More stories

  • in

    Social familiarity improves fast-start escape performance in schooling fish

    1.Ward, A. J. W. & Hart, P. J. B. The effects of kin and familiarity on interactions between fish. Fish Fish 4, 348–358 (2003).Article 

    Google Scholar 
    2.Ward, A. & Webster, M. Sociality: The Behaviour of Group-Living Animals (Springer, 2016).3.Krause, J. & Ruxton, G. D. Living in Groups (Oxford University Press, 2002).4.Kohn, G. M. Friends give benefits: autumn social familiarity preferences predict reproductive output. Anim. Behav. 132, 201–208 (2017).Article 

    Google Scholar 
    5.Seppä, T., Laurila, A., Peuhkuri, N., Piironen, J. & Lower, N. Early familiarity has fitness consequences for Arctic char (Salvelinus alpinus) juveniles. Can. J. Fish. Aquat. Sci. 58, 1380–1385 (2001).Article 

    Google Scholar 
    6.Oesch, N. & Dunbar, R. I. M. Group size, communication, and familiarity effects in foraging human teams. Ethology 124, 483–495 (2018).Article 

    Google Scholar 
    7.Edenbrow, M. & Croft, D. P. Kin and familiarity influence association preferences and aggression in the mangrove killifish Kryptolebias marmoratus. J. Fish. Biol. 80, 503–518 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Kavaliers, M. & Choleris, E. Out-Group threat responses, in-group bias, and nonapeptide involvement are conserved across vertebrates: (A comment on Bruintjes et al., “out-group threat promotes within-group affiliation in a cooperative fish”). Am. Nat. 189, 453–458 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.McCarter, M. W. & Sheremeta, R. M. You can’t put old wine in new bottles: the effect of newcomers on coordination in groups. PLoS ONE 8, e55058 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Silk, J. B. in Sociality, Hierarchy, Health: Comparative Biodemography (eds Weinstein, M. & Lane, M. A.) 121–144 (National Academies Press, 2014).11.Thompson, A. B. & Hare, J. F. Neighbourhood watch: multiple alarm callers communicate directional predator movement in Richardson’s ground squirrels, Spermophilus richardsonii. Anim. Behav. 80, 269–275 (2010).Article 

    Google Scholar 
    12.Micheletta, J. et al. Social bonds affect anti-predator behaviour in a tolerant species of macaque, Macaca nigra. Proc. R. Soc. Lond. B Biol. Sci. 279, 4042–4050 (2012).
    Google Scholar 
    13.Strodl, M. & Schausberger, P. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation. PLoS ONE 7, e43590 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Versace, E., Damini, S., Caffini, M. & Stancher, G. Born to be asocial: Newly hatched tortoises avoid unfamiliar individuals. Anim. Behav. 138, 187–192 (2018).Article 

    Google Scholar 
    15.Strodl, M. A. & Schausberger, P. Social familiarity modulates group living and foraging behaviour of juvenile predatory mites. Die Naturwissenschaften 99, 303–311 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Gutmann, A. K., Špinka, M. & Winckler, C. Long-term familiarity creates preferred social partners in dairy cows. Appl. Anim. Behav. Sci. 169, 1–8 (2015).Article 

    Google Scholar 
    17.Engelmann, J. M. & Herrmann, E. Chimpanzees trust their friends. Curr. Biol. 26, 252–256 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Ward, A. J. W., Axford, S. & Krause, J. Mixed-species shoaling in fish: The sensory mechanisms and costs of shoal choice. Behav. Ecol. Sociobiol. 52, 182–187 (2002).Article 

    Google Scholar 
    19.Vickruck, J. L. & Richards, M. H. Nestmate discrimination based on familiarity but not relatedness in eastern carpenter bees. Behav. Proc. 145, 73–80 (2017).CAS 
    Article 

    Google Scholar 
    20.Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11–20 (2017).Article 

    Google Scholar 
    21.Domenici, P. & Blake, R. W. The kinematics and performance of fish fast-start swimming. J. Exp. Biol. 200, 1165–1178 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Eaton, R. C., Lavender, W. A. & Wieland, C. M. Identification of Mauthner-initiated response patterns in goldfish: Evidence from simultaneous cinematography and electrophysiology. J. Comp. Phys. A 144, 521–531 (1981).Article 

    Google Scholar 
    23.Gerlotto, F., Bertrand, S., Bez, N. & Gutierrez, M. Waves of agitation inside anchovy schools observed with multibeam sonar: a way to transmit information in response to predation. ICES J. Mar. Sci. 63, 1405–1417 (2006).Article 

    Google Scholar 
    24.Domenici, P. & Batty, R. S. Escape behaviour of solitary herring (Clupea harengus) and comparisons with schooling individuals. Mar. Biol. 128, 29–38 (1997).Article 

    Google Scholar 
    25.Rosenthal, S. B., Twomey, C. R., Hartnett, A. T., Wu, H. S. & Couzin, I. D. Revealing the hidden networks of interaction in mobile animal groups allows prediction of complex behavioral contagion. Proc. Natl Acad. Sci. USA 112, 4690–4695 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Korn, H. & Faber, D. S. The Mauthner cell half a century later: a neurobiological model for decision-making? Neuron 47, 13–28 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Domenici, P. & Hale, M. E. Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour. J. Exp. Biol. 222, jeb166009 (2019).PubMed 
    Article 

    Google Scholar 
    28.Kohashi, T. & Oda, Y. Initiation of Mauthner- or non-Mauthner-mediated fast escape evoked by different modes of sensory input. J. Neurosci. 28, 10641–10653 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Hecker, A., Schulze, W., Oster, J., Richter, D. O. & Schuster, S. Removing a single neuron in a vertebrate brain forever abolishes an essential behavior. Proc. Natl Acad. Sci. USA 117, 3254–3260 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Walker, J. A., Ghalambor, C. K., Griset, O. L., McKenney, D. & Reznick, D. N. Do faster starts increase the probability of evading predators? Funct. Ecol. 19, 808–815 (2005).Article 

    Google Scholar 
    31.McCormick, M. I., Fakan, E. & Allan, B. J. M. Behavioural measures determine survivorship within the hierarchy of whole-organism phenotypic traits. Funct. Ecol. 32, 958–969 (2018).Article 

    Google Scholar 
    32.Chivers, D. P., Brown, G. E. & Smith, J. F. R. Familiarity and shoal cohesion in fathead minnows (Pimephales promelas): Implications for antipredator behavior. Can. J. Zool. 73, 955–960 (1995).Article 

    Google Scholar 
    33.Griffiths, S. W., Brockmark, S., Hojesjo, J. & Johnsson, J. I. Coping with divided attention: the advantage of familiarity. Proc. R. Soc. B Biol. Sci. 271, 695–699 (2004).CAS 
    Article 

    Google Scholar 
    34.Clément, R. J. G., Wolf, M., Snijders, L., Krause, J. & Kurvers, R. H. J. M. Information transmission via movement behaviour improves decision accuracy in human groups. Anim. Behav. 105, 85–93 (2015).Article 

    Google Scholar 
    35.Beauchamp, G. & Ruxton, G. D. False alarms and the evolution of antipredator vigilance. Anim. Behav. 74, 1199–1206 (2007).Article 

    Google Scholar 
    36.Kao, A. B. & Couzin, I. D. Modular structure within groups causes information loss but can improve decision accuracy. Philos. Trans. R. Soc. B. Biol. Sci. 374, 20180378 (2019).Article 

    Google Scholar 
    37.Sosna, M. M. G. et al. Individual and collective encoding of risk in animal groups. Proc. Natl Acad. Sci. USA 116, 20556–20561 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bohorquez-Herrera, J., Kawano, S. M. & Domenici, P. Foraging behavior delays mechanically-stimulated escape responses in fish. Integr. Comp. Biol. 53, 780–786 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Furtbauer, I. & Heistermann, M. Cortisol coregulation in fish. Sci. Rep. 6, 30334 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.DeVries, A. C., Glasper, E. R. & Detillion, C. E. Social modulation of stress responses. Phys. Behav. 79, 399–407 (2003).CAS 
    Article 

    Google Scholar 
    41.McEwen, B. S. Brain on stress: How the social environment gets under the skin. Proc. Natl Acad. Sci. USA 109, 17180–17185 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Furukawa, T. & Furshpan, E. J. Two inhibitory mechanisms in the Mauthner neurons of goldfish. J. Neurophys. 26, 140–176 (1963).CAS 
    Article 

    Google Scholar 
    43.Pratchett, M. S., Coker, D. J., Jones, G. P. & Munday, P. L. Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol. Evol. 2, 2168–2180 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Nadler, L. E., McNeill, D. C., Alwany, M. A. & Bailey, D. M. Effect of habitat characteristics on the distribution and abundance of damselfish within a Red Sea reef. Environ. Biol. Fishes 97, 1265–1277 (2014).Article 

    Google Scholar 
    45.Ohman, M. C., Munday, P. L., Jones, G. P. & Caley, M. J. Settlement strategies and distribution patterns of coral-reef fishes. J. Exp. Mar. Biol. Ecol. 225, 219–238 (1998).Article 

    Google Scholar 
    46.Killen, S. S., Marras, S., Nadler, L. & Domenici, P. The role of physiological traits in assortment among and within fish shoals. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160233 (2017).47.Lassig, B. R. The effects of a cyclonic storm on coral reef fish assemblages. Environ. Biol. Fishes 9, 55–63 (1983).Article 

    Google Scholar 
    48.Yoon, J.-D., Jang, M.-H. & Joo, G.-J. Effect of flooding on fish assemblages in small streams in South Korea. Limnol 12, 197–203 (2011).Article 

    Google Scholar 
    49.Taborsky, M., Frommen, J. G. & Riehl, C. Correlated pay-offs are key to cooperation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371, 20150084 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Johansen, J. L. Quantifying water flow within aquatic ecosystems using load cell sensors: a profile of currents experienced by coral reef organisms around Lizard Island, Great Barrier Reef, Australia. PLoS ONE 9, e83240 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Griffiths, S. W. & Magurran, A. E. Familiarity in schooling fish: how long does it take to acquire? Anim. Behav. 53, 945–949 (1997).Article 

    Google Scholar 
    52.Eaton, R. & Emberley, D. How stimulus direction determines the trajectory of the mauthner-initiated escape response in a teleost fish. J. Exp. Biol. 161, 469–487 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Domenici, P. et al. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale. Biol. Open 4, 79–85 (2015).Article 

    Google Scholar 
    54.Nadler, L. E., Killen, S. S., Domenici, P. & McCormick, M. I. Role of water flow regime in the swimming behaviour and escape performance of a schooling fish. Biol. Open 7, bio031997 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Nissanov, J. & Eaton, R. C. Reticulospinal control of rapid escape turning maneuvers in fishes. Am. Zool. 29, 103–121 (1989).Article 

    Google Scholar 
    56.Marras, S., Batty, R. S. & Domenici, P. Information transfer and antipredator maneuvers in schooling herring. Adap. Behav. 20, 44–56 (2012).Article 

    Google Scholar 
    57.Vila Pouca, C. & Brown, C. Contemporary topics in fish cognition and behaviour. Curr. Opin. Behav. Sci. 16, 46–52 (2017).Article 

    Google Scholar 
    58.Eaton, R., Lee, R. & Foreman, M. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Prog. Neurobiol. 63, 467–485 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Nakayama, H. & Oda, Y. Common sensory inputs and differential excitability of segmentally homologous reticulospinal neurons in the hindbrain. J. Neurosci. 24, 3199–3209 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.DiDomenico, R., Nissanov, J. & Eaton, R. C. Lateralization and adaptation of a continuously variable behavior following lesions of a reticulospinal command neuron. Brain Res. 473, 15–28 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Medan, V. & Preuss, T. The Mauthner-cell circuit of fish as a model system for startle plasticity. J. Physiol. Paris 108, 129–140 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dukas, R. Behavioural and ecological consequences of limited attention. Philos. Trans. R. Soc. B. Biol. Sci. 357, 1539–1547 (2002).Article 

    Google Scholar 
    63.Yue, S., Duncan, I. J. H. & Moccia, R. D. Do differences in conspecific body size induce social stress in domestic rainbow trout? Environ. Biol. Fishes 76, 425–431 (2006).Article 

    Google Scholar 
    64.Korn, H., Triller, A. & Faber, D. S. Structural correlates of recurrent collateral interneurons producing both electrical and chemical inhibitions of the Mauthner cell. Proc. R. Soc. B Biol. Sci. 202, 533–538 (1978).CAS 

    Google Scholar 
    65.Whitaker, K. W. et al. Serotonergic modulation of startle-escape plasticity in an African cichlid fish: a single-cell molecular and physiological analysis of a vital neural circuit. J. Neurophys. 106, 127–137 (2011).CAS 
    Article 

    Google Scholar 
    66.Ward, A. J. W., Herbert-Read, J. E., Sumpter, D. J. T. & Krause, J. Fast and accurate decisions through collective vigilance in fish shoals. Proc. Natl Acad. Sci. USA 108, 2312–2315 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Herbert-Read, J. E. et al. Inferring the rules of interaction of shoaling fish. Proc. Natl Acad. Sci. USA 108, 18726–18731 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Conradt, L. & Roper, T. J. Activity synchrony and social cohesion: a fission-fusion model. Proc. R. Soc. B, Biol. Sci. 267, 2213–2218 (2000).CAS 
    Article 

    Google Scholar 
    69.Sogard, S. M. & Olla, B. L. The influence of hunger and predation risk on group cohesion in a pelagic fish, walleye pollock Theragra chalcogramma. Environ. Biol. Fishes 50, 405–413 (1997).Article 

    Google Scholar 
    70.Domenici, P. Spacing of wild schooling herring while encircled by killer whales. J. Fish. Biol. 57, 831–836 (2000).Article 

    Google Scholar 
    71.Miller, N., Garnier, S., Hartnett, A. T. & Couzin, I. D. Both information and social cohesion determine collective decisions in animal groups. Proc. Natl Acad. Sci. USA 110, 5263–5268 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Granroth-Wilding, H. M. & Magurran, A. E. Asymmetry in pay-off predicts how familiar individuals respond to one another. Biol. Lett. 9, 20130025 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Landeau, L. & Terborgh, J. Oddity and the ‘confusion effect’ in predation. Anim. Behav. 34, 1372–1380 (1986).Article 

    Google Scholar 
    74.Ruxton, G. D., Jackson, A. L. & Tosh, C. R. Confusion of predators does not rely on specialist coordinated behavior. Behav. Ecol. 18, 590–596 (2007).Article 

    Google Scholar 
    75.Wolcott, H. L., Ojanguren, A. F. & Barbosa, M. The effects of familiarity on escape responses in the Trinidadian guppy (Poecilia reticulata). PeerJ 5, e3899 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Guayasamin, O. L., Couzin, I. D. & Miller, N. Y. Behavioural plasticity across social contexts is regulated by the directionality of inter-individual differences. Behav. Proc. 141, 196–204 (2016).Article 

    Google Scholar 
    77.Jacoby, D. M. P., Sims, D. W. & Croft, D. P. The effect of familiarity on aggregation and social behaviour in juvenile small spotted catsharks Scyliorhinus canicula. J. Fish. Biol. 81, 1596–1610 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Laskowski, K. L. & Bell, A. M. Competition avoidance drives individual differences in response to a changing food resource in sticklebacks. Ecol. Lett. 16, 746–753 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Herbert-Read, J. E. et al. How predation shapes the social interaction rules of shoaling fish. Proc. R. Soc. B. Biol. Sci. 284, 20171126 (2017).Article 

    Google Scholar 
    80.Romenskyy, M. et al. Quantifying the structure and dynamics of fish shoals under predation threat in three dimensions. Behav. Ecol. 31, 311–321 (2020).Article 

    Google Scholar 
    81.Couzin, I. D. Collective cognition in animal groups. Trends Cog. Sci. 13, 36–43 (2009).Article 

    Google Scholar 
    82.Bshary, R., Gingins, S. & Vail, A. L. Social cognition in fishes. Trends Cogn. Sci. 18, 465–471 (2014).PubMed 
    Article 

    Google Scholar 
    83.Gil, M. A., Emberts, Z., Jones, H. & St Mary, C. M. Social Information on fear and food drives animal grouping and fitness. Am. Nat. 189, 227–241 (2017).PubMed 
    Article 

    Google Scholar 
    84.May, R. M. The evolution of cooperation. Nature 292, 291–292 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Munday, P. L. & Wilson, S. K. Comparative efficacy of clove oil and other chemicals in anaesthetization of Pomacentrus amboinensis, a coral reef fish. J. Fish. Biol. 51, 931–938 (1997).CAS 

    Google Scholar 
    86.Domenici, P., Turesson, H., Brodersen, J. & Bronmark, C. Predator-induced morphology enhances escape locomotion in crucian carp. Proc. R. Soc. B. Biol. Sci. 275, 195–201 (2008).Article 

    Google Scholar 
    87.Turesson, H. & Domenici, P. Escape latency is size independent in grey mullet. J. Fish. Biol. 71, 253–259 (2007).Article 

    Google Scholar 
    88.Webb, P. W. Fast-start performance and body form in seven species of teleost fish. J. Exp. Biol. 74, 211–226 (1978).Article 

    Google Scholar 
    89.Marras, S. & Domenici, P. Schooling fish under attack are not all equal: some lead, others follow. PLoS ONE 8, e65784 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Bachelet, E. Circular Statistics in Biology (Academic Press, 1981).91.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2016). More

  • in

    Microfluidic chips provide visual access to in situ soil ecology

    Chip designWe used our micro-engineered silicone chip termed the “Obstacle chip”26, representing a proxy of a soil pore space system containing different sets of microstructures. The chip consists of an artificial pore system open on one side for inoculum, and it is designed to investigate the growth and dispersal behaviour of soil microbes (Supplementary Fig. 1a, b). The chip’s pore-space dimensions are optimized to match the dimensions of fungal hyphae, with structure widths ranging between 4 and 100 µm, and a uniform height of ~7 µm to aid microscopy, since cells are located in the same focal plane and rarely overlay. It contains five different geometric sections accessible by soil microbes via a common entry area (Supplementary Fig. 1a). The entry area consists of an open area with round pillars of 100 µm diameter at a separation of 100 µm, holding up the chip’s ceiling. It was cut open longitudinally with a scalpel prior to bonding (see below, section ‘Chip fabrication’), ensuring direct contact of the soil with the chip’s interior. The inner section comprises a combination of differently shaped channels and obstacles constituting five experimental sections, of which two were systematically examined in this study: (1) Section C: A set of channels with sharp corners of three different types (n = 12, randomly distributed): zigzag channels (90° turns with all channel sections at ±45° angle from the main growth direction), meandering square channels (90° turns with each section oriented in either the main growth direction or perpendicular to it), ‘z’-shaped channels (sharp corners diverting 135° from the previous growth direction, with channel sections in the main growth direction and at angles of 45° and 135° from it); (2) Section D: So-called ‘diamond channels,’ with a repeated combination of 10 µm wide and 400 µm long straight channels alternating with 140 µm wide diamond-shaped widenings. This channel type is replicated in 36 channels, each containing 33 diamond widenings. The widenings were used as quantification units to count bacteria and protist cell numbers, and for determination of liquid ingression, for the experiments on dispersal via fungal hyphae. Section A of the chip contains systems of hexagonal pillars of different diameters, Section B consists of straight channels with different widths, and Section E contains two types of obstacle courses comprised of complex structures. Those and the entrance system provided space for general observations. The design was constructed in AutoCad 2015 (Autodesk), in which patterns within experimental Sections A and C were randomized using a custom script from UrbanLISP (http://www.urbanlisp.com).Chip fabricationThe microfluidic chips were moulded in PDMS on a photoresist master defined by UV lithography and bonded to glass slides, according to Aleklett et al.26. The master was made by spin coating a thick negative photoresist (SU-8 5, MicroChem Corp, USA) on a glass plate for 60 s at 1250 rpm. This generated a photoresist layer of ~7 µm. The photoresist was soft baked for 5 min at 90 °C on a hot plate, patterned by UV exposure (Karl-Suss MA4 mask aligner) and post-exposure baked. It was then developed for 3 min in mr-Dev 600 (MicroChem) and finally rinsed with isopropanol (VWR International). The PDMS slabs were produced by thoroughly mixing a PDMS base and a curing agent (both Sylgard 184, Dow Corning, USA) in a 10:1 ratio, followed by pouring the mix onto the master in a 4-mm-thick layer, and degassing it in a vacuum chamber at −25 kPa for 45 min. Then the PDMS was cured in an oven for 2.5 h at 60 °C. Once cooled, the PDMS was cut slightly larger than the designed pattern, covering an area of about 40 × 65 mm, and cut though the entry system, creating a lateral opening to the chip along the pillar system.The PDMS slabs were bonded to glass slides. Glass slides, 55 × 75 mm and 1 mm thick (Thermo Scientific), were first cleaned with acetone, 75% ethanol and deionized water, and then dried under an air-blower. The pieces of PDMS and the glass slides were treated separately in an oxygen plasma chamber (Diener Electronic Zepto). For each chip, a glass slide was exposed to oxygen plasma under UV light for 1 min, followed by exposure of the PDMS piece for 10 s. Once both samples were plasma-treated, they were immediately brought in contact with their activated surfaces facing each other, and gently pressed to each other in the centre parts of the chip. To avoid collapse of the ceiling of the entrance, none of the chip edges were pressed. The chips were heated on a heating plate for ~15 s at 100 °C to ensure a proper bonding. After another 15 s, the chips with liquid treatments were filled with the different media using a micropipette, taking advantage of the PDMS’s temporary hydrophilia following plasma treatment so that liquids were readily drawn into its structures. The chips were filled with one of the following three treatments: (1) deionized water, (2) liquid malt medium, a complex medium to provide a nutrient-rich environment including reduced sugars such as disaccharide maltose and in lower proportion nitrogenous components such as peptides, amino acids purines and vitamins (malt extract for microbiology, Merck KGaA), or (3) chips were left empty, i.e., air-filled. The eight chips filled with liquid were then placed in a vacuum chamber for 30 min at −25 kPa to remove any bubbles. Finally, the chips were kept in sterile Petri dishes, sealed with Parafilm and stored overnight in a cold room before being dug down into or inoculated with soil.Expt. 1: in situ incubation of chipsTo evaluate the effect of different nutritional conditions on colonization of the soil chips by microbes, we evaluated three pore space filling treatments: (1) deionized water, (2) malt extract medium, or (3) air; n = 3 chips per treatment. The experimental site was a small grove of deciduous trees in the city of Lund, Sweden (55° 42′ 49.5′′ N, 13° 12′ 32.5′′ E; Supplementary Fig. 1c). The season chosen for burial of the chips was early autumn (October 2017) to guarantee a moist soil during the experiment. Groups of replicates of all three chip treatments were buried randomly within the inner parts of the grove (n = 3 chips per filling treatment). The litter layer was removed, and 20 × 20 cm holes were carefully dug into the ground with a spade. The chips were placed horizontally in the soil at a depth of 10 cm in which the PDMS chip was facing up and the glass slide down. Horizontal placement was chosen to probe a single stratum of the soil, serving as a comparable inoculum to the whole of the entry system, and to aid nondestructive recovery. The soil was carefully placed back in its original orientation, and the litter layer was placed back. A string attached to each chip was placed with its opposite end above the soil surface and attached to a pin, to guide future retrieval. There was a minimum distance of one meter between each chip replicate.Preliminary experiments had shown that a 2-month incubation period would grant the colonization of different types of soil microorganisms and minerals, and a stabilization of the inner environmental conditions between the soil chip and the surrounding soil. Thus, after 64 days (December 2017), the chips were collected by carefully removing soil around the string leading to each chip. We carefully kept the adjacent soil atop the glass slide along the opening of the chip, to keep our artificial pore system connected to the real soil pore system, and to avoid such disturbances as hyphal tearing or evaporation of the liquid inside the chips (Supplementary Fig. 1d). We cleaned the chip windows by softly wiping them with a clean wipe and deionized water. Samples were carefully transported to the microscopy facilities, located adjacent to the burial site. The chips were harvested one at a time and analysed under the microscope immediately after collection and cleaning.We recorded the presence or absence of the main soil microbial groups in the entry systems and in the different channels, including their furthest extent into the chips, with help of the internal rulers.To analyse the effect of fungal hyphae on bacterial abundance, we recorded real-time videos slowly scanning along the whole length of the diamond-shaped opening channels (each 33 diamonds, Section D in Supplementary Fig. 1a; Fig. 3). The rather sparse hyphal colonization allowed us to select pairs of channels where in the first channel a hypha had proliferated far into the channel, combined with a directly adjacent channel without hyphae, n = 4. In each diamond-shaped widening we counted the number of bacterial cells, the presence or absence of fungal hyphae, and the presence or absence of liquid. After completion of all measurements, the chips were left uncovered at room temperature for 60 min to initiate air drying in the adjacent soil, in order to observe the real-time effects of drying on organisms and particles in the pore space system of the chips. The adjacent soil was re-wetted by adding 400 µl of water. The water inside the chips corresponded to the adjacent soil pore water, regressed upon evaporation, and refilled the chip structures upon rewetting of the adjacent soil.Expt. 2–3: laboratory incubation of soil on chipsIn a complementary approach, we collected soil from a lawn in Lund, Sweden, at 10 cm depth, and placed 5 g of this soil in front of the entry system of the chip. Chips received the three nutrient condition treatments as described above, air, water or malt medium (n = 2, Expt. 2). An additional set of air-filled chips was studied to quantify fungal highways (n = 3, Expt. 3). Chips were monitored under the microscope after inoculation, observation was documented with images and videos. Chips were kept in sealed Petri dishes with wet cotton cloths to maintain high humidity and were taken out for analysis only. The soil inoculum on the chips and the interior of the chips were kept moist with 500 µl of water added to the soil once a week. The artificial waterlogging event in the chips of Expt. 3 (‘fungal highways’) was achieved by adding a total of 2 ml of water to the inoculum soil over the course of a week, and the drying event was achieved by discontinuing the watering.During Expt. 2, we recorded the abundance and the furthest extent of bacteria, protists (including the morpho-groups ciliates, flagellated, and amoeboids), and the extent of hyphal colonization into the diamond section over time. After 2 months of incubation, we measured the furthest extent of colonization into the angled channels for the organism groups bacteria, fungi, and protists. During Expt. 3, we recorded the presence and the furthest extent of hyphae, liquid, bacteria, and protists in the diamond channels over time. We also recorded the number of protists, bacteria (in categories 0, More

  • in

    Vulnerable nations lead by example on Sustainable Development Goals research

    EDITORIAL
    20 July 2021

    Vulnerable nations lead by example on Sustainable Development Goals research

    A United Nations study of world science is a wake-up call that richer countries must also shift science towards the SDGs.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Iraq’s wetlands are threatened by climate change; the country is pivoting its research towards the SDGs.Credit: Murtadha Al-Sudani/Anadolu Agency/Getty

    With the United Nations Sustainable Development Goals, world leaders pledged to end poverty and hunger, protect biodiversity and the climate, and get all children into schools by 2030. How have researchers and funders responded? Has there been a shift in research priorities?The UN’s Paris-based science and education agency has answers to these and other questions in the latest UNESCO Science Report, published last month (see go.nature.com/3zlojva). UNESCO says the 700-page report is a first attempt at understanding the impact of the Sustainable Development Goals (SDGs) on research priorities. The findings are a mixed picture.Using the Scopus database, UNESCO mapped publications from almost 200 countries between 2011 and 2019 on 56 research topics relevant to the SDGs. For the most part, the high-income countries that account for 64% of the world’s research spending — including Japan, South Korea, the United States and many European countries — showed relatively little change in the number of publications produced concerning the SDGs, and a declining share of global research.
    How science can put the Sustainable Development Goals back on track
    But it’s a different story for low- and middle-income countries, which have begun to shift their research priorities towards the goals.For example, the share of publications on photovoltaics — which could address the SDG on boosting renewable energy — from low-income and lower-middle-income countries more than trebled, going from 6.2% to 22% of the world total in the study period. The share of papers on biofuels and biomass nearly trebled, from 8.5% to 23%.Low-income countries more than doubled their share of research publications on crops that are more resilient to climate change, from 5% of the total to 11%. And researchers from sub-Saharan Africa contributed 361 out of 885 publications on smallholder farming in 2019 — more than the European Union’s 294. Ecuador, Ethiopia, Indonesia, Iraq, Russia and Vietnam all increased their output on most topics, albeit from low starting points in some cases.Much of the growth is powered by China. According to UNESCO, China’s researchers now publish around half of the world’s output on battery efficiency, 43% on hydrogen energy and 41% on carbon pricing. Their research on carbon capture and storage increased from 1,300 publications between 2012 and 2015 to 2,049 in 2016–19. By contrast, high-income nations — including France, Germany and the United States — showed declining shares during the same period, and some showed declining numbers. One exception is research into floating marine plastics. The field, which barely existed a decade ago, recorded 853 publications in 2019, mostly from high-income nations. But, overall, wealthier nations reported falls in their share of publishing across 54 out of the 56 fields assessed.
    Does the fight against hunger need its own IPCC?
    It’s disappointing to see so little progress from the richer countries. But it is something of a pattern. UNESCO’s researchers calculated that, between 2000 and 2013, wealthy nations spent less than US$25 billion on international development assistance in environmental areas such as climate change and biodiversity — about one-fifth of the $130 billion given for assistance in industry and innovation.At the same time, it’s heartening to see scientific output being slowly revived in many low-income countries — some of which were engines of scholarship in times past. But UNESCO also finds that funding trends in these countries have become harder to track. Some 98 countries reported funding data in 2015, but this fell to 68 in 2018. Some 28% of high-income and 78% of low- and middle-income countries are not reporting their science-funding data — and that is both problematic and troubling. The ability to correlate funding data with publishing information would provide a richer picture of the gains, and identify areas that would benefit from more resources. Countries need to comply with UNESCO’s requests for information, partly because they are obliged to track these data for the SDGs.Even before the pandemic, the world was not on track to reach most of the Sustainable Development Goals. With less than a decade to go before the 2030 deadline to end poverty and protect the environment, the UNESCO report aptly says that the world is “running out of time”. The report needs to be read closely in every world capital. It’s still not too late for everyone to pivot science to sustainability.

    Nature 595, 472 (2021)
    doi: https://doi.org/10.1038/d41586-021-01992-y

    Related Articles

    Does the fight against hunger need its own IPCC?

    How science can put the Sustainable Development Goals back on track

    The UN Environment Programme needs new powers

    Reset Sustainable Development Goals for a pandemic world

    Subjects

    Developing world

    Sustainability

    Biodiversity

    Government

    Climate change

    Latest on:

    Developing world

    Africa: renewables infrastructure avoids stranded assets
    Correspondence 13 JUL 21

    Cameroon: doubt could mean vaccine doses expire
    Correspondence 29 JUN 21

    Meaningful collaborations can end ‘helicopter research’
    Career Column 29 JUN 21

    Sustainability

    Andes foothills protected by carbon-offset fund
    Correspondence 20 JUL 21

    China wastes almost 30% of its food
    Research Highlight 15 JUL 21

    Italy: Forest harvesting is the opposite of green growth
    Correspondence 13 JUL 21

    Biodiversity

    UK biodiversity: close gap between reality and rhetoric
    Correspondence 06 JUL 21

    Indigenous lands: make Brazil stop mining to secure US deal
    Correspondence 08 JUN 21

    French vote for river barriers defies biodiversity strategy
    Correspondence 01 JUN 21

    Jobs

    Postdoctoral Research Fellow (Columbia University Irving Medical Center, NY)

    Columbia University Medical Center (CUMC), CU
    New York, NY, United States

    Professorships (W2) in Molecular Plant Sciences

    Philipps-Universität Marburg
    Marburg, Germany

    Assistant Editor – Food Science and Nutrition

    John Wiley & Sons, Inc.
    Multiple locations

    Early Detection Research Programme Manager

    Cancer Research UK (CRUK)
    London, United Kingdom

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions

    Archaeoglobales as systematic (electro)lithoautotrophs of the communityWe have evidenced the development of microbial electrotrophic communities and metabolic activity supported by current consumption (Fig. 1), product production (Fig. 2), and qPCRs (Fig. 3). These data suggest that growth did occur from energy supplied by the cathode. Our study is the first to show the possibility of growth of biofilm from environments harboring natural electric current in the total absence of soluble electron donors. To further discuss the putative mechanism, it is necessary to have a look at our conditions unfavorable for water electrolysis (see Supplementary Fig. S2). The equilibrium potential for water reduction into hydrogen at 80 °C, pH 7, and 1 atm was calculated at − 0.490 V vs SHE in pure water. The operational reduction potential is expected to be lower than the theoretical value due to internal resistances (from electrical connections, electrolytes, ionic membranes, etc.)16 and overpotentials (electrode material). This was confirmed with the on-set potential of H2 evolution measured at − 0.830 mV vs SHE in both experimental condition and abiotic control, indicating the absence of catalytic effect of putative hydrogenases secreted by the biofilm or metals from inoculum. Also, during preliminar potentials screening, the increase in current consumption and H2 production was observed only below − 0.7 V vs SHE (Supplementary Figs. S1 and S2). In addition, the presence of catalytic waves observed by CV with midpoint potentials between − 0.217 V to − 0.639 V indicate the implication of enzymes directly connected to the surface of the electrode (see Supplementary Fig. S2). Finally, the fixation of 267–1596 Coulombs day−1 into organics (Fig. 1) exceeds the maximum theoretical abiotic generation of hydrogen from abiotic current (~ 3 C day−1) 90- to 530-fold17.Therefore, under our experimental conditions, the biofilm growth should be largely ensured by a significant part of a direct transfer of electrons from the cathode, thereby demonstrating the presence of electrolithoautotroph microorganisms. This is supported by obtaining a similar biodiversity on sulfate with the cathode poised at − 300 mV [compared to − 590 mV vs SHE (Fig. 3)], whose potential is 190 mV more positive than the Equilibrium potential of H2 evolution (− 490 mV vs SHE), with then no electrochemical possibility of H2 production, even at molecular level.Taxonomic analysis of the enriched microbial communities at the end of the experiments showed the systematic presence of Archaeoglobales on cathodes. Moreover, the qPCR and MiSeq data (Fig. 3) highlighted a strong correlation between current consumption and density of Archaeoglobales in the biofilm (Supplementary Fig. S4, R2 = 0.945).The OTUs were related to some Archaeoglobales strains with 95–98% identities. Thus, we assume that under our experimental conditions new specific electrotrophic metabolisms or new electrolithoautotrophic Archaeoglobaceae species were enriched on the cathode. They were retrieved in all conditions and belonged to the only order in our communities exhibiting autotrophic metabolism. Autotrophic growth in the Archaeoglobales order is ensured mainly through using H2 as energy source and requires both branches of the reductive acetyl-CoA/Wood-Ljungdahl pathway for CO2 fixation18. Terminal electron acceptors used by this order include sulfate, nitrate, poorly crystalline Fe (III) oxide, and sulfur oxyanions19. Moreover, Archaeoglobus fulgidus has been recently shown to grow on iron by directly snatching electrons under carbon starvation during the corrosion process20. Furthermore, Ferroglobus and Geoglobus species were shown to be exoelectrogens in pure culture in a microbial electrosynthesis cell12 and have been enriched within a microbial electrolysis cell11,13. Given these elements, the identified Archaeoglobales species could be, under our electrolithoautotrophic conditions, the first colonizers of the electrode during the first days of growth. This hypothesis was confirmed into a more detailed study focusing on the enrichment on nitrate21.The growth of Archaeoglobales species in presence of oxygen is a surprising finding. Archaeoglobales have a strictly anaerobic metabolism, and the reductive acetyl-CoA pathway is very sensitive to the presence of oxygen22. This can be firstly explained by the low solubility of oxygen at 80 °C. Secondly, carbon cloth mesh reduces oxygen in the environment, allowing for anaerobic development of microorganisms into a protective biofilm23. This observation was supported by the near absence of Archaeoglobales in the liquid medium (Fig. 3). One of the hypotheses concerns direct interspecies electron transfer (DIET)24,25, with Archaeoglobales transferring electrons to another microorganism as an electron acceptor. Research into DIET is in its early stages, and further investigations are required to better understand the diversity of microorganisms and the mechanism of carbon and electron flows in anaerobic environments25 such as hydrothermal ecosystems.Electrosynthesis of organic compoundsAccumulation of pyruvate, glycerol and acetate was measured, while another set of compounds that appeared transiently were essentially detectable in the first few days of biofilm growth (Supplementary Table S1). They included amino acids (threonine, alanine) and volatile fatty acids (formate, succinate, lactate, acetoacetate, 3-hydroxyisovalerate) whose concentrations did not exceed 0.1 mM. Despite their thermostability, this transient production suggests they were used by microbial communities developing on the electrode in interaction with the primary producers during enrichment.On the other hand, in presence of nitrate, sulfate and oxygen as electron acceptors, the liquid media accumulated mainly acetate, glycerol, and pyruvate (Fig. 1). Coulombic efficiency calculations (Fig. 2) showed that electron content of the carbon products represented 60–90% of electrons consumed, the rest being potentially used directly for biomass or transferred to an electron acceptor. This concurs with the energy yield from the Wood-Ljungdahl pathway of Archaeoglobales, with only 5% of carbon flux directed to the production of biomass and the other 95% diverted to the production of small organic end-products excreted from the cell26.Pyruvate is a central intermediate of CO2 uptake by the reducing pathway of the acetyl-CoA/WL pathway27. It can be used to drive the anabolic reactions needed for biosynthesis of cellular constituents. Theoretically, the only explanation for improved production and accumulation of pyruvate (up to 5 mM in the liquid media of sulfate experiment) would be that pyruvate-consuming enzymes were inhibited or that pyruvate influx exceeded its conversion rate. Here we could suggest that in-cell electron over-feeding at the cathode leads to significant production of pyruvate when the electron acceptor runs out.In an ecophysiological context, similar pyruvate and glycerol production could occur on hydrothermal chimney walls into which electric current propagates28. The electrotroph biofilms would continually receive electrons, leading to an excess of intracellular reducing power which would be counterbalanced by overproduction of glycerol and pyruvate29,30. Furthermore, these products can serve as carbon and energy sources for heterotrophic microorganisms or for fermentation. In our experiments, pyruvate and glycerol concentrations varied over time, suggesting they were being consumed by heterotrophic microorganisms. Acetate production would thus result from the fermentation of pyruvate or other compounds produced by electrotrophic Archaeoglobales.Enrichment of rich heterotrophic biodiversity from electrotrophic Archaeoglobales communityDuring our enrichment experiments, the development of effective and specific biodiversity was dependent on the electron acceptors used (Fig. 3). Heatmap analyses (Supplementary Fig. S3) showed four distinct communities for the three electron acceptors and the initial inoculum. Thus, at the lower taxonomic level of the biodiversity analysis, most OTUs are not common to multiple enrichments, except for one OTU of Thermococcales that was found in both the nitrate and sulfate experiments. This suggests a real specificity of the communities and a specific evolution or adaptation of the members of the shared phyla to the different electron acceptors available in the environment. However, the various enrichments also showed the presence of Thermococcales regardless of the electron acceptors used, thus demonstrating a strong interaction between Thermococcales, assumed to be heterotrophs, and Archaeoglobales, the only demonstrated autotrophs. Moreover, members of these two groups have frequently been found together in various hydrothermal sites4,5,31,32, where they are considered potential primary colonizers33,34,35,36,37. After Thermococcales, the rest of the heterotrophic biodiversity was specific to each electron acceptor.On nitrate, two additional phylogenetic groups were retrieved: Desulfurococcales and Thermales. OTUs of Desulfurococcales are mainly affiliated to Thermodiscus or Aeropyrum species, which are hyperthermophilic and heterotrophic Crenarchaeota growing by fermentation of complex organic compounds or sulfur/oxygen reduction (Huber and Stetter, 2015). Concerning Thermales, a new taxon was enriched on cathode and only affiliated to Vulcanithermus mediatlanticus with similarity of 90%. This new taxon of Thermales (OTU 15, Supplementary Fig. S3) was also enriched up to 2% on the cathode of sulfate enrichment. Thermales are thermophilic (30–80 °C) and heterotrophic bacteria whose only four genera (Marinithermus, Oceanithermus, Rhabdothermus, and Vulcanithermus) are all retrieved in marine hydrothermal systems. They can grow under aerobic, microaerophilic and some anaerobic conditions with several inorganic electron acceptors such as nitrate, nitrite, Fe (III) and elemental sulfur38. All of the Thermales species can utilize the pyruvate as carbon and energy source with the sulfate or nitrate as electron acceptors.Pseudomonadales and Bacillales were found in the oxygen experiment. Most Pseudomonas are known to be aerobic and mesophilic bacteria, with a few thermophilic species (up to 65 °C)39,40. There have already been some reports of mesophilic Pseudomonas species growing in thermophilic conditions in composting environments41. Moreover, some Pseudomonas sp. are known to be electroactive in microbial fuel cells through long-distance extracellular electron transport42,43,44, and were dominant on the cathodes of a benthic microbial fuel cell on a deep-ocean cold seep45. In Bacillales, the Geobacillus spp. and some Bacillus sp. are known to be mainly (hyper)thermophilic aerobic and heterotrophic Firmicutes46.Hydrothermal electric current: a new energy source for the development of primary producersThe presence of so many heterotrophs in an initially autotrophic condition points to the hypothesis of a trophic relationship inside the electrotrophic community (Fig. 5). This suggests that the only autotrophs retrieved in all communities, the Archaeoglobales, might be the first colonizer of the electrode, using CO2 as carbon source and the cathode as energy source. Models using the REACT module of the Geochemist’s Workbench (GWB) and based on electron donor acceptor availability predicted low abundances of Archaeoglobales ( More

  • in

    Appropriate sampling methods and statistics can tell apart fraud from pesticide drift in organic farming

    Pesticide residues in organic productsNon-use of synthetic pesticides is a major characteristic of organic farming, with the objectives of protecting (a) the environment, (b) consumer health, and (c) farm worker health. In consumer studies, “no chemical pesticides” is usually mentioned as one of the most important criteria for buying organic food1,2. These consumer expectations are mostly met in what is referred to in objective (b). Both European and U.S. sources consistently found the percentage of samples with residues of pesticides above the limit of quantification ( > LOQ) to be much lower in organic than in conventional food (Fig. 1a, see also Supplementary Fig. 1). This is especially true when it comes to fresh fruits and vegetables (Fig. 1c), which are known to be the most critical food groups in terms of pesticide residues3. It is elucidating, however, to not only look at the number of samples with an (unknown) level of residues  > LOQ, but to quantify the residues found per sample. In many cases, more than one substance is found in a sample, therefore one meaningful indicator is the mean cumulative pesticide load per sample (MCPL, see Supplementary Table 1). This is represented in Fig. 1b for three out of the four datasets. The food authority CVUA (Chemisches- und Veterinäruntersuchungsamt) in Baden-Württemberg, Germany, has been comparing pesticide residues between organic and conventional food since 2002. In 2019, on average the residues in organic produce were more than 150 times lower than in the corresponding conventional products4 (Ratio Org./Conv., bottom of Fig. 1d). The USDA (U.S. Department of Agriculture) numbers tend to be higher than the European ones, both in percentages (Fig. 1a,c) and in MCPL (Fig. 1b). One reason for this is probably USDA’s risk-oriented sampling approach, in which some highly contaminated commodities are over-represented, as compared to their importance in most people’s diet (Supplementary Table 2, column C). If we correct this possible bias by assuming that every commodity would have been sampled with the same frequency, the MCPL across all commodities is cut by 40% (Supplementary Table 2, last row). Different LOQs and numbers of analytes covered by USDA on one hand, and different European laboratories on the other hand, also make comparison difficult.Figure 1Pesticide residues in conventional and organic food in tests conducted by four organisations: EFSA (European Food Safety Authority) collects official data from all EU member states3, CVUA from one federal state in Germany4, USDA from government laboratories across the U.S.5, while Eurofins is a commercial laboratory in Germany. Figures in brackets represent the number of samples. The legend is valid for (a), (b) and (c). In order to increase the number of samples (represented in brackets) and thus their representativeness, figures from several years were grouped together, as available from each organisation. Black bars symbolise standard errors across years. (a) Shows the percentage of samples with residues above the limit of quantification (LOQ), for all types of food ( available from two organisations only). (b) Represents the mean cumulative pesticide load (MCPL) for fruits and vegetables (available from three organisations). (c) Similar to (a), but for fresh fruits and vegetables only (CVUA uses “above 0.01 mg/kg” instead of LOQ, but this is identical for most substances). The same datasets were used for (b) and (c). (d) Multi-layer sieving model for residue testing at different points of the organic supply chain. The data above the white arrows are from the commercial laboratory Eurofins, and mostly represent the situation before products are released to the market, while the figures below the white arrows are from CVUA, representing the situation on the market (both wholesale and retail). Ratios from “before market” to “on market” are shown in the white arrows. In this process, the MCPL remains in the same range for conventional products (blue rectangle to the right), while it is reduced massively for organic products (green trapezium in the centre). As a result of this sieving mechanism, residues in samples from the market are 150 and more times lower in organic than in conventional produce (trapezium at the bottom). This shows that the process represented by the blue arrows works fairly well—which is not always the case for the investigation of the origin of such residues, symbolised by the yellow arrows.Full size imageOrganic businesses’ testing strategiesUnfortunately, the generally good news for consumers with respect to objective (b) does not always mean that objectives (a) and (c) are also met. With the steady growth of the organic market and globalisation of supply chains, integrity of the system is often at stake. Organic products mostly fetch higher prices, and therefore also attract fraud6,7. Since pesticide residues are easily detectable parameters, often indicating non-compliance with organic production rules, many organic businesses test each batch for such residues, before placing it on the market. Positive results should then lead to an investigation of the origin of the found residues: Did an organic farmer spray? Do the residues come from drift, from ubiquitous contamination, or from (avoidable or unavoidable) contamination during processing, transport, storage? Were organic and conventional products mixed at some point of the supply chain—or is somebody simply labelling conventional products as “organic”? The idea behind this is depicted in Fig. 1d. The filter process as such, and the exclusion of contaminated batches from the organic market, as represented by the blue and red arrows, often work well. Thus, there are remarkably lower average amounts of residues after undergoing this filtering process. Residues in organic produce reported from the market were reduced by 22 and 89 times in fruits and vegetables, respectively, compared to the levels reported by the commercial laboratory, which represent mostly pre-market samples, while the values for conventional samples remained in the same range. This shows that market actors often remove problematic batches by declaring them conventional. In Supplementary Tables 3 and 4 we provide further explanations why the datasets “before release to the market” and “on the market” in Fig. 1d are comparable.We do not have test results from a commercial laboratory in the U.S. that could be compared to Eurofins data. But, as opposed to the other sources of information, the USDA database identifies the country of origin of each sample. Anybody working in international organic certification would expect residues in imported food to be higher than in domestic products, because fraud is more widespread when the distance is bigger between producers on the one hand, and consumers and the competent authorities on the other. The U.S. data, however, suggest the opposite trend: Not only at the aggregate level, but also for most individual commodities, the MCPL is lower in imported than in domestic products (Supplementary Table 2, columns J and K). The reason is probably that samples are tested before signing purchase contracts, and products rejected or bought as conventional, if they do not comply with the expectations.This is good quality control practice—the problem is that the information about the “downgrading” of organic products to conventional is not always reaching the certification bodies (CBs), thus impeding the investigation of the origin of residues and the exclusion of fraudulent actors from the market (yellow arrows in Fig. 1d). It is in the nature of things that these processes are not publicly known and therefore cannot be quantified, but in Supplementary Fig. 2 we present anecdotic evidence, which also suggests that for some market actors the definition of “organic” is limited to “free of pesticide residues”.Certifiers’ testing strategiesThe two most important markets for organic food are the EU, where the “organic” label is legally governed by an EU Regulation, and the USA, where the corresponding rule is the National Organic Program (NOP). Although they have different approaches on how to deal with spray-drift and with residues (Supplementary Table 5), both regulations require CBs to take samples from at least 5% of their clients every year. A large amount of data is being generated through this mechanism, but the sampling procedures and interpretation of results often do not allow deriving clear results. A recent unpublished BSc thesis at the University of Kassel revealed that 80% of the samples by CBs in ten EU member countries are taken of final products, but only 20% from the field or during the production process. This suggests that not only for market actors, but also for many CBs, the purpose of sampling and testing is limited to ensuring that food sold on the market with an organic claim, is free of pesticide residues, without digging deeper to find the origin of contamination.The differentiation between active use and non-intentional contamination is difficult, if only final products are tested. Plant (mainly leaf) samples from the field have several advantages in this regard: (a) Often, there is a long time span between pesticide application and harvest. Because of dissipation of the residues, nothing or only traces may be found in the final product (Supplementary Table 6). Field samples can be taken during or shortly after a suspected pesticide application, so that the dissipation effect is reduced and residues are found even for substances with a short half-life. (b) Leaves have a surface/weight ratio between 10 and 118 cm2/g8, whereas for fruits this ratio is between 0.6 and 2.29, and for seeds between 2 and 10 cm2/g only10,11,12. Residues in leaves are therefore normally higher than in seeds, fruits or roots, which makes interpretation of test results easier. (c) Field sampling allows taking separate samples from centre and margin of the field, as explained below in more detail.Unfortunately, if CBs take field samples at all, they often take them only from field margins13,14 (“let’s see if there is a drift problem”). Positive results are then attributed to spray-drift, and farmers are required to establish buffers—without even considering the possibility of residues originating from an application by the organic farmer. Such procedures open the door for fraudulent use of pesticides by organic farmers.Other CBs have established so-called “action levels”, below which they consider the presence of residues in organic products to be the result of ubiquitous environmental contamination, with no need to investigate their origin13. While such thresholds may be necessary for specific cases (see below concerning the banana industry), using this approach as a general procedure disregards not only the spatial distribution, but also temporal dynamics of pesticides in plant tissue. As opposed to soil, half-lives in plant tissue exposed to UV radiation and weather, are relatively short for most modern pesticides15. A residue level of 0.02 mg/kg, used by some CBs as “action level”, is typically reached one to two months after the application of a pesticide, in some cases even after only five days (Supplementary Table 6).The time that has elapsed since an application, however, is unknown in most cases. Spraying records kept by conventional neighbours are normally not part of the inspection. In case of suspicious test results in samples from the organic farm, such records may sometimes be accessed as part of a follow-up investigation, but at that point the organic farmer may have asked the neighbour to manipulate the records. And if the organic farmer has sprayed, he or she obviously tries to hide this fact. This situation makes interpretation of low levels of residues found in samples from organic fields even more challenging, and increases the importance of being able to differentiate application from drift through other methods.Two forms of spray-driftOver the past decades, a distinction has been made between short distance primary spray-drift during the application, and long distance secondary spray-drift occurring after the application16. The latter was attributed to evaporation and considered to play a role only for pesticides with high vapour pressure17. On the one hand, recent studies have shown that evaporation and long-distance transport can already play a role during, not only after application18. On the other hand, long-distance transport has been found to be linked not only to evaporation. Pesticides adherent to dust from wind erosion can contaminate large areas19. In the present context, we use the terms short-range and long-range drift, instead of primary and secondary drift (Fig. 2).Figure 2Simplified model of short-range vs. long-range drift originating from air-blast spraying in a fruit orchard. The specific values for pesticide concentrations (mg/kg) expected for different downwind distances from the orchard can vary by a factor 10 or more, depending on the applied substance, dose, weather conditions, vegetation, etc., but the graph provides an approximate estimate of the ratios that can be expected. In the case presented here, pesticide concentration in fruit leaves immediately after the application is 15 mg/kg. In the area of short-range direct drift, deposit decreases exponentially, so that at 100 m distance, we can expect to find only 0.01 mg/kg. At further distances, deposits are often below this level.Full size imageLong-range driftLong-range drift is so far poorly understood, can lead to (normally very low) residues at distances as far as thousands of km19, and happens in the form of vapour or molecules adhering to dust. The main factors influencing long-range drift are vapour pressure of the pesticide, capacity of adherence to dust, incidence of wind erosion, and temperature inversion in the atmosphere17. Long-range pesticide drift has recently received more attention21,22,23,24,25. Examples have been used in the context of organic certification for supporting the argument of ubiquity of pesticides, linked to the assumption that low- or even medium-level residues in organic products are often derived from their omnipresence in the environment26,27.Cases from Brazil (endosulfan in soybeans), Montana (USA) and Saskatchewan (Canada) (glyphosate in khorasan wheat) and Germany (pendimethalin and prosulfocarb in different crops) have been quoted to demonstrate the ubiquity of pesticides27. None of these case studies, however, provides solid evidence for the assumption that long-distance transport of pesticides leads to residues in organic food above the level of, say, 0.01 to 0.03 mg/kg. The problem of the herbicides pendimethalin and prosulfocarb being subject to long-distance drift because of their high vapour pressure, has been known for a long time28, but this phenomenon cannot be extrapolated to other substances. Even for these herbicides, there is no evidence that residues at larger distances could be above the indicated levels. Across 15 vegetation samples from nature reserves in Germany, on average, 0.009 mg/kg pendimethalin and 0.004 mg/kg prosulfocarb were found29. Exceptions may exist, e.g., when pesticide applications are followed by heavy wind erosion, as seems to be the case in some of the North American wheat growing areas, where glyphosate is used for cereal desiccation shortly before harvest.In a survey in Switzerland30, neonicotinoid residues were found in 93% of plant samples from organic farms (as compared to 100% of samples from conventional farms), thus supporting the ubiquity suspicion. But there were substantial quantitative differences between organic and conventional farms (Fig. 3). The average sum of neonicotinoid residues in plant and soil samples from organic farms was lower by a factor of 11 than that of plant samples from conventional farms. For soil samples, this factor was as high as 71. Even the highest value for one single substance (imidacloprid) found in organic plants (2.13 µg/kg = 0.00213 mg/kg) would be below the limit of quantification (LOQ) used for this substance in most screenings (0.01 mg/kg).Figure 3Maximum and average residues of neonicotinoid insecticides in soil and plant samples from organic farms, integrated crop production (“IP Suisse”: this program involves reduced pesticide application) and conventional farms in Switzerland. The figures represent the sums of acetamiprid, chlothianidin, imidacloprid, thiacloprid and thiamethoxan. Figures in brackets represent standard errors.(Data from Humann-Guilleminot et al.30).Full size imageIn a study in Germany29, the MCPL in natural vegetation in five reference areas (average distance from arable fields  >3 km) was 0.003 mg/kg, and in 15 nature conservation areas (average distance from arable fields 143 m) it was 0.006 mg/kg, but in three buffer zones (average distance 54 m) it was 5.4 mg/kg. To make figures comparable with other data in this article, we have subtracted the concentration of non-agricultural pesticides from the total amounts, and divided the numbers by a factor five, because the residues in this study refer to dry matter, while all the others use fresh matter. Although 5.4 mg/kg at 54 m distance is a disturbingly high value, the survey confirms that concentrations at larger distances do not exceed the “traces” level. The intention of this article is not to put in doubt the environmental damage caused by such traces. What we try to show is that the “ubiquity” argument may sometimes be hiding cases of fraudulent pesticide use by organic farmers.Short-range driftAs opposed to long-range drift, short-range drift is well understood, has its impact mainly in a range from 1 m up to a maximum of 1,000 m (for aerial spraying), happens in the form of droplets, and is not substance specific. The main factors influencing this form of drift are droplet size, windspeed, and height of the boom (nozzles) above soil17,19,31,32,33. The fact that long-range drift is poorly understood and leads to low concentrations of certain substances over wide areas, should not stop certification bodies (CBs) from using the available knowledge about short-range drift as a tool for assessing farmers’ compliance with organic production rules. The dynamics of short-range spray-drift have been widely studied in the context of preventing liability problems due to herbicide damage, contamination of water bodies and natural habitats, and direct risks for human settlements19,31,32,33,34,35,36. Pesticide deposit decreases exponentially with increasing distance from the field on which the substance is applied. With a tractor boom sprayer, deposit at 25 m distance is expected to be only 1% of that in the target field. While distances are greater for air-blast or aerial spraying, the basic principle of exponential decrease is the same (Fig. 2 and Supplementary Fig. 3).ObjectivesThe objectives of our study are: (I) to demonstrate that appropriate field sampling methods can differentiate the effects of fraudulent pesticide application by the organic farmer, from the results of both short-range and long-range spray-drift, and (II) for the specific case of aerial fungicide spraying in the banana industry, identify appropriate variables, which allow us to interpret the test results correctly for the purpose of this differentiation. More

  • in

    Healing the land and the academy

    Jennifer Grenz is currently a sessional lecturer at the University of British Columbia and owns a land healing company, Greener This Side. Her recently completed PhD dissertation explores the science of invasive species management and restoration through the lens of an ‘Indigenous ecology’, which she defines as “relationally guided healing of our lands, waters, and relations through intentional shaping of ecosystems by humans to bring a desired balance that meets the fluid needs of communities while respecting and honouring our mutual dependence through reciprocity.” Here we ask about her research and experiences as an Indigenous woman in ecology. More

  • in

    The rates of global bacterial and archaeal dispersal

    1.Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants. Annu Rev Ecol Syst. 1985;16:447–79.Article 

    Google Scholar 
    2.Ceballos G, Brown JH. Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol. 1995;9:559–68.Article 

    Google Scholar 
    3.Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, et al. Global diversity and distribution of macrofungi. Biodivers Conserv. 2007;16:37–48.Article 

    Google Scholar 
    4.Prideaux GJ, Warburton NM. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (macropodidae: Marsupialia). Zool J Linn Soc. 2010;159:954–87.Article 

    Google Scholar 
    5.Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.CAS 
    Article 

    Google Scholar 
    6.Whitaker RJ, Grogan DW, Taylor JW. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–978.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Whitfield J. Is everything everywhere? Science. 2005;310:960–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol. 2006;72:5159–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.DeWit R, Bouvier T. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol. 2006;8:755–8.Article 

    Google Scholar 
    10.van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Whittaker KA, Rynearson TA. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc Natl Acad Sci USA. 2017;114:2651–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Louca S, Shih PM, Pennell MW, Fischer WW, Parfrey LW, Doebeli M. Bacterial diversification through geological time. Nat Ecol Evol. 2018;2:1458–67.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci USA. 2011;108:7850–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 2010;4:191–202.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA. 2013;110:4651–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc Lond B Biol Sci. 2014;281:20141988.18.Gonnella G, Böhnke S, Indenbirken D, Garbe-Schönberg D, Seifert R, Mertens C, et al. Endemic hydrothermal vent species identified in the open ocean seed bank. Nat Microbiol. 2016;1:16086 EP.Article 
    CAS 

    Google Scholar 
    19.Louca S, Mazel F, Doebeli M, Parfrey WL. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019;17:e3000106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ochman H, Wilson A. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Kuo CH, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35–35.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Roberts MS, Cohan FM. Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution. 1995;49:1081–94.PubMed 
    Article 

    Google Scholar 
    23.van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE. 2011;6:e19561.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Papke RT, Ramsing NB, Bateson MM, Ward DM. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003;5:650–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles. 2005;9:325–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol. 2007;73:4751–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Takacs-Vesbach C, Mitchell K, Jackson-Weaver O, Reysenbach AL. Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environ Microbiol. 2008;10:1681–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA. 2009;106:8605–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, et al. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun. 2011;2:163.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements. Genome Biol Evol. 2017;9:1699–710.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Front Microbiol. 2020;11:1625.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. Genbank. Nucleic Acids Res. 2015;44:D67–D72.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    Article 

    Google Scholar 
    35.Olm MR, Crits-Christoph A, Diamond S, Lavy A, Carnevali PBM, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e00731-19.36.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shapiro BJ. What microbial population genomics has taught us about speciation. In: Polz MF, Rajora OP, editors. Population Genomics: Microorganisms. Cham, Switzerland: Springer International Publishing; 2019. p. 31–47.38.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–27.CAS 

    Google Scholar 
    40.Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15.Article 

    Google Scholar 
    41.Louca S. Phylogeographic estimation and simulation of global diffusive dispersal. Syst Biol. 2021;70:340–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science. 2012;336:462–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bouckaert R, Cartwright R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ. 2016;4:e2406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Brillinger DR. A particle migrating randomly on a sphere. In: Selected Works of David Brillinger. Cham, Switzerland: Springer; 2012. p. 73–87.46.Ghosh A, Samuel J, Sinha SA. “Gaussian” for diffusion on the sphere. Europhys Lett. 2012;98:30003.Article 
    CAS 

    Google Scholar 
    47.Castenholz RW. The biogeography of hot spring algae through enrichment cultures. SIL Commun. 1978;21:296–315. 1953-1996
    Google Scholar 
    48.Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Micro. 2007;5:316–23.CAS 
    Article 

    Google Scholar 
    49.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, et al. Free tropospheric transport of microorganisms from Asia to North America. Micro Ecol. 2012;64:973–85.CAS 
    Article 

    Google Scholar 
    51.Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci. 1994;255:37–45.Article 

    Google Scholar 
    52.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Anderson D. The regulation of fishing and related activities in exclusive economic zones. In: Modern Law Sea, Publications on Ocean Development, vol. 59, chap. 11. Leiden, The Netherlands: Brill Nijhoff; 2008. p. 209–27.54.Bullock JM, Clarke RT. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia. 2000;124:506–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brynjarsdóttir J, O’Hagan A. Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 2014;30:114007.Article 

    Google Scholar 
    56.Bell T. Experimental tests of the bacterial distance-decay relationship. ISME J. 2010;4:1357–65.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    58.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014;25:1043–55.Article 
    CAS 

    Google Scholar 
    59.Chambat F, Valette B. Mean radius, mass, and inertia for reference Earth models. Phys Earth Planet Inter. 2001;124:237–53.Article 

    Google Scholar 
    60.Data NS, (SEDAC) AC Gridded Population of the World, Version 4 (GPW v4): Population Density, Revision 11. Tech. rep., Palisades, NY: Center for International Earth Science Information Network – CIESIN – Columbia University. 2018. Accessed November 23, 2020.61.Price MN, Dehal PS, Arkin AP. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K. Estimating divergence times in large phylogenetic trees. Syst Biol. 2007;56:741–52.PubMed 
    Article 

    Google Scholar 
    63.Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nat Commun. 2019;10:5477.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Perrin F. Étude mathématique du movement brownien de rotation. In: Annales scientifiques del’École Normale Supérieure, vol. 45. Paris, France: Elsevier; with 1928. p. 1–51.65.Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Bloomquist EW, Lemey P, Suchard MA. Three roads diverged? routes to phylogeographic inference. Trends Ecol Evol. 2010;25:626–32.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol. 2010;27:1877–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative understanding of viral phylogeography. Curr Opin Virol. 2011;1:423–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Faria NR, Suchard MA, Abecasis A, Sousa JD, Ndembi N, Bonfim I, et al. Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. Infect Genet Evol. 2012;12:453–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lange K. Diffusion processes. In: Applied Probability, chap. 11. New York, NY: Springer New York; 2010. p. 269–95.71.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol. 2016;17:132.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019;176:649–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Criscuolo A, Gascuel O. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinforma. 2008;9:166.Article 
    CAS 

    Google Scholar 
    74.Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.75.Kinene T, Wainaina J, Maina S, Boykin LM, Kliman RM. Methods for rooting trees, vol. 3. Oxford: Academic Press; 2016. p. 489–93.76.van Rossum G. Python tutorial. Tech. Rep. CS-R9526, Amsterdam: Centrum voor Wiskunde en Informatica (CWI); 1995. More

  • in

    Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules

    1.Cheverud, J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 (1996).Article 

    Google Scholar 
    2.Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).Article 

    Google Scholar 
    5.Klingenberg, C. P. Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil. Trans. R. Soc. B 369, 20130249 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hallgrímsson, B. et al. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36, 355–376 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Olson, E. & Miller, R. Morphological Integration (Univ. of Chicago Press, 1958).8.Pigliucci, M. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. 6, 265–272 (2003).Article 

    Google Scholar 
    9.Eble, G. J. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 253–273 (Oxford Univ. Press, 2004).10.Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Phil. Trans. R. Soc. B 369, 20130254 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Goswami, A., Binder, W. J., Meachen, J. & O’Keefe, F. R. The fossil record of phenotypic integration and modularity: a deep-time perspective on developmental and evolutionary dynamics. Proc. Natl Acad. Sci. USA 112, 4891–4896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Wagner, G. P. & Schwenk, K. Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. Evol. Biol. 31, 155–217 (2000).
    Google Scholar 
    13.Hallgrímsson, B., Willmore, K. & Hall, B. K. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthropol. 119, 131–158 (2002).Article 

    Google Scholar 
    14.Gould, S. J. A developmental constraint in cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43, 516–539 (1989).PubMed 

    Google Scholar 
    15.Arthur, W. Developmental drive: an important determinant of the direction of phenotypic evolution. Evol. Dev. 3, 271–278 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Klingenberg, C. P. in Variation: A Central Concept in Biology (eds Hallgrímsson, B. & Hall, B.) 219–247 (Elsevier, 2005).17.Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bell, E., Andres, B. & Goswami, A. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. J. Evol. Biol. 24, 2586–2599 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. Evolution 50, 331–340 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebr. Paleontol. 17, 308–329 (1997).Article 

    Google Scholar 
    21.Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S. & Bairlein, F. Functional morphology and integration of corvid skulls—a 3D geometric morphometric approach. Front. Zool. 6, 2 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Bright, J. A., Marugán-Lobón, J., Rayfield, E. J. & Cobb, S. N. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol. Biol. 19, 104 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Navalón, G., Marugán-Lobón, J., Bright, J. A., Cooney, C. R. & Rayfield, E. J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4, 270–278 (2020).PubMed 
    Article 

    Google Scholar 
    25.Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Shatkovska, O. V. & Ghazali, M. Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J. Anat. 236, 274–287 (2020).PubMed 
    Article 

    Google Scholar 
    27.Hieronymus, T. L. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves). BMC Evol. Biol. 15, 30 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the evolution of cranial morphology in birds. Proc. R. Soc. B 286, 20182677 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Grant, R. B. & Grant, P. R. What Darwin’s finches can teach us about the evolutionary origin and regulation of biodiversity. BioScience 53, 965–975 (2003).Article 

    Google Scholar 
    32.Van de Ven, T., Martin, R., Vink, T., McKechnie, E. & Cunningham, S. Regulation of heat exchange across the hornbill beak: functional similarities with toucans? PLoS ONE 11, e0154768 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Dececchi, T. A. & Larsson, H. C. Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Nudds, R., Dyke, G. & Rayner, J. Forelimb proportions and the evolutionary radiation of Neornithes. Proc. R. Soc. Lond. B 271, S324–S327 (2004).
    Google Scholar 
    37.Benson, R. B. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B 280, 20131780 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Videler, J. J. Avian Flight (Oxford Univ. Press, 2006).39.Carrano, M. T. & Sidor, C. A. Theropod hind limb disparity revisited: comments on Gatesy and Middleton (1997). J. Vertebr. Paleontol. 19, 602–605 (1999).Article 

    Google Scholar 
    40.Middleton, K. M. & Gatesy, S. M. Theropod forelimb design and evolution. Zool. J. Linn. Soc. 128, 149–187 (2000).Article 

    Google Scholar 
    41.Young, N. M., Linde-Medina, M., Fondon, J. W., Hallgrímsson, B. & Marcucio, R. S. Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. Nat. Ecol. Evol. 1, 0095 (2017).Article 

    Google Scholar 
    42.Martín-Serra, A. & Benson, R. B. Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns. Am. Nat. 195, 547–560 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Dumont, E. R. et al. Selection for mechanical advantage underlies multiple cranial optima in New World leaf-nosed bats. Evolution 68, 1436–1449 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article 

    Google Scholar 
    45.Rossoni, D. M., Costa, B. M., Giannini, N. P. & Marroig, G. A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats. Evolution 73, 961–981 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).CAS 
    Article 

    Google Scholar 
    47.Bjarnason, A. & Benson, R. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7, e125 (2021).Article 

    Google Scholar 
    48.Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    49.R Core Team R: A Language and Environment for Statistical Computing v.3.6.3 (R Foundation for Statistical Computing, 2020).50.Birds of the World (The Cornell Lab of Ornithology, 2021); https://birdsoftheworld.org/bow/home51.Dunning, J. B. Jr CRC Handbook of Avian Body Masses (CRC, 1992).52.The IUCN Red List of Threatened Species (IUCN, 2019); https://www.iucnredlist.org/53.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    54.Taylor, G. & Thomas, A. Evolutionary Biomechanics (Oxford Univ. Press, 2014).55.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R package version 2.1.0 (2019).56.Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157 (1989).CAS 
    Article 

    Google Scholar 
    57.Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).PubMed 
    Article 

    Google Scholar 
    58.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1-145 (2020).59.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 
    CAS 

    Google Scholar 
    60.Goodall, C. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53, 285–321 (1991).
    Google Scholar 
    61.Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.2.1 (2020).62.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    63.Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 9, e94335 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Melo, D., Garcia, G., Hubbe, A., Assis, A. P. & Marroig, G. Evolqg—an R package for evolutionary quantitative genetics [version 3; referees: 2 approved, 1 approved with reservations]. F1000Research 4, 925 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Goswami, A. & Polly, P. D. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 16, 213–243 (2010).Article 

    Google Scholar 
    68.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 (2019). More