Benefit of woodland and other natural environments for adolescents’ cognition and mental health
1.Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).Article
Google Scholar
2.World Urbanization Prospects: The 2018 Revision ST/ESA/SER.A/420 (UN DESA, 2019).3.Okkels, N., Kristiansen, C. B., Munk-Jørgensen, P. & Sartorius, N. Urban mental health. Curr. Opin. Psychiatry 31, 258–264 (2018).Article
Google Scholar
4.Robbins, R. N., Scott, T., Joska, J. A. & Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 32, 210–217 (2019).Article
Google Scholar
5.Sarkar, C., Webster, C. & Gallacher, J. Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Health 2, e162–e173 (2018).Article
Google Scholar
6.Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/PNAS.1807504116 (2019).7.Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).CAS
Article
Google Scholar
8.Franco, L. S., Shanahan, D. F. & Fuller, R. A. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health 14, 864 (2017).Article
Google Scholar
9.Cox, D. T. C. et al. Skewed contributions of individual trees to indirect nature experiences. Landsc. Urban Plan. 185, 28–34 (2019).Article
Google Scholar
10.Irvine, K. N. et al. Green space, soundscape and urban sustainability: an interdisciplinary, empirical study. Local Environ. 14, 155–172 (2009).Article
Google Scholar
11.Weber, S. T. & Heuberger, E. The impact of natural odors on affective states in humans. Chem. Senses 33, 441–447 (2008).Article
Google Scholar
12.Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 15, 9–17 (2010).CAS
Article
Google Scholar
13.Rook, G. A., Raison, C. L. & Lowry, C. A. Can we vaccinate against depression? Drug Discov. Today 17, 451–458 (2012).Article
Google Scholar
14.Markevych, I. et al. Access to urban green spaces and behavioural problems in children: results from the GINIplus and LISAplus studies. Environ. Int. 71, 29–35 (2014).Article
Google Scholar
15.Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: urban street tree density and antidepressant prescription rates—a cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).16.Akpinar, A., Barbosa-Leiker, C. & Brooks, K. R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 20, 407–418 (2016).Article
Google Scholar
17.Cox, D. T. C., Shanahan, D. F., Hudson, H. L., Fuller, R. A. & Gaston, K. J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 179, 72–80 (2018).Article
Google Scholar
18.Amoly, E. et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE Project. Environ. Health Perspect. 122, 1351–1358 (2014).Article
Google Scholar
19.Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, e198209 (2019).Article
Google Scholar
20.Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).CAS
Article
Google Scholar
21.Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379 (2015).Article
Google Scholar
22.The Mental Health of Children and Young People in London (PHE, 2016).23.Bijnens, E. M., Derom, C., Thiery, E., Weyers, S. & Nawrot, T. S. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: a longitudinal birth cohort study of twins. PLoS Med. 17, e1003213 (2020).Article
Google Scholar
24.Milligan, C. & Bingley, A. Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. Health Place 13, 799–811 (2007).Article
Google Scholar
25.Toledano, M. B. et al. Cohort profile: the study of cognition, adolescents and mobile phones (SCAMP). Int. J. Epidemiol. 48, 25–26l (2018).Article
Google Scholar
26.Afifi, M. Gender differences in mental health. Singapore Med. J. 48, 385–391 (2007).CAS
Google Scholar
27.Guhn, M., Emerson, S. D., Mahdaviani, D. & Gadermann, A. M. Associations of birth factors and socio-economic status with indicators of early emotional development and mental health in childhood: a population-based linkage study. Child Psychiatry Hum. Dev. 51, 80–93 (2020).Article
Google Scholar
28.Morita, E. et al. Psychological effects of forest environments on healthy adults: shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 121, 54–63 (2007).CAS
Article
Google Scholar
29.Thompson, C. W. et al. Health impacts of environmental and social interventions designed to increase deprived communities’ access to urban woodlands: a mixed-methods study. Public Health Res. 27, 1–172 (2019).Article
Google Scholar
30.Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).Article
Google Scholar
31.Liao, J. et al. Residential exposure to green space and early childhood neurodevelopment. Environ. Int. 128, 70–76 (2019).Article
Google Scholar
32.Picavet, H. S. J. et al. Greener living environment healthier people? Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev. Med. 89, 7–14 (2016).Article
Google Scholar
33.Francis, J., Wood, L. J., Knuiman, M. & Giles-Corti, B. Quality or quantity? Exploring the relationship between public open space attributes and mental health in Perth, Western Australia. Soc. Sci. Med. 74, 1570–1577 (2012).Article
Google Scholar
34.Nutsford, D., Pearson, A. L., Kingham, S. & Reitsma, F. Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health Place 39, 70–78 (2016).Article
Google Scholar
35.Little, S. & Derr, V. in Research Handbook on Childhoodnature (eds Cutter-Mackenzie-Knowles, A. et al.) 151–178 (Springer, 2020).36.Bell, S. L., Phoenix, C., Lovell, R. & Wheeler, B. W. Seeking everyday wellbeing: the coast as a therapeutic landscape. Soc. Sci. Med. 142, 56–67 (2015).Article
Google Scholar
37.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, 903–927 (2019).Article
Google Scholar
38.Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).Article
Google Scholar
39.Tarling, R. & Roger, R. D. Socio-economic determinants of crime rates: modelling local area police-recorded crime. Howard J. Crime Justice 55, 207–225 (2016).Article
Google Scholar
40.Rose, D., Pevalin, D. J. & O’Reilly, K. The National Statistics Socio-economic Classification: Origins, Development and Use (Palgrave MacMillan, 2005).41.Carstairs, V. & Morris, R. Deprivation and health in Scotland. Health Bull. 48, 162–175 (1990).CAS
Google Scholar
42.2011 Census Aggregate Data (Office of National Statistics, 2012); https://www.ons.gov.uk/census/2011census43.Luciana, M. & Nelson, C. A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4- to 12-year-old children. Dev. Neuropsychol. 22, 595–624 (2002).Article
Google Scholar
44.Tombaugh, T. N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214 (2004).Article
Google Scholar
45.Wechsler, D. The Measurement of Adult Intelligence (Williams & Wilkins, 1944).46.Burgess, P. W. in Methodology of Frontal and Executive Function (ed. Rabbitt, P.) 79–113 (Taylor and Francis, 2004).47.Goodman, R., Meltzer, H. & Bailey, V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Int. Rev. Psychiatry 15, 173–177 (2003).CAS
Article
Google Scholar
48.Cronbach, L. J. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951).Article
Google Scholar
49.The KIDSCREEN Group Europe The Kidscreen Questionnaires: Quality of Life Questionnaires for Children and Adolescents (Pabst Science, 2006).50.Berman, A. H., Liu, B., Ullman, S., Jadbäck, I. & Engström, K. Children’s quality of life based on the KIDSCREEN-27: child self-report, parent ratings and child–parent agreement in a Swedish random population sample. PLoS ONE 11, e0150545 (2016).Article
CAS
Google Scholar
51.Sentinel-2 User Handbook (ESA, 2015).52.Gascon, M. et al. Normalized Difference Vegetation Index (NDVI) as a marker of surrounding greenness in epidemiological studies: the case of Barcelona city. Urban For. Urban Green. 19, 88–94 (2016).Article
Google Scholar
53.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article
Google Scholar
54.Open Map—Local (Ordnance Survey, 2019); http://os.uk55.Miura, N. & Jones, S. D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens. Environ. 114, 1069–1076 (2010).Article
Google Scholar
56.Dadvand, P. et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 523, 59–63 (2015).CAS
Article
Google Scholar
57.Sunyer, J. et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 12, e1001792 (2015).Article
CAS
Google Scholar
58.Roberts, S. et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 272, 8–17 (2019).CAS
Article
Google Scholar
59.Tzivian, L. et al. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 218, 1–11 (2015).Article
Google Scholar
60.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).Article
Google Scholar More