More stories

  • in

    Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    3.Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    4.Tran, C. & Hadfield, M. G. Localization of sensory mechanisms utilized by coral planulae to detect settlement cues. Invertebr. Biol. 132, 195–206 (2013).Article 

    Google Scholar 
    5.Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib. Mar. Sci. 38, 437–457 (2009).Article 

    Google Scholar 
    6.Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).Article 

    Google Scholar 
    7.Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).ADS 
    Article 

    Google Scholar 
    8.Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).Article 

    Google Scholar 
    9.Ritson-Williams, R., Paul, V. J., Arnold, S. N. & Steneck, R. S. Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29, 71–81 (2010).ADS 
    Article 

    Google Scholar 
    10.Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gómez-Lemos, L. A., Doropoulos, C., Bayraktarov, E. & Diaz-Pulido, G. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    12.Morse, D. E. & Morse, A. N. C. Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol. Bull. 181, 104–122 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).ADS 
    Article 

    Google Scholar 
    14.Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, e19082 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 20133086 (2014).Article 
    CAS 

    Google Scholar 
    16.Tran, C. & Hadfield, M. G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).ADS 
    Article 

    Google Scholar 
    17.Quéré, G., Intertaglia, L., Payri, C. & Galand, P. E. Disease specific bacterial communities in a Coralline Algae of the Northwestern Mediterranean Sea: A combined culture dependent and -independent approach. Front Microbiol 10, 5 (2019).Article 

    Google Scholar 
    18.Yang, F., Mo, J., Wei, Z. & Long, L. Calcified macroalgae and their bacterial community in relation to larval settlement and metamorphosis of reef-building coral Pocillopora damicornis. FEMS Microbiol. Ecol. 97, fiaa215 (2021).Article 

    Google Scholar 
    19.Sneed, J. M., Ritson-Williams, R. & Paul, V. J. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME J. 9, 2527–2536 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Siboni, N. et al. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 39, 1703–1713 (2020).Article 

    Google Scholar 
    21.Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102 (2007).Article 

    Google Scholar 
    22.Kitamura, M., Schupp, P. J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 50, 6606–6609 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Change Biol. 19, 303–315 (2013).ADS 
    Article 

    Google Scholar 
    24.Mancuso, F. P., D’Hondt, S., Willems, A., Airoldi, L. & De Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).Article 

    Google Scholar 
    26.Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).ADS 
    Article 

    Google Scholar 
    27.Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).Article 

    Google Scholar 
    28.Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Price, N. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163, 747–758 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    31.Sogin, E. M., Anderson, P., Williams, P., Chen, C.-S. & Gates, R. D. Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS ONE 9, e111274 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B Biol. Sci. 283, 20160469 (2016).Article 
    CAS 

    Google Scholar 
    33.Cutignano, A. et al. Profiling of complex lipids in marine microalgae by UHPLC/tandem mass spectrometry. Algal Res. 17, 348–358 (2016).Article 

    Google Scholar 
    34.Paix, B. et al. A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the Thallus of a Mediterranean Seaweed Holobiont. Front. Microbiol. 11, 494 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Vohsen, S. A., Fisher, C. R. & Baums, I. B. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics 15, 34 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Jiang, M. et al. Sparse partial-least-squares discriminant analysis for different geographical origins of Salvia miltiorrhiza by 1H-NMR-based metabolomics. Phytochem. Anal. 25, 50–58 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Webster, N. S., Soo, R., Cobb, R. & Negri, A. P. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J. 5, 759–770 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Babcock, R. & Mundy, C. Coral recruitment: Consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 206, 179–201 (1996).Article 

    Google Scholar 
    39.Zhang, J., Li, C., Yu, G. & Guan, H. Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar. Drugs 12, 3634–3659 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Cajka, T. & Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 61, 192–206 (2014).CAS 
    Article 

    Google Scholar 
    41.Deal, M. S., Hay, M. E., Wilson, D. & Fenical, W. Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia 136, 107–114 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Plouguerné, E. et al. Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Front. Mar. Sci. 7, 116 (2020).Article 

    Google Scholar 
    43.Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).CAS 
    Article 

    Google Scholar 
    44.Schmahl, G. Induction of stolon settlement in the scyphopolyps ofAurelia aurita (Cnidaria, Scyphozoa, Semaeostomeae) by glycolipids of marine bacteria. Helgoländer Meeresunters 39, 117–127 (1985).Article 

    Google Scholar 
    45.Murakami, H., Nobusawa, T., Hori, K., Shimojima, M. & Ohta, H. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant. Physiol. 177, 181–193 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Melo, T. et al. Lipidomics as a new approach for the bioprospecting of marine macroalgae—Unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res. 8, 181–191 (2015).Article 

    Google Scholar 
    47.Vogel, G. & Eichenberger, W. Betaine lipids in lower plants biosynthesis. of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33, 427–436 (1992).CAS 

    Google Scholar 
    48.Meistertzheim, A.-L., Nugues, M. M., Quéré, G. & Galand, P. E. Pathobiomes differ between two diseases affecting reef building coralline algae. Front. Microbiol. 8, 1686 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gram, L., Melchiorsen, J. & Bruhn, J. B. Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. Mar. Biotechnol. N. Y. N. 12, 439–451 (2010).CAS 
    Article 

    Google Scholar 
    51.Daniel, R., Simon, M. & Wemheuer, B. Editorial: Molecular ecology and genetic diversity of the roseobacter clade. Front. Microbiol. 9, 1185 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685–699 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Bernasconi, R. et al. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Quigley, K. M., Roa, C. A., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. MicrobiologyOpen 9, e959 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Overmann, J. Green sulfur bacteria. in Bergey’s Manual of Systematics of Archaea and Bacteria (eds Trujillo, M. E. et al.) (2015).56.Ribes, M. et al. Functional convergence of microbes associated with temperate marine sponges. Environ. Microbiol. 14, 1224–1239 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sogin, E. M., Putnam, H. M., Nelson, C. E., Anderson, P. & Gates, R. D. Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and Symbiodinium communities. Environ. Microbiol. Rep. 9, 310–315 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Gordon, G. D., Masaki, T. & Akioka, H. Floristic and distributional account of the common crustose coralline algae on Guam. Micronesica 12, 31 (1976).
    Google Scholar 
    59.Adey, W. H., Townsend, R. A. & Boykins, W. T. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib. Mar. Sci. 1, 1–74 (1982).Article 

    Google Scholar 
    60.Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: an R package for ‘omics feature selection and multiple data integration. BioRxiv 13, 108597 (2017).
    Google Scholar 
    61.Singh, A. et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35, 3055–3062 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Null-model-based network comparison reveals core associations

    Null model toolboxWe have developed a software toolbox, anuran, (a toolbox with null models for identification of nonrandom patterns in association networks) that generates random networks and assesses properties of these networks. Three types of networks can be generated in the current implementation: completely randomized networks, degree-preserving networks, and a variation of both networks that keeps a fraction of the edges fixed. Networks without a synthetic CAN, meaning they do not contain any fixed edges, are referred to as negative controls in the remainder of the manuscript, while networks with a synthetic CAN are referred to as positive control networks. In combination, these null models can generate CAN sizes for (1) the situation where all edges are entirely random, (2) the situation where taxa connecting edges are random, but the presence of an edge is not, and (3) the situation where part of a network is random but the remainder is part of a CAN.For the completely randomized model, a network is initialized with the same nodes as the input network. Edges are then added randomly until the total edge number is equal to the number of edges in the input network. For the degree-preserving model, edges are swapped rather than removed and added back to the network, so that two edges (a, b) and (c, d) become the new edges (a, c) and (b, d). Hence, the model preserves the degree distribution found in the input network and each node has the same degree as it has in the original network, but other centralities such as the betweenness centrality can change. The user specifies both the number of random networks generated for each network (by default 10) and the number of sets (collections) of these networks (by default 50) that are sampled to calculate set sizes.As stated previously, variations of the above two null models can be used to construct positive control networks. For this procedure, a fraction of edges is extracted from the total union of edges across all networks. For fully randomized networks, these edges are first added, then edges are added until the total number of edges in the original network is reached. For the degree-preserving randomized networks, negative control networks (with preserved degree) are first generated. Then, for each edge in the fixed core, the algorithm attempts to find two edges that can be swapped so the fixed edge is created. If this fails, a random edge is deleted and the fixed edge is introduced, so the degree is not exactly preserved. To swap the edges successfully, it is necessary that each of the nodes participating in a fixed edge has another edge not part of the fixed core. As a result, the degree distribution can change significantly for networks where nodes in the fixed core are disconnected or where the fixed core is very large compared to the positive control network.It is possible to include nodes without significant associations in the network file as disconnected nodes (orphan nodes) by supplying the network file with the orphan nodes included as nodes without any edges. In this case, the random model reflects a situation where associations are randomly selected from all taxa. However, the degree-preserving networks are not affected by orphan nodes. The inclusion of orphan nodes leads to different estimates for set sizes for the random model that may lead to an overestimation of the significance of a CAN, as most taxa are too rare to acquire associations. Therefore, we ignored the presence of disconnected nodes in our case study.The toolbox has been implemented in Python 3.6 and consists of both an application programming interface and command-line interface (CLI). Documentation for the toolbox has been included as a supplement (Supplementary File 1), with this and additional vignettes available through the GitHub page at https://github.com/ramellose/anuran. Currently, the CLI pipeline assesses set sizes, (rank-transformed) betweenness, degree, and closeness centrality scores and several network-level properties: degree assortativity, connectivity, diameter, radius, and average shortest path length (Fig. 1). NetworkX implementations of these centrality calculations were used [21].The software uses a set-of-sets approach to identify CANs. A set is a specific collection of edges, such as the intersection set, which is the collection of edges present across multiple networks. The CANs are identified as differences of specific intersection sets. Hence, the toolbox specifically identifies sets and sets of sets that are likely to be of interest for microbial association networks. These sets represent collections of edges that are only present in one specific fraction of networks and distinguish between less conserved and more conserved edges.An example with four networks is illustrated with a Venn diagram (Fig. 1c). To obtain the difference of the intersections, the set that includes one or more additional networks is subtracted from the intersection set that includes fewer networks. These sets are referred to as combinations of intersections with fractions or integers, i.e., the intersection 0.5 refers to all intersections of 50% of the networks. Similarly, set of sets are identified by a combination of intersection numbers: the set of sets 6→10 refers to the difference of intersection 6 and intersection 10 and therefore contains no edges present in at least 10 networks. For most analyses, the difference of intersections is preferred over intersections since the intersections are nested. By taking the difference, it is possible to distinguish between more and less conserved associations.The equations for differences and k-intersections for groups of n networks are given below. The equations only refer to edge sets E, so they do not apply to numbers of matching nodes. The difference is the union of all sets Di for 1 up to n networks, where the sets Di contain all edges x present in an edge set Ei but not in the union of all other edge sets$${{{mathrm{Difference}}}} = mathop {bigcup}limits_{i = 1}^n {D_i} ;{{{mathrm{where}}}};D_i = left{ {x:x in E_i,x ,notin, mathop {bigcup}limits_{begin{array}{*{20}{c}} {j = 1} \ {i ne j} end{array}}^n {E_j} } right}$$The k-intersections are unions of intersections SI. These intersections SI are sets of groups of edge sets, where the groups I are k-permutations of n and Ei is a single edge set in I. Hence, for a total number of edge sets n, each of the groups I have size k and the collection of all possible groups is indicated as (P_k^n). For the 4-intersection for a group of 40 edge sets, the size of (P_k^n) can be calculated as the binomial coefficient (Big( {begin{array}{*{20}{c}} {40} \ 4 end{array}} Big)). This mathematical representation is not implemented directly in the software, as the software simply takes the set of all edges present in at least four networks and therefore ignores network identity.Hence, a k-intersection is the union of all intersections SI for I in (P_k^n)$${{{mathrm{Intersection}}}} = mathop {bigcup}limits_{I in P_k^n} {S_I} ;{{{mathrm{where}}}};S_I = left{ {x:x in mathop {bigcap}limits_{i in I} {E_i} } right}$$Since edges present in at least k networks but not in m networks represent less conserved edges, the difference of the intersections is calculated to distinguish between less conserved and more conserved edges. The difference of two intersections k and m, with SI and SJ defined identically to SI in the equation above is then given below$${{{mathrm{Difference}}}};{{{mathrm{of}}}};{{{mathrm{intersections}}}} = mathop {bigcup}limits_{I in P_k^n} {S_I} backslash mathop {bigcup}limits_{J in P_m^n} {S_J} ;{{{mathrm{where}}}};k < m$$To compare observed set sizes to set sizes of random networks, the Z-score test is carried out, which identifies set sizes in the input networks that are outside the range of set sizes inferred from groups of random networks. The SciPy normaltest implementation [22] of D’Agostino’s and Pearson’s omnibus normality test is used to test for both kurtosis and skewness [23, 24]. Since this test requires at least 20 observations, a warning is issued if the number of random networks needs to be increased.The toolbox can also assess centrality scores across networks. To ensure that centralities are not biased by edge number, these are first converted to ranks before a Mann–Whitney U test is used to assess whether the distributions of ranks are similar across groups of observed networks and random networks. The comparisons to random networks are repeated a number of times and parameter-free p values across all comparisons are calculated from the number of successful Mann–Whitney U tests. By default, Benjamini-Hochberg multiple-testing corrections (implemented in the statsmodel package) are carried out on these p values to correct for the number of taxa [25]. The approach for network-level properties is similar, with the software currently supporting assortativity, connectivity, diameter, radius, and the average shortest path length. If the networks are ordered, the toolbox can calculate Spearman correlations of these properties to the network order. For example, users could supply networks constructed across a pH gradient. The results of all analyses are exported to tab-delimited files so they can be further analyzed and visualized in the user’s preferred statistical environment.Finally, the toolbox includes an option for resampling networks. In this way, the resulting data show how trends in set sizes change as the number of networks is increased. The resulting data can be interpreted as a rarefaction curve, where flattening of the curve suggests that sufficient networks have been collected to identify all edges present in a specific fraction of networks.Case studiesGut microbial time series data were collected from 20 women each of whom donated stool samples for over a month, with a sampling frequency close to one sample per day (Vandeputte et al., submitted) [26]. These women also reported data on their menstrual cycle. For each sample, enterotype assignments were carried out as in Vandeputte et al. [27] with Dirichlet multinomial clustering. Samples were assigned to Bacteroides 1, Bacteroides 2, Ruminococcaceae, or Prevotella.Progression through the menstrual cycle was rescaled to 28 days (the average length of a menstrual cycle) for all women. For days where there was more than one sample, only the first sample was used. Taxa present in less than 50% of participants were discarded from the analysis. Association networks were constructed with fastLSA v1.0 [28] with data rarefied to 10,000 sequences per sample, with correlations inferred across a delay of three time points (α = 0.05). Set sizes were analyzed with anuran, by generating 20 networks per observed network and resampling 100 different groups from these. Positive controls were generated 20 times, with a core size equal to 20% of the union of edges at 10% prevalence (edges present in at least two networks) and at 50% prevalence (edges present in at least ten networks). Set sizes and centralities with a p value below 0.05 for comparisons to values from random networks were considered significantly different from the random networks. The anuran toolbox was also used to assess the effect of increasing the number of participants.The Walktrap community finding algorithm [29], implemented in the igraph R package v1.2.6 [30], was used to cluster the inferred CAN as the lack of negative edges in the CAN suggested that random walks could sufficiently identify clusters. To visualize enterotype-specific patterns of relative abundance, we computed the mean relative abundance of taxa per individual. We then took the median relative abundances across all individuals who belonged predominantly to the Ruminococcaceae enterotype, an enterotype previously linked to lower stool moisture [27], and subtracted from these all other median relative abundances, giving an estimate of taxa that had high abundance in the Ruminococcaceae enterotype compared to other enterotypes.For the case study on the sponge microbiome, QIIME-processed data were downloaded from Moitinho et al. [31]. Samples with fewer than 1000 counts were removed and the samples were rarefied to even depth at 1034 sequences. After rarefaction, the abundance data were first filtered for 20% taxon prevalence across all samples, then once more to ensure 20% prevalence across different orders. Counts for removed taxa were retained to preserve the sample sums. After excluding host orders with fewer than 50 samples, 10 orders remained. CoNet v1.1.1 with renormalisation was then used to infer association networks (Faust and Raes [2]). Edges were generated with Pearson correlation, Spearman correlation, mutual information, Bray–Curtis dissimilarity, and Kullback–Leibler distance. Edges were included if at least one method reached significance; only edges with a combined Q-value below 0.05 (estimated using a combination of permutation and bootstrapping) were retained. The CoNet CANs were inferred with anuran generating 20 negative control random networks per host order and resampling these 100 times. For the positive controls, 20 network groups were generated with a core size equal to 20% of the union of edges at 20% prevalence (edges present in at least two networks) and at 50% prevalence (edges present in at least five networks). Set sizes and centralities with a p value below 0.05 for comparisons to values from random networks were considered significantly different from the random networks. CoNet networks were compared to FlashWeave networks [7]. FlashWeave v0.16.0 was run as FlashWeave-S (sensitive set to true and heterogeneous to false), with all other settings set to the default. To compare FlashWeave networks to CoNet networks, anuran generated five randomized networks per order-specific network and resampled these five times.Prior research indicated that microbial abundance was a significant driver of community structure in sponges [32]. Therefore, taxa in the CAN were compared to taxa reported as indicators of high microbial abundance (HMA) or low microbial abundance (LMA) [32]. CAN network clusters were identified with manta v1.0.0 [33], as this algorithm has been designed to handle negative edges in the CAN. To run the clustering algorithm, default settings were used, except the number of iterations and permutations, which was set to 200. A Chi-squared test was used to compare HMA–LMA predictions to CAN cluster assignments (α = 0.05). More

  • in

    All shallow coastal habitats matter as nurseries for Mediterranean juvenile fish

    1.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    2.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lindeboom, H. The coastal zone: An ecosystem under pressure. In Oceans 2020: Science Trends and the Challenge of Sustainability (ed. Field, J. G.) 49–84 (Island Press, 2002).
    Google Scholar 
    5.Airoldi, L., Balata, D. & Beck, M. W. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation. J. Exp. Mar. Biol. Ecol. 366, 8–15 (2008).Article 

    Google Scholar 
    6.Islam, S. & Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 48, 624–649 (2004).CAS 
    Article 

    Google Scholar 
    7.Vikas, M. & Dwarakish, G. S. Coastal pollution: A review. Aquat. Procedia 4, 381–388 (2015).Article 

    Google Scholar 
    8.Blaber, S. J. M. et al. Effects of fishing on the structure and functioning of estuarine and nearshore ecosystems. ICES J. Mar. Sci. 57, 590–602 (2000).Article 

    Google Scholar 
    9.Hussein, C. et al. Assessing the impact of artisanal and recreational fishing and protection on a white seabream (Diplodus sargus sargus) population in the north-western Mediterranean Sea using a simulation model. Part 1: Parameterization and simulations. Fish. Res. 108, 163–173 (2011).Article 

    Google Scholar 
    10.Hawkins, A. D. & Popper, A. N. A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES J. Mar. Sci. 74, 635–651 (2017).Article 

    Google Scholar 
    11.Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).Article 

    Google Scholar 
    12.Carr, M. H. Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J. Exp. Mar. Biol. Ecol. 146, 113–137 (1991).Article 

    Google Scholar 
    13.Sheaves, M., Baker, R. & Johnston, R. Marine nurseries and effective juvenile habitats: an alternative view. Mar. Ecol. Prog. Ser. 318, 303–306 (2006).ADS 
    Article 

    Google Scholar 
    14.Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. https://doi.org/10.1016/S0065-2881(06)51002-8 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).Article 

    Google Scholar 
    16.Di Franco, A. et al. Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas. Biol. Conserv. 192, 361–368 (2015).Article 

    Google Scholar 
    17.Di Franco, A. et al. Assessing dispersal patterns of fish propagules from an effective Mediterranean marine protected area. PLoS ONE 7, e52108 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Di Franco, A. & Guidetti, P. Patterns of variability in early-life traits of fishes depend on spatial scale of analysis. Biol. Lett. 7, 454–456 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Dahlgren, C. P. & Eggleston, D. B. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81, 2227–2240 (2000).Article 

    Google Scholar 
    20.Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    21.Dahlgren, C. P. et al. Marine nurseries and effective juvenile habitats: Concepts and applications. Mar. Ecol. Prog. Ser. 312, 291–295 (2006).ADS 
    Article 

    Google Scholar 
    22.Jennings, S. & Blanchard, J. L. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73, 632–642 (2004).Article 

    Google Scholar 
    23.Jones, G. P. The importance of recruitment to the dynamics of a coral reef fish population. Ecology 71, 1691–1698 (1990).Article 

    Google Scholar 
    24.Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries Coasts 38, 401–414 (2015).Article 

    Google Scholar 
    25.Harmelin-Vivien, M. L., Harmelin, J. G. & Leboulleux, V. Microhabitat requirements for settlement of juvenile Sparid fishes on Mediterranean rocky shores. Hydrobiologia 301, 309–320 (1995).Article 

    Google Scholar 
    26.Garcia-Rubies, A. & Macpherson, E. Substrate use and temporal pattern of recruitment in juvenile fishes of the Mediterranean littoral. Mar. Biol. 124, 35–42 (1995).Article 

    Google Scholar 
    27.Vigliola, L. Contrôle et régulation du recrutement des Sparidés (Poissons, Téléostéens) en Méditerranée : importance des processus pré- et post-installation benthique. Thèse Doct Sci Univ Aix-Marseille II Marseille. (1998).28.Cheminée, A. Ecological Functions, Transformations and Management of Infralittoral Rocky Habitats from the North-Western Mediterranean: The Case of Fish (Teleostei) Nursery Habitats (University of Nice, 2012).
    Google Scholar 
    29.Macpherson, E. & Zika, U. Temporal and spatial variability of settlement success and recruitment level in three blennoid fishes in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 182, 269–282 (1999).ADS 
    Article 

    Google Scholar 
    30.Heck, K., Hays, G. & Orth, R. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser. 253, 123–136 (2003).ADS 
    Article 

    Google Scholar 
    31.Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, A. & García-Charton, J. A. Temporal patterns of settlement, recruitment and post-settlement losses in a rocky reef fish assemblage in the South-Western Mediterranean Sea. Mar. Biol. 160, 2337–2352 (2013).Article 

    Google Scholar 
    32.Cuadros, A. Settlement and Post-Settlement Processes of Mediterranean Littoral Fishes: Influence of Seascape Attributes and Environmental Conditions at Different Spatial Scales (Universidad de las Islas Baleares, 2015).
    Google Scholar 
    33.Bussotti, S. & Guidetti, P. Timing and habitat preferences for settlement of juvenile fishes in the marine protected area of torre guaceto (south-eastern Italy, Adriatic Sea). Ital. J. Zool. 78, 243–254 (2011).Article 

    Google Scholar 
    34.Bariche, M., Letourneur, Y. & Harmelin-Vivien, M. Temporal fluctuations and settlement patterns of native and lessepsian herbivorous fishes on the lebanese coast (Eastern Mediterranean). Environ. Biol. Fishes 70, 81–90 (2004).Article 

    Google Scholar 
    35.Mosconi, P. & Chauvet, C. Growth spatio-temporal variability of juveniles of sea-bream (Sparus aurata) between lagoonal and sea areas in the south of Lion’s Gulf. Vie Milieu Paris 40, 305–311 (1990).
    Google Scholar 
    36.Verdiell-Cubedo, D., Oliva-Paterna, F. J., Ruiz-Navarro, A. & Torralva, M. Assessing the nursery role for marine fish species in a hypersaline coastal lagoon (Mar Menor, Mediterranean Sea). Mar. Biol. Res. 9, 739–748 (2013).Article 

    Google Scholar 
    37.Letourneur, Y., Darnaude, A., Salen-Picard, C. & Harmelin-vivien, M. Spatial and temporal variations of fish assemblages in a shallow Mediterranean soft-bottom area (Gulf of Fos, France). Oceanol. Acta 24, 273–285 (2001).Article 

    Google Scholar 
    38.Le Pape, O. et al. Sources of organic matter for flatfish juveniles in coastal and estuarine nursery grounds: A meta-analysis for the common sole (Solea solea) in contrasted systems of Western Europe. J. Sea Res. 75, 85–95 (2013).Article 

    Google Scholar 
    39.Guidetti, P. & Bussotti, S. Recruitment of Diplodus annularis and Spondyliosoma cantharus (Sparidae) in shallow seagrass beds along the Italian coasts (Mediterranean Sea). Mar. Life 7, 47–52 (1997).
    Google Scholar 
    40.Guidetti, P. & Bussotti, S. Fish fauna of a mixed meadow composed by the seagrasses Cymodocea nodosa and Zostera noltii in the Western Mediterranean. Oceanol. Acta 23, 759–770 (2000).Article 

    Google Scholar 
    41.Guidetti, P. & Bussotti, S. Effects of seagrass canopy removal on fish in shallow Mediterranean seagrass (Cymodocea nodosa and Zostera noltii) meadows: a local-scale approach. Mar. Biol. 140, 445–453 (2002).Article 

    Google Scholar 
    42.Cuadros, A. et al. The three-dimensional structure of Cymodocea nodosa meadows shapes juvenile fish assemblages (Fornells Bay, Minorca Island). Reg. Stud. Mar. Sci. (2017).43.Francour, P. & Le Direac’h, L. Recrutement de l’ichtyofaune dans l’herbier superficiel à Posidonia oceanica de la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale): données préliminaires. Trav. Sci. Parc. Nat. Régional Corse 46, 71–91 (1994).
    Google Scholar 
    44.Francour, P. & Le Direac’h, L. Analyse spatiale du recrutement des poissons de l’herbier à Posidonia oceanica dans la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale). Contrat Parc Naturel Régional de la Corse & GIS Posidonie. LEML Publ Nice 1–23 (2001).45.Francour, P. & Le Direach, L. Le recrutement des poissons dans les herbiers à Posidonia oceanica : quels sont les facteurs influents ? in XXXIX AFL Congress 67–78 (1995).46.Le Direac’h, L. & Francour, P. Recrutement de Diplodus annularis (Sparidae) dans les herbiers de posidonie de la Réserve Naturelle de Scandola (Corse). Trav. Sci. Parc. Nat. Rég. Corse 57, 42–75 (1998).
    Google Scholar 
    47.Guidetti, P. Differences among fish assemblages associated with Nearshore Posidonia oceanica Seagrass Beds, Rocky–algal Reefs and unvegetated sand habitats in the Adriatic Sea. Estuar. Coast. Shelf Sci. 50, 515–529 (2000).ADS 
    Article 

    Google Scholar 
    48.Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, Á. & García-Charton, J. A. Habitat use and ontogenetic shifts of fish life stages at rocky reefs in South-western Mediterranean Sea. J. Sea Res. 88, 67–77 (2014).ADS 
    Article 

    Google Scholar 
    49.Félix-Hackradt, F. C. et al. Environmental determinants on fish post-larval distribution in coastal areas of south-western Mediterranean Sea. Estuar. Coast. Shelf Sci. 129, 59–72 (2013).ADS 
    Article 

    Google Scholar 
    50.Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).Article 

    Google Scholar 
    51.Cheminée, A. et al. Juvenile fish assemblages in temperate rocky reefs are shaped by the presence of macro-algae canopy and its three-dimensional structure. Sci. Rep. 7, 14638 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Cuadros, A. et al. Juvenile fish in Cystoseira forests: Influence of habitat complexity and depth on fish behaviour and assemblage composition. Mediterr. Mar. Sci. 20, 380–392 (2019).Article 

    Google Scholar 
    53.Hinz, H., Reñones, O., Gouraguine, A., Johnson, A. F. & Moranta, J. Fish nursery value of algae habitats in temperate coastal reefs. PeerJ 7, e6797 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Thiriet, P. D. et al. Abundance and diversity of Crypto- and Necto-Benthic coastal fish are higher in marine forests than in structurally less complex macroalgal assemblages. PLoS ONE 11, e0164121 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Thiriet, P. Comparaison de la Structure des Peuplements de Poissons et des Processus Écologiques Sous-Jacents, Entre les Forêts de Cystoseires et des Habitats Structurellement Moins Complexes, dans l’Infralittoral Rocheux de Méditerranée Nord-Occidentale (University of Nice, 2014).
    Google Scholar 
    56.Cheminée, A. et al. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat. Mar. Pollut. Bull. 119, 245–254 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Mercader, M. et al. Spatial distribution of juvenile fish along an artificialized seascape, insights from common coastal species in the Northwestern Mediterranean Sea. Mar. Environ. Res. 137, 60–72 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Tournois, J. et al. Lagoon nurseries make a major contribution to adult populations of a highly prized coastal fish. Limnol. Oceanogr. 62, 1219–1233 (2017).ADS 
    Article 

    Google Scholar 
    59.Cuadros, A. et al. Settlement and post-settlement survival rates of the white seabream (Diplodus sargus) in the western Mediterranean Sea. PLoS ONE 13, e0190278 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Cheminée, A., Francour, P. & Harmelin-Vivien, M. Assessment of Diplodus spp. (Sparidae) nursery grounds along the rocky shore of Marseilles (France, NW Mediterranean). Sci. Mar. 75, 181–188 (2011).Article 

    Google Scholar 
    61.Pastor, J., Koeck, B., Astruch, P. & Lenfant, P. Coastal man-made habitats: Potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish. Res. 148, 74–80 (2013).Article 

    Google Scholar 
    62.Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol.-Prog. Ser. 168, 45–56 (1998).ADS 
    Article 

    Google Scholar 
    63.Vigliola, L. & Harmelin-Vivien, M. Post-settlement ontogeny in three Mediterranean reef fish species of the Genus Diplodus. Bull. Mar. Sci. 68, 271–286 (2001).
    Google Scholar 
    64.Cuadros, A. et al. Seascape attributes, at different spatial scales, determine settlement and post-settlement of juvenile fish. Estuar. Coast. Shelf Sci. 185, 120–129 (2017).ADS 
    Article 

    Google Scholar 
    65.Morat, F. et al. Diet of the Mediterranean european shag, Phalacrocorax aristotelis desmarestii, in a northwestern mediterranean area: a competitor for local fisheries?. Sci. Rep. Port. Cros. Natl. Park 28, 113–132 (2014).
    Google Scholar 
    66.Morat, F. et al. Offshore–onshore linkages in the larval life history of sole in the Gulf of Lions (NW-Mediterranean). Estuar. Coast. Shelf Sci. 149, 194–202 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    67.La Mesa, G., Louisy, P. & Vacchi, M. Assessment of microhabitat preferences in juvenile dusky grouper (Epinephelus marginatus) by visual sampling. Mar. Biol. 140, 175–185 (2002).Article 

    Google Scholar 
    68.Vacchi, M., La Mesa, G., Finoia, M. G., Guidetti, P. & Bussotti, S. Protection measures and juveniles of dusky grouper, Epinephelus marginatus (Lowe, 1834) (Pisces, Serranidae), in the Marine Reserve of Ustica Island (Italy, Mediterranean Sea). Mar. Life 9, 63–70 (1999).
    Google Scholar 
    69.Bodilis, P., Ganteaume, A. & Francour, P. Presence of 1 year-old dusky groupers along the French Mediterranean coast. J. Fish Biol. 62, 242–246 (2003).Article 

    Google Scholar 
    70.Bodilis, P., Ganteaume, A. & Francour, P. Recruitment of the dusky grouper (Epinephelus marginatus) in the north-western Mediterranean Sea. Cybium 27, 123–129 (2003).
    Google Scholar 
    71.Mercader, M. et al. Observation of juvenile dusky groupers (Epinephelus marginatus) in artificial habitats of North-Western Mediterranean harbors. Mar. Biodivers. 47, 371–372 (2016).Article 

    Google Scholar 
    72.Raventos, N. & Macpherson, E. Environmental influences on temporal patterns of settlement in two littoral labrid fishes in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 63, 479–487 (2005).ADS 
    Article 

    Google Scholar 
    73.Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).ADS 
    Article 

    Google Scholar 
    74.Macpherson, E. & Raventos, N. Settlement patterns and post-settlement survival in two Mediterranean littoral fishes: influences of early-life traits and environmental variables. Mar. Biol. 148, 167–177 (2005).Article 

    Google Scholar 
    75.Raventos, N. Effects of wave action on nesting activity in the littoral five-spotted wrasse, Symphodus roissali,(Labridae), in the northwestern Mediterranean Sea. Sci. Mar. 68, 257–264 (2004).Article 

    Google Scholar 
    76.Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Biagi, F., Gambaccini, S. & Zazzetta, M. Settlement and recruitment in fishes: The role of coastal areas. Ital. J. Zool. 65, 269–274 (1998).Article 

    Google Scholar 
    78.Franco, A. et al. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 66, 67–83 (2006).ADS 
    Article 

    Google Scholar 
    79.Harmelin-Vivien, M. L. et al. Évaluation visuelle des peuplements et populations de Poissons: Méthodes et problèmes. Rev. Ecol. Terre Vie 40, 467–539 (1985).
    Google Scholar 
    80.Faillettaz, R. et al. Spatio-temporal patterns of larval fish settlement in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 650, 153–173 (2020).ADS 
    Article 

    Google Scholar 
    81.Le Direach, L. et al. Programme NUhAGE : Nurseries, habitats, génie écologique, Rapport final. Contrat GIS Posidonie: MIO: P2A développement/Agence de l’Eau Rhône-Méditerranée-Corse-Conseil Général du Var. 1–146 (2015).82.Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).CAS 
    Article 

    Google Scholar 
    83.Ballesteros, E. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. (1992).84.Medrano, A. et al. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci. Rep. 10, 19219 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. (Primer-E Ltd, 2001).86.Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial-Primer-E Ltd. (2006).87.Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER: guide to software and statistical methods. (Primer-e, 2008).88.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).89.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    90.August, P. V. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507 (1983).Article 

    Google Scholar 
    91.Wedding, L. M., Lepczyk, C. A., Pittman, S. J., Friedlander, A. M. & Jorgensen, S. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm. Mar. Ecol. Prog. Ser. 427, 219–223 (2011).ADS 
    Article 

    Google Scholar 
    92.Thiriet, P., Cheminée, A., Mangialajo, L. & Francour, P. How 3D complexity of macrophyte-formed habitats affect the processes structuring fish assemblages within coastal temperate seascapes? in Underwater Seascapes (eds. Musard, O. et al.) 185–199 (Springer, 2014).93.Cheminée, A., Merigot, B., Vanderklift, M. A. & Francour, P. Does habitat complexity influence fish recruitment?. Mediterr. Mar. Sci. 17, 39–46 (2016).Article 

    Google Scholar 
    94.Mercader, M. et al. Is artificial habitat diversity a key to restoring nurseries for juvenile coastal fish? Ex situ experiments on habitat selection and survival of juvenile seabreams. Restor. Ecol. 27, 1155–1165 (2019).Article 

    Google Scholar 
    95.Winemiller, K. O. & Leslie, M. A. Fish assemblages across a complex, tropical freshwater/marine ecotone. Environ. Biol. Fishes 34, 29–50 (1992).Article 

    Google Scholar 
    96.Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).ADS 
    Article 

    Google Scholar 
    97.Adams, A. J. et al. Nursery function of tropical back-reef systems. Mar. Ecol. Prog. Ser. 318, 287–301 (2006).ADS 
    Article 

    Google Scholar 
    98.Vigliola, L., Harmelin-Vivien, M. & Meekan, M. G. Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of Diplodus from the Mediterranean Sea. Can. J. Fish. Aquat. Sci. 57, 1291–1299 (2000).Article 

    Google Scholar 
    99.Ventura, D., Lasinio, G. J. & Ardizzone, G. Temporal partitioning of microhabitat use among four juvenile fish species of the genus Diplodus (Pisces: Perciformes, Sparidae). Mar. Ecol. 36, 1013–1032 (2015).ADS 
    Article 

    Google Scholar 
    100.Thibaut, T., Blanfune, A., Boudouresque, C. F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206–224 (2015).Article 

    Google Scholar 
    101.Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Thibaut, T. et al. Unexpected temporal stability of cystoseira and sargassum forests in port-cros, one of the Oldest Mediterranean Marine National Parks. Cryptogam. Algol. 37, 61–90 (2016).Article 

    Google Scholar 
    103.Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).ADS 
    Article 

    Google Scholar 
    104.Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    105.Sala, E., Boudouresque, C. F. & Harmelin-Vivien, M. Fishing, trophic cascades, and the structure of algal assemblages: Evaluation of an old but untested paradigm. Oikos 82, 425–439 (1998).Article 

    Google Scholar 
    106.Sala, E., Kizilkaya, Z., Yildirim, D. & Ballesteros, E. Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS ONE 6, e17356 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Planes, S. et al. Spatio-temporal variability in growth of juvenile sparid fishes from the Mediterranean littoral zone. J. Mar. Biol. Assoc. UK 79, 137–143 (1999).Article 

    Google Scholar 
    108.Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).ADS 
    Article 

    Google Scholar 
    109.Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).CAS 
    Article 

    Google Scholar 
    110.Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    112.Colloca, F. et al. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10, e0119590 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    113.Cheminée, A., Feunteun, E., Clerici, S., Bertrand, C. & Francour, P. Management of infralittoral habitats: towards a seascape scale approach. in Underwater Seascapes: From geographical to ecological perspectives (eds. Musard, O., Francour, P. & Feunteun, E.) 240 (Springer, 2014).114.Grober-Dunsmore, R., Pittman, S. J., Caldow, C., Kendall, M. S. & Frazer, T. K. A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. Ecol. Connect. Trop. Coast. Ecosyst. 1, 493–530 (2009).
    Google Scholar 
    115.Meinesz, A., Lefevre, J. R. & Astier, J. M. Impact of coastal development on the infralittoral zone along the southeastern Mediterranean shore of continental France. Mar. Pollut. Bull. 23, 343–347 (1991).Article 

    Google Scholar 
    116.Boudouresque, C. F. et al. The Management of Mediterranean Coastal Habitats: A Plea for a Socio-ecosystem-Based Approach. in Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes (eds. Ceccaldi, H.-J. et al.) 297–320 (Springer, 2020).117.Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).Article 

    Google Scholar 
    118.Boudouresque, C. F. et al. Protection and conservation of Posidonia oceanica meadows. RAMOGE and RAC. (SPA publisher, 2012).119.Sartoretto, S. et al. An integrated method to evaluate and monitor the conservation state of coralligenous habitats: The INDEX-COR approach. Mar. Pollut. Bull. 120, 222–231 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Meinesz, A. & Blanfuné, A. 1983–2013: Development of marine protected areas along the French Mediterranean coasts and perspectives for achievement of the Aichi target. Mar. Policy 54, 10–16 (2015).Article 

    Google Scholar  More

  • in

    Microplastic contamination of the drilling bivalve Hiatella arctica in Arctic rhodolith beds

    1.PlasticsEurope. Plastics the—Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2019).
    Google Scholar 
    2.Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913. https://doi.org/10.1371/journal.pone.0111913 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518. https://doi.org/10.1126/science.aba3656 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Bergmann, M., Tekman, M. B. & Gutow, L. Sea change for plastic pollution. Nature 544, 297. https://doi.org/10.1038/544297a (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Imhof, H. K. et al. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar. Pollut. Bull. 116, 340–347. https://doi.org/10.1016/j.marpolbul.2017.01.010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Obbard, R. W. Microplastics in polar regions: The role of long range transport. Curr. Opin. Environ. Sci. Health 1, 24–29. https://doi.org/10.1016/j.coesh.2017.10.004 (2018).Article 

    Google Scholar 
    7.Wessel, C. C., Lockridge, G. R., Battiste, D. & Cebrian, J. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries. Mar. Pollut. Bull. 109, 178–183. https://doi.org/10.1016/j.marpolbul.2016.06.002 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. Royal Soc. Open Sci. https://doi.org/10.1098/rsos.140317 (2014).Article 

    Google Scholar 
    9.Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. Royal Soc. Lond. Ser. B, Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).CAS 
    Article 

    Google Scholar 
    10.Arthur, C., Baker, J. E. & Bamford, H. A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9–11, 2008 (University of Washington Tacoma, 2009).
    Google Scholar 
    11.Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic Debris. Environ. Sci. Technol. 53, 1039–1047. https://doi.org/10.1021/acs.est.8b05297 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Lusher, A. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 245–307 (Springer International Publishing, 2015).13.Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L. & Futter, M. N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?. Sci. Total Environ. 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Bråte, I. L. N. et al. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environ. Pollut. 243, 383–393. https://doi.org/10.1016/j.envpol.2018.08.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Cózar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. Sci. Adv. 3, e1600582. https://doi.org/10.1126/sciadv.1600582 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Kanhai, L. D. K. et al. Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull. 130, 8–18. https://doi.org/10.1016/j.marpolbul.2018.03.011 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090. https://doi.org/10.1021/acs.est.9b06981 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2, 315–320. https://doi.org/10.1002/2014EF000240 (2014).ADS 
    Article 

    Google Scholar 
    22.Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505. https://doi.org/10.1038/s41467-018-03825-5 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Kanhai, L. D. K., Gardfeldt, K., Krumpen, T., Thompson, R. C. & O’Connor, I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci. Rep. 10, 5004. https://doi.org/10.1038/s41598-020-61948-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. J. Sci. Adv. 5, eaax1157. https://doi.org/10.1126/sciadv.aax1157 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Amélineau, F. et al. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139. https://doi.org/10.1016/j.envpol.2016.09.017 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278. https://doi.org/10.1007/s00300-018-2283-8 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Fang, C. et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere 209, 298–306. https://doi.org/10.1016/j.chemosphere.2018.06.101 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Bråte, I. L. N. et al. Microplastics in Marine Bivalves from the Nordic Environment Vol. 504 (Nordic Council of Ministers, 2020).Book 

    Google Scholar 
    29.Misund, O. A. et al. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings. Polar Sci. 10, 312–322. https://doi.org/10.1016/j.polar.2016.02.001 (2016).ADS 
    Article 

    Google Scholar 
    30.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386. https://doi.org/10.2307/3545850 (1994).Article 

    Google Scholar 
    31.Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).Article 

    Google Scholar 
    32.Fredericq, S. et al. The critical importance of rhodoliths in the life cycle completion of both macro- and microalgae, and as holobionts for the establishment and maintenance of marine biodiversity. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00502 (2019).Article 

    Google Scholar 
    33.Krayesky-Self, S. et al. Eukaryotic life inhabits rhodolith-forming coralline algae (Hapalidiales, Rhodophyta), remarkable marine benthic microhabitats. Sci. Rep. 7, 45850. https://doi.org/10.1038/srep45850 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kamenos, N. A., Moore, P. G., Hall-Spencer, J. & Donnan, D. Maerl: Its value as a habitat for commercial species. Shellfish News 18, 8–9 (2004).
    Google Scholar 
    35.Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar. Ecol. Prog. Ser. 274, 183–189. https://doi.org/10.3354/meps274183 (2004).ADS 
    Article 

    Google Scholar 
    36.Gagnon, P., Matheson, K. & Stapleton, M. Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot. Mar. 55, 85–99 (2012).Article 

    Google Scholar 
    37.Teichert, S. et al. Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31’N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51, 371–390 (2012).Article 

    Google Scholar 
    38.Teichert, S. et al. Arctic rhodolith beds and their environmental controls. Facies 60, 15–37. https://doi.org/10.1007/s10347-013-0372-2 (2014).Article 

    Google Scholar 
    39.Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 6972. https://doi.org/10.1038/srep06972 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Denisenko, S. G., Denisenko, N. V., Lehtonen, K. K., Andersin, A. B. & Laine, A. O. Macrozoobenthos of the Pechora Sea (SE Barents Sea): Community structure and spatial distribution in relation to environmental conditions. Mar. Ecol. Prog. Ser. 258, 109–123 (2003).ADS 
    Article 

    Google Scholar 
    41.Rees, H. L. & Dare, P. J. Sources of Mortality and Associated Life-Cycle Traits of Selected Benthic Species: A Review Vol. 33, 36 (CEFAS Directorate of Fisheries Research, 1993).
    Google Scholar 
    42.Sejr, M. K. et al. Growth and production of Hiatella arctica (Bivalvia) in a high-Arctic fjord (Young Sound, Northeast Greenland). Mar. Ecol. Prog. Ser. 244, 163–169. https://doi.org/10.3354/meps244163 (2002).ADS 
    Article 

    Google Scholar 
    43.Witman, J. D. & Sebens, K. P. Regional variation in fish predation intensity: A historical perspective in the Gulf of Maine. Oecologia 90, 305–315. https://doi.org/10.1007/bf00317686 (1992).ADS 
    Article 
    PubMed 

    Google Scholar 
    44.Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play?. ICES J. Mar. Sci. 61, 422–429 (2004).Article 

    Google Scholar 
    45.Teichert, S., Voigt, N. & Wisshak, M. Do skeletal Mg/Ca ratios of Arctic rhodoliths reflect atmospheric CO2 concentrations?. Polar Biol. 43, 2059–2069. https://doi.org/10.1007/s00300-020-02767-3 (2020).Article 

    Google Scholar 
    46.Ragazzola, F. et al. Phenotypic plasticity of coralline algae in a High CO2 world. Ecol. Evol. 3, 3436–3446. https://doi.org/10.1002/ece3.723 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Teichert, S. & Freiwald, A. Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation. Biogeosciences 11, 833–842. https://doi.org/10.5194/bg-11-833-2014 (2014).ADS 
    Article 

    Google Scholar 
    48.Büdenbender, J., Riebesell, U. & Form, A. Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar. Ecol. Prog. Ser. 441, 79–87 (2011).ADS 
    Article 

    Google Scholar 
    49.Wisshak, M. et al. Habitat Characteristics and Carbonate Cycling of Macrophyte-Supported Polar Carbonate Factories (Svalbard)—Cruise No. MSM55—June 11–June 29, 2016—Reykjavik (Iceland)—Longyearbyen (Norway) 58 (Bremen, 2017).50.Löder, M. G. J. et al. Enzymatic purification of microplastics in environmental samples. Environ. Sci. Technol. 51, 14283–14292. https://doi.org/10.1021/acs.est.7b03055 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Hufnagl, B. et al. A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers. Anal. Methods 11, 2277–2285. https://doi.org/10.1039/C9AY00252A (2019).CAS 
    Article 

    Google Scholar 
    52.Yanfang, L., Hua, Z. & Cheng, T. A review of possible pathways of marine microplastics transport in the ocean. Anthr. Coasts 3, 6–13. https://doi.org/10.1139/anc-2018-0030 (2020).Article 

    Google Scholar 
    53.Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A. Distribution of plastic polymer types in the marine environment; A meta-analysis. J. Hazard. Mater. 369, 691–698. https://doi.org/10.1016/j.jhazmat.2019.02.067 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843. https://doi.org/10.1038/s41598-019-44117-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kooi, M. et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 6, 33882. https://doi.org/10.1038/srep33882 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Vinay Kumar, B. N., Löschel, L. A., Imhof, H. K., Löder, M. G. J. & Laforsch, C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.116147 (2020).Article 
    PubMed 

    Google Scholar 
    57.Löder, M. G. J. & Gerdts, G. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 201–227 (Springer International Publishing, 2015).58.Wisshak, M. et al. Epibenthos dynamics and environmental fluctuations in two contrasting Polar carbonate factories (Mosselbukta and Bjørnøy-Banken, Svalbard). Front. Mar. Sci. 6, 667. https://doi.org/10.3389/fmars.2019.00667 (2019).Article 

    Google Scholar 
    59.Frias, J. P. G. L., Lyashevska, O., Joyce, H., Pagter, E. & Nash, R. Floating microplastics in a coastal embayment: A multifaceted issue. Mar. Pollut. Bull. 158, 111361. https://doi.org/10.1016/j.marpolbul.2020.111361 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340. https://doi.org/10.1038/srep14340 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Digka, N., Tsangaris, C., Torre, M., Anastasopoulou, A. & Zeri, C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 135, 30–40. https://doi.org/10.1016/j.marpolbul.2018.06.063 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T. & Turra, A. Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Mar. Pollut. Bull. 106, 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Gomiero, A., Strafella, P., Øysæd, K. B. & Fabi, G. First occurrence and composition assessment of microplastics in native mussels collected from coastal and offshore areas of the northern and central Adriatic Sea. Environ. Sci. Pollut. Res. Int. 26, 24407–24416. https://doi.org/10.1007/s11356-019-05693-y (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Mathalon, A. & Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81, 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533. https://doi.org/10.1016/j.envpol.2018.10.032 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Woodall, L. C. et al. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46. https://doi.org/10.1016/j.marpolbul.2015.04.044 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Kowalski, N., Reichardt, A. M. & Waniek, J. J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 109, 310–319. https://doi.org/10.1016/j.marpolbul.2016.05.064 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Kooi, M., Nes, E. H. V., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971. https://doi.org/10.1021/acs.est.6b04702 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Barrows, A. P. W., Cathey, S. E. & Petersen, C. W. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ. Pollut. 237, 275–284. https://doi.org/10.1016/j.envpol.2018.02.062 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Halsband, C. & Herzke, D. Plastic litter in the European Arctic: What do we know?. Emerg. Contam. 5, 308–318. https://doi.org/10.1016/j.emcon.2019.11.001 (2019).Article 

    Google Scholar 
    72.Bergmann, M., Lutz, B., Tekman, M. B. & Gutow, L. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life. Mar. Pollut. Bull. 125, 535–540. https://doi.org/10.1016/j.marpolbul.2017.09.055 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335. https://doi.org/10.1021/es302332w (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Kolandhasamy, P. et al. Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Sci. Total Environ. 610–611, 635–640. https://doi.org/10.1016/j.scitotenv.2017.08.053 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C. & Gerdts, G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. J. Environ. Chem. 12, 563–581. https://doi.org/10.1071/EN14205 (2015).CAS 
    Article 

    Google Scholar 
    76.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    77.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    78.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn, 498 (Springer, 2002).Book 

    Google Scholar 
    79.Vegan: Community Ecology Package (2020). More

  • in

    Long term relationship between farming damselfish, predators, competitors and benthic habitat on coral reefs of Moorea Island

    1.Spalding, M. D., Ravilious, C. & Green, E. P. World atlas of coral reefs, University of California Press, Berkeley, CA, USA (2001).2.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Hughes, T. P. et al. Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr. Biol. 17, 360–365 (2007).CAS 
    Article 

    Google Scholar 
    4.Moritz, C., Vii, J., Lee Long, W., Tamelander, J., Thomassin, A. & Planes, S. Status and Trends of Coral Reefs of the Pacific. Global Coral Reef Monitoring Network, 114 pp (2018).5.Morrison, T. H., Hughes, T. P., Adger, W. N. & Brown, K. Save reefs to rescue all ecosystems. Nature 573, 334–336 (2019).ADS 
    Article 

    Google Scholar 
    6.Bellwood, D. R., Hughes, T. P. & Hoey, A. S. Sleeping functional group drives coral-reef recovery. Curr. Biol. 16, 2434–2439 (2006).CAS 
    Article 

    Google Scholar 
    7.Graham, N. A. et al. Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ. 11, 541–548 (2013).Article 

    Google Scholar 
    8.Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87, 109–122 (2006).Article 

    Google Scholar 
    9.Gajdzik, L. et al. Similar levels of trophic and functional diversity within damselfish assemblages across Indo- Pacific coral reefs. Function. Ecol. 32, 1358–1369 (2018).Article 

    Google Scholar 
    10.Holling, C. S. Resilience and stability of ecological systems. Ann. Rev. Ecol. Syst. 4, 1–23 (1973).Article 

    Google Scholar 
    11.Viviani, J. et al. Synchrony patterns reveal different degrees of trophic guild vulnerability after disturbances in a coral reef fish community. Divers. Distrib. 5, 1–12 (2019).
    Google Scholar 
    12.Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 103, 91–93 (1969).Article 

    Google Scholar 
    13.Mills, L. C., Soule, M. E. & Doak, D. F. The keystone-species concept in ecology and conservation. Bioscience 4, 219–224 (1993).Article 

    Google Scholar 
    14.Bouchon, C. et al. Status of the coral reefs of the Lesser Antilles after 2005 coral bleaching event in Status of Caribbean coral reefs after bleaching and hurricanes in 2005 (eds. Wilkinson C et al.) 85–104 (Global Coral Reef Monitoring Network and Reef and Rainforest Research Center, Townsville, 2008).15.Jackson, J. B. C., Donovan, M. K., Cramer, K. L., Lam, V. V. Status and Trends of Caribbean Coral Reefs: 1970–2012. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland (2014)16.Cernohorsky, N. H., McClanahan, T. R., Babu, I. & Horsa, M. Small herbivores suppress algal accumulation on Agatti atoll, Indian Ocean. Coral Reefs 34, 1023–1035 (2015).ADS 
    Article 

    Google Scholar 
    17.Altman-Kurosaki, N. T., Priest, M. A., Golbuu, Y., Mumby, P. J. & Marshell, J. Microherbivores are significant grazers on Palau’s forereefs. Mar. Biol. 165, 74–86 (2018).Article 

    Google Scholar 
    18.Ceccarelli, D. M., Jones, G. P. & McCook, L. J. Territorial damselfishes as determinants of the structure of benthic communities on coral reefs. Oceanog. Mar. Biol. Annu. Rev. 39, 355–389 (2001).
    Google Scholar 
    19.Hata, H. & Ceccarelli, D. M. Farming behaviour of territorial Damselfishes in Biology of Damselfishes (eds. Parmentier, E. & Frederich B.) 122–152 (CRC Press, 2016).20.Brooker, R. M. et al. Niche construction and the natural selection of domestication. Nat. Commun. 11, 6253 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Hata, H. & Kato, M. Monoculture and mixed-species algal farms on a coral reef are maintained through intensive and extensive management by damselfishes. J. Exp. Mar. Biol. Ecol. 313, 285–296 (2004).Article 

    Google Scholar 
    22.Ceccarelli, D. M. Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26, 853–866 (2007).ADS 
    Article 

    Google Scholar 
    23.Emslie, M. J. et al. Regional-scale variation in the distribution and abundance of farming damselfishes on Australia’s Great Barrier Reef. Mar. Biol. 159, 1293–1304 (2012).Article 

    Google Scholar 
    24.Precht, W. F., Aronson, R. B. & Moody, R. M. Changing patterns of microhabitat utilization by the threespot damselfish, Stegastes planifrons, on Caribbean reefs. PloS ONE 5, e10835 (2010).25.Casey, J. M., Ainsworth, T. D., Choat, J. H. & Connolly, S. R. Farming behaviour of reef fishes increases the prevalence of coral disease associated microbes and black band disease. Proc. R. Soc. B. 281, 20141032 (2014).Article 

    Google Scholar 
    26.Randazzo-Eisemann, Á., Montero Muñoz, J. L., McField, M., Myton, J. & Arias-González, J. E. The effect of Algal-gardening damselfish on the resilience of the mesoamerican Reef. Front. Mar. Sci. 6, 414–421 (2019).27.Sandin, S. A. et al. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS ONE 3, e1548 (2008).28.Naim, O. et al. Fringing reefs of Reunion Island and eutrophication effects: long term monitoring of primary producers. Atoll Res. Bull. 597, 1–14 (2013).ADS 
    Article 

    Google Scholar 
    29.Figueira, W. F., Lyman, S. J., Crowder, L. B. & Rilov, G. Small-scale demographic variability of the biocolor damselfish, Stegastes partitus, in the Florida Keys USA. Environ. Biol. Fish 81, 297–311 (2008).Article 

    Google Scholar 
    30.Carpenter, R. C. Partitioning herbivory and its effects on coral reef algal communities. Ecol. Monogr. 56, 345 (1986).Article 

    Google Scholar 
    31.Bellwood, D. R. & Fulton, C. J. Sediment-mediated suppression of herbivory on coral reefs: decreasing resilience to rising sea-levels and climate change?. Limnol. Oceanogr. 53(6), 2695–2701 (2008).ADS 
    Article 

    Google Scholar 
    32.Galzin, R. Biomasse ichtyologique dans les écosystèmes récifaux. Etude préliminaire de la dynamique d’une population de Stegastes nigricans dans le lagon de Moorea (Société, Polynésie française). Rev. Trav. Inst. Pêches Marit. 40, 575–578 (1977).33.Lison de Loma, T., Galzin, R. & Planes, S. A framework for assessing impacts of marine protected areas in Moorea (French Polynesia). Pacif. Sci. 62, 431–441(2008).34.Glaser, M. et al. Breaking resilience for a sustainable future: thoughts for the anthropocene. Front. Mar. Sci. 5, 34–40 (2018).Article 

    Google Scholar 
    35.Siu, G. et al. Shore fishes of French Polynesia. Cybium 41, 245–278 (2017).
    Google Scholar 
    36.Tebbett, S. B., Chase, T. J. & Bellwood, D. R. Farming damselfishes shape algal turf sediment dynamics on coral reefs. Mar. Envirron. Res. 160, 104988 (2020).37.Wilkes, A. A. et al. A comparison of damselfish densities on live staghorn coral (Acropora cervicornis) and coral rubble in Dry Tortugas National Park. Southeast. Nat. 7, 483–492 (2008).Article 

    Google Scholar 
    38.Blanchette, A. et al. Damselfish Stegastes nigricans increase algal growth within their territories on shallow coral reefs via enhanced nutrient supplies. J. Exp. Mar. Biol. Ecol. 513, 21–26 (2019).Article 

    Google Scholar 
    39.Galzin, R. Structure of fish communities of French Polynesian coral reefs. I. Spatial scales. Mar. Ecol. Prog. Ser. 41, 129–136 (1987a).40.Galzin, R. Structure of fish communities of French Polynesian coral reefs. II. Temporal scales. Mar. Ecol. Prog. Ser. 41, 137–145 (1987b).41.Lecchini, D. & Galzin, R. Spatial repartition and ontogenetic shifts in habitat use by coral reef fishes (Moorea, French Polynesia). Mar. Biol. 147, 47–58 (2005).Article 

    Google Scholar 
    42.Galzin, R., Marfin, J. P. & Salvat, B. Long term coral reef monitoring program: heterogeneity of the Tiahura barrier reef (Moorea, French Polynesia). Galaxea 11, 73–91 (1993).
    Google Scholar 
    43.Galzin, R., Lecchini, D., Lison de Loma, T., Moritz, C. & Siu, G. Long term monitoring of coral and fish assemblages (1983–2014) in Tiahura reefs, Moorea, French Polynesia. Cybium 40, 31–41 (2016).44.Froese, R. & Pauly, D. Eds. FishBase. World Wide Web electronic publication. www.fishbase.org (2018).45.Hamed, K. H. & Rao, A. R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 204, 182–196 (1998).ADS 
    Article 

    Google Scholar 
    46.Patakamuri, S.K. & O’Brien, N. Modifiedmk: Modified versions of Mann Kendall and Spearman’s Rho trend tests. R package version 1.5.0 (2020).47.R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2017).48.RStudio Team. R Studio: Integrated Development for R. RStudio, PBC, Boston, MA (2020). More

  • in

    Nationwide genomic atlas of soil-dwelling Listeria reveals effects of selection and population ecology on pangenome evolution

    1.McInerney, J. O., McNally, A. & O’Connell, M. J. Why prokaryotes have pangenomes. Nat. Microbiol. 2, 17040 (2017).2.Tettelin, H., Riley, D., Cattuto, C. & Medini, D. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bentley, S. Sequencing the species pan-genome. Nat. Rev. Microbiol. 7, 258–259 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bromham, L. & Penny, D. The modern molecular clock. Nat. Rev. Genet. 4, 216–224 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Otto, S. P. & Whitlock, M. C. The probability of fixation in populations of changing size. Genetics 146, 723–733 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Moura, A. et al. Whole genome-based population biology and epidemiological surveillance of Listeria monocytogenes. Nat. Microbiol. 2, 16185 (2016).7.Linke, K. et al. Reservoirs of Listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 80, 5583–5592 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Liao, J., Wiedmann, M. & Kovac, J. Genetic stability and evolution of the sigB allele, used for Listeria sensu stricto subtyping and phylogenetic inference. Appl. Environ. Microbiol. 83, e00306–e00317 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    9.Duché, O., Trémoulet, F., Glaser, P. & Labadie, J. Salt stress proteins induced in Listeria monocytogenes. Appl. Environ. Microbiol. 68, 1491–1498 (2002).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Mcclure, P. J., Roberts, T. A. & Oguru, P. O. Comparison of the effects of sodium chloride, pH and temperature on the growth of Listeria monocytogenes on gradient plates and in liquid medium. Lett. Appl. Microbiol. 9, 95–99 (1989).CAS 
    Article 

    Google Scholar 
    11.Schwarz, G., Mendel, R. R. & Ribbe, M. W. Molybdenum cofactors, enzymes and pathways. Nature 460, 839–847 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Cordero, O. X. & Polz, M. F. Explaining microbial genomic diversity in light of evolutionary ecology. Nat. Rev. Microbiol. 12, 263–273 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Iranzo, J., Wolf, Y. I., Koonin, E. V. & Sela, I. Gene gain and loss push prokaryotes beyond the homologous recombination barrier and accelerate genome sequence divergence. Nat. Commun. 10, 5376 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 3, 711–721 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Smith, J. M., Feil, E. J. & Smith, N. H. Population structure and evolutionary dynamics of pathogenic bacteria. BioEssays 22, 1115–1122 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Crits-Christoph, A., Olm, M. R., Diamond, S., Bouma-Gregson, K. & Banfield, J. F. Soil bacterial populations are shaped by recombination and gene-specific selection across a grassland meadow. ISME J. 14, 1834–1846 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Murrell, B. et al. Gene-wide identification of episodic selection. Mol. Biol. Evol. 32, 1365–1371 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Angelastro, A. Chemoenzymatic synthesis of isotopically labelled folates. J. Am. Chem. Soc. 139, 13047–13054 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Choudoir, M. J., Doroghazi, J. R. & Buckley, D. H. Latitude delineates patterns of biogeography in terrestrial Streptomyces. Environ. Microbiol. 18, 4931–4945 (2016).PubMed 
    Article 

    Google Scholar 
    21.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 15, R46 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Black, C. A., Evans, D. D., Ensminger, L. E., White, J. L. & Clark, F. E. Methods of Soil Analysis Part 1: Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling 128–151 (American Society of Agronomy, 1965).27.Weller, D., Belias, A., Green, H., Roof, S. & Wiedmann, M. Landscape, water quality, and weather factors associated with an increased likelihood of foodborne pathogen contamination of New York streams used to source water for produce production. Food Sustain. Food Syst. 3, 124 (2020).Article 

    Google Scholar 
    28.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).
    Google Scholar 
    29.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, 309–314 (2018).Article 
    CAS 

    Google Scholar 
    31.Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G. & Toth, I. K. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Methods 8, 12–24 (2016).Article 

    Google Scholar 
    36.Carlin, C. R. et al. Listeria cossartiae sp. nov., Listeria immobilis sp. nov., Listeria portnoyi sp. nov. and Listeria rustica sp. nov. isolated from agricultural water and natural environments. Int J. Syst. Evol. Microbiol. 71, 004795 (2021).CAS 

    Google Scholar 
    37.Arevalo, P., VanInsberghe, D., Elsherbini, J., Gore, J. & Polz, M. F. A reverse ecology approach based on a biological definition of microbial populations. Cell 178, 820–834 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Méric, G. et al. A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter. PLoS ONE 9, e92798 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Gardner, S. N., Slezak, T. & Hall, B. G. kSNP3.0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics 31, 2877–2878 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Kelly, J. K. A test of neutrality based on interlocus associations. Genetics 146, 1197–1206 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Liao, J. et al. Serotype-specific evolutionary patterns of antimicrobial-resistant Salmonella enterica. BMC Evol. Biol. 19, 132 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    45.Pond, S. L. K., Posada, D., Gravenor, M. B., Woelk, C. H. & Frost, S. D. W. Automated phylogenetic detection of recombination using a genetic algorithm. Mol. Biol. Evol. 23, 1891–1901 (2006).CAS 
    Article 

    Google Scholar  More

  • in

    Climate change may induce connectivity loss and mountaintop extinction in Central American forests

    1.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).Article 

    Google Scholar 
    2.Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol. 14, e2001104 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Anadón, J. D., Sala, O. E. & Maestre, F. T. Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. J. Ecol. 102, 1363–1373 (2014).Article 

    Google Scholar 
    5.ECLAC et al. Climate Change in Central America: Potential Impacts and Public Policy Options (United Nations, 2015).6.Khatun, K., Imbach, P. & Zamora, J. An assessment of climate change impacts on the tropical forests of Central America using the Holdridge Life Zone (HLZ) land classification system. iForest—Biogeosciences Forestry 6, 183 (2013).Article 

    Google Scholar 
    7.TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB (Progress Press, 2010).8.Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114, 813–822 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Myers, N. Biodiversity hotspots revisited. BioScience 53, 916–917 (2003).Article 

    Google Scholar 
    10.Corrales, L., Bouroncle, C. & Zamora, J. C. In Climate Change Impacts on Tropical Forests in Central America (ed. Chiabai, A.) 17–38 (Routledge, 2015).11.Gunter, U., Ceddia, M. G. & Tröster, B. International ecotourism and economic development in Central America and the Caribbean. J. Sustain. Tour. 25, 43–60 (2017).Article 

    Google Scholar 
    12.Hernández-Blanco, M., Costanza, R., Anderson, S., Kubiszewski, I. & Sutton, P. Future scenarios for the value of ecosystem services in Latin America and the Caribbean to 2050. Curr. Res. Environ. Sustainability 2, 100008 (2020).Article 

    Google Scholar 
    13.Hecht, S. B. Forests lost and found in tropical Latin America: the woodland ‘green revolution’. J. Peasant Stud. 41, 877–909 (2014).Article 

    Google Scholar 
    14.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Imbach, P. et al. Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios. J. Hydrometeor 13, 665–680 (2012).Article 

    Google Scholar 
    16.Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 1–9. https://doi.org/10.1038/s41559-020-01303-0 (2020).17.Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).Article 

    Google Scholar 
    18.Booth, T. H. Species distribution modelling tools and databases to assist managing forests under climate change. For. Ecol. Manag. 430, 196–203 (2018).Article 

    Google Scholar 
    19.Urbina-Cardona, N. et al. Species distribution modeling in Latin America: a 25-year retrospective review. Trop. Conserv. Sci. 12, 1940082919854058 (2019).Article 

    Google Scholar 
    20.Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.BIOMARCC-SINAC-GIZ. Estimación de los posibles cambios en la distribución de especies de flora arbórea en el Pacífico Norte y Sur de Costa Rica en respuesta a los efectos del Cambio Climático (2013).22.de Sousa, K. et al. Suitability of Key Central American Agroforestry Species Under Future Climates: an Atlas (World Agroforestry Centre, 2017).23.Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).Article 

    Google Scholar 
    24.Biber, M. F., Voskamp, A., Niamir, A., Hickler, T. & Hof, C. A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. J. Biogeogr. 47, 114–129 (2020).Article 

    Google Scholar 
    25.Zakharova, L., Meyer, K. M. & Seifan, M. Trait-based modelling in ecology: a review of two decades of research. Ecol. Model. 407, 108703 (2019).Article 

    Google Scholar 
    26.Lyra, A. et al. Projections of climate change impacts on central America tropical rainforest. Climatic Change 141, 93–105 (2017).CAS 
    Article 

    Google Scholar 
    27.Boukili, V. K. & Chazdon, R. L. Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 24, 37–47 (2017).Article 

    Google Scholar 
    28.Imbach, P. A., Locatelli, B., Molina, L. G., Ciais, P. & Leadley, P. W. Climate change and plant dispersal along corridors in fragmented landscapes of Mesoamerica. Ecol. Evol. 3, 2917–2932 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Meyer, N. F. V., Moreno, R., Reyna-Hurtado, R., Signer, J. & Balkenhol, N. Towards the restoration of the Mesoamerican Biological Corridor for large mammals in Panama: comparing multi-species occupancy to movement models. Mov. Ecol. 8, 3 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Cabrera-Guzmán, E. & Reynoso, V. H. Amphibian and reptile communities of rainforest fragments: minimum patch size to support high richness and abundance. Biodivers. Conserv 21, 3243–3265 (2012).Article 

    Google Scholar 
    31.Crespin, S. J. & García-Villalta, J. E. Integration of land-sharing and land-sparing conservation strategies through regional networking: The Mesoamerican Biological Corridor as a Lifeline for Carnivores in El Salvador. AMBIO 43, 820–824 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Rehm, E. & Feeley, K. J. Many species risk mountain top extinction long before they reach the top. Front. Biogeogr. 8, (2016).33.Fung, E. et al. Mapping conservation priorities and connectivity pathways under climate change for tropical ecosystems. Climatic Change 141, 77–92 (2017).Article 

    Google Scholar 
    34.Ojea, E., Zamora, J. C., Martin-Ortega, J. & Imbach, P. In Climate Change Impacts on Tropical Forests in Central America: an Ecosystem Service Perspective (ed. Chiabai, A.) 113–151 (Routledge, 2015).35.Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011).Article 

    Google Scholar 
    37.Rojas, M. R., Locatelli, B. & Billings, R. Climate change and outbreaks of Southern Pine Beetle in Honduras. For. Syst. 19, 70–76 (2010).
    Google Scholar 
    38.Estrada‐Villegas, S., Hall, J. S., Breugel, Mvan & Schnitzer, S. A. Lianas reduce biomass accumulation in early successional tropical forests. Ecology 101, e02989 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Balslev, H. et al. Species diversity and growth forms in Tropical American Palm Communities. Bot. Rev. 77, 381–425 (2011).Article 

    Google Scholar 
    40.Ratajczak, Z., D’Odorico, P. & Yu, K. The Enemy of My Enemy Hypothesis: Why Coexisting with Grasses May Be an Adaptive Strategy for Savanna Trees. Ecosystems 20, 1278–1295 (2017).Article 

    Google Scholar 
    41.Heijden, G. M. F., van der, Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. PNAS 112, 13267–13271 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.da Cunha Vargas, B., Grombone-Guaratini, M. T. & Morellato, L. P. C. Lianas research in the Neotropics: overview, interaction with trees, and future perspectives. Trees https://doi.org/10.1007/s00468-020-02056-w. (2020).43.Nanni, A. S. et al. The neotropical reforestation hotspots: a biophysical and socioeconomic typology of contemporary forest expansion. Glob. Environ. Change 54, 148–159 (2019).Article 

    Google Scholar 
    44.Stan, K. et al. Climate change scenarios and projected impacts for forest productivity in Guanacaste Province (Costa Rica): lessons for tropical forest regions. Reg. Environ. Change 20, 14 (2020).Article 

    Google Scholar 
    45.Olson, D. M. et al. Terrestrial ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    46.Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Condit, R., Pérez, R. & Daguerre, N. Trees of Panama and Costa Rica (Princeton University Press, 2010).48.CATIE. Árboles de Centroamérica: un Manual Para Extensionistas (CATIE, 2003).49.Flores-Vindas, E. & Obando-Vargas, G. Árboles del Trópico Húmedo: Importancia Socioeconómica (Editorial Tecnológica de Costa Rica, 2014).50.Hammel, B. E., Grayum, M. H., Herrera, C. & Zamora Villalobos, N. Manual de plantas de Costa Rica vols 1–6 (Missouri Botanical Garden, 2003).51.Boukili, V. Functional trait data for La Selva, database (2014).52.Burns, R. M., Mosquera, M. S. & Whitmore, J. L. Useful Trees of the Tropical Region of North America (North American Forestry Commission, 1998).53.CATIE. Rasgos funcionales, base de datos del Programa Producción y Conservación en Bosques del CATIE (colleción de resultados de tesis). (2019).54.Delgado, D. et al. Análisis de la Vulnerabilidad al Cambio Climático de Bosques de Montaña en Latinoamérica (Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), 2016).55.FAO. Crop Ecological Requirements Database (ECOCROP). http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1027491/ (2020).56.Finegan, B., Camacho, M. & Zamora, N. Diameter increment patterns among 106 tree species in a logged and silviculturally treated Costa Rican rain forest. For. Ecol. Manag. 121, 159–176 (1999).Article 

    Google Scholar 
    57.Hall, J. S. & Ashton, M. S. Guide to Early Growth and Survival in Plantations of 64 Tree Species Native to Panama and the Neotropics. (Smithsonian Tropical Research Institute, 2016).58.MARENA/INAFOR. Guía de Especies Forestales (Editora de Arte, S.A, 2002).59.Runes Vargas, V. Base de rasgos funcionales y usos de las especies más abundantes en los sistemas agroforestales de Centroamérica (Agroforestry Tree Functional Traits). in Diversidad en sistemas agroforestales de Centroamérica una aproximación desde el enfoque functional. Master thesis, CATIE, Costa Rica (2016).60.Vázquez-Yanes, C., Batis Muñoz, A. I., Alcocer Silva, M. I., Gual Díaz, M. & Sánchez Dirzo, C. Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. Reporte técnico del proyecto J084. (1999).61.Vozzo, J. A. Tropical Tree Seed Manual (U.S. Department of Agriculture, Forest Service, 2002).62.Webb, D. B., Wood, P. J., Smith, J. P. & Sian Henman, G. A Guide to Species Selection for Tropical and Sub-tropical Plantations (Unit of Tropical Silviculture, Commonwealth Forestry Institute, University of Oxford, 1984).63.Soultan, A. & Safi, K. The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation. PLoS ONE 12, e0187906 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.GBIF. GBIF Occurrence Download. Accessed from R via rgbif 2020-05-18. Darwin Core Archive. https://doi.org/10.15468/dl.pstza2. (2020).65.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article 

    Google Scholar 
    66.CRIA. SpeciesLink (CRIA, 2012).67.Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank: a permanent, open-access archive for vegetation plot data. Biodivers. Ecol. 4, 233–241 (2012).Article 

    Google Scholar 
    68.Šímová, I. et al. Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. J. Biogeogr. 45, 895–916 (2018).Article 

    Google Scholar 
    69.US Forest Service. Forest Inventory and Analysis National Program (US Forest Service, 2013).70.de Sousa, K., van Zonneveld, M., Holmgren, M., Kindt, R. & Ordoñez, J. C. Replication data for: ‘The future of coffee and cocoa agroforestry in a warmer Mesoamerica’. Harvard Dataverse https://doi.org/10.7910/DVN/0O1GW1. (2019).71.Chamberlain, S. rgbif: Interface to the Global ‘Biodiversity’ Information Facility API. R package version 2.3. (2020).72.Maitner, B. S. et al. The BIEN R package: A tool to access the botanical information and ecology network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).Article 

    Google Scholar 
    73.Morales, J. F. Sinopsis of the genus Weinmannia (Cunoniaceae) in Mexico and Central America. An. Jard.ín Bot.ánico Madr. 67, 137–155 (2010).Article 

    Google Scholar 
    74.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). http://pubs.er.usgs.gov/publication/ofr20111073 (2011).76.Hengl, T. et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 9, e105992 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F. & Birnbaum, P. SSDM—an R package to predict distribution of species richness and composition based on stacked species distribution models. Methods. Ecol. Evol. 8, 1795–1803 (2017).
    Google Scholar 
    78.Beaumont, L. J. et al. Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges? Ecol. Model. 342, 135–146 (2016).Article 

    Google Scholar 
    79.Lay, G. L., Engler, R., Franc, E. & Guisan, A. Prospective sampling based on model ensembles improves the detection of rare species. Ecography 33, 1015–1027 (2010).Article 

    Google Scholar 
    80.Guo, C. et al. Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques. Ecol. Model. 306, 67–75 (2015).Article 

    Google Scholar 
    81.Naimi, B. On uncertainty in species distribution modelling https://doi.org/10.3990/1.9789036538404 (University of Twente, 2015).82.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    83.Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    84.Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    85.Diniz‐Filho, J. A. F. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897–906 (2009).Article 

    Google Scholar 
    86.Guillera‐Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).Article 

    Google Scholar 
    87.Phillips, S. J. & Elith, J. POC plots: calibrating species distribution models with presence-only data. Ecology 91, 2476–2484 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Schwarz, J. & Heider, D. GUESS: projecting machine learning scores to well-calibrated probability estimates for clinical decision-making. Bioinformatics 35, 2458–2465 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.D’Amen, M., Rahbek, C., Zimmermann, N. E. & Guisan, A. Spatial predictions at the community level: from current approaches to future frameworks: Methods for community-level spatial predictions. Biol. Rev. 92, 169–187 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).Article 

    Google Scholar 
    91.Lewis, O. T. Climate change, species–area curves and the extinction crisis. Philos. Trans. R. Soc. B: Biol. Sci. 361, 163–171 (2006).Article 

    Google Scholar 
    92.Griscom, H. P. & Ashton, M. S. Restoration of dry tropical forests in Central America: a review of pattern and process. For. Ecol. Manag. 261, 1564–1579 (2011).Article 

    Google Scholar 
    93.Rahman, M., Islam, M., Gebrekirstos, A. & Bräuning, A. Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees 33, 623–640 (2019).Article 

    Google Scholar 
    94.Riitters, K., Wickham, J., O’Neill, R., Jones, K. B. & Smith, E. Global-scale patterns of forest fragmentation. Conservation Ecol. 4, 3 (2000).95.Morelli, T. L. et al. The fate of Madagascar’s rainforest habitat. Nat. Clim. Change 10, 89–96 (2020).Article 

    Google Scholar 
    96.Baumbach, L., Warren, D. L., Yousefpour, R. & Hanewinkel, M. Replication data for ‘Climate change may induce connectivity loss and mountaintop extinction in Central American forests’. https://doi.org/10.5281/zenodo.4835834 (2021).97.Baumbach, L., Warren, D. L., Yousefpour, R. & Hanewinkel, M. Supplementary data for ‘Climate change may induce connectivity loss and mountaintop extinction in Central American forests’. https://doi.org/10.5281/zenodo.4836270. (2021).98.Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS 
    Article 

    Google Scholar  More

  • in

    When two are better than one

    In fig gardens, trees and wasps have been locked in a delicate, 90-million-year-old eco-evolutionary dance1. Fig wasps use the fruit of the fig tree as a sweet incubator for their eggs, while fig trees rely on wasps to pollinate their flowers. Neither can live without the other. This is an example of an obligate mutualism — a bi-directional interdependency that is essential for each partner’s survival. Given how intertwined the two partners are, it’s easy to assume that obligate mutualisms are limiting; that is, one partner can live only where the other thrives, thus constraining the range of environments that support the growth of the pair. Writing in Nature Ecology & Evolution, Oña, et al.2 use synthetic microbial communities to demonstrate that quite the opposite can occur: obligate mutualists facilitate the growth of their partners and expand their range of habitable environments, including environments in which neither could survive alone. Such examples of ‘niche expansion’, as the authors define it, may provide clues as to how vast swaths of species diversity are maintained in nature. More