More stories

  • in

    Alpha and beta diversity patterns of macro-moths reveal a breakpoint along a latitudinal gradient in Mongolia

    1.Díaz, S. et al. Pervasive human-driven decline of life on earth points to the need for transformative change. Science 366, eaax3100 (2019).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Sánchez-Bayo, F. & Wyckhuys, K. A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    3.Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Valtonen, A. et al. Long-term species loss and homogenization of moth communities in Central Europe. J. Anim. Ecol. 86, 730–738 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    6.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Thomas, C., Jones, T. H. & Hartley, S. E. “Insectageddon”: A call for more robust data and rigorous analyses. Glob. Change Biol. 25,1891–1892 (2019).ADS 
    Article 

    Google Scholar 
    8.Enkhtur, K., Boldgiv, B. & Pfeiffer, M. Diversity and distribution patterns of geometrid moths (Geometridae, Lepidoptera) in Mongolia. Diversity 12, 186 (2020).Article 

    Google Scholar 
    9.Pullaiah, T. Global Biodiversity: Volume 1: Selected Countries in Asia (CRC Press, 2018).Book 

    Google Scholar 
    10.Knyazev, S. A., Makhov, I. A., Matov, A. Y. & Yakovlev, R. V. Check-list of Macroheterocera (Insecta, Lepidoptera) collected in 2019 in Mongolia by Russian entomological expeditions. Ecol. Montenegrina 38, 186–204 (2020).Article 

    Google Scholar 
    11.Ustjuzhanin, P., Kovtunovich, V. & Yakovlev, R. Alucitidae (Lepidoptera), a new family for the Mongolian fauna. Nota Lepidopterol. 39, 61 (2016).Article 

    Google Scholar 
    12.Volynkin, A. V. & Gyulai, P. A new species of Athaumasta Hampson, 1906 (Lepidoptera, Noctuidae, Bryophilinae) from the Altai Mountains of Mongolia and China. Zootaxa 4508, 594–600 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Saldaitis, A. Review of the genus Kerzhnerocossus Yakovlev, 2011 (Lepidoptera: Cossidae) with descriptions of two new species from Russia and Mongolia. Zootaxa 4294, 389–394 (2017).Article 

    Google Scholar 
    14.Yakovlev, R. V. & Doroshkin, V. V. Hyles svetlana Shovkoon, 2010 (Lepidoptera: Sphingidae)—new species for Mongolian fauna and new records of Hawk-moths in Western Mongolia. Russian Entomological Journal. 26(3), 263–266 (2017).Article 

    Google Scholar 
    15.Volynkin, A. V., Titov, S. V. & Černila, M. Anarta insolita umay, a new subspecies from Russian Altai and Mongolia, with re-characterization of Anarta insolita uigurica (Hacker, 1998) (Lepidoptera, Noctuidae, Noctuinae). Ecol. Montenegrina 35, 115–122 (2020).Article 

    Google Scholar 
    16.Gershenson, Z. S. New Records of Yponomeutoid Moths (Lepidoptera, Yponomeutidae, Argyrestiidae Ypsolophidae, Plutelliidae) from the Palaearctic Region. Vestnik  Zoologii 50(1), 23–30 (2016).17.GBIF.org. GBIF Occurrence Download data. https://doi.org/10.15468/dl.h5ebh7 (2021).18.Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    19.Daniel, B., Francois, G. & Legendre, P. Numerical Ecology with R (Springer, 2011).MATH 

    Google Scholar 
    20.Jurasinski, G., Retzer, V. & Beierkuhnlein, C. Inventory, differentiation, and proportional diversity: A consistent terminology for quantifying species diversity. Oecologia 159, 15–26 (2009).ADS 
    PubMed 
    Article 

    Google Scholar 
    21.Bachand, M. et al. Species indicators of ecosystem recovery after reducing large herbivore density: Comparing taxa and testing species combinations. Ecol. Indic. 38, 12–19 (2014).Article 

    Google Scholar 
    22.Enkhtur, K., Pfeiffer, M., Lkhagva, A. & Boldgiv, B. Response of moths (Lepidoptera: Heterocera) to livestock grazing in Mongolian rangelands. Ecol. Indic. 72, 667–674 (2017).Article 

    Google Scholar 
    23.Baselga, A., Gómez-Rodríguez, C. & Lobo, J. M. Historical legacies in world amphibian diversity revealed by the turnover and nestedness components of beta diversity. PLoS ONE 7, e32341 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hawkins, B. A. et al. Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117 (2003).Article 

    Google Scholar 
    25.Whittaker, R. J., Nogués-Bravo, D. & Araújo, M. B. Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob. Ecol. Biogeogr. 16, 76–89 (2007).Article 

    Google Scholar 
    26.Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Ahlborn, J. et al. Climate–grazing interactions in Mongolian rangelands: Effects of grazing change along a large-scale environmental gradient. J. Arid Environ. 173, 104043 (2020).ADS 
    Article 

    Google Scholar 
    28.Bai, Y. et al. Positive linear relationship between productivity and diversity: Evidence from the Eurasian Steppe. J. Appl. Ecol. 44, 1023–1034 (2007).Article 

    Google Scholar 
    29.Legendre, P. & De Cáceres, M. Beta diversity as the variance of community data: Dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Anderson, M. J. et al. Navigating the multiple meanings of β diversity: A roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Tuomisto, H. A diversity of beta diversities: Straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography 33, 2–22 (2010).Article 

    Google Scholar 
    32.Hoffmann, S. et al. Remote sensing of β-diversity: Evidence from plant communities in a semi-natural system. Appl. Veg. Sci. 22, 13–26 (2019).Article 

    Google Scholar 
    33.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    34.Fontana, V. et al. Species richness and beta diversity patterns of multiple taxa along an elevational gradient in pastured grasslands in the European Alps. Sci. Rep. 10, 1–11 (2020).Article 
    CAS 

    Google Scholar 
    35.Pfeiffer, M., Dulamsuren, C., Jäschke, Y. & Wesche, K. Grasslands of China and Mongolia:Spatial Extent, Land Use and Conservation. In Grasslands of the World: Diversity, Management and Conservation. (CRC Press, 2018).36.Pfeiffer, M., Dulamsuren, C. & Wesche, K. Grasslands and Shrublands of Mongolia. In Reference Module in Earth Systems and Environmental Sciences. 759–772 (Elsevier, 2019).37.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation?. Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 

    Google Scholar 
    38.Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Patterson, B. D. & Atmar, W. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biol. J. Linn. Soc. 28, 65–82 (1986).Article 

    Google Scholar 
    40.Wang, Y., Ding, P., Chen, S. & Zheng, G. Nestedness of bird assemblages on urban woodlots: Implications for conservation. Landsc. Urban Plan. 111, 59–67 (2013).Article 

    Google Scholar 
    41.Hylander, K., Nilsson, C., Gunnar Jonsson, B. & Göthner, T. Differences in habitat quality explain nestedness in a land snail meta-community. Oikos 108, 351–361 (2005).Article 

    Google Scholar 
    42.Osório, N. C., Cunha, E. R., Tramonte, R. P., Mormul, R. P. & Rodrigues, L. Habitat complexity drives the turnover and nestedness patterns in a periphytic algae community. Limnology 20, 297–307 (2019).Article 
    CAS 

    Google Scholar 
    43.St. Pierre, J. I. & Kovalenko, K. E. Effect of habitat complexity attributes on species richness. Ecosphere 5, 1–10 (2014).Article 

    Google Scholar 
    44.Wright, D. H. & Reeves, J. H. On the meaning and measurement of nestedness of species assemblages. Oecologia 92, 416–428 (1992).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Paknia, O., Grundler, M. & Pfeiffer, M. Species richness and niche differentiation of darkling beetles (Coleoptera: Tenebrionidae) in Mongolian steppe ecosystems. In Steppe Ecosyst. Biol. Divers. Manag. Restor. 47–72 (Nova Sci. Publ.,2013).46.Rabl, D., Gottsberger, B., Brehm, G., Hofhansl, F. & Fiedler, K. Moth assemblages in Costa Rica rain forest mirror small-scale topographic heterogeneity. Biotropica 52, 288–301 (2020).Article 

    Google Scholar 
    47.McGeachie, W. J. The effects of moonlight illuminance, temperature and wind speed on light-trap catches of moths. Bull. Entomol. Res. 79, 185–192 (1989).Article 

    Google Scholar 
    48.Antão, L. H., Pöyry, J., Leinonen, R. & Roslin, T. Contrasting latitudinal patterns in diversity and stability in a high-latitude species-rich moth community. Glob. Ecol. Biogeogr. 29, 896–907 (2020).Article 

    Google Scholar 
    49.Steiner, A. Die Nachtfalter Deutschlands: ein Feldführer: sämtliche nachtaktiven Großschmetterlinge in Lebendfotos und auf Farbtafeln (Bugbook Publishing, 2014).
    Google Scholar 
    50.Spalding, A., Young, M. & Dennis, R. L. The importance of host plant-habitat substrate in the maintenance of a unique isolate of the Sandhill Rustic: Disturbance, shingle matrix and bare ground indicators. J. Insect Conserv. 16, 839–846 (2012).Article 

    Google Scholar 
    51.Betzholtz, P.-E. & Franzen, M. Mobility is related to species traits in noctuid moths. Ecol. Entomol. 36, 369–376 (2011).Article 

    Google Scholar 
    52.Soininen, J., Heino, J. & Wang, J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    53.Holt, R. D. & Hoopes, M. F. Food web dynamics in a metacommunity context. In Metacommunities. Spat. Dyn. Ecol. Communities (ed. Holyoak, M.) 68–94 (Univ. of Chicago Press, 2005).54.Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernández LM. HOSTS—a database of the World’s Lepidopteran hostplants https://www.nhm.ac.uk/our-science/data/hostplants (2010).55.Moreno, C., Cianciaruso, M. V., Sgarbi, L. F. & Ferro, V. G. Richness and composition of tiger moths (Erebidae: Arctiinae) in a Neotropical savanna: Are heterogeneous habitats richer in species?. Nat. Conserv. 12, 138–143 (2014).Article 

    Google Scholar 
    56.von Wehrden, H., Hanspach, J., Kaczensky, P., Fischer, J. & Wesche, K. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393–399 (2012).Article 

    Google Scholar 
    57.Ashton, L. A. et al. Altitudinal patterns of moth diversity in tropical and subtropical Australian rainforests. Austral. Ecol. 41, 197–208 (2016).Article 

    Google Scholar 
    58.Liu, Y. Y. et al. Changing climate and overgrazing are decimating Mongolian steppes. PLoS ONE 8, e57599 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lang, B. et al. Grazing effects on intraspecific trait variability vary with changing precipitation patterns in Mongolian rangelands. Ecol. Evol. 10(2),678-691 (2020).60.Brehm, G. A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. Nota Lepidopterol. 40, 87 (2017).Article 

    Google Scholar 
    61.Brehm, G. & Axmacher, J. C. A comparison of manual and automatic moth sampling methods (Lepidoptera: Arctiidae, Geometridae) in a rain forest in Costa Rica. Environ. Entomol. 35, 757–764 (2006).Article 

    Google Scholar 
    62.Rennwald, E. & Rodeland, E. Lepiforum: Bestimmung von Schmetterlingen (Lepidoptera) und ihren Präimaginalstadien. http://www.lepiforum.de (2002).63.Knyazev, S. A. Electronic atlas of Lepidoptera in Omsk region. http://omflies.ru/ (2017).64.Yang, M. et al. The first mitochondrial genome of the family Epicopeiidae and higher-level phylogeny of Macroheterocera (Lepidoptera: Ditrysia). Int. J. Biol. Macromol. 136, 123–132 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    66.Mongolian Statistical Information Service. Livestock. http://1212.mn/stat.aspx?LIST_ID=976_L10_1 (2020).67.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. https://CRAN.R-project.org/package=vegan (2019).68.Linlin Yan. ggvenn: Draw Venn Diagram by ‘ggplot2’. R package version 0.1.8. https://CRAN.R-project.org/package=ggvenn (2021).69.Baselga, A. et al. betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. R package version 1.5.2. https://CRAN.R-project.org/package=betapart (2020).70.Crawley, M. J. The R Book (Wiley, 2012).MATH 
    Book 

    Google Scholar 
    71.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar  More

  • in

    International fisheries threaten globally endangered sharks in the Eastern Tropical Pacific Ocean: the case of the Fu Yuan Yu Leng 999 reefer vessel seized within the Galápagos Marine Reserve

    1.Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl. Acad. Sci. U. S. A. 114, E6089–E6096 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Briggs, J. C. Marine extinctions and conservation. Mar. Biol. 158, 485–488 (2011).Article 

    Google Scholar 
    3.Heupel, M. R., Knip, D. M., Simpfendorfer, C. A. & Dulvy, N. K. Sizing up the ecological role of sharks as predators. Mar. Ecol. Prog. Ser. 495, 291–298 (2014).ADS 
    Article 

    Google Scholar 
    4.TRAFFIC East Asia. Shark product trade in Hong Kong and mainland China and implementation of the CITES shark listings. TRAFFIC East Asia (2004).5.Pacoureau, N. et al. Half a century of global decline in oceanic sharks and rays. Nature 589, 567–571 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, 1–34 (2014).Article 

    Google Scholar 
    7.Dwyer, R. G. et al. Individual and population benefits of marine reserves for reef sharks. Curr. Biol. 30, 480-489.e5 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kerwath, S. E., Winker, H., Götz, A. & Attwood, C. G. Marine protected area improves yield without disadvantaging fishers. Nat. Commun. 4, 1–6 (2013).Article 

    Google Scholar 
    9.Cabral, R. B. et al. A global network of marine protected areas for food. Proc. Natl. Acad. Sci. U. S. A. 117, 28134–28139 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Camhi, M. D., Fordham, S. V. & Fowler, S. L. Domestic and International Management for Pelagic Sharks. in Sharks of the Open Ocean: Biology, Fisheries and Conservation (eds. M. D. Camhi, E. K. Pikitch & E. A. Babcock) 418–444 (Blackwell, 2009). https://doi.org/10.1002/9781444302516.ch34.11.Schiller, L., Alava, J. J., Grove, J., Reck, G. & Pauly, D. The demise of Darwin’s fishes: evidence of fishing down and illegal shark finning in the Galápagos Islands. Aquat. Conserv. Mar. Freshw. Ecosyst. 25, 431–446 (2015).Article 

    Google Scholar 
    12.Feitosa, L. M. et al. DNA-based identification reveals illegal trade of threatened shark species in a global elasmobranch conservation hotspot. Sci. Rep. 8, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    13.Reck, G. Development of the Galápagos Marine Reserve. in The Galapagos Marine Reserve. Social and Ecological Interactions in the Galapagos Islands (ed. Denkinger J, V. L.) 139‒158 (Springer, 2014).14.PNG (Parque Nacional Galápagos). Barco chino deberá pagar 6 millones por daño ambiental dispone Sala de lo Penal. https://www.galapagos.gob.ec/barco-chino-debera-pagar-6-millones-por-dano-ambiental-dispone-sala-de-lo-penal/ (2017).15.Fiscalía General del Estado Ecuatoriano. Boletín de Prensa FGE N. 096-DC-2019: Corte Nacional aceptó recurso de casación por delito contra la flora y fauna silvestres en Galápagos. https://www.fiscalia.gob.ec/corte-nacional-acepto-recurso-de-casacion-por-delito-contra-la-flora-y-fauna-silvestres-en-galapagos/ (2019).16.D’Afflisio, E., Braca, P., Millefiori, L. M. & Willett, P. Maritime Anomaly Detection Based on Mean-Reverting Stochastic Processes Applied to a Real-World Scenario. in 2018 21st International Conference on Information Fusion, FUSION 2018 1171–1177 (Institute of Electrical and Electronics Engineers Inc., 2018). https://doi.org/10.23919/ICIF.2018.8455854.17.Cutlip, K. Our Data Suggests Transhippment Involved in Refrigerated Cargo Vessel Just Sentenced to $5.9 Million and Jail Time for Carrying Illegal Sharks. https://globalfishingwatch.org/impacts/policy-compliance/transhippment-involved-in-reefer-sentenced-for-carrying-illegal-sharks/ (2017).18.Compagno, L., Dando, M. & Fowler, S. Sharks of the World (Princeton University Press, 2005).
    Google Scholar 
    19.Bradley, D. et al. Leveraging satellite technology to create true shark sanctuaries. Conserv. Lett. 12, 1–8 (2019).Article 

    Google Scholar 
    20.Cardeñosa, D. et al. Species composition of the largest shark fin retail-market in mainland China. Sci. Rep. 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    21.IATTC. Resolution C-11-10. Resolution on the conservation of oceanic whitetip sharks caught in association with fisheries in the Antigua convention area. (IATCC, 2011).22.Gonzalez-Pestana, A., Kouri J., C. & Velez-Zuazo, X. Shark fisheries in the Southeast Pacific: A 61-year analysis from Peru. F1000Research 3, 164 (2014).23.Martínez-Ortiz, J., Aires-Da-silva, A. M., Lennert-Cody, C. E. & Maunderxs, M. N. The ecuadorian artisanal fishery for large pelagics: Species composition and spatio-temporal dynamics. PLoS ONE 10, 1–29 (2015).Article 
    CAS 

    Google Scholar 
    24.Bustamante, C. & Bennett, M. B. Insights into the reproductive biology and fisheries of two commercially exploited species, shortfin mako (Isurus oxyrinchus) and blue shark (Prionace glauca), in the south-east Pacific Ocean. Fish. Res. 143, 174–183 (2013).Article 

    Google Scholar 
    25.Hinton, M. G. et al. Stock Status Indicators for Fisheries of the Eastern Pacific Ocean. INTER-AMERICAN TROPICAL TUNA COMISSION, 19, 142–182 (2011).26.Duffy, L. M., Lennert-Cody, C. E., Olson, R. J., Minte-Vera, C. V. & Griffiths, S. P. Assessing vulnerability of bycatch species in the tuna purse-seine fisheries of the eastern Pacific Ocean. Fish. Res. 219, 105316 (2019).Article 

    Google Scholar 
    27.Clarke, S. C., Harley, S. J., Hoyle, S. D. & Rice, J. S. Population trends in Pacific Oceanic sharks and the utility of regulations on shark finning. Conserv. Biol. 27, 197–209 (2013).PubMed 
    Article 

    Google Scholar 
    28.Martinez Ortiz, J. et al. Abundancia estacional de Tiburones desembarcados en Manta-Ecuador. EPESPO-PMRC, 9–27 (2007).29.Román-Verdesoto, M. Updated summary regarding hammerhead sharks caught in the tuna fisheries in the Eastern Pacific Ocean 6th Meeting of the Scientific Advisory Committee IATTC. (2015).30.IATTC. Resolution C-16-06: Conservation Measures for Shark Species, with Special Emphasis on the Silky Shark (Carcharhinus falciformis), for the years 2017, 2018, and 2019. (IATTC, 2016).31.Alava, J. J. Massive Chinese Fleet Jeopardizes Threatened Shark Species around the Galápagos Marine Reserve and Waters off Ecuador. Int. J. Fish. Sci. Res. 1, 8–10 (2017).
    Google Scholar 
    32.El Universo. Se detectan tres flotas pesqueras chinas cerca de Galápagos . https://Www.Eluniverso.Com/Noticias/2019/03/21/Nota/7244318/Se-Detectan-Tres-Flotas-Pesqueras-Chinas-Cerca-Galapagos (2019).33.El Universo. Armada del Ecuador detecta flota pesquera con 260 barcos en las cercanías de Galápagos. https://www.eluniverso.com/noticias/2020/07/16/nota/7908768/armada-ecuador-detecta-flota-pesquera-260-barcos-cercanias. (2020).34.El Universo. Varios barcos chinos, que integran la flota extranjera que pesca cerca de Ecuador, estarían emitiendo ‘falsas coordenadas’; aparecen en Nueva Zelanda. https://www.eluniverso.com/noticias/2020/08/06/nota/7932429/flota-china-pesquera-galapagos-ecuador-nueva-zelanda-ecuador#cxrecs_s. (2020)35.Stuff. Chinese vessels off Galapagos ‘cloaking’ in New Zealand. https://www.stuff.co.nz/environment/122339295/chinese-vessels-off-galapagos-cloaking-in-new-zealand. (2020).36.Mas, F., Forselledo, R. & Domingo, A. Length-length relationships for six pelagic shark species. Collect. Vol. Sci. Pap. ICCAT 70, 2441–2450 (2014).
    Google Scholar 
    37.D’Alberto, B. M. et al. Age, growth and maturity of oceanic whitetip shark (Carcharhinus longimanus) from Papua New Guinea. Mar. Freshw. Res. 68, 1118–1129 (2017).Article 

    Google Scholar 
    38.Oshitani, S., Nakano, H. & Tanaka, S. Age and growth of the silky shark Carcharhinus falciformis from the Pacific Ocean. Fish. Sci. 69, 456–464 (2003).CAS 
    Article 

    Google Scholar 
    39.Joung, S. J., Chen, N. F., Hsu, H. H. & Liu, K. M. Estimates of life history parameters of the oceanic whitetip shark, Carcharhinus longimanus, in the Western North Pacific Ocean. Mar. Biol. Res. 12, 758–768 (2016).Article 

    Google Scholar 
    40.Naylor, G. J. P. et al. A DNA sequencebased approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Museum Nat. Hist. 21, 1–262 (2012).
    Google Scholar 
    41.Peñafiel, N., Flores, D. M., Rivero De Aguilar, J., Guayasamin, J. M. & Bonaccorso, E. A cost-effective protocol for total DNA isolation from animal tissue. Neotrop. Biodivers. 5, 69–74 (2019).42.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2018).Article 
    CAS 

    Google Scholar 
    44.Maddison, W. P. & Maddison, D. R. Mesquite: A modular system for evolutionary Mesquite installation for evolutionary analysis. (2003).45.Aparicio-Puerta, E. et al. SRNAbench and sRNAtoolbox 2019: intuitive fast small RNA profiling and differential expression. Nucleic Acids Res. 47, W530–W535 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Trifinopoulos, J., Nguyen, L. T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Von Haeseler, A. & Jermiin, L. S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Seki, T., Taniuchi, T., Nakano, H. & Shimizu, M. Age, growth and reproduction of the oceanic Whitetip shark from the Pacific Ocean. Fish. Sci. 64, 14–20 (1998).CAS 
    Article 

    Google Scholar 
    50.Bergman, B. Reefer Fined $5.9 Million for Endangered Catch in Galapagos Recently Rendezvoused with Chinese Longliners. https://skytruth.org/2017/08/galapagos-reefer-fined-5-9-million/ (2017).51.Romero-Caicedo, A. F., Galván-Magaña, F. & Martínez-Ortiz, J. Reproduction of the pelagic thresher shark Alopias pelagicus in the equatorial Pacific. J. Mar. Biol. Assoc. U. K. 94, 1501–1507 (2014).Article 

    Google Scholar 
    52.Chen, C., Liu, K. & Chang, Y. Reproductive biology of the bigeye thresher shark, Alopias superciliosus (Lowe, 1839) (Chondrichthyes: Alopiidae), in the northwestern Pacific. Ichthyol. Res. 44, 227–236 (1997).Article 

    Google Scholar 
    53.Bradley, D. et al. Growth and life history variability of the grey reef shark (Carcharhinus amblyrhynchos) across its range. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    54.Holmes, B. J. et al. Age and growth of the tiger shark Galeocerdo cuvier off the east coast of Australia. J. Fish Biol. 87, 422–448 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Nakano, H Stevens, J. The biology and ecology of the blue shark, Prionace glauca. in Sharks of the open ocean: Biology, fisheries and conservation (Vol. 1) (ed. Camhi, Merry D Pikitch, E K Babcock, E. A.) 140‒151 (Blackwell Scientific Publications, 2008).56.Gubanov, Y. E. The reproduction of some species of pelagic sharks from the equatorial zone of the Indian Ocean. J. Ichthyol. 18, 781–792 (1978).
    Google Scholar 
    57.Fahmi & Sumadhiharga, K. Size, sex and length at maturity of four common sharks caught from Western Indonesia. Mar. Res. Indones. 32, 7–19 (2007).58.Nava, P. N. & Márquez-Farías, J. F. Talla de madurez del tiburón martillo, Sphyrna zygaena, capturado en el Golfo de California. Hidrobiologica 24, 129–135 (2014).
    Google Scholar 
    59.Saïdi, B., Bradaï, M. N. & Bouaïn, A. Reproductive biology of the smooth-hound shark Mustelus mustelus (L.) in the Gulf of Gabès (south-central Mediterranean Sea). J. Fish Biol. 72, 1343–1354 (2008). More

  • in

    Prolonged drought imparts lasting compositional changes to the rice root microbiome

    1.Lesk, C., Rowhani, P. & Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 529, 84–87 (2016).CAS 

    Google Scholar 
    2.Zhang, J. et al. Effect of drought on agronomic traits of rice and wheat: a meta-analysis. Int. J. Environ. Res. Public Health 15, 839 (2018).3.Hirasawa, T., in Genetic Improvement of Rice for Water-Limited Environments (eds Ito, O, O’Toole, J. C. & Hardy, B.) 89–98 (International Rice Research Institute, 1999).4.Pandey, V. & Shukla, A. Acclimation and tolerance strategies of rice under drought stress. Rice Sci. 22, 147–161 (2015).
    Google Scholar 
    5.Compant, S., van der Heijden, M. G. A. & Sessitsch, A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 73, 197–214 (2010).CAS 

    Google Scholar 
    6.de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270–274 (2020).
    Google Scholar 
    7.Busby, P. E. et al. Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol. 15, e2001793 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    8.Santos-Medellín, C., Edwards, J., Liechty, Z., Nguyen, B. & Sundaresan, V. Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. mBio 8, e00764-17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    9.Naylor, D., DeGraaf, S., Purdom, E. & Coleman-Derr, D. Drought and host selection influence bacterial community dynamics in the grass root microbiome. ISME J. https://doi.org/10.1038/ismej.2017.118 (2017).10.Fitzpatrick, C. R. et al. Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1717617115 (2018).11.Edwards, J. A. et al. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16, e2003862 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    12.Zhang, J. et al. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci. China Life Sci. 61, 613–621 (2018).
    Google Scholar 
    13.Xu, L. et al. Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria. Proc. Natl Acad. Sci. USA 115, E4284–E4293 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Liechty, Z. et al. Comparative analysis of root microbiomes of rice cultivars with high and low methane emissions reveals differences in abundance of methanogenic archaea and putative upstream fermenters. mSystems 5, e00897-19 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    15.Rong, X. & Huang, Y. Taxonomic evaluation of the Streptomyces griseus clade using multilocus sequence analysis and DNA–DNA hybridization, with proposal to combine 29 species and three subspecies as 11 genomic species. Int. J. Syst. Evol. Microbiol. 60, 696–703 (2010).CAS 

    Google Scholar 
    16.Lin, L. & Xu, X. Indole-3-acetic acid production by endophytic Streptomyces sp. En-1 isolated from medicinal plants. Curr. Microbiol. 67, 209–217 (2013).CAS 

    Google Scholar 
    17.Legault, G. S., Lerat, S., Nicolas, P. & Beaulieu, C. Tryptophan regulates thaxtomin A and indole-3-acetic acid production in Streptomyces scabiei and modifies its interactions with radish seedlings. Phytopathology 101, 1045–1051 (2011).CAS 

    Google Scholar 
    18.Guo, J. et al. Seed-borne, endospheric and rhizospheric core microbiota as predictor for plant functional traits across rice cultivars are dominated by deterministic processes. New Phytol. https://doi.org/10.1111/nph.17297 (2021).19.de Vries, F. T. et al. Soil bacterial networks are less stable under drought than fungal networks. Nat. Commun. 9, 3033 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    20.de Vries, F. T. & Shade, A. Controls on soil microbial community stability under climate change. Front. Microbiol. 4, 265 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    21.Borken, W. & Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Change Biol. 15, 808–824 (2009).
    Google Scholar 
    22.Lueders, T. & Friedrich, M. W. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl. Environ. Microbiol. 68, 2484–2494 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Linquist, B. A. et al. Reducing greenhouse gas emissions, water use, and grain arsenic levels in rice systems. Glob. Change Biol. 21, 407–417 (2015).
    Google Scholar 
    24.Speirs, L. B. M., Rice, D. T. F., Petrovski, S. & Seviour, R. J. The phylogeny, biodiversity, and ecology of the chloroflexi in activated sludge. Front. Microbiol. 10, 2015 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    25.Thomas, S. H. et al. The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS ONE 3, e2103 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    26.Yang, T. H., Coppi, M. V., Lovley, D. R. & Sun, J. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation. Microb. Cell Fact. 9, 90 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Keller, K. L. & Wall, J. D. Genetics and molecular biology of the electron flow for sulfate respiration in desulfovibrio. Front. Microbiol. 2, 135 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. https://doi.org/10.1038/s41564-018-0129-3 (2018).29.Williams, A. & de Vries, F. T. Plant root exudation under drought: implications for ecosystem functioning. New Phytol. 225, 1899–1905 (2020).
    Google Scholar 
    30.Vries, F. T. et al. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytol. 224, 132–145 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    31.Casartelli, A. et al. Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice 11, 9 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    32.Pérez-Jaramillo, J. E. et al. Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. ISME J. https://doi.org/10.1038/ismej.2017.85 (2017).33.Kang, D.-J. & Futakuchi, K. Effect of moderate drought-stress on flowering time of interspecific hybrid progenies (Oryza sativa L. × Oryza glaberrima Steud.). J. Crop Sci. Biotechnol. 22, 75–81 (2019).
    Google Scholar 
    34.Guo, X. et al. Host-associated quantitative abundance profiling reveals the microbial load variation of root microbiome. Plant Commun. 1, 100003 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    35.Varoquaux, N. et al. Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1907500116 (2019).36.Li, P. et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front. Genet. 10, 55 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Vandenkoornhuyse, P., Quaiser, A., Duhamel, M., Le Van, A. & Dufresne, A. The importance of the microbiome of the plant holobiont. New Phytol. 206, 1196–1206 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    38.Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).
    Google Scholar 
    39.Shade, A. & Stopnisek, N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr. Opin. Microbiol. 49, 50–58 (2019).
    Google Scholar 
    40.Suralta, R. R. et al. Plasticity in nodal root elongation through the hardpan triggered by rewatering during soil moisture fluctuation stress in rice. Sci. Rep. 8, 4341 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    41.Hamedi, J. & Mohammadipanah, F. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria. J. Ind. Microbiol. Biotechnol. 42, 157–171 (2015).CAS 

    Google Scholar 
    42.Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M. & SkZ, A. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184, 13–24 (2016).
    Google Scholar 
    43.Aznar, A. & Dellagi, A. New insights into the role of siderophores as triggers of plant immunity: what can we learn from animals? J. Exp. Bot. 66, 3001–3010 (2015).CAS 

    Google Scholar 
    44.Viaene, T., Langendries, S., Beirinckx, S., Maes, M. & Goormachtig, S. Streptomyces as a plant’s best friend? FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw119 (2016).45.Meena, K. K. et al. Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front. Plant Sci. 8, 172 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    46.Mukamuhirwa, A. et al. Effect of intermittent drought on grain yield and quality of rice (Oryza sativa L.) grown in Rwanda. J. Agro Crop Sci. 206, 252–262 (2020).CAS 

    Google Scholar 
    47.Fleta-Soriano, E. & Munné-Bosch, S. Stress memory and the inevitable effects of drought: a physiological perspective. Front. Plant Sci. 7, 143 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    48.Ding, Y., Fromm, M. & Avramova, Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 3, 740 (2012).
    Google Scholar 
    49.de la Fuente Cantó, C. et al. An extended root phenotype: the rhizosphere, its formation and impacts on plant fitness. Plant J. 103, 951–964 (2020).
    Google Scholar 
    50.Kittas, C., Bartzanas, T. & Jaffrin, A. Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosyst. Eng. 85, 87–94 (2003).
    Google Scholar 
    51.Edwards, J. et al. Soil domestication by rice cultivation results in plant–soil feedback through shifts in soil microbiota. Genome Biol. 20, 221 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    52.Edwards, J., Santos-Medellín, C. & Sundaresan, V. Extraction and 16S rRNA sequence analysis of microbiomes associated with rice roots. Bio. Protoc. 8, e2884 (2018).53.Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).CAS 

    Google Scholar 
    54.Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neufeld, J. D. PANDAseq: paired-end assembler for illumina sequences. BMC Bioinform. 13, 31 (2012).CAS 

    Google Scholar 
    55.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Weimer, B. C. 100K Pathogen Genome Project. Genome Announc. 5, e00594-17 (2017).59.Kong, N. et al. Draft genome sequences of 1,183 Salmonella strains from the 100K Pathogen Genome Project. Genome Announc. 5, e00518–17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    60.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 

    Google Scholar 
    63.Medema, M. H. et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39, W339–W346 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018); https://www.R-project.org/65.McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    68.McMurdie, P. J. & Holmes, S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    69.Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Oksanen, J. et al. vegan: Community Ecology Package (2018).71.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).72.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 13 (2017).
    Google Scholar 
    73.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Emmeans: estimated marginal means, aka least-squares means. R package v.1, 3 (R Foundation for Statistical Computing, 2018).74.Kassambara, A. Rstatix: pipe-friendly framework for basic statistical tests. R package v.0.6.0 (R Foundation for Statistical Computing, 2020).75.Graves, S., Piepho, H.-P., Selzer, L. & Dorai-Raj, S. multcompView: visualizations of paired comparisons. R package v.0.1-7 (R Foundation for Statistical Computing, 2015).76.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Liaw, A. & Wiener, M. Classification and regression by randomForest. R. News 2, 18–22 (2002).
    Google Scholar 
    78.Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The use of diversity indices for local assessment of marine sediment quality

    Our analyses of marine invertebrate communities at a regional scale and at two local sites revealed that taxonomic density (i.e. species density) was a sensitive index of marine sediment quality. However, although Hill–Simpson diversity and Pielou evenness were shown to respond to sediment variability in the regional dataset, they could be insensitive or respond falsely when a low number of individuals was observed, and when more than one community co-existed at a local site. These results from two local sites should serve as a point of caution when using diversity indices. Although these indices can provide a good understanding of how communities respond to sediment degradation, it is important to understand how these indices collapse when there is a small number of individuals observed or when the data span multiple co-existing communities. This emphasises the need for better strategies for the ecological assessment of sediment quality based on diversity indices at the local scale in marine areas.The analyses of the regional dataset show that WC had a larger impact than other variables on the taxonomic density of benthic invertebrate communities, although grain size and organic matter content are also thought to affect benthic invertebrate richnesse.g.17,18. The high contribution of WC likely reflects its physical effects on sediment structure. The optimal range of WC for the burrowing activity of benthic invertebrates is between around 25% WC at the densest (i.e. hardest) and around 40% WC at the loosest (i.e. softest) packing of sediment19,20. A WC value exceeding the upper limit of this optimal range could indicate sediment that is too soft for the burrowing activity of benthic invertebrates; this may explain the negative effect of WC on taxonomic density observed in this study.The relatively high standard deviation of random effects as compared against the effect size of WC in GLMMs suggests that unmeasured variables had a strong effect on taxonomic density. Salinity21 and anthropogenic impacts, such as dredging and trawling13, are well-known factors that could affect the diversity of benthic invertebrates. However, they were not considered in the regional dataset, because these factors are site- and sampling-location specific, and therefore it was impossible to identify which factors needed to be measured prior to investigation. Our study highlights one advantage of GLMMs, which is the ability to show the effects of these unmeasured factors. The effect size of WC was almost as large as that of the random effects in the low-frequency group (Table 1), which suggests that rare invertebrates were more sensitive to sediment degradation in this group, and that this sensitivity contributed to the overall response of taxonomic density.The analyses of the regional dataset also showed that an increase in WC caused a decrease in Hill–Simpson diversity and Pielou evenness in the reliable data. This result is consistent with previously identified responses to sediment degradation6. Because the low values of these indices occurred in communities with a few dominant species, this suggests that the benthic community was dominated by a few species in soft sediments (i.e. where WC was high).Similarly, increasing WC was associated with a significant decline in species density at the two local sites (Table 2), and the trend was significant for both reliable and unreliable data. This suggests that WC can be an indicator of benthic invertebrate species density at the local scale. However, it is likely that the trend in species density was not only caused by the effect of sediment softness (as is suggested by our analysis of the regional dataset) but also by other factors. One such factor is anoxia, which has been observed from August to October in the water column above the sediment in Nagoya Port at locations where no individuals were sampled (i.e., N5, N9, N10, and N12)22. Similarly, high organic-carbon and trace-metal concentrations have been reported in our study area23. These factors could have co-occurred with high WC, and thereby contributed to the decline in species density observed in our study. Because spatial correlations between variables tend to occur at local scales24, it is difficult to identify factors that affect species density at this scale. Species density is itself a sensitive indicator; however, if alternatives are needed, parameters that explain variations in species density, such as WC, are recommended for use as a representative variable in local assessment.WC did not always have a significant negative effect on Hill–Simpson diversity or Pielou evenness at the local scale (Table 2). The significant negative effect of WC on Hill–Simpson diversity identified in the reliable data from Nagoya Port indicates that community structure was dominated by a few species at higher WC, which mirrors the results obtained from the regional dataset. However, WC had no significant effect on Pielou evenness, and even the effect on Hill–Simpson diversity was only significant once locations that have different coexisting community structures (i.e., the Fujimae tidal flat, N8, and N20) were excluded from the analysis. These results mean that these diversity indices are not as sensitive to changes in WC as species density. Conversely, we found questionable significant negative effects of WC on both Hill–Simpson diversity and Pielou evenness when unreliable data were included in the analysis (Table 2). The low values of these indices obtained at high WC likely reflect artefacts in the unreliable data (Fig. 5c, d).It is important to find and exclude coexisting communities when analysing the effects of sediment degradation on indices of community structure (i.e., Hill–Simpson diversity and Pielou evenness) in a target community. In Matsunaga Bay, the river-mouth community on the intertidal flat was found to have a distinct sediment-particle-size composition compared to other communities in the bay based on multivariate analysis (Fig. 3c). In addition, because the polychaete Simplisetia erythraeensis that dominated the river-mouth community can be found in brackish environments (WoRMS: http://www.marinespecies.org/), low salinity (which was not measured in this study) may be a distinguishing feature of this location. Therefore, environmental characteristics such as sediment particle size, salinity, and the location of the intertidal flat likely underlie the spatial variability of community structure in this bay.Whereas we were able to predict the spatial variability of community structure prior to field sampling in Matsunaga Bay, this was not true in Nagoya Port. Our a priori expectation was that the benthic community on the Fujimae intertidal flat would have a distinct structure because of its location; although this was borne out by the data, we were unable to predict that there would also be distinct community structures at N8 and N20 because of the complex spatial patterning of benthic communities in this area. The explanatory variables we selected (salinity, C/N, WC, and D50) explained less than 11% of the total variance in community structure. This weak explanatory power indicates that unmeasured environmental variables may underlie the complex spatial patterning of benthic communities observed in our study, which is typical of the complexity often found in urbanised marine areas13.Although our results demonstrate that excluding distinct coexisting communities from the overall data is important when analysing species density (Fig. 5b) and Hill–Simpson diversity (Fig. 5c), such communities can be difficult to distinguish prior to field sampling. Therefore, post-hoc multivariate analysis is needed to distinguish between a target community and other communities. In addition, because diversity indices are affected by both species composition and the proportions of individuals in each taxon, the use of multiple distances between sampling points is recommended to assess how communities differ across space.The unreliability of Hill–Simpson diversity and Pielou evenness values calculated from small sample sizes can be explained by a theoretical framework for the effective number of species9. The effective number of species, which reflects the number of dominant species14, is predicted to decline or remain unchanged in response to low species density in cases where taxonomic density has a sensitive negative response (Fig. 6a). However, the effective number of species can be underestimated when there is a small sample size (Fig. 6b). This suggests that the questionable negative responses of Hill–Simpson diversity and Pielou evenness (which is calculated from the Shannon index) (Table 2) likely do not reflect real changes in community structure in Nagoya Port, but instead are caused by an artefact that negatively correlates with sediment degradation. However, low Pielou evenness was rarely associated with unreliable data in our study (Appendix S2). Pielou evenness tended to be high, approaching 1.0, in unreliable data from the regional dataset (Supplementary Fig. S2) and Matsunaga Bay (Supplementary Fig. S4). This bias can be explained as a possible result of small sample size. Our results should serve as a warning that false or insensitive responses in Hill–Simpson diversity and Pielou evenness may occur if sample size is insufficient to estimate these indices accurately.Figure 6Two mechanisms that can affect the effective number of species (which can be estimated with Hill–Simpson diversity). (a) The effective number of species becomes lower at low species density with sufficient sample size. When the degradation of sediment quality (SQ degradation) affects species density but not the density of individuals, the effective number of species decreases as a real response to community structure. However, as shown in (b), the effective number of species also becomes lower at small sample size n. When SQ degradation affects the density of individuals, the effective number of species might not reflect a real response in community structure.Full size imageIn this study, we used a sample size of 50 individuals as the threshold between reliable and unreliable data. Although a sample-size threshold can be useful when judging whether a sample accurately reflects community structure, the specific value we used was not based on any scientific evidence. In fact, our datasets included several data points classified as “reliable” that were not sufficiently saturated in Hill–Simpson diversity (Supplementary Figs. S2a, S4a, and S5a). Sample coverage is an index that standardises the number of taxa observed by the completeness of the sample15,25. The sample coverage of the reliable data was close to 1.0 (complete) and greater than that of the unreliable data in all three datasets used in this study. Although the rarefaction curve is a more direct way to show the estimation accuracy of Hill–Simpson diversity, the simplicity of the sample coverage index (as compared to drawing a rarefaction curve) is an advantage when judging data reliability. In addition, sample coverage is useful when plotting the degree of accuracy in two-dimensional figures, as was done in this study.When the number of individuals observed, n, is not sufficient to estimate the indices of community structure accurately, we can use an extrapolation technique that provides more reliable estimates by doubling the number of individuals observed to 2n9. Although we did not use this technique in this study because our objective was to explore how small sample sizes affect assessments of marine sediment quality, this technique is a useful solution for practical assessment when the number of individuals observed is not sufficient.In conclusion, our results show that species density responds sensitively to sediment degradation. By contrast, indices of community structure (i.e. Hill–Simpson diversity and Pielou evenness) were insensitive at the local scale because of masking by multiple coexisting communities, and sometimes produced misleading results because of inaccuracies associated with small sample sizes. Because indices for community structure provide a good understanding of how communities respond to sediment degradation, which cannot be provided by species density, ecological approaches using these indices have merits for assessing sediment quality because they are more realistic under field conditions3 and because they reduce uncertainties26,27. The potential for misleading and insensitive results must be avoided to keep from diluting these merits. We recommend that these diversity indices for community structure be used in local assessments only if it is possible to obtain a sufficient sample size for accurate estimation, and if co-existing communities can be differentiated before field sampling or by post-hoc analysis through sampling at multiple distances. More

  • in

    Coral-associated nitrogen fixation rates and diazotrophic diversity on a nutrient-replete equatorial reef

    1.Bell P. Eutrophication and coral reefs—some examples in the Great Barrier Reef lagoon. Water Res. 1992;26:553–68.CAS 
    Article 

    Google Scholar 
    2.Odum HT, Odum EP. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol Monogr. 1955;25:291–320.Article 

    Google Scholar 
    3.Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.CAS 
    Article 

    Google Scholar 
    4.Ceh J, Kilburn MR, Cliff JB, Raina JB, van Keulen M, Bourne DG. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol Evol. 2013;3:2393–400.Article 

    Google Scholar 
    5.Fine M, Loya Y. Endolithic algae: an alternative source of photoassimilates during coral bleaching. Proc R Soc B. 2002;269:1205–10.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Benavides M, Bednarz VN, Ferrier-Pagès C. Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front Mar Sci. 2017;4:2261–17.Article 

    Google Scholar 
    7.Cardini U, Bednarz VN, van Hoytema N, Rovere A, Naumann MS, Al-Rshaidat MMD, et al. Budget of primary production and dinitrogen fixation in a highly seasonal Red Sea coral reef. Ecosystems. 2016;19:771–85.Article 

    Google Scholar 
    8.Lesser MP, Morrow KM, Pankey SM, Noonan SHC. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef. ISME J. 2018;12:813–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bednarz VN, van de Water JAJM, Rabouille S, Maguer JF, Grover R, Ferrier-Pagès C. Diazotrophic community and associated dinitrogen fixation within the temperate coral Oculina patagonica. Environ Microbiol. 2018;21:480–95.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Wild C, Voolstra CR. Nitrogen fixation aligns with nifH abundance and expression in two coral trophic functional groups. Front Microbiol. 2017;8:1187.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Davey M, Holmes G, Johnstone R. High rates of nitrogen fixation (acetylene reduction) on coral skeletons following bleaching mortality. Coral Reefs. 2007;27:227–36.Article 

    Google Scholar 
    12.Lesser MP, Falcón LI, Rodríguez-Román A, Enríquez S, Hoegh-Guldberg O, Iglesias-Prieto R. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar Ecol Prog Ser. 2007;346:143–52.CAS 
    Article 

    Google Scholar 
    13.Olson ND, Ainsworth TD, Gates RD, Takabayashi M. Diazotrophic bacteria associated with Hawaiian Montipora corals: diversity and abundance in correlation with symbiotic dinoflagellates. J Exp Mar Biol Ecol. 2009;371:140–6.CAS 
    Article 

    Google Scholar 
    14.Benavides M, Houlbrèque F, Camps M, Lorrain A, Grosso O, Bonnet S. Diazotrophs: a non-negligible source of nitrogen for the tropical coral Stylophora pistillata. J Exp Biol. 2016;219:2608–12.PubMed 
    PubMed Central 

    Google Scholar 
    15.Cardini U, Bednarz V, Naumann MS, van Hoytema N, Rix L, Foster RA, et al. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions. Proc R Soc B. 2015;282:20152257.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Grover R, Ferrier-Pagès C, Maguer JF, Ezzat L, Fine M. Nitrogen fixation in the mucus of Red Sea corals. J Exp Biol. 2014;217:3962–3.PubMed 
    PubMed Central 

    Google Scholar 
    17.Mohr W, Großkopf T, Wallace DWR, LaRoche J. Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE. 2010;5:e12583.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Montoya JP, Voss M, Kahler P, Capone DG. A simple, high-precision, high-sensitivity tracer assay for N2 fixation. Appl Environ Microbiol. 1996;62:986–93.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Bednarz VN, Grover R, Maguer JF, Fine M, Ferrier-Pagès C. The assimilation of diazotroph-derived nitrogen by scleractinian corals depends on their betabolic status. MBio. 2017;8:e02058-16.20.Meunier V, Bonnet S, Pernice M, Benavides M, Lorrain A, Grosso O, et al. Bleaching forces coral’s heterotrophy on diazotrophs and Synechococcus. ISME J. 2019;13:2882–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cardini U, van Hoytema N, Bednarz VN, Rix L, Foster RA, Al-Rshaidat MMD, et al. Microbial dinitrogen fixation in coral holobionts exposed to thermal stress and bleaching. Environ Microbiol. 2016;18:2620–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Moisander PH, Beinart RA, Hewson I, White AE, Johnson KS, Carlson CA, et al. Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science. 2010;327:1512–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sangsawang L, Casareto BE, Ohba H, Vu HM, Meekaew A, Suzuki T, et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R Soc Open Sci. 2017;4:171201.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Pogoreutz C, Rädecker N, Cárdenas A, Gärdes A, Voolstra CR, Wild C. Sugar enrichment provides evidence for a role of nitrogen fixation in coral bleaching. Glob Chang Biol. 2017;23:3838–48.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.D’Angelo C, Wiedenmann J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr Opin Environ Sustain. 2014;7:82–93.Article 

    Google Scholar 
    26.Capone DG, O’Neil JM, Zehr J, Carpenter EJ. Basis for diel variation in nitrogenase activity in the marine planktonic Cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 1990;56:3532–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Mulholland MR, Ohki K, Capone DG. Nutrient controls on nitrogen uptake and metabolism by natural populations and cultures of Trichodesmium (Cyanobacteria). J Phycol. 2001;37:1001–9.CAS 
    Article 

    Google Scholar 
    28.Mulholland MR, Bernhardt PW, Widner BN, Selden CR, Chappell PD, Clayton S, et al. High rates of N2 fixation in temperate, western North Atlantic coastal waters expand the realm of marine diazotrophy. Global Biogeochem Cycles. 2019;33:826–40.CAS 
    Article 

    Google Scholar 
    29.Wen Z, Lin W, Shen R, Hong H, Kao SJ, Shi D. Nitrogen fixation in two coastal upwelling regions of the Taiwan Strait. Sci Rep. 2017;7:1–10.Article 
    CAS 

    Google Scholar 
    30.Grosse J, Bombar D, Doan HN, Nguyen LN, Voss M. The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low and high discharge season. Limnol Oceanogr. 2010;55:1668–80.CAS 
    Article 

    Google Scholar 
    31.Mills MM, Turk-Kubo KA, Dijken GL, Henke BA, Harding K, Wilson ST, et al. Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments. ISME J. 2020;14:2395–406.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Henke BA, Turk-Kubo KA, Bonnet S, Zehr JP. Distributions and abundances of sublineages of the N2fixing cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN-A) in the New Caledonian coral lagoon. Front Microbiol. 2018;9:554.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.El-Khaled YC, Roth F, Tilstra A, Rädecker N, Karcher DB, Kürten B, et al. In situ eutrophication stimulates dinitrogen fixation, denitrification, and productivity in Red Sea coral reefs. Mar Ecol Prog Ser. 2020;645:55–66.CAS 
    Article 

    Google Scholar 
    34.Knapp AN. The sensitivity of marine N2 fixation to dissolved inorganic nitrogen. Front Microbiol. 2012;3:374.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Rädecker N, Pogoreutz C, Voolstra CR, Wiedenmann J, Wild C. Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol. 2015;23:1490–7.Article 
    CAS 

    Google Scholar 
    36.Erler DV, Shepherd BO, Linsley BK, Nothdurft LD, Hua Q, Lough JM. Has nitrogen supply to coral reefs in the South Pacific Ocean changed over the past 50 thousand years? Paleoceanogr Paleoclimatol. 2019;34:567–79.Article 

    Google Scholar 
    37.Pratte ZA, Richardson LL, Mills DK. Microbiota shifts in the surface mucopolysaccharide layer of corals transferred from natural to aquaria settings. J Invertebr Pathol. 2015;125:42–4.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Kooperman N, Ben-Dov E, Kramarsky-Winter E, Barak Z, Kushmaro A. Coral mucus-associated bacterial communities from natural and aquarium environments. FEMS Microbiol Lett. 2007;276:106–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Kirchman DL. Growth rates of microbes in the oceans. Annu Rev Mar Sci. 2016;8:285–309.Article 

    Google Scholar 
    40.Hu SK, Campbell V, Connell P, Gellene AG, Liu Z, Terrado R, et al. Protistan diversity and activity inferred from RNA and DNA at a coastal ocean site in the eastern North Pacific. FEMS Microbiol Ecol. 2016;92:fiw050.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    41.Campbell BJ, Kirchman DL. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 2013;7:210–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Massana R, Gobet A, Audic S, Bass D, Bittner L, Boutte C, et al. Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ Microbiol. 2015;17:4035–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bauman AG, Hoey AS, Dunshea G, Feary DA, Low J, Todd PA. Macroalgal browsing on a heavily degraded, urbanized equatorial reef system. Sci Rep. 2017;7:1–8.CAS 
    Article 

    Google Scholar 
    45.Januchowski-Hartley FA, Bauman AG, Morgan KM, Seah JCL, Huang D, Todd PA. Accreting coral reefs in a highly urbanized environment. Coral Reefs. 2020;39:717–31.Article 

    Google Scholar 
    46.Klawonn I, Lavik G, Böning P, Marchant HK, Dekaezemacker J, Mohr W, et al. Simple approach for the preparation of 15−15N2-enriched water for nitrogen fixation assessments: evaluation, application and recommendations. Front Microbiol. 2015;6:769.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Pupier CA, Bednarz VN, Grover R, Fine M, Maguer JF, Ferrier-Pagès C. Divergent capacity of scleractinian and soft corals to assimilate and transfer diazotrophically derived nitrogen to the reef environment. Front Microbiol. 2019;10:1860.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Bombar D, Paerl RW, Anderson R, Riemann L. Filtration via conventional glass fiber filters in 15N2 tracer assays fails to capture all nitrogen-fixing prokaryotes. Front Mar Sci. 2018;5:e00929–11.Article 

    Google Scholar 
    49.R Core Team. R: a language and environment for statistical computing. 2019. https://www.R-project.org/.50.Hansen HP, Koroleff F. Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M, editors. Methods of seawater analysis. Weinheim, Germany: Wiley; 1999. p. 159–228.51.Morgan KM, Moynihan MA, Sanwlani N, Switzer AD. Light limitation and depth-variable sedimentation drives vertical reef compression on turbid coral reefs. Front Mar Sci. 2020;7:571256.Article 

    Google Scholar 
    52.Comeau AM, Li WKW, Tremblay JÉ, Carmack EC, Lovejoy C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS ONE. 2011;6:e27492.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Kwong WK, del Campo J, Mathur V, Vermeij MJA, Keeling PJ. A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature. 2019;568:103–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Comeau AM, Douglas GM, Langille MGI. Microbiome helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127-16.55.Weiler BA. Bacterial Communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. Front Mar Sci. 2018;5:378.Article 

    Google Scholar 
    56.Gaby JC, Buckley DH. A comprehensive evaluation of PCR primers to amplify the nifH gene of nitrogenase. PLoS ONE. 2012;7:e42149.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Bower SM, Carnegie RB, Goh B, Jones SRM, Lowe GJ, Mak MWS. Preferential PCR amplification of parasitic protistan small subunit rDNA from metazoan tissues. J Eukaryot Microbiol. 2004;51:325–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Piredda R, Tomasino MP, D’Erchia AM, Manzari C, Pesole G, Montresor M, et al. Diversity and temporal patterns of planktonic protist assemblages at a Mediterranean long term ecological research site. FEMS Microbiol Ecol. 2016;93:fiw200.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    59.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Callahan BJ, Sankaran K, Fukuyama JA, McMurdie PJ, Holmes SP. Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research. 2016;5:1492.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.McLaren MR. Silva SSU taxonomic training data formatted for DADA2 (Silva version 138) [Data set]. Zenodo; 2020. https://doi.org/10.5281/zenodo.3731176.63.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The protist ribosomal reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 
    Article 

    Google Scholar 
    64.Heller P, Tripp JH, Turk-Kubo K, Zehr JP. ARBitrator: a software pipeline for on-demand retrieval of auto-curated nifH sequences from GenBank. Bioinformatics. 2014;30:2883–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Moynihan MA. moyn413/nifHdada2: nifH dada2 reference database, v1.1.0. Zenodo; 2020. https://doi.org/10.5281/zenodo.3964214.66.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:1–11.Article 
    CAS 

    Google Scholar 
    67.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    68.Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Bell PRF, Elmetri I, Lapointe BE. Evidence of large-scale chronic eutrophication in the Great Barrier Reef: quantification of chlorophyll a thresholds for sustaining coral reef communities. Ambio. 2013;43:361–76.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Conti-Jerpe IE, Thompson PD, Wong CWM, Oliveira NL, Duprey NN, Moynihan MA, et al. Trophic strategy and bleaching resistance in reef-building corals. Sci Adv. 2020;6:eaaz5443.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP. Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs. 2003;22:229–40.Article 

    Google Scholar 
    72.Ferrier-Pagès C, Hoogenboom M, Houlbrèque F. The role of plankton in coral trophodynamics. In: Dubinsky Z, Stambler N, editors. Coral reefs: an ecosystem in transition. Dordrecht, The Netherlands: Springer; 2011. p. 215–29.73.Pernice M, Raina JB, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 
    Article 

    Google Scholar 
    74.Huggett MJ, Apprill A. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85.PubMed 
    Article 

    Google Scholar 
    75.Méheust R, Castelle CJ, Carnevali PBM, Farag IF, He C, Chen LX, et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 2020;14:2907–22.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Nomata J, Mizoguchi T, Tamiaki H, Fujita Y. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem. 2006;281:15021–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Suzuki JY, Bauer CE. Light-independent chlorophyll biosynthesis: involvement of the chloroplast gene chlL (frxC). Plant Cell. 1992;4:929–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Bednarz VN, Naumann MS, Cardini U, van Hoytema N, Rix L, Al-Rshaidat MMD, et al. Contrasting seasonal responses in dinitrogen fixation between shallow and deep-water colonies of the model coral Stylophora pistillata in the northern Red Sea. PLoS ONE. 2018;13:e0199022.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    79.Weber L, González Díaz P, Armenteros M, Apprill A. The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol Oceanogr. 2019;64:2373–88.CAS 
    Article 

    Google Scholar 
    80.Bourne DG, Munn CB. Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol. 2005;7:1162–74.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 2012;6:1314–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Kopp C, Pernice M, Domart-Coulon I, Djediat C, Spangenberg JE, Alexander D, et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio. 2013;4:e00052-13.83.Magnusson SH, Fine M, Kühl M. Light microclimate of endolithic phototrophs in the scleractinian corals Montipora monasteriata and Porites cylindrica. Mar Ecol Prog Ser. 2007;332:119–28.Article 

    Google Scholar 
    84.Schlichter D, Zscharnack B, Krisch H. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften. 1995;82:561–4.CAS 
    Article 

    Google Scholar 
    85.Kemp DW, Colella MA, Bartlett LA, Ruzicka RR, Porter JW, Fitt WK. Life after cold death: reef coral and coral reef responses to the 2010 cold water anomaly in the Florida Keys. Ecosphere. 2016;7:e01373.86.Fine M, Roff G, Ainsworth TD, Hoegh-Guldberg O. Phototrophic microendoliths bloom during coral “white syndrome”. Coral Reefs. 2006;25:577–81.Article 

    Google Scholar 
    87.Fine M, Oren U, Loya Y. Bleaching effect on regeneration and resource translocation in the coral Oculina patagonica. Mar Ecol Prog Ser. 2002;234:119–25.Article 

    Google Scholar 
    88.Littman RA, Willis BL, Pfeffer C, Bourne DG. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the Great Barrier Reef. FEMS Microbiol Ecol. 2009;68:152–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Dunphy CM, Gouhier TC, Chu ND, Vollmer SV. Structure and stability of the coral microbiome in space and time. Sci Rep. 2019;9:1–13.
    Google Scholar 
    90.Le Campion-Alsumard T, Golubic S, Hutchings P. Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar Ecol Prog Ser. 1955;117:149–57.Article 

    Google Scholar 
    91.Yang SH, Tandon K, Lu CY, Wada N, Shih CJ, Hsiao SSY, et al. Metagenomic, phylogenetic, and functional characterization of predominant endolithic green sulfur bacteria in the coral Isopora palifera. Microbiome. 2019;7:1–13.Article 

    Google Scholar 
    92.Yost DM, Wang LH, Fan TY, Chen CS, Lee RW, Sogin E, et al. Diversity in skeletal architecture influences biological heterogeneity and Symbiodinium habitat in corals. Zoology. 2013;116:262–9.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    93.Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18:455–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Jacques TG, Pilson MEQ. Experimental ecology of the temperate scleractinian coral Astrangia danae I. Partition of respiration, photosynthesis and calcification between host and symbionts. Mar Biol. 1983;60:167–78.Article 

    Google Scholar 
    95.Shashar N, Stambler N. Endolithic algae within corals-life in an extreme environment. J Exp Mar Biol Ecol. 1992;163:277–86.CAS 
    Article 

    Google Scholar 
    96.Risk MJ, Muller HR. Porewater in coral heads: evidence for nutrient regeneration. Limnol Oceanogr. 1983;28:1004–8.Article 

    Google Scholar 
    97.Ferrer LM, Szmant AM. Nutrient regeneration by the endolithic community in coral skeletons. In: Proceedings of the 6th International Coral Reef Symposium. 2. Townsville, Australia: AIMS; 1988. p. 1–4.98.Raymond J, Siefert JL, Staples CR, Blankenship RE. The natural history of nitrogen fixation. Mol Biol Evol. 2004;21:541–54.CAS 
    Article 

    Google Scholar 
    99.Gaby JC, Buckley DH. A global census of nitrogenase diversity. Environ Microbiol. 2011;13:1790–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Gaby JC, Rishishwar L, Valderrama-Aguirre LC, Green SJ, Valderrama-Aguirre A, Jordan IK, et al. Diazotroph community characterization via a high-throughput nifH amplicon sequencing and analysis pipeline. Appl Environ Microbiol. 2018;84:e01512-17.101.Liang J, Yu K, Wang Y, Huang X, Huang W, Qin Z, et al. Diazotroph diversity associated with scleractinian corals and its relationships with environmental variables in the South China Sea. Front Physiol. 2020;11:615.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Marcelino VR, Morrow KM, van Oppen MJH, Bourne DG, Verbruggen H. Diversity and stability of coral endolithic microbial communities at a naturally high pCO2 reef. Molecular Ecology. 2017;26:5344–57.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Leggat WP, Camp EF, Suggett DJ, Heron SF, Fordyce AJ, Gardner S, et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr Biol. 2019;29:2723–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Chen YH, Yang SH, Tandon K, Lu CY, Chen HJ, Shih CJ, et al. A genomic view of coral-associated Prosthecochloris and a companion sulfate-reducing bacterium. bioRxiv. 2019. https://doi.org/10.1101/2019.12.20.883736.105.Weiler BA, Verhoeven JTP, Dufour SC. Bacterial communities in tissues and surficial mucus of the cold-water coral Paragorgia arborea. Front Mar Sci. 2018;5:378.Article 

    Google Scholar 
    106.Tiedje J. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder J, editor. Environmental microbiology of anaerobes. NY: John Wiley and Sons; 1988. p. 179–244.107.Becker CC, Brandt M, Miller C, Apprill A. Stony coral tissue loss disease biomarker bacteria identified in corals and overlying waters using a rapid field-based sequencing approach. bioRxiv. 2021. https://doi.org/10.1101/2021.02.17.431614.108.Parker KE, Ward JO, Eggleston EM, Fedorov E, Parkinson JE, Dahlgren CP, et al. Characterization of a thermally tolerant Orbicella faveolata reef in Abaco, The Bahamas. Coral Reefs. 2020;39:675–85.Article 

    Google Scholar 
    109.Tilstra A, El-Khaled YC, Roth F, Rädecker N, Pogoreutz C, Voolstra CR, et al. Denitrification aligns with N2 fixation in Red Sea corals. Sci Rep. 2019;9:1–9.Article 
    CAS 

    Google Scholar 
    110.Kim BH, Ramanan R, Cho DH, Oh HM, Kim HS. Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenerg. 2014;69:95–105.CAS 
    Article 

    Google Scholar 
    111.Wu Z, Yang X, Lin S, Lee WH, Lam PKS. Isolation and characterization of a Rhizobium bacterium associated with the toxic dinoflagellate Gambierdiscus balechii. bioRxiv. 2019. https://doi.org/10.1101/789107.112.Lema KA, Willis BL, Bourne DG. Corals form characteristic associations with symbiotic nitrogenfixing bacteria. Appl Environ Microbiol. 2012;78:3136–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:R106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Shashar N, Cohen Y, Loya Y, Sar N. Nitrogen fixation (acetylene reduction) in stony corals: evidence for coral-bacteria interactions. Mar Ecol Prog Ser. 1994;111:259–64.CAS 
    Article 

    Google Scholar 
    115.Bednarz VN, Cardini U, van Hoytema N, Al-Rshaidat M, Wild C. Seasonal variation in dinitrogen fixation and oxygen fluxes associated with two dominant zooxanthellate soft corals from the northern Red Sea. Mar Ecol Prog Ser. 2015;519:141–52.Article 

    Google Scholar  More

  • in

    Distribution of deadwood and other forest structural indicators relevant for bird conservation in Natura 2000 special protection areas in Poland

    1.Sundseth, K. & Creed, P. Natura 2000: Protecting Europe’s Biodiversity (Office for Official Publications of the European Communities, 2008).
    Google Scholar 
    2.Wilk, T., Jujka, M., Krogulec, J. & Chylarecki, P. Important Bird Areas of International Importance in Poland (OTOP, 2010).
    Google Scholar 
    3.European Commission. Report on the Status of and Trends for Habitat Types and Species Covered by the Birds and Habitats Directives for the 2007–2012 Period as Required Under Article 17 of the Habitats Directive and Article 12 of the Birds Directive (European Commission DG Environment, 2015).
    Google Scholar 
    4.Birds Directive. Council Directive 79/409/EEC on the Conservation of Wild Birds. http://www.jncc.gov.uk/page-1373 (1979).5.Butler, S. J., Boccaccio, L., Gregory, R. D., Vorisek, P. & Norris, K. Quantifying the impact of land-use change to European farmland bird populations. Agric. Ecosyst. Environ. 137, 348–357. https://doi.org/10.1016/j.agee.2010.03.005 (2010).Article 

    Google Scholar 
    6.Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687. https://doi.org/10.1016/j.ecolind.2019.04.064 (2019).Article 

    Google Scholar 
    7.European Commission. The Interpretation Manual of European Union Habitats (European Commission DG Environment, 2007).
    Google Scholar 
    8.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: The importance of keystone structures. J. Biogeogr. 31, 79–92. https://doi.org/10.1046/j.0305-0270.2003.00994.x (2004).Article 

    Google Scholar 
    9.Bujoczek, M., Rybicka, J. & Bujoczek, L. Effects of disturbances in a subalpine forest on its structural indicators and bird diversity. Ecol. Indic. 112, 106126. https://doi.org/10.1016/j.ecolind.2020.106126 (2020).Article 

    Google Scholar 
    10.van Galen, L. G., Jordan, G. J. & Baker, S. C. Relationships between coarse woody debris habitat quality and forest maturity attributes. Conserv. Sci. Pract. 1, e55. https://doi.org/10.1111/csp2.55 (2019).Article 

    Google Scholar 
    11.Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. 55, 2147–2159. https://doi.org/10.1111/1365-2664.13181 (2018).Article 

    Google Scholar 
    12.Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manag. 264, 110401. https://doi.org/10.1016/j.jenvman.2020.110401 (2020).Article 

    Google Scholar 
    13.Wesołowski, T. Lessons from long-term hole-nester studies in a primeval temperate forest. J. Ornithol. 148, 395–405. https://doi.org/10.1007/s10336-007-0198-1 (2007).Article 

    Google Scholar 
    14.Maziarz, M. & Broughton, R. K. Breeding microhabitat selection by Great Tits Parus major in a deciduous primeval forest (Białowieża National Park, Poland). Bird Study 62, 358–367. https://doi.org/10.1080/00063657.2015.1050994 (2015).Article 

    Google Scholar 
    15.Van der Hoek, Y., Gaona, G. V. & Martin, K. The diversity, distribution and conservation status of the tree-cavity nesting birds of the world. Divers. Distrib. 23, 1120–1131. https://doi.org/10.1111/ddi.12601 (2017).Article 

    Google Scholar 
    16.McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity: Its definition and measurement. For. Ecol. Manag. 218, 1–24. https://doi.org/10.1016/j.foreco.2005.08.034 (2005).Article 

    Google Scholar 
    17.Holmes, R. T., Bonney, R. E. & Pacala, S. W. Guild structure of the Hubbard Brook bird community: A multivariate approach. Ecology 60, 512–520. https://doi.org/10.2307/1936071 (1979).Article 

    Google Scholar 
    18.Lain, E. J., Haney, A., Burris, J. M. & Burton, J. Response of vegetation and birds to severe wind disturbance and salvage logging in a southern boreal forest. For. Ecol. Manag. 256, 863–871. https://doi.org/10.1016/j.foreco.2008.05.018 (2008).Article 

    Google Scholar 
    19.Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forest: A hierarchical typology for inventory standarization. Ecol. Indic. 83, 194–207. https://doi.org/10.1016/j.ecolind.2017.08.051 (2018).Article 

    Google Scholar 
    20.Zielewska-Büttner, K., Heurich, M., Müller, J. & Braunisch, V. Remotely sensed single tree data enable the determination of habitat thresholds for the three-toed woodpecker (Picoides tridactylus). Remote Sens. 10, 1972. https://doi.org/10.3390/rs10121972 (2018).ADS 
    Article 

    Google Scholar 
    21.Mikusiński, G., Gromadzki, M. & Chylarecki, P. Woodpeckers as indicators of forest bird diversity. Conserv. Biol. 15, 208–217 (2001).Article 

    Google Scholar 
    22.Wesołowski, T. & Rowiński, P. The breeding behaviour of the Nuthatch Sitta europaea in relation to natural hole attributes in a primeval forest. Bird Study 51, 143–155. https://doi.org/10.1080/00063650409461346 (2004).Article 

    Google Scholar 
    23.Barbaro, L. et al. Hierarchical habitat selection by Eurasian Pygmy Owls Glaucidium passerinum in oldgrowth forests of the southern French Prealps. J. Ornithol. 157, 333–342. https://doi.org/10.1007/s10336-015-1285-3 (2016).Article 

    Google Scholar 
    24.Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).
    Google Scholar 
    25.Harestad, A. S. & Keisker, D. G. Nest tree use by primary cavity-nesting birds in south central British Columbia. Can. J. Zool. 67, 1067–1073. https://doi.org/10.1139/z89-148 (1989).Article 

    Google Scholar 
    26.Walankiewicz, W., Czeszczewik, D., Mitrus, C. & Bida, E. Znaczenie martwych drzew dla zespołu dzięciołów w lasach liściastych Puszczy Białowieskiej. Notatki Ornitol. 43, 61–71 (2002).
    Google Scholar 
    27.Czeszczewik, D. & Walankiewicz, W. Natural nest sites of the Pied Flycatcher Ficedula hypoleuca in a primeval forest. Ardea 91, 221–230 (2003).
    Google Scholar 
    28.Kosiński, Z. & Kempa, M. Density distribution and nest−sites selection of woodpeckers Picidae in managed forest of western Poland. Pol. J. Ecol. 55, 519–533 (2007).
    Google Scholar 
    29.Zawadzka, D. & Zawadzki, G. Charakterystyka drzew gniazdowych dzięcioła czarnego w Puszczy Augustowskiej. Sylwan 161, 1002–1009 (2017).
    Google Scholar 
    30.Urban, D. L. & Smith, T. M. Microhabitat pattern and the structure of forest bird communities. Am. Nat. 133, 811–829. https://doi.org/10.1086/284954 (1989).Article 

    Google Scholar 
    31.Piechnik, Ł, Kurek, P., Ledwoń, M. & Holeksa, J. Both natural and anthropogenic microhabitats and fine-scale habitat features of managed forest can affect the abundance of the Eurasian Wren. For. Ecol. Manag. 456, 117695. https://doi.org/10.1016/j.foreco.2019.117695 (2020).Article 

    Google Scholar 
    32.Sefidi, K., EsfandiaryDarabad, F. & Azaryan, M. Effect of topography on tree species composition and volume of coarse woody debris in an Oriental beech (Fagus orientalis Lipsky) old growth forests, northern Iran. iForest 9, 658. https://doi.org/10.3832/ifor1080-008 (2016).Article 

    Google Scholar 
    33.Oettel, J. et al. Patterns and drivers of deadwood volume and composition in different forest types of the Austrian natural forest reserves. For. Ecol. Manag. 463, 118016. https://doi.org/10.1016/j.foreco.2020.118016 (2020).Article 

    Google Scholar 
    34.Bashta, A. T. V. Biotope distribution and habitat preference of breeding bird communities in alpine and subalpine belts in the Tatra and Babia Gora Mts. (Southern Poland). Berkut 14, 145–161 (2005).
    Google Scholar 
    35.Bouvet, A. et al. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148–160. https://doi.org/10.1017/S0376892915000363 (2016).Article 

    Google Scholar 
    36.Dellinger, R. L., Wood, P. B., Keyser, P. D. & Seidel, G. Habitat partitioning of four sympatric thrush species at three spatial scales on a managed forest in West Virginia. Auk 124, 1425–1438. https://doi.org/10.1093/auk/124.4.1425 (2007).Article 

    Google Scholar 
    37.Leidinger, J. et al. Formerly managed forest reserves complement integrative management for biodiversity conservation in temperate European forests. Biol. Conserv. 242, 108437. https://doi.org/10.1016/j.biocon.2020.108437 (2020).Article 

    Google Scholar 
    38.Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615. https://doi.org/10.1016/j.gecco.2019.e00615 (2019).Article 

    Google Scholar 
    39.Müller, J. & Bütler, R. A review of habitat thresholds for dead wood: A baseline for management recommendations in European forests. Eur. J. For. Res. 129, 981–992. https://doi.org/10.1007/s10342-010-0400-5 (2010).Article 

    Google Scholar 
    40.Kajtoch, Ł, Figarski, T. & Pełka, J. The role of forest structural elements in determining the occurrence of two specialist woodpecker species in the Carpathians, Poland. Ornis Fenn. 90, 23–40 (2013).
    Google Scholar 
    41.Rodrigues, A. S. & Brooks, T. M. Shortcuts for biodiversity conservation planning: The effectiveness of surrogates. Annu. Rev. Ecol. Evol. Syst. 38, 713–737 (2007).Article 

    Google Scholar 
    42.Hunter, M. Jr. et al. Two roles for ecological surrogacy: Indicator surrogates and management surrogates. Ecol. Indic. 63, 121–125. https://doi.org/10.1016/j.ecolind.2015.11.049 (2016).Article 

    Google Scholar 
    43.NFI. Wielkoobszarowa inwentaryzacja stanu lasu. Wyniki za okres 2009–2013 (Biuro Urządzania Lasu i Geodezji Leśnej, 2014).
    Google Scholar 
    44.CRFOP. Centralny Rejestr Form Ochrony Przyrody. http://crfop.gdos.gov.pl/CRFOP/ (2020).45.GDOS. Generalna Dyrekcja Ochrony Środowiska. https://www.gdos.gov.pl/dane-i-metadane (2020).46.BDL. Bank Danych o Lasach. https://www.bdl.lasy.gov.pl/portal (2020).47.Qgis 3.10. QGIS Geographic Information System. http://www.qgis.org (QGIS Association, 2020).48.ME. Instrukcja wykonywania wielkoobszarowej inwentaryzacji stanu lasu (Typescript of the Ministry of the Environment, 2010).
    Google Scholar 
    49.Talarczyk, A. National forest inventory in Poland. Balt. For. 20, 333–341 (2014).
    Google Scholar 
    50.Standard Data Form. Instrukcja wypełniania Standardowych Formularzy Danych. http://natura2000.gdos.gov.pl (2012).51.Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manag. 356, 216–223. https://doi.org/10.1016/j.foreco.2015.07.011 (2015).Article 

    Google Scholar 
    52.Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manag. 407, 95–105. https://doi.org/10.1016/j.foreco.2017.09.002 (2017).Article 

    Google Scholar 
    53.Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest Biogeosci. For. 8, 377–385. https://doi.org/10.3832/ifor1212-007 (2015).Article 

    Google Scholar 
    54.Czuraj, M. Tablice miąższości kłód odziomkowych i drzew stojących (PWRiL, 1990).
    Google Scholar 
    55.Oramus, M. Breeding habitat of wren (Troglodytes troglodytes) in lower mountain zone forests in Gorce National Park. Master thesis (University of Agriculture in Krakow, Faculty of Forestry, Department of Forest Biodiversity 2017).56.Statistica 13 software. Dell Statistica (data analysis software system), version 13. software.dell.com (2016).57.Ćosović, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 11, 343. https://doi.org/10.3390/f11030343 (2020).Article 

    Google Scholar 
    58.Morán-López, R., Cortés Gañán, E., Uceda Tolosa, O. & Sánchez Guzmán, J. M. The umbrella effect of Natura 2000 annex species spreads over multiple taxonomic groups, conservation attributes and organizational levels. Anim. Conserv. https://doi.org/10.1111/acv.12551 (2019).Article 

    Google Scholar 
    59.Lindenmayer, D. B., Franklin, J. F. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445. https://doi.org/10.1016/j.biocon.2006.02.019 (2006).Article 

    Google Scholar 
    60.Gruber, B. et al. “Mind the gap!”—How well does Natura 2000 cover species of European interest?. Nat. Conserv. 3, 45–62. https://doi.org/10.3897/natureconservation.3.3732 (2012).Article 

    Google Scholar 
    61.Kukkala, A. S. et al. Matches and mismatches between national and EU-wide priorities: Examining the Natura 2000 network in vertebrate species conservation. Biol. Conserv. 198, 193–201. https://doi.org/10.1016/j.biocon.2016.04.016 (2016).Article 

    Google Scholar 
    62.Donald, P. F. et al. International conservation policy delivers benefits for birds in Europe. Science 317, 810–813. https://doi.org/10.1126/science.1146002 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Nilsson, L., Bunnefeldb, N., Perssonc, J., Žydelisd, R. & Månssona, J. Conservation success or increased crop damage risk? The Natura 2000 network for a thriving migratory and protected bird. Biol. Conserv. 236, 1–7. https://doi.org/10.1016/j.biocon.2019.05.006 (2019).Article 

    Google Scholar 
    64.Winter, S. et al. The impact of Natura 2000 on forest management: A socio-ecological analysis in the continental region of the European Union. Biodivers. Conserv. 23, 3451–3482. https://doi.org/10.1007/s10531-014-0822-3 (2014).Article 

    Google Scholar 
    65.Zisenis, M. Is the Natura 2000 network of the European Union the key land use policy tool for preserving Europe’s biodiversity heritage?. Land Use Policy 69, 408–416. https://doi.org/10.1016/j.landusepol.2017.09.045 (2017).Article 

    Google Scholar 
    66.Bashta, A. T. V. Breeding bird community of monocultural spruce plantation in the Skolivski Beskids (the Ukrainian Carpathians). Berkut 8, 9–14 (1999).
    Google Scholar 
    67.Baláž, M. & Balážová, M. Diversity and abundance of bird communities in three mountain forest stands: Effect of the habitat heterogeneity. Pol. J. Ecol. 60, 629–634 (2012).
    Google Scholar 
    68.Puletti, N. et al. A dataset of forest volume deadwood estimates for Europe. Ann. For. Sci. 76, 68. https://doi.org/10.1007/s13595-019-0832-0 (2019).Article 

    Google Scholar 
    69.Nappi, A., Drapeau, P. & Leduc, A. How important is dead wood for woodpeckers foraging in eastern North American boreal forests?. For. Ecol. Manag. 346, 10–21. https://doi.org/10.1016/j.foreco.2015.02.028 (2015).Article 

    Google Scholar 
    70.Raphael, M. & White, M. Use of snags by cavity-nesting birds in the Sierra Nevada. Wildl. Monogr. 86, 3–66 (1984).
    Google Scholar 
    71.Bujoczek, L., Bujoczek, M. & Zięba, S. How much, why and where? Deadwood in forest ecosystems: The case of Poland. Ecol. Indic. 121, 107027. https://doi.org/10.1016/j.ecolind.2020.107027 (2021).Article 

    Google Scholar 
    72.Lešo, P., Kropil, R. & Kajtoch, Ł. Effects of forest management on bird assemblages in oak-dominated stands of the Western Carpathians-Refuges for rare species. For. Ecol. Manag. 453, 117620. https://doi.org/10.1016/j.foreco.2019.117620 (2019).Article 

    Google Scholar 
    73.De Zan, L. R., de Gasperis, S. R., Fiore, L., Battisti, C. & Carpaneto, G. M. The importance of dead wood for hole-nesting birds: A two years study in three beech forests of central Italy. Isr. J. Ecol. Evol. 63(1), 19–27. https://doi.org/10.1080/15659801.2016.1191168 (2017).Article 

    Google Scholar 
    74.Wilk, T., Bobrek, R., Pępkowska-Krol, A., Neubauer, G. & Kosicki, J. Z. The Birds of the Polish Carpathians—Status, Threats, Conservation (OTOP, 2016).
    Google Scholar 
    75.Jonsson, B. G. et al. Dead wood availability in managed Swedish forests–Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182. https://doi.org/10.1016/j.foreco.2016.06.017 (2016).Article 

    Google Scholar 
    76.Lõhmus, A. Do Ural owls (Strix uralensis) suffer from the lack of nest sites in managed forests?. Biol. Conserv. 110, 1–9. https://doi.org/10.1016/S0006-3207(02)00167-2 (2003).Article 

    Google Scholar 
    77.Tanona, M. & Czarnota, P. Natural disturbances of the structure of Norway spruce forests in Europe and their impact on the preservation of epixylic lichen diversity: A review. Ecol. Quest. 30, 1–17. https://doi.org/10.12775/EQ.2019.024 (2019).Article 

    Google Scholar 
    78.Repel, M., Zámečník, M. & Jarčuška, B. Temporal changes in bird communities of wind-affected coniferous mountain forest in differently disturbed stands (High Tatra Mts., Slovakia). Biologia 75, 1931–1943. https://doi.org/10.2478/s11756-020-00455-5 (2020).Article 

    Google Scholar 
    79.Přívětivý, T. et al. How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)?. For. Ecol. Manag. 381, 177–187. https://doi.org/10.1016/j.foreco.2016.09.033 (2016).Article 

    Google Scholar 
    80.Wichmann, G. Habitat use of nightjar (Caprimulgus europaeus) in an Austrian pine forest. J. Ornithol. 145, 69–73. https://doi.org/10.1007/s10336-003-0013-6 (2004).Article 

    Google Scholar 
    81.Müller, D., Schröder, B. & Müller, J. Modelling habitat selection of the cryptic Hazel Grouse Bonasa bonasia in a montane forest. J. Ornithol. 150, 717–732. https://doi.org/10.1007/s10336-009-0390-6 (2009).Article 

    Google Scholar 
    82.Storch, I. Habitat and survival of capercaillie Tetrao urogallus nests and broods in the Bavarian Alps. Biol. Conserv. 70, 237–243. https://doi.org/10.1016/0006-3207(94)90168-6 (1994).Article 

    Google Scholar 
    83.Swenson, J. E. The ecology of Hazel Grouse and management of its habitat. Naturschutzreport 10, 227–238 (1995).
    Google Scholar 
    84.Drapeau, P., Nappi, A., Imbeau, L. & Saint-Germain, M. Standing deadwood for keystone bird species in the eastern boreal forest: Managing for snag dynamics. For. Chron. 85, 227–234. https://doi.org/10.5558/tfc85227-2 (2009).Article 

    Google Scholar 
    85.Mikusiński, G. et al. Is the impact of loggings in the last primeval lowland forest in Europe underestimated? The conservation issues of Białowieża Forest. Biol. Conserv. 227, 266–274. https://doi.org/10.1016/j.biocon.2018.09.001 (2018).Article 

    Google Scholar 
    86.Dufour-Pelletier, S., Tremblay, J. A., Hébert, C., Lachat, T. & Ibarzabal, J. Testing the effect of snag and cavity supply on deadwood-associated species in a managed boreal forest. Forests 11, 424. https://doi.org/10.3390/f11040424 (2020).Article 

    Google Scholar 
    87.Pirovano, A. R. & Zecca, G. Black Woodpecker Dryocopus martius habitat selection in the Italian Alps: Implications for conservation in Natura 2000 network. Bird Conserv. Int. 24, 299–315. https://doi.org/10.1017/S0959270913000439 (2014).Article 

    Google Scholar  More

  • in

    Predicting 3D protein structures in light of evolution

    1.Bershtein, S., Serohijos, A. W. & Shakhnovich, E. I. Curr. Opin. Struct. Biol. 42, 31–40 (2017).CAS 
    Article 

    Google Scholar 
    2.Elena, S. F. & Lenski, R. E. Nat. Rev. Genet. 4, 457–469 (2003).CAS 
    Article 

    Google Scholar 
    3.Fowler, D. M. & Fields, S. Nat. Methods 11, 801–807 (2014).CAS 
    Article 

    Google Scholar 
    4.Jasinska, W. et al. Nat. Ecol. Evol. 4, 437–452 (2020).Article 

    Google Scholar 
    5.Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature https://doi.org/10.1038/s41586-021-03819-2 (2021).6.Diss, G. & Lehner, B. eLife 7, e32472 (2018).Article 

    Google Scholar 
    7.Schmiedel, J. M. & Lehner, B. Nat. Genet. 51, 1177–1186 (2019).CAS 
    Article 

    Google Scholar 
    8.Guan, Y., Dunham, M. J. & Troyanskaya, O. G. Genetics 175, 933–943 (2007).CAS 
    Article 

    Google Scholar 
    9.Soria, P. S., McGary, K. L. & Rokas, A. Mol. Biol. Evol. 31, 984–992 (2014).CAS 
    Article 

    Google Scholar 
    10.Gabaldon, T. & Koonin, E. V. Nat. Rev. Genet. 14, 360–366 (2013).CAS 
    Article 

    Google Scholar 
    11.Montelione, G. T. F1000 Biol. Rep. 4, 7 (2012).Article 

    Google Scholar 
    12.Laskowski, R. A., Watson, J. D. & Thornton, J. M. J. Mol. Biol. 351, 614–626 (2005).CAS 
    Article 

    Google Scholar 
    13.Lee, D., Redfern, O. & Orengo, C. Nat. Rev. Mol. Cell Biol. 8, 995–1005 (2007).CAS 
    Article 

    Google Scholar 
    14.Redfern, O. C., Dessailly, B. H., Dallman, T. J., Sillitoe, I. & Orengo, C. A. PLoS Comput. Biol. 5, e1000485 (2009).Article 

    Google Scholar 
    15.Harms, M. J. & Thornton, J. W. Curr. Opin. Struct. Biol. 20, 360–366 (2010).CAS 
    Article 

    Google Scholar 
    16.Levin, L. & Mishmar, D. Nat. Ecol. Evol. 1, 41 (2017).Article 

    Google Scholar 
    17.Aadland, K. & Kolaczkowski, B. Biol. Evol. 12, 1549–1565 (2020).CAS 

    Google Scholar 
    18.Kleiner, D. et al. J. Mol. Biol. 431, 4796–4816 (2019).CAS 
    Article 

    Google Scholar 
    19.Boehr, D. D., Nussinov, R. & Wright, P. E. Nat. Chem. Biol. 5, 789–796 (2009).CAS 
    Article 

    Google Scholar 
    20.Bershtein, S. et al. PLoS Genet. 11, e1005612 (2015).Article 

    Google Scholar 
    21.Senior, A. W. et al. Nature 577, 706–710 (2020).CAS 
    Article 

    Google Scholar 
    22.Gershoni, M. et al. J. Mol. Biol. 404, 158–171 (2010).CAS 
    Article 

    Google Scholar 
    23.Sutto, L., Marsili, S., Valencia, A. & Gervasio, F. L. Proc. Natl Acad. Sci. USA 112, 13567–13572 (2015).CAS 
    Article 

    Google Scholar  More