Climate change may induce connectivity loss and mountaintop extinction in Central American forests
1.Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).Article
Google Scholar
2.Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
3.Wiens, J. J. Climate-related local extinctions are already widespread among plant and animal species. PLOS Biol. 14, e2001104 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
4.Anadón, J. D., Sala, O. E. & Maestre, F. T. Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. J. Ecol. 102, 1363–1373 (2014).Article
Google Scholar
5.ECLAC et al. Climate Change in Central America: Potential Impacts and Public Policy Options (United Nations, 2015).6.Khatun, K., Imbach, P. & Zamora, J. An assessment of climate change impacts on the tropical forests of Central America using the Holdridge Life Zone (HLZ) land classification system. iForest—Biogeosciences Forestry 6, 183 (2013).Article
Google Scholar
7.TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A synthesis of the approach, conclusions and recommendations of TEEB (Progress Press, 2010).8.Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change 114, 813–822 (2012).PubMed
PubMed Central
Article
Google Scholar
9.Myers, N. Biodiversity hotspots revisited. BioScience 53, 916–917 (2003).Article
Google Scholar
10.Corrales, L., Bouroncle, C. & Zamora, J. C. In Climate Change Impacts on Tropical Forests in Central America (ed. Chiabai, A.) 17–38 (Routledge, 2015).11.Gunter, U., Ceddia, M. G. & Tröster, B. International ecotourism and economic development in Central America and the Caribbean. J. Sustain. Tour. 25, 43–60 (2017).Article
Google Scholar
12.Hernández-Blanco, M., Costanza, R., Anderson, S., Kubiszewski, I. & Sutton, P. Future scenarios for the value of ecosystem services in Latin America and the Caribbean to 2050. Curr. Res. Environ. Sustainability 2, 100008 (2020).Article
Google Scholar
13.Hecht, S. B. Forests lost and found in tropical Latin America: the woodland ‘green revolution’. J. Peasant Stud. 41, 877–909 (2014).Article
Google Scholar
14.Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
15.Imbach, P. et al. Modeling potential equilibrium states of vegetation and terrestrial water cycle of Mesoamerica under climate change scenarios. J. Hydrometeor 13, 665–680 (2012).Article
Google Scholar
16.Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 1–9. https://doi.org/10.1038/s41559-020-01303-0 (2020).17.Freeman, B. G., Lee-Yaw, J. A., Sunday, J. M. & Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276 (2018).Article
Google Scholar
18.Booth, T. H. Species distribution modelling tools and databases to assist managing forests under climate change. For. Ecol. Manag. 430, 196–203 (2018).Article
Google Scholar
19.Urbina-Cardona, N. et al. Species distribution modeling in Latin America: a 25-year retrospective review. Trop. Conserv. Sci. 12, 1940082919854058 (2019).Article
Google Scholar
20.Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).PubMed
PubMed Central
Article
Google Scholar
21.BIOMARCC-SINAC-GIZ. Estimación de los posibles cambios en la distribución de especies de flora arbórea en el Pacífico Norte y Sur de Costa Rica en respuesta a los efectos del Cambio Climático (2013).22.de Sousa, K. et al. Suitability of Key Central American Agroforestry Species Under Future Climates: an Atlas (World Agroforestry Centre, 2017).23.Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).Article
Google Scholar
24.Biber, M. F., Voskamp, A., Niamir, A., Hickler, T. & Hof, C. A comparison of macroecological and stacked species distribution models to predict future global terrestrial vertebrate richness. J. Biogeogr. 47, 114–129 (2020).Article
Google Scholar
25.Zakharova, L., Meyer, K. M. & Seifan, M. Trait-based modelling in ecology: a review of two decades of research. Ecol. Model. 407, 108703 (2019).Article
Google Scholar
26.Lyra, A. et al. Projections of climate change impacts on central America tropical rainforest. Climatic Change 141, 93–105 (2017).CAS
Article
Google Scholar
27.Boukili, V. K. & Chazdon, R. L. Environmental filtering, local site factors and landscape context drive changes in functional trait composition during tropical forest succession. Perspect. Plant Ecol. Evol. Syst. 24, 37–47 (2017).Article
Google Scholar
28.Imbach, P. A., Locatelli, B., Molina, L. G., Ciais, P. & Leadley, P. W. Climate change and plant dispersal along corridors in fragmented landscapes of Mesoamerica. Ecol. Evol. 3, 2917–2932 (2013).PubMed
PubMed Central
Article
Google Scholar
29.Meyer, N. F. V., Moreno, R., Reyna-Hurtado, R., Signer, J. & Balkenhol, N. Towards the restoration of the Mesoamerican Biological Corridor for large mammals in Panama: comparing multi-species occupancy to movement models. Mov. Ecol. 8, 3 (2020).PubMed
PubMed Central
Article
Google Scholar
30.Cabrera-Guzmán, E. & Reynoso, V. H. Amphibian and reptile communities of rainforest fragments: minimum patch size to support high richness and abundance. Biodivers. Conserv 21, 3243–3265 (2012).Article
Google Scholar
31.Crespin, S. J. & García-Villalta, J. E. Integration of land-sharing and land-sparing conservation strategies through regional networking: The Mesoamerican Biological Corridor as a Lifeline for Carnivores in El Salvador. AMBIO 43, 820–824 (2014).PubMed
Article
PubMed Central
Google Scholar
32.Rehm, E. & Feeley, K. J. Many species risk mountain top extinction long before they reach the top. Front. Biogeogr. 8, (2016).33.Fung, E. et al. Mapping conservation priorities and connectivity pathways under climate change for tropical ecosystems. Climatic Change 141, 77–92 (2017).Article
Google Scholar
34.Ojea, E., Zamora, J. C., Martin-Ortega, J. & Imbach, P. In Climate Change Impacts on Tropical Forests in Central America: an Ecosystem Service Perspective (ed. Chiabai, A.) 113–151 (Routledge, 2015).35.Bernal, B., Murray, L. T. & Pearson, T. R. H. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 13, 22 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Toledo, M. et al. Climate is a stronger driver of tree and forest growth rates than soil and disturbance. J. Ecol. 99, 254–264 (2011).Article
Google Scholar
37.Rojas, M. R., Locatelli, B. & Billings, R. Climate change and outbreaks of Southern Pine Beetle in Honduras. For. Syst. 19, 70–76 (2010).
Google Scholar
38.Estrada‐Villegas, S., Hall, J. S., Breugel, Mvan & Schnitzer, S. A. Lianas reduce biomass accumulation in early successional tropical forests. Ecology 101, e02989 (2020).PubMed
Article
PubMed Central
Google Scholar
39.Balslev, H. et al. Species diversity and growth forms in Tropical American Palm Communities. Bot. Rev. 77, 381–425 (2011).Article
Google Scholar
40.Ratajczak, Z., D’Odorico, P. & Yu, K. The Enemy of My Enemy Hypothesis: Why Coexisting with Grasses May Be an Adaptive Strategy for Savanna Trees. Ecosystems 20, 1278–1295 (2017).Article
Google Scholar
41.Heijden, G. M. F., van der, Powers, J. S. & Schnitzer, S. A. Lianas reduce carbon accumulation and storage in tropical forests. PNAS 112, 13267–13271 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
42.da Cunha Vargas, B., Grombone-Guaratini, M. T. & Morellato, L. P. C. Lianas research in the Neotropics: overview, interaction with trees, and future perspectives. Trees https://doi.org/10.1007/s00468-020-02056-w. (2020).43.Nanni, A. S. et al. The neotropical reforestation hotspots: a biophysical and socioeconomic typology of contemporary forest expansion. Glob. Environ. Change 54, 148–159 (2019).Article
Google Scholar
44.Stan, K. et al. Climate change scenarios and projected impacts for forest productivity in Guanacaste Province (Costa Rica): lessons for tropical forest regions. Reg. Environ. Change 20, 14 (2020).Article
Google Scholar
45.Olson, D. M. et al. Terrestrial ecoregions of the World: a New Map of Life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51, 933–938 (2001).Article
Google Scholar
46.Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol. 3, 928–934 (2019).PubMed
Article
PubMed Central
Google Scholar
47.Condit, R., Pérez, R. & Daguerre, N. Trees of Panama and Costa Rica (Princeton University Press, 2010).48.CATIE. Árboles de Centroamérica: un Manual Para Extensionistas (CATIE, 2003).49.Flores-Vindas, E. & Obando-Vargas, G. Árboles del Trópico Húmedo: Importancia Socioeconómica (Editorial Tecnológica de Costa Rica, 2014).50.Hammel, B. E., Grayum, M. H., Herrera, C. & Zamora Villalobos, N. Manual de plantas de Costa Rica vols 1–6 (Missouri Botanical Garden, 2003).51.Boukili, V. Functional trait data for La Selva, database (2014).52.Burns, R. M., Mosquera, M. S. & Whitmore, J. L. Useful Trees of the Tropical Region of North America (North American Forestry Commission, 1998).53.CATIE. Rasgos funcionales, base de datos del Programa Producción y Conservación en Bosques del CATIE (colleción de resultados de tesis). (2019).54.Delgado, D. et al. Análisis de la Vulnerabilidad al Cambio Climático de Bosques de Montaña en Latinoamérica (Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), 2016).55.FAO. Crop Ecological Requirements Database (ECOCROP). http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1027491/ (2020).56.Finegan, B., Camacho, M. & Zamora, N. Diameter increment patterns among 106 tree species in a logged and silviculturally treated Costa Rican rain forest. For. Ecol. Manag. 121, 159–176 (1999).Article
Google Scholar
57.Hall, J. S. & Ashton, M. S. Guide to Early Growth and Survival in Plantations of 64 Tree Species Native to Panama and the Neotropics. (Smithsonian Tropical Research Institute, 2016).58.MARENA/INAFOR. Guía de Especies Forestales (Editora de Arte, S.A, 2002).59.Runes Vargas, V. Base de rasgos funcionales y usos de las especies más abundantes en los sistemas agroforestales de Centroamérica (Agroforestry Tree Functional Traits). in Diversidad en sistemas agroforestales de Centroamérica una aproximación desde el enfoque functional. Master thesis, CATIE, Costa Rica (2016).60.Vázquez-Yanes, C., Batis Muñoz, A. I., Alcocer Silva, M. I., Gual Díaz, M. & Sánchez Dirzo, C. Árboles y arbustos potencialmente valiosos para la restauración ecológica y la reforestación. Reporte técnico del proyecto J084. (1999).61.Vozzo, J. A. Tropical Tree Seed Manual (U.S. Department of Agriculture, Forest Service, 2002).62.Webb, D. B., Wood, P. J., Smith, J. P. & Sian Henman, G. A Guide to Species Selection for Tropical and Sub-tropical Plantations (Unit of Tropical Silviculture, Commonwealth Forestry Institute, University of Oxford, 1984).63.Soultan, A. & Safi, K. The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation. PLoS ONE 12, e0187906 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
64.GBIF. GBIF Occurrence Download. Accessed from R via rgbif 2020-05-18. Darwin Core Archive. https://doi.org/10.15468/dl.pstza2. (2020).65.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).Article
Google Scholar
66.CRIA. SpeciesLink (CRIA, 2012).67.Peet, R. K., Lee, M. T., Jennings, M. D. & Faber-Langendoen, D. VegBank: a permanent, open-access archive for vegetation plot data. Biodivers. Ecol. 4, 233–241 (2012).Article
Google Scholar
68.Šímová, I. et al. Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. J. Biogeogr. 45, 895–916 (2018).Article
Google Scholar
69.US Forest Service. Forest Inventory and Analysis National Program (US Forest Service, 2013).70.de Sousa, K., van Zonneveld, M., Holmgren, M., Kindt, R. & Ordoñez, J. C. Replication data for: ‘The future of coffee and cocoa agroforestry in a warmer Mesoamerica’. Harvard Dataverse https://doi.org/10.7910/DVN/0O1GW1. (2019).71.Chamberlain, S. rgbif: Interface to the Global ‘Biodiversity’ Information Facility API. R package version 2.3. (2020).72.Maitner, B. S. et al. The BIEN R package: A tool to access the botanical information and ecology network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).Article
Google Scholar
73.Morales, J. F. Sinopsis of the genus Weinmannia (Cunoniaceae) in Mexico and Central America. An. Jard.ín Bot.ánico Madr. 67, 137–155 (2010).Article
Google Scholar
74.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed
PubMed Central
Article
Google Scholar
75.Danielson, J. J. & Gesch, D. B. Global multi-resolution terrain elevation data 2010 (GMTED2010). http://pubs.er.usgs.gov/publication/ofr20111073 (2011).76.Hengl, T. et al. SoilGrids1km—Global Soil Information Based on Automated Mapping. PLoS ONE 9, e105992 (2014).PubMed
PubMed Central
Article
Google Scholar
77.Schmitt, S., Pouteau, R., Justeau, D., de Boissieu, F. & Birnbaum, P. SSDM—an R package to predict distribution of species richness and composition based on stacked species distribution models. Methods. Ecol. Evol. 8, 1795–1803 (2017).
Google Scholar
78.Beaumont, L. J. et al. Which species distribution models are more (or less) likely to project broad-scale, climate-induced shifts in species ranges? Ecol. Model. 342, 135–146 (2016).Article
Google Scholar
79.Lay, G. L., Engler, R., Franc, E. & Guisan, A. Prospective sampling based on model ensembles improves the detection of rare species. Ecography 33, 1015–1027 (2010).Article
Google Scholar
80.Guo, C. et al. Uncertainty in ensemble modelling of large-scale species distribution: effects from species characteristics and model techniques. Ecol. Model. 306, 67–75 (2015).Article
Google Scholar
81.Naimi, B. On uncertainty in species distribution modelling https://doi.org/10.3990/1.9789036538404 (University of Twente, 2015).82.Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 3, 327–338 (2012).Article
Google Scholar
83.Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article
Google Scholar
84.Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article
Google Scholar
85.Diniz‐Filho, J. A. F. et al. Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32, 897–906 (2009).Article
Google Scholar
86.Guillera‐Arroita, G. et al. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24, 276–292 (2015).Article
Google Scholar
87.Phillips, S. J. & Elith, J. POC plots: calibrating species distribution models with presence-only data. Ecology 91, 2476–2484 (2010).PubMed
Article
PubMed Central
Google Scholar
88.Schwarz, J. & Heider, D. GUESS: projecting machine learning scores to well-calibrated probability estimates for clinical decision-making. Bioinformatics 35, 2458–2465 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
89.D’Amen, M., Rahbek, C., Zimmermann, N. E. & Guisan, A. Spatial predictions at the community level: from current approaches to future frameworks: Methods for community-level spatial predictions. Biol. Rev. 92, 169–187 (2017).PubMed
Article
PubMed Central
Google Scholar
90.Lobo, J. M., Jiménez‐Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).Article
Google Scholar
91.Lewis, O. T. Climate change, species–area curves and the extinction crisis. Philos. Trans. R. Soc. B: Biol. Sci. 361, 163–171 (2006).Article
Google Scholar
92.Griscom, H. P. & Ashton, M. S. Restoration of dry tropical forests in Central America: a review of pattern and process. For. Ecol. Manag. 261, 1564–1579 (2011).Article
Google Scholar
93.Rahman, M., Islam, M., Gebrekirstos, A. & Bräuning, A. Trends in tree growth and intrinsic water-use efficiency in the tropics under elevated CO2 and climate change. Trees 33, 623–640 (2019).Article
Google Scholar
94.Riitters, K., Wickham, J., O’Neill, R., Jones, K. B. & Smith, E. Global-scale patterns of forest fragmentation. Conservation Ecol. 4, 3 (2000).95.Morelli, T. L. et al. The fate of Madagascar’s rainforest habitat. Nat. Clim. Change 10, 89–96 (2020).Article
Google Scholar
96.Baumbach, L., Warren, D. L., Yousefpour, R. & Hanewinkel, M. Replication data for ‘Climate change may induce connectivity loss and mountaintop extinction in Central American forests’. https://doi.org/10.5281/zenodo.4835834 (2021).97.Baumbach, L., Warren, D. L., Yousefpour, R. & Hanewinkel, M. Supplementary data for ‘Climate change may induce connectivity loss and mountaintop extinction in Central American forests’. https://doi.org/10.5281/zenodo.4836270. (2021).98.Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS
Article
Google Scholar More