1.Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications Vol. 8 (Cambridge University Press, 1994).MATH
Book
Google Scholar
2.Knoke, D. & Yang, S. Social Network Analysis Vol. 154 (Sage Publications, 2019).
Google Scholar
3.Schaub, M. T., Delvenne, J. C., Rosvall, M. & Lambiotte, R. The many facets of community detection in complex networks. Appl. Netw. Sci. 2(1), 4 (2017).PubMed
PubMed Central
Article
Google Scholar
4.Papadopoulos, S., Kompatsiaris, Y., Vakali, A. & Spyridonos, P. Community detection in social media. Data Min. Knowl. Disc. 24(3), 515–554 (2012).Article
Google Scholar
5.Duch, J. & Arenas, A. Community detection in complex networks using extremal optimization. Phys. Rev. E 72(2), 027104 (2005).ADS
Article
CAS
Google Scholar
6.Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94(1), 16–36 (2019).Article
Google Scholar
7.Creamer, R. E. et al. Ecological network analysis reveals the inter-connection between soil biodiversity and ecosystem function as affected by land use across Europe. Appl. Soil Ecol. 97, 112–124 (2016).Article
Google Scholar
8.Gogaladze, A. et al. Using social network analysis to assess the Pontocaspian biodiversity conservation capacity in Ukraine. Ecol. Soc. 25(2), 25 (2020).Article
Google Scholar
9.Braunisch, V. et al. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography 36(9), 971–983 (2013).Article
Google Scholar
10.Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353(6304), 8466 (2016).Article
CAS
Google Scholar
11.Bálint, M. et al. Cryptic biodiversity loss linked to global climate change. Nat. Clim. Change 1(6), 313–318 (2011).ADS
Article
Google Scholar
12.Pereira, H. M., Navarro, L. M. & Martins, I. S. Global biodiversity change: The bad, the good, and the unknown. Annu. Rev. Environ. Resour. 37, 25–50 (2012).Article
Google Scholar
13.Smith, R. et al. Ensuring Co-benefits for biodiversity, climate change and sustainable development. In Handbook of Climate Change and Biodiversity (eds Filho, W. L. et al.) 151–166 (Springer, 2019).Chapter
Google Scholar
14.Rands, M. R. et al. Biodiversity conservation: Challenges beyond 2010. Science 329(5997), 1298–1303 (2010).ADS
CAS
PubMed
Article
Google Scholar
15.Clark, J. S., Scher, C. L. & Swift, M. The emergent interactions that govern biodiversity change. Proc. Natl. Acad. Sci. 117(29), 17074–17083 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
16.Greenwood, G. W. Finding solutions to NP problems: Philosophical differences between quantum and evolutionary search algorithms. In Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No. 01TH8546) Vol 2, 815–822 (IEEE, 2001).17.Kaminsky, W. M. & Lloyd, S. Scalable architecture for adiabatic quantum computing of NP-hard problems. In Quantum Computing and Quantum Bits in Mesoscopic Systems (eds Leggett, A. J. et al.) 229–236 (Springer, 2004).Chapter
Google Scholar
18.Brandes, U. et al. (2006). Maximizing modularity is hard. arXiv preprint physics/0608255.19.Fortunato, S. Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010).ADS
MathSciNet
Article
Google Scholar
20.Lev S. Bishop https://developer.ibm.com/code/videos/qiskit-quantum-computing-tech-talk/.21.De Chazal, J. & Rounsevell, M. D. Land-use and climate change within assessments of biodiversity change: A review. Glob. Environ. Change 19(2), 306–315 (2009).Article
Google Scholar
22.Bello, G. A. et al. Response-guided community detection: Application to climate index discovery. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases 736–751 (Springer, 2015).23.Steinhaeuser, K., Chawla, N. V. & Ganguly, A. R. (2009). An exploration of climate data using complex networks. In Proceedings of the Third International Workshop on Knowledge Discovery from Sensor Data 23–31.24.Ceron, W., Santos, L. B., Neto, G. D., Quiles, M. G. & Candido, O. A. Community detection in very high-resolution meteorological networks. IEEE Geosci. Remote Sens. Lett. 17(11), 2007–2010 (2019).ADS
Article
Google Scholar
25.Sekulić, S., Data, B. E. G., Long, J. & Demšar, U. Geographical context in community detection: A comparison of a node-based and a link-based approach.26.Poisot, T. & Gravel, D. When is an ecological network complex? Connectance drives degree distribution and emerging network properties. PeerJ 2, e251 (2014).PubMed
PubMed Central
Article
Google Scholar
27.Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004).ADS
CAS
Article
Google Scholar
28.Strehl, A. & Ghosh, J. Cluster ensembles—A knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002).MathSciNet
MATH
Google Scholar
29.Hubert, L. & Arabie, P. Comparing partitions. J. Classif. 2(1), 193–218 (1985).MATH
Article
Google Scholar
30.Stumpf, M. P. & Wiuf, C. Sampling properties of random graphs: The degree distribution. Phys. Rev. E 72(3), 036118 (2005).ADS
MathSciNet
Article
CAS
Google Scholar
31.Kumar, R., Novak, J. & Tomkins, A. Structure and evolution of online social networks. In Link Mining: Models, Algorithms, and Applications (eds Yu, P. et al.) 337–357 (Springer, 2010).Chapter
Google Scholar
32.Bródka, P., Skibicki, K., Kazienko, P. & Musiał, K. A degree centrality in multi-layered social network. In 2011 International Conference on Computational Aspects of Social Networks (CASoN) 237–242 (IEEE, 2011).33.Bonacich, P. Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007).Article
Google Scholar
34.Chakraborty, T., Dalmia, A., Mukherjee, A. & Ganguly, N. Metrics for community analysis: A survey. ACM Comput. Surv. (CSUR) 50(4), 1–37 (2017).Article
Google Scholar
35.Freeman, L. The development of social network analysis. Study Sociol. Sci. 1, 687 (2004).
Google Scholar
36.Khandelwal, S., Goyal, R., Kaul, N. & Mathew, A. Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. Egyptian J. Remote Sens. Space Sci. 21(1), 87–94 (2018).Article
Google Scholar
37.Hamstead, Z. A., Kremer, P., Larondelle, N., McPhearson, T. & Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Ind. 70, 574–585 (2016).Article
Google Scholar
38.Wang, Q., Peng, Y., Fan, M., Zhang, Z. & Cui, Q. Landscape patterns affect precipitation differing across sub-climatic regions. Sustainability 10(12), 4859 (2018).Article
Google Scholar
39.Ross, R. S., Krishnamurti, T. N., Pattnaik, S. & Pai, D. S. Decadal surface temperature trends in India based on a new high-resolution data set. Sci. Rep. 8(1), 1–10 (2018).
Google Scholar
40.Sharma, A., Sharma, D., Panda, S. K., Dubey, S. K. & Pradhan, R. K. Investigation of temperature and its indices under climate change scenarios over different regions of Rajasthan state in India. Glob. Planet. Change 161, 82–96 (2018).ADS
Article
Google Scholar
41.Yumnam, B. et al. Prioritizing tiger conservation through landscape genetics and habitat linkages. PLoS ONE 9(11), e111207 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
42.Manning, C. D., Schütze, H. & Raghavan, P. Introduction to Information Retrieval (Cambridge University Press, 2008).MATH
Book
Google Scholar
43.Gregory, S. Fuzzy overlapping communities in networks. J. Stat. Mech. Theory Exp. 2011(02), P02017 (2011).Article
Google Scholar
44.Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B Biol. Sci. 275(1652), 2743–2748 (2008).Article
Google Scholar
45.Loh, J. et al. The Living Planet Index: Using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B Biol. Sci. 360(1454), 289–295 (2005).Article
Google Scholar
46.Rockström, J. et al.. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14(2), 10–11, 24, (2009).47.Ganopolski, A. Climate change models. In Encyclopedia of Ecology 2nd edn (ed. Fath, B.) 48–57 (Elsevier, Berlin, 2019). https://doi.org/10.1016/B978-0-12-409548-9.11166-2. ISBN 9780444641304.48.Nagendra, H., Reyers, B. & Lavorel, S. Impacts of land change on biodiversity: Making the link to ecosystem services. Curr. Opin. Environ. Sustain. 5(5), 503–508 (2013).Article
Google Scholar
49.Verburg, P. H., Kok, K., Pontius, R. G. & Veldkamp, A. Modeling land-use and land-cover change. In Land-Use and Land-Cover Change Global Change—The IGBP Series (eds Lambin, E. F. & Geist, H.) (Springer, Berlin, 2006). https://doi.org/10.1007/3-540-32202-7_5.Chapter
Google Scholar
50.Blondel, V. D., Guillaume, J. L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008).MATH
Article
Google Scholar
51.Ahn, Y. Y., Bagrow, J. P. & Lehmann, S. Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010).ADS
CAS
PubMed
Article
Google Scholar
52.Soundarajan, S. & Gomes, C. Using community detection algorithms for sustainability applications. In Proceddings of the 3rd International Conference on Computational Sustainability (2012).53.Raghavan, U. N., Albert, R. & Kumara, S. Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76, 036106 (2007).ADS
Article
CAS
Google Scholar
54.Clauset, A. et al. Finding community structure in very large networks. Phys. Rev. E 70(6), 1–6 (2004).Article
CAS
Google Scholar
55.Newman, M. E. Finding community structure in networks using the eigen vectors of matrices. Phys. Rev. E 74, 036104 (2006).ADS
MathSciNet
CAS
Article
Google Scholar
56.Pons, P. & Latapy, M. Computing communities in large networks using random walks. Computer and Information Sciences—ISCIS 2005 (2005).57.Newman, M. E. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69(6), 066133 (2004).ADS
CAS
Article
Google Scholar
58.Chakraborty, S., Novo, L., Ambainis, A. & Omar, Y. Spatial search by quantum walk is optimal for almost all graphs. Phys. Rev. Lett. 116(10), 100501 (2016).ADS
PubMed
Article
CAS
Google Scholar
59.Chakraborty, S., Novo, L., Di Giorgio, S. & Omar, Y. Optimal quantum spatial search on random temporal networks. Phys. Rev. Lett. 119(22), 220503 (2017).ADS
PubMed
Article
Google Scholar
60.Faccin, M., Migdał, P., Johnson, T. H., Bergholm, V. & Biamonte, J. D. Community detection in quantum complex networks. Phys. Rev. X 4(4), 041012 (2014).
Google Scholar
61.Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Network community detection on small quantum computers. Adv. Quantum Technol. 2(9), 1900029 (2019).Article
Google Scholar
62.Gupta, S., Taneja, S. & Kumar, N. Quantum inspired genetic algorithm for community structure detection in social networks. In Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation 1119–1126 (2014).63.Gupta, S. & Kumar, N. Parameter tuning in quantum-inspired evolutionary algorithms for partitioning complex networks. In Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation 1045–1048 (2014).64.Li, Y., Wang, Y., Chen, J., Jiao, L. & Shang, R. Overlapping community detection through an improved multi-objective quantum-behaved particle swarm optimization. J. Heuristics 21(4), 549–575 (2015).Article
Google Scholar
65.Gupta, S. et al. Parallel quantum-inspired evolutionary algorithms for community detection in social networks. Appl. Soft Comput. 61, 331–353 (2017).Article
Google Scholar
66.Li, L., Jiao, L., Zhao, J., Shang, R. & Gong, M. Quantum-behaved discrete multi-objective particle swarm optimization for complex network clustering. Pattern Recogn. 63, 1–14 (2017).ADS
Article
Google Scholar
67.Yuanyuan, M. & Xiyu, L. Quantum inspired evolutionary algorithm for community detection in complex networks. Phys. Lett. A 382(34), 2305–2312 (2018).ADS
MathSciNet
MATH
Article
CAS
Google Scholar
68.Shaydulin, R., Ushijima-Mwesigwa, H., Safro, I., Mniszewski, S. & Alexeev, Y. Community Detection Across Emerging Quantum Architectures (2018).69.Negre, C., Ushijima-Mwesigwa, H. & Mniszewski, S. Detecting multiple communities using quantum annealing on the D-Wave system. PLoS ONE 15, e0227538. https://doi.org/10.1371/journal.pone.0227538 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
70.Akbar, S. & Saritha, S. K. Towards quantum computing based community detection. Comput. Sci. Rev. 38, 100313. https://doi.org/10.1016/j.cosrev.2020.100313. (2020). (ISSN 1574-0137)MathSciNet
Article
Google Scholar
71.Akbar, S. & Saritha S. K. QML based community detection in the realm of social network analysis. In 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), July 1–3, 2020, IIT Kharagpur, India (2020).72.Girvan, M. & Newman, M. E. Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002).ADS
MathSciNet
CAS
PubMed
PubMed Central
MATH
Article
Google Scholar
73.Deb, K., Pratap, A., Agarwal, S. & Meyarivan, T. A fast and elitist multiobjectivegenetic algorithm: Nsga-ii. IEEE Trans. Evolut. Comput. 6, 182–197 (2002).Article
Google Scholar
74.India’s tiger population sees 33% increase, BBC. 29 July 2019. https://www.bbc.com/news/world-asia-india-49148174.75.Rathore, L. S., Attri, S. D. & Jaswal, A. K. State level climate change trends in India. Meteorological Monograph No. ESSO/IMD/Education Multimedia Research Centre/02 (2013). More