More stories

  • in

    The rates of global bacterial and archaeal dispersal

    1.Kruckeberg AR, Rabinowitz D. Biological aspects of endemism in higher plants. Annu Rev Ecol Syst. 1985;16:447–79.Article 

    Google Scholar 
    2.Ceballos G, Brown JH. Global patterns of mammalian diversity, endemism, and endangerment. Conserv Biol. 1995;9:559–68.Article 

    Google Scholar 
    3.Mueller GM, Schmit JP, Leacock PR, Buyck B, Cifuentes J, Desjardin DE, et al. Global diversity and distribution of macrofungi. Biodivers Conserv. 2007;16:37–48.Article 

    Google Scholar 
    4.Prideaux GJ, Warburton NM. An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (macropodidae: Marsupialia). Zool J Linn Soc. 2010;159:954–87.Article 

    Google Scholar 
    5.Finlay BJ, Clarke KJ. Ubiquitous dispersal of microbial species. Nature. 1999;400:828.CAS 
    Article 

    Google Scholar 
    6.Whitaker RJ, Grogan DW, Taylor JW. Geographic barriers isolate endemic populations of hyperthermophilic archaea. Science. 2003;301:976–978.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Whitfield J. Is everything everywhere? Science. 2005;310:960–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Boenigk J, Pfandl K, Garstecki T, Harms H, Novarino G, Chatzinotas A. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl Environ Microbiol. 2006;72:5159–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.DeWit R, Bouvier T. ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol. 2006;8:755–8.Article 

    Google Scholar 
    10.van der Gast CJ. Microbial biogeography: the end of the ubiquitous dispersal hypothesis? Environ Microbiol. 2015;17:544–6.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Whittaker KA, Rynearson TA. Evidence for environmental and ecological selection in a microbe with no geographic limits to gene flow. Proc Natl Acad Sci USA. 2017;114:2651–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Louca S, Shih PM, Pennell MW, Fischer WW, Parfrey LW, Doebeli M. Bacterial diversification through geological time. Nat Ecol Evol. 2018;2:1458–67.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, et al. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol. 2006;4:102–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC. Drivers of bacterial β-diversity depend on spatial scale. Proc Natl Acad Sci USA. 2011;108:7850–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Jungblut AD, Lovejoy C, Vincent WF. Global distribution of cyanobacterial ecotypes in the cold biosphere. ISME J. 2010;4:191–202.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA. 2013;110:4651–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ramirez KS, Leff JW, Barberán A, Bates ST, Betley J, Crowther TW, et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc R Soc Lond B Biol Sci. 2014;281:20141988.18.Gonnella G, Böhnke S, Indenbirken D, Garbe-Schönberg D, Seifert R, Mertens C, et al. Endemic hydrothermal vent species identified in the open ocean seed bank. Nat Microbiol. 2016;1:16086 EP.Article 
    CAS 

    Google Scholar 
    19.Louca S, Mazel F, Doebeli M, Parfrey WL. A census-based estimate of Earth’s bacterial and archaeal diversity. PLoS Biol. 2019;17:e3000106.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Ochman H, Wilson A. Evolution in bacteria: evidence for a universal substitution rate in cellular genomes. J Mol Evol. 1987;26:74–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Kuo CH, Ochman H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol Direct. 2009;4:35–35.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Roberts MS, Cohan FM. Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution. 1995;49:1081–94.PubMed 
    Article 

    Google Scholar 
    23.van Gremberghe I, Leliaert F, Mergeay J, Vanormelingen P, Van der Gucht K, Debeer AE, et al. Lack of phylogeographic structure in the freshwater cyanobacterium Microcystis aeruginosa suggests global dispersal. PLoS ONE. 2011;6:e19561.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Papke RT, Ramsing NB, Bateson MM, Ward DM. Geographical isolation in hot spring cyanobacteria. Environ Microbiol. 2003;5:650–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hongmei J, Aitchison JC, Lacap DC, Peerapornpisal Y, Sompong U, Pointing SB. Community phylogenetic analysis of moderately thermophilic cyanobacterial mats from China, the Philippines and Thailand. Extremophiles. 2005;9:325–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Miller SR, Castenholz RW, Pedersen D. Phylogeography of the thermophilic cyanobacterium Mastigocladus laminosus. Appl Environ Microbiol. 2007;73:4751–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Takacs-Vesbach C, Mitchell K, Jackson-Weaver O, Reysenbach AL. Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles. Environ Microbiol. 2008;10:1681–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Reno ML, Held NL, Fields CJ, Burke PV, Whitaker RJ. Biogeography of the Sulfolobus islandicus pan-genome. Proc Natl Acad Sci USA. 2009;106:8605–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bahl J, Lau MCY, Smith GJD, Vijaykrishna D, Cary SC, Lacap DC, et al. Ancient origins determine global biogeography of hot and cold desert cyanobacteria. Nat Commun. 2011;2:163.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    30.Anderson RE, Kouris A, Seward CH, Campbell KM, Whitaker RJ. Structured populations of Sulfolobus acidocaldarius with susceptibility to mobile genetic elements. Genome Biol Evol. 2017;9:1699–710.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Podar PT, Yang Z, Björnsdóttir SH, Podar M. Comparative analysis of microbial diversity across temperature gradients in hot springs from Yellowstone and Iceland. Front Microbiol. 2020;11:1625.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. Genbank. Nucleic Acids Res. 2015;44:D67–D72.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA. 2005;102:2567–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol. 2014;64:346–51.CAS 
    Article 

    Google Scholar 
    35.Olm MR, Crits-Christoph A, Diamond S, Lavy A, Carnevali PBM, Banfield JF. Consistent metagenome-derived metrics verify and delineate bacterial species boundaries. mSystems. 2020;5:e00731-19.36.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shapiro BJ. What microbial population genomics has taught us about speciation. In: Polz MF, Rajora OP, editors. Population Genomics: Microorganisms. Cham, Switzerland: Springer International Publishing; 2019. p. 31–47.38.Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020;36:1925–27.CAS 

    Google Scholar 
    40.Felsenstein J. Phylogenies and the comparative method. Am Nat. 1985;125:1–15.Article 

    Google Scholar 
    41.Louca S. Phylogeographic estimation and simulation of global diffusive dispersal. Syst Biol. 2021;70:340–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Comas I, Coscolla M, Luo T, Borrell S, Holt KE, Kato-Maeda M, et al. Out-of-Africa migration and Neolithic coexpansion of Mycobacterium tuberculosis with modern humans. Nat Genet. 2013;45:1176–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Denef VJ, Banfield JF. In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science. 2012;336:462–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bouckaert R, Cartwright R. Phylogeography by diffusion on a sphere: whole world phylogeography. PeerJ. 2016;4:e2406.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Brillinger DR. A particle migrating randomly on a sphere. In: Selected Works of David Brillinger. Cham, Switzerland: Springer; 2012. p. 73–87.46.Ghosh A, Samuel J, Sinha SA. “Gaussian” for diffusion on the sphere. Europhys Lett. 2012;98:30003.Article 
    CAS 

    Google Scholar 
    47.Castenholz RW. The biogeography of hot spring algae through enrichment cultures. SIL Commun. 1978;21:296–315. 1953-1996
    Google Scholar 
    48.Valentine DL. Adaptations to energy stress dictate the ecology and evolution of the archaea. Nat Rev Micro. 2007;5:316–23.CAS 
    Article 

    Google Scholar 
    49.Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353:1272–77.CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Smith DJ, Jaffe DA, Birmele MN, Griffin DW, Schuerger AC, Hee J, et al. Free tropospheric transport of microorganisms from Asia to North America. Micro Ecol. 2012;64:973–85.CAS 
    Article 

    Google Scholar 
    51.Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc Lond B Biol Sci. 1994;255:37–45.Article 

    Google Scholar 
    52.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci USA. 1998;95:6578–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Anderson D. The regulation of fishing and related activities in exclusive economic zones. In: Modern Law Sea, Publications on Ocean Development, vol. 59, chap. 11. Leiden, The Netherlands: Brill Nijhoff; 2008. p. 209–27.54.Bullock JM, Clarke RT. Long distance seed dispersal by wind: measuring and modelling the tail of the curve. Oecologia. 2000;124:506–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Brynjarsdóttir J, O’Hagan A. Learning about physical parameters: the importance of model discrepancy. Inverse Probl. 2014;30:114007.Article 

    Google Scholar 
    56.Bell T. Experimental tests of the bacterial distance-decay relationship. ISME J. 2010;4:1357–65.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Hyatt D, Chen GL, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    58.Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2014;25:1043–55.Article 
    CAS 

    Google Scholar 
    59.Chambat F, Valette B. Mean radius, mass, and inertia for reference Earth models. Phys Earth Planet Inter. 2001;124:237–53.Article 

    Google Scholar 
    60.Data NS, (SEDAC) AC Gridded Population of the World, Version 4 (GPW v4): Population Density, Revision 11. Tech. rep., Palisades, NY: Center for International Earth Science Information Network – CIESIN – Columbia University. 2018. Accessed November 23, 2020.61.Price MN, Dehal PS, Arkin AP. FastTree 2: approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    62.Britton T, Anderson CL, Jacquet D, Lundqvist S, Bremer K. Estimating divergence times in large phylogenetic trees. Syst Biol. 2007;56:741–52.PubMed 
    Article 

    Google Scholar 
    63.Zhu Q, Mai U, Pfeiffer W, Janssen S, Asnicar F, Sanders JG, et al. Phylogenomics of 10,575 genomes reveals evolutionary proximity between domains bacteria and archaea. Nat Commun. 2019;10:5477.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Perrin F. Étude mathématique du movement brownien de rotation. In: Annales scientifiques del’École Normale Supérieure, vol. 45. Paris, France: Elsevier; with 1928. p. 1–51.65.Louca S, Doebeli M. Efficient comparative phylogenetics on large trees. Bioinformatics. 2018;34:1053–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Bloomquist EW, Lemey P, Suchard MA. Three roads diverged? routes to phylogeographic inference. Trends Ecol Evol. 2010;25:626–32.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Lemey P, Rambaut A, Welch JJ, Suchard MA. Phylogeography takes a relaxed random walk in continuous space and time. Mol Biol Evol. 2010;27:1877–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Faria NR, Suchard MA, Rambaut A, Lemey P. Toward a quantitative understanding of viral phylogeography. Curr Opin Virol. 2011;1:423–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Faria NR, Suchard MA, Abecasis A, Sousa JD, Ndembi N, Bonfim I, et al. Phylodynamics of the HIV-1 CRF02_AG clade in Cameroon. Infect Genet Evol. 2012;12:453–60.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Lange K. Diffusion processes. In: Applied Probability, chap. 11. New York, NY: Springer New York; 2010. p. 269–95.71.Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, et al. Mash: fast genome and metagenome distance estimation using minhash. Genome Biol. 2016;17:132.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Pasolli E, Asnicar F, Manara S, Zolfo M, Karcher N, Armanini F, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019;176:649–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Criscuolo A, Gascuel O. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinforma. 2008;9:166.Article 
    CAS 

    Google Scholar 
    74.Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.75.Kinene T, Wainaina J, Maina S, Boykin LM, Kliman RM. Methods for rooting trees, vol. 3. Oxford: Academic Press; 2016. p. 489–93.76.van Rossum G. Python tutorial. Tech. Rep. CS-R9526, Amsterdam: Centrum voor Wiskunde en Informatica (CWI); 1995. More

  • in

    Patterns of skeletal integration in birds reveal that adaptation of element shapes enables coordinated evolution between anatomical modules

    1.Cheverud, J. M. Developmental integration and the evolution of pleiotropy. Am. Zool. 36, 44–50 (1996).Article 

    Google Scholar 
    2.Wagner, G. P. & Altenberg, L. Perspective: complex adaptations and the evolution of evolvability. Evolution 50, 967–976 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Wagner, G. P., Pavlicev, M. & Cheverud, J. M. The road to modularity. Nat. Rev. Genet. 8, 921–931 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Klingenberg, C. P. Morphological integration and developmental modularity. Annu. Rev. Ecol. Evol. Syst. 39, 115–132 (2008).Article 

    Google Scholar 
    5.Klingenberg, C. P. Studying morphological integration and modularity at multiple levels: concepts and analysis. Phil. Trans. R. Soc. B 369, 20130249 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hallgrímsson, B. et al. Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol. Biol. 36, 355–376 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Olson, E. & Miller, R. Morphological Integration (Univ. of Chicago Press, 1958).8.Pigliucci, M. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. 6, 265–272 (2003).Article 

    Google Scholar 
    9.Eble, G. J. in Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes (eds Pigliucci, M. & Preston, K.) 253–273 (Oxford Univ. Press, 2004).10.Goswami, A., Smaers, J. B., Soligo, C. & Polly, P. D. The macroevolutionary consequences of phenotypic integration: from development to deep time. Phil. Trans. R. Soc. B 369, 20130254 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Goswami, A., Binder, W. J., Meachen, J. & O’Keefe, F. R. The fossil record of phenotypic integration and modularity: a deep-time perspective on developmental and evolutionary dynamics. Proc. Natl Acad. Sci. USA 112, 4891–4896 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Wagner, G. P. & Schwenk, K. Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability. Evol. Biol. 31, 155–217 (2000).
    Google Scholar 
    13.Hallgrímsson, B., Willmore, K. & Hall, B. K. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthropol. 119, 131–158 (2002).Article 

    Google Scholar 
    14.Gould, S. J. A developmental constraint in cerion, with comments on the definition and interpretation of constraint in evolution. Evolution 43, 516–539 (1989).PubMed 

    Google Scholar 
    15.Arthur, W. Developmental drive: an important determinant of the direction of phenotypic evolution. Evol. Dev. 3, 271–278 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Klingenberg, C. P. in Variation: A Central Concept in Biology (eds Hallgrímsson, B. & Hall, B.) 219–247 (Elsevier, 2005).17.Felice, R. N. & Goswami, A. Developmental origins of mosaic evolution in the avian cranium. Proc. Natl Acad. Sci. USA 115, 555–560 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bell, E., Andres, B. & Goswami, A. Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. J. Evol. Biol. 24, 2586–2599 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Gatesy, S. M. & Dial, K. P. Locomotor modules and the evolution of avian flight. Evolution 50, 331–340 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Gatesy, S. M. & Middleton, K. M. Bipedalism, flight, and the evolution of theropod locomotor diversity. J. Vertebr. Paleontol. 17, 308–329 (1997).Article 

    Google Scholar 
    21.Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S. & Bairlein, F. Functional morphology and integration of corvid skulls—a 3D geometric morphometric approach. Front. Zool. 6, 2 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Bright, J. A., Marugán-Lobón, J., Rayfield, E. J. & Cobb, S. N. The multifactorial nature of beak and skull shape evolution in parrots and cockatoos (Psittaciformes). BMC Evol. Biol. 19, 104 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Bright, J. A., Marugán-Lobón, J., Cobb, S. N. & Rayfield, E. J. The shapes of bird beaks are highly controlled by nondietary factors. Proc. Natl Acad. Sci. USA 113, 5352–5357 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Navalón, G., Marugán-Lobón, J., Bright, J. A., Cooney, C. R. & Rayfield, E. J. The consequences of craniofacial integration for the adaptive radiations of Darwin’s finches and Hawaiian honeycreepers. Nat. Ecol. Evol. 4, 270–278 (2020).PubMed 
    Article 

    Google Scholar 
    25.Felice, R. N., Randau, M. & Goswami, A. A fly in a tube: macroevolutionary expectations for integrated phenotypes. Evolution 72, 2580–2594 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Shatkovska, O. V. & Ghazali, M. Integration of skeletal traits in some passerines: impact (or the lack thereof) of body mass, phylogeny, diet and habitat. J. Anat. 236, 274–287 (2020).PubMed 
    Article 

    Google Scholar 
    27.Hieronymus, T. L. Qualitative skeletal correlates of wing shape in extant birds (Aves: Neoaves). BMC Evol. Biol. 15, 30 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Felice, R. N., Tobias, J. A., Pigot, A. L. & Goswami, A. Dietary niche and the evolution of cranial morphology in birds. Proc. R. Soc. B 286, 20182677 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Navalón, G., Bright, J. A., Marugán-Lobón, J. & Rayfield, E. J. The evolutionary relationship among beak shape, mechanical advantage, and feeding ecology in modern birds. Evolution 73, 422–435 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Grant, R. B. & Grant, P. R. What Darwin’s finches can teach us about the evolutionary origin and regulation of biodiversity. BioScience 53, 965–975 (2003).Article 

    Google Scholar 
    32.Van de Ven, T., Martin, R., Vink, T., McKechnie, E. & Cunningham, S. Regulation of heat exchange across the hornbill beak: functional similarities with toucans? PLoS ONE 11, e0154768 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Lamichhaney, S. et al. Rapid hybrid speciation in Darwin’s finches. Science 359, 224–228 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Klingenberg, C. P. & Marugán-Lobón, J. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Syst. Biol. 62, 591–610 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Dececchi, T. A. & Larsson, H. C. Body and limb size dissociation at the origin of birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67, 2741–2752 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Nudds, R., Dyke, G. & Rayner, J. Forelimb proportions and the evolutionary radiation of Neornithes. Proc. R. Soc. Lond. B 271, S324–S327 (2004).
    Google Scholar 
    37.Benson, R. B. & Choiniere, J. N. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R. Soc. B 280, 20131780 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Videler, J. J. Avian Flight (Oxford Univ. Press, 2006).39.Carrano, M. T. & Sidor, C. A. Theropod hind limb disparity revisited: comments on Gatesy and Middleton (1997). J. Vertebr. Paleontol. 19, 602–605 (1999).Article 

    Google Scholar 
    40.Middleton, K. M. & Gatesy, S. M. Theropod forelimb design and evolution. Zool. J. Linn. Soc. 128, 149–187 (2000).Article 

    Google Scholar 
    41.Young, N. M., Linde-Medina, M., Fondon, J. W., Hallgrímsson, B. & Marcucio, R. S. Craniofacial diversification in the domestic pigeon and the evolution of the avian skull. Nat. Ecol. Evol. 1, 0095 (2017).Article 

    Google Scholar 
    42.Martín-Serra, A. & Benson, R. B. Developmental constraints do not influence long-term phenotypic evolution of marsupial forelimbs as revealed by interspecific disparity and integration patterns. Am. Nat. 195, 547–560 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Dumont, E. R. et al. Selection for mechanical advantage underlies multiple cranial optima in New World leaf-nosed bats. Evolution 68, 1436–1449 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Hedrick, B. P. et al. Morphological diversification under high integration in a hyper diverse mammal clade. J. Mamm. Evol. 27, 563–575 (2020).Article 

    Google Scholar 
    45.Rossoni, D. M., Costa, B. M., Giannini, N. P. & Marroig, G. A multiple peak adaptive landscape based on feeding strategies and roosting ecology shaped the evolution of cranial covariance structure and morphological differentiation in phyllostomid bats. Evolution 73, 961–981 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).CAS 
    Article 

    Google Scholar 
    47.Bjarnason, A. & Benson, R. A 3D geometric morphometric dataset quantifying skeletal variation in birds. MorphoMuseuM 7, e125 (2021).Article 

    Google Scholar 
    48.Adams, D. C., Rohlf, F. J. & Slice, D. E. Geometric morphometrics: ten years of progress following the ‘revolution’. Ital. J. Zool. 71, 5–16 (2004).Article 

    Google Scholar 
    49.R Core Team R: A Language and Environment for Statistical Computing v.3.6.3 (R Foundation for Statistical Computing, 2020).50.Birds of the World (The Cornell Lab of Ornithology, 2021); https://birdsoftheworld.org/bow/home51.Dunning, J. B. Jr CRC Handbook of Avian Body Masses (CRC, 1992).52.The IUCN Red List of Threatened Species (IUCN, 2019); https://www.iucnredlist.org/53.Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    54.Taylor, G. & Thomas, A. Evolutionary Biomechanics (Oxford Univ. Press, 2014).55.Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: Cluster analysis basics and extensions. R package version 2.1.0 (2019).56.Grafen, A. The phylogenetic regression. Phil. Trans. R. Soc. Lond. B 326, 119–157 (1989).CAS 
    Article 

    Google Scholar 
    57.Revell, L. J. Size-correction and principal components for interspecific comparative studies. Evolution 63, 3258–3268 (2009).PubMed 
    Article 

    Google Scholar 
    58.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team nlme: Linear and nonlinear mixed effects models. R package version 3.1-145 (2020).59.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 
    CAS 

    Google Scholar 
    60.Goodall, C. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. B 53, 285–321 (1991).
    Google Scholar 
    61.Adams, D., Collyer, M. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.2.1 (2020).62.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    63.Adams, D. C. & Felice, R. N. Assessing trait covariation and morphological integration on phylogenies using evolutionary covariance matrices. PLoS ONE 9, e94335 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Rohlf, F. J. & Corti, M. Use of two-block partial least-squares to study covariation in shape. Syst. Biol. 49, 740–753 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Adams, D. C. & Collyer, M. L. On the comparison of the strength of morphological integration across morphometric datasets. Evolution 70, 2623–2631 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Melo, D., Garcia, G., Hubbe, A., Assis, A. P. & Marroig, G. Evolqg—an R package for evolutionary quantitative genetics [version 3; referees: 2 approved, 1 approved with reservations]. F1000Research 4, 925 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Goswami, A. & Polly, P. D. Methods for studying morphological integration and modularity. Paleontol. Soc. Pap. 16, 213–243 (2010).Article 

    Google Scholar 
    68.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-6 (2019). More

  • in

    Lethal coalitionary attacks of chimpanzees (Pan troglodytes troglodytes) on gorillas (Gorilla gorilla gorilla) in the wild

    1.Gómez, J. M., Verdú, M., González-Megías, A. & Méndez, M. The phylogenetic roots of human lethal violence. Nature 538, 233–237. https://doi.org/10.1038/nature19758 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    2.Darwin, C. The Descent of Man, and Selection in Relation to Sex. (Appleton, 1872).3.Hamilton, W. D. The genetical evolution of social behaviour. I. J. Theor. Biol. 7, 1–16 (1964).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Smith, J. M. & Price, G. R. The logic of animal conflict. Nature 246, 15–18. https://doi.org/10.1038/246015a0 (1973).ADS 
    MATH 
    Article 

    Google Scholar 
    5.Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, 507–508. https://doi.org/10.1016/j.cub.2010.04.021 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Wrangham, R. W. Evolution of coalitionary killing. Yearb. Phys. Anthropol. 42, 1–30 (1999).Article 

    Google Scholar 
    7.Boesch, C. et al. Intergroup conflicts among chimpanzees in Taı National Park: Lethal violence and the female perspective. Am. J. Primatol. 70, 519–532. https://doi.org/10.1002/ajp.20524 (2008).Article 
    PubMed 

    Google Scholar 
    8.Robbins, M. M. & Robbins, A. M. Simulation of the population dynamics and social structure of the Virunga Mountain gorillas. Am. J. Primatol. 63, 201–223. https://doi.org/10.1002/ajp.20052 (2004).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    9.Watts, D. P. Infanticide in Mountain gorillas: New cases and a reconsideration of evidence. Ethology 81, 1–18 (1989).ADS 
    Article 

    Google Scholar 
    10.Yamagiwa, J., Kahekwa, J. & Basabose, A. K. Infanticide and social flexibility in the genus Gorilla. Primates 50, 293–303. https://doi.org/10.1007/s10329-009-0163-0 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417. https://doi.org/10.1038/nature13727 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Marzec, A. M. et al. The dark side of the red ape: Male-mediated lethal female competition in Bornean orangutans. Behav. Ecol. Sociobiol. 70, 459–466. https://doi.org/10.1007/s00265-015-2053-3 (2016).Article 

    Google Scholar 
    13.Goodall, J. The Chimpanzees of Gombe: Patterns of Behaviour. (Belknap Press of Harvard University Press, 1986).14.Nishida, T., Hiraiwa-Hasegawa, M., Hasegawa, T. & Takahata, Y. Group extinction and female transfer in wild chimpanzees in the Mahale National Park, Tanzania. Z. Tierpsychol. 67, 284–301 (1985).Article 

    Google Scholar 
    15.Mitani, J. C. & Watts, D. P. Correlates of territorial boundary patrol behaviour in wild chimpanzees. Anim. Behav. 70, 1079–1086. https://doi.org/10.1016/j.anbehav.2005.02.012 (2005).Article 

    Google Scholar 
    16.Wrangham, R. The Goodness Paradox: The Strange Relationship Between Virtue and Violence in Human Evolution. (Pantheon, 2019).17.Boehm, C. In Us Against Them: Coalitions and Alliances in Humans and Other Animals (eds Harcourt, A. & De Waal, F. B. M.) 37–173 (Oxford University Press, 1992).18.Bermejo, M. Home-range use and intergroup encounters in western gorillas (Gorilla g. gorilla) at Lossi Forest, North Congo. Am. J. Primatol. 64, 223–232. https://doi.org/10.1002/ajp.20073 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Kaessmann, H. & Pääbo, S. The genetical history of humans and the great apes. J. Intern. Med. 251, 1–18. https://doi.org/10.1046/j.1365-2796.2002.00907.x (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Robbins, M. M. & Robbins, A. M. Variation in the social organization of gorillas: Life history and socioecological perspectives. Evol. Anthropol. Issues News Rev. 27, 218–233. https://doi.org/10.1002/evan.21721 (2018).Article 

    Google Scholar 
    21.Yamagiwa, J., Basabose, K., Kaleme, K. & Yumoto, T. In Gorilla Biology: A Multidisciplinary Perspective (eds Taylor, A. B. & Goldsmith, M. L.) 328–356 (Cambridge University Press, 2003).22.Robbins, M. M. et al. Social structure and life-history patterns in western gorillas (Gorilla gorilla gorilla). Am. J. Primatol. 64, 145–159. https://doi.org/10.1002/ajp.20069 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Bradley, B. J., Doran-Sheehy, D. M., Lukas, D., Boesch, C. & Vigilant, L. Dispersed male networks in western gorillas. Curr. Biol. 14, 510–513. https://doi.org/10.1016/j.cub.2004.02.062 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Sicotte, P. Inter-group encounters and female transfer in mountain gorillas: Influence of group composition on male behavior. Am. J. Primatol. 30, 21–36. https://doi.org/10.1002/ajp.1350300103 (1993).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Rosenbaum, S., Vecellio, V. & Stoinski, T. Observations of severe and lethal coalitionary attacks in wild mountain gorillas. Sci. Rep. 6, 37018. https://doi.org/10.1038/srep37018 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Morrison, R. E., Dunn, J. C., Illera, G., Walsh, P. D. & Bermejo, M. Western gorilla space use suggests territoriality. Sci. Rep. 10, 3692. https://doi.org/10.1038/s41598-020-60504-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Palomares, F. & Caro, T. M. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508. https://doi.org/10.1086/303189 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Dayan, T. & Simberloff, D. Size patterns among competitors: Ecological character displacement and character release in mammals, with special reference to island populations. Mammal Rev. 28, 99–124. https://doi.org/10.1046/j.1365-2907.1998.00029.x (1998).Article 

    Google Scholar 
    29.Taylor, R. J. Predation. 166 (Springer Science & Business Media, 2013).30.Methion, S. & Díaz López, B. Spatial segregation and interspecific killing of common dolphins (Delphinus delphis) by bottlenose dolphins (Tursiops truncatus). Acta Ethol. https://doi.org/10.1007/s10211-021-00363-0 (2021).Article 

    Google Scholar 
    31.Polis, G. A., Myers, C. A. & Holt, R. D. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330. https://doi.org/10.1146/annurev.es.20.110189.001501 (1989).Article 

    Google Scholar 
    32.Polis, G. A. & Holt, R. D. Intraguild predation: The dynamics of complex trophic interactions. Trends Ecol. Evol. 7, 151–154. https://doi.org/10.1016/0169-5347(92)90208-S (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.de Oliveira, T. & Pereira, J. Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J. Mamm. Evol. https://doi.org/10.1007/s10914-013-9251-4 (2014).Article 

    Google Scholar 
    34.Surbeck, M. & Hohmann, G. Primate hunting by bonobos at LuiKotale, Salonga National Park. Curr. Biol. 18, 906–907. https://doi.org/10.1016/j.cub.2008.08.040 (2008).Article 
    CAS 

    Google Scholar 
    35.Hohmann, G. & Fruth, B. New records on prey capture and meat eating by bonobos at Lui Kotale, Salonga National Park, Democratic Republic of Congo. Folia Primatol. 79, 103–110. https://doi.org/10.1159/000110679 (2008).Article 

    Google Scholar 
    36.Stanford, C. B. Chimpanzee hunting behavior and human evolution. Am. Sci. 83, 256–261 (1995).ADS 

    Google Scholar 
    37.Newton-Fisher, N. E. In Handbook of Paleoanthropology (eds Winfried, H. & Ian, T.) 1295–1320 (Springer, 2007).38.Mitani, J. C. & Watts, D. P. Demographic influences on the hunting behavior of chimpanzees. Am. J. Phys. Anthropol. 109, 439–454. https://doi.org/10.1002/(SICI)1096-8644(199908)109:43.0.CO;2-3 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Mitani, J. C. & Watts, D. P. Why do chimpanzees hunt and share meat?. Anim. Behav. 61, 915–924. https://doi.org/10.1006/anbe.2000.1681 (2001).Article 

    Google Scholar 
    40.Nishida, T., Uehara, S. & Nyundo, R. Predatory behavior among wild chimpanzees of the Mahale mountains. Primates 20, 1–20. https://doi.org/10.1007/BF02373826 (1979).Article 

    Google Scholar 
    41.Boesch, C. & Boesch, H. Hunting behavior of wild chimpanzees in the Tai National Park. Am. J. Phys. Anthropol. 78, 547–573. https://doi.org/10.1002/ajpa.1330780410 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Watts, D. P. & Mitani, J. C. Hunting behavior of chimpanzees at Ngogo, Kibale National Park, Uganda. Int. J. Primatol. 23, 1–28. https://doi.org/10.1023/A:1013270606320 (2002).Article 

    Google Scholar 
    43.Pika, S. et al. Wild chimpanzees (Pan troglodytes troglodytes) exploit tortoises (Kinixys erosa) via percussive technology. Sci. Rep. 9, 7. https://doi.org/10.1038/s41598-019-43301-8 (2019).CAS 
    Article 

    Google Scholar 
    44.Basabose, K. & Yamagiwa, J. Predation on mammals by chimpanzees in the montane forest of Kahuzi, Zaire. Primates 38, 45–55. https://doi.org/10.1007/BF02385921 (1997).Article 

    Google Scholar 
    45.Klein, H. et al. Hunting of mammals by central chimpanzees (Pan troglodytes troglodytes) in the Loango National Park, Gabon. Primates 62, 267–278. https://doi.org/10.1007/s10329-020-00885-4 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Sanz, C., Morgan, D., Strindberg, S. & Onononga, J. R. Distinguishing between the nests of sympatric chimpanzees and gorillas. J. Appl. Ecol. 44, 263–272. https://doi.org/10.1111/j.1365-2664.2007.01278.x (2007).Article 

    Google Scholar 
    47.Harcourt, A. H. Is the gorilla a threatened species? How should we judge? Biol. Conserv. 75, 165–176. https://doi.org/10.1016/0006-3207(95)00059-3 (1996).Article 

    Google Scholar 
    48.Matthews, A. & Matthews, A. Survey of gorillas (Gorilla gorilla gorilla) and chimpanzees (Pan troglodytes troglodytes) in Southwestern Cameroon. Primates 45, 15–24. https://doi.org/10.1007/s10329-003-0058-4 (2004).PubMed 
    Article 

    Google Scholar 
    49.Arandjelovic, M. et al. Effective non-invasive genetic monitoring of multiple wild western gorilla groups. Biol. Conserv. 143, 1780–1791. https://doi.org/10.1016/j.biocon.2010.04.030 (2010).Article 

    Google Scholar 
    50.Arandjelovic, M., Head, J., Rabanal, L. I., Schubert, G., Mettke, E., Boesch, C., Robbins, M. M. & Vigilant, L. Non-invasive genetic monitoring of wild central chimpanzees. PLoS One 6(3) (2011).51.Martínez-Íñigo, L., Baas, P., Klein, H., Pika, S. & Deschner, T. Intercommunity interactions and killings in central chimpanzees (Pan troglodytes troglodytes) from Loango National Park, Gabon. Primates, 1–14 https://doi.org/10.1007/s10329-021-00921-x (2021).52.Furuichi, T., Inagaki, H. & Angoue-Ovono, S. Population density of chimpanzees and gorillas in the Petit Loango Reserve, Gabon: Employing a new method to distinguish between nests of the two species. Int. J. Primatol. 18, 1029–1046. https://doi.org/10.1023/A:1026356432486 (1997).Article 

    Google Scholar 
    53.Poulsen, J. R. & Clark, C. J. Densities, distributions, and seasonal movements of gorillas and chimpanzees in swamp forest in Northern Congo. Int. J. Primatol. 25, 285–306. https://doi.org/10.1023/B:IJOP.0000019153.50161.58 (2004).Article 

    Google Scholar 
    54.Morgan, D., Sanz, C., Onononga, J. R. & Strindberg, S. Ape abundance and habitat use in the Goualougo Triangle, Republic of Congo. Int. J. Primatol. 27, 147–179. https://doi.org/10.1007/s10764-005-9013-0 (2006).Article 

    Google Scholar 
    55.Vieira, W. F., Kerry, C. & Hockings, K. J. A comparison of methods to determine chimpanzee home-range size in a forest–farm mosaic at Madina in Cantanhez National Park, Guinea-Bissau. Primates 60, 355–365. https://doi.org/10.1007/s10329-019-00724-1 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). https://www.r-project.org/.57.Calenge, C. The package adehabitat for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Model. 197, 1035 (2006).Article 

    Google Scholar 
    58.Fossey, D. Vocalizations of the mountain gorilla (Gorilla gorilla beringei). Anim. Behav. 20, 36–53. https://doi.org/10.1016/S0003-3472(72)80171-4 (1972).Article 

    Google Scholar 
    59.Hagemann, L. et al. Long-term inference of population size and habitat use in a socially dynamic population of wild western lowland gorillas. Conserv. Genet. 20, 1303–1314. https://doi.org/10.1007/s10592-019-01209-w (2019).Article 

    Google Scholar 
    60.Boesch, C. Cooperative hunting roles among taï chimpanzees. Hum. Nat. 13, 27–46. https://doi.org/10.1007/s12110-002-1013-6 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Wilkinson, R., Leudar, I. & Pika, S. In Developments in Primate Gesture Research (eds Simone, P. & Katja, L.) 199–221 (John Benjamins Publishing Company, 2012).62.Yamagiwa, J. & Basabose, A. K. Diet and seasonal changes in sympatric gorillas and chimpanzees at Kahuzi-Biega National Park. Primates 47, 74–90. https://doi.org/10.1007/s10329-005-0147-7 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Stanford, C. B. & Nkurunungi, J. B. Behavioral ecology of sympatric chimpanzees and gorillas in Bwindi Impenetrable National Park, Uganda: Diet. Int. J. Primatol. 24, 901–918. https://doi.org/10.1023/A:1024689008159 (2003).Article 

    Google Scholar 
    64.Morgan, D. & Sanz, C. In Feeding Ecology in Apes and Other Primates (eds Hohmann, G., Robbins, M. M., & Boesch, C.) 97–122 (Cambridge University Press, 2006).65.Yamagiwa, J. & Basabose, A. K. In Feeding Ecology in Apes and Other Primates. 73–96 (Cambridge University Press, 2006).66.Tutin, C. E. & Fernandez, M. Composition of the diet of chimpanzees and comparisons with that of sympatric lowland gorillas in the Lopé Reserve, Gabon. Am. J. Primatol. 30, 195–211 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Jones, C. & Sabater Pi, J. Comparative Ecology of Gorilla gorilla (Savage & Wyman) and Pan troglodytes (Blumenbuch) in Rio Muni, West Africa. (S. Karger, 1971).68.Basabose, A. K. & Yamagiwa, J. Factors affecting nesting site choice in chimpanzees at Tshibati, Kahuzi-Biega National Park: Influence of sympatric gorillas. Int. J. Primatol. 23, 263–282 (2002).Article 

    Google Scholar 
    69.Walsh, P. D., Breuer, T., Sanz, C., Morgan, D. & Doran-Sheehy, D. Potential for Ebola transmission between gorilla and chimpanzee social groups. Am. Nat. 169, 684–689. https://doi.org/10.1086/513494 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Stanford, C. B. The behavioral ecology of sympatric African apes: Implications for understanding fossil hominoid ecology. Primates 47, 91–101. https://doi.org/10.1007/s10329-005-0148-6 (2006).PubMed 
    Article 

    Google Scholar 
    71.Eckardt, W. & Zuberbühler, K. Cooperation and competition in two forest monkeys. Behav. Ecol. 15, 400–411. https://doi.org/10.1093/beheco/arh032 (2004).Article 

    Google Scholar 
    72.Rimbach, R., Pardo-Martinze, A., Montes-Rojas, A., Di Fiore, A. & Link, A. Interspecific infanticide and infant-directed aggression by spider monkeys (Ateles hybridus) in a fragmented forest in Colombia. Am. J. Primatol. 74, 990–997. https://doi.org/10.1002/ajp.22052 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    73.Donadio, E. & Buskirk, S. W. Diet, morphology, and interspecific killing in Carnivora. Am. Nat. 167, 524–536. https://doi.org/10.1086/501033 (2006).PubMed 
    Article 

    Google Scholar 
    74.Head, J., Boesch, C., Makaga, L. & Robbins, M. Sympatric Chimpanzees (Pan troglodytes troglodytes) and Gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon: Dietary composition, seasonality, and intersite comparisons. Int. J. Primatol. 32, 755–775. https://doi.org/10.1007/s10764-011-9499-6 (2011).Article 

    Google Scholar 
    75.Yamagiwa, J., Mwanza, N., Yumoto, T. & Maruhashi, T. Seasonal change in the composition of the diet of eastern lowland gorillas. Primates 35, 1–14. https://doi.org/10.1007/BF02381481 (1994).Article 

    Google Scholar 
    76.Kuroda, S. J., Nishihara, T., Suzuki, S. & Oko, R. A. In Great Ape Societies (eds McGrew, W. C., Marchant, L. F., & Nishida, T.) 71–81 (Cambridge University Press, 1996).77.Rogers, L. L. & Mech, L. D. Interactions of wolves and black bears in Northeastern Minnesota. J. Mammal. 62, 434–436. https://doi.org/10.2307/1380735 (1981).Article 

    Google Scholar 
    78.Eaton, R. Interference competition among carnivores: A model for the evolution of social behavior. Carnivore 2, 82–90 (1979).
    Google Scholar 
    79.Arim, M. & Marquet, P. A. Intraguild predation: A widespread interaction related to species biology. Ecol. Lett. 7, 557–564. https://doi.org/10.1111/j.1461-0248.2004.00613.x (2004).Article 

    Google Scholar 
    80.Watts, D. P., Potts, K. B., Lwanga, J. S. & Mitani, J. C. Diet of chimpanzees (Pan troglodytes schweinfurthii) at Ngogo, Kibale National Park, Uganda, 1. Diet composition and diversity. Am. J. Primatol. 74, 114–129. https://doi.org/10.1002/ajp.21016 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    81.Remis, M. J., Dierenfeld, E., Mowry, C. & Carroll, R. Nutritional aspects of western lowland gorilla (Gorilla gorilla gorilla) diet during seasons of fruit scarcity at Bai Hokou, Central African Republic. Int. J. Primatol. 22, 807–836. https://doi.org/10.1023/A:1012021617737 (2001).Article 

    Google Scholar 
    82.Watts, D. P., Muller, M., Amsler, S. J., Mbabazi, G. & Mitani, J. C. Lethal intergroup aggression by chimpanzees in Kibale National Park, Uganda. Am. J. Primatol. 68, 161–180. https://doi.org/10.1002/ajp.20214 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Watts, D. P. & Mitani, J. C. Infanticide and cannibalism by male chimpanzees at Ngogo, Kibale National Park, Uganda. Primates 41, 357–365. https://doi.org/10.1007/BF02557646 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Furuichi, T. Variation in intergroup relationships among species and among and within local populations of African Apes. Int. J. Primatol. 41, 1–21. https://doi.org/10.1007/s10764-020-00134-x (2020).Article 

    Google Scholar 
    85.Williams, J. M., Oehlert, G., Carlis, J. & Pusey, A. E. Why do male chimpanzees defend a group range? Reassessing male territoriality. Anim. Behav. 68, 523–532. https://doi.org/10.1016/j.anbehav.2003.09.015 (2004).Article 

    Google Scholar 
    86.Bush, E. R. et al. Long-term collapse in fruit availability threatens Central African forest megafauna. Science 370, 1219–1222. https://doi.org/10.1126/science.abc7791 (2020).ADS 
    Article 
    PubMed 

    Google Scholar 
    87.Plavcan, J. M. Social behavior of early hominins. Int. J. Primatol. 33, 1247–1250. https://doi.org/10.1007/s10764-012-9641-0 (2012).Article 

    Google Scholar 
    88.Kissel, M. & Kim, N. C. The emergence of human warfare: Current perspectives. Am. J. Phys. Anthropol. 168, 141–163. https://doi.org/10.1002/ajpa.23751 (2019).Article 
    PubMed 

    Google Scholar 
    89.Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. 3. https://doi.org/10.1126/sciadv.1600946 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Altmann, J. Observational study of behaviour: Sampling methods. Behaviour 49, 227–267 (1974).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.CyberTracker Conservation NPC. CyberTracker Conservation. (2021).92.Köndgen, S. et al. Pandemic human viruses cause decline of endangered great apes. Curr. Biol. 18, 260–264. https://doi.org/10.1016/j.cub.2008.01.012 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    93.Leendertz, F. H. et al. Anthrax kills wild chimpanzees in a tropical rainforest. Nature 430, 451–452. https://doi.org/10.1038/nature02722 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Pivot burrowing of scarab beetle (Trypoxylus dichotomus) larva

    Here, we analyzed the burrowing mechanisms of beetle larvae. Beetle larvae were placed on the soil surface to make sure they could burrow into the soil (Fig. 1a). In order to observe the burrowing behavior, a two-dimensional (2D) observation tank (130 × 210 ×  ~ 20 mm) was constructed (Fig. 1b); we succeeded in observing the dynamics of the larvae under a 2D soil condition (Fig. 1c, Supplementary Movie 1). The larvae burrowed by rotating themselves (Fig. 1d, Supplementary Movie 1). Rotation was observed regardless of sex. All observed individuals proceeded towards the bottom and stopped when rotating at the bottom layer (Fig. 1c).Figure 1Burrowing dynamics of scarab beetle (Trypoxylus dichotomus) larva. (a) Burrowing images. After beetle is put on the soil, they can burrow in a short time ( More

  • in

    Induced plasticity alters responses to conspecific interactions in seedlings of a perennial grass

    1.Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 155, 115–155 (1965).Article 

    Google Scholar 
    2.Sultan, S. E. Phenotypic plasticity and plant adaptation. Acta Bot. Neerl. 44, 363–383 (1995).Article 

    Google Scholar 
    3.Callaway, R. M., Pennings, S. C. & Richards, C. L. Phenotypic plasticity and interactions among plants. Ecology 84, 1115–1128 (2003).Article 

    Google Scholar 
    4.Fordyce, J. A. The evolutionary consequences of ecological interactions mediated through phenotypic plasticity. J. Exp. Biol. 209, 2377–2383 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Owusu-Nketia, S. et al. Functional roles of root plasticity and its contribution to water uptake and dry matter production of CSSLs with the genetic background of KDML105 under soil moisture fluctuation. Plant Prod. Sci. 21, 266–277 (2018).CAS 
    Article 

    Google Scholar 
    6.Acciaresi, H. & Guiamet, J. Below- and above-ground growth and biomass allocation in maize and Sorghum halepense in response to soil water competition. Weed Res. 50, 481–492 (2010).Article 

    Google Scholar 
    7.Oduor, A. M. O. Evolutionary responses of native plant species to invasive plants: A review. New Phytol. 200, 986–992 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Mealor, B. & Hild, A. L. Potential selection in native grass populations by exotic invasion. Mol. Ecol. 15, 2291–2300 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Ferrero-Serrano, Á., Hild, A. L. & Mealor, B. A. Can invasive species enhance competitive ability and restoration potential in native grass populations?. Restor. Ecol. 19, 545–551 (2011).Article 

    Google Scholar 
    10.Goergen, E. M., Leger, E. A. & Espeland, E. K. Native perennial grasses show evolutionary response to Bromus tectorum (cheatgrass) invasion. PLoS ONE 6, 1–8 (2011).Article 
    CAS 

    Google Scholar 
    11.Melgoza, G., Nowak, R. S. & Tausch, R. J. Soil water exploitation after fire: competition between Bromus tectorum (cheatgrass) and two native species. Oecologia 83, 7–13 (1990).ADS 
    PubMed 
    Article 

    Google Scholar 
    12.Reichenberger, G. & Pyke, D. A. Impact of early root competition on fitness components of four semiarid species. Oecologia 85, 159–166 (1990).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Phillips, A. J. & Leger, E. A. Plastic responses of native plant root systems to the presence of an invasive annual grass 1. Am. J. Bot. 102, 73–84 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Cipollini, D., Purrington, C. B. & Bergelson, J. Costs of induced responses in plants. Basic Appl. Ecol. 4, 79–85 (2003).Article 

    Google Scholar 
    15.Relyea, R. Competitor-induced plasticity in tadpoles: consequences, cues, and connections to predator-induced plasticity. Ecol. Monogr. 72, 523–540 (2002).Article 

    Google Scholar 
    16.War, A. R., Sharma, H. C., Paulraj, M. G., War, M. Y. & Ignacimuthu, S. Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal. Behav. 6, 1973–1978 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Karban, A. R., Baldwin, I. T., Baxter, K. J., Laue, G. & Felton, G. W. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oeciologia 125, 66–71 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525, 515–518 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    20.HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 43, 227–248 (2012).Article 

    Google Scholar 
    21.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol. Lett. 13, 1085–1093 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Muthukrishnan, R., Sullivan, L. L., Shaw, A. K. & Forester, J. D. Trait plasticity alters the range of possible coexistence conditions in a competition–colonisation trade-off. Ecol. Lett. 23, 791–799 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Pérez-Ramos, I. M., Matías, L., Gómez-Aparicio, L. & Godoy, Ó. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat. Commun. 10, 1–11 (2019).Article 
    CAS 

    Google Scholar 
    24.Roscher, C., Schumacher, J., Schmid, B. & Schulze, E.-D. Contrasting effects of intraspecific trait variation on trait-based niches and performance of legumes in plant mixtures. PLoS ONE 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    25.Liu, B. et al. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. New Phytol. 208, 125–136 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Turcotte, M. M. & Levine, J. M. Phenotypic plasticity and species coexistence. Trends Ecol. Evol. 31, 803–813 (2016).PubMed 
    Article 

    Google Scholar 
    27.Foster, B. L. Establishment, competition and the distribution of native grasses among Michigan old-fields. J. Ecol. 87, 476–489 (1999).Article 

    Google Scholar 
    28.James, J. J., Svejcar, T. J. & Rinella, M. J. Demographic processes limiting seedling recruitment in arid grassland restoration. J. Appl. Ecol. 48, 961–969 (2011).Article 

    Google Scholar 
    29.Larson, J. E., Anacker, B. L., Wanous, S. & Funk, J. L. Ecological strategies begin at germination: Traits, plasticity and survival in the first 4 days of plant life. Funct. Ecol. 34, 968–979 (2020).Article 

    Google Scholar 
    30.Foxx, A. Data: Induced plasticity alters responses to conspecific interactions in seedlings of a perennial grass. Mendeley Data https://doi.org/10.17632/hhpnttctth.1 (2021).Article 

    Google Scholar 
    31.R Core Team. R: A language and environment for statistical computing. R Found. Stat. Comput. Vienna, Austria (2020).32.Crawley, M. J. Statistics: An introduction using R (Wiley, Hoboken, 2005).MATH 
    Book 

    Google Scholar 
    33.Kraft, N. J. B., Crutsinger, G. M., Forrestel, E. J. & Emery, N. C. Functional trait differences and the outcome of community assembly: An experimental test with vernal pool annual plants. Oikos 123, 1391–1399 (2014).Article 

    Google Scholar 
    34.Foxx, A. J. & Kramer, A. T. Variation in number of root tips influences survival in competition with an invasive grass. J. Arid Environ. 179, 104189 (2020).ADS 
    Article 

    Google Scholar 
    35.McGlone, C. M., Sieg, C. H., Kolb, T. E. & Nietupsky, T. Established native perennial grasses out-compete an invasive annual grass regardless of soil water and nutrient availability. Plant Ecol. 213, 445–457 (2011).Article 

    Google Scholar 
    36.Liu, J. G., Mahoney, K. J., Sikkema, P. H. & Swanton, C. J. The importance of light quality in crop-weed competition. Weed Res. 49, 217–224 (2009).Article 

    Google Scholar 
    37.Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998).CAS 
    Article 

    Google Scholar 
    38.Gundel, P. E., Pierik, R., Mommer, L. & Ballaré, C. L. Competing neighbors: Light perception and root function. Oecologia 176, 1–10 (2014).ADS 
    PubMed 
    Article 

    Google Scholar 
    39.Poorter, H. et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Berendse, F. & Móller, F. Effects of competition on root-shoot allocation in Plantago lanceolata L.: Adaptive plasticity or ontogenetic drift?. Plant Ecol. 201, 567–573 (2009).Article 

    Google Scholar 
    41.Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).Article 

    Google Scholar 
    42.Bennett, J. A., Riibak, K., Tamme, R., Lewis, R. J. & Pärtel, M. The reciprocal relationship between competition and intraspecific trait variation. J. Ecol. 104, 1410–1420 (2016).Article 

    Google Scholar 
    43.Jupp, A. & Newman, I. Morphological and anatomical effects of severe drought on the roots of Lolium perenne L. New Phytol. 105, 393–402 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Foxx, A. J. & Kramer, A. T. Hidden variation: Cultivars and wild plants differ in trait variation with surprising root trait outcomes. Restor. Ecol. https://doi.org/10.1111/rec.13336 (2020).Article 

    Google Scholar 
    45.Zeldin, J., Lichtenberger, T. M., Foxx, A. J., Webb Williams, E. & Kramer, A. T. Intraspecific functional trait structure of restoration-relevant species: Implications for restoration seed sourcing. J. Appl. Ecol. 57, 864–874 (2020).Article 

    Google Scholar 
    46.Abbott, J. M. & Stachowicz, J. J. The relative importance of trait vs genetic differentiation for the outcome of interactions among plant genotypes. Ecology 97, 84–94 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Adler, P. B. et al. Competition and coexistence in plant communities: Intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Schroeder-Georgi, T. et al. From pots to plots: Hierarchical trait-based prediction of plant performance in a mesic grassland. J. Ecol. 104, 206–218 (2016).Article 

    Google Scholar 
    49.Taylor, D. & Aarssen, L. Complex competitive relationships among genotypes of three perennial grasses: Implications for species coexistence. Am. Nat. 136, 305–327 (1990).Article 

    Google Scholar 
    50.Espeland, E. K. et al. Evolution of plant materials for ecological restoration: Insights from the applied and basic literature. J. Appl. Ecol. 54, 102–115 (2017).Article 

    Google Scholar 
    51.Rottstock, T., Kummer, V., Fischer, M. & Joshi, J. Rapid transgenerational effects in Knautia arvensis in response to plant community diversity. J. Ecol. 105, 714–725 (2017).CAS 
    Article 

    Google Scholar 
    52.Álvarez-Yépiz, J. C., Búrquez, A. & Dovčiak, M. Ontogenetic shifts in plant–plant interactions in a rare cycad within angiosperm communities. Oecologia 175(2), 725–735. https://doi.org/10.1007/s00442-014-2929-3 (2014).ADS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Invasion, establishment, and spread of invasive mosquitoes from the Culex coronator complex in urban areas of Miami-Dade County, Florida

    1.Wilke, A. B. B., Beier, J. C. & Benelli, G. Complexity of the relationship between global warming and urbanization—An obscure future for predicting increases in vector-borne infectious diseases. Curr. Opin. Insect Sci. 35, 1–9 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.WHO. Regional plan of action 2019–2023 for implementation of the global vector control response 2017–2030. World Health Organization. https://apps.who.int/iris/handle/10665/325805 (2019).4.Brady, O. J. & Hay, S. I. The global expansion of dengue: How Aedes aegypti mosquitoes enabled the first pandemic arbovirus. Annu. Rev. Entomol. 65, 191–208 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Rosenberg, R. et al. Vital signs: Trends in reported vectorborne disease cases—United States and Territories, 2004–2016. Morb. Mortal. Wkly. Rep. 67, 496–501 (2018).Article 

    Google Scholar 
    7.Hadfield, J. et al. Twenty years of West Nile virus spread and evolution in the Americas visualized by Nextstrain. PLoS Pathog. 15, e1008042 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Ronca, S. E., Murray, K. O. & Nolan, M. S. Cumulative incidence of West Nile virus infection, continental United States, 1999–2016. Emerg. Infect. Dis. 25, 325–327 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.CDC. Saint Louis Encephalitis. https://www.cdc.gov/sle/index.html.10.Kraemer, M. U. G. et al. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Sci. Data 2, 150035 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Messina, J. P. et al. A global compendium of human dengue virus occurrence. Sci. Data 1, 140004 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Change Biol. 22, 228–236 (2016).ADS 
    Article 

    Google Scholar 
    13.Wilke, A. B. B. et al. Community composition and year-round abundance of vector species of mosquitoes make Miami-Dade County, Florida a receptive gateway for arbovirus entry to the United States. Sci. Rep. 9, 8732 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Wilke, A. B. B. et al. Proliferation of Aedes aegypti in urban environments mediated by the availability of key aquatic habitats. Sci. Rep. 10, 12925 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Ajelli, M. et al. Host outdoor exposure variability affects the transmission and spread of Zika virus: Insights for epidemic control. PLoS Negl. Trop. Dis. 11, e0005851 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Wilke, A. B. B., Benelli, G. & Beier, J. C. Beyond frontiers: On invasive alien mosquito species in America and Europe. PLoS Negl. Trop. Dis. 14, 7864 (2020).Article 

    Google Scholar 
    17.Medlock, J. M. et al. Detection of the invasive mosquito species Aedes albopictus in southern England. Lancet Infect. Dis. 17, 140 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Reiter, P. Aedes albopictus and the world trade in used tires, 1988–1995: The shape of things to come?. J. Am. Mosq. Control Assoc. 14, 83–94 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Eastwood, G., Cunningham, A. A., Kramer, L. D. & Goodman, S. J. The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago. Med. Vet. Entomol. 33, 44–55 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Napp, S., Petrić, D. & Busquets, N. West Nile virus and other mosquito-borne viruses present in Eastern Europe. Pathog. Glob. Health 112, 233–248 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Wilke, A. B. B., Wilk-da-Silva, R. & Marrelli, M. T. Microgeographic population structuring of Aedes aegypti (Diptera: Culicidae). PLoS ONE 12, e0185150 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Multini, L. C., de Souza, A. L., Marrelli, M. T. & Wilke, A. B. B. Population structuring of the invasive mosquito Aedes albopictus (Diptera: Culicidae) on a microgeographic scale. PLoS ONE 14, e0220773 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Wilke, A. B. B., de Carvalho, G. C. & Marrelli, M. T. Microgeographic population structuring of Culex quinquefasciatus (Diptera: Culicidae) From São Paulo, Brazil. J. Med. Entomol. 54, 1582–1588 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Wilk-da-Silva, R., de Souza Leal Diniz, M. M. C., Marrelli, M. T. & Wilke, A. B. B. Wing morphometric variability in Aedes aegypti (Diptera: Culicidae) from different urban built environments. Parasit. Vectors 11, 561 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Dyar, G. & Knab, F. The larvae of Culicidae classified as independent organisms. J. N. Y. Entomol. Soc. 14, 169–230 (1906).
    Google Scholar 
    26.Laurito, M., Briscoe, A. G., Almirón, W. R. & Harbach, R. E. Systematics of the Culex coronator complex (Diptera: Culicidae): Morphological and molecular assessment. Zool. J. Linn. Soc. 182, 735–757 (2018).Article 

    Google Scholar 
    27.Demari-Silva, B. et al. Wing Morphometry and genetic variability between Culex coronator and Culex usquatus (Diptera: Culicidae), two sibling species of the coronator group. J. Med. Entomol. 54, 901–908 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Alto, B. W., Connelly, C. R., O’Meara, G. F., Hickman, D. & Karr, N. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus. Vector-Borne Zoonotic Dis. 14, 606–614 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Unlu, I., Kramer, W. L., Roy, A. F. & Foil, L. D. Detection of West Nile virus RNA in mosquitoes and identification of mosquito blood meals collected at alligator farms in Louisiana. J. Med. Entomol. 47, 625–633 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.CDC. Mosquito species in which West Nile virus has been detected. Centers for disease control and prevention. https://www.cdc.gov/westnile/resources/pdfs/Mosquito%20Species%201999-2012.pdf (2017).31.CDC Arbovirus Catalog. Centers for disease control and prevention. https://wwwn.cdc.gov/Arbocat/Default.aspx (2018).32.Scholte, E. J. et al. Introduction and control of three invasive mosquito species in the Netherlands, July–October 2010. Eurosurveillance 15, 1–4 (2010).Article 

    Google Scholar 
    33.Reiter, P. & Sprenger, D. The used tire trade: A mechanism for the worldwide dispersal of container breeding mosquitoes. J. Am. Mosq. Control Assoc. 3, 494–501 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Eritja, R, et al. Worldwide invasion of vector mosquitoes: Present European distribution and challenges for Spain. Issues in Bioinvasion Science 87–97 (Springer, 2005).35.Connelly, C. R., Alto, B. W. & O’Meara, G. F. The spread of Culex coronator (Diptera: Culicidae) throughout Florida. J. Vector Ecol. 41, 195–199 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Wilke, A. B. B. et al. Urbanization creates diverse aquatic habitats for immature mosquitoes in urban areas. Sci. Rep. 9, 15335 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.LaDeau, S. L., Leisnham, P. T., Biehler, D. & Bodner, D. Higher mosquito production in low-income neighborhoods of Baltimore and Washington, DC: Understanding ecological drivers and mosquito-borne disease risk in temperate cities. Int. J. Environ. Res. Public Health 10, 1505–1526 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Guedes, M. L. P. & Navarro-Silva, M. A. Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae). Rev. Bras. Entomol. 58, 88–94 (2014).Article 

    Google Scholar 
    39.Miami-Dade County. Homeless trust census results and comparison. https://www.homelesstrust.org/library/january-homeless-census-results-and-comparison-2018-2019.pdf (2019).40.Blosser, E. M. & Burkett-Cadena, N. D. Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop. 167, 59–63 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Blosser, E. M. & Burkett-Cadena, N. D. Oviposition strategies of Florida Culex (Melanoconion) mosquitoes. J. Med. Entomol. 54, 812–820 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Medeiros-Sousa, A. R., Fernandes, A., Ceretti-Junior, W., Wilke, A. B. B. & Marrelli, M. T. Mosquitoes in urban green spaces: using an island biogeographic approach to identify drivers of species richness and composition. Sci. Rep. 7, 17826 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    43.De Carvalho, G. C. et al. Composition and diversity of mosquitoes (Diptera: Culicidae) in urban parks in the South region of the city of São Paulo, Brazil. Biota Neotrop. 17, e20160274 (2017).Article 

    Google Scholar 
    44.Wilke, A. B. B., Medeiros-Sousa, A. R., Ceretti-Junior, W. & Marrelli, M. T. Mosquito populations dynamics associated with climate variations. Acta Trop. 166, 343–350 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Lizzi, K. M., Qualls, W. A., Brown, S. C. & Beier, J. C. Expanding integrated vector management to promote healthy environments. Trends Parasitol. 30, 394–400 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.WHO. Handbook for Integrated Vector Management (World Health Organization, Geneva, 2012).
    Google Scholar 
    47.Pagac, B. B. et al. Incursion and establishment of the Old World arbovirus vector Aedes (Fredwardsius) vittatus (Bigot, 1861) in the Americas. Acta Trop. 213, 105739 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.United States Environmental Protection Agency. Growing for a sustainable future: Miami-Dade County urban development boundary assessment. http://www.epa.gov/smartgrowth/pdf/Miami-Dade_Final_Report_12-12-12.pdf (2012).49.Blackmore, C. G. M. et al. Surveillance results from the first West Nile virus transmission season in Florida, 2001. Am. J. Trop. Med. Hyg. 69, 141–150 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Florida Department of Health. http://www.floridahealth.gov/diseases-and-conditions/mosquito-borne-diseases/_documents/alert-dade-wnv-human-10-19-20.pdf (2020)51.Wilke, A. B. B. et al. Assessment of the effectiveness of BG-Sentinel traps baited with CO2 and BG-Lure for the surveillance of vector mosquitoes in Miami-Dade County, Florida. PLoS ONE 14, e0212688 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Darsie, R. F. Jr. & Morris, C. D. Keys to the adult females and fourth-instar larvae of the mosquitoes of Florida (Diptera, Culicidae). 1st ed. Vol. 1. Tech Bull Florida Mosq Cont Assoc (2000).53.Silverman, B. W. Density Estimation for Statistics and Data Analysis. Monographs on Statistics and Applied Probability, Number 26. Boca Raton; Routledge. 176 pp. https://doi.org/10.1201/9781315140919. More

  • in

    Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures

    1.Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81, 2250–2263 (2000).Article 

    Google Scholar 
    3.Doropoulos, C. et al. Characterizing the ecological trade-offs throughout the early ontogeny of coral recruitment. Ecol. Monogr. 86, 20–44 (2016).Article 

    Google Scholar 
    4.Tran, C. & Hadfield, M. G. Localization of sensory mechanisms utilized by coral planulae to detect settlement cues. Invertebr. Biol. 132, 195–206 (2013).Article 

    Google Scholar 
    5.Ritson-Williams, R. et al. New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithson Contrib. Mar. Sci. 38, 437–457 (2009).Article 

    Google Scholar 
    6.Gleason, D. F. & Hofmann, D. K. Coral larvae: From gametes to recruits. J. Exp. Mar. Biol. Ecol. 408, 42–57 (2011).Article 

    Google Scholar 
    7.Graham, E. M., Baird, A. H. & Connolly, S. R. Survival dynamics of scleractinian coral larvae and implications for dispersal. Coral Reefs 27, 529–539 (2008).ADS 
    Article 

    Google Scholar 
    8.Harrington, L., Fabricius, K., De’ath, G. & Negri, A. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85, 3428–3437 (2004).Article 

    Google Scholar 
    9.Ritson-Williams, R., Paul, V. J., Arnold, S. N. & Steneck, R. S. Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis. Coral Reefs 29, 71–81 (2010).ADS 
    Article 

    Google Scholar 
    10.Tebben, J. et al. Chemical mediation of coral larval settlement by crustose coralline algae. Sci. Rep. 5, 10803 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Gómez-Lemos, L. A., Doropoulos, C., Bayraktarov, E. & Diaz-Pulido, G. Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Sci. Rep. 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    12.Morse, D. E. & Morse, A. N. C. Enzymatic characterization of the morphogen recognized by Agaricia humilis (scleractinian coral) larvae. Biol. Bull. 181, 104–122 (1991).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Negri, A. P., Webster, N. S., Hill, R. T. & Heyward, A. J. Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae. Mar. Ecol. Prog. Ser. 223, 121–131 (2001).ADS 
    Article 

    Google Scholar 
    14.Tebben, J. et al. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium. PLoS ONE 6, e19082 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Sneed, J. M., Sharp, K. H., Ritchie, K. B. & Paul, V. J. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals. Proc. R. Soc. B Biol. Sci. 281, 20133086 (2014).Article 
    CAS 

    Google Scholar 
    16.Tran, C. & Hadfield, M. G. Larvae of Pocillopora damicornis (Anthozoa) settle and metamorphose in response to surface-biofilm bacteria. Mar. Ecol. Prog. Ser. 433, 85–96 (2011).ADS 
    Article 

    Google Scholar 
    17.Quéré, G., Intertaglia, L., Payri, C. & Galand, P. E. Disease specific bacterial communities in a Coralline Algae of the Northwestern Mediterranean Sea: A combined culture dependent and -independent approach. Front Microbiol 10, 5 (2019).Article 

    Google Scholar 
    18.Yang, F., Mo, J., Wei, Z. & Long, L. Calcified macroalgae and their bacterial community in relation to larval settlement and metamorphosis of reef-building coral Pocillopora damicornis. FEMS Microbiol. Ecol. 97, fiaa215 (2021).Article 

    Google Scholar 
    19.Sneed, J. M., Ritson-Williams, R. & Paul, V. J. Crustose coralline algal species host distinct bacterial assemblages on their surfaces. ISME J. 9, 2527–2536 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Siboni, N. et al. Crustose coralline algae that promote coral larval settlement harbor distinct surface bacterial communities. Coral Reefs 39, 1703–1713 (2020).Article 

    Google Scholar 
    21.Kitamura, M., Koyama, T., Nakano, Y. & Uemura, D. Characterization of a natural inducer of coral larval metamorphosis. J. Exp. Mar. Biol. Ecol. 340, 96–102 (2007).Article 

    Google Scholar 
    22.Kitamura, M., Schupp, P. J., Nakano, Y. & Uemura, D. Luminaolide, a novel metamorphosis-enhancing macrodiolide for scleractinian coral larvae from crustose coralline algae. Tetrahedron Lett. 50, 6606–6609 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Webster, N. S., Uthicke, S., Botté, E. S., Flores, F. & Negri, A. P. Ocean acidification reduces induction of coral settlement by crustose coralline algae. Glob Change Biol. 19, 303–315 (2013).ADS 
    Article 

    Google Scholar 
    24.Mancuso, F. P., D’Hondt, S., Willems, A., Airoldi, L. & De Clerck, O. Diversity and temporal dynamics of the epiphytic bacterial communities associated with the canopy-forming seaweed Cystoseira compressa (Esper) Gerloff and Nizamuddin. Front. Microbiol. 7, 476 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).Article 

    Google Scholar 
    26.Ritson-Williams, R., Arnold, S. N., Paul, V. J. & Steneck, R. S. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae. Coral Reefs 33, 59–66 (2014).ADS 
    Article 

    Google Scholar 
    27.Morse, D. E., Hooker, N., Morse, A. N. C. & Jensen, R. A. Control of larval metamorphosis and recruitment in sympatric agariciid corals. J. Exp. Mar. Biol. Ecol. 116, 193–217 (1988).Article 

    Google Scholar 
    28.Barott, K. L. & Rohwer, F. L. Unseen players shape benthic competition on coral reefs. Trends Microbiol. 20, 621–628 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Price, N. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia. Oecologia 163, 747–758 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    31.Sogin, E. M., Anderson, P., Williams, P., Chen, C.-S. & Gates, R. D. Application of 1H-NMR metabolomic profiling for reef-building corals. PLoS ONE 9, e111274 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Quinn, R. A. et al. Metabolomics of reef benthic interactions reveals a bioactive lipid involved in coral defence. Proc. R. Soc. B Biol. Sci. 283, 20160469 (2016).Article 
    CAS 

    Google Scholar 
    33.Cutignano, A. et al. Profiling of complex lipids in marine microalgae by UHPLC/tandem mass spectrometry. Algal Res. 17, 348–358 (2016).Article 

    Google Scholar 
    34.Paix, B. et al. A multi-omics analysis suggests links between the differentiated surface metabolome and epiphytic microbiota along the Thallus of a Mediterranean Seaweed Holobiont. Front. Microbiol. 11, 494 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Vohsen, S. A., Fisher, C. R. & Baums, I. B. Metabolomic richness and fingerprints of deep-sea coral species and populations. Metabolomics 15, 34 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Jiang, M. et al. Sparse partial-least-squares discriminant analysis for different geographical origins of Salvia miltiorrhiza by 1H-NMR-based metabolomics. Phytochem. Anal. 25, 50–58 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Webster, N. S., Soo, R., Cobb, R. & Negri, A. P. Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. ISME J. 5, 759–770 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Babcock, R. & Mundy, C. Coral recruitment: Consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 206, 179–201 (1996).Article 

    Google Scholar 
    39.Zhang, J., Li, C., Yu, G. & Guan, H. Total synthesis and structure-activity relationship of glycoglycerolipids from marine organisms. Mar. Drugs 12, 3634–3659 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Cajka, T. & Fiehn, O. Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. TrAC Trends Anal. Chem. 61, 192–206 (2014).CAS 
    Article 

    Google Scholar 
    41.Deal, M. S., Hay, M. E., Wilson, D. & Fenical, W. Galactolipids rather than phlorotannins as herbivore deterrents in the brown seaweed Fucus vesiculosus. Oecologia 136, 107–114 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Plouguerné, E. et al. Glycoglycerolipids from Sargassum vulgare as potential antifouling agents. Front. Mar. Sci. 7, 116 (2020).Article 

    Google Scholar 
    43.Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).CAS 
    Article 

    Google Scholar 
    44.Schmahl, G. Induction of stolon settlement in the scyphopolyps ofAurelia aurita (Cnidaria, Scyphozoa, Semaeostomeae) by glycolipids of marine bacteria. Helgoländer Meeresunters 39, 117–127 (1985).Article 

    Google Scholar 
    45.Murakami, H., Nobusawa, T., Hori, K., Shimojima, M. & Ohta, H. Betaine lipid is crucial for adapting to low temperature and phosphate deficiency in Nannochloropsis. Plant. Physiol. 177, 181–193 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Melo, T. et al. Lipidomics as a new approach for the bioprospecting of marine macroalgae—Unraveling the polar lipid and fatty acid composition of Chondrus crispus. Algal Res. 8, 181–191 (2015).Article 

    Google Scholar 
    47.Vogel, G. & Eichenberger, W. Betaine lipids in lower plants biosynthesis. of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33, 427–436 (1992).CAS 

    Google Scholar 
    48.Meistertzheim, A.-L., Nugues, M. M., Quéré, G. & Galand, P. E. Pathobiomes differ between two diseases affecting reef building coralline algae. Front. Microbiol. 8, 1686 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Gram, L., Melchiorsen, J. & Bruhn, J. B. Antibacterial activity of marine culturable bacteria collected from a global sampling of ocean surface waters and surface swabs of marine organisms. Mar. Biotechnol. N. Y. N. 12, 439–451 (2010).CAS 
    Article 

    Google Scholar 
    51.Daniel, R., Simon, M. & Wemheuer, B. Editorial: Molecular ecology and genetic diversity of the roseobacter clade. Front. Microbiol. 9, 1185 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685–699 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Bernasconi, R. et al. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Quigley, K. M., Roa, C. A., Torda, G., Bourne, D. G. & Willis, B. L. Co-dynamics of Symbiodiniaceae and bacterial populations during the first year of symbiosis with Acropora tenuis juveniles. MicrobiologyOpen 9, e959 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Overmann, J. Green sulfur bacteria. in Bergey’s Manual of Systematics of Archaea and Bacteria (eds Trujillo, M. E. et al.) (2015).56.Ribes, M. et al. Functional convergence of microbes associated with temperate marine sponges. Environ. Microbiol. 14, 1224–1239 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Sogin, E. M., Putnam, H. M., Nelson, C. E., Anderson, P. & Gates, R. D. Correspondence of coral holobiont metabolome with symbiotic bacteria, archaea and Symbiodinium communities. Environ. Microbiol. Rep. 9, 310–315 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Gordon, G. D., Masaki, T. & Akioka, H. Floristic and distributional account of the common crustose coralline algae on Guam. Micronesica 12, 31 (1976).
    Google Scholar 
    59.Adey, W. H., Townsend, R. A. & Boykins, W. T. The crustose coralline algae (Rhodophyta: Corallinaceae) of the Hawaiian Islands. Smithson Contrib. Mar. Sci. 1, 1–74 (1982).Article 

    Google Scholar 
    60.Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: an R package for ‘omics feature selection and multiple data integration. BioRxiv 13, 108597 (2017).
    Google Scholar 
    61.Singh, A. et al. DIABLO: an integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 35, 3055–3062 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Null-model-based network comparison reveals core associations

    Null model toolboxWe have developed a software toolbox, anuran, (a toolbox with null models for identification of nonrandom patterns in association networks) that generates random networks and assesses properties of these networks. Three types of networks can be generated in the current implementation: completely randomized networks, degree-preserving networks, and a variation of both networks that keeps a fraction of the edges fixed. Networks without a synthetic CAN, meaning they do not contain any fixed edges, are referred to as negative controls in the remainder of the manuscript, while networks with a synthetic CAN are referred to as positive control networks. In combination, these null models can generate CAN sizes for (1) the situation where all edges are entirely random, (2) the situation where taxa connecting edges are random, but the presence of an edge is not, and (3) the situation where part of a network is random but the remainder is part of a CAN.For the completely randomized model, a network is initialized with the same nodes as the input network. Edges are then added randomly until the total edge number is equal to the number of edges in the input network. For the degree-preserving model, edges are swapped rather than removed and added back to the network, so that two edges (a, b) and (c, d) become the new edges (a, c) and (b, d). Hence, the model preserves the degree distribution found in the input network and each node has the same degree as it has in the original network, but other centralities such as the betweenness centrality can change. The user specifies both the number of random networks generated for each network (by default 10) and the number of sets (collections) of these networks (by default 50) that are sampled to calculate set sizes.As stated previously, variations of the above two null models can be used to construct positive control networks. For this procedure, a fraction of edges is extracted from the total union of edges across all networks. For fully randomized networks, these edges are first added, then edges are added until the total number of edges in the original network is reached. For the degree-preserving randomized networks, negative control networks (with preserved degree) are first generated. Then, for each edge in the fixed core, the algorithm attempts to find two edges that can be swapped so the fixed edge is created. If this fails, a random edge is deleted and the fixed edge is introduced, so the degree is not exactly preserved. To swap the edges successfully, it is necessary that each of the nodes participating in a fixed edge has another edge not part of the fixed core. As a result, the degree distribution can change significantly for networks where nodes in the fixed core are disconnected or where the fixed core is very large compared to the positive control network.It is possible to include nodes without significant associations in the network file as disconnected nodes (orphan nodes) by supplying the network file with the orphan nodes included as nodes without any edges. In this case, the random model reflects a situation where associations are randomly selected from all taxa. However, the degree-preserving networks are not affected by orphan nodes. The inclusion of orphan nodes leads to different estimates for set sizes for the random model that may lead to an overestimation of the significance of a CAN, as most taxa are too rare to acquire associations. Therefore, we ignored the presence of disconnected nodes in our case study.The toolbox has been implemented in Python 3.6 and consists of both an application programming interface and command-line interface (CLI). Documentation for the toolbox has been included as a supplement (Supplementary File 1), with this and additional vignettes available through the GitHub page at https://github.com/ramellose/anuran. Currently, the CLI pipeline assesses set sizes, (rank-transformed) betweenness, degree, and closeness centrality scores and several network-level properties: degree assortativity, connectivity, diameter, radius, and average shortest path length (Fig. 1). NetworkX implementations of these centrality calculations were used [21].The software uses a set-of-sets approach to identify CANs. A set is a specific collection of edges, such as the intersection set, which is the collection of edges present across multiple networks. The CANs are identified as differences of specific intersection sets. Hence, the toolbox specifically identifies sets and sets of sets that are likely to be of interest for microbial association networks. These sets represent collections of edges that are only present in one specific fraction of networks and distinguish between less conserved and more conserved edges.An example with four networks is illustrated with a Venn diagram (Fig. 1c). To obtain the difference of the intersections, the set that includes one or more additional networks is subtracted from the intersection set that includes fewer networks. These sets are referred to as combinations of intersections with fractions or integers, i.e., the intersection 0.5 refers to all intersections of 50% of the networks. Similarly, set of sets are identified by a combination of intersection numbers: the set of sets 6→10 refers to the difference of intersection 6 and intersection 10 and therefore contains no edges present in at least 10 networks. For most analyses, the difference of intersections is preferred over intersections since the intersections are nested. By taking the difference, it is possible to distinguish between more and less conserved associations.The equations for differences and k-intersections for groups of n networks are given below. The equations only refer to edge sets E, so they do not apply to numbers of matching nodes. The difference is the union of all sets Di for 1 up to n networks, where the sets Di contain all edges x present in an edge set Ei but not in the union of all other edge sets$${{{mathrm{Difference}}}} = mathop {bigcup}limits_{i = 1}^n {D_i} ;{{{mathrm{where}}}};D_i = left{ {x:x in E_i,x ,notin, mathop {bigcup}limits_{begin{array}{*{20}{c}} {j = 1} \ {i ne j} end{array}}^n {E_j} } right}$$The k-intersections are unions of intersections SI. These intersections SI are sets of groups of edge sets, where the groups I are k-permutations of n and Ei is a single edge set in I. Hence, for a total number of edge sets n, each of the groups I have size k and the collection of all possible groups is indicated as (P_k^n). For the 4-intersection for a group of 40 edge sets, the size of (P_k^n) can be calculated as the binomial coefficient (Big( {begin{array}{*{20}{c}} {40} \ 4 end{array}} Big)). This mathematical representation is not implemented directly in the software, as the software simply takes the set of all edges present in at least four networks and therefore ignores network identity.Hence, a k-intersection is the union of all intersections SI for I in (P_k^n)$${{{mathrm{Intersection}}}} = mathop {bigcup}limits_{I in P_k^n} {S_I} ;{{{mathrm{where}}}};S_I = left{ {x:x in mathop {bigcap}limits_{i in I} {E_i} } right}$$Since edges present in at least k networks but not in m networks represent less conserved edges, the difference of the intersections is calculated to distinguish between less conserved and more conserved edges. The difference of two intersections k and m, with SI and SJ defined identically to SI in the equation above is then given below$${{{mathrm{Difference}}}};{{{mathrm{of}}}};{{{mathrm{intersections}}}} = mathop {bigcup}limits_{I in P_k^n} {S_I} backslash mathop {bigcup}limits_{J in P_m^n} {S_J} ;{{{mathrm{where}}}};k < m$$To compare observed set sizes to set sizes of random networks, the Z-score test is carried out, which identifies set sizes in the input networks that are outside the range of set sizes inferred from groups of random networks. The SciPy normaltest implementation [22] of D’Agostino’s and Pearson’s omnibus normality test is used to test for both kurtosis and skewness [23, 24]. Since this test requires at least 20 observations, a warning is issued if the number of random networks needs to be increased.The toolbox can also assess centrality scores across networks. To ensure that centralities are not biased by edge number, these are first converted to ranks before a Mann–Whitney U test is used to assess whether the distributions of ranks are similar across groups of observed networks and random networks. The comparisons to random networks are repeated a number of times and parameter-free p values across all comparisons are calculated from the number of successful Mann–Whitney U tests. By default, Benjamini-Hochberg multiple-testing corrections (implemented in the statsmodel package) are carried out on these p values to correct for the number of taxa [25]. The approach for network-level properties is similar, with the software currently supporting assortativity, connectivity, diameter, radius, and the average shortest path length. If the networks are ordered, the toolbox can calculate Spearman correlations of these properties to the network order. For example, users could supply networks constructed across a pH gradient. The results of all analyses are exported to tab-delimited files so they can be further analyzed and visualized in the user’s preferred statistical environment.Finally, the toolbox includes an option for resampling networks. In this way, the resulting data show how trends in set sizes change as the number of networks is increased. The resulting data can be interpreted as a rarefaction curve, where flattening of the curve suggests that sufficient networks have been collected to identify all edges present in a specific fraction of networks.Case studiesGut microbial time series data were collected from 20 women each of whom donated stool samples for over a month, with a sampling frequency close to one sample per day (Vandeputte et al., submitted) [26]. These women also reported data on their menstrual cycle. For each sample, enterotype assignments were carried out as in Vandeputte et al. [27] with Dirichlet multinomial clustering. Samples were assigned to Bacteroides 1, Bacteroides 2, Ruminococcaceae, or Prevotella.Progression through the menstrual cycle was rescaled to 28 days (the average length of a menstrual cycle) for all women. For days where there was more than one sample, only the first sample was used. Taxa present in less than 50% of participants were discarded from the analysis. Association networks were constructed with fastLSA v1.0 [28] with data rarefied to 10,000 sequences per sample, with correlations inferred across a delay of three time points (α = 0.05). Set sizes were analyzed with anuran, by generating 20 networks per observed network and resampling 100 different groups from these. Positive controls were generated 20 times, with a core size equal to 20% of the union of edges at 10% prevalence (edges present in at least two networks) and at 50% prevalence (edges present in at least ten networks). Set sizes and centralities with a p value below 0.05 for comparisons to values from random networks were considered significantly different from the random networks. The anuran toolbox was also used to assess the effect of increasing the number of participants.The Walktrap community finding algorithm [29], implemented in the igraph R package v1.2.6 [30], was used to cluster the inferred CAN as the lack of negative edges in the CAN suggested that random walks could sufficiently identify clusters. To visualize enterotype-specific patterns of relative abundance, we computed the mean relative abundance of taxa per individual. We then took the median relative abundances across all individuals who belonged predominantly to the Ruminococcaceae enterotype, an enterotype previously linked to lower stool moisture [27], and subtracted from these all other median relative abundances, giving an estimate of taxa that had high abundance in the Ruminococcaceae enterotype compared to other enterotypes.For the case study on the sponge microbiome, QIIME-processed data were downloaded from Moitinho et al. [31]. Samples with fewer than 1000 counts were removed and the samples were rarefied to even depth at 1034 sequences. After rarefaction, the abundance data were first filtered for 20% taxon prevalence across all samples, then once more to ensure 20% prevalence across different orders. Counts for removed taxa were retained to preserve the sample sums. After excluding host orders with fewer than 50 samples, 10 orders remained. CoNet v1.1.1 with renormalisation was then used to infer association networks (Faust and Raes [2]). Edges were generated with Pearson correlation, Spearman correlation, mutual information, Bray–Curtis dissimilarity, and Kullback–Leibler distance. Edges were included if at least one method reached significance; only edges with a combined Q-value below 0.05 (estimated using a combination of permutation and bootstrapping) were retained. The CoNet CANs were inferred with anuran generating 20 negative control random networks per host order and resampling these 100 times. For the positive controls, 20 network groups were generated with a core size equal to 20% of the union of edges at 20% prevalence (edges present in at least two networks) and at 50% prevalence (edges present in at least five networks). Set sizes and centralities with a p value below 0.05 for comparisons to values from random networks were considered significantly different from the random networks. CoNet networks were compared to FlashWeave networks [7]. FlashWeave v0.16.0 was run as FlashWeave-S (sensitive set to true and heterogeneous to false), with all other settings set to the default. To compare FlashWeave networks to CoNet networks, anuran generated five randomized networks per order-specific network and resampled these five times.Prior research indicated that microbial abundance was a significant driver of community structure in sponges [32]. Therefore, taxa in the CAN were compared to taxa reported as indicators of high microbial abundance (HMA) or low microbial abundance (LMA) [32]. CAN network clusters were identified with manta v1.0.0 [33], as this algorithm has been designed to handle negative edges in the CAN. To run the clustering algorithm, default settings were used, except the number of iterations and permutations, which was set to 200. A Chi-squared test was used to compare HMA–LMA predictions to CAN cluster assignments (α = 0.05). More