Unraveling the ecological processes modulating the population structure of Escherichia coli in a highly polluted urban stream network
1.2012 Recreational Water Quality Criteria. (U. S. Environmental Protection Agency, 2012).2.Lee, C. M. et al. Persistence of fecal indicator bacteria in Santa Monica Bay beach sediments. Water Res. 40, 2593–2602 (2006).CAS
PubMed
Article
Google Scholar
3.Luo, C. et al. Genome sequencing of environmental Escherichia coli expands understanding of the ecology and speciation of the model bacterial species. Proc. Natl. Acad. Sci. 108, 7200–7205 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Ishii, S., Ksoll, W. B., Hicks, R. E. & Sadowsky, M. J. Presence and growth of naturalized Escherichia coli in temperate soils from lake superior watersheds. Appl. Environ. Microbiol. 72, 612–621 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
5.Rochelle-Newall, E., Nguyen, T. M. H., Le, T. P. Q., Sengtaheuanghoung, O. & Ribolzi, O. A short review of fecal indicator bacteria in tropical aquatic ecosystems: Knowledge gaps and future directions. Front. Microbiol. 6, 1–15 (2015).Article
Google Scholar
6.Tymensen, L. D. et al. Comparative accessory gene fingerprinting of surface water Escherichia coli reveals genetically diverse naturalized population. J. Appl. Microbiol. 119, 263–277 (2015).CAS
PubMed
Article
Google Scholar
7.Ishii, S. & Sadowsky, M. J. Escherichia coli in the environment: Implications for water quality and human health. Microbes and environments / JSME 23, 101–108 (2008).Article
Google Scholar
8.Surbeck, C. Q., Jiang, S. C. & Grant, S. B. Ecological control of fecal indicator bacteria in an urban stream. Environ. Sci. Technol. 44, 631–637 (2010).ADS
CAS
PubMed
Article
Google Scholar
9.Jang, J. et al. Environmental Escherichia coli: Ecology and public health implications—A review. J. Appl. Microbiol. 123(3), 570–581. https://doi.org/10.1111/jam.13468 (2017).CAS
Article
PubMed
Google Scholar
10.Van Elsas, J. D., Semenov, A. V., Costa, R. & Trevors, J. T. Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME J. 5, 173–183 (2010).PubMed
PubMed Central
Article
Google Scholar
11.Jaureguy, F. et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics 9, 560 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
12.Clermont, O. et al. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ. Microbiol. 21, 3107–3117 (2019).CAS
PubMed
Article
Google Scholar
13.Clermont, O., Christenson, J. K., Denamur, E. & Gordon, D. M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.12019 (2012).Article
PubMed
PubMed Central
Google Scholar
14.Ratajczak, M. et al. Influence of hydrological conditions on the Escherichia coli population structure in the water of a creek on a rural watershed. BMC Microbiol. 10, 1–10 (2010).Article
CAS
Google Scholar
15.Johnson, J. R. et al. Phylogenetic backgrounds and virulence associated traits of Escherichia coli isolates from surface waters and diverse animals in Minnesota and Wisconsin. Appl. Environ. Microbiol. 83, 1–33 (2017).CAS
Google Scholar
16.Petit, F. et al. Change in the structure of Escherichia coli population and the pattern of virulence genes along a rural aquatic continuum. Front. Microbiol. 8, 1–14 (2017).Article
Google Scholar
17.Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article
Google Scholar
18.Berthe, T., Ratajczak, M., Clermont, O., Denamur, E. & Petit, F. Evidence for coexistence of distinct Escherichia coli populations in various aquatic environments and their survival in estuary water. Appl. Environ. Microbiol. 79, 4684–4693 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
19.Méric, G., Kemsley, E. K., Falush, D., Saggers, E. J. & Lucchini, S. Phylogenetic distribution of traits associated with plant colonization in Escherichia coli. Environ. Microbiol. 15, 487–501 (2013).PubMed
Article
CAS
Google Scholar
20.Walk, S. T. The “Cryptic” Escherichia. EcoSal Plus 6, 2 (2015).21.Ingle, D. J. et al. Biofilm formation by and thermal niche and virulence characteristics of Escherichia spp. Appl. Environ. Microbiol. 77, 2695–2700 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
22.Elmqvist, T. The Urban Planet: Knowledge Towards Sustainable Cities (Cambridge University Press, 2018).Book
Google Scholar
23.Hosen, J. D., Febria, C. M., Crump, B. C. & Palmer, M. A. Watershed urbanization linked to differences in stream bacterial community composition. Front. Microbiol. 8, 1–17 (2017).Article
Google Scholar
24.Wang, S.-Y., Sudduth, E. B., Wallenstein, M. D., Wright, J. P. & Bernhardt, E. S. Watershed urbanization alters the composition and function of stream bacterial communities. PLoS ONE 6, e22972 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
25.Bernhardt, E. S., Band, L. E., Walsh, C. J. & Berke, P. E. Understanding, managing, and minimizing urban impacts on surface water nitrogen loading. Ann. N. Y. Acad. Sci. 1134, 61–96 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
26.Hosen, J. D., McDonough, O. T., Febria, C. M. & Palmer, M. A. Dissolved organic matter quality and bioavailability changes across an urbanization gradient in headwater streams. Environ. Sci. Technol. 48, 7817–7824 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
27.Hatt, B. E., Fletcher, T. D., Walsh, C. J. & Taylor, S. L. The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environ. Manage. 34, 112–124 (2004).PubMed
Article
PubMed Central
Google Scholar
28.Smith, R. M., Kaushal, S. S., Beaulieu, J. J., Pennino, M. J. & Welty, C. Influence of infrastructure on water quality and greenhouse gas dynamics in urban streams. Biogeosciences 14, 2831–2849 (2017).ADS
CAS
Article
Google Scholar
29.Handler, N. B., Paytan, A., Higgins, C. P., Luthy, R. G. & Boehm, A. B. Human development is linked to multiple water body impairments along the California coast. Estuar. Coasts 29, 860–870 (2006).CAS
Article
Google Scholar
30.Ishii, S. et al. Factors controlling long-term survival and growth of naturalized Escherichia coli populations in temperate field soils. Microbes Environ. 25, 8–14 (2010).PubMed
Article
PubMed Central
Google Scholar
31.Whitman, R. L. et al. Microbes in beach sands: Integrating environment, ecology and public health. Rev. Environ. Sci. Biotechnol. 13, 329–368 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Kleinheinz, G. et al. Effect of aquatic macrophytes on the survival of Escherichia coli in a laboratory microcosm. Lake Reserv. Manage. 25, 149–154 (2009).Article
Google Scholar
33.Moreira, S. et al. Persistence of Escherichia coli in freshwater periphyton: Biofilm-forming capacity as a selective advantage. FEMS Microbiol. Ecol. 79, 608–618 (2012).CAS
PubMed
Article
Google Scholar
34.Pachepsky, Y. A. & Shelton, D. R. Escherichia coli and fecal coliforms in freshwater and estuarine sediments. Crit. Rev. Environ. Sci. Technol. 41, 1067–1110 (2011).CAS
Article
Google Scholar
35.Walsh, C. J. & Kunapo, J. The importance of upland flow paths in determining urban effects on stream ecosystems. J. N. Am. Benthol. Soc. 28, 977–990 (2009).Article
Google Scholar
36.McLellan, S. L., Fisher, J. C. & Newton, R. J. The microbiome of urban waters. Int. Microbiol. 18, 141–149 (2015).PubMed
PubMed Central
Google Scholar
37.Newton, R. J. et al. Sewage reflects the microbiomes of human populations. MBio 6, 1–9 (2015).CAS
Article
Google Scholar
38.Richards, S., Paterson, E., Withers, P. J. A. & Stutter, M. Septic tank discharges as multi-pollutant hotspots in catchments. Sci. Total Environ. 542, 854–863 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
39.Sowah, R. A., Habteselassie, M. Y., Radcliffe, D. E., Bauske, E. & Risse, M. Isolating the impact of septic systems on fecal pollution in streams of suburban watersheds in Georgia, United States. Water Res. 108, 330–338 (2017).CAS
PubMed
Article
Google Scholar
40.Ly, D. K. & Chui, T. F. M. Modeling sewage leakage to surrounding groundwater and stormwater drains. Water Sci. Technol. 66, 2659–2665 (2012).PubMed
Article
Google Scholar
41.Graziano, M., Giorgi, A. & Feijoó, C. Science of the Total Environment Multiple stressors and social-ecological traps in Pampean streams (Argentina): A conceptual model. Sci. Total Environ. 765, 142785 (2020).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
42.Graziano, M. et al. Fostering urban transformations in Latin America: Lessons around the ecological management of an urban stream in coproduction with a social movement (Buenos Aires, Argentina). Ecol. Soc. 24, 13 (2019).Article
Google Scholar
43.Cirelli, A. F. & Ojeda, C. Wastewater management in Greater Buenos Aires, Argentina. Desalination 218, 52–61 (2008).CAS
Article
Google Scholar
44.Elordi, M. L., Lerner, J. E. C. & Porta, A. Evaluación del impacto antrópico sobre la calidad del agua del arroyo Las Piedras, Quilmes, Buenos Aires, Argentina. Acta Bioquimica Clinica Latinoamericana 50, 669–677 (2016).
Google Scholar
45.Censo nacional de población, hogares y viviendas 2010 : censo del Bicentenario : resultados definitivos, Serie B nº 2. (Instituto Nacional de Estadística y Censos, 2012).46.Gordon, N. D., McMahon, T. A., Finlayson, B. L., Gippel, C. J. & Nathan, R. J. Stream Hydrology: An Introduction for Ecologists (Wiley, 2004).
Google Scholar
47.Elosegui, A., Sabater, S. (eds.). Conceptos y técnicas en ecología fluvial. 243-251. (Fundación BBVa, 2009)48.Baird, R. B., Eaton, A. D., Rice, E. W., & Bridgewater, L. (eds.)Standard methods for the examination of water and wastewater, 23. (American Public Health Association, 2017).
49.Clermont, O., Bonacorsi, S., Bingen, E. & Bonacorsi, P. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 66, 4555–4558 (2000).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
50.Clermont, O., Gordon, D. M., Brisse, S., Walk, S. T. & Denamur, E. Characterization of the cryptic Escherichia lineages: Rapid identification and prevalence. Environ. Microbiol. 13, 2468–2477 (2011).PubMed
Article
PubMed Central
Google Scholar
51.Lescat, M. et al. Commensal Escherichia coli strains in Guiana reveal a high genetic diversity with host-dependant population structure. Environ. Microbiol. Rep. 5, 9–57 (2013).Article
CAS
Google Scholar
52.Clermont, O. et al. Evidence for a human-specific Escherichia coli clone. Environ. Microbiol. 10, 1000–1006 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Congedo, L. Semi-automatic classification plugin for QGIS. Sapienza Univ, 1-25 (2013).54.Blanchet, F. G., Legendre, P. & Borcard, D. Forward selection of explanatory variables. Ecology 89, 2623–2632 (2008).PubMed
Article
Google Scholar
55.Borcard, D., Gillet, F. & Lengendre, P. Numerical Ecology with R (Springer, 2018).MATH
Book
Google Scholar
56.Legendre, P., Borcard, D. & Roberts, D. W. Variation partitioning involving orthogonal spatial eigenfunction submodels. Ecology 93, 1234–1240 (2012).PubMed
Article
Google Scholar
57.Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. TEST 27, 716–748 (2018).MathSciNet
MATH
Article
Google Scholar
58.Magurran, A. E. Measuring Biological Diversity (Wiley, Hoboken, 2004).
Google Scholar
59.Oksanen, J. et al. Vegan: Ecological Diversity. R Project, 368. http://cran.r-project.org (2013)
60.Wilkinson, L. & Friendly, M. History corner the history of the cluster heat map. Am. Stat. 63, 179–184 (2009).Article
Google Scholar
61.Wei, T. et al. Visualization of a correlation matrix. Statistician 56, 316–324 (2017).
Google Scholar
62.Robinaugh, D. J., Millner, A. J. & McNally, R. J. Identifying highly influential nodes in the complicated grief network. J. Abnormal Psychol. 125(6), 747 (2016).Article
Google Scholar
63.Peres-Neto, P. R., Legendre, P. L., Dray, S. & Borcard, D. Variation partitioning of species data matrices: Estimation and comparison of fractions. Ecology 87, 2614–2625 (2006).PubMed
Article
PubMed Central
Google Scholar
64.Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS
PubMed
Article
PubMed Central
Google Scholar
65.Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, Cambridge, 2003).MATH
Book
Google Scholar
66.Simpson, G. Restricted permutations; using the permute package. http://cran.r-project.org (2012).67.Booth, D. B., Roy, A. H., Smith, B. & Capps, K. A. Global perspectives on the urban stream syndrome. Freshw. Sci. 35, 412–420 (2016).Article
Google Scholar
68.Peipoch, M., Brauns, M., Hauer, F. R., Weitere, M. & Valett, H. M. Ecological simplification: Human influences on Riverscape complexity. Bioscience 65, 1057–1065 (2015).Article
Google Scholar
69.Stoppe, N. D. C. et al. Worldwide phylogenetic group patterns of Escherichia coli from commensal human and wastewater treatment plant isolates. Front. Microbiol. 8, 2512 (2017).PubMed
PubMed Central
Article
Google Scholar
70.Escobar-Páramo, P. et al. Large-scale population structure of human commensal Escherichia coli isolates. Appl. Environ. Microbiol. 70, 5698–5700 (2004).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
71.Walk, S. T., Alm, E. W., Calhoun, L. M., Mladonicky, J. M. & Whittam, T. S. Genetic diversity and population structure of Escherichia coli isolated from freshwater beaches. Environ. Microbiol. 9, 2274–2288 (2007).PubMed
Article
Google Scholar
72.Touchon, M. et al. Phylogenetic background and habitat drive the genetic diversification of Escherichia coli. PLoS Genet. 16, e1008866 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
73.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Google Scholar More