More stories

  • in

    Complex causes of insect declines

    1.Vidal, O. & Rendon-Salinas, E. Biol. Conserv. 180, 165–175 (2014).Article 

    Google Scholar 
    2.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Biol. Conserv. 214, 343–346 (2017).Article 

    Google Scholar 
    3.Semmens, B. X. et al. Sci. Rep. 6, 23265 (2016).CAS 
    Article 

    Google Scholar 
    4.Zylstra, E. R. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01504-1 (2021).5.Warren, M. S. et al. Proc. Natl Acad. Sci. USA 118, e2002551117 (2021).CAS 
    Article 

    Google Scholar 
    6.van Strien, A. J., van Swaay, C. A. M., van Strien-van Liempt, W., Poot, M. J. M. & WallisDeVriesb, M. F. Biol. Conserv. 234, 116–122 (2019).Article 

    Google Scholar 
    7.Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. PLoS ONE 14, e0216270 (2019).CAS 
    Article 

    Google Scholar 
    8.van Klink, R. et al. Science 368, 417–420 (2020).Article 

    Google Scholar 
    9.Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Nat. Ecol. Evol. 4, 384–392 (2020).Article 

    Google Scholar 
    10.Pleasants, J. M. & Oberhauser, K. S. Insect Conserv. Diversity 6, 135–144 (2013).Article 

    Google Scholar 
    11.Agrawal, A. A. & Inamine, H. Science 360, 1294–1296 (2018).CAS 
    Article 

    Google Scholar 
    12.Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Oikos 125, 1081–1091 (2016).Article 

    Google Scholar 
    13.Thogmartin, W. E. et al. R. Soc. Open Sci. 4, 170760 (2017).Article 

    Google Scholar 
    14.Flockhart, D. T. T., Pichancourt, J. B., Norris, D. R. & Martin, T. G. J. Anim. Ecol. 84, 155–165 (2015).Article 

    Google Scholar 
    15.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).CAS 
    Article 

    Google Scholar 
    16.Raven, P. H. & Wagner, D. L. Proc. Natl Acad. Sci. USA 118, e2002548117 (2021).CAS 
    Article 

    Google Scholar 
    17.Montgomery, G. A. et al. Biol. Conserv. 241, 108327 (2020).Article 

    Google Scholar 
    18.Hallmann, C. A. et al. PLoS ONE 12, e0185809 (2017).Article 

    Google Scholar 
    19.Hallmann, C. A. et al. Insect Conserv. Diversity 13, 127–139 (2020).Article 

    Google Scholar 
    20.Miller, D. A. W., Pacifici, K., Sanderlin, J. S. & Reich, B. J. Methods Ecol. Evol. 10, 22–37 (2019).Article 

    Google Scholar 
    21.Isaac, N. J. B. et al. Trends Ecol. Evol. 35, 56–67 (2020).Article 

    Google Scholar 
    22.Pagel, J. et al. Methods Ecol. Evol. 5, 751–760 (2014).Article 

    Google Scholar 
    23.Schaub, M. & Abadi, F. J. Ornithol. 152, 227–237 (2011).Article 

    Google Scholar 
    24.Dennis, E. B. et al. Ecol. Modell. 441, 109408 (2021).Article 

    Google Scholar 
    25.Zipkin, E. F. & Saunders, S. P. Biol. Conserv. 217, 240–250 (2018).Article 

    Google Scholar  More

  • in

    Characterization of resistance and fitness cost of Descurainia sophia L. populations from Henan and Xinjiang, China

    Plant materialA total of 42 D. sophia populations were collected from winter wheat fields of Henan (H1-11) and Xinjiang (X1-31) in China during 2015–2017. The geographical origin and collection year of D. sophia populations were provided in Table S1 and Fig. S1. A tribenuron-methyl susceptible population of D. sophia (X13) was collected from Urumqi, Xingjiang.Seeds were soaked with 15% H2O2 for 30 min to break dormancy and rinsed thoroughly by water. The treated seeds were placed in moist petri dishes and then transferred to artificial climate chamber at 15 ℃, light/dark, 16/8 h for germination. After a week, the seedlings were transplanted to 10-cm diameter plastic pots containing loam soil (12 plants per pot) and then cultured in artificial climate chamber at 25/15 ℃, light/dark, 16/8 h with light intensity of 15,000 Lux. The seedlings were used in the following procedures.Single dose resistance assayThe discriminating dose of tribenuron-methyl at 18 g ai ha−1 was sprayed to the plants at 4-leaf stage using a potter precision laboratory spray tower (Burkard Scientific, UK) delivering 600 L ha−1 water at the pressure of 0.3 MPa. The fresh weight of aboveground of the plants were determined after tribenuron-methyl application for 21 days and the fresh weight reduction rate were calculated. The susceptibility of D. Sophia populations to tribenuron-methy was identified according to Moss et al.23 and populations classified as high resistance (RRR) were selected for further mutation type determination.Detection of ALS isozymes mutationGenomic DNA of RRR D. sophia populations were extracted from the survived plant using Wizard® Genomic DNA Purification Kit (Promega, Madison, WI). Primer pairs, PCR reaction and program cycle in Xu et al.1 were used to detect the eight resistance mutation sites in ALS isozymes. PCR products were purified with Wizard® SV Gel and PCR Clean-Up System (Promega) and inserted to pLB vector using Lethal Based Fast Cloning Kit (Tiangen, Beijing, China). The mixture was transformed to TOP10 competent E. coli (Tiangen) and finally sequenced by Shanghai Sangon Biological Engineering and Technology Service Co. (Shanghai, China). Ten individual plants and three clones of each were selected for ALS mutation detection.Generation of RRR homozygous subpopulationsPlants of RRR population with same mutation type in ALS isozymes were cultured to generate seeds. Homozygous subpopulation of susceptible population X13 with wild type of ALS isozymes were also obtained by inbred. In this way, six purified subpopulations (SX13, SX30, SX31, SH5, SH6, SH7) homozygous for wild type, Pro197Ser, Pro197His, Pro197Ala, Pro197Thr mutations, were obtained and used for the following experiments.Dose response of RRR D. sophia subpopulations to tribenuron-methylWhole-plant dose response experiment was employed to identify the GR50 of the RRR homozygous subpopulations. Seeds of subpopulation were cultured as mentioned previously. Tribenuron-methyl was applied to SX13 (0, 0.08, 0.16, 0.33, 0.66, 1.32, 2.64, 5.28, 10.56, 21.12 g ai ha−1), SH7 (0, 5, 10, 20, 40, 80, 160, 320 g ai ha−1) and SH5, SH6, SX30, SX31 (0, 50, 100, 200, 400, 800, 1600, 3200, 6400, 12,800, 25,600 g ai ha−1) subpopulations at 4-leaf stage using a potter precision laboratory spray tower delivering 600 L ha−1 water at the pressure of 0.3 MPa. The aboveground of the plants were harvested after treated for 21 days and the fresh weight was recorded. Each herbicide dose was conducted with three replications and repeated twice. GR50 was calculated by log-logistic equation24:$${text{y}} = {text{C}} + {{left( {{text{D}} – {text{C}}} right)} mathord{left/ {vphantom {{left( {{text{D}} – {text{C}}} right)} {left[ {1 + left( {{text{x}}/{text{GR}}_{50} } right)^{{text{b}}} } right]}}} right. kern-nulldelimiterspace} {left[ {1 + left( {{text{x}}/{text{GR}}_{50} } right)^{{text{b}}} } right]}}$$where C and D are the lower limit and upper limit, b is the slope, x is the herbicide dose, and y represents plant fresh weight as percentage of the control. RI, the ratio of GR50 of resistant populations to that of the susceptible population, was used to represent the resistance level.Cross-resistance patterns of RRR D. sophia subpopulations to other ALS-inhibiting herbicidesOther ALS-inhibiting herbicides, including flucarbazone-sodium (SCT), bensulfuron-methyl (SU), flumetsulam (TP), florasulam (TP), pyroxsulam (TP), imazapic (IMI) and bispyribac-sodium (PTB) were applied to D. sophia at 4-leaf stage with 1×, 5× and 10× fold of the recommendation doses. The herbicides and recommendation doses were listed in Table S2. The survival plant was recorded after treated for 21 days and each dose was replicated with three plastic pots containing 36 plants. Cross-resistance was confirmed as more than 50% individuals survived in the resistant population and less than 10% plants survived in the susceptible population6,25.Determination of RGR, LAR, NAR and RCC in susceptible and RRR subpopulationsRGR, LAR and NAR were used to indicate the nutritional growth level of susceptible and resistant homozygous subpopulations of D. sophia. RCC was used to evaluate their relative competition ability. RGR, LAR, NAR and RCC were determined according to Zhang et al. with a little modification17.Under monoculture condition, seeds of each subpopulation were planted separately with three replications and repeat twice. The aboveground tissues of D. sophia without herbicide treatment were sampled at 28, 35 and 42 days after transplant (DAT) to compare the nutritional growth between susceptible and resistant subpopulations. All leaves of the harvested plant were placed on A4 paper drawing with 1 cm2 square and photoed to calculate the leaf area by Photoshop CS3 extended (Adobe Systems Inc., USA). The dry weight was measured after the sample oven dried 96 h at the temperature of 60 ℃. RGR was estimated by the formula RGR = (ln W2 − ln W1)/(t2 − t1)26. LAR and NAR were calculated by the formula LAR = [(ln W2 − ln W1)(LA2 − LA1)]/[(W2 − W1)(ln LA2 − ln LA1)] and NAR = [(W2 − W1) (ln W2 − ln W1)]/[(LA2 − LA1)(t2 − t1)]27. W1 and W2 indicated dry weight per plant at times t1 and t2, respectively. LA1 and LA2 means leaf area per plant at t1 and t2, respectively.Under admixture condition, plants of susceptible and resistant subpopulations were cultured at a series ratio of S:R = 1:0, 3:1, 1:1, 1:3, 0:1 at a constant density of 644 plants m−2 (24 plants per tray, 23.3 cm × 16.0 cm × 6.0 cm) according to Reboud et al.28. The experiment was conducted with three replications and repeat twice. The aboveground shoots of each plant were harvested at 50 DAT and the leaf area and the dry weight were measured. RCC was calculated according to the formula: RCC = ({(DBS1:3/DBR1:3) + (DBS1:1/DBR1:1) + (DBS3:1/DBR3:1)}/N)/(DBS1:0/DBR1:0)29,30. DBSn:n and DBRn:n means the dry weight or the leaf area of each plant in susceptible and resistant subpopulations planted at ratio of n:n. N is the number of mixed ratio; here N = 3. RCC value greater than 1.0 suggested a superior competition ability of susceptible population. While RCC value less than 1.0 indicated lower competition ability of susceptible population.Statistical analysisThe data of bioassay was analyzed with SigmaPlot 12.0 (Systat Software, San Jose, CA). The statistical difference of the leaf area, dry weight, RGR, LAR, NAR of D. sophia populations with different ALS mutation were subjected to one-way analysis of variation (ANOVA) followed by Tukey’s multiple comparisons test using SPSS 16.0 (SPSS, Chicago, IL, USA). The criterion for statistical significance was P  More

  • in

    Effects of different straw biochar combined with microbial inoculants on soil environment in pot experiment

    1.Briskin, D. P. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health. Plant Physiol. 124, 507–514. https://doi.org/10.1104/pp.124.2.507 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Shibata, S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J. Korean Med. Sci. 16, 28–37. https://doi.org/10.3346/jkms.2001.16.S.S28 (2001).Article 

    Google Scholar 
    3.Yuan, H. D. et al. Ginseng and diabetes: The evidences from in vitro, animal and human studies. J. Ginseng Res. 36, 27–39. https://doi.org/10.5142/jgr.2012.36.1.27 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Li, C. et al. Research and implementation of good agricultural practice for traditional Chinese medicinal materials in Jilin Province, China. J. Ginseng Res. 38, 227–232. https://doi.org/10.1016/j.jgr.2014.05.007 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Liu, M., Li, S., Xing, Y. & Ma, F. Identification of ginseng rust Rot fungus. J. Plant Pathol. 3, 183–185. https://doi.org/10.13926/j.cnki.apps.1984.03.012 (1984).Article 

    Google Scholar 
    6.Liu, Z., Chen, X. & Han, Y. Research on Ginseng rust rot pathogen under natural overwintering conditions. Northern Horticult. 3, 160–163. https://doi.org/10.11937/bfyy.201703037 (2017).Article 

    Google Scholar 
    7.Wang, Q. et al. Analysis of rhizosphere bacterial and fungal communities associated with rusty root disease of Panax ginseng. Appl. Soil. Ecol. 138, 245–252. https://doi.org/10.1016/j.apsoil.2019.03.012 (2019).Article 

    Google Scholar 
    8.Rafael, L.-C., Juan Arturo, R.-S. & Montserrat, C.-S. Microencapsulation of Meyerozyma guilliermondii by spray drying using sodium alginate and soy protein isolate as wall materials: A biocontrol formulation for anthracnose disease of mango. Biocontrol Sci. Technol. 30, 1116–1132. https://doi.org/10.1080/09583157.2020.1793910 (2020).Article 

    Google Scholar 
    9.Moparthi, S. & Bradshaw, M. Fungicide efficacy trials for the control of powdery mildew (Podosphaera cerasi) on sweet cherry trees (Prunus avium). Biocontrol Sci. Tech. 30, 659–670. https://doi.org/10.1080/09583157.2020.1755616 (2020).Article 

    Google Scholar 
    10.Zhou, C. Y. et al. Identification and optimization of fermentation conditions of antagonistic endophytic fungi in a single plant of Panax ginseng. Henan Agricult. Sci. 49, 104–110. https://doi.org/10.15933/j.cnki.1004-3268.2020.02.013 (2020).Article 

    Google Scholar 
    11.Sun, Z. et al. Biological control ginseng grey mold and plant colonization by antagonistic bacteria isolated from rhizospheric soil of Panax ginseng Meyer. Biol. Control 138, 104048. https://doi.org/10.1016/j.biocontrol.2019.104048 (2019).CAS 
    Article 

    Google Scholar 
    12.Kambo, H. S. & Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew. Sustain. Energy Rev. 45, 359–378. https://doi.org/10.1016/j.rser.2015.01.050 (2015).CAS 
    Article 

    Google Scholar 
    13.Lehmann, J., Gaunt, J. & Rondon, M. Bio-char sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strat. Glob. Change 11, 403–427. https://doi.org/10.1007/s11027-005-9006-5 (2006).Article 

    Google Scholar 
    14.Uzoma, K. C. et al. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. https://doi.org/10.1111/j.1475-2743.2011.00340.x (2011).Article 

    Google Scholar 
    15.Baiamonte, G. et al. Structure alteration of a sandy-clay soil by biochar amendments. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0960-y (2015).Article 

    Google Scholar 
    16.Lehmann, J. Bio-energy in the black. Front. Ecol. Environ. 5, 381–387. https://doi.org/10.1890/1540-9295(2007)5[381:BITB]2.0.CO;2 (2007).Article 

    Google Scholar 
    17.Ding, Y., Liu, J. & Wang, Y. Effects of biochar on soil microbial ecology. Chin. J. Appl. Ecol. 24, 3311–3317 (2013).CAS 

    Google Scholar 
    18.Solaiman, Z. M. et al. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 48, 546–554. https://doi.org/10.1071/SR10002 (2010).CAS 
    Article 

    Google Scholar 
    19.Zheng, J. et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China. Sci. Total Environ. 571, 206–217. https://doi.org/10.1016/j.scitotenv.2016.07.135 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Gul, S. et al. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agr. Ecosyst. Environ. 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015 (2015).CAS 
    Article 

    Google Scholar 
    21.Zhang, W. et al. Utilization potential, industrial model and development strategy of straw biochar in Northeast China. Sci. Agric. Sin. 52, 2406–2424. https://doi.org/10.3864/j.issn.0578-1752.2019.14.003 (2019).Article 

    Google Scholar 
    22.Mao, H. et al. Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresour. Technol. 258, 195–202. https://doi.org/10.1016/j.biortech.2018.02.082 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Yumin, D. et al. Positive impact of biochar alone and combined with bacterial consortium amendment on improvement of bacterial community during cow manure composting. Bioresour. Technol. https://doi.org/10.1016/j.biortech.2019.02.026 (2019).Article 

    Google Scholar 
    24.Ghodhbane-Gtari, F. et al. Draft Genome Sequence of Frankia sp. Strain CN3, an Atypical, Noninfective (Nod-) Ineffective (Fix-) Isolate from Coriaria nepalensis. Genome Announc. 1, e0008513. https://doi.org/10.1128/genomeA.00085-13 (2013).Article 
    PubMed 

    Google Scholar 
    25.Jung-Tai, L. & Sung-Ming, T. The nitrogen-fixing Frankia significantly increases growth, uprooting resistance and root tensile strength of Alnus formosana. Afr. J. Biotech. 17, 213–225. https://doi.org/10.5897/AJB2017.16289 (2018).Article 

    Google Scholar 
    26.Du, D., Yuan, F., Li, R., Wang, Y. & Cui, G. A study on the classification and identification of a Frankia strain. Acta Microbiol. Sin. 25, 197–203. https://doi.org/10.13343/j.cnki.wsxb.1985.03.003 (1985).Article 

    Google Scholar 
    27.Kang, L. et al. Field study on inoculation of Casuarina casuarina with Franklinella calcium alginate. Forest Res. 01, 42–46. https://doi.org/10.13275/j.cnki.lykxyj.2000.01.006 (2000).Article 

    Google Scholar 
    28.Larkin, R. P. Characterization of soil microbial communi- ties under different potato cropping systems by microbial population dynamics, substrate utilization, and fatty acid profiles. Soil Biol. Biochem. 35, 1451–1466. https://doi.org/10.1016/S0038-0717(03)00240-2 (2003).CAS 
    Article 

    Google Scholar 
    29.Shi, L. et al. Paenibacillus polymyxa NSY50 suppresses Fusarium wilt in cucumbers by regulating the rhizospheric microbial community. Sci. Rep. 7, 41234. https://doi.org/10.1038/srep41234 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Shen, Z. et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertil. Soils 51, 1–10. https://doi.org/10.1007/s00374-015-1002-7 (2015).CAS 
    Article 

    Google Scholar 
    31.Atandi, J. G. et al. Organic farming provides improved management of plant parasitic nematodes in maize and bean cropping systems. Agricult. Ecosyst. Environ. 247, 265–272. https://doi.org/10.1016/j.agee.2017.07.002 (2017).Article 

    Google Scholar 
    32.Wang, T., Qiao, W., Li, Y. & Ao, Y. Effects of crop rotation and microbial fertilizer on soil physical and chemical properties and biological activity of cucumber continuous cropping. Chin. J. Soil Sci. 42, 578–583. https://doi.org/10.19336/j.cnki.trtb.2011.03.013 (2011).CAS 
    Article 

    Google Scholar 
    33.Daquan, S. J. et al. Effect of volatile organic compounds absorbed to fresh biochar on survival of Bacillus mucilaginosus and structure of soil microbial communities. J. Soils Sedim. https://doi.org/10.1007/s11368-014-0996-z (2015).Article 

    Google Scholar 
    34.Warnock, D. D. et al. Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant Soil 300, 9–20. https://doi.org/10.1007/s11104-007-9391-5 (2007).CAS 
    Article 

    Google Scholar 
    35.Luo, Y., Tian, G., Zhang, D., Hao, R. & Wang, C. Effects of microbial agents on soil nutrients and nitrate nitrogen accumulation in terracotta greenhouse. Chin. Agric. Sci. Bull. 31, 224–228 (2015).
    Google Scholar 
    36.Yin, S. et al. Effects of complex ecological microbial agents on the number and enzyme activity of cucumber rhizosphere soil. Chin. J. Microbiol. 32, 23–27. https://doi.org/10.3969/j.issn.1005-7021.2012.01.005 (2012).CAS 
    Article 

    Google Scholar 
    37.Dedysh, S. N., Ricke, P. & Liesack, W. NifH and NifD phylogenies: An evolutionary basis for understanding nitrogen fixation capabilities of methanotrophic bacteria. Microbiology 150, 1301. https://doi.org/10.1016/j.jcp.2003.11.016 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Michael, P. C., Madigan, T., Martinko, J. M. & Parker, J. Getting the bug for microorganisms. In Brock biology of microorganisms, 8th edn. 375–376 https://doi.org/10.1016/s0962-8924(97)83479-4 (Prentice Hall, 1997).39.Lv, X. et al. A meta-analysis of the bacterial and archaeal diversity observed in wetland soils. Sci. World J. https://doi.org/10.1155/2014/437684 (2014).Article 

    Google Scholar 
    40.Zhao, Y. et al. Variations in bacterial communities during foliar litter decomposition in the winter and growing seasons in an alpine forest of the eastern Tibetan Plateau. Can. J. Microbiol. 62, 1. https://doi.org/10.1139/cjm-2015-0448 (2015).CAS 
    Article 

    Google Scholar 
    41.Jin, Xu., Wang, R., Deng, F., Cao, G. & Wang, G. Effects of biochar application on soil physical and chemical properties and enzyme activities of poplar plantation in Dongtai coastal area. J. Fujian Agric. For. Univ. 49, 348–353. https://doi.org/10.13323/j.cnki.j.fafu(nat.sci.).2020.03.010 (2020).Article 

    Google Scholar 
    42.Lehmann, J. et al. Biochar effects on soil biota—A review. Soil Biol. Biochem. 43, 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022 (2011).CAS 
    Article 

    Google Scholar 
    43.Nugroho, S. G. et al. Three-year measurement of methane emission from an Indonesian paddy field. Plant Soil 181, 287–293. https://doi.org/10.1007/BF00012063 (1996).CAS 
    Article 

    Google Scholar 
    44.Sauze, J. et al. The interaction of soil phototrophs and fungi with pH and their impact on soil CO2, CO18O and OCS exchange. Soil Biol. Biochem. 115, 371–382. https://doi.org/10.1016/j.soilbio.2017.09.009 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Long, J., Liao, H., Li, J. & Chen, C. Research on the relationship between soil and rocky desertification in typical karst mountain area based on redundancy analysis. Environ. Sci. 33, 2131–2138 (2012).
    Google Scholar 
    46.Zeng, J. et al. Primary succession of nitrogen cycling microbial communities along the deglaciated forelands of tianshan mountain, China. Front. Microbiol. 7, 1353. https://doi.org/10.3389/fmicb.2016.01353 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Sui, Y. et al. Study on the relationship between soil organic matter content and soil microbial biomass and soil enzyme activity. Chin. J. Soil Sci. 40, 1036–1039 (2009).CAS 

    Google Scholar 
    48.Jiao, X., Gao, C., Sui, Y., Zhang, X. & Ding, G. Sci. Agric. Sin. 44, 3759–3767. https://doi.org/10.3864/j.issn.0578-1752.2011.18.007 (2011).CAS 
    Article 

    Google Scholar 
    49.Yao, L., Cheng, G., Wang, L., Chen, H. & Lou, L. Effects of biochar application on soil microorganisms. Environ. Chem. 34, 697–704. https://doi.org/10.7524/j.issn.0254-6108.2015.04.2014072802 (2015).CAS 
    Article 

    Google Scholar 
    50.Rui, J. et al. Effects of biochar on soil properties, cadmium uptake and physiological characteristics of Chinese cabbage. J. Southern Agric. 47, 1480–1487. https://doi.org/10.3969/jissn.2095-1191.2016.09.1480 (2016).Article 

    Google Scholar 
    51.Zheng, H., Honghui, Wu., Wengi, B., Ye, J. & Zeng, Y. Soil Fertil. Sci. 2, 68–74. https://doi.org/10.11838/sfsc.1673-6257.18244 (2019).Article 

    Google Scholar 
    52.Shan, W., Li, J. & Liu, M. Inhibition of Verticillium wilt in cotton by filter paper method. Chin. Agric. Sci. Bull. 26, 285–289. https://doi.org/10.3969/j.issn.1000-632X.2010.08.007 (2010).Article 

    Google Scholar 
    53.Kızılkaya, R., Aşkın, T., Bayraklı, B. & Sağlam, M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 40, 95–102. https://doi.org/10.1016/j.ejsobi.2004.10.002 (2004).CAS 
    Article 

    Google Scholar 
    54.Lee, S. H. et al. Degradation characteristics of waste lubricants under different nutrient conditions. J. Hazard. Mater. 143, 65–72. https://doi.org/10.1016/J.JHAZMAT.2006.08.059 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Zhang, Y. M. Changes in enzyme activities of spruce (Picea balfouriana) forest soil as related to burning in the eastern Qinghai-Tibetan Plateau. Appl. Soil. Ecol. 30, 215–225. https://doi.org/10.1016/J.APSOIL.2005.01.005 (2005).Article 

    Google Scholar 
    56.Cole, J. R. et al. The ribosomal database project: Improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, 141–145. https://doi.org/10.1093/nar/gkn879 (2009).CAS 
    Article 

    Google Scholar 
    57.Wang, Y. et al. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78, 8264. https://doi.org/10.1128/AEM.01821-12 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Jiang, X. T. et al. Illumina sequencing of 16S rRNA tag revealed spatial variations of bacterial communities in a mangrove wetland. Microb. Ecol. 66, 96–104. https://doi.org/10.1007/s00248-013-0238-8 (2013).Article 
    PubMed 

    Google Scholar 
    59.Jami, E. et al. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 7, 1069–1079. https://doi.org/10.1038/ismej.2013.2 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Nicola, S. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).Article 

    Google Scholar  More

  • in

    A monkey researcher fights to protect threatened and endangered primates

    Download PDF

    I was a ten-year-old in Singapore when I received a vervet monkey (Chlorocebus pygerythrus) as a pet. By the time I was 15, I knew that my family did not have the necessary international permit to own it legally. With help from local agencies, we sent the monkey to a rehabilitation sanctuary in Zambia, which ultimately released it into the wild. That experience got me interested in learning more about wild monkeys and how to help them.I research threatened and endangered leaf-eating primates known as Asian colobinae. They have specialized, multi-chambered stomachs, as do cows, and need a long rest after meals. They are shy and hard to find, so there has been less research on them than on orangutans or the great apes.One species I study is the critically endangered Raffles’ banded langur (Presbytis femoralis). Globally, there are just 320 individuals: 70 in Singapore and 250 in Malaysia. I work with national agencies, educational and non-governmental organizations and local communities to help protect these and other monkeys — especially those living between forest and urban areas. For example, in an area prone to roadkill, we installed a rope bridge to let langurs and other animals cross the road safely.One of the biggest threats to these and other monkeys is inbreeding as their numbers shrink. We hope to exchange animals between Singapore and Malaysia to boost their population’s genetic health.In this picture from 2017, I was monitoring primate populations in a reserve in central Singapore when I saw these long-tailed macaques (Macaca fascicularis). Here, we are observing one another — and respecting each other’s space.I’ve started a website called Primate Watching to help observers learn about these primates and where to see them. People think monkeys are aggressive, but really they are just naturally curious. Still, the public should always keep a safe distance, not put a camera in their faces.

    Nature 595, 618 (2021)
    doi: https://doi.org/10.1038/d41586-021-01995-9

    Related Articles

    Shell shock: A biologist’s quest to save the endangered painted snail

    Mission marmoset

    Subjects

    Careers

    Conservation biology

    Ecology

    Latest on:

    Careers

    Why science needs a new reward and recognition system
    Career Column 15 JUL 21

    Embrace and celebrate diverse names in science
    Career Column 14 JUL 21

    How a holistic research retreat can help our science
    Career Column 08 JUL 21

    Ecology

    Italy: Forest harvesting is the opposite of green growth
    Correspondence 13 JUL 21

    Destructive fires serve as pest control for lizards
    Research Highlight 13 JUL 21

    Newfound ‘fairy lantern’ could soon be snuffed out forever
    Research Highlight 07 JUL 21

    Jobs

    Research Associate / PhD Student

    Technische Universität Dresden (TU Dresden)
    Dresden, Germany

    Head of Human Resources

    Research Center for Molecular Medicine (CeMM), ÖAW
    Vienna, Austria

    M.Sc. or Ph.D. in Physical Oceanography: Glacier-ocean interactions in the Canadian Arctic Archipelago

    The University of British Columbia (UBC)
    Vancouver, Canada

    58971: Student in Aerospace Engineering, Communication Engineering, Electronic Engineering, Physics (f/m/x) – Space Radiation and Shielding Analysis for VHTS Optical Communications Payload

    German Aerospace Center (DLR)
    Oberpfaffenhofen, Germany

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Soil texture as a key driver of polycyclic aromatic hydrocarbons (PAHs) distribution in forest topsoils

    1.Mahanty, B., Pakshirajan, K. & Dasu, V. V. Understanding the complexity and strategic evolution in PAH remediation research. Crit. Rev. Environ. Sci. Technol. 41, 1697–1746. https://doi.org/10.1080/10643389.2010.481586 (2011).CAS 
    Article 

    Google Scholar 
    2.Meador, J. P. Polycyclic aromatic hydrocarbons. Encyclopedia of Ecology Vol. 4 (eds Jørgensen, S. E. & Fath, B. D.) 2881–2891 (Oxford: Elsevier, 2008).3.Gong, Z., Alef, K., Wilke, B. M. & Li, P. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. J. Hazard Mater. 143, 372–378. https://doi.org/10.1016/j.jhazmat.2006.09.037 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Smith, M. J., Flowers, T. H., Duncan, H. J. & Alder, J. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues. Environ. Poll. 141, 519–525. https://doi.org/10.1016/j.envpol.2005.08.061 (2006).CAS 
    Article 

    Google Scholar 
    5.Mackay, D., Shiu, W. Y. & Lee, S. C. Handbook of Physical–Chemical Properties and Environmental Fate for Organic Chemicals (CRC Press, 2006).Book 

    Google Scholar 
    6.Zhou, Q., Sun, F. & Liu, R. Joint chemical flushing of soils contaminated with petroleum hydrocarbons. Environ. Int. 31, 835–839. https://doi.org/10.1016/j.envint.2005.05.039 (2005).Article 
    PubMed 

    Google Scholar 
    7.Wang, C. et al. Elemental carbon components and PAHs in soils from different areas of the Yangtze River Delta region, China and their relationship. CATENA 199, 105086. https://doi.org/10.1016/j.catena.2020.105086 (2021).CAS 
    Article 

    Google Scholar 
    8.Hao, R., Wan, H. F., Song, Y. T., Jiang, H. & Peng, S. L. Polycyclic aromatic hydrocarbons in agricultural soils of the southern subtropics, China. Pedosphere 17, 673–680. https://doi.org/10.1016/S1002-0160(07)60081-2 (2007).CAS 
    Article 

    Google Scholar 
    9.Dandie, C. E. et al. Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere 81, 1061–1068. https://doi.org/10.1016/j.chemosphere.2010.09.059 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Liu, S. et al. Black carbon (BC) in urban and surrounding rural soils of Beijing, China: Spatial distribution and relationship with polycyclic aromatic hydrocarbons (PAHs). Chemosphere 82, 223–228. https://doi.org/10.1016/j.chemosphere.2010.10.017 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Terytze, K. et al. Detection and determination limits of priority organic pollutants in soil. Chemosphere 31, 3051–3083. https://doi.org/10.1016/0045-6535(95)00166-6 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Han, Y. M. et al. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments. Chemosphere 119, 1335–1345. https://doi.org/10.1016/j.chemosphere.2014.02.021 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Duan, L. et al. Effect of ageing on benzo[a]pyrene extractability in contrasting soils. J. Hazard Mater. 296, 175–184. https://doi.org/10.1016/j.jhazmat.2015.04.050 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Luo, L., Zhang, S. & Ma, Y. Evaluation of impacts of soil fractions on phenanthrene sorption. Chemosphere 72, 891–896. https://doi.org/10.1016/j.chemosphere.2008.03.051 (2008).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Ukalska-Jaruga, A., Debaene, G. & Smreczak, B. Dissipation and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to organic matter in soils amended by exogenous rich-carbon material. J. Soils Sediments 20, 836–849. https://doi.org/10.1007/s11368-019-02455-8 (2020).CAS 
    Article 

    Google Scholar 
    16.Błońska, E., Lasota, J., Szuszkiewicz, M., Łukasik, A. & Klamerus-Iwan, A. Assessment of forest soil contamination in Krakow surroundings in relation to the type of stand. Environ. Earth Sci. 75, 1–15. https://doi.org/10.1007/s12665-016-6005-7 (2016).CAS 
    Article 

    Google Scholar 
    17.Lasota, J. & Błońska, E. Polycyclic aromatic hydrocarbons content in contaminated forest soils with different humus types. Water Air Soil Poll. 229, 204. https://doi.org/10.1007/s11270-018-3857-3 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Pająk, M. et al. Restoration of vegetation in relation to soil properties of spoil heap heavily contaminated with heavy metals. Water Air Soil Poll. 229, 392. https://doi.org/10.1007/s11270-018-4040-6 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Lasota, J., Błońska, E., Łyszczarz, S. & Tibbett, M. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water Air Soil Poll. 231, 80. https://doi.org/10.1007/s11270-020-4450-0 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Pająk, M., Błońska, E., Frąc, M. & Oszust, K. Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water Air Soil Poll. 227, 348. https://doi.org/10.1007/s11270-016-3051-4 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Chaudhary, P., Singh, S. B., Chaudhry, S. & Nain, L. Impact of PAH on biological health parameters of soils of an Indian refinery and adjoining agricultural area—A case study. Environ. Monit. Assess. 184, 1145–1156. https://doi.org/10.1007/s10661-011-2029-3 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Łukasik, A., Szuszkiewicz, M., Wanic, T. & Gruba, P. Three-dimensional model of magnetic susceptibility in forest topsoil: An indirect method to discriminate contaminant migration. Environ. Pollut. 273, 116491. https://doi.org/10.1016/j.envpol.2021.116491 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.Magiera, T., Jabłońska, M., Strzyszcz, Z. & Rachwal, M. Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmos. Environ. 45, 4281–4290. https://doi.org/10.1016/j.atmosenv.2011.04.076 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Hulett, L. D., Weinberger, A. J., Northcutt, K. J. & Ferguson, M. Chemical species in fly ash from coal-burning power plants. Science 210, 1356–1358. https://doi.org/10.1126/science.210.4476.1356 (1980).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Chaparro, M. A. E., Gogorza, C. S. G., Lavat, A., Pazos, S. & Sinito, A. M. Preliminary results of magnetic characterisation of different soils in the Tandil region (Argentina) affected by pollution by a metallurgical factory. Eur. J. Environ. Eng. Geophys. 7, 35–38 (2002).
    Google Scholar 
    26.Fabijańczyk, P., Zawadzki, J., Magiera, T. & Szuszkiewicz, M. A methodology of integration of magnetometric and geochemical soil contamination measurements. Geoderma 277, 51–60. https://doi.org/10.1016/j.geoderma.2016.05.009 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Łukasik, A., Magiera, T., Lasota, J. & Błońska, E. Background value of magnetic susceptibility in forest topsoil: Assessment on the basis of studies conducted in forest preserves of Poland. Geoderma 264, 140–149. https://doi.org/10.1016/j.geoderma.2015.10.009 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Yu, X., Wang, Y. & Lu, S. Tracking the magnetic carriers of heavy metals in contaminated soils based on X-ray microprobe techniques and wavelet transformation. J. Hazard Mater. 381, 121114. https://doi.org/10.1016/j.jhazmat.2019.121114 (2020).CAS 
    Article 

    Google Scholar 
    29.Jordanova, N., Jordanova, D. & Tsacheva, T. Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma 144, 557–571. https://doi.org/10.1016/j.geoderma.2008.01.021 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Petrovský, E. et al. Magnetic mapping of distribution of wood ash used for fertilization of forest soil. Sci. Total Environ. 626, 228–234. https://doi.org/10.1016/j.scitotenv.2018.01.095 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Asgari, N., Ayoubi, S. & Demattê, J. A. M. Soil drainage assessment by magnetic susceptibility measures in western Iran. Geoderma Reg. 13, 35–42. https://doi.org/10.1016/j.geodrs.2018.03.003 (2018).Article 

    Google Scholar 
    32.Menshov, O. et al. Soil and dust magnetism in semi-urban area Truskavets, Ukraine. Environ. Earth Sci. 79, 1–10. https://doi.org/10.1007/s12665-020-08924-5 (2020).CAS 
    Article 

    Google Scholar 
    33.Xu, S. et al. Contents of heavy metals and PAHs and their relationships with magnetic susceptibility in soils of vegetable base in Fuzhou City. Chin. J. Environ. Eng. 11, 4861–4867. https://doi.org/10.12030/j.cjee.201607118 (2017).Article 

    Google Scholar 
    34.IUSS Working Group WRB. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. https://doi.org/10.1017/S0014479706394902 (2014).35.Sanaullah, M., Razavi, B. S., Blagodatskaya, E. & Kuzyakov, Y. Spatial distribution and catalytic mechanisms of β-glucosidase activity at the root-soil interface. Biol. Fertil. Soils 52, 505–514. https://doi.org/10.1007/s00374-016-1094-8 (2016).CAS 
    Article 

    Google Scholar 
    36.Pritsch, K. et al. A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J. Microb. Met. 58, 233–241. https://doi.org/10.1016/j.mimet.2004.04.001 (2004).CAS 
    Article 

    Google Scholar 
    37.Turner, B. L. Variation in ph optima of hydrolytic enzyme activities in tropical rain forest soils. Appl. Environ. Microbiol. 76, 6485–6493. https://doi.org/10.1128/AEM.00560-10 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Jenkinson, D. S. & Powlson, D. S. The effects of biocidal treatments on metabolism in soil-I. Fumigation with chloroform. Soil Biol. Biochem. 8, 167–177. https://doi.org/10.1016/0038-0717(76)90001-8 (1976).CAS 
    Article 

    Google Scholar 
    39.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707. https://doi.org/10.1016/0038-0717(87)90052-6 (1987).CAS 
    Article 

    Google Scholar 
    40.Dearing, J. A. Environmental Magnetic Susceptibility. Using the Bartington MS2 System 2nd edn. (Chi Publishing, 1999).
    Google Scholar 
    41.Quenea, K., Lamy, I., Winterton, P., Bermond, A. & Dumat, C. Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma 1, 217–223. https://doi.org/10.1016/j.geoderma.2008.11.037 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Yu, H., Xiao, H. & Wang, D. Effects of soil properties and biosurfactant on the behavior of PAHs in soil-water systems. Environ. Syst. Res. 3, 6. https://doi.org/10.1186/2193-2697-3-6 (2014).Article 

    Google Scholar 
    43.Singh, S. K. & Haritash, A. K. Polycyclic aromatic hydrocarbons: Soil pollution and remediation. Inter. J. Environ. Sci. Technol. 16, 6489–6512. https://doi.org/10.1007/s13762-019-02414-3 (2019).CAS 
    Article 

    Google Scholar 
    44.Banach-Szott, M., Debska, B., Wisniewska, A. & Pakula, J. Changes in the contents of selected polycyclic aromatic hydrocarbons in soils of various types. Environ. Sci. Pollut. Res. 22, 5059–5069. https://doi.org/10.1007/s11356-014-3901-9 (2015).CAS 
    Article 

    Google Scholar 
    45.Han, B., Ding, X., Bai, Z., Kong, S. & Guo, G. Source analysis of particulate matter associated polycyclic aromatic hydrocarbons (PAHs) in an industrial city in northeastern China. J. Environ. Monit. 13, 2597–2604. https://doi.org/10.1039/c1em10251f (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Srogi, K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: A review. Environ. Chem. Lett. 5, 169–195. https://doi.org/10.1007/s10311-007-0095-0 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Fu, G., Kan, A. T. & Tomson, M. Adsorption and desorption hysteresis of pahs in surface sediment. Environ. Toxicol. Chem. 13, 1559–1567. https://doi.org/10.1002/etc.5620131003 (1994).CAS 
    Article 

    Google Scholar 
    48.Maliszewska-Kordybach, B. & Smreczak, B. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination. Environ. Inter. 28, 719–728. https://doi.org/10.1016/S0160-4120(02)00117-4 (2003).CAS 
    Article 

    Google Scholar 
    49.Baran, S., Bielińska, J. E. & Oleszczuk, P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons. Geoderma 118, 221–232. https://doi.org/10.1016/S0016-7061(03)00205-2 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Wang, C., Sun, H., Li, J., Li, Y. & Zhang, Q. Enzyme activities during degradation of polycyclic aromatic hydrocarbons by white rot fungus Phanerochaete chrysosporium in soils. Chemosphere 77, 733–738. https://doi.org/10.1016/j.chemosphere.2009.08.028 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Feng, Y. et al. Soil microbial communities under conventional-till and no-till continuous cotton systems. Soil Biol. Biochem. 35, 1693–1703. https://doi.org/10.1016/j.soilbio.2003.08.016 (2003).CAS 
    Article 

    Google Scholar 
    52.Dou, F., Wright, A. L., Mylavarapu, R. S., Jiang, X. & Matocha, J. E. Soil enzyme activities and organic matter composition affected by 26 years of continuous cropping. Pedosphere 25, 618–625. https://doi.org/10.1016/S1002-0160(15)60070-4 (2016).CAS 
    Article 

    Google Scholar 
    53.Błońska, E., Lasota, J. & Gruba, P. Enzymatic activity and stabilization of organic matter in soil with different detritus inputs. J. Soil Sci. Plant Nutr. 63, 242–247. https://doi.org/10.1080/00380768.2017.1326281 (2017).CAS 
    Article 

    Google Scholar 
    54.Shen, J. P., Zhang, L. M., Guo, J. F., Ray, J. L. & He, J. Z. Impact of long-term fertilization practices on the abundance and composition of soil bacterial communities in Northeast China. Appl. Soil Ecol. 46, 119–124. https://doi.org/10.1016/j.apsoil.2010.06.015 (2010).Article 

    Google Scholar 
    55.Li, J. et al. Microbial community structure and functional metabolic diversity are associated with organic carbon availability in an agricultural soil. J. Integr. Agric. 14, 2500–2511. https://doi.org/10.1016/S2095-3119(15)61229-1 (2015).CAS 
    Article 

    Google Scholar 
    56.Riggs, C. E. & Hobbie, S. E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils. Soil Biol. Biochem. 99, 54–65. https://doi.org/10.1016/j.soilbio.2016.04.023 (2016).CAS 
    Article 

    Google Scholar 
    57.Sinsabaugh, R. L. et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 11, 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x (2008).Article 
    PubMed 

    Google Scholar 
    58.Kabata-Pendias, A. Trace Elements in Soils and Plants 4th Edn. https://doi.org/10.1201/b10158 (2010).59.Verla, E. N., Verla, A. W., Osisi, A. F., Okeke, P. N. & Enyoh, C. E. Finding a relationship between mobility factors of selected heavy metals and soil particle size in soils from children’s playgrounds. Environ. Monit. Assess. 191, 1–11. https://doi.org/10.1007/s10661-019-7937-7 (2019).CAS 
    Article 

    Google Scholar 
    60.Maliszewska-Kordybach, B. Polycyclic aromatic hydrocarbons in agricultural soils in Poland: Preliminary proposals for criteria to evaluate the level of soil contamination. Appl. Geochem. 11, 121–127. https://doi.org/10.1016/0883-2927(95)00076-3 (1996).Article 

    Google Scholar 
    61.Lu, Z., Zeng, F., Xue, N. & Li, F. Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Sci. Total Environ. 433, 50–57. https://doi.org/10.1016/j.scitotenv.2012.06.036 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Dearing, J. A. et al. Magnetic susceptibility of soil: An evaluation of conflicting theories using a national data set. Geophys. J. Int. 127, 728–734. https://doi.org/10.1111/j.1365-246X.1996.tb04051.x (1996).ADS 
    Article 

    Google Scholar 
    63.Hanesch, M. & Scholger, R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int. 161, 50–56. https://doi.org/10.1111/j.1365-246X.2005.02577.x (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Blundell, A., Dearing, J. A., Boyle, J. F. & Hannam, J. A. Controlling factors for the spatial variability of soil magnetic susceptibility across England and Wales. Earth-Sci. Rev. 95, 158–188. https://doi.org/10.1016/j.earscirev.2009.05.001 (2009).ADS 
    Article 

    Google Scholar 
    65.Alekseev, A., Alekseeva, T., Sokołowska, Z. & Hajnos, M. Magnetic and mineralogical properties of different granulometric fractions in the soils of the Lublin Upland Region. Int. Agrophys. 16, 1–6 (2001).
    Google Scholar 
    66.Quijano, L., Chaparro, M. A. E., Marié, D. C., Gaspar, L. & Navas, A. Relevant magnetic and soil parameters as potential indicators of soil conservation status of Mediterranean agroecosystems. Geophys. J. Int. 198, 1805–1817. https://doi.org/10.1093/gji/ggu239 (2014).ADS 
    Article 

    Google Scholar  More

  • in

    Factors associated with baseline mortality in Norwegian Atlantic salmon farming

    1.SERNAPESCA (Servicio Nacional de Pesca y Acuicultura). Informe Sanitario de Salmonicultura. http://www.sernapesca.cl/sites/default/files/informe_sanitario_salmonicultura_en_centros_marinos_2018_final.pdf (2018).2.Bang Jensen, B., Qviller, L. & Toft, N. Spatio-temporal variations in mortality during the seawater production phase of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 43, 445–457 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Moriarty, M. et al. Modelling temperature and fish biomass data to predict annual Scottish farmed salmon, Salmo salar L., losses: Development of an early warning tool. Prev. Vet. Med. 178, 104985. https://doi.org/10.1016/j.prevetmed.2020.104985 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Sommerset, I. et al. The Health Situation in Norwegian Aquaculture 2019. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2020/fiskehelserapporten-2019 (2020).5.Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2021—risikovurdering. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2021-8 (2021).6.Overton, K. et al. Salmon lice treatments and salmon mortality in Norwegian aquaculture: A review. Rev. Aquac. 11, 1398–1417 (2019).Article 

    Google Scholar 
    7.Soares, S., Green, D. M., Turnbull, J. F., Crumlish, M. & Murray, A. G. A baseline method for benchmarking mortality losses in Atlantic salmon (Salmo salar) production. Aquaculture 314, 7–12 (2011).Article 

    Google Scholar 
    8.Santurtun, E., Broom, D. & Phillips, C. A review of factors affecting the welfare of Atlantic salmon (Salmo salar). Anim. Welf. 27, 193–204 (2018).Article 

    Google Scholar 
    9.Ellis, T., Berrill, I., Lines, J., Turnbull, J. F. & Knowles, T. G. Mortality and fish welfare. Fish Physiol. Biochem. 38, 189–199 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Crockford, T., Menzies, F., McLoughlin, M., Wheatley, S. & Goodall, E. Aspects of the epizootiology of pancreas disease in farmed Atlantic salmon Salmo salar in Ireland. Dis. Aquat. Organ. 36, 113–119 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Stormoen, M., Kristoffersen, A. B. & Jansen, P. A. Mortality related to pancreas disease in Norwegian farmed salmonid fish, Salmo salar L. and Oncorhynchus mykiss (Walbaum). J. Fish Dis. 36, 639–645 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Taksdal, T. et al. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J. Fish Dis. 38, 1047–1061 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hammell, K. L. & Dohoo, I. R. Mortality patterns in infectious salmon anaemia virus outbreaks in New Brunswick, Canada. J. Fish Dis. 28, 639–650 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Glover, K. A. et al. Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture 254, 82–91 (2006).Article 

    Google Scholar 
    15.Roberts, R. J. & Pearson, M. D. Infectious pancreatic necrosis in Atlantic salmon, Salmo salar L. J. Fish Dis. 28, 383–390 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bang Jensen, B. & Kristoffersen, A. Risk factors for outbreaks of infectious pancreatic necrosis (IPN) and associated mortality in Norwegian salmonid farming. Dis. Aquat. Organ. 114, 177–187 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Brun, E., Poppe, T., Skrudland, A. & Jarp, J. Cardiomyopathy syndrome in farmed Atlantic salmon Salmo salar: Occurrence and direct financial losses for Norwegian aquaculture. Dis. Aquat. Organ. 56, 241–247 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bang Jensen, B., Brun, E., Fineid, B., Larssen, R. & Kristoffersen, A. Risk factors for cardiomyopathy syndrome (CMS) in Norwegian salmon farming. Dis. Aquat. Organ. 107, 141–150 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Løvoll, M. et al. Atlantic salmon bath challenged with Moritella viscosa—Pathogen invasion and host response. Fish Shellfish Immunol. 26, 877–884 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Delghandi, M. R., El-Matbouli, M. & Menanteau-Ledouble, S. Renibacterium salmoninarum—The causative agent of bacterial kidney disease in salmonid fish. Pathogens 9, 845. https://doi.org/10.3390/pathogens9100845 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lhorente, J. P., Gallardo, J. A., Villanueva, B., Carabaño, M. J. & Neira, R. Disease resistance in Atlantic Salmon (Salmo salar): Coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the Sea Louse Caligus rogercresseyi. PLoS ONE 9, e95397. https://doi.org/10.1371/journal.pone.0095397 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Kristoffersen, A. B. et al. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon. Epidemics 23, 19–33 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: Insights from an individual-based model. Sci. Rep. 9, 17377. https://doi.org/10.1038/s41598-019-53871-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Taylor, R. S., Kube, P. D., Muller, W. J. & Elliott, N. G. Genetic variation of gross gill pathology and survival of Atlantic salmon (Salmo salar L.) during natural amoebic gill disease challenge. Aquaculture 294, 172–179 (2009).Article 

    Google Scholar 
    25.Carvalho, L. A. et al. Impact of co-infection with Lepeophtheirus salmonis and Moritella viscosa on inflammatory and immune responses of Atlantic salmon (Salmo salar). J. Fish Dis. 43, 459–473 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Barker, S. E. et al. Sea lice, Lepeophtheirus salmonis (Krøyer 1837), infected Atlantic salmon (Salmo salar L.) are more susceptible to infectious salmon anemia virus. PLoS ONE 14, e0209178. https://doi.org/10.1371/journal.pone.0209178 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Staurnes, M., Sigholt, T., Åsgård, T. & Baeverfjord, G. Effects of a temperature shift on seawater challenge test performance in Atlantic salmon (Salmo salar) smolt. Aquaculture 201, 153–159 (2001).Article 

    Google Scholar 
    28.Ytrestøyl, T. et al. Performance and welfare of Atlantic salmon, Salmo salar L. post-smolts in recirculating aquaculture systems: Importance of salinity and water velocity. J. World Aquac. Soc. 51, 373–392 (2020).Article 
    CAS 

    Google Scholar 
    29.Montes, R. M., Rojas, X., Artacho, P., Tello, A. & Quiñones, R. A. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.León-Muñoz, J., Urbina, M. A., Garreaud, R. & Iriarte, J. L. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci. Rep. 8, 1330. https://doi.org/10.1038/s41598-018-19461-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Groner, M. L., McEwan, G. F., Rees, E. E., Gettinby, G. & Revie, C. W. Quantifying the influence of salinity and temperature on the population dynamics of a marine ectoparasite. Can. J. Fish. Aquat. Sci. 73, 1281–1291 (2016).Article 

    Google Scholar 
    32.Sievers, M., Oppedal, F., Ditria, E. & Wright, D. W. The effectiveness of hyposaline treatments against host-attached salmon lice. Sci. Rep. 9, 6976. https://doi.org/10.1038/s41598-019-43533-8 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Tunsjø, H. S. et al. Adaptive response to environmental changes in the fish pathogen Moritella viscosa. Res. Microbiol. 158, 244–250 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    34.Guomundsdóttir, S. et al. Measures applied to control Renibacterium salmoninarum infection in Atlantic salmon: A retrospective study of two sea ranches in Iceland. Aquaculture 186, 193–203 (2000).Article 

    Google Scholar 
    35.Jansen, M. D. et al. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. J. Fish Dis. 33, 391–402 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Jensen, B. B., Kristoffersen, A. B., Myr, C. & Brun, E. Cohort study of effect of vaccination on pancreas disease in Norwegian salmon aquaculture. Dis. Aquat. Organ. 102, 23–31 (2012).Article 

    Google Scholar 
    37.Karlsen, C., Thorarinsson, R., Wallace, C., Salonius, K. & Midtlyng, P. J. Atlantic salmon winter-ulcer disease: Combining mortality and skin ulcer development as clinical efficacy criteria against Moritella viscosa infection. Aquaculture 473, 538–544 (2017).Article 

    Google Scholar 
    38.Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).Article 

    Google Scholar 
    39.Overton, K., Samsing, F., Oppedal, F., Stien, L. H. & Dempster, T. Lowering treatment temperature reduces salmon mortality: A new way to treat with hydrogen peroxide in aquaculture. Pest Manag. Sci. 74, 535–540 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Helgesen, K. O., Romstad, H., Aaen, S. M. & Horsberg, T. E. First report of reduced sensitivity towards hydrogen peroxide found in the salmon louse Lepeophtheirus salmonis in Norway. Aquac. Rep. 1, 37–42 (2015).Article 

    Google Scholar 
    41.Walde, C. S., Bang Jensen, B., Pettersen, J. M. & Stormoen, M. Estimating cage level mortality distributions following different delousing treatments of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 44, jfd.13348. https://doi.org/10.1111/jfd.13348 (2021).Article 

    Google Scholar 
    42.Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: A threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Gismervik, K., Nielsen, K. V., Lind, M. B. & Viljugrein, H. Mekanisk avlusing med FLS-avlusersystem—dokumentasjon av fiskevelferd og effekt mot lus. Veterinærinstituttets rapportserie 6–2017. See https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2017/mekanisk-avlusing-dokumentasjon-av-fiskevelferd-og-effekt-mot-lus (2017).44.Grøntvedt, R. N. et al. Thermal de-licing of salmonid fish—Documentation of fish welfare and effect. Norwegian Veterinary Institute`s Report series 13–2015. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2015/thermal-de-licing-of-salmonid-fish-documentation-of-fish-welfare-and-effect (2015).45.Gismervik, K. et al. Thermal injuries in Atlantic salmon in a pilot laboratory trial. Vet. Anim. Sci. 8, 100081. https://doi.org/10.1016/j.vas.2019.100081 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    48.Auguie B. gridExtra: Miscellaneous functions for “grid” graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra (2017).49.Salama, N. K. G., Murray, A. G., Christie, A. J. & Wallace, I. S. Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture 450, 283–288 (2016).Article 

    Google Scholar 
    50.Aunsmo, A. et al. Methods for investigating patterns of mortality and quantifying cause-specific mortality in sea-farmed Atlantic salmon Salmo salar. Dis. Aquat. Organ. 81, 99–107 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Usher, M. L., Talbot, C. & Eddy, F. B. Effects of transfer to seawater on growth and feeding in Atlantic salmon smolts (Salmo salar L.). Aquaculture 94, 309–326 (1991).Article 

    Google Scholar 
    52.Johansson, L.-H., Timmerhaus, G., Afanasyev, S., Jørgensen, S. M. & Krasnov, A. Smoltification and seawater transfer of Atlantic salmon (Salmo salar L.) is associated with systemic repression of the immune transcriptome. Fish Shellfish Immunol. 58, 33–41 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Ellis, T., Turnbull, J. F., Knowles, T. G., Lines, J. A. & Auchterlonie, N. A. Trends during development of Scottish salmon farming: An example of sustainable intensification?. Aquaculture 458, 82–99 (2016).Article 

    Google Scholar 
    54.Kristensen, T. et al. Effects of production intensity and production strategies in commercial Atlantic salmon smolt (Salmo salar L.) production on subsequent performance in the early sea stage. Fish Physiol. Biochem. 38, 273–282 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Handeland, S. O., Björnsson, B. T., Arnesen, A. M. & Stefansson, S. O. Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220, 367–384 (2003).Article 

    Google Scholar 
    56.Bjørndal, T. & Tusvik, A. Economic analysis of on-growing of salmon post-smolts. Aquac. Econ. Manag. 24, 355–386 (2020).Article 

    Google Scholar 
    57.Bang Jensen, B., Mårtensson, A. & Kristoffersen, A. B. Estimating risk factors for the daily risk of developing clinical cardiomyopathy syndrome (CMS) on a fishgroup level. Prev. Vet. Med. 175, 104852. https://doi.org/10.1016/j.prevetmed.2019.104852 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Iversen, M. et al. Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 243, 373–382 (2005).Article 

    Google Scholar 
    59.Intorre, L. Safety of azamethiphos in eel, seabass and trout. Pharmacol. Res. 49, 171–176 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Olsvik, P. A., Ørnsrud, R., Lunestad, B. T., Steine, N. & Fredriksen, B. N. Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 162, 23–33 (2014).CAS 
    Article 

    Google Scholar 
    61.Johnson, S., Constible, J. & Richard, J. Laboratory investigations on the efficacy of hydrogen peroxide against the salmon louse Lepeophtheirus salmonis and its lexicological and histopathological effects on Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Organ. 17, 197–204 (1993).CAS 
    Article 

    Google Scholar 
    62.Nilsson, J. et al. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Vet. Anim. Sci. 8, 100076. https://doi.org/10.1016/j.vas.2019.100076 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Stien, L. H., Lind, M. B., Oppedal, F., Wright, D. W. & Seternes, T. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture 490, 281–287 (2018).Article 

    Google Scholar 
    64.Barrett, L. T., Oppedal, F., Robinson, N. & Dempster, T. Prevention not cure: A review of methods to avoid sea lice infestations in salmon aquaculture. Rev. Aquac. 12, 2527–2543 (2020).Article 

    Google Scholar 
    65.Overton, K., Barrett, L. T., Oppedal, F., Kristiansen, T. S. & Dempster, T. Sea lice removal by cleaner fish in salmon aquaculture: A review of the evidence base. Aquac. Environ. Interact. 12, 31–44 (2020).Article 

    Google Scholar 
    66.Tully, O., Daly, P., Lysaght, S., Deady, S. & Varian, S. J. A. Use of cleaner-wrasse (Centrolabrus exoletus (L.) and Ctenolabrus rupestris (L.)) to control infestations of Caligus elongatus Nordmann on farmed Atlantic salmon. Aquaculture 142, 11–24 (1996).Article 

    Google Scholar 
    67.Imsland, A. K. D. et al. It works! Lumpfish can significantly lower sea lice infestation in large-scale salmon farming. Biol. Open 7, bio036301. https://doi.org/10.1242/bio.036301 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Erkinharju, T., Dalmo, R. A., Hansen, M. & Seternes, T. Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac. 13, 189–237 (2021).Article 

    Google Scholar 
    69.Elliott, J. M. & Elliott, J. A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 77, 1793–1817 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Finstad, T. & Sigholt, B. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84, 167–172 (1990).Article 

    Google Scholar 
    71.Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2018. https://www.hi.no/resources/publikasjoner/risikorapport-norsk-fiskeoppdrett/2018/risikorapport_2018.pdf (2018).72.Hvas, M., Folkedal, O. & Oppedal, F. Fish welfare in offshore salmon aquaculture. Rev. Aquac. 13, 836–852 (2021).Article 

    Google Scholar 
    73.Dórea, F. C. & Vial, F. Animal health syndromic surveillance: A systematic literature review of the progress in the last 5 years (2011–2016). Vet. Med. Res. Rep. 7, 157–170 (2016).
    Google Scholar 
    74.Fernández-Fontelo, A. et al. Enhancing the monitoring of fallen stock at different hierarchical administrative levels: An illustration on dairy cattle from regions with distinct husbandry, demographical and climate traits. BMC Vet. Res. 16, 110 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Samsing, F., Johnsen, I., Dempster, T., Oppedal, F. & Treml, E. A. Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landsc. Ecol. 32, 1953–1967 (2017).Article 

    Google Scholar 
    76.Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Myksvoll, M. S. et al. Evaluation of a national operational salmon lice monitoring system—From physics to fish. PLoS ONE 13, e0201338. https://doi.org/10.1371/journal.pone.0201338 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    79.Tennekes, M. tmap: Thematic maps in R. J. Stat. Softw. 84, 1–39 (2018).Article 

    Google Scholar 
    80.NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/SF/forskrift/2012-12-05-1140 (2012).81.NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/LTI/forskrift/2012-12-05-1140 (2012).82.Asplin, L., Albretsen, J., Johnsen, I. A. & Sandvik, A. D. The hydrodynamic foundation for salmon lice dispersion modeling along the Norwegian coast. Ocean Dyn. 70, 1151–1167 (2020).ADS 
    Article 

    Google Scholar 
    83.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. CRAN. https://cran.r-project.org/web/packages/ncdf4/ncdf4.pdf (2019).84.Dohoo I., Martin W. & Stryhn H. Veterinary Epidemiologic Research (2nd edn) Charlottetown, Prince Edward Island (VER Inc., 2009).85.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    86.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. CRAN. https://easystats.github.io/performance (2020).87.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. CRAN. https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf (2020). More

  • in

    Changes in climate drive recent monarch butterfly dynamics

    1.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    2.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    6.Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    7.Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Google Scholar 
    8.Brower, L. P. et al. Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv. Divers. 5, 95–100 (2012).
    Google Scholar 
    9.Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 214, 343–346 (2017).
    Google Scholar 
    11.Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Boyle, J. H., Dalgleish, H. J. & Puzey, J. R. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. Proc. Natl Acad. Sci. USA 116, 3006–3011 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Hann, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).
    Google Scholar 
    14.Oberhauser, K. S. et al. Temporal and spatial overlap between monarch larvae and corn pollen. Proc. Natl Acad. Sci. USA 98, 11913–11918 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135–144 (2013).
    Google Scholar 
    16.Ries, L., Taron, D. J. & Rendón-Salinas, E. The disconnect between summer and winter monarch trends for the eastern migratory population: possible links to differing drivers. Ann. Entomol. Soc. Am. 108, 691–699 (2015).
    Google Scholar 
    17.Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125, 1081–1091 (2016).
    Google Scholar 
    18.Saunders, S. P. et al. Multiscale seasonal factors drive the size of winter monarch colonies. Proc. Natl Acad. Sci. USA 116, 8609–8614 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Zalucki, M. P. Temperature and rate of development in Danaus plexippus L. and D. chrysippus L. (Lepidoptera: Nymphalidae). Aust. J. Entomol. 21, 241–246 (1982).
    Google Scholar 
    20.Zipkin, E. F., Ries, L., Reeves, R., Regetz, J. & Oberhauser, K. S. Tracking climate impacts on the migratory monarch butterfly. Glob. Change Biol. 18, 3039–3049 (2012).
    Google Scholar 
    21.Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies. Ecography 41, 278–290 (2018).
    Google Scholar 
    22.Batalden, R. V., Oberhauser, K. & Peterson, A. T. Ecological niches in sequential generations of eastern North American monarch butterflies: the ecology of migration and likely climate change implications. Environ. Entomol. 36, 1365–1373 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    23.Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs via range expansion of Asclepias host plants. PLoS ONE 10, e0118614 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    24.Vidal, O. & Rendón-Salinas, E. Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol. Conserv. 180, 165–175 (2014).
    Google Scholar 
    25.Thogmartin, W. E. et al. Density estimates of monarch butterflies overwintering in central Mexico. PeerJ 5, e3221 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Flockhart, D. T. T., Pichancourt, J.-B., Norris, D. R. & Martin, T. G. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84, 155–165 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Oberhauser, K. et al. A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol. Entomol. 42, 51–60 (2017).
    Google Scholar 
    28.Wilcox, A. A. E., Flockhart, D. T. T., Newman, A. E. M. & Norris, D. R. An evaluation of studies on the potential threats contributing to the decline of eastern migratory North American monarch butterflies (Danaus plexippus). Front. Ecol. Evol. 7, 99 (2019).
    Google Scholar 
    29.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    30.Dai, S., Shulski, M. D., Hubbard, K. G. & Takle, E. S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Climatol. 36, 517–525 (2016).
    Google Scholar 
    31.Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Crimmins, T. M. & Crimmins, M. A. Biologically-relevant trends in springtime temperatures across the United States. Geophys. Res. Lett. 46, 12377–12387 (2019).
    Google Scholar 
    33.Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2001).
    Google Scholar 
    34.Nelson, W. A., Bjørnstad, O. N. & Yamanaka, T. Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 341, 796–799 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) (Cambridge Univ. Press, 2014).36.Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    37.Cook, K. H., Vizy, E. K., Launer, Z. S. & Patricola, C. M. Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Clim. 21, 6321–6340 (2008).
    Google Scholar 
    38.Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Wagner, D. L. Insect declines in the Anthropocene. Ann. Rev. Entomol. 65, 457–480 (2020).CAS 

    Google Scholar 
    40.Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Flockhart, D. T. T. et al. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. Glob. Change Biol. 23, 2565–2576 (2017).
    Google Scholar 
    43.Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436–15439 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Oberhauser, K. S. et al. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 13–30 (Cornell Univ. Press, 2015).45.Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).
    Google Scholar 
    46.Saunders, S. P., Ries, L., Obserhauser, K. S. & Zipkin, E. F. Evaluating confidence in climate-based predictions of population change in a migratory species. Glob. Ecol. Biogeogr. 25, 1000–1012 (2016).
    Google Scholar 
    47.Missrie, M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 141–150 (Cornell Univ. Press, 2004).48.García-Serrano, E., Reyes, J. L. & Alvarez, B. X. M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 129–133 (Cornell Univ. Press, 2004).49.Ramírez, M. I., Sáenz-Romero, C., Rehfeldt, G. & Salas-Canela, L. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 157–168 (Cornell Univ. Press, 2015).50.Howard, E. & Davis, A. K. Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from Journey North, a citizen science program. Ann. Entomol. Soc. Am. 108, 664–669 (2015).
    Google Scholar 
    51.McMaster, G. S. & Wilhelm, W. Growing degree-days: one equation, two interpretations. Agric. Meteorol. 87, 291–300 (1997).
    Google Scholar 
    52.Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/132853.Hartzler, R. G. & Buhler, D. D. Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot. 19, 363–366 (2000).
    Google Scholar 
    54.Hartzler, R. G. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544 (2010).
    Google Scholar 
    55.Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar 
    56.Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    58.Pesticide National Synthesis Project (US Geological Survey, 2020); https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/59.Quick Stats (US Department of Agriculture, National Agricultural Statistics Service, 2020); http://quickstats.nass.usda.gov60.Crops (Ontario Ministry of Agriculture, Food and Rural Affairs, 2020); http://www.omafra.gov.on.ca/english/crops/61.Batalden, R. V. & Oberhauser, K. S. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 215–224 (Cornell Univ. Press, 2015).62.Alonso-Mejía, A., Rendón-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation. Ecol. Appl. 7, 934–947 (1997).
    Google Scholar 
    63.Brower, L. P., Fink, L. S. & Walford, P. Fueling the fall migration of the monarch butterfly. Integr. Comp. Biol. 46, 1123–1142 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    64.Tracy, J. L., Kantola, T., Baum, K. A. & Coulson, R. N. Modeling fall migration pathways and spatially identifying potential migratory hazards for the eastern monarch butterfly. Landsc. Ecol. 34, 443–458 (2019).
    Google Scholar 
    65.Feldman, R. E. & McGill, B. J. How important is nectar in shaping spatial variation in the abundance of temperate breeding hummingbirds? J. Biogeogr. 41, 489–500 (2014).
    Google Scholar 
    66.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD13Q1.00667.Vidal, O., López-García, J. & Rendón-Salinas, E. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv. Biol. 28, 177–186 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    68.Williams, E. H. & Brower, L. P. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 109–116 (Cornell Univ. Press, 2015).69.Brower, L. P. et al. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 151–166 (Cornell Univ. Press, 2004).70.Brower, L. P. et al. Butterfly mortality and salvage logging from the March 2016 storm in the Monarch Butterfly Biosphere Reserve in Mexico. Am. Entom. 63, 151–164 (2017).
    Google Scholar 
    71.Farfán-Gutiérrez, M. et al. Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera y Bosques 24, e2431591 (2018).
    Google Scholar 
    72.Ramírez, M. I., López-Sánchez, J. G. & Barrasa, S. Mapa de Vegetación y Cubiertas del Suelo, Reserva de la Biosfera Mariposa Monarca Vol. II (CIGA-UNAM, 2019).73.Flores-Martínez, J. J. et al. Recent forest cover loss in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico. Front. Ecol. Evol. 7, 167 (2019).
    Google Scholar 
    74.Ramírez, M. I., Gímenez-Azcárate, J. & Luna, L. Effects of human activities on monarch butterfly habitat in protected mountain forests, Mexico. For. Chron. 79, 242–246 (2003).
    Google Scholar 
    75.Ramírez, M. I., Miranda, R., Zubieta, R. & Jiménez, M. Land cover and road network map for the Monarch Butterfly Biosphere Reserve in Mexico 2003. J. Maps 3, 181–190 (2007).
    Google Scholar 
    76.Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Ltd, 2016).77.Yackulic, C. B., Dodrill, M., Dzul, M., Sanderlin, J. S. & Reid, J. A. A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states. Ecol. Appl. 30, e02112 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    78.Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    79.Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Austral Ecol. 21, 224–228 (1996).
    Google Scholar 
    80.Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 73, 307–309 (2019).
    Google Scholar 
    81.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017).
    Google Scholar 
    82.Stan Development Team. rstan: the R Interface to Stan. R package version 2.17.3 http://mc-stan.org/ (2018).83.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/84.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
    Google Scholar 
    85.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007). More

  • in

    Benefit of woodland and other natural environments for adolescents’ cognition and mental health

    1.Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).Article 

    Google Scholar 
    2.World Urbanization Prospects: The 2018 Revision ST/ESA/SER.A/420 (UN DESA, 2019).3.Okkels, N., Kristiansen, C. B., Munk-Jørgensen, P. & Sartorius, N. Urban mental health. Curr. Opin. Psychiatry 31, 258–264 (2018).Article 

    Google Scholar 
    4.Robbins, R. N., Scott, T., Joska, J. A. & Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 32, 210–217 (2019).Article 

    Google Scholar 
    5.Sarkar, C., Webster, C. & Gallacher, J. Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Health 2, e162–e173 (2018).Article 

    Google Scholar 
    6.Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/PNAS.1807504116 (2019).7.Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).CAS 
    Article 

    Google Scholar 
    8.Franco, L. S., Shanahan, D. F. & Fuller, R. A. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health 14, 864 (2017).Article 

    Google Scholar 
    9.Cox, D. T. C. et al. Skewed contributions of individual trees to indirect nature experiences. Landsc. Urban Plan. 185, 28–34 (2019).Article 

    Google Scholar 
    10.Irvine, K. N. et al. Green space, soundscape and urban sustainability: an interdisciplinary, empirical study. Local Environ. 14, 155–172 (2009).Article 

    Google Scholar 
    11.Weber, S. T. & Heuberger, E. The impact of natural odors on affective states in humans. Chem. Senses 33, 441–447 (2008).Article 

    Google Scholar 
    12.Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 15, 9–17 (2010).CAS 
    Article 

    Google Scholar 
    13.Rook, G. A., Raison, C. L. & Lowry, C. A. Can we vaccinate against depression? Drug Discov. Today 17, 451–458 (2012).Article 

    Google Scholar 
    14.Markevych, I. et al. Access to urban green spaces and behavioural problems in children: results from the GINIplus and LISAplus studies. Environ. Int. 71, 29–35 (2014).Article 

    Google Scholar 
    15.Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: urban street tree density and antidepressant prescription rates—a cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).16.Akpinar, A., Barbosa-Leiker, C. & Brooks, K. R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 20, 407–418 (2016).Article 

    Google Scholar 
    17.Cox, D. T. C., Shanahan, D. F., Hudson, H. L., Fuller, R. A. & Gaston, K. J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 179, 72–80 (2018).Article 

    Google Scholar 
    18.Amoly, E. et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE Project. Environ. Health Perspect. 122, 1351–1358 (2014).Article 

    Google Scholar 
    19.Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, e198209 (2019).Article 

    Google Scholar 
    20.Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).CAS 
    Article 

    Google Scholar 
    21.Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379 (2015).Article 

    Google Scholar 
    22.The Mental Health of Children and Young People in London (PHE, 2016).23.Bijnens, E. M., Derom, C., Thiery, E., Weyers, S. & Nawrot, T. S. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: a longitudinal birth cohort study of twins. PLoS Med. 17, e1003213 (2020).Article 

    Google Scholar 
    24.Milligan, C. & Bingley, A. Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. Health Place 13, 799–811 (2007).Article 

    Google Scholar 
    25.Toledano, M. B. et al. Cohort profile: the study of cognition, adolescents and mobile phones (SCAMP). Int. J. Epidemiol. 48, 25–26l (2018).Article 

    Google Scholar 
    26.Afifi, M. Gender differences in mental health. Singapore Med. J. 48, 385–391 (2007).CAS 

    Google Scholar 
    27.Guhn, M., Emerson, S. D., Mahdaviani, D. & Gadermann, A. M. Associations of birth factors and socio-economic status with indicators of early emotional development and mental health in childhood: a population-based linkage study. Child Psychiatry Hum. Dev. 51, 80–93 (2020).Article 

    Google Scholar 
    28.Morita, E. et al. Psychological effects of forest environments on healthy adults: shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 121, 54–63 (2007).CAS 
    Article 

    Google Scholar 
    29.Thompson, C. W. et al. Health impacts of environmental and social interventions designed to increase deprived communities’ access to urban woodlands: a mixed-methods study. Public Health Res. 27, 1–172 (2019).Article 

    Google Scholar 
    30.Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).Article 

    Google Scholar 
    31.Liao, J. et al. Residential exposure to green space and early childhood neurodevelopment. Environ. Int. 128, 70–76 (2019).Article 

    Google Scholar 
    32.Picavet, H. S. J. et al. Greener living environment healthier people? Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev. Med. 89, 7–14 (2016).Article 

    Google Scholar 
    33.Francis, J., Wood, L. J., Knuiman, M. & Giles-Corti, B. Quality or quantity? Exploring the relationship between public open space attributes and mental health in Perth, Western Australia. Soc. Sci. Med. 74, 1570–1577 (2012).Article 

    Google Scholar 
    34.Nutsford, D., Pearson, A. L., Kingham, S. & Reitsma, F. Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health Place 39, 70–78 (2016).Article 

    Google Scholar 
    35.Little, S. & Derr, V. in Research Handbook on Childhoodnature (eds Cutter-Mackenzie-Knowles, A. et al.) 151–178 (Springer, 2020).36.Bell, S. L., Phoenix, C., Lovell, R. & Wheeler, B. W. Seeking everyday wellbeing: the coast as a therapeutic landscape. Soc. Sci. Med. 142, 56–67 (2015).Article 

    Google Scholar 
    37.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, 903–927 (2019).Article 

    Google Scholar 
    38.Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).Article 

    Google Scholar 
    39.Tarling, R. & Roger, R. D. Socio-economic determinants of crime rates: modelling local area police-recorded crime. Howard J. Crime Justice 55, 207–225 (2016).Article 

    Google Scholar 
    40.Rose, D., Pevalin, D. J. & O’Reilly, K. The National Statistics Socio-economic Classification: Origins, Development and Use (Palgrave MacMillan, 2005).41.Carstairs, V. & Morris, R. Deprivation and health in Scotland. Health Bull. 48, 162–175 (1990).CAS 

    Google Scholar 
    42.2011 Census Aggregate Data (Office of National Statistics, 2012); https://www.ons.gov.uk/census/2011census43.Luciana, M. & Nelson, C. A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4- to 12-year-old children. Dev. Neuropsychol. 22, 595–624 (2002).Article 

    Google Scholar 
    44.Tombaugh, T. N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214 (2004).Article 

    Google Scholar 
    45.Wechsler, D. The Measurement of Adult Intelligence (Williams & Wilkins, 1944).46.Burgess, P. W. in Methodology of Frontal and Executive Function (ed. Rabbitt, P.) 79–113 (Taylor and Francis, 2004).47.Goodman, R., Meltzer, H. & Bailey, V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Int. Rev. Psychiatry 15, 173–177 (2003).CAS 
    Article 

    Google Scholar 
    48.Cronbach, L. J. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951).Article 

    Google Scholar 
    49.The KIDSCREEN Group Europe The Kidscreen Questionnaires: Quality of Life Questionnaires for Children and Adolescents (Pabst Science, 2006).50.Berman, A. H., Liu, B., Ullman, S., Jadbäck, I. & Engström, K. Children’s quality of life based on the KIDSCREEN-27: child self-report, parent ratings and child–parent agreement in a Swedish random population sample. PLoS ONE 11, e0150545 (2016).Article 
    CAS 

    Google Scholar 
    51.Sentinel-2 User Handbook (ESA, 2015).52.Gascon, M. et al. Normalized Difference Vegetation Index (NDVI) as a marker of surrounding greenness in epidemiological studies: the case of Barcelona city. Urban For. Urban Green. 19, 88–94 (2016).Article 

    Google Scholar 
    53.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    54.Open Map—Local (Ordnance Survey, 2019); http://os.uk55.Miura, N. & Jones, S. D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens. Environ. 114, 1069–1076 (2010).Article 

    Google Scholar 
    56.Dadvand, P. et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 523, 59–63 (2015).CAS 
    Article 

    Google Scholar 
    57.Sunyer, J. et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 12, e1001792 (2015).Article 
    CAS 

    Google Scholar 
    58.Roberts, S. et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 272, 8–17 (2019).CAS 
    Article 

    Google Scholar 
    59.Tzivian, L. et al. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 218, 1–11 (2015).Article 

    Google Scholar 
    60.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).Article 

    Google Scholar  More