eds Cutter-Mackenzie-Knowles, A. et al.) 151–178 (Springer, 2020).36.Bell, S. L., Phoenix, C., Lovell, R. & Wheeler, B. W. Seeking everyday wellbeing: the coast as a therapeutic landscape. Soc. Sci. Med. 142, 56–67 (2015).Article 

    Google Scholar 
    37.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, 903–927 (2019).Article 

    Google Scholar 
    38.Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).Article 

    Google Scholar 
    39.Tarling, R. & Roger, R. D. Socio-economic determinants of crime rates: modelling local area police-recorded crime. Howard J. Crime Justice 55, 207–225 (2016).Article 

    Google Scholar 
    40.Rose, D., Pevalin, D. J. & O’Reilly, K. The National Statistics Socio-economic Classification: Origins, Development and Use (Palgrave MacMillan, 2005).41.Carstairs, V. & Morris, R. Deprivation and health in Scotland. Health Bull. 48, 162–175 (1990).CAS 

    Google Scholar 
    42.2011 Census Aggregate Data (Office of National Statistics, 2012); https://www.ons.gov.uk/census/2011census43.Luciana, M. & Nelson, C. A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4- to 12-year-old children. Dev. Neuropsychol. 22, 595–624 (2002).Article 

    Google Scholar 
    44.Tombaugh, T. N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214 (2004).Article 

    Google Scholar 
    45.Wechsler, D. The Measurement of Adult Intelligence (Williams & Wilkins, 1944).46.Burgess, P. W. in Methodology of Frontal and Executive Function (ed. Rabbitt, P.) 79–113 (Taylor and Francis, 2004).47.Goodman, R., Meltzer, H. & Bailey, V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Int. Rev. Psychiatry 15, 173–177 (2003).CAS 
    Article 

    Google Scholar 
    48.Cronbach, L. J. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951).Article 

    Google Scholar 
    49.The KIDSCREEN Group Europe The Kidscreen Questionnaires: Quality of Life Questionnaires for Children and Adolescents (Pabst Science, 2006).50.Berman, A. H., Liu, B., Ullman, S., Jadbäck, I. & Engström, K. Children’s quality of life based on the KIDSCREEN-27: child self-report, parent ratings and child–parent agreement in a Swedish random population sample. PLoS ONE 11, e0150545 (2016).Article 
    CAS 

    Google Scholar 
    51.Sentinel-2 User Handbook (ESA, 2015).52.Gascon, M. et al. Normalized Difference Vegetation Index (NDVI) as a marker of surrounding greenness in epidemiological studies: the case of Barcelona city. Urban For. Urban Green. 19, 88–94 (2016).Article 

    Google Scholar 
    53.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    54.Open Map—Local (Ordnance Survey, 2019); http://os.uk55.Miura, N. & Jones, S. D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens. Environ. 114, 1069–1076 (2010).Article 

    Google Scholar 
    56.Dadvand, P. et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 523, 59–63 (2015).CAS 
    Article 

    Google Scholar 
    57.Sunyer, J. et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 12, e1001792 (2015).Article 
    CAS 

    Google Scholar 
    58.Roberts, S. et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 272, 8–17 (2019).CAS 
    Article 

    Google Scholar 
    59.Tzivian, L. et al. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 218, 1–11 (2015).Article 

    Google Scholar 
    60.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).Article 

    Google Scholar  More

  • in

    Unraveling the ecological processes modulating the population structure of Escherichia coli in a highly polluted urban stream network

    1.2012 Recreational Water Quality Criteria. (U. S. Environmental Protection Agency, 2012).2.Lee, C. M. et al. Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Res. 40, 2593–2602 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Luo, C. et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. 108, 7200–7205 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Ishii, S., Ksoll, W. B., Hicks, R. E. & Sadowsky, M. J. Presence and growth of naturalized Escherichia coli in temperate soils from lake superior watersheds. Appl. Environ. Microbiol. 72, 612–621 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Rochelle-Newall, E., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O. & Ribolzi, O. A short review of fecal indicator bacteria in tropical aquatic ecosystems: Knowledge gaps and future directions. Front. Microbiol. 6, 1–15 (2015).Article 

    Google Scholar 
    6.Tymensen, L. D. et al. Comparative accessory gene fingerprinting of surface water Escherichia coli reveals genetically diverse naturalized population. J. Appl. Microbiol. 119, 263–277 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Ishii, S. & Sadowsky, M. J. Escherichia coli in the environment: Implications for water quality and human health. Microbes and environments / JSME 23, 101–108 (2008).Article 

    Google Scholar 
    8.Surbeck, C. Q., Jiang, S. C. & Grant, S. B. Ecological control of fecal indicator bacteria in an urban stream. Environ. Sci. Technol. 44, 631–637 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Jang, J. et al. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 123(3), 570–581. https://doi.org/10.1111/jam.13468 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Van Elsas, J. D., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME J. 5, 173–183 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Jaureguy, F. et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9, 560 (2008).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Clermont, O. et al. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ. Microbiol. 21, 3107–3117 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.12019 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Ratajczak, M. et al. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed. BMC Microbiol. 10, 1–10 (2010).Article 
    CAS 

    Google Scholar 
    15.Johnson, J. R. et al. Phylogenetic backgrounds and virulence associated traits of Escherichia coli isolates from surface waters and diverse animals in Minnesota and Wisconsin. Appl. Environ. Microbiol. 83, 1–33 (2017).CAS 

    Google Scholar 
    16.Petit, F. et al. Change in the structure of Escherichia coli population and the pattern of virulence genes along a rural aquatic continuum. Front. Microbiol. 8, 1–14 (2017).Article 

    Google Scholar 
    17.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    18.Berthe, T., Ratajczak, M., Clermont, O., Denamur, E. & Petit, F. Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl. Environ. Microbiol. 79, 4684–4693 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Méric, G., Kemsley, E. K., Falush, D., Saggers, E. J. & Lucchini, S. Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environ. Microbiol. 15, 487–501 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    20.Walk, S. T. The “Cryptic” Escherichia. EcoSal Plus 6, 2 (2015).21.Ingle, D. J. et al. Biofilm formation by and thermal niche and virulence characteristics of Escherichia spp. Appl. Environ. Microbiol. 77, 2695–2700 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Elmqvist, T. The Urban Planet: Knowledge Towards Sustainable Cities (Cambridge University Press, 2018).Book 

    Google Scholar 
    23.Hosen, J. D., Febria, C. M., Crump, B. C. & Palmer, M. A. Watershed urbanization linked to differences in stream bacterial community composition. Front. Microbiol. 8, 1–17 (2017).Article 

    Google Scholar 
    24.Wang, S.-Y., Sudduth, E. B., Wallenstein, M. D., Wright, J. P. & Bernhardt, E. S. Watershed urbanization alters the composition and function of stream bacterial communities. PLoS ONE 6, e22972 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Bernhardt, E. S., Band, L. E., Walsh, C. J. & Berke, P. E. Understanding, managing, and minimizing urban impacts on surface water nitrogen loading. Ann. N. Y. Acad. Sci. 1134, 61–96 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hosen, J. D., McDonough, O. T., Febria, C. M. & Palmer, M. A. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ. Sci. Technol. 48, 7817–7824 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Hatt, B. E., Fletcher, T. D., Walsh, C. J. & Taylor, S. L. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ. Manage. 34, 112–124 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Smith, R. M., Kaushal, S. S., Beaulieu, J. J., Pennino, M. J. & Welty, C. Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. Biogeosciences 14, 2831–2849 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Handler, N. B., Paytan, A., Higgins, C. P., Luthy, R. G. & Boehm, A. B. Human development is linked to multiple water body impairments along the California coast. Estuar. Coasts 29, 860–870 (2006).CAS 
    Article 

    Google Scholar 
    30.Ishii, S. et al. Factors controlling long-term survival and growth of naturalized Escherichia coli populations in temperate field soils. Microbes Environ. 25, 8–14 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Whitman, R. L. et al. Microbes in beach sands: Integrating environment, ecology and public health. Rev. Environ. Sci. Biotechnol. 13, 329–368 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Kleinheinz, G. et al. Effect of aquatic macrophytes on the survival of Escherichia coli in a laboratory microcosm. Lake Reserv. Manage. 25, 149–154 (2009).Article 

    Google Scholar 
    33.Moreira, S. et al. Persistence of Escherichia coli in freshwater periphyton: Biofilm-forming capacity as a selective advantage. FEMS Microbiol. Ecol. 79, 608–618 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Pachepsky, Y. A. & Shelton, D. R. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit. Rev. Environ. Sci. Technol. 41, 1067–1110 (2011).CAS 
    Article 

    Google Scholar 
    35.Walsh, C. J. & Kunapo, J. The importance of upland flow paths in determining urban effects on stream ecosystems. J. N. Am. Benthol. Soc. 28, 977–990 (2009).Article 

    Google Scholar 
    36.McLellan, S. L., Fisher, J. C. & Newton, R. J. The microbiome of urban waters. Int. Microbiol. 18, 141–149 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    37.Newton, R. J. et al. Sewage reflects the microbiomes of human populations. MBio 6, 1–9 (2015).CAS 
    Article 

    Google Scholar 
    38.Richards, S., Paterson, E., Withers, P. J. A. & Stutter, M. Septic tank discharges as multi-pollutant hotspots in catchments. Sci. Total Environ. 542, 854–863 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Sowah, R. A., Habteselassie, M. Y., Radcliffe, D. E., Bauske, E. & Risse, M. Isolating the impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia, United States. Water Res. 108, 330–338 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Ly, D. K. & Chui, T. F. M. Modeling sewage leakage to surrounding groundwater and stormwater drains. Water Sci. Technol. 66, 2659–2665 (2012).PubMed 
    Article 

    Google Scholar 
    41.Graziano, M., Giorgi, A. & Feijoó, C. Science of the Total Environment Multiple stressors and social-ecological traps in Pampean streams (Argentina): A conceptual model. Sci. Total Environ. 765, 142785 (2020).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    42.Graziano, M. et al. Fostering urban transformations in Latin America: Lessons around the ecological management of an urban stream in coproduction with a social movement (Buenos Aires, Argentina). Ecol. Soc. 24, 13 (2019).Article 

    Google Scholar 
    43.Cirelli, A. F. & Ojeda, C. Wastewater management in Greater Buenos Aires, Argentina. Desalination 218, 52–61 (2008).CAS 
    Article 

    Google Scholar 
    44.Elordi, M. L., Lerner, J. E. C. & Porta, A. Evaluación del impacto antrópico sobre la calidad del agua del arroyo Las Piedras, Quilmes, Buenos Aires, Argentina. Acta Bioquimica Clinica Latinoamericana 50, 669–677 (2016).
    Google Scholar 
    45.Censo nacional de población, hogares y viviendas 2010 : censo del Bicentenario : resultados definitivos, Serie B nº 2. (Instituto Nacional de Estadística y Censos, 2012).46.Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J. & Nathan, R. J. Stream Hydrology: An Introduction for Ecologists (Wiley, 2004).
    Google Scholar 
    47.Elosegui, A., Sabater, S. (eds.). Conceptos y técnicas en ecología fluvial. 243-251. (Fundación BBVa, 2009)48.Baird, R. B., Eaton, A. D., Rice, E. W., & Bridgewater, L. (eds.)Standard methods for the examination of water and wastewater, 23. (American Public Health Association, 2017).
    49.Clermont, O., Bonacorsi, S., Bingen, E. & Bonacorsi, P. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66, 4555–4558 (2000).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Clermont, O., Gordon, D. M., Brisse, S., Walk, S. T. & Denamur, E. Characterization of the cryptic Escherichia lineages: Rapid identification and prevalence. Environ. Microbiol. 13, 2468–2477 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Lescat, M. et al. Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ. Microbiol. Rep. 5, 9–57 (2013).Article 
    CAS 

    Google Scholar 
    52.Clermont, O. et al. Evidence for a human-specific Escherichia coli clone. Environ. Microbiol. 10, 1000–1006 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Congedo, L. Semi-automatic classification plugin for QGIS. Sapienza Univ, 1-25 (2013).54.Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed 
    Article 

    Google Scholar 
    55.Borcard, D., Gillet, F. & Lengendre, P. Numerical Ecology with R (Springer, 2018).MATH 
    Book 

    Google Scholar 
    56.Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).PubMed 
    Article 

    Google Scholar 
    57.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    58.Magurran, A. E. Measuring Biological Diversity (Wiley, Hoboken, 2004).
    Google Scholar 
    59.Oksanen, J. et al. Vegan: Ecological Diversity. R Project, 368. http://cran.r-project.org (2013)
    60.Wilkinson, L. & Friendly, M. History corner the history of the cluster heat map. Am. Stat. 63, 179–184 (2009).Article 

    Google Scholar 
    61.Wei, T. et al. Visualization of a correlation matrix. Statistician 56, 316–324 (2017).
    Google Scholar 
    62.Robinaugh, D. J., Millner, A. J. & McNally, R. J. Identifying highly influential nodes in the complicated grief network. J. Abnormal Psychol. 125(6), 747 (2016).Article 

    Google Scholar 
    63.Peres-Neto, P. R., Legendre, P. L., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, Cambridge, 2003).MATH 
    Book 

    Google Scholar 
    66.Simpson, G. Restricted permutations; using the permute package. http://cran.r-project.org (2012).67.Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).Article 

    Google Scholar 
    68.Peipoch, M., Brauns, M., Hauer, F. R., Weitere, M. & Valett, H. M. Ecological simplification: Human influences on Riverscape complexity. Bioscience 65, 1057–1065 (2015).Article 

    Google Scholar 
    69.Stoppe, N. D. C. et al. Worldwide phylogenetic group patterns of Escherichia coli from commensal human and wastewater treatment plant isolates. Front. Microbiol. 8, 2512 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Escobar-Páramo, P. et al. Large-scale population structure of human commensal Escherichia coli isolates. Appl. Environ. Microbiol. 70, 5698–5700 (2004).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    71.Walk, S. T., Alm, E. W., Calhoun, L. M., Mladonicky, J. M. & Whittam, T. S. Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ. Microbiol. 9, 2274–2288 (2007).PubMed 
    Article 

    Google Scholar 
    72.Touchon, M. et al. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet. 16, e1008866 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar  More

  • in

    Healing the land and the academy

    Jennifer Grenz is currently a sessional lecturer at the University of British Columbia and owns a land healing company, Greener This Side. Her recently completed PhD dissertation explores the science of invasive species management and restoration through the lens of an ‘Indigenous ecology’, which she defines as “relationally guided healing of our lands, waters, and relations through intentional shaping of ecosystems by humans to bring a desired balance that meets the fluid needs of communities while respecting and honouring our mutual dependence through reciprocity.” Here we ask about her research and experiences as an Indigenous woman in ecology. More

  • in

    The rates of global bacterial and archaeal dispersal

    1.Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants. Annu Rev Ecol Syst. 1985;16:447–79.Article 

    Google Scholar 
    2.Ceballos G, Brown JH. Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol. 1995;9:559–68.Article 

    Google Scholar 
    3.Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, et al. Global diversity and distribution of macrofungi. Biodivers Conserv. 2007;16:37–48.Article 

    Google Scholar 
    4.Prideaux GJ, Warburton NM. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (macropodidae: Marsupialia). Zool J Linn Soc. 2010;159:954–87.Article 

    Google Scholar 
    5.Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.CAS 
    Article 

    Google Scholar 
    6.Whitaker RJ, Grogan DW, Taylor JW. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–978.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Whitfield J. Is everything everywhere? Science. 2005;310:960–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol. 2006;72:5159–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.DeWit R, Bouvier T. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol. 2006;8:755–8.Article 

    Google Scholar 
    10.van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Whittaker KA, Rynearson TA. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc Natl Acad Sci USA. 2017;114:2651–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Louca S, Shih PM, Pennell MW, Fischer WW, Parfrey LW, Doebeli M. Bacterial diversification through geological time. Nat Ecol Evol. 2018;2:1458–67.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci USA. 2011;108:7850–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 2010;4:191–202.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA. 2013;110:4651–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc Lond B Biol Sci. 2014;281:20141988.18.Gonnella G, Böhnke S, Indenbirken D, Garbe-Schönberg D, Seifert R, Mertens C, et al. Endemic hydrothermal vent species identified in the open ocean seed bank. Nat Microbiol. 2016;1:16086 EP.Article 
    CAS 

    Google Scholar 
    19.Louca S, Mazel F, Doebeli M, Parfrey WL. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019;17:e3000106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ochman H, Wilson A. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Kuo CH, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35–35.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Roberts MS, Cohan FM. Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution. 1995;49:1081–94.PubMed 
    Article 

    Google Scholar 
    23.van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE. 2011;6:e19561.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Papke RT, Ramsing NB, Bateson MM, Ward DM. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003;5:650–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles. 2005;9:325–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol. 2007;73:4751–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Takacs-Vesbach C, Mitchell K, Jackson-Weaver O, Reysenbach AL. Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environ Microbiol. 2008;10:1681–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA. 2009;106:8605–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, et al. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun. 2011;2:163.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements. Genome Biol Evol. 2017;9:1699–710.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Front Microbiol. 2020;11:1625.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. Genbank. Nucleic Acids Res. 2015;44:D67–D72.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    Article 

    Google Scholar 
    35.Olm MR, Crits-Christoph A, Diamond S, Lavy A, Carnevali PBM, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e00731-19.36.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shapiro BJ. What microbial population genomics has taught us about speciation. In: Polz MF, Rajora OP, editors. Population Genomics: Microorganisms. Cham, Switzerland: Springer International Publishing; 2019. p. 31–47.38.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–27.CAS 

    Google Scholar 
    40.Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15.Article 

    Google Scholar 
    41.Louca S. Phylogeographic estimation and simulation of global diffusive dispersal. Syst Biol. 2021;70:340–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science. 2012;336:462–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bouckaert R, Cartwright R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ. 2016;4:e2406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Brillinger DR. A particle migrating randomly on a sphere. In: Selected Works of David Brillinger. Cham, Switzerland: Springer; 2012. p. 73–87.46.Ghosh A, Samuel J, Sinha SA. “Gaussian” for diffusion on the sphere. Europhys Lett. 2012;98:30003.Article 
    CAS 

    Google Scholar 
    47.Castenholz RW. The biogeography of hot spring algae through enrichment cultures. SIL Commun. 1978;21:296–315. 1953-1996
    Google Scholar 
    48.Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Micro. 2007;5:316–23.CAS 
    Article 

    Google Scholar 
    49.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, et al. Free tropospheric transport of microorganisms from Asia to North America. Micro Ecol. 2012;64:973–85.CAS 
    Article 

    Google Scholar 
    51.Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci. 1994;255:37–45.Article 

    Google Scholar 
    52.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Anderson D. The regulation of fishing and related activities in exclusive economic zones. In: Modern Law Sea, Publications on Ocean Development, vol. 59, chap. 11. Leiden, The Netherlands: Brill Nijhoff; 2008. p. 209–27.54.Bullock JM, Clarke RT. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia. 2000;124:506–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brynjarsdóttir J, O’Hagan A. Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 2014;30:114007.Article 

    Google Scholar 
    56.Bell T. Experimental tests of the bacterial distance-decay relationship. ISME J. 2010;4:1357–65.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    58.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014;25:1043–55.Article 
    CAS 

    Google Scholar 
    59.Chambat F, Valette B. Mean radius, mass, and inertia for reference Earth models. Phys Earth Planet Inter. 2001;124:237–53.Article 

    Google Scholar 
    60.Data NS, (SEDAC) AC Gridded Population of the World, Version 4 (GPW v4): Population Density, Revision 11. Tech. rep., Palisades, NY: Center for International Earth Science Information Network – CIESIN – Columbia University. 2018. Accessed November 23, 2020.61.Price MN, Dehal PS, Arkin AP. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K. Estimating divergence times in large phylogenetic trees. Syst Biol. 2007;56:741–52.PubMed 
    Article 

    Google Scholar 
    63.Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nat Commun. 2019;10:5477.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Perrin F. Étude mathématique du movement brownien de rotation. In: Annales scientifiques del’École Normale Supérieure, vol. 45. Paris, France: Elsevier; with 1928. p. 1–51.65.Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Bloomquist EW, Lemey P, Suchard MA. Three roads diverged? routes to phylogeographic inference. Trends Ecol Evol. 2010;25:626–32.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol. 2010;27:1877–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative understanding of viral phylogeography. Curr Opin Virol. 2011;1:423–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Faria NR, Suchard MA, Abecasis A, Sousa JD, Ndembi N, Bonfim I, et al. Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. Infect Genet Evol. 2012;12:453–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lange K. Diffusion processes. In: Applied Probability, chap. 11. New York, NY: Springer New York; 2010. p. 269–95.71.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol. 2016;17:132.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019;176:649–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Criscuolo A, Gascuel O. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinforma. 2008;9:166.Article 
    CAS 

    Google Scholar 
    74.Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.75.Kinene T, Wainaina J, Maina S, Boykin LM, Kliman RM. Methods for rooting trees, vol. 3. Oxford: Academic Press; 2016. p. 489–93.76.van Rossum G. Python tutorial. Tech. Rep. CS-R9526, Amsterdam: Centrum voor Wiskunde en Informatica (CWI); 1995. More

  • in

    Wood-inhabiting fungal responses to forest naturalness vary among morpho-groups

    1.Keenan, R. J. et al. Forest ecology and management dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).Article 

    Google Scholar 
    2.Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 49, 11–41 (2001).
    Google Scholar 
    3.Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).Book 

    Google Scholar 
    4.Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 101, 701–712 (2013).Article 

    Google Scholar 
    5.Tikkanen, O.-P., Martikainen, P., Hyvärinen, E., Junninen, K. & Kouki, J. Red-listed boreal forest species of Finland: Associations with forst structure, tree species, and decaying wood. Ann. Zool. Fennici 43, 373–383 (2006).
    Google Scholar 
    6.Sippola, A.-L., Lehesvirta, T. & Renvall, P. Effect of selective logging on coarse woody debris and diversity of wood-decaying polypores in eastern Finland. Ecol. Bull. 49, 243–254 (2001).
    Google Scholar 
    7.Axelsson, A. L., Östlund, L. & Hellberg, E. Changes in mixed deciduous forests of boreal Sweden 1866–1999 based on interpretation of historical records. Landsc. Ecol. 17, 403–418 (2002).Article 

    Google Scholar 
    8.Eriksson, S., Skånes, H., Hammer, M. & Lönn, M. Current distribution of older and deciduous forests as legacies from historical use patterns in a Swedish boreal landscape (1725–2007). For. Ecol. Manag. 260, 1095–1103 (2010).Article 

    Google Scholar 
    9.Wallenius, T. H., Lilja, S. & Kuuluvainen, T. Fire history and tree species composition in managed Picea abies stands in southern Finland: Implications for restoration. For. Ecol. Manag. 250, 89–95 (2007).Article 

    Google Scholar 
    10.Stokland, J. N. Host-tree associattions. In Biodiversity in Dead Wood (eds Stokland, J. N. et al.) 82–109 (Cambridge University Press, 2012).Chapter 

    Google Scholar 
    11.Kouki, J., Arnold, K. & Martikainen, P. Long-term persistence of aspen – A key host for many threatened species—Is endangered in old-growth conservation areas in Finland. J. Nat. Conserv. 12, 41–52 (2004).Article 

    Google Scholar 
    12.Komonen, A., Tuominen, L., Purhonen, J. & Halme, P. Landscape structure influences browsing on a keystone tree species in conservation areas. For. Ecol. Manag. 457, 117724 (2020).Article 

    Google Scholar 
    13.Purhonen, J. et al. Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecol. 46, 100863 (2020).Article 

    Google Scholar 
    14.Dowding, P. Nutrient uptake and allocation during substrate exploitation by fungi. In The Fungal Community. Its Organization and Role in the Ecosystems (eds Wicklow, D. T. & Carroll, G. C.) 612–636 (Marcel Dekker Inc, 1981).
    Google Scholar 
    15.Boddy, L., Frankland, J. & van West, P. Ecology of Saprotrophic Basidiomycetes (Elsevier Ltd, 2008).
    Google Scholar 
    16.Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).Article 

    Google Scholar 
    17.Abrego, N. & Salcedo, I. Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: Is it a question of quantity or quality?. For. Ecol. Manag. 291, 377–385 (2013).Article 

    Google Scholar 
    18.Lindblad, I. Wood-inhabiting fungi on fallen logs of Norway spruce: Relations to forest management and substrate quality. Nord. J. Bot. 18, 243–255 (1998).Article 

    Google Scholar 
    19.Tomao, A., Antonio Bonet, J., Castaño, C. & de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 457, 1176 (2020).Article 

    Google Scholar 
    20.Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).Article 

    Google Scholar 
    21.Heilmann-Clausen, J. & Christensen, M. Does size matter?. For. Ecol. Manag. 201, 105–117 (2004).Article 

    Google Scholar 
    22.Nordén, B., Götmark, F., Tönnberg, M. & Ryberg, M. Dead wood in semi-natural temperate broadleaved woodland: Contribution of coarse and fine dead wood, attached dead wood and stumps. For. Ecol. Manag. 194, 235–248 (2004).Article 

    Google Scholar 
    23.Ottosson, E. et al. Diverse ecological roles within fungal communities in decomposing logs of Picea abies. FEMS Microbiol. Ecol. 91, 1–13 (2015).Article 
    CAS 

    Google Scholar 
    24.Juutilainen, K., Mönkkönen, M., Kotiranta, H. & Halme, P. The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. For. Ecol. Manag. 313, 283–291 (2014).Article 

    Google Scholar 
    25.Jönsson, M., Ruete, A., Kellner, O., Gunnarsson, U. & Snäll, T. Will forest conservation areas protect functionally important diversity of fungi and lichens over time?. Biodivers. Conserv. https://doi.org/10.1007/s10531-015-1035-0 (2016).Article 

    Google Scholar 
    26.Abrego, N., Norberg, A. & Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. https://doi.org/10.1111/1365-2745.12722 (2017).Article 

    Google Scholar 
    27.Bässler, C. et al. Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecol. Indic. 65, 149–160 (2016).Article 

    Google Scholar 
    28.Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).Article 

    Google Scholar 
    29.Sherwood, M. A. Convergent evolution in discomycetes from bark and wood. Bot. J. Linn. Soc. 82, 15–34 (1981).Article 

    Google Scholar 
    30.Unterseher, M., Otto, P. & Morawetz, W. Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol. Prog. 4, 117–132 (2005).Article 

    Google Scholar 
    31.Dawson, S. K. & Jönsson, M. Just how big is intraspecific trait variation in basidiomycete wood fungal fruit bodies?. Fungal Ecol. 46, 100865 (2020).Article 

    Google Scholar 
    32.Dawson, S. K. et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct. Ecol. 33, 372–387 (2019).Article 

    Google Scholar 
    33.Zanne, A. E. et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).PubMed 
    Article 

    Google Scholar 
    34.Nordén, B., Ryberg, M., Götmark, F. & Olausson, B. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol. Conserv. 117, 1–10 (2004).Article 

    Google Scholar 
    35.Stokland, J. N. & Larsson, K. Forest ecology and management legacies from natural forest dynamics : Different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For. Ecol. Manag. 261, 1707–1721 (2011).Article 

    Google Scholar 
    36.Cajander, A. K. Forest types and their significance. Acta For. Fenn. 56, 1–69 (1949).
    Google Scholar 
    37.Ahti, T., Hämet-Ahti, L. & Jalas, J. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5, 169–211 (1968).
    Google Scholar 
    38.Renaud, V., Innes, J. L., Dobbertin, M. & Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theor. Appl. Climatol. 105, 119–127 (2011).ADS 
    Article 

    Google Scholar 
    39.Renvall, P. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35, 1–51 (1995).Article 

    Google Scholar 
    40.Abrego, N., Halme, P., Purhonen, J. & Ovaskainen, O. Fruit body based inventories in wood-inhabiting fungi: Should we replicate in space or time?. Fungal Ecol. 20, 225–232 (2016).Article 

    Google Scholar 
    41.Halme, P. & Kotiaho, J. S. The importance of timing and number of surveys in fungal biodiversity research. Biodivers. Conserv. 21, 205–219 (2012).Article 

    Google Scholar 
    42.Purhonen, J., Huhtinen, S., Kotiranta, H. & Kotiaho, J. S. Detailed information on fruiting phenology provides new insights on wood-inhabiting fungal detection. Fungal Ecol. 27, 175–177 (2017).Article 

    Google Scholar 
    43.Royal Botanic Gardens Kew, Landcare Research-NZ & Chinese Academy of Science. Index Fungorum. www.indexfungorum.org 01.03.2017 (2017).44.Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn 15.11.2020 (2019).45.R Core Team. R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org/ (2017).46.Magnusson, A. et al. glmmTMB: Generalized Linear Mixed Models Using Template Model Builder. https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf 30.08.2018 (2018).47.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. https://cran.r-project.org/web/packages/vegan/index.html 30.12.2017 (2017).48.Abrego, N., Bässler, C., Christensen, M. & Heilmann-Clausen, J. Implications of reserve size and forest connectivity for the conservation of wood-inhabiting fungi in Europe. Biol. Conserv. 191, 469–477 (2015).Article 

    Google Scholar 
    49.Halme, P. et al. The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests. Biol. Conserv. 168, 24–30 (2013).Article 

    Google Scholar 
    50.Edman, M., Kruys, N. & Jonsson, B. G. Local dispersal sources strongly affect colonization patterns of wood-decaying fungi on spruce logs. Ecol. Appl. 14, 893–901 (2004).Article 

    Google Scholar 
    51.Komonen, A. & Müller, J. Dispersal ecology of deadwood organisms and connectivity conservation. Conserv. Biol. 32, 535–545 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Abrego, N. & Salcedo, I. How does fungal diversity change based on woody debris type? A case study in Northern Spain. Ekologija 57, 109–119 (2011).Article 

    Google Scholar 
    53.Juutilainen, K., Halme, P., Kotiranta, H. & Mönkkönen, M. Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecol. 4, 342–349 (2011).Article 

    Google Scholar 
    54.Heilmann-Clausen, J. & Christensen, M. Wood-inhabiting macrofungi in Danish beech-forests ? conflicting diversity patterns and their implications in a conservation perspective. Biol. Conserv. 122, 633–642 (2005).Article 

    Google Scholar 
    55.Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: Their production and develpoment in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) (Elsevier, 2008).
    Google Scholar 
    56.Junninen, K., Similä, M., Kouki, J. & Kotiranta, H. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography (Cop.) 29, 75–83 (2006).Article 

    Google Scholar 
    57.Agren, J. & Zackrisson, O. Age and size structure of Pinus sylvestris populations on mires in Central and Northern Sweden. J. Ecol. 78, 1049–1062 (1990).Article 

    Google Scholar 
    58.Niemelä, T., Wallenius, T. & Kotiranta, H. The kelo tree, a vanishing substrate of specified wood-inhabiting fungi. Polish Bot. J. 47, 91–101 (2002).
    Google Scholar 
    59.Venugopal, P., Julkunen-Tiitto, R., Junninen, K. & Kouki, J. Phenolic compounds in Scots pine heartwood: Are kelo trees a unique woody substrate?. Can. J. For. Res. 46, 225–233 (2016).CAS 
    Article 

    Google Scholar 
    60.Jonsson, B. G. et al. Dead wood availability in managed Swedish forests – Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182 (2016).Article 

    Google Scholar 
    61.Runnel, K. & Lõhmus, A. Deadwood-rich managed forests provide insights into the old-forest association of wood-inhabiting fungi. Fungal Ecol. 27, 155–167 (2017).Article 

    Google Scholar 
    62.Junninen, K. & Komonen, A. Conservation ecology of boreal polypores: A review. Biol. Conserv. 144, 11–20 (2011).Article 

    Google Scholar 
    63.Krah, F. S. et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106, 1428–1442. https://doi.org/10.1111/1365-2745.12939 (2018).Article 

    Google Scholar 
    64.Hoppe, B. et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 77, 367–379 (2016).Article 

    Google Scholar 
    65.Kubartová, A., Ottosson, E., Dahlberg, A. & Stenlid, J. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol. Ecol. 21, 4514–4532 (2012).PubMed 
    Article 

    Google Scholar 
    66.Kazartsev, I., Shorohova, E., Kapitsa, E. & Kushnevskaya, H. Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecol. 33, 1–12 (2018).Article 

    Google Scholar 
    67.von Bonsdorff, T. et al. New national and regional biological records for Finland 8. Contributions to agaricoid, gastroid and ascomycetoid taxa of fungi 5. Memo. Soc. pro Fauna Flora Fenn. 92, 120–128 (2016).
    Google Scholar 
    68.von Bonsdorff, T. et al. New national and regional biological records for Finland 5. Contributions to agaricoid and ascomycetoid taxa of fungi 4. Memo. Soc. pro Fauna Flora Fenn. 91, 56–66 (2015).
    Google Scholar 
    69.Frøslev, T. G. et al. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients?. Biol. Conserv. 233, 201–212 (2019).Article 

    Google Scholar 
    70.Esri. ArcMap, version 10.5.1. http://desktop.arcgis.com/en/arcmap/ 04.09.2017 (2017). Available at: http://desktop.arcgis.com/en/arcmap/. More

  • in

    Towards omics-based predictions of planktonic functional composition from environmental data

    From SSN to PFCsWe analyzed the 1,914,171 proteins from 885 MAGs from marine plankton, recovered from 12 geographically bound assemblies of metagenomic sets corresponding to a total of 93 Tara Oceans samples from the 0.2 to 3 µm and 0.2 to 1.6 µm size fractions21. A flowchart of our bioinformatic pipeline is available in Supplementary Fig. 1. 39.6% of the MAGs’ proteins (757,457) were involved in our SSN, i.e., they had at least one similarity relationship with another protein that satisfied the chosen threshold of 80% similarity and 80% coverage (see “Methods”). In total, 51.1% of the network proteins could be annotated to 4922 unique molecular function IDs in the KEGG database37, associated with 327 distinct metabolic pathways (a full list of these pathways is available in Supplementary Data 1). In total, 85.2% of the network proteins were annotated to 17,009 eggNOG functional descriptions38,39.The SSN involved 233,756 connected components (CCs), i.e., groups of nodes (here proteins) connected together by at least one path and disconnected from the rest of the network. According to KEGG and eggNOG databases, 15.3% and 48.5% of the CCs remained without any functional annotation (i.e., all sequences from the CC were unmatched in the databases, or had a match but were not yet linked to any biological function, Table 1), and 14.8% were functionally unannotated for both databases. We ranked the functional homogeneity of CCs involving at least one functional annotation from 0 (all annotations in the CC are different) to 1 (all annotations in the CC are the same) and found mean homogeneity scores of 0.99 over 1 for KEGG annotations and 0.94 over 1 for eggNOG ones (see “Methods” for score calculation details). Only 88 (0.04%) CCs had a homogeneity score below 0.5 in both annotation databases, all with sizes below five proteins. 177 CCs (0.07%) had a score below 0.8 in both databases, all under 12 proteins in size. These CCs were kept in the analysis while tagged as poorly homogenous. We thereafter considered each CC as a PFC, numbered from #1 to #233,756.Table 1 Metrics computed on the 233,756 protein functional clusters (PFC) from the sequence similarity network of MAGs proteins.Full size tableTo check for the influence of taxonomic relationships between the MAGs on our PFCs, we computed different metrics based on MAGs taxonomic annotations provided by Delmont et al.21. (Table 1). This taxonomic annotation based on 43 single-copy core genes allowed to annotate 100% of the MAGs at the domain level, and 95% of the MAGs at the phylum level, the remaining 5% corresponding to Bacteria MAGs of unidentified phyla21. Only 1330 PFCs (0.6%) mixed proteins from the Archaea and Bacteria domains. PFCs were very homogeneous at the phylum level, then the homogeneity decreased at lower taxonomic rank, meaning that PFCs studied here were generally not specific from a single class, order, family, genus, or MAG (Table 1). In total, 7834 PFCs (3.4%) were only composed of proteins with no functional annotation in KEGG and eggNOG databases, and no taxonomic annotation under the phylum level. Their sizes ranged from 2 to 30 proteins (mean of 2.62). Their 20,552 proteins came from Euryarchaeota MAGs (12,458; 60.6%), Bacteria MAGs of unidentified phylum (2742; 13.3%), Candidatus Marinimicrobia MAGs (2451; 11.9%), Proteobacteria MAGs (1528; 7.4%), Acidobacteria MAGs (1031; 5%), Verrucomicrobia MAGs (103; 0.5%), Planctomycetes MAGs (89; 0.4%), Bacteroidetes MAGs (79; 0.4%), Chloroflexi MAGs (59; 0.3%) and Candidate Phyla Radiation MAGs (12; 0.05%). We hereafter considered these functionally and taxonomically unknown PFCs as “dark” PFCs40,41. Their nucleotidic sequences are available in separate supplementary files (see “Data availability”). The abundance of dark PFCs was significantly different from the abundance of other PFCs in 85 samples over 93 (two-sided Wilcoxon rank-sum test, p-value  More