Obligate cross-feeding expands the metabolic niche of bacteria
1.Grinnell, J. The niche-relationships of the California thrasher. Auk 34, 427–433 (1917).Article
Google Scholar
2.Elton, C. S. Animal Ecology (Univ. Chicago Press, 2001).3.Hutchinson, G. E. Concluding remarks Cold Spring Harb. Symp. Quant. Biol. 22, 415–427 (1957).4.Hutchinson, G. E. An Introduction to Population Ecology (Yale Univ. Press, 1978).5.Colwell, R. K. & Rangel, T. F. Hutchinson’s duality: the once and future niche. Proc. Natl Acad. Sci. USA 106, 19651–19658 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
6.Polechová, J. & Storch, D. in Encyclopedia of Ecology 2nd edn, Vol. 3 (ed Fath, B.) 72–80 (Elsevier, 2018).7.Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).CAS
PubMed
Article
PubMed Central
Google Scholar
8.Hutchinson, G. E. Population studies: animal ecology and demography. Bull. Math. Biol. 53, 193–213 (1991).Article
Google Scholar
9.Odum, E. P. Fundamentals of Ecology (Saunders, 1959).10.Begon, M., Townsend, C. R. & JL., H. Ecology: From Individuals to Ecosystems (Wiley, 2006).11.Levin, S. & Carpenter, S. The Princeton Guide to Ecology (Princeton Univ. Press, 2009).12.Bruno, J. F., Stachowicz, J. J. & Bertness, M. D. Inclusion of facilitation into ecological theory. Trends Ecol. Evol. 18, 119–125 (2003).Article
Google Scholar
13.Bulleri, F., Bruno, J. F., Silliman, B. R. & Stachowicz, J. J. Facilitation and the niche: implications for coexistence, range shifts and ecosystem functioning. Funct. Ecol. 30, 70–78 (2016).Article
Google Scholar
14.Austin, M. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol. Modell. 157, 101–118 (2002).Article
Google Scholar
15.Soberon, J. & Peterson, A. T. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. 2, 1–10 (2005).Article
Google Scholar
16.Pires, M. M. & Guimarães, P. R. Interaction intimacy organizes networks of antagonistic interactions in different ways. J. R. Soc. Interface 10, 20120649 (2013).PubMed
PubMed Central
Article
Google Scholar
17.Ashby, B., Watkins, E., Lourenço, J., Gupta, S. & Foster, K. R. Competing species leave many potential niches unfilled. Nat. Ecol. Evol. 1, 1495–1501 (2017).PubMed
PubMed Central
Article
Google Scholar
18.Pérez-Gutiérrez, R. A. et al. Antagonism influences assembly of a Bacillus guild in a local community and is depicted as a food-chain network. ISME J. 7, 487–497 (2013).PubMed
Article
CAS
Google Scholar
19.Russel, J., Røder, H. L., Madsen, J. S., Burmølle, M. & Sørensen, S. J. Antagonism correlates with metabolic similarity in diverse bacteria. Proc. Natl Acad. Sci. USA 114, 10684–10688 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
20.Ricklefs, R. E. Evolutionary diversification, coevolution between populations and their antagonists, and the filling of niche space. Proc. Natl Acad. Sci. USA 107, 1265–1272 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
21.Stadler, B. & AFG, D. Ecology and evolution of aphid–ant interactions. Annu. Rev. Ecol. Evol. Syst. 107, 345–372 (2005).Article
Google Scholar
22.Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed
Article
CAS
Google Scholar
23.Rohr, R. P., Saavedra, S. & Bascompte, J. On the structural stability of mutualistic systems. Science 345, 1253497 (2014).PubMed
Article
CAS
Google Scholar
24.Hom, E. & Murray, A. Niche engineering demonstrates a latent capacity for fungal–algal mutualism. Science 345, 94–95 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
25.Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007).PubMed
Article
Google Scholar
26.Yurtsev, E. A., Conwill, A. & Gore, J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proc. Natl Acad. Sci. USA 113, 6236–6241 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
27.Pereira, F. C. & Berry, D. Microbial nutrient niches in the gut. Environ. Microbiol. 19, 1366–1378 (2017).PubMed
PubMed Central
Article
Google Scholar
28.Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 109 (2017).PubMed
Article
Google Scholar
29.Goldford, J. E. et al. Emergent simplicity in microbial community assembly. Science 361, 469–474 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
30.Schink, B. Energetics of syntrophic cooperation in methanogenic degradation. Microbiol. Mol. Biol. Rev. 61, 262–280 (1997).CAS
PubMed
PubMed Central
Google Scholar
31.Ratzke, C. & Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 16, e2004248 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
32.Matthews, B., Aebischer, T., Sullam, K. E., Lundsgaard-Hansen, B. & Seehausen, O. Experimental evidence of an eco-evolutionary feedback during adaptive divergence. Curr. Biol. 26, 483–489 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
33.Hendry, A. Eco-evolutionary Dynamics (Princeton Univ. Press, 2017).34.Wintermute, E. H. & Silver, P. A. Emergent cooperation in microbial metabolism. Mol. Syst. Biol. 6, 407 (2010).PubMed
PubMed Central
Article
Google Scholar
35.Giri, S. et al. Metabolic dissimilarity determines the establishment of cross- feeding interactions in bacteria. Preprint at bioRxiv https://doi.org/10.1101/2020.10.09.333336 (2020).36.Preussger, D., Giri, S., Muhsal, L. K., Oña, L. & Kost, C. Reciprocal fitness feedbacks promote the evolution of mutualistic cooperation. Curr. Biol. 30, 3580–3590.e7 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Stearns, S. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).Article
Google Scholar
38.Agrawal, A. A., Conner, J. K. & Rasmann, S. in Evolution Since Darwin (eds Bell, M. A. et al.) Ch. 10 (Sinauer Associates, 2010).39.González-Cabaleiro, R., Ofiţeru, I. D., Lema, J. M. & Rodríguez, J. Microbial catabolic activities are naturally selected by metabolic energy harvest rate. ISME J. 9, 2630–2641 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
40.Kassen, R. The experimental evolution of specialists, generalists, and the maintenance of diversity. J. Evol. Biol. 15, 173–190 (2002).Article
Google Scholar
41.Sexton, J. P., Montiel, J., Shay, J. E., Stephens, M. R. & Slatyer, R. A. Evolution of ecological niche breadth. Annu. Rev. Ecol. Evol. Syst. 48, 183–206 (2017).Article
Google Scholar
42.May, R. & Arthur, R. Niche overlap as a function of environmental variability. Proc. Natl Acad. Sci. USA 69, 1109–1113 (1972).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Bono, L. M., Draghi, J. A. & Turner, P. E. Evolvability costs of niche expansion. Trends Genet. 36, 14–23 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Treves, D. S., Manning, S. & Adams, J. Repeated evolution of an acetate-cross-feeding polymorphism in long-term populations of Escherichia coli. Mol. Biol. Evol. 15, 789–797 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Rozen, D. E., Schneider, D. & Lenski, R. E. Long-term experimental evolution in Escherichia coli. XIII. Phylogenetic history of a balanced polymorphism. J. Mol. Evol. 61, 171–180 (2005).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Rakoff-Nahoum, S., Coyne, M. J. & Comstock, L. E. An ecological network of polysaccharide utilization among human intestinal symbionts. Curr. Biol. 24, 40–49 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Gentile, C. L. & Weir, T. L. The gut microbiota at the intersection of diet and human health. Science 362, 776–780 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Ruff, W. E., Greiling, T. M. & Kriegel, M. A. Host–microbiota interactions in immune-mediated diseases. Nat. Rev. Microbiol. 18, 521–538 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS
PubMed
Article
Google Scholar
52.D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).PubMed
Article
Google Scholar
53.Johnson, W. M. et al. Auxotrophic interactions: a stabilizing attribute of aquatic microbial communities? FEMS Microbiol. Ecol. 96, 1–14 (2020).Article
CAS
Google Scholar
54.Machado, D. et al. Polarization of microbial communities between competitive and cooperative metabolism. Nat. Ecol. Evol. 5, 195–203 (2021).PubMed
PubMed Central
Article
Google Scholar
55.Bernhardsson, S., Gerlee, P. & Lizana, L. Structural correlations in bacterial metabolic networks. BMC Evol. Biol. 11, 20 (2011).PubMed
PubMed Central
Article
Google Scholar
56.Zelezniak, A. et al. Metabolic dependencies drive species co-occurrence in diverse microbial communities. Proc. Natl Acad. Sci. USA 112, 6449–6454 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Hester, E. R., Jetten, M. S. M., Welte, C. U. & Lücker, S. Metabolic overlap in environmentally diverse microbial communities. Front. Genet. https://doi.org/10.3389/fgene.2019.00989 (2019).58.Mitri, S. & Richard Foster, K. The genotypic view of social interactions in microbial communities. Annu. Rev. Genet. 47, 247–273 (2013).CAS
PubMed
Article
Google Scholar
59.Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S. Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).CAS
PubMed
Article
Google Scholar
60.Louca, S. et al. Function and functional redundancy in microbial systems. Nat. Ecol. Evol. 2, 936–943 (2018).PubMed
Article
Google Scholar
61.Vanstockem, M., Michiels, K., Vanderleyden, J. & van Gool, A. P. Transposon mutagenesis of Azospirillum brasilense and Azospirillum lipoferum: physical analysis of Tn5 and Tn5-Mob insertion mutants. Appl. Environ. Microbiol. 53, 410–415 (1987).CAS
PubMed
PubMed Central
Article
Google Scholar
62.Thomason, L. C., Costantino, N. & Court, D. L. E. coli genome manipulation by P1 transduction. Curr. Protoc. Mol. Biol. 79, 1.17.1–1.17.8 (2007).63.Pande, S. et al. Metabolic cross-feeding via intercellular nanotubes among bacteria. Nat. Commun. 6, 6238 (2015).CAS
PubMed
Article
Google Scholar
64.Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Konkol, M. A., Blair, K. M. & Kearns, D. B. Plasmid-encoded comi inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J. Bacteriol. 195, 4085–4093 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
66.Koo, B. M. et al. Construction and analysis of two genome-scale deletion libraries for Bacillus subtilis. Cell Syst. 4, 291–305.e7 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
67.Thompson, I., Lilley, A., Ellis, R., Bramwell, P. & Bailey, M. Survival, colonization and dispersal of genetically modified Pseudomonas fluorescens SBW25 in the phytosphere of field grown sugar beet. Nat. Biotechnol. 13, 1493–1497 (1995).CAS
Article
Google Scholar
68.Rainey, P. B. Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Environ. Microbiol. 1, 243–257 (1999).CAS
PubMed
Article
Google Scholar
69.Horton, R., Hunt, H., Ho, S., Pullen, J. & Pease, L. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).CAS
PubMed
Article
Google Scholar
70.Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc. Natl Acad. Sci. USA 77, 7347–7351 (1980).CAS
PubMed
PubMed Central
Article
Google Scholar
71.Zhang, X. X. & Rainey, P. B. Genetic analysis of the histidine utilization (hut) genes in Pseudomonas fluorescens SBW25. Genetics 176, 2165–2176 (2007).CAS
PubMed
PubMed Central
Article
Google Scholar
72.Lassak, J., Henche, A. L., Binnenkade, L. & Thormann, K. M. ArcS, the cognate sensor kinase in an atypical arc system of Shewanella oneidensis MR-1. Appl. Environ. Microbiol. 76, 3263–3274 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
73.Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).CAS
Article
PubMed
Google Scholar
74.Stecher, G., Tamura, K. & Kumar, S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 37, 1237–1239 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
75.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
76.Bochner, B. R. Global phenotypic characterization of bacteria. FEMS Microbiol. Rev. 33, 191–205 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar More