More stories

  • in

    Diversity of MHC IIB genes and parasitism in hybrids of evolutionarily divergent cyprinoid species indicate heterosis advantage

    1.Arnold, M. L. Natural Hybridization and Evolution (Oxford University Press, 1997).
    Google Scholar 
    2.Stelkens, R. & Seehausen, O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884–897 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Grant, P. R. & Grant, B. R. Hybridization of bird species. Science 256, 193–197 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Saino, N. & Villa, S. Pair composition and reproductive success across a hybrid zone of carrion crows and hooded crows. Auk 109, 543–555 (1992).
    Google Scholar 
    5.Good, T. P., Ellis, J. C., Annett, C. A. & Pierotti, R. Bounded hybrid superiority in an avian hybrid zone: effects of mate, diet, and habitat choice. Evolution 54, 1774–1783 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Bartley, D. M., Rana, K. & Immink, A. J. The use of inter-specific hybrids in aquaculture and fisheries. Rev. Fish Biol. Fisher. 10, 325–337 (2001).Article 

    Google Scholar 
    7.Rosenfield, J. A., Nolasco, S., Lindauer, S., Sandoval, C. & Kodric-Brown, A. The role of hybrid vigor in the replacement of Pecos pupfish by its hybrids with sheepshead minnow. Conserv. Biol. 18, 1589–1598 (2004).Article 

    Google Scholar 
    8.Sun, Y. et al. Comparative transcriptomic study of muscle provides new insights into the growth superiority of a novel grouper hybrid. PLoS ONE 11, e0168802 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Scribner, K. T., Page, K. S. & Bartron, M. L. Hybridization in freshwater fishes: A review of case studies and cytonuclear methods of biological inference. Rev. Fish Biol. Fisher. 10, 293–323 (2001).Article 

    Google Scholar 
    10.Ottová, E. et al. Evolution and trans-species polymorphism of MHC class IIB genes in cyprinid fish. Fish Shellfish Immun. 18, 199–222 (2005).Article 
    CAS 

    Google Scholar 
    11.Šimková, A. et al. Does invasive Chondrostoma nasus shift the parasite community structure of endemic Parachondrostoma toxostoma in sympatric zones?. Parasite. Vector. 5, 200 (2012).Article 

    Google Scholar 
    12.Klein, J. & OhUigin, C. MHC polymorphism and parasites. Philos. Trans. R. Soc. Lond. B Biol. Sci. 346, 351–358 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Klein, J., Klein, D., Figueroa, F., OhUigin, C. & Sato, A. Major histocompatibility complex genes in the study of fish phylogeny. In Molecular Systematic of Fishes (eds Kocher, T. D. & Stepien, C. A.) 271–283 (Academic Press, 1997).Chapter 

    Google Scholar 
    14.Hughes, A. L. & Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Nat. Acad. Sci. USA 56, 958–962 (1989).ADS 
    Article 

    Google Scholar 
    15.Klein, J. & OhUigin, C. Composite origin of major histocompatibility complex genes. Curr. Opin. Genet. Dev. 3, 923–930 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Hughes, A. L. & Nei, M. Models of host-parasite interactions and MHC polymorphism. Genetics 132, 863–864 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Klein, J. Of HLA, tryps, and selection? An essay on coevolution of MHC and parasites. Hum. Immunol. 30, 247–258 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Hughes, A. L., Hughes, M. K., Howell, C. Y. & Nei, M. Natural selection at the class II major histocompatibility complex loci of mammals. Philos. Trans. R. Soc. Lond. B Biol. Sci. 346, 359–367 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Hedrick, P. W. Pathogen resistence and genetic variation at MHC loci. Evolution 56, 1902–1908 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Nowak, M. A., Tarczy-Hornoch, K. & Austyn, J. M. The optimal number of major histocompatibility complex molecules in an individual. Proc. Nat. Acad. Sci. U.S.A. 89, 10896–10899 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Wegner, K. M., Reusch, T. B. H. & Kalbe, M. Multiple parasites are driving major histocompatibility complex polymorphism in the wild. J. Evol. Biol. 16, 224–232 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Eizaguirre, C., Lenz, T. L., Traulsen, A. & Milinski, M. Speciation accelerated and stabilized by pleiotropic major histocompatibility complex immunogenes. Ecol. Lett. 12, 5–12 (2009).PubMed 
    Article 

    Google Scholar 
    23.Nadachowska-Brzyska, K., Zielinski, P., Radwan, J. & Babiks, W. Interspecific hybridization increases MHC class II diversity in two sister species of newts. Mol. Ecol. 21, 887–906 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Wegner, K. M. & Eizaguirre, C. New(t)s and views from hybridizing MHC genes: Introgression rather than trans-species polymorphism may shape allelic repertoires. Mol. Ecol. 21, 779–781 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Dudek, K., Gaczorek, T. S., Zielinski, P. & Babik, W. Massive introgression of major histocompatibility complex (MHC) genes in newt hybrid zones. Mol. Ecol. 28, 4798–4810 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Šimková, A., Civáňová, K., Gettová, L. & Gilles, A. Genomic porosity between invasive Chondrostoma nasus and endangered endemic Parachondrostoma toxostoma (Cyprinidae): The evolution of MHC IIB genes. PLoS ONE 8, e65883 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Zhang, S., Wang, Z. & Wang, H. Maternal immunity in fish. Dev. Comp. Immunol. 39, 72–78 (2013).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Šimková, A., Vojtek, L., Halačka, K., Hyršl, P. & Vetešník, L. The effect of hybridization on fish physiology, immunity and blood biochemistry: A case study in hybridizing Cyprinus carpio and Carassius gibelio (Cyprinidae). Aquaculture 435, 381–389 (2015).Article 
    CAS 

    Google Scholar 
    29.Cowx, I. G. The biology of bream, Abramis brama (L), and its natural hybrid with roach, Rutilus rutilus (L), in the River Exe. J. Fish Biol. 22, 631–646 (1983).Article 

    Google Scholar 
    30.Economidis, P. S. & Wheeler, A. Hybrids of Abramis brama with Scardinius erythrophthalmus and Rutilus rutilus from Lake Volvi, Macedonia, Greece. J. Fish Biol. 35, 295–299 (1989).Article 

    Google Scholar 
    31.Toscano, B. J. et al. An ecomorphological framework for the coexistence of two cyprinid fish and their hybrids in a novel environment. Biol. J. Linn. Soc. 99, 768–783 (2010).Article 

    Google Scholar 
    32.Hayden, B. et al. Hybridisation between two cyprinid fishes in a novel habitat: Genetics, morphology and life-history traits. BMC Evol. Biol. 10, 169 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Kuparinen, A., Vinni, M., Teacher, A. G. F., Kähkönen, K. & Merilä, J. Mechanism of hybridization between bream Abramis brama and roach Rutilus rutilus in their native range. J. Fish Biol. 84, 237–242 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Konopinski, M. K. & Amirowicz, A. Genetic composition of a population of natural common bream Abramis brama x roach Rutilus rutilus hybrids and their morphological characteristics in comparison with parent species. J. Fish Biol. 92, 365–385 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Krasnovyd, V., Vetešník, L., Gettová, L., Civáňová, K. & Šimková, A. Patterns of parasite distribution in the hybrids of non-congeneric cyprinid fish species: Is asymmetry in parasite infection the result of limited coadaptation?. Int. J. Parasitol. 47, 471–483 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Hayden, B. et al. Trophic dynamics within a hybrid zone—interactions between an abundant cyprinid hybrid and sympatric parental species. Freshwater Biol. 56, 1723–1735 (2011).Article 

    Google Scholar 
    37.Nzau Matondo, B. et al. Hybridization success of three common European cyprinid species, Rutilus rutilus, Blicca bjoerkna and Abramis brama and larval resistance to stress tests. Fish. Sci. 73, 1137–1146 (2007).Article 
    CAS 

    Google Scholar 
    38.Hayden, B., McLoone, P., Coyne, J. & Caffrey, J. M. Extensive hybridization between roach, Rutilus rutilus L., and common bream, Abramis brama L. Irish lakes and rivers. Biol. Environ. 114B, 35–39 (2014).
    Google Scholar 
    39.Eizaguirre, C. et al. Parasite diversity, patterns of MHC II variation and olfactory based mate choice in diverging threespined stickleback ecotypes. Evol. Ecol. 25, 605–622 (2011).Article 

    Google Scholar 
    40.Hubbs, C. L. Hybridization between fish species in nature. Syst. Zool. 4, 1–20 (1955).Article 

    Google Scholar 
    41.Rauch, G., Kalbe, M. & Reusch, T. B. H. Relative importance of MHC and genetic background for parasite load in a field experiment. Evol. Ecol. Res. 8, 373–386 (2006).
    Google Scholar 
    42.Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field. Ecol. Lett. 15, 723–731 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Šimková, A., Dávidová, M., Papoušek, I. & Vetešník, L. Does interspecies hybridization affect the host specificity of parasites in cyprinid fish?. Parasite. Vector. 6, 95 (2013).Article 

    Google Scholar 
    44.Seifertová, M., Jarkovský, J. & Šimková, A. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?. Parasitol. Res. 115, 1401–1415 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Nzau Matondo, B., Ovidio, M., Philippart, J. C. & Poncin, P. Reproductive behaviour and sexual production in the first-generation hybrids of roach Rutilus rutilus L. × common bream Abramis brama L. J. Appl. Ichthyol. 27, 859–867 (2011).Article 

    Google Scholar 
    46.Graser, R., OhUigin, C., Vincek, V., Meyer, A. & Klein, J. Trans-species polymorphism of class II Mhc loci in danio fishes. Immunogenetics 44, 36–48 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Figueroa, F. et al. MHC class IIB gene evolution in East African cichlid fishes. Immunogenetics 51, 556–575 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Migalska, M., Sebastian, A. & Radwan, J. Major histocompatibility complex class I diversity limits the repertoire of T cell
    receptors.Proc. Natl. Acad. Sci. USA 116, 5021–5026 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Šimková, A., Košař, M., Vetešník, L. & Vyskočilová, M. MHC genes and parasitism in Carassius gibelio, a diploid-triploid fish species with dual reproduction strategies. BMC Evol. Biol. 13, 122 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Borghans, J. A. M., Beltman, J. B. & De Boer, J. B. MHC polymorphism under host-pathogen coevolution. Immunogenetics 55, 732–739 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ejsmond, M. J. & Radwan, J. Red queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput. Biol. 11, e1004627 (2015).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Phillips, K. P. et al. Immunogenetic novelty confers a selective advantage in host-pathogen coevolution. Proc. Natl. Acad. Sci. USA 115, 1552–1557 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Gaigher, A., Burri, R., San-Jose, L. M., Roulin, A. & Fumagalli, L. Lack of statistical power as a major limitation in understanding MHC-mediated immunocompetence in wild vertebrate populations. Mol. Ecol. 28, 5115–5132 (2019).PubMed 
    Article 

    Google Scholar 
    54.Šimková, A., Ottová, E. & Morand, S. MHC variability, life-traits and parasite diversity of European cyprinid fish. Evol. Ecol. 20, 465–477 (2006).Article 

    Google Scholar 
    55.Clarke, B. & Kirby, D. R. S. Maintenance of histocompatibility polymorphisms. Nature 211, 999–1000 (1966).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Meglécz, E. et al. SESAME (SEquence Sorter & AMplicon Explorer): Genotyping based on high throughput multiplex amplicon sequencing. Bioinformatics 27, 277–278 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    57.Zagalska-Neubauer, M. et al. 454 sequencing reveals extreme complexity of the class II major histocompatibility complex in the collared flycatcher. BMC Evol. Biol. 10, 395 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Van Erp, S. H. M., Egberts, E. & Stet, R. J. M. Characterization of class II A and B genes in a gynogenetic carp clone. Immunogenetics 44, 192–202 (1996).PubMed 
    Article 

    Google Scholar 
    59.Šimková, A. Major histocompatibility complex genes and parasites in cyprinid fish. Vie Milieu 67, 139–148 (2017).
    Google Scholar 
    60.Klein, J. et al. Nomenclature for the major histocompatibility complexes of different species: A proposal. Immunogenetics 31, 217–219 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Dixon, B., Nagelkerke, L. A. J., Sibbing, F. A., Egberts, E. & Stet, R. J. M. Evolution of MHC class II beta chain-encoding genes in the Lake Tana barbel species flock (Barbus intermedius complex). Immunogenetics 44, 419–431 (1996).CAS 
    PubMed 

    Google Scholar 
    62.Rakus, K. L. et al. Major histocompatibility (MH) class IIB gene polymorphism influences disease resistance of common carp (Cyprinus carpio L). Aquaculture 288, 44–50 (2009).CAS 
    Article 

    Google Scholar 
    63.Seifertová, M. & Šimková, A. Structure, diversity and evolutionary patterns of expressed MHC class IIB genes in chub (Squalius cephalus), a cyprinid fish species from Europe. Immunogenetics 63, 167–181 (2011).PubMed 
    Article 

    Google Scholar 
    64.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Darriba, D., Taboala, G. L., Doallo, R. & Posada, D. J. ModelTest2: More models, new heuristics and parallel computing. Nat. Methods 9, 772 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Yang, Z. H. PAML4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Doledec, S. & Chessel, D. Co-inertia analysis—an alternative method for studying species environment relationships. Freshwater Biol. 31, 277–294 (1994).Article 

    Google Scholar 
    68.Dray, S., Chessel, D. & Thioulouse, J. Co-inertia analysis and the linking of ecological data tables. Ecology 84, 3078–3089 (2003).Article 

    Google Scholar 
    69.Deter, J. et al. Association between the DQA MHC class II gene and puumala virus infection in Myodes glareolus, the bank vole. Infect. Genet. Evol. 8, 450–458 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Evans, M. L. & Neff, B. D. Major histocompatibility complex heterozygote advantage and widespread bacterial infections in populations of Chinook salmon (Oncorhynchus tshawytscha). Mol. Ecol. 18, 4716–4729 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Zuur, A. et al. Mixed Effects Models and Extensions in Ecology With R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    72.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    73.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/(2018).74.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    75.Bartoń, K. MuMIn: Multi-Model Inference. R package version 1.15.1. http://CRAN.R-project.org/package=MuMIn (2018).76.Thioulouse, J. & Dray, S. Interactive multivariate data analysis in R with the ade4 and ade4tkgui packages. J. Stat. Softw. 22, 1–14 (2007).Article 

    Google Scholar  More

  • in

    Joint temporal trends in river thermal and hydrological conditions can threaten the downstream migration of the critically endangered European eel

    1.Chapman, B. B. et al. Partial migration in fishes: Causes and consequences. J. Fish Biol. 81, 456–478 (2012).CAS 
    Article 

    Google Scholar 
    2.Araújo, C. V. M. et al. Habitat fragmentation caused by contaminants: Atrazine as a chemical barrier isolating fish populations. Chemosphere 193, 24–31 (2018).ADS 
    Article 

    Google Scholar 
    3.Flitcroft, R. L., Arismendi, I. & Santelmann, M. V. A review of habitat connectivity research for pacific salmon in marine, estuary, and freshwater environments. J. Am. Water Resour. Assoc. 55, 430–441 (2019).ADS 
    Article 

    Google Scholar 
    4.Maire, A., Thierry, E., Viechtbauer, W. & Daufresne, M. Poleward shift in large-river fish communities detected with a novel meta-analysis framework. Freshw. Biol. 64, 1143–1156 (2019).Article 

    Google Scholar 
    5.van Vliet, M. T. H. et al. Coupled daily streamflow and water temperature modelling in large river basins. Hydrol. Earth Syst. Sci. 16, 4303–4321 (2012).ADS 
    Article 

    Google Scholar 
    6.Palmer, M. A. et al. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 6, 81–89 (2008).Article 

    Google Scholar 
    7.Jonsson, B. & Jonsson, N. A review of the likely effects of climate change on anadromous Atlantic salmon Salmo salar and brown trout Salmo trutta, with particular reference to water temperature and flow. J. Fish Biol. 75, 2381–2447 (2009).CAS 
    Article 

    Google Scholar 
    8.Arevalo, E. et al. An innovative bivariate approach to detect joint temporal trends in environmental conditions: Application to large French rivers and diadromous fish. Sci. Total Environ. 748, 141260 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Hughes, L. Biological consequences of global warming: Is the signal already apparent?. Trends Ecol. Evol. 15, 56–61 (2000).CAS 
    Article 

    Google Scholar 
    10.Tesch, F.-W. & Bartsch, P. The Eel (Blackwell Science, 2003).Book 

    Google Scholar 
    11.Durif, C. M. F. et al. Age of European silver eels during a period of declining abundance in Norway. Ecol. Evol. 10, 4801–4815 (2020).Article 

    Google Scholar 
    12.Poole, R. W. & Reynolds, J. D. Growth rate and age at migration of Anguilla anguilla. J. Fish Biol. 48, 633–642 (1996).
    Google Scholar 
    13.Durif, C. M. F., Travade, F., Rives, J., Elie, P. & Gosset, C. Relationship between locomotor activity, environmental factors, and timing of the spawning migration in the European eel Anguilla anguilla. Aquat. Living Resour. 21, 163–170 (2008).Article 

    Google Scholar 
    14.Fontaine, M. Physiological mechanisms in the migration of marine and amphihaline fish. Adv. Mar. Biol. 13, 241–355 (1975).Article 

    Google Scholar 
    15.Bruijs, M. C. M. & Durif, C. M. F. Silver Eel migration and behaviour. Spawning Migr. Eur. Eel https://doi.org/10.1007/978-1-4020-9095-0_4 (2009).Article 

    Google Scholar 
    16.ICES. Workshop on the temporal migration patterns of European eel (WKEELMIGRATION). vol. 2 http://doi.org/https://doi.org/10.17895/ices.pub.5993 (2020).17.Vøllestad, L. A., Jonsson, B., Hvidsten, N. A. & Naesje, T. F. Experimental test of environmental factors influencing the seaward migration of European silver eels. J. Fish Biol. 45, 641–651 (1994).Article 

    Google Scholar 
    18.Sandlund, O. T. et al. Timing and pattern of annual silver eel migration in two European watersheds are determined by similar cues. Ecol. Evol. 7, 5956–5966 (2017).Article 

    Google Scholar 
    19.Drouineau, H. et al. Freshwater eels: A symbol of the effects of global change. Fish Fish. 19, 903–930 (2018).Article 

    Google Scholar 
    20.Pike, C., Crook, V., & Gollock, M. Anguilla anguilla. The IUCN Red List of Treatened Species 2020. https://dx.doi.org/https://doi.org/10.2305/IUCN.UK.2020-539 2.RLTS.T60344A152845178.en (2020).21.Dankers, R. & Feyen, L. Climate change impact on flood hazard in Europe: An assessment based on high-resolution climate simulations. J. Geophys. Res. Atmos. 113, 1–17 (2008).Article 

    Google Scholar 
    22.Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    23.Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).ADS 
    Article 

    Google Scholar 
    24.Durif, C., Elie, P., Gosset, C. & Rives, J. Behavioral Study of Downstream Migrating Eels by Radio-telemetry at a Small Hydroelectric Power Plant. Am. Fish. Soc. Symp. 1–14 (2002).25.Flitcroft, R. L. et al. Linking hydroclimate to fish phenology and habitat use with ichthyographs. PLoS ONE 11, 1–12 (2016).Article 

    Google Scholar 
    26.Bossard, M., Feranec, J. & Othael, J. CORINE Land Cover Technical Guide – Addendum 2000. European Environment Agency. Technical Report. Available online at: http://www.eea.europa.eu/publications/tech40add. (2000).27.de Eyto, E. et al. Characterisation of salmonid food webs in the rivers and lakes of an Irish peatland ecosystem. Biol. Environ. Proc. R. Irish Acad. 120, 1–17 (2020).
    Google Scholar 
    28.Poole, W. R., Reynolds, J. D. & Moriarty, C. Observations on the Silver Eel Migrations of the Burrishoole River System, Ireland, 1959 to 1988. Int. Rev. der gesamten Hydrobiol. und Hydrogr 75, 807–815 (1990).Article 

    Google Scholar 
    29.Poole, W. R. et al. Long-term variation in numbers and biomass of silver eels being produced in two European river systems. ICES J. Mar. Sci. 75, 1627–1637 (2018).Article 

    Google Scholar 
    30.Chacón, J. E. & Duong, T. Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices. TEST 19, 375–398 (2010).MathSciNet 
    Article 

    Google Scholar 
    31.Lechowicz, M. The sampling characteristics of electivity indices. Oecologia 52, 22–30 (1982).ADS 
    Article 

    Google Scholar 
    32.Ivlev, V. S. Experimental ecology of the feeding fishes (Yale University Press, 1961).
    Google Scholar 
    33.R Development Core Team. R: A Language and Environment for Statistical Computing. (2020).34.Drouineau, H., Arevalo, E., Lassalle, G., Tétard, S. & Maire, A. chocR: Exploring the temporal CHange of OCcurence of events in multivariate time series. R package version 0.0.0.9000. (2020).35.Hutchinson, G. E. Concluding Remarks. in Cold Spring Harbor Symposia on Quantitative Biology 415–442 (1957).36.Schneider, C., Laizé, C. L. R., Acreman, M. C. & Flörke, M. How will climate change modify river flow regimes in Europe?. Hydrol. Earth Syst. Sci. 17, 325–339 (2013).ADS 
    Article 

    Google Scholar 
    37.Hannaford, J., Laize, C. L. R. & Marsh, T. J. An assessment of runoff trends in undisturbed catchments in the Celtic regions of North West Europe. IAHS-AISH Publ. 78–85 (2007).38.Engen-Skaugen, T. Refinement of dynamically downscaled precipitation and temperature scenarios. Clim. Change 84, 365–382 (2007).ADS 
    Article 

    Google Scholar 
    39.Lawrence, D. & Hisdal, H. Hydrological projections for floods in Norway under a future climate. NVE Report http://webby.nve.no/publikasjoner/report/2011/report2011_05.pdf (2011).40.Woolway, R. I. et al. Substantial increase in minimum lake surface temperatures under climate change. Clim. Change 155, 81–94 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Fealy, R. et al. RESCALE : Review and Simulate Climate and Catchment Responses at Burrishoole. Review Literature and Arts of the Americas (2014).42.Als, T. D. et al. All roads lead to home: Panmixia of European eel in the Sargasso Sea. Mol. Ecol. 20, 1333–1346 (2011).Article 

    Google Scholar 
    43.Acou, A., Laffaille, P., Legault, A. & Feunteun, E. Migration pattern of silver eel (Anguilla anguilla, L.) in an obstructed river system. Ecol. Freshw. Fish 17, 432–442 (2008).Article 

    Google Scholar 
    44.Fernandes, W. P. A. et al. Does relatedness influence migratory timing and behaviour in Atlantic salmon smolts?. Anim. Behav. 106, 191–199 (2015).Article 

    Google Scholar 
    45.Vøllestad, L. A. et al. Environmental Factors Regulating the Seaward Migration of European Silver Eels (Anguilla anguilla). Can. J. Fish. Aquat. Sci. 43, 1909–1916 (1986).Article 

    Google Scholar 
    46.Daverat, F. et al. One century of eel growth: Changes and implications. Ecol. Freshw. Fish 21, 325–336 (2012).Article 

    Google Scholar 
    47.Vøllestad, L. A. Geographic variation in age and length at metamorphosis of maturing European eel: Environmental effects and phenotypic plasticity. J. Anim. Ecol. 61, 41 (1992).Article 

    Google Scholar 
    48.Vaughan, L. et al. Growth rates in a European eel Anguilla anguilla (L., 1758) population show a complex relationship with temperature over a seven-decade otolith biochronology. ICES J. Mar. Sci. (2021).49.Lassalle, G. & Rochard, E. Impact of twenty-first century climate change on diadromous fish spread over Europe, North Africa and the Middle East. Glob. Chang. Biol. 15, 1072–1089 (2009).ADS 
    Article 

    Google Scholar 
    50.Monteiro, R. M. et al. Migration and escapement of silver eel males, Anguilla anguilla, from a southwestern European river. Ecol. Freshw. Fish https://doi.org/10.1111/eff.12545 (2020).Article 

    Google Scholar 
    51.Mateo, M. et al. Cause or consequence? Exploring the role of phenotypic plasticity and genetic polymorphism in the emergence of phenotypic spatial patterns of the European eel. Can. J. Fish. Aquat. Sci. 74, 987–999 (2017).Article 

    Google Scholar  More

  • in

    Methane from microbial hydrogenolysis of sediment organic matter before the Great Oxidation Event

    Model A: abundances and δ13C of short alkanesConsidering the cleavage at position m (between the no. m and no. m + 1 carbon atoms) of an n-alkyl chain with n carbon atoms (1 ≤ m 15), the isotopic compositions of gas products are insensitive to the initial kerogen side chain length distribution. For initial values, a δ13C value of −35‰ is applied. The initial chain length is in a normal distribution with a peak of C17 and a standard deviation of σ = 2 carbon atoms. The initial alkane concentrations are assumed to be 0.For simplicity, we assume that since there is no isotopic fractionation within or between the alkyl chains at the beginning of hydrogenolysis, the probability of 13C substitution at any position of any side chain is identical and determined by the initial carbon isotopic composition δ13C. Multiple 13C substitutions on a C–C chain are omitted because consideration of multiple substitutions would drastically increase the modelling complexity. This approximation is valid when the C–C chain is not too long. For example, the ratio between the probabilities of double and single 13C substitution in a C20 chain is ({left[{left(begin{array}{c}20\ 2end{array}right)}{{left(frac{{,}^{13}{{{{{rm{C}}}}}}}{{,}^{12}{{{{{rm{C}}}}}}}right)}}^{2}right]}/{left[{left(begin{array}{c}20\ 1end{array}right)}{left(frac{{,}^{13}{{{{{rm{C}}}}}}}{{,}^{12}{{{{{rm{C}}}}}}}right)}right]}) ≈ 10% for 13C/12C ~ 0.01. Such a chain is long enough that the δ13C of gas products is insensitive to C–C chain length. Numerical simulation was conducted with Mathworks MATLAB 2020a.Model B: bulk and clumped isotopic fractionations of CH4
    Conversion of methylene in a long C–C chain to methane is generalised into two steps:$${{{{{rm{R}}}}}}{mbox{-}}{{{{{{rm{CH}}}}}}}_{2}{mbox{-}}{{{{{rm{R}}}}}}{^prime} mathop{longrightarrow}limits^{{{{{{{rm{r}}}}}}}_{a}}_{+{{{{{rm{H}}}}}}}{{{{{rm{R}}}}}}{mbox{-}}{{{{{{rm{CH}}}}}}}_{3}mathop{longrightarrow}limits^{{{{{{{rm{r}}}}}}}_{b}}_{+{{{{{rm{H}}}}}}}{{{{{{rm{CH}}}}}}}_{4}$$
    (8)
    The first step (step a) is the conversion of the methylene group R-CH2-R′ to a methyl group (RCH3) by accepting a capping hydrogen atom from the hydrogen donor (activated H2); the second step (step b) is the conversion of the methyl group to methane by accepting another capping hydrogen atom. This scheme is highly generalised, and each step may involve multiple elementary biochemical reaction steps, such as the binding of H2 and long alkyl chains to the enzyme, activation of H–H and C–C bonds, and release of the short alkane products from the enzyme. It is beyond the scope of this work to discuss the detailed biochemical reaction steps. But the cleavage and formation of chemical bonds in these steps should be constrained by the observed isotopic patterns.Due to the computational complexity, we did not use the random scission model (Model A) in the simulation involving clumped isotopic fractionation, as explained in the following. A conventional kinetic model of the decomposition of organic matter without considering the constraints of C–C chain lengths is a zero-dimensional problem. Modelling the random cutting of long C–C chains without considering isotopes is a one-dimensional problem, and modelling bulk carbon isotopic fractionation during random cutting (Model A) is a two-dimensional problem. If 13C–13C coupling is included in random cutting, the modelling is a three-dimensional problem; a complex Monte Carlo method has been applied to deal with this problem19. If the 13C–D or D–D coupling is included in Model B, as we wish, it is a problem above the fourth dimension. The complexity of programming and the difficulty of computation make the model unattainable; even if it is achievable, solving this problem is far beyond the scope of this work.Reaction equation Eq. 8 is expanded to the scheme in Fig. 3a to quantify the five most abundant isotopologues in methane (three or more substitutions such as 13CH2D2 or 12CHD3 are ignored due to their low abundances). For the subscripts in Fig. 3a (m, i, and j in ramij or rbmij), the first digit (m = 0 or 1) is the number of 13C atoms involved in the reaction, the second digit (i = 0, 1, or 2) is the number of deuterium atoms connected in the methylene or methyl group, and the third digit (j = 0 or 1) is the number of deuterium atoms in the hydrogen donor.Clumped isotopic compositions of methylene and methane are defined as the following:$$left{begin{array}{l}{{Delta}} {{{{{rm{R}}}}}}{,}^{13}{{{{{rm{C}}}}}}{{{{{rm{HDR}}}}}}^{prime} =frac{({{{{{rm{R}}}}}}{,}^{13}{{{{{rm{C}}}}}}{{{{{rm{HDR}}}}}}^{prime} )({{{{{rm{R}}}}}}{,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{2}{{{{{rm{R}}}}}}^{prime} )}{({{{{{rm{R}}}}}}{,}^{13}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{2}{{{{{rm{R}}}}}}^{prime} )({{{{{rm{R}}}}}}{,}^{12}{{{{{rm{C}}}}}}{{{{{rm{HDR}}}}}}^{prime} )}-1hfill\ {{Delta}} {{{{{rm{R}}}}}}{,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{D}}}}}}}_{2}{{{{{rm{R}}}}}}^{prime} =4frac{({{{{{rm{R}}}}}}{,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{D}}}}}}}_{2}{{{{{rm{R}}}}}}^{prime} )({{{{{rm{R}}}}}}{,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{2}{{{{{rm{R}}}}}}^{prime} )}{{({{{{{rm{R}}}}}}{,}^{12}{{{{{rm{C}}}}}}{{{{{rm{HDR}}}}}}^{prime} )}^{2}}-1hfill\ {{Delta}} {,}^{13}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{3}{{{{{rm{D}}}}}}=frac{({,}^{13}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{3}{{{{{rm{D}}}}}})({,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{4})}{({,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{3}{{{{{rm{D}}}}}})({,}^{13}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{4})}-1hfill\ {{Delta}} {,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{2}{{{{{{rm{D}}}}}}}_{2}=frac{8}{3} frac{({,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{2}{{{{{{rm{D}}}}}}}_{2})({,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{4})}{{({,}^{12}{{{{{rm{C}}}}}}{{{{{{rm{H}}}}}}}_{3}{{{{{rm{D}}}}}})}^{2}}-1 hfillend{array}right.$$
    (9)
    Note that the isotopic compositions here are expressed in decimals; they should be multiplied by 1000 to give per mil values.The deuterium isotope ratio between the hydrogen donor (denoted with subscript B) and the methylene group (subscript A) is expressed as:$${alpha }_{{{{{{rm{A}}}}}}}^{{{{{{rm{B}}}}}}}=frac{1+{{{delta }}{{{{{rm{D}}}}}}}_{{{{{{rm{B}}}}}}}}{1+{{{delta }}{{{{{rm{D}}}}}}}_{{{{{{rm{A}}}}}}}}$$
    (10)
    For each reaction step in Fig. 3a, the corresponding rate constants are denoted as kamij for step a or kbmij for step b. Kinetic fractionation factors αkamij = kamij/ka000 and αkbmij = kbmij/kb000 define KIEs. Note that a DKIE is often expressed as kH/kD, which is the reciprocal of the αk nomenclature here. A DKIE may be primary or secondary; a primary DKIE results in αka001 ≠ 1 and αkb001 ≠ 1, and a secondary one results in αka010 ≠ 1 and αkb010 ≠ 1. Kinetic clumped isotope fractionation factors γamij = αkamij/(αka100mαka010iαka001j) and γbmij = αkbmij/ (αkb100mαkb010iαkb001j) define the excessive KIE due to isotope clumping in steps a and b, respectively30.Conversion of the reactant R-CH2-R′ is defined as 1 − f, where f is the residual fraction of R-CH2-R′:$$f=({{{{{rm{R}}}}}}{mbox{-}}{{{{{{rm{CH}}}}}}}_{2}{mbox{-}}{{{{{rm{R}}}}}}{^prime} )/{({{{{{rm{R}}}}}}{mbox{-}}{{{{{{rm{CH}}}}}}}_{2}{mbox{-}}{{rm{R}}}{^prime} )}_{{{{{{rm{initial}}}}}}}$$
    (11)
    Considering the isotope abundance of D  1 or γb011  > 1, as shown by the Δ12CH2D2 expression in Eq. (13). With this prerequisite, either an inverse primary DKIE (1° DKIE, αka001  > 1, αkb001  > 1) or an inverse secondary DKIE (2° DKIE, αka010  > 1, αkb010  > 1) is necessary, and through numerical simulation, we found that only the inverse 1° DKIE satisfies the above-mentioned δDA, δDB, and Δ12CH2D2 values.Two scenarios (one is the pure stochastic condition, the other is with an inverse 1° DKIE) are modelled (Fig. 3). The parameters are listed in Table 1. For comparison, analytical solutions at the beginning and end of reactions from Eqs. (12) and (13) are presented. The numerical and analytical solutions are nearly identical at the beginning of conversion. There are small differences between the numerical and analytical solutions at the endpoint because the abundance of the hydrogen donor is not extremely excessive. A weak 13C fractionation between the organic precursor and the methane product is obtained with the KIE parameters (Fig. 3b). With such a weak 13C KIE, Δ13CH3D is nearly constant for reaction extent (Fig. 3c). Note that we applied an inverse 13C KIE, as required by the δ13C distribution of the alkane gases (Method 1, Model A). The δD and Δ12CH2D2 values are independent of 13C KIE. Both the bulk and clumped isotopic compositions of methane within the range of reported values are obtained at the organic precursor conversion of 0.65–0.70 as constrained by Fig. 2. More

  • in

    Effects of green-manure and tillage management on soil microbial community composition, nutrients and tree growth in a walnut orchard

    1.Rao, G. D., Sui, J. K. & Zhang, J. G. Metabolomics reveals significant variations in metabolites and correlations regarding the maturation of walnuts (Juglans regia L.). Biol Open 5, 829–836 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Li, T. et al. Influence of green manure and rice straw management on soil organic carbon, enzyme activities, and rice yield in red paddy soil. Soil Till Res 195, 104428 (2019).3.Sharma, P. et al. Green manure as part of organic management cycle: effects on changes in organic matter characteristics across the soil profile. Geoderma 305, 197–207 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Nivelle, E. et al. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl. Soil Ecol. 108, 147–155 (2016).Article 

    Google Scholar 
    5.Mbuthia, L. W. et al. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol Biochem. 89, 24–34 (2015).CAS 
    Article 

    Google Scholar 
    6.Chavarria, D. N. et al. Effect of cover crops on microbial community structure and related enzyme activities and macronutrient availability. Eur. J. Soil Biol. 76, 74–82 (2016).CAS 
    Article 

    Google Scholar 
    7.Zhao, S. et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China. Agric. Ecosyst. Environ. 216, 82–88 (2016).CAS 
    Article 

    Google Scholar 
    8.Tian, Y., Zhang, X., Wang, J. & Gao, L. Soil microbial communities associated with the rhizosphere of cucumber under different summer cover crops and residue management: A 4-year field experiment. Sci. Hort. 150, 100–109 (2013).Article 

    Google Scholar 
    9.Capo-Bauca, S., Marques, A., Llopis-Vidal, N., Bota, J. & Baraza, E. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecol. Eng. 127, 285–291 (2019).Article 

    Google Scholar 
    10.Saikia, R., Sharma, S., Thind, H. S., Sidhu, H. S. & Yadvinder, S. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system. Ecol. Indic. 103, 383–394 (2019).CAS 
    Article 

    Google Scholar 
    11.Acosta-Martinez, V. et al. Dryland cropping systems influence the microbial biomass and enzyme activities in a semiarid sandy soil. Biol. Fert. Soils 47, 655–667 (2011).CAS 
    Article 

    Google Scholar 
    12.Sharma, S. & Dhaliwal, S. S. Conservation agriculture based practices enhanced micronutrients transformation in earthworm cast soil under rice-wheat cropping system. Ecol Eng 163, 106195 (2021).13.Nunes, M. R., Karlen, D. L., Veum, K. S., Moorman, T. B. & Cambardella, C. A. Biological soil health indicators respond to tillage intensity: A US metaanalysis. Geoderma 369, 114335 (2020).14.Roper, M. M. & Gupta, V. V. S. R. Management practices and soil biota. Aust. J. Soil Res. 33, 321–339 (1995).Article 

    Google Scholar 
    15.Wortman, S. E., Drijber, R. A., Francis, C. A. & Lindquist, J. L. Arable weeds, cover crops, and tillage drive soil microbial community composition in organic cropping systems. Appl. Soil Ecol. 72, 232–241 (2013).Article 

    Google Scholar 
    16.Drijber, R. A., Doran, J. W., Parkhurst, A. M. & Lyon, D. J. Changes in soil microbial community structure with tillage under long-term wheat-fallow management. Soil. Biol. Biochem. 32, 1419–1430 (2000).CAS 
    Article 

    Google Scholar 
    17.Qian, X. et al. Effects of living mulches on the soil nutrient contents, enzyme activities, and bacterial community diversities of apple orchard soils. Eur. J. Soil Biol. 70, 23–30 (2015).CAS 
    Article 

    Google Scholar 
    18.Verzeaux, J. et al. Cover crops prevent the deleterious effect of nitrogen fertilisation on bacterial diversity by maintaining the carbon content of ploughed soil. Geoderma 281, 49–57 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Rothe, M., Darnaudery, M. & Thuries, L. Organic fertilizers, green manures and mixtures of the two revealed their potential as substitutes for inorganic fertilizers used in pineapple cropping. Sci. Hort. 257, 108691 (2019)20.Lupwayi, N. Z., Larney, F. J., Blackshaw, R. E., Kanashiro, D. A. & Pearson, D. C. Phospholipid fatty acid biomarkers show positive soil microbial community responses to conservation soil management of irrigated crop rotations. Soil Till Res. 168, 1–10 (2017).Article 

    Google Scholar 
    21.Li, L., Larney, F. J., Angers, D. A., Pearson, D. C. & Blackshaw, R. E. Surface soil quality attributes following 12 years of conventional and conservation management on irrigated rotations in Southern Alberta. Soil Sci. Soc. Am. J. 79, 930–942 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Xu, Z. et al. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Appl. Soil Ecol. 86, 19–29 (2015).Article 

    Google Scholar 
    23.Cusack, D. F., Silver, W. L., Torn, M. S., Burton, S. D. & Firestone, M. K. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests. Ecology 92, 621–632 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Sinsabaugh, R. L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 42, 391–404 (2010).CAS 
    Article 

    Google Scholar 
    25.Masai, E., Katayama, Y. & Fukuda, M. Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci. Biotechnol. Biochem. 71, 1–15 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Falchini, L., Naumova, N., Kuikman, P. J., Bloem, J. & Nannipieri, P. CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol. Biochem. 35, 775–782 (2003).CAS 
    Article 

    Google Scholar 
    27.Liang, S., Grossman, J. & Shi, W. Soil microbial responses to winter, legume cover crop management during organic transition. Eur. J. Soil Biol. 65, 15–22 (2014).CAS 
    Article 

    Google Scholar 
    28.Cruz, C., Green, J. J., Watson, C. A., Wilson, F. & Martins-Loução, M. A. Functional aspects of root architecture and mycorrhizal inoculation with respect to nutrient uptake capacity. Mycorrhiza 14, 177–184 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Wu, Q. S., Zou, Y. N., He, X. H. & Luo, P. Arbuscular mycorrhizal fungi can alter some root characters and physiological status in trifoliate orange (Poncirus trifoliata L. Raf) seedlings. Plant Growth Regul. 65, 273–278 (2011).CAS 
    Article 

    Google Scholar 
    30.Gutjahr, C. & Paszkowski, U. Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Front. Plant Sci. 4, 204 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Endlweber, K. & Scheu, S. Interactions between mycorrhizal fungi and Collembola: effects on root structure of competing plant species. Biol. Fertil. Soils 43, 741–749 (2007).Article 

    Google Scholar 
    32.Stevens, K. J., Wall, C. B. & Janssen, J. A. Effects of arbuscular mycorrhizal fungi on seedling growth and development of two wetland plants, Bidens frondosa L., and Eclipta prostrate L., grown under three levels of water availability. Mycorrhiza 21, 279–288 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Peng, L., Wen, Z., An, X., Han, J. & Jiang, Y. M. Effects of interplanting grass on utilization, loss and accumulation of 15N in apple orchard. Acta Pedol. Sin. 52, 950–956 (2015).
    Google Scholar 
    34.Sánchez, E. E. et al. Cover crops influence soil properties and tree performance in an organic apple (Malus domestica Borkh) orchard in northern Patagonia. Plant Soil 292, 193–203 (2007).Article 
    CAS 

    Google Scholar 
    35.Zhang, C. P., Meng, P., Zhang, J. S. & Wan, X. C. Effects of a nitrogen fixing plant Vigna radiata on growth, leaf stomatal gas exchange and hydraulic characteristics of the intercropping Juglans regia seedlings. Chin. J. Plant Ecol. 38, 499–506 (2014).Article 

    Google Scholar 
    36.Li, Y. Y., Hu, H. S., Cheng, X., Sun, J. H. & Li, L. Effects of interspecific interactions and nitrogen fertilization rates on above-and below-growth in faba bean/mazie intercropping system. Acta Ecol. Sin. 31, 1617–1630 (2011).
    Google Scholar 
    37.Nyamadzawo, G., Nyamangara, J., Nyamugafata, P. & Muzulu, A. Soil microbial biomass and mineralization of aggregate protected carbon in fallow-maize systems under conventional and no-tillage in Central Zimbabwe. Soil Tillage Res. 102, 151–157 (2009).Article 

    Google Scholar 
    38.Xiao, D. et al. Microbial biomass, metabolic functional diversity, and activity are affected differently by tillage disturbance and maize planting in a typical karst calcareous soil. J. Soil Sediment. 19, 809–821 (2019).CAS 
    Article 

    Google Scholar 
    39.Elfstrand, S., Bath, B. & Martensson, A. Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl. Soil Ecol. 36, 70–82 (2007).Article 

    Google Scholar 
    40.Waring, B. G., Averill, C. & Hawkes, C. V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: insights from meta-analysis and theoretical models. Ecol. Lett. 16, 887–894 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Sinsabaugh, R. L. & Moorhead, D. L. Resource allocation to extracellular enzyme production: a model for nitrogen and phosphorus control of litter decomposition. Soil Biol. Biochem. 26, 1305–1311 (1994).Article 

    Google Scholar 
    42.DeForest, J. The influence of time, storage temperature, and substrate age on potential soil enzyme activity in acidic forest soils using MUB-linked substrates and L-DOPA. Soil Biol. Biochem. 41, 1180–1186 (2009).CAS 
    Article 

    Google Scholar 
    43.Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil. Biol. Biochem. 34, 1309–1315 (2002).CAS 
    Article 

    Google Scholar 
    44.Schutter, M. E. & Dick, R. P. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities. Soil Sci. Soc. Am. J. 64, 1659–1668 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Bowles, T. M., Acosta-Martinez, V., Calderon, F. & Jackson, L. E. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 68, 252–262 (2014).CAS 
    Article 

    Google Scholar  More

  • in

    Nutrient-related metabolite profiles explain differences in body composition and size in Nile tilapia (Oreochromis niloticus) from different lakes

    1.Cury, P. M. et al. Global seabird response to forage fish depletion—one-third for the birds. Science 23(6063), 1703–1706 (2011).ADS 
    Article 

    Google Scholar 
    2.Pikitch, K. E. The risks of overfishing. Science 338, 474–475. https://doi.org/10.1126/science.1229965 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    3.F.A.O. The State of World Fisheries and Aquaculture. Meeting the Sustainable Development Goals. Italy, Rome, http://www.fao.org/documents/card/en/c/I9540EN/ (2018).4.Branch, G. M. & Steffani, C. N. Can we predict the effects of alien species? A case-history of the invasion of South Africa by Mytilus galloprovincialis (Lamarck). J. Exp. Mar. Biol. Ecol. 300, 189–215. https://doi.org/10.1016/j.jembe.2003.12.007 (2004).Article 

    Google Scholar 
    5.de Graaf, M. M. et al. Declining stocks of Lake Tana’s endemic Barbus species flock (Pisces, Cyprinidae): natural variation or human impact?. Biol. Conserv. 116, 277–287. https://doi.org/10.1016/S0006-3207(03)00198-8 (2004).Article 

    Google Scholar 
    6.Davidson, N. C. How much wetland has the world lost? Long-term and recent trends in the global wetland area. Mar. Freshwater. Res. 65, 934–941. https://doi.org/10.1071/MF14173 (2014).Article 

    Google Scholar 
    7.Landrigan, P. J. et al. The lancet commission on pollution and health. Lancet 91, 462–512. https://doi.org/10.1016/S0140-6736(17)32345-0 (2018).Article 

    Google Scholar 
    8.Döll, P. et al. Integrating risks of climate change into water management. Hydrol. Sci. J. 60, 4–13. https://doi.org/10.1080/02626667.2014.967250 (2015).CAS 
    Article 

    Google Scholar 
    9.Whitehead, P. R. et al. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 54, 101–123. https://doi.org/10.1623/hysj.54.1.101 (2009).Article 

    Google Scholar 
    10.Knouft, J. H. & Ficklin, D. L. The potential impacts of climate change on biodiversity in flowing freshwater systems. Annu. Rev. Ecol Evol. Syst. 48, 111–133 (2017).Article 

    Google Scholar 
    11.Claireaux, G. & Chabot, G. Responses by fishes to environmental hypoxia: integration through Fry’s concept of aerobic metabolic scope. J. Fish. Biol. 88, 232–251. https://doi.org/10.1111/jfb.12833 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Hadjinikolova, L., Nikolova, L. & Stoeva, A. Comparative investigations on the nutritive value of carp fish meat (Cyprinidae), grown at organic aquaculture conditions. Bulg. J. Agric. Sci. 14, 127–132 (2008).
    Google Scholar 
    13.Ljubojević, D. et al. Fat quality of marketable fresh water fish species in the Republic of Serbia. Czech. J. Food Sci. 31, 445–450. https://doi.org/10.17221/53/2013-CJFS (2013).Article 

    Google Scholar 
    14.Pyz-Łukasik, R. & Paszkiewicz, W. Species variations in the proximate composition, amino acid profile, and protein quality of the muscle tissue of grass carp, bighead carp, Siberian sturgeon, and wels catfish. J. Food. Qual. 2018, 2625401. https://doi.org/10.1155/2018/2625401 (2018).CAS 
    Article 

    Google Scholar 
    15.Enders, E. C. & Boisclair, D. Effects of environmental fluctuations on fish metabolism: Atlantic salmon Salmo salar as a case study. J. Fish. Biol. 88, 344–358. https://doi.org/10.1111/jfb.12786 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Zheng, J. L. et al. Dietary L-carnitine supplementation increases lipid deposition in the liver and muscle of yellow catfish (Pelteobagrus fulvidraco) through changes in lipid metabolism. Br. J. Nutr. 112, 698–708. https://doi.org/10.1017/S0007114514001378 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Geda, F. et al. β-Alanine does not act through branched-chain amino acid catabolism in carp, a species with low muscular carnosine storage. Fish. Physiol. Biochem. 41, 281–287. https://doi.org/10.1007/s10695-014-0024-7 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Sabzi, E., Mohammadiazarm, H. & Salati, A. P. Effect of dietary L-carnitine and lipid levels on growth performance, blood biochemical parameters, and antioxidant status in juvenile common carp (Cyprinus carpio). Aquaculture 480, 89–93. https://doi.org/10.3390/antiox10010036 (2017).CAS 
    Article 

    Google Scholar 
    19.Geda, F. et al. Changes in intestinal morphology and amino acid catabolism in common carp at mildly elevated temperature as affected by dietary mannan oligosaccharides. Anim. Feed. Sci. Technol. 178, 95–102 (2012).CAS 
    Article 

    Google Scholar 
    20.Geda, F. et al. The metabolic response in fish to mildly elevated water temperature relates to species-dependent muscular concentrations of imidazole compounds and free amino acids. J. Therm. Biol. 65, 57–63 (2017).CAS 
    Article 

    Google Scholar 
    21.Li, J. M. et al. Corrigendum: systemic regulation of L-carnitine in nutritional metabolism in zebrafish. Danio rerio. Sci. Rep. 7, 44970. https://doi.org/10.1038/srep44970 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Butler, P. J., Green, J. A., Boyd, I. L. & Speakman, J. R. Measuring metabolic rate in the field: the pros and cons of the doubly labelled water and heart rate methods. Funct. Ecol. 18, 168–183. https://doi.org/10.1111/j.0269-8463.2004.00821.x (2004).Article 

    Google Scholar 
    23.Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. 109, 19310–19314 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    24.McKnight, C. L. et al. Introduction to metabolism. In Surgical Metabolism (eds Davis, K. & Rosenbaum, S.) (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-39781-4_1.Chapter 

    Google Scholar 
    25.Li, L. Y. et al. Mitochondrial fatty acid β-oxidation inhibition promotes glucose utilization and protein deposition through energy homeostasis remodeling in fish. J. Nutr. 150, 2322–2335 (2020).Article 

    Google Scholar 
    26.Miyaaki, H. et al. Blood carnitine profiling on tandem mass spectrometry in liver cirrhotic patients. BMC Gastroenterol. 20, 41. https://doi.org/10.1186/s12876-020-01190-6 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Worku, K. et al. Measuring seasonal and agro-ecological effects on nutritional status in tropical ranging dairy cows. J. Dairy Sci. 104, 4341–4349 (2021).CAS 
    Article 

    Google Scholar 
    28.Brenes-Soto, A. et al. Gaining insights in the nutritional metabolism of amphibians: analyzing body nutrient profiles of the African clawed frog. Xenopus laevis. PeerJ. 7, e7365 (2019).Article 

    Google Scholar 
    29.Tilahun, G. & Ahlgren, G. Seasonal variations in phytoplankton biomass and primary production in the Ethiopian Rift Valley lakes Ziway, Awassa, and Chamo-The basis for fish production. Limnlogica 40, 330–342. https://doi.org/10.1016/j.limno.2009.10.005 (2010).CAS 
    Article 

    Google Scholar 
    30.Vijverberg, J. et al. Zooplankton, fish communities and the role of planktivory in nine Ethiopian lakes. Hydrobiology 722, 45–60. https://doi.org/10.1007/s10750-013-1674-7 (2014).CAS 
    Article 

    Google Scholar 
    31.Dagne, A., Herzig, A., Jersabek, C. & Tadesse, Z. Abundance, species composition and spatial distribution of planktonic rotifers and crustaceans in Lake Ziway (Rift Valley, Ethiopia). Int. Rev. Hydrobiol. 93, 210–226. https://doi.org/10.1002/iroh.200711005 (2008).Article 

    Google Scholar 
    32.Engdaw, F., Dadebo, E. & Nagappan, R. Morphometric relationships and feeding habits of Nile tilapia Oreochromis niloticus (L.) (Pisces: Cichlidae) from Lake Koka, Ethiopia. Int. J. Fish. Aquat. Sci. 2, 65–71 (2013).
    Google Scholar 
    33.Gouni, M. M. & Sommer, U. Review: effects of harmful blooms of large-sized and colonial cyanobacteria on aquatic food webs. Water 12, 1587. https://doi.org/10.3390/w12061587 (2020).Article 

    Google Scholar 
    34.Menezes, R. F., Attayde, J. L. & Vasconcelos, F. R. Effects of omnivorous filter-feeding fish and nutrient enrichment on the plankton community and water transparency of a tropical reservoir. Freshw. Biol. 55, 767–779 (2010).CAS 
    Article 

    Google Scholar 
    35.Ibrahim, A. F. N., Noll, M. S. C. & Valenti, W. C. Zooplankton capturing by Nile Tilapia, Oreochromis niloticus (Teleostei: Cichlidae) throughout post-larval development. Zologica 32, 469–475. https://doi.org/10.1590/S1984-46702015000600006 (2015).Article 

    Google Scholar 
    36.Ambelu, A., Lock, K. & Goethals, P. L. M. Hydrological and anthropogenic influence in the Gilgel Gibe I reservoir (Ethiopia) on macroinvertebrate assemblages. Lake. Reserv. Manag. 29, 143–150. https://doi.org/10.1080/10402381.2013.806971 (2013).CAS 
    Article 

    Google Scholar 
    37.Bayissa, T. N. et al. The impact of lake ecosystems on mineral concentrations in tissues of Nile tilapia (Oreochromis Niloticus L.). Animals 11, 1000 (2021).Article 

    Google Scholar 
    38.Puvvada, Y., Vankayalapati, S. & Sukhavasi, S. Extraction of chitin from chitosan from the exoskeleton of shrimp for application in the pharmaceutical industry. Int. Curr. Pharm. J. 1, 258–263. https://doi.org/10.3329/icpj.v1i9.11616 (2012).CAS 
    Article 

    Google Scholar 
    39.Zhang, D., Jin, Y., Deng, Y., Wang, D. & Zhao, Y. Production of chitin from shrimp shell powders using Serratia Marcescens B742 and Lactobacillus Plantarum ATCC 8014 successive two-step fermentation. Carbohydr. Res. 362, 13–20. https://doi.org/10.1016/j.carres.2012.09.011 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Philibert, T., Lee, B. H. & Fabien, N. Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 181, 1314–1337. https://doi.org/10.1007/s12010-016-2286-2 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Matsumiya, M. & Mochizuki, A. Distribution of chitinase and β-N-acetylhexosaminidase in the organs of several fishes. Fish Res. 62, 150–151. https://doi.org/10.2331/fishsci.62.150 (1996).CAS 
    Article 

    Google Scholar 
    42.Gutowska, M. A., Drazen, J. C. & Robison, B. H. Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comput. Biochem. Physiol. 139, 351–358 (2004).Article 

    Google Scholar 
    43.Molinari, L. M. et al. Identification and partial characterization of a chitinase from Nile tilapia, Oreochromis niloticus. Comput. Biochem. Physiol. 146, 81–87 (2007).Article 

    Google Scholar 
    44.Cauchie, H. M. Chitin production by arthropods in the hydrosphere. Hydrobiol. 470, 63–96. https://doi.org/10.1023/A:1015615819301 (2002).CAS 
    Article 

    Google Scholar 
    45.Merga, L. B. et al. Trends in chemical pollution and ecological status of Lake Ziway, Ethiopia: a review focusing on nutrients, metals and pesticides. Afr. J. Aquat. Sci. 45, 386–400 (2020).CAS 
    Article 

    Google Scholar 
    46.Clark, T. D. et al. The efficacy of field techniques for obtaining and storing blood samples from fishes. J. Fish. Biol. 79, 1322–1333. https://doi.org/10.1111/j.1095-8649.2011.03118.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    47.Ferguson, H. Blood sampling standard operating procedure. Aquatic Animal Diseases Lab Manual, Department of Integrative Biology, University of Guelph, Quelph, Canada. https://www.uoguelph.ca/ib/sites/uoguelph.ca.ib/files/public/fishbloodsamplingSOP.pdf (2005).48.Arends, R. J., Mancera, J. M., Muñoz, J. L., Wendelaar Bonga, S. E. & Flik, G. The stress response of the gilthead seabream (Sparus aurata L.) to air exposure and confinement. J. Endocr. 163, 149–157. https://doi.org/10.1677/joe.0.1630149 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Zytkovicz, T. H. et al. Tandem mass spectrometric analysis for amino, organic, and fatty acid disorders in newborn dried blood spots: a two-year summary from the New England Newborn Screening Program. Clin. Chem. 47, 1945–1955 (2001).CAS 
    Article 

    Google Scholar 
    50.Vieira Neto, E. et al. Analysis of acylcarnitine profiles in umbilical cord blood and during the early neonatal period by electrospray ionization tandem mass spectrometry. Braz. J. Med. Biol. Res. 45, 546–556. https://doi.org/10.1590/S0100-879X2012007500056 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.AOAC. Official methods of analysis of the Association of Official Analytical Chemists, 15th ed. Methods 962.09, 954.01. AOAC, Arlington, VA, USA. https://archive.org/stream/gov.law.aoac.methods.1.1990/aoac.methods.1.1990_djvu.txt (1990).52.Pearson, D. Pearson Composition and Analysis of Foods (University of Reading, Reading, 1999).
    Google Scholar  More

  • in

    Secondary seed removal in a degraded forest habitat in Madagascar

    1.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S3–S46. https://doi.org/10.1111/rec.13035 (2019).Article 

    Google Scholar 
    2.Puerta-Piñero, C., Muller-Landau, H. C., Calderón, O. & Wright, S. J. Seed arrival in tropical treefall gaps. Ecology 94, 1552–1562. https://doi.org/10.1890/12-1012.1 (2013).Article 
    PubMed 

    Google Scholar 
    3.Howe, H. F. & Smallwood, J. Ecology of seed dispersal. Annu. Rev. Ecol. Syst. 13, 201–228 (1982).Article 

    Google Scholar 
    4.Emer, C. et al. Seed dispersal networks in tropical forest fragments: Area effects, remnant species, and interaction diversity. Biotropica 52, 81–89. https://doi.org/10.1111/btp.12738 (2020).Article 

    Google Scholar 
    5.Simmons, B. I. et al. Moving from frugivory to seed dispersal: Incorporating the functional outcomes of interactions in plant-frugivore networks. J. Anim. Ecol. 87, 995–1007. https://doi.org/10.1111/1365-2656.12831 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Holloway, L. Catalysing rainforest restoration in Madagascar. In Biogeography of Madagascar (eds W. Lourenco & S. M. Goodman) 115–124 (Mémoires de la société de Biogéographie, 2000).
    Google Scholar 
    7.Styger, E., Rakotoarimanana, J. E. M., Rabevohitra, R. & Fernandes, E. C. M. Indigenous fruit trees of Madagascar: potential components of agroforestry systems to improve human nutrition and restore biological diversity. Agrofor. Syst. 46, 289–310 (1999).Article 

    Google Scholar 
    8.Crouzeilles, R. et al. Achieving cost-effective landscape-scale forest restoration through targeted natural regeneration. Conserv. Lett. 13, e12709. https://doi.org/10.1111/conl.12709 (2020).Article 

    Google Scholar 
    9.Chazdon, R. L. Second Growth: The Promise of Tropical Forest Regeneration in an Age of Deforestation (The University of Chicago Press, 2014).Book 

    Google Scholar 
    10.Lamb, D., Erskine, P. D. & Parrotta, J. A. Restoration of degraded tropical forest landscapes. Science 310, 1628–1632. https://doi.org/10.1126/science.1111773 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Boehning-Gaese, K., Gaese, B. H. & Rabemanantsoa, S. B. Importance of primary and secondary seed dispersal in the Malagasy tree Commiphora guillaumini. Ecol. 80, 821–832 (1999).Article 

    Google Scholar 
    12.Boissier, O., Feer, F., Henry, P. Y. & Forget, P. M. Modifications of the rain forest frugivore community are associated with reduced seed removal at the community level. Ecol. Appl. https://doi.org/10.1002/eap.2086 (2020).Article 
    PubMed 

    Google Scholar 
    13.Aliyu, B., Thia, J. A., Moltchanova, E., Forget, P. M. & Chapman, H. M. Forest disturbance and seasonal food availability influence a conditional seed dispersal mutualism. Biotropica 50, 750–757. https://doi.org/10.1111/btp.12570 (2018).Article 

    Google Scholar 
    14.Jordano, P. et al. Frugivores and seed dispersal: mechanisms and consequences for biodiversity of a key ecological interaction. Biol. Lett. 7, 321–323. https://doi.org/10.1098/rsbl.2010.0986 (2011).Article 
    PubMed 

    Google Scholar 
    15.Nepstad, D. C. Large-scale impoverishment of Amazonian forests by logging and fire. Nature 398, 505–508 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Dausmann, K. H., Glos, J., Linsenmair, K. E. & Ganzhorn, J. U. Improved recruitment of a lemur-dispersed tree in Malagasy dry forests after the demise of vertebrates in forest fragments. Oecologia 157, 307–316 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Ostfeld, R. S., Manson, R. H. & Canham, C. D. Effects of rodents on survival of tree seeds and seedlings invading old fields. Ecology 78, 1531–1542 (1997).Article 

    Google Scholar 
    18.Forget, P. M. & Cuiljpers, L. Survival and scatterhoarding of frugivores-dispersed seeds as a function of forest disturbance. Biotropica 40, 380–385. https://doi.org/10.1111/j.1744-7429.2007.00358.x (2008).Article 

    Google Scholar 
    19.Guzmán, C. A., Howe, H. F., Wise, D. H., Coates, R. I. & Zambrano, J. Rodent suppression of seedling establishment in tropical pasture. Oecologia https://doi.org/10.1007/s00442-021-04858-2 (2021).Article 
    PubMed 

    Google Scholar 
    20.Blackham, G. V. & Corlett, R. T. Post-dispersal seed removal by ground-feeding rodents in tropical peatlands, Central Kalimantan, Indonesia. Sci. Rep.-Uk 5, 14152. https://doi.org/10.1038/srep14152 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Howe, H. F. & Davlantes, J. Waxing and Waning of a Cotton Rat (Sigmodon toltecus) Monoculture in Early Tropical Restoration. Trop. Conserv. Sci. https://doi.org/10.1177/1940082917704772 (2017).Article 

    Google Scholar 
    22.Donati, G. et al. Low levels of fruit nitrogen as drivers for the evolution of Madagascar’s primate communities. Sci. Rep.-Uk 7, 14406. https://doi.org/10.1038/s41598-017-13906-y (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Goodman, S. M. & Benstead, J. P. Updated estimates of biotic diversity and endemism for Madagascar. Oryx 39, 73–77 (2005).Article 

    Google Scholar 
    24.Ganzhorn, J. U., Lowry, P. P. I., Schatz, G. E. & Sommer, S. The biodiversity of Madagascar:one of the hottest biodiversity hotspot on its way out. Oryx 35, 346–348. https://doi.org/10.1046/j.1365-3008.2001.00201.x (2001).Article 

    Google Scholar 
    25.Brinkmann, K., Noromiarilanto, F., Ratovonamana, R. Y. & Buerkert, A. Deforestation processes in south-western Madagascar over the past 40 years: what can we learn from settlement characteristics?. Agric. Ecosyst. Environ. 195, 231–243 (2014).Article 

    Google Scholar 
    26.Harper, G. J., Steininger, M. K., Tucker, C. J., Juhn, D. & Hawkins, F. Fifty years of deforestation and forest fragmentation in Madagascar. Environ. Conserv. 34, 325–333. https://doi.org/10.1017/S0376892907004262 (2007).Article 

    Google Scholar 
    27.Waeber, P. O., Wilmé, L., Mercier, J.-R., Camara, C. & Lowry, P. P. II. How effective have thirty years of internationally driven conservation and development efforts been in Madagascar?. PLoS ONE 11(8), e0161115. https://doi.org/10.1371/journal.pone.0161115 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Waeber, P. O. et al. Dry forests in Madagascar: neglected and under pressure. Int. For. Rev. 16, 127–148. https://doi.org/10.1505/146554815815834822 (2015).Article 

    Google Scholar 
    29.Zinner, D. et al. Analysis of deforestation patterns in the Central Menabe, Madagascar, between 1973 and 2010. Reg. Environ. Change 14, 157–166. https://doi.org/10.1007/s10113-013-0475-x (2014).Article 

    Google Scholar 
    30.Vieilledent, G. et al. Combining global tree cover loss data with historical national forest cover maps to look at six decades of deforestation and forest fragmentation in Madagascar. Biol. Cons. 222, 189–197. https://doi.org/10.1016/j.biocon.2018.04.008 (2018).Article 

    Google Scholar 
    31.Ganzhorn, J. U. et al. Effects of fragmentation and assessing minimum viable populations of lemurs in Madagascar. In Isolated Vertebrate Communities in the Tropics Vol. 46 (ed G. Rheinwald) 265–272 (Museum Alexander Koenig, 2000).
    Google Scholar 
    32.Andriatsitohaina, B. et al. Ecological fragmentation effects in mouse lemurs and small mammals in northwestern Madagascar. Am. J. Primatol. 82, e23059. https://doi.org/10.1002/ajp.23059 (2020).Article 
    PubMed 

    Google Scholar 
    33.Schatz, G. E. Generic Tree Flora of Madagascar (Royal Botanical Garden and Missouri Botanical Garden, St. Louis, 2001).
    Google Scholar 
    34.Konersmann, C. et al. Using utilitarian plants for lemur conservation. Int. J. Primatol. https://doi.org/10.1007/s10764-021-00200-y (2021).Article 

    Google Scholar 
    35.Steffens, K. J. E. Lemur food plants as options for forest restoration in Madagascar. Restor. Ecol. 28, 1517–1527. https://doi.org/10.1111/rec.13234 (2020).Article 

    Google Scholar 
    36.Razafindratsima, O. H. Post-dispersal seed removal by rodents in Ranomafana rain forest, Madagascar. J. Trop. Ecol. 33, 232–236. https://doi.org/10.1017/S0266467417000104 (2017).Article 

    Google Scholar 
    37.Aide, T. M. & Cavelier, J. Barriers to lowland tropical forest restoration in the Sierra Nevada de Santa Marta, Colombia. Restor. Ecol. 2, 219–229 (1994).Article 

    Google Scholar 
    38.Osunkoya, O. O. Postdispersal survivorship of north Queensland rainforest seeds and fruits: effects of forest, habitat and species. Aust. J. Ecol. 19, 52–64 (1994).Article 

    Google Scholar 
    39.Hammond, D. S. Post-dispersal seed and seedling mortality of tropical dry forest trees after shifting agriculture, Chiapas, Mexico. J. Trop. Ecol. 11, 295–313 (1995).Article 

    Google Scholar 
    40.Sabel, J. et al. The conservation status of mammals and avifauna in the Montagne des Français massif, Madagascar. Madagascar Conserv. Dev. 4, 44–51 (2009).Article 

    Google Scholar 
    41.Goodman, S. M., Andrianarimisa, A., Olson, L. E. & Soarimalala, V. Patterns of elevational distribution of birds and small mammals in the humid forests of Montagne d’Ambre, Madagascar. Ecotropica 2, 87–98 (1996).
    Google Scholar 
    42.Goodman, S. M., Ganzhorn, J. U., Olson, L. E., Pidgeon, M. & Soarimalala, V. Annual variation in species diversity and relative density of rodents and insectivores in the Parc National de la Montagne d’Ambre, Madagascar. Ecotropica 3, 109–118 (1997).
    Google Scholar 
    43.Goodman, S. M. & Sterling, E. J. The utilization of Canarium (Burseraceae) seeds by vertebrates in the RNI d’Andringitra, Madagascar. In A floral and faunal inventory of the eastern side of the Réserve Naturelle Intégrale d’Andringitra, Madagascar: with reference to elevational variation Vol. 85 (ed S. M. Goodman) 83–89 (Field Museum Natural History, 1996).
    Google Scholar 
    44.Ramanamanjato, J. B. & Ganzhorn, J. U. Effects of forest fragmentation, introduced Rattus rattus and the role of exotic tree plantations and secondary vegetation for the conservation of an endemic rodent and a small lemur in littoral forests of southeastern Madagascar. Anim. Cons. 4, 175–183 (2001).Article 

    Google Scholar 
    45.Ganzhorn, J. U. Effects of introduced Rattus rattus on endemic small mammals in dry deciduous forest fragments of western Madagascar. Anim. Cons. 6, 147–157 (2003).Article 

    Google Scholar 
    46.Markl, J. S. et al. Meta-analysis of the effects of human disturbance on seed dispersal by animals. Cons. Biol. 26, 1072–1081. https://doi.org/10.1111/j.1523-1739.2012.01927.x (2012).Article 

    Google Scholar 
    47.Yadok, B. G., Forget, P. M., Gerhard, D., Aliyu, B. & Chapman, H. Seed nutrient content rather than size influences seed dispersal by scatterhoarding rodents in a West African montane forest. J. Trop. Ecol. 36, 174–181. https://doi.org/10.1017/S0266467420000127 (2020).Article 

    Google Scholar 
    48.Baraloto, C. & Forget, P. M. Seed size, seedling morphology, and response to deep shade and damage in neotropical rain forest trees. Am. J. Bot. 94, 901–911. https://doi.org/10.3732/ajb.94.6.901 (2007).Article 
    PubMed 

    Google Scholar 
    49.Yadok, B. G., Gerhard, D., Forget, P. M. & Chapman, H. Size doesn’t matter: Larger Carapa seeds are not dispersed farther by African rodent community. Afr. J. Ecol. 56, 1028–1033. https://doi.org/10.1111/aje.12542 (2018).Article 

    Google Scholar 
    50.Ehrensperger, T., Urech, Z. L., Rehnus, M. & Sorg, J. P. Fire impact on the woody plant components of dry deciduous forest in Central Menabe, Madagascar. Appl. Veg. Sci. 16, 619–628. https://doi.org/10.1111/avsc.12034 (2013).Article 

    Google Scholar 
    51.Ratovonamana, Y. R., Rajeriarison, C., Edmond, R., Kiefer, I. & Ganzhorn, J. U. Impact of livestock grazing on forest structure, plant species composition and biomass in southwestern Madagascar. In African Plant Diversity, Systematics and Sustainable Development—Proceedings of the XIXth AETFAT Congress, held at Antananarivo, Madagascar, 26–30 April 2010. Scripta Botanica Belgica Vol. 50 (eds N. Beau, S. Dessein, & E. Robbrecht) 82–92 (National Botanic Garden of Belgium, 2013).
    Google Scholar 
    52.Pareliussen, I., Olsson, E. G. A. & Armbruster, W. S. Factors limitine the survival of native tree seedlings used in conservation efforts at the edges of forest fragments in upland Madagascar. Restor. Ecol. 14, 196–203. https://doi.org/10.1111/j.1526-100X.2006.00121.x (2006).Article 

    Google Scholar 
    53.Manjaribe, C., Frasier, C. L., Rakouth, B. & Louis, E. E. Jr. Ecological restoration and reforestation of fragmented forests in Kianjavato. Int. J. Ecol. 2013, 726275 (2013).Article 

    Google Scholar 
    54.Randriamalala, J. R., Randriarimalala, J., Herve, D. & Carriere, S. M. Slow recovery of endangered xerophytic thickets vegetation after slash-and-burn cultivation in Madagascar. Biol. Cons. 233, 260–267. https://doi.org/10.1016/j.biocon.2019.03.006 (2019).Article 

    Google Scholar 
    55.Goodman, S. M., Raherilalao, M. J. & Wohlhauser, S. Les aires protégées terrestres de Madagascar: leur histoire, description et biote/The terrestrial protected areas of Madagascar: their history, description, and biota Vol. 3 (Association Vahatra, 2018).
    Google Scholar 
    56.Wells, K. & Bagchi, R. Eat in or take away – Seed predation and removal by rats (muridae) during a fruiting event in a dipterocarp rainforest. Raffles B Zool 53, 281–286 (2005).
    Google Scholar 
    57.Paine, C. E. T. & Beck, H. Seed predation by neotropical rain forest mammals increases diversity in seedling recruitment. Ecology 88, 3076–3087. https://doi.org/10.1890/06-1835.1 (2007).Article 
    PubMed 

    Google Scholar 
    58.Van der Meer, P. J., Kunne, P. L. B., Brunsting, A. M. H., Dibor, L. A. & Jansen, P. A. Evidence for scatter-hoarding in a tropical peat swamp forest in Malaysia. J. Trop. For. Sci. 20, 340–343 (2008).
    Google Scholar 
    59.Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510. https://doi.org/10.1126/science.1240495 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Herrera, J. P. et al. Effects of land use, habitat characteristics, and small mammal community composition on Leptospira prevalence in northeast Madagascar. PLos Neglect Trop. D 14, e0008946. https://doi.org/10.1371/journal.pntd.0008946 (2020).Article 

    Google Scholar 
    61.Irwin, M. T. et al. Patterns of species change in anthropogenically disturbed habitats of Madagascar. Biol. Cons. 143, 2351–2362. https://doi.org/10.1016/j.biocon.2010.01.023 (2010).Article 

    Google Scholar 
    62.Valenta, K., Steffens, T. S., Rafaliarison, R. R., Chapman, C. A. & Lehman, S. M. Seed banks in savanna, forest fragments, and continuous forest edges differ in a tropical dry forest in Madagascar. Biotropica 47, 435–440. https://doi.org/10.1111/btp.12228 (2015).Article 

    Google Scholar 
    63.Randriamalala, J. R., Herve, D., Letourmy, P. & Carriere, S. M. Effects of slash-and-burn practices on soil seed banks in secondary forest successions in Madagascar. Agric. Ecosyst. Environ. 199, 312–319. https://doi.org/10.1016/j.agee.2014.09.010 (2015).Article 

    Google Scholar 
    64.Posada, J. M., Aide, T. M. & Cavelier, J. Cattle and weedy shrubs as restoration tools of tropical montane rainforest. Restor. Ecol. 8, 370–379. https://doi.org/10.1046/j.1526-100x.2000.80052.x (2000).Article 

    Google Scholar 
    65.Gérard, A., Ganzhorn, J. U., Kull, C. A. & Carrière, S. M. Possible roles of introduced plants for native vertebrate conservation: the case of Madagascar. Restor. Ecol. 23, 768–775. https://doi.org/10.1111/rec.12246 (2015).Article 

    Google Scholar 
    66.Lavialle, J. et al. Complementarity of native and introduced tree species: exploring timber supply on the east coast of Madagascar. Madagascar Conserv. Dev. 10, 137–143 (2015).Article 

    Google Scholar 
    67.Kull, C. A. et al. The introduced flora of Madagascar. Biol. Invasions 14, 875–888. https://doi.org/10.1007/s10530-011-0124-6 (2012).Article 

    Google Scholar 
    68.Missouri Botanical Garden. Plan d’aménagement et de gestion de la Nouvelle Aire Protégée Oronjia (Antananarivo, 2015). More

  • in

    Genetic homogeneity, lack of larvae recruitment, and clonality in absence of females across western Mediterranean populations of the starfish Coscinasterias tenuispina

    1.Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).Article 

    Google Scholar 
    2.Frankham, R., Ballow, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    3.Grosberg, R. & Cunningham, C. W. Genetic Structure in the Sea. Marine Community Ecology 61–84 (Sinauer, 2001).
    Google Scholar 
    4.Selkoe, K. A., Henzler, C. M. & Gaines, S. D. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 9, 363–377 (2008).Article 

    Google Scholar 
    5.Selkoe, K. A., Gaggiotti, O. E., Laboratory, T., Bowen, B. W. & Toonen, R. J. Emergent patterns of population genetic structure for a coral reef community. Mol. Ecol. 23, 3064–3079 (2014).PubMed 
    Article 

    Google Scholar 
    6.Holland, L., Jenkins, T. & Stevens, J. Contrasting patterns of population structure and gene flow facilitate exploration of connectivity in two widely distributed temperate octocorals. Heredity 119, 35–48 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Pérez-Portela, R. & Riesgo, A. Population Genomics: Marine Organisms 103–137 (Springer, 2018).Book 

    Google Scholar 
    8.Jackson, J. & Coates, A. Life cycles and evolution of clonal (modular) animals. Philos. Trans. R Soc. Lond. B Biol. Sci. 313, 7–22 (1986).ADS 
    Article 

    Google Scholar 
    9.Mladenov, P. V. & Emson, R. H. Divide and broadcast: Sexual reproduction in the West Indian brittle star Ophiocomella ophiactoides and its relationship to fissiparity. Mar. Biol. 81, 273–282. https://doi.org/10.1007/BF00393221 (1984).Article 

    Google Scholar 
    10.Emson, R. H. & Wilkie, I. C. Fission and Autotomy in Echinoderms (Aberdeen University Press, 1980).
    Google Scholar 
    11.Haramoto, S., Komatsu, M. & Yamazaki, Y. Population genetic structures of the fissiparous seastar Coscinasterias acutispina in the Sea of Japan. Mar. Biol. 149, 813–820 (2006).Article 

    Google Scholar 
    12.Barker, M. F. & Scheibling, R. E. Rates of fission, somatic growth and gonadal development of a fissiparous sea star, Allostichaster insignis, in New Zealand. Mar. Biol. 153, 815–824 (2008).Article 

    Google Scholar 
    13.Garcia-Cisneros, A. et al. Intraspecific genetic structure, divergence and high rates of clonality in an amphi-Atlantic starfish. Mol. Ecol. 27, 752–772 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.De Meeûs, T., Prugnolle, F. & Agnew, P. Asexual reproduction: Genetics and evolutionary aspects. Cell. Mol. Life Sci. 64, 1355–1372 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    15.Balloux, F., Lehmann, L. & de Meeûs, T. The population genetics of clonal and partially clonal diploids. Genetics 164, 1635–1644 (2003).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Arnaud-Haond, S., Stoeckel, S. & Bailleul, D. New insights into the population genetics of partially clonal organisms: When seagrass data meet theoretical expectations. Mol. Ecol. 29, 3248–3260 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Bengtsson, B. O. Genetic variation in organisms with sexual and asexual reproduction. J. Evol. Biol. 16, 189–199 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.McGovern, T. M. Sex-ratio bias and clonal reproduction in the brittle star Ophiactis savignyi. Evolution 56, 511–517 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Alves, L., Pereira, A. & Ventura, C. Sexual and asexual reproduction of Coscinasterias tenuispina (Echinodermata: Asteroidea) from Rio de Janeiro, Brazil. Mar. Biol. 140, 95–101 (2002).Article 

    Google Scholar 
    20.Lawrence, J. M. Starfish: Biology and Ecology of the Asteroidea (JHU Press, 2013).
    Google Scholar 
    21.Barker, M. Descriptions of the larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) (Echinodermata: Asteroidea) from New Zealand, obtained from laboratory culture. Biol. Bull. 154, 32–46 (1978).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Shibata, D., Hirano, Y. & Komatsu, M. Life cycle of the multiarmed sea star Coscinasterias acutispina (Stimpson, 1862) in laboratory culture: Sexual and asexual reproductive pathways. Zoolog. Sci. 28, 313–317 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Garcia-Cisneros, A., Pérez-Portela, R., Wangensteen, O. S., Campos-Canet, M. & Palacín, C. Hope springs eternal in the starfish gonad: Preserved potential for sexual reproduction in a single-clone population of a fissiparous starfish. Hydrobiologia 787, 291–305 (2017).Article 

    Google Scholar 
    24.Wangensteen, O. S., Dupont, S., Casties, I., Turon, X. & Palacín, C. Some like it hot: Temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J. Exp. Mar. Biol. Ecol. 449, 304–311 (2013).Article 

    Google Scholar 
    25.Patarnello, T. O. M. A., Volckaert, F. A. M. J. & Castilho, R. I. T. A. Pillars of Hercules: Is the Atlantic–Mediterranean transition a phylogeographical break?. Mol. Ecol. 16, 4426–4444 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Pascual, M., Rives, B., Schunter, C. & Macpherson, E. Impact of life history traits on gene flow: A multispecies systematic review across oceanographic barriers in the Mediterranean Sea. PLoS One 12, e0176419 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Perez-Portela, R. & Turon, X. Cryptic divergence and strong population structure in the colonial invertebrate Pycnoclavella communis (Ascidiacea) inferred from molecular data. Zoology 111, 163–178 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Riesgo, A. et al. Population structure and connectivity in the Mediterranean sponge Ircinia fasciculata are affected by mass mortalities and hybridization. Heredity 117, 427 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Carreras, C. et al. East is East and West is West: Population genomics and hierarchical analyses reveal genetic structure and adaptation footprints in the keystone species Paracentrotus lividus (Echinoidea). Divers. Distrib. 26, 382–398 (2020).Article 

    Google Scholar 
    30.Pérez-Portela, R. et al. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the Mediterranean. Heredity 122, 244–259 (2019).PubMed 
    Article 

    Google Scholar 
    31.Pérez-Portela, R., Almada, V. & Turon, X. Cryptic speciation and genetic structure of widely distributed brittle stars (Ophiuroidea) in Europe. Zoolog. Scr. 42, 151–169. https://doi.org/10.1111/j.1463-6409.2012.00573.x (2013).Article 

    Google Scholar 
    32.Taboada, S. & Pérez-Portela, R. Contrasted phylogeographic patterns on mitochondrial DNA of shallow and deep brittle stars across the Atlantic-Mediterranean area. Sci. Rep. 6, 32425 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Perez-Portela, R., Turon, X. & Bishop, J. D. D. Bottlenecks and loss of genetic diversity: Spatio-temporal patterns of genetic structure in an ascidian recently introduced in Europe. Mar. Ecol. Prog. Ser. 105, 93–105 (2012).ADS 
    Article 
    CAS 

    Google Scholar 
    34.Garcia-Cisneros, A. et al. Long telomeres are associated with clonality in wild populations of the fissiparous starfish Coscinasterias tenuispina. Heredity 115, 437–443 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Epel, E. S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. 101, 17312–17315 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Kotrschal, A., Ilmonen, P. & Penn, D. J. Stress impacts telomere dynamics. Biol. Let. 3, 128–130 (2007).CAS 
    Article 

    Google Scholar 
    37.Sköld, H. N., Asplund, M. E., Wood, C. A. & Bishop, J. D. Telomerase deficiency in a colonial ascidian after prolonged asexual propagation. J. Exp. Zool. B Mol. Dev. Evol. 316, 276–283 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Marriage, T. N. & Orive, M. E. Mutation-selection balance and mixed mating with asexual reproduction. J. Theor. Biol. 308, 25–35 (2012).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    39.Lamare, M. D., Channon, T., Cornelisen, C. & Clarke, M. Archival electronic tagging of a predatory sea star—Testing a new technique to study movement at the individual level. J. Exp. Mar. Biol. Ecol. 373, 1–10 (2009).Article 

    Google Scholar 
    40.Johnson, M. & Threlfall, T. Fissiparity and population genetics of Coscinasterias calamaria. Mar. Biol. 93, 517–525 (1987).Article 

    Google Scholar 
    41.Sköld, M., Wing, S. R. & Mladenov, P. V. Genetic subdivision of a sea star with high dispersal capability in relation to physical barriers in a fjordic seascape. Mar. Ecol. Prog. Ser. 250, 163–174 (2003).ADS 
    Article 

    Google Scholar 
    42.Waters, J. & Roy, M. Global phylogeography of the fissiparous sea-star genus Coscinasterias. Mar. Biol. 142, 185–191 (2003).Article 

    Google Scholar 
    43.Pazoto, C., Ventura, C. & Silva, E. Genetic contribution of sexual and asexual reproduction to the recruitment of a sexually unbalanced population of Coscinasterias tenuispina (Echinodermata: Asteroidea) in Rio De Janeiro, Brazil. Echinoderms, 473–478 (CRC Press/Balkema, 2010).44.Gélin, P. et al. Superclone expansion, long-distance clonal dispersal and local genetic structuring in the coral Pocillopora damicornis type β in Reunion Island South Western Indian Ocean. PLoS One 12, e0169692 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Puritz, J. B. et al. Extraordinarily rapid life-history divergence between Cryptasterina sea star species. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2012.1343 (2012).Article 

    Google Scholar 
    46.Keever, C. C. et al. Shallow gene pools in the high intertidal: Extreme loss of genetic diversity in viviparous sea stars (Parvulastra). Biol. Lett. 9, 20130551 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Delmotte, F., Leterme, N., Gauthier, J. P., Rispe, C. & Simon, J. C. Genetic architecture of sexual and asexual populations of the aphid Rhopalosiphum padi based on allozyme and microsatellite markers. Mol. Ecol. 11, 711–723 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Ventura, C., Alves, S., Maurício, C. & Silva, E. Reproduction and population genetics of Coscinasterias tenuispina (Asteroidea, Asteriidae) on the Brazilian coast. Echinoderms: Müchen, 73–77 (Taylor and Francis Group, 2004).49.Zitari-Chatti, R. et al. Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 136, 439–447 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Pérez-Portela, R., Rius, M. & Villamor, A. Lineage splitting, secondary contacts and genetic admixture of a widely distributed marine invertebrate. J. Biogeogr. https://doi.org/10.1111/jbi.12917 (2016).Article 

    Google Scholar 
    51.Perez-Portela, R., Villamor, A. & Almada, V. Phylogeography of the sea star Marthasterias glacialis (Asteroidea, Echinodermata): Deep genetic divergence between mitochondrial lineages in the north-western mediterranean. Mar. Biol. 157, 2015–2028 (2010).Article 

    Google Scholar 
    52.Candela, J. The Gibraltar Strait and its role in the dynamics of the Mediterranean Sea. Dyn. Atmos. Oceans 15, 267–299. https://doi.org/10.1016/0377-0265(91)90023-9 (1991).ADS 
    Article 

    Google Scholar 
    53.Waters, J. M., Fraser, C. I. & Hewitt, G. M. Founder takes all: Density-dependent processes structure biodiversity. Trends Ecol. Evol. 28, 78–85 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Garcia-Cisneros, A., Valero-Jiménez, C., Palacín, C. & Pérez-Portela, R. Characterization of thirty two microsatellite loci for three Atlanto-Mediterranean echinoderm species. Conserv. Genet. Resour. 5, 749–753. https://doi.org/10.1007/s12686-013-9897-5 (2013).Article 

    Google Scholar 
    55.Alberto, F. MsatAllele_1.0: An R package to visualize the binning of microsatellite alleles. J. Hered. 100, 394–397 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Meirmans, P. G. & Van Tienderen, P. H. GENOTYPE and GENODIVE: Two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).Article 

    Google Scholar 
    57.Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    58.Arnaud-Haond, S. & Belkhir, K. GENCLONE: A computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol. Ecol. Notes 7, 15–17 (2007).CAS 
    Article 

    Google Scholar 
    59.Sarkar, D. Lattice: Multivariate Data Visualization with R (Springer Science & Business Media, 2008).MATH 
    Book 

    Google Scholar 
    60.Warnes, M. G. R., Bolker, B., Bonebakker, L., Gentleman, R. & Huber, W. Package ‘gplots’. Various R programming tools for plotting data (2016).61.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Beerli, P. & Felsenstein, J. Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc. Natl. Acad. Sci. 98, 4563–4568 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar  More

  • in

    A meta-analysis of the ecological and economic outcomes of mangrove restoration

    1.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Carrasquilla-Henao, M. & Juanes, F. Mangroves enhance local fisheries catches: a global meta-analysis. Fish Fish 18, 79–93 (2017).Article 

    Google Scholar 
    3.Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl Acad. Sci. USA 116, 12232–12237 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Spalding, M. & Parrett, C. L. Global patterns in mangrove recreation and tourism. Mar. Policy 110, 103540 (2019).Article 

    Google Scholar 
    5.Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human‐driven mangrove loss. Glob. Change Biol. 26, 5844–5855 (2020).ADS 
    Article 

    Google Scholar 
    6.Thomas, N. et al. Distribution and drivers of global mangrove forest change, 1996–2010. PLoS ONE 12, e0179302 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Maiti, S. K. & Chowdhury, A. Effects of anthropogenic pollution on mangrove biodiversity: a review. J. Environ. Prot. 4, 1428–1434 (2013).Article 

    Google Scholar 
    8.Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Worthington, T. & Spalding, M. Mangrove Restoration Potential: A Global Map Highlighting A Critical Opportunity (Apollo – University of Cambridge Repository, 2018).10.Bosire, J. O. et al. Functionality of restored mangroves: a review. Aquat. Bot. 89, 251–259 (2008).Article 

    Google Scholar 
    11.Lewis, R. R. Ecological engineering for successful management and restoration of mangrove forests. Ecol. Eng. 24, 403–418 (2005).Article 

    Google Scholar 
    12.Howard, R. J. et al. Hydrologic restoration in a dynamic subtropical mangrove-to-marsh ecotone: hydrologic restoration in a mangrove-marsh ecotone. Restor. Ecol. 25, 471–482 (2017).Article 

    Google Scholar 
    13.Kamali, B. & Hashim, R. Mangrove restoration without planting. Ecol. Eng. 37, 387–391 (2011).Article 

    Google Scholar 
    14.Dung, L. V., Tue, N. T., Nhuan, M. T. & Omori, K. Carbon storage in a restored mangrove forest in Can Gio Mangrove Forest Park, Mekong Delta, Vietnam. Ecol. Manag. 380, 31–40 (2016).Article 

    Google Scholar 
    15.Das, S. Ecological restoration and livelihood: contribution of planted mangroves as nursery and habitat for artisanal and commercial fishery. World Dev. 94, 492–502 (2017).Article 

    Google Scholar 
    16.Deng, J. et al. An evaluation on the bioavailability of heavy metals in the sediments from a restored mangrove forest in the Jinjiang Estuary, Fujian, China. Ecotoxicol. Environ. Saf. 180, 501–508 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Rahman, M. M. & Mahmud, Md. A. Economic feasibility of mangrove restoration in the Southeastern Coast of Bangladesh. Ocean Coast. Manag. 161, 211–221 (2018).Article 

    Google Scholar 
    18.Bullock, J. M., Aronson, J., Newton, A. C., Pywell, R. F. & Rey-Benayas, J. M. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26, 541–549 (2011).PubMed 
    Article 

    Google Scholar 
    19.Ellison, A. M. Mangrove restoration: do we know enough? Restor. Ecol. 8, 219–229 (2000).Article 

    Google Scholar 
    20.Iftekhar. Functions and development of reforested mangrove areas: a review. Int. J. Biodivers. Sci. Manag. 4, 1–14 (2008).Article 

    Google Scholar 
    21.Lewis, R. Mangrove Restoration: Costs And Benefits Of Successful Ecological Restoration. p. 4–8 (Beijer International Institute of Ecological Economics, Stockholm, 2001).22.Altman, N. & Krzywinski, M. Analyzing outliers: influential or nuisance? Nat. Methods 13, 281–282 (2016).PubMed 
    Article 

    Google Scholar 
    23.Himes-Cornell, A., Grose, S. O. & Pendleton, L. Mangrove ecosystem service values and methodological approaches to valuation: where do we stand? Front. Mar. Sci. 5, 376 (2018).Article 

    Google Scholar 
    24.Chowdhury, A., Naz, A., Bhattacharyya, S. & Sanyal, P. Cost–benefit analysis of ‘Blue Carbon’ sequestration by plantation of few key mangrove species at Sundarban Biosphere Reserve, India. Carbon. Manag. 9, 575–586 (2018).CAS 
    Article 

    Google Scholar 
    25.Sillanpää, M., Vantellingen, J. & Friess, D. A. Vegetation regeneration in a sustainably harvested mangrove forest in West Papua, Indonesia. Ecol. Manag. 390, 137–146 (2017).Article 

    Google Scholar 
    26.Sasmito, S. D. et al. Effect of land‐use and land‐cover change on mangrove blue carbon: a systematic review. Glob. Change Biol. 25, 4291–4302 (2019).ADS 
    Article 

    Google Scholar 
    27.Meli, P., Rey Benayas, J. M., Balvanera, P. & Martínez Ramos, M. Restoration enhances wetland biodiversity and ecosystem service supply, but results are context-dependent: a meta-analysis. PLoS ONE 9, e93507 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Barral, M. P., Rey Benayas, J. M., Meli, P. & Maceira, N. O. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: a global meta-analysis. Agric. Ecosyst. Environ. 202, 223–231 (2015).Article 

    Google Scholar 
    29.Ren, Y., Lü, Y. & Fu, B. Quantifying the impacts of grassland restoration on biodiversity and ecosystem services in China: a meta-analysis. Ecol. Eng. 95, 542–550 (2016).Article 

    Google Scholar 
    30.Lu, W. et al. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala. PLoS ONE 9, e91238 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Li, W. et al. Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary. For. Ecosyst. 2, 21 (2015).Article 

    Google Scholar 
    32.Zhang, J., Shen, C., Ren, H., Wang, J. & Han, W. Estimating change in sedimentary organic carbon content during mangrove restoration in southern china using carbon isotopic measurements. Pedosphere 22, 58–66 (2012).Article 

    Google Scholar 
    33.Feng, J. et al. Effects of exotic and native mangrove forests plantation on soil organic carbon, nitrogen, and phosphorus contents and pools in Leizhou, China. CATENA 180, 1–7 (2019).CAS 
    Article 

    Google Scholar 
    34.Leung, J. Y. S. Habitat heterogeneity affects ecological functions of macrobenthic communities in a mangrove: implication for the impact of restoration and afforestation. Glob. Ecol. Conserv. 4, 423–433 (2015).Article 

    Google Scholar 
    35.Peters, J. R., Yeager, L. A. & Layman, C. A. Comparison of fish assemblages in restored and natural mangrove habitats along an urban shoreline. Bull. Mar. Sci. 91, 125–139 (2015).Article 

    Google Scholar 
    36.Chen, G., Gao, M., Pang, B., Chen, S. & Ye, Y. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages. Ecol. Manag. 422, 87–94 (2018).Article 

    Google Scholar 
    37.Cameron, C., Hutley, L. B., Friess, D. A. & Brown, B. Community structure dynamics and carbon stock change of rehabilitated mangrove forests in Sulawesi, Indonesia. Ecol. Appl. 29, e01810 (2019).38.Ashton, E. C., Hogarth, P. J. & Macintosh, D. J. A comparison of brachyuran crab community structure at four mangrove locations under different management systems along the Melaka Straits-Andaman Sea Coast of Malaysia and Thailand. Estuaries 26, 1461–1471 (2003).Article 

    Google Scholar 
    39.Peralta-Milan, S. A. & Salmo, S. G. III Evaluating patterns of fish assemblage changes from different-aged reforested mangroves in lingayen gulf. J. Environ. Sci. Manag. 16, 11–19 (2013).
    Google Scholar 
    40.Alongi, D. M. Present state and future of the world’s mangrove forests. Environ. Conserv. 29, 331–349 (2002).Article 

    Google Scholar 
    41.Lee, S. Y., Hamilton, S., Barbier, E. B., Primavera, J. & Lewis, R. R. Better restoration policies are needed to conserve mangrove ecosystems. Nat. Ecol. Evol. 3, 870–872 (2019).PubMed 
    Article 

    Google Scholar 
    42.Bai, J. et al. Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Funct. Ecol. 35, 774–786 (2021).Article 

    Google Scholar 
    43.Kirui, B., Kairo, J., Skov, M., Mencuccini, M. & Huxham, M. Effects of species richness, identity and environmental variables on growth in planted mangroves in Kenya. Mar. Ecol. Prog. Ser. 465, 1–10 (2012).ADS 
    Article 

    Google Scholar 
    44.Zimmer, M. In Threats to Mangrove Forests. (eds Makowski, C. & Finkl, C. W.) (Springer Berlin Heidelberg, New York, 2018).45.Fazlioglu, F. & Chen, L. Introduced non-native mangroves express better growth performance than co-occurring native mangroves. Sci. Rep. 10, 3854 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.He, Z. et al. Colonization by native species enhances the carbon storage capacity of exotic mangrove monocultures. Carbon Balance Manag. 15, 28 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Kodikara, K. A. S., Mukherjee, N., Jayatissa, L. P., Dahdouh-Guebas, F. & Koedam, N. Have mangrove restoration projects worked? An in-depth study in Sri Lanka: evaluation of mangrove restoration in Sri Lanka. Restor. Ecol. 25, 705–716 (2017).Article 

    Google Scholar 
    48.Thornton, A. Publication bias in meta-analysis its causes and consequences. J. Clin. Epidemiol. 53, 207–216 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Song, F., Hooper & Loke, Y. Publication bias: what is it? How do we measure it? How do we avoid it? Open Access J. Clin. Trials 5, 71–81 (2013).50.Møller, A. P. & Jennions, M. D. Testing and adjusting for publication bias. Trends Ecol. Evol. 16, 580–586 (2001).Article 

    Google Scholar 
    51.Salem, M. E. & Mercer, D. E. The economic value of mangroves: a meta-analysis. Sustainability 4, 359–383 (2012).Article 

    Google Scholar 
    52.Lahjie, A. M., Nouval, B., Lahjie, A. A., Ruslim, Y. & Kristiningrum, R. Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Research 8, 9 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Hutchison, J., Spalding, M. & zu Ermgassen, P. The Role of Mangroves in Fisheries Enhancement (The Nature Conservancy and Wetlands International, 2014).54.Bayraktarov, E. et al. The cost and feasibility of marine coastal restoration. Ecol. Appl. 26, 1055–1074 (2016).PubMed 
    Article 

    Google Scholar 
    55.Taillardat, P., Thompson, B. S., Garneau, M., Trottier, K. & Friess, D. A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 10, 20190129 (2020).PubMed 
    Article 

    Google Scholar 
    56.De Groot, R. S. et al. Benefits of investing in ecosystem restoration: investing in ecosystem restoration. Conserv. Biol. 27, 1286–1293 (2013).Article 

    Google Scholar 
    57.Ellison, A. M., Felson, A. J. & Friess, D. A. Mangrove rehabilitation and restoration as experimental adaptive management. Front. Mar. Sci. 7, 327 (2020).Article 

    Google Scholar 
    58.Jakovac, C. C. et al. Costs and carbon benefits of mangrove conservation and restoration: a global analysis. Ecol. Econ. 176, 106758 (2020).Article 

    Google Scholar 
    59.Waltham, N. J. et al. UN decade on ecosystem restoration 2021–2030—what chance for success in restoring coastal ecosystems? Front. Mar. Sci. 7, 71 (2020).Article 

    Google Scholar 
    60.United Nations. Sustainable Development. Blue Economy Concept Paper (2014).61.UNEP. Blue Economy: Sharing Success Stories to Inspire Change (UNEP Regional Seas Report and Studies, 2015).62.Mcleod, E. et al. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 9, 552–560 (2011).Article 

    Google Scholar 
    63.CBD. Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020).64.Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14, 20180251 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.IUCN & Ramsar. The Community of Ocean Action for Mangroves –Towards the Implementation of SDG14 (Department of Economic and Social Affairs, United Nations, 2019).66.International Council for Science (ICSU). A Guide to SDG Interactions: From Science To Implementation (International Council for Science, Paris, 2017).67.Spalding, M. D. et al. The role of ecosystems in coastal protection: Adapting to climate change and coastal hazards. Ocean Coast. Manag. 90, 50–57 (2014).Article 

    Google Scholar 
    68.Aronson, J. et al. Are socioeconomic benefits of restoration adequately quantified? a meta-analysis of recent papers (2000-2008) in Restoration Ecology and 12 other scientific Journals. Restor. Ecol. 18, 143–154 (2010).Article 

    Google Scholar 
    69.Cooke, S. J. et al. Evidence-based restoration in the Anthropocene-from acting with purpose to acting for impact: evidence-based restoration. Restor. Ecol. 26, 201–205 (2018).Article 

    Google Scholar 
    70.Lovelock, C. E. & Brown, B. M. Land tenure considerations are key to successful mangrove restoration. Nat. Ecol. Evol. 3, 1135–1135 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Thompson, B. S., Clubbe, C. P., Primavera, J. H., Curnick, D. & Koldewey, H. J. Locally assessing the economic viability of blue carbon: a case study from Panay Island, the Philippines. Ecosyst. Serv. 8, 128–140 (2014).Article 

    Google Scholar 
    72.Wylie, L., Sutton-Grier, A. E. & Moore, A. Keys to successful blue carbon projects: lessons learned from global case studies. Mar. Policy 65, 76–84 (2016).Article 

    Google Scholar 
    73.Peng, Y., Li, X., Wu, K., Peng, Y. & Chen, G. Effect of an integrated mangrove-aquaculture system on aquacultural health. Front. Biol. China 4, 579–584 (2009).Article 

    Google Scholar 
    74.Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G., The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Betran, A. P. et al. What is the optimal rate of caesarean section at population level? A systematic review of ecologic studies. Reprod. Health 12, 57 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Mupepele, A. C., Walsh, J. C., Sutherland, W. J. & Dormann, C. F. An evidence assessment tool for ecosystem services and conservation studies. Ecol. Appl. 26, 1295–1301 (2016).PubMed 
    Article 

    Google Scholar 
    77.Field, C. B. et al. Mangrove biodiversity and ecosystem function. Glob. Ecol. Biogeogr. Lett. 7, 3 (1998).Article 

    Google Scholar 
    78.Nakagawa, S. & Santos, E. S. A. Methodological issues and advances in biological meta-analysis. Evol. Ecol. 26, 1253–1274 (2012).Article 

    Google Scholar 
    79.Koricheva, J. & Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 102, 828–844 (2014).Article 

    Google Scholar 
    80.Noble, D. W. A., Lagisz, M., O’dea, R. E. & Nakagawa, S. Nonindependence and sensitivity analyses in ecological and evolutionary meta-analyses. Mol. Ecol. 26, 2410–2425 (2017).PubMed 
    Article 

    Google Scholar 
    81.Greenland, S. et al. Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations. Eur. J. Epidemiol. 31, 337–350 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Hoekstra, R., Finch, S., Kiers, H. A. L. & Johnson, A. Probability as certainty: dichotomous thinking and the misuse of p values. Psychon. Bull. Rev. 13, 1033–1037 (2006).PubMed 
    Article 

    Google Scholar 
    83.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 

    Google Scholar 
    84.Hedges, L. & Olkin, I. Statistical Methods For Meta-analysis (Academic Press, Orlando, 1985).85.Thompson, S. G. & Higgins, J. P. T. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 21, 1559–1573 (2002).PubMed 
    Article 

    Google Scholar 
    86.Cook, R. D. & Weisberg, S. Residuals and Influence in Regression (Chapman and Hall, New York, 1982).87.Egger, M., Smith, G. D., Schneider, M. & Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 315, 629–634 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Nakagawa, S., Noble, D. W. A., Senior, A. M. & Lagisz, M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 15, 18 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Viechtbauer, W. Conducting meta-analyses in R with the metafor Package. J. Stat. Softw. 36, 1–48 (2010).90.van der Ploeg, S., De Groot, D. & Wang, Y. The TEEB Valuation Database: Overview Of Structure, Data And Results (Foundation for Sustainable Development, Wageningen, 2010).91.Mukherjee, N. et al. Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises. PLoS ONE 9, e107706 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    92.Corlett, R. T. Impacts of warming on tropical lowland rainforests. Trends Ecol. Evol. 26, 606–613 (2011).PubMed 
    Article 

    Google Scholar 
    93.Møller, A. P., Thornhill, R. & Gangestad, S. W. Direct and indirect tests for publication bias: asymmetry and sexual selection. Anim. Behav. 70, 497–506 (2005).Article 

    Google Scholar 
    94.Bayraktarov, E. et al. Priorities and motivations of marine coastal restoration. Res. Front. Mar. Sci. 7, 484 (2020).Article 

    Google Scholar 
    95.Konno, K. et al. Ignoring non‐English‐language studies may bias ecological meta‐analyses. Ecol. Evol. 10, 6373–6384 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.van Aert, R. C. M., Wicherts, J. M. & van Assen, M. A. L. M. Conducting meta-analyses based on p values: reservations and recommendations for applying p-Uniform and p-Curve. Perspect. Psychol. Sci. 11, 713–729 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Terrin, N., Schmid, C. H., Lau, J. & Olkin, I. Adjusting for publication bias in the presence of heterogeneity. Stat. Med. 22, 2113–2126 (2003).PubMed 
    Article 

    Google Scholar 
    98.Giri, C. et al. Global Distribution of Mangroves USGS. UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC) https://doi.org/10.34892/1411-W728 (2011).99.Cook, B. G., Cook, L. & Therrien, W. J. Group-difference effect sizes: gauging the practical importance of findings from group-experimental research. Learn. Disabil. Res. Pract. 33, 56–63 (2018).Article 

    Google Scholar  More