Climate change and tree growth in the Khakass-Minusinsk Depression (South Siberia) impacted by large water reservoirs
1.IPCC. Climate Change 2007: The Physical Science Basis. Contribution of working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).2.IPCC. Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (WMO, 2019).3.Rogers, J. C. & Mosely-Thompson, E. Atlantic Arctic cyclones and mild Siberian winters of the 1980s. Geophys. Res. Lett. 22, 799–802 (1995).ADS
Article
Google Scholar
4.Davi, N. K., Jacoby, G. C., Curtis, A. E. & Baatarbileg, N. Extension of drought records for central Asia using tree rings: West-central Mongolia. J. Clim. 19, 288–299 (2006).ADS
Article
Google Scholar
5.Kattsov, V. M. & Semenov, S. M. Second Roshydromet Assessment Report on Climate Change and its Consequences in Russian Federation (Roshydromet, 2014).
Google Scholar
6.Savelieva, N. I., Semiletov, I. P., Vasilevskaya, L. N. & Pugach, S. P. A climate shift in seasonal values of meteorological and hydrological parameters for Northeastern Asia. Prog. Oceanogr. 47, 279–297 (2000).ADS
Article
Google Scholar
7.Liu, X. et al. Drought evolution and its impact on the crop yield in the North China Plain. J. Hydrol. 564, 984–996 (2018).ADS
Article
Google Scholar
8.Cho, D. J. & Kim, K. Y. Role of Ural blocking in Arctic sea ice loss and its connection with Arctic warming in winter. Clim. Dyn. 56, 1571–1588 (2021).Article
Google Scholar
9.Savkin, V. M. Reservoirs of Siberia: Consequences of their creation to water ecology and water management facilities. Sib. Ecol. J. 2, 109–121 (2000) (in Russian).
Google Scholar
10.Poff, N. L. & Hart, D. D. How dams vary and why it matters for the emerging science of dam removal: An ecological classification of dams is needed to characterize how the tremendous variation in the size, operational mode, age, and number of dams in a river basin influences the potential for restoring regulated rivers via dam removal. Bioscience 52, 659–668 (2002).Article
Google Scholar
11.Osika, D. G., Otinova, AYu. & Ponomareva, N. L. About the origin of the global warming and the reasons for the formation of climatic anomalies and disasters. Arid Ecosyst. 19, 104–112 (2013) (in Russian).
Google Scholar
12.Aras, E. Effects of multiple dam projects on river ecology and climate change: Çoruh River Basin, Turkey. Adv. Environ. Res. 7, 121 (2018).
Google Scholar
13.Shen, P. & Zhao, S. 1/4 to 1/3 of observed warming trends in China from 1980 to 2015 are attributed to land use changes. Clim. Change 164, 59. https://doi.org/10.1007/s10584-021-03045-9 (2021).ADS
Article
Google Scholar
14.Ward, J. V. & Stanford, J. A. The Ecology of Regulated Streams (Plenum Press, 1979).Book
Google Scholar
15.Ligon, F. K., Dietrich, W. E. & Trush, W. J. Downstream ecological effects of dams. Bioscience 45, 183–192 (1995).Article
Google Scholar
16.Gyau-Boakye, P. Environmental impacts of the Akosombo dam and effects of climate change on the lake levels. Environ. Dev. Sustain. 3, 17–29 (2001).Article
Google Scholar
17.Muth, R. T. et al. Flow and Temperature Recommendations for Endangered Fishes in the Green River Downstream of Flaming Gorge Dam. Final Report, Upper Colorado River Endangered Fish Recovery Program Project FG-53 (UCREFRP, 2000).18.Degu, A. M. et al. The influence of large dams on surrounding climate and precipitation patterns. Geophys. Res. Lett. 38, L04405. https://doi.org/10.1029/2010GL046482 (2011).ADS
Article
Google Scholar
19.Normatov, I. S., Muminov, A. & Normatov, P. I. The impact of water reservoirs on biodiversity and food security. Creation of adaptation mechanisms. Glob. Perspect. Eng. Manag. 1, 21–25 (2012).
Google Scholar
20.Butorin, N. V., Vendrov, S. L., Dyakonov, K. N., Reteyum, A. Y. & Romanenko, V. I. Effect of the Rybinsk reservoir on the surrounding area. In Man-Made Lakes: Their Problems and Environmental Effects (eds Ackerman, W. C. et al.) 246–250 (American Geophysical Union, 1973).
Google Scholar
21.American Society of Civil Engineers. Guidelines for Retirement of Dams and Hydroelectric Facilities (American Society of Civil Engineers, 1997).
Google Scholar
22.Rosenzweig, C. et al. Assessment of observed changes and responses in natural and managed systems. In Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L. et al.) 79–131 (Cambridge UP, 2007).
Google Scholar
23.Piao, S. et al. Plant phenology and global climate change: Current progresses and challenges. Glob. Change Biol. 25, 1922–1940 (2019).ADS
Article
Google Scholar
24.Gill, D. S., Amthor, J. S. & Bormann, F. H. Leaf phenology, photosynthesis, and the persistence of saplings and shrubs in a mature northern hardwood forest. Tree Physiol. 18, 281–289 (1998).PubMed
Article
PubMed Central
Google Scholar
25.Augspurger, C. K., Cheeseman, J. M. & Salk, C. F. Light gains and physiological capacity of understory woody plants during phenological avoidance of canopy shade. Funct. Ecol. 19, 537–546 (2005).Article
Google Scholar
26.Zhang, X., Friedl, M. A., Schaaf, C. B. & Strahler, A. H. Climate controls on vegetation phenological patterns in northern mid-and high latitudes inferred from MODIS data. Glob. Chang. Biol. 10, 1133–1145 (2004).ADS
Article
Google Scholar
27.Zeng, H., Jia, G. & Epstein, H. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environ. Res. Lett. 6, 045508. https://doi.org/10.1088/1748-9326/6/4/045508 (2011).ADS
Article
Google Scholar
28.Montgomery, R. A., Rice, K. E., Stefanski, A., Rich, R. L. & Reich, P. B. Phenological responses of temperate and boreal trees to warming depend on ambient spring temperatures, leaf habit, and geographic range. PNAS 117, 10397–10405 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Badeck, F.-W. et al. Responses of spring phenology to climate change. New Phytol. 162, 295–309 (2004).Article
Google Scholar
30.Camarero, J. J., Olano, J. M. & Parras, A. Plastic bimodal xylogenesis in conifers from continental Mediterranean climates. New Phytol. 185, 471–480 (2010).PubMed
Article
PubMed Central
Google Scholar
31.Rossi, S., Girard, M.-J.J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).ADS
PubMed
Article
PubMed Central
Google Scholar
32.McCarty, J. P. Ecological consequences of recent climate change. Conserv. Biol. 15, 320–331 (2001).Article
Google Scholar
33.Aagaard, K. & Carmack, E. C. The role of sea ice and other fresh water in the Arctic circulation. J. Geophys. Res. Oceans 94, 14485–14498 (1989).ADS
Article
Google Scholar
34.Hunt, J. D. et al. Hydropower impact on the river flow of a humid regional climate. Clim. Change 163, 379–393 (2020).ADS
Article
Google Scholar
35.Kosmakov, I. V. Thermal and Ice Regime in the Upper and Lower Reaches of High-Pressure Hydroelectric Power Stations on the Yenisei (Klaretianum, 2001) (in Russian).
Google Scholar
36.Bryzgalov, V. I. From the Experience of Creation and Development of the Krasnoyarsk and Sayano-Shushenskaya Hydroelectric Power Plants (Siberian Publ. House “Surikov,” 1999) (in Russian).
Google Scholar
37.Sheffield, J., Andreadis, K. M. & Wood, E. F. Global and continental drought in the second half of the twentieth century: Severity-area-duration analysis and temporal variability of large-scale events. J. Clim. 22, 1962–1981 (2009).ADS
Article
Google Scholar
38.Liu, H. et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia. Glob. Change Biol. 19, 2500–2510 (2013).ADS
Article
Google Scholar
39.Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451. https://doi.org/10.1038/s41467-020-20678-z (2021).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
40.Amrit, K., Pandey, R. P., Mishra, S. K. & Daradur, M. Relationship of drought frequency and severity with range of annual temperature variation. Nat. Hazards 92, 1199–1210 (2018).Article
Google Scholar
41.Jackson, R. D., Idso, S. B., Reginato, R. J. & Pinter, P. J. Jr. Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4), 1133–1138 (1981).ADS
Article
Google Scholar
42.Bao, G., Liu, Y. & Linderholm, H. W. April–September mean maximum temperature inferred from Hailar pine (Pinus sylvestris var. mongolica) tree rings in the Hulunbuir region, Inner Mongolia, back to 1868 AD. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313, 162–172 (2012).Article
Google Scholar
43.de Vrese, P. & Stacke, T. Irrigation and hydrometeorological extremes. Clim. Dyn. 55, 1521–1537 (2020).Article
Google Scholar
44.Gustokashina, N. N. & Balybina, A. S. Variation in the natural-climatic characteristics of the territory adjacent to the reservoirs of the Angara chain of power plants. Geogr. Nat. Res. 4, 93–100 (2005) (in Russian).
Google Scholar
45.Arzac, A. et al. Increasing radial and latewood growth rates of Larix cajanderi Mayr. and Pinus sylvestris L. in the continuous permafrost zone in Central Yakutia (Russia). Ann. For. Sci. 76, 96 (2019).Article
Google Scholar
46.Gower, S. T. & Richards, J. H. Larches: Deciduous conifers in an evergreen world. Bioscience 40, 818–826 (1990).Article
Google Scholar
47.McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739 (2008).PubMed
Article
PubMed Central
Google Scholar
48.Piper, F. I. & Fajardo, A. Foliar habit, tolerance to defoliation and their link to carbon and nitrogen storage. J. Ecol. 102, 1101–1111 (2014).CAS
Article
Google Scholar
49.Khansaritoreh, E., Schuldt, B. & Dulamsuren, C. Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe. Ann. For. Sci. 75, 30. https://doi.org/10.1007/s13595-018-0701-2 (2018).Article
Google Scholar
50.Urban, J., Rubtsov, A. V., Urban, A. V., Shashkin, A. V. & Benkova, V. E. Canopy transpiration of a Larix sibirica and Pinus sylvestris forest in Central Siberia. Agric. For. Meteorol. 271, 64–72 (2019).ADS
Article
Google Scholar
51.Kolari, P., Lappalainen, H. K., HäNninen, H. & Hari, P. Relationship between temperature and the seasonal course of photosynthesis in Scots pine at northern timberline and in southern boreal zone. Tellus B Chem. Phys. Meteorol. 59, 542–552 (2007).ADS
Article
CAS
Google Scholar
52.Wu, J., Guan, D., Yuan, F., Wang, A. & Jin, C. Soil temperature triggers the onset of photosynthesis in Korean pine. PLoS ONE 8, e65401. https://doi.org/10.1371/journal.pone.0065401 (2013).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
53.Yang, Q. et al. Two dominant boreal conifers use contrasting mechanisms to reactivate photosynthesis in the spring. Nat. Commun. 11, 128. https://doi.org/10.1038/s41467-019-13954-0 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
54.Tanja, S. et al. Air temperature triggers the recovery of evergreen boreal forest photosynthesis in spring. Glob. Change Biol. 9, 1410–1426 (2003).ADS
Article
Google Scholar
55.Sevanto, S. et al. Wintertime photosynthesis and water uptake in a boreal forest. Tree Physiol. 26, 749–757 (2006).PubMed
Article
PubMed Central
Google Scholar
56.Rossi, S. et al. Critical temperatures for xylogenesis in conifers of cold climates. Glob. Ecol. Biogeogr. 17, 696–707 (2008).Article
Google Scholar
57.Babushkina, E. A., Belokopytova, L. V., Zhirnova, D. F. & Vaganov, E. A. Siberian spruce tree ring anatomy: Imprint of development processes and their high-temporal environmental regulation. Dendrochronologia 53, 114–124 (2019).Article
Google Scholar
58.Cannell, M. G. R. & Smith, R. I. Climatic warming, spring budburst and forest damage on trees. J. Appl. Ecol. 23, 177–191 (1986).Article
Google Scholar
59.Bertin, R. I. Plant phenology and distribution in relation to recent climate change. J. Torrey Bot. Soc. 135, 126–146 (2008).Article
Google Scholar
60.Ziaco, E., Biondi, F., Rossi, S. & Deslauriers, A. Environmental drivers of cambial phenology in Great Basin bristlecone pine. Tree Physiol. 36, 818–831 (2016).PubMed
Article
PubMed Central
Google Scholar
61.Rahman, M. H. et al. Winter-spring temperature pattern is closely related to the onset of cambial reactivation in stems of the evergreen conifer Chamaecyparis pisifera. Sci. Rep. 10, 14341. https://doi.org/10.1038/s41598-020-70356-9 (2020).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
62.Katz, R. W. & Brown, B. G. Extreme events in a changing climate: Variability is more important than averages. Clim. Chang. 21, 289–302 (1992).ADS
Article
Google Scholar
63.Germain, S. J. & Lutz, J. A. Climate extremes may be more important than climate means when predicting species range shifts. Clim. Chang. 163, 579–598 (2020).ADS
Article
Google Scholar
64.Vendrov, S. L., Avakyan, A. B., Dyakonov, K. N. & Reteyum, A. Y. The Role of Reservoirs in Changing Natural Conditions (Znaniye, 1968) (in Russian).
Google Scholar
65.Stivari, S. M., De Oliveira, A. P. & Soares, J. On the climate impact of the local circulation in the Itaipu Lake area. Clim. Chang. 72, 103–121 (2005).ADS
Article
Google Scholar
66.Wilks, D. S. Statistical Methods in the Atmospheric Sciences 4th edn. (Elsevier, 2019).
Google Scholar
67.Arguez, A. & Vose, R. S. The definition of the standard WMO climate normal: The key to deriving alternative climate normals. Bull. Am. Meteorol. Soc. 92, 699–704 (2011).ADS
Article
Google Scholar
68.Rosgidromet. Guidelines for the Compilation of Agrometeorological Yearbook for the Agricultural Zone of the Russian Federation. Guiding Document 52.33.725–2010 (Russian Scientific Research Institute of Hydrometeorological Information, World Data Center, 2010) (in Russian).69.Chae, H. et al. Local variability in temperature, humidity and radiation in the Baekdu Daegan Mountain protected area of Korea. J. Mt. Sci. 9, 613–627 (2012).Article
Google Scholar
70.Wypych, A., Ustrnul, Z. & Schmatz, D. R. Long-term variability of air temperature and precipitation conditions in the Polish Carpathians. J. Mt. Sci. 15, 237–253 (2018).Article
Google Scholar
71.Selyaninov, G. T. About climate agricultural estimation. Proc. Agric. Meteorol. 20, 165–177 (1928) (in Russian).
Google Scholar
72.Babushkina, E. A., Belokopytova, L. V., Grachev, A. M., Meko, D. M. & Vaganov, E. A. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg. Environ. Change. 17, 1725–1737 (2017).Article
Google Scholar
73.Cook, E. R. & Kairiukstis, L. A. Methods of Dendrochronology. Application in Environmental Sciences (Kluwer Academic Publishers, 1990).Book
Google Scholar
74.Rinn, F. TSAP-Win: Time Series Analysis and Presentation for Dendrochronology and Related Applications: User Reference (RINNTECH, 2003).
Google Scholar
75.Holmes, R. L. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bull. 43, 69–78 (1983).
Google Scholar
76.Grissino-Mayer, H. D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Res. 57, 205–221 (2001).
Google Scholar
77.Cook, E. R, Krusic, P. J., Holmes, R. H. & Peters, K. Program ARSTAN Ver. ARS41d. https://www.ldeo.columbia.edu/tree-ring-laboratory/resources/software (2007).78.Strackee, J. & Jansma, E. The statistical properties of mean sensitivity—A reappraisal. Dendrochronologia 10, 121–135 (1992).
Google Scholar
79.Wigley, T. M. L., Briffa, K. R. & Jones, P. D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 23, 201–213 (1984).ADS
Article
Google Scholar
80.Yasmeen, S. et al. Contrasting climate-growth relationship between Larix gmelinii and Pinus sylvestris var. mongolica along a latitudinal gradient in Daxing’an Mountains, China. Dendrochronologia 58, 125645. https://doi.org/10.1016/j.dendro.2019.125645 (2019).Article
Google Scholar More