1.Jürgens, N., Oncken, I., Oldeland, J., Gunter, F. & Rudolph, B. Welwitschia: phylogeography of a living fossil, diversified within a desert refuge. Sci. Rep. 11, 2385 (2021).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
2.Herre, H. The age of Welwitschia bainesii (Hook. f) Cearr.: C14 research. S. Afr. J. Bot. 27, 139–140 (1961).
Google Scholar
3.Bornman, C. H. Welwitschia mirabilis: structural and functional anomalies. Madoqua 10, 21–31 (1977).
Google Scholar
4.Talalaj, S., Talalaj, D. & Talalaj, J. The strangest plants in the world. (Hill of Content, 1991).5.Hooker, J. I. On Welwitschia, a new genus of Gnetaceæ. Trans. Linn. Soc. Lond. 24, 1–48 (1862).Article
Google Scholar
6.Friedman, W. E. Development and evolution of the female gametophyte and fertilization process in Welwitschia mirabilis (Welwitschiaceae). Am. J. Bot. 102, 312–324 (2015).PubMed
Article
Google Scholar
7.Leebens-Mack, J. H. et al. One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574, 679–685 (2019).Article
CAS
Google Scholar
8.Dilcher, D. L., Bernardes-De-Oliveira, M. E. & Pons, D. Welwitschiaceae from the lower Cretaceous of northeastern Brazil. Am. J. Bot. 92, 1294–1310 (2005).PubMed
Article
Google Scholar
9.Wickett, N. J. et al. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl Acad. Sci. USA 111, E4859 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
10.Li, Z. et al. Single-copy genes as molecular markers for phylogenomic studies in seed plants. Genome Biol. Evol. 9, 1130–1147 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
11.Doyle, J. A. Molecular and fossil evidence on the origin of angiosperms. Annu. Rev. Earth Planet. Sci. 40, 301–326 (2012).ADS
CAS
Article
Google Scholar
12.Bateman, R. Hunting the Snark: the flawed search for mythical Jurassic angiosperms. J. Exp. Bot. 71, 22–35 (2019).Article
CAS
Google Scholar
13.Wan, T. et al. A genome for gnetophytes and early evolution of seed plants. Nat. Plants 4, 82–89 (2018).CAS
PubMed
Article
Google Scholar
14.Leitch, I. J., Hanson, L., Winfield, M., Parker, J. & Bennett, M. D. Nuclear DNA C-values complete familial representation in gymnosperms. Ann. Bot. 88, 843–849 (2001).CAS
Article
Google Scholar
15.Khoshoo, T. N. & Ahuja, M. R. The chromosomes and relationships of Welwitschia mirabilis. Chromosoma 14, 522–533 (1963).Article
Google Scholar
16.Li, Z. et al. Early genome duplications in conifers and other seed plants. Sci. Adv. 1, e1501084 (2015).ADS
PubMed
PubMed Central
Article
Google Scholar
17.Van de Peer, Y. Computational approaches to unveiling ancient genome duplications. Nat. Rev. Genet 5, 752–763 (2004).PubMed
Article
CAS
Google Scholar
18.Zhang, Q.-J. et al. The chromosome-level reference genome of tea tree unveils recent bursts of non-autonomous LTR retrotransposons to drive genome size evolution. Mol. Plant 13, 935–938 (2020).CAS
PubMed
Article
Google Scholar
19.Zhang, Q. J. & Gao, L. Z. Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3 (Bethesda, Md.) 7, 1875–1885 (2017).CAS
Article
Google Scholar
20.Cossu, R. M. et al. LTR retrotransposons show low levels of unequal recombination and high rates of intraelement gene conversion in large plant genomes. Genome Biol. Evol. 9, 3449–3462 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
21.Roddy, A. et al. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. Int. J. Plant. Sci. https://doi.org/10.1101/619585 (2019).22.Ausin, I. et al. DNA methylome of the 20-gigabase Norway spruce genome. Proc. Natl Acad. Sci. USA 113, E8106–e8113 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
23.Takuno, S., Ran, J.-H. & Gaut, B. S. Evolutionary patterns of genic DNA methylation vary across land plants. Nat. Plants 2, 15222 (2016).CAS
PubMed
Article
Google Scholar
24.Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
25.Zhang, X. et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126, 1189–1201 (2006).CAS
PubMed
Article
Google Scholar
26.Matzke, M. A., Kanno, T. & Matzke, A. J. M. RNA-Directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu. Rev. Plant Biol. 66, 243–267 (2015).CAS
PubMed
Article
Google Scholar
27.Johnsen, Ø. et al. Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ. 28, 1090–1102 (2005).CAS
Article
Google Scholar
28.Yakovlev, I. A., Carneros, E., Lee, Y., Olsen, J. E. & Fossdal, C. G. Transcriptional profiling of epigenetic regulators in somatic embryos during temperature induced formation of an epigenetic memory in Norway spruce. Planta 243, 1237–1249 (2016).CAS
PubMed
Article
Google Scholar
29.Trávníček, P. et al. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life-history traits and climatic conditions. N. Phytol. 224, 1642–1656 (2019).Article
CAS
Google Scholar
30.Cacciò, S. et al. Methylation patterns in the isochores of vertebrate genomes. Gene 205, 119–124 (1997).PubMed
Article
PubMed Central
Google Scholar
31.Serres-Giardi, L., Belkhir, K., David, J. & Glémin, S. Patterns and evolution of nucleotide landscapes in seed plants. Plant Cell 24, 1379–1397 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Ossowski, S. et al. The rate and molecular spectrum of spontaneous mutations in Arabidopsis thaliana. Science 327, 92–94 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
33.Glémin, S. Surprising fitness consequences of GC-biased gene conversion: I. Mutation load and inbreeding depression. Genetics 185, 939–959 (2010).PubMed
PubMed Central
Article
CAS
Google Scholar
34.Vinogradov, A. E. DNA helix: the importance of being GC-rich. Nucleic Acids Res. 31, 1838–1844 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
35.Rocha, E. P. & Danchin, A. Base composition bias might result from competition for metabolic resources. Trends Genet. 18, 291–294 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Shenhav, L. & Zeevi, D. Resource conservation manifests in the genetic code. Science 370, 683–687 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
37.Kelly, S. The amount of nitrogen used for photosynthesis modulates molecular evolution in plants. Mol. Biol. Evol. 35, 1616–1625 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Martens, P. Welwitschia mirabilis and neoteny. Am. J. Bot. 64, 916–920 (1977).Article
Google Scholar
39.Robert, J. R. Leaf anatomy of Welwitschia. i. Early development of the leaf. Am. J. Bot. 45, 90–95 (1958).Article
Google Scholar
40.Bornman, C. H. Welwitschia mirabilis: paradox of the Namib Desert. Endeavour 31, 95–99 (1972).
Google Scholar
41.Pham, T. & Sinha, N. Role of KNOX genes in shoot development of Welwitschia mirabilis. Int. J. Plant Sci. 164, 333–343 (2003).CAS
Article
Google Scholar
42.Nishii, K. et al. A complex case of simple leaves: indeterminate leaves co-express ARP and KNOX1 genes. Dev. Genes Evol. 220, 25–40 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
43.Hacham, Y. et al. Brassinosteroid perception in the epidermis controls root meristem size. Dev. (Camb., Engl.) 138, 839–848 (2011).CAS
Article
Google Scholar
44.Sun, S. et al. Brassinosteroid signalling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev. Cell 34, 220–228 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Wei, Z. & Li, J. Brassinosteroids regulate root growth, development, and symbiosis. Mol. Plant 9, 86–100 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Jiang, C. K. & Rao, G. Y. Insights into the diversification and evolution of R2R3-MYB transcription factors in plants. Plant Physiol. 183, 637–655 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
47.Dubos, C. et al. MYB transcription factors in Arabidopsis. Trends Plant Sci. 15, 573–581 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Pandey, A., Misra, P. & Trivedi, P. K. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation. Plant Cell Rep. 34, 1515–1528 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Petroni, K. et al. The AtMYB11 gene from Arabidopsis is expressed in meristematic cells and modulates growth in planta and organogenesis in vitro. J. Exp. Bot. 59, 1201–1213 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Gugger, P. F., Peñaloza-Ramírez, J. M., Wright, J. W. & Sork, V. L. Whole-transcriptome response to water stress in a California endemic oak, Quercus lobata. Tree Physiol. 37, 632–644 (2017).CAS
PubMed
PubMed Central
Google Scholar
51.Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
52.Jaiwal, S. K. C. A., Mahajan, S., Kumar, S. & Sharma, V. K. The genome sequence of Aloe vera reveals adaptive evolution of drought tolerance mechanisms. iScience 24, 102078 (2021).ADS
Article
Google Scholar
53.Henschel, J. R. & Seely, M. K. Long-term growth patterns of Welwitschia mirabilis, a long-lived plant of the Namib desert (including a bibliography). Plant Ecol. 150, 7–26 (2000).Article
Google Scholar
54.Stortenbeker, N. & Bemer, M. The SAUR gene family: the plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 70, 17–27 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
55.Wei, J. et al. The E3 ligase AtCHIP positively regulates Clp proteolytic subunit homeostasis. J. Exp. Bot. 66, 5809–5820 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
56.Olinares, P. D., Kim, J., Davis, J. I. & van Wijk, K. J. Subunit stoichiometry, evolution, and functional implications of an asymmetric plant plastid ClpP/R protease complex in Arabidopsis. Plant Cell 23, 2348–2361 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
57.Sjögren, L. L., Stanne, T. M., Zheng, B., Sutinen, S. & Clarke, A. K. Structural and functional insights into the chloroplast ATP-dependent Clp protease in Arabidopsis. Plant Cell 18, 2635–2649 (2006).PubMed
PubMed Central
Article
CAS
Google Scholar
58.Dong, H. et al. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants. Plant Physiol. 162, 1867–1880 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
59.Nakabayashi, K., Ito, M., Kiyosue, T., Shinozaki, K. & Watanabe, A. Identification of clp genes expressed in senescing Arabidopsis leaves. Plant cell Physiol. 40, 504–514 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Koussevitzky, S. et al. An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol. Biol. 63, 85–96 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
61.Vierling, E. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620 (1991).CAS
Article
Google Scholar
62.Guo, L. M., Li, J., He, J., Liu, H. & Zhang, H. M. A class I cytosolic HSP20 of rice enhances heat and salt tolerance in different organisms. Sci. Rep. 10, 1383 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
63.Waseem, M., Rong, X. & Li, Z. Dissecting the role of a basic helix-loop-helix transcription factor, SlbHLH22, under salt and drought stresses in transgenic Solanum lycopersicum L. Front. Plant Sci. 10, 734 (2019).PubMed
PubMed Central
Article
Google Scholar
64.De La Torre, A. R., Lin, Y. C., Van de Peer, Y. & Ingvarsson, P. K. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in Picea gene families. Genome Biol. Evol. 7, 1002–1015 (2015).Article
CAS
Google Scholar
65.Neale, D. B., Martínez-García, P. J., De La Torre, A. R., Montanari, S. & Wei, X. X. Novel insights into tree biology and genome evolution as revealed through genomics. Annu. Rev. Plant Biol. 68, 457–483 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
66.Nakashima, K., Yamaguchi-Shinozaki, K. & Shinozaki, K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170 (2014).PubMed
PubMed Central
Article
Google Scholar
67.Jiang, F. et al. The apricot (Prunus armeniaca L.) genome elucidates Rosaceae evolution and beta-carotenoid synthesis. Hortic. Res. 6, 128 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
68.Huo, H., Dahal, P., Kunusoth, K., McCallum, C. M. & Bradford, K. J. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 is essential for thermoinhibition of lettuce seed germination but not for seed development or stress tolerance. Plant Cell 25, 884–900 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
69.Wang, H. et al. CG gene body DNA methylation changes and evolution of duplicated genes in cassava. Proc. Natl Acad. Sci. USA 112, 13729–13734 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
70.Xu, J. et al. Single-base methylome analysis reveals dynamic epigenomic differences associated with water deficit in apple. Plant Biotechnol. J. 16, 672–687 (2018).CAS
PubMed
Article
Google Scholar
71.Friis, E. M., Pedersen, K. R. & Crane, P. R. Welwitschioid diversity in the early Cretaceous: evidence from fossil seeds with pollen from Portugal and eastern North America. Grana 53, 175–196 (2014).Article
Google Scholar
72.Damme, P. V. & Vernemmen, P. The natural environment of the Namib Desert. Afr. Focus 7, 355–400 (1992).
Google Scholar
73.Siesser, W. G. Late Miocene origin of the Benguela upswelling system off northern Namibia. Science 4441, 283–285 (1980).ADS
Article
Google Scholar
74.Meyers, P. A., Brassell, S. C., Huc, A. Y., Barron, E. J. & Stradner, H. Organic geochemistry of sediments recovered by DSDP/IPOD Leg 75 from under the Benguela current. Volume 10, pp.14. (Plenum Press, 1983).75.Alzohairy, A. M., Yousef, M. A., Edris, S., Kerti, B. & Alzohairy, M. Detection of LTR retrotransposons reactivation induced by in vitro environmental stresses in barley (Hordeum vulgare) via RT-qPCR. Life Sci. J. 9, 5019–5026 (2012).
Google Scholar
76.Morano, A. et al. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res. 42, 804–821 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
77.Russo, G. et al. DNA damage and repair modify DNA methylation and chromatin domain of the targeted locus: mechanism of allele methylation polymorphism. Sci. Rep. 6, 33222 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
78.Doerfler, W. The almost-forgotten fifth nucleotide in DNA: an introduction. Curr. Top. Microbiol. Immunol. 301, 3–18 (2006).CAS
PubMed
PubMed Central
Google Scholar
79.Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
80.Guignard, M. et al. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Front. Ecol. Evol. 5, 70 (2017).Article
Google Scholar
81.Drake, P. L., Froend, R. H. & Franks, P. J. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64, 495–505 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
82.Massmann, U. Welwitschia: nach 90 jahren. Namib. und Meer 7, 45–46 (1976).
Google Scholar
83.Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS
PubMed
Article
Google Scholar
84.Hu, J., Fan, J., Sun, Z. & Liu, S. NextPolish: a fast and efficient genome polishing tool for long-read assembly. Bioinformatics 36, 2253–2255 (2020).CAS
PubMed
Article
Google Scholar
85.Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed
PubMed Central
Article
CAS
Google Scholar
86.Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, 265–268 (2007).Article
Google Scholar
87.Edgar, R. C. & Myers, E. W. PILER: identification and classification of genomic repeats. Bioinformatics 21, 152–158 (2005).Article
Google Scholar
88.Price, A. L., Jones, N. C. & Pevzner, P. A. De novo identification of repeat families in large genomes. Bioinformatics 21, 351–358 (2005).Article
Google Scholar
89.Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS
PubMed
PubMed Central
Article
Google Scholar
90.Stanke, M., Diekhans, M., Baertsch, R. & Haussler, D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics 24, 637–644 (2008).CAS
PubMed
Article
Google Scholar
91.Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59 (2004).PubMed
PubMed Central
Article
Google Scholar
92.Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).CAS
Article
Google Scholar
93.Keilwagen, J. et al. Using intron position conservation for homology-based gene prediction. Nucleic Acids Res. 44, 89 (2016).Article
CAS
Google Scholar
94.Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
95.Haas, B. J. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
96.Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, 7 (2008).Article
CAS
Google Scholar
97.Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, 351–360 (2019).Article
CAS
Google Scholar
98.Vanneste, K., Van de Peer, Y. & Maere, S. Inference of genome duplications from age distributions revisited. Mol. Biol. Evol. 30, 177–190 (2013).CAS
PubMed
Article
Google Scholar
99.Enright, A. J., Van Dongen, S. & Ouzounis, C. A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584 (2002).CAS
PubMed
PubMed Central
Article
Google Scholar
100.Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
101.Goldman, N. & Yang, Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol. 11, 725–736 (1994).CAS
PubMed
Google Scholar
102.Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evolution. 24, 1586–1591 (2007).CAS
Article
Google Scholar
103.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
104.Proost, S. et al. i-ADHoRe 3.0–fast and sensitive detection of genomic homology in extremely large data sets. Nucleic Acids Res. 40, 11 (2012).Article
CAS
Google Scholar
105.Fostier, J. et al. A greedy, graph-based algorithm for the alignment of multiple homologous gene lists. Bioinformatics 27, 749–756 (2011).CAS
PubMed
Article
Google Scholar
106.Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007).ADS
CAS
PubMed
Article
Google Scholar
107.Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize Implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).CAS
PubMed
Article
Google Scholar
108.Guy, L., Kultima, J. R. & Andersson, S. G. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26, 2334–2335 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
109.Moreno-Hagelsieb, G. & Latimer, K. Choosing BLAST options for better detection of orthologs as reciprocal best hits. Bioinformatics 24, 319–324 (2008).CAS
PubMed
Article
Google Scholar
110.Vanneste, K., Baele, G., Maere, S. & Van de Peer, Y. Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res. 24, 1334–1347 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
111.Ostlund, G. et al. InParanoid 7: new algorithms and tools for eukaryotic orthology analysis. Nucleic Acids Res. 38, D196–D203 (2010).PubMed
Article
CAS
Google Scholar
112.D’Hont, A. et al. The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 488, 213–217 (2012).ADS
PubMed
Article
CAS
Google Scholar
113.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
114.Group, A. P. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Bot. J. Linn. Soc. 181, 1–20 (2016).Article
Google Scholar
115.Gandolfo, M., Nixon, K. & Crepet, W. A new fossil flower from the Turonian of New Jersey: Dressiantha bicarpellata gen. et sp. nov. (Ceapparales). Am. J. Bot. 85, 964 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
116.Beilstein, M. A., Nagalingum, N. S., Clements, M. D., Manchester, S. R. & Mathews, S. Dated molecular phylogenies indicate a Miocene origin for Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 107, 18724–18728 (2010).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
117.Crepet, W. & Nixon, K. Fossil Clusiaceae from the late Cretaceous (Turonian) of new Jersey and implications regarding the history of bee pollination. Am. J. Bot. 85, 1122 (1998).CAS
PubMed
Article
Google Scholar
118.Xi, Z. et al. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc. Natl Acad. Sci. USA 109, 17519–17524 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
119.Friis, E. M. Spirematospermum chandlerae sp. nov., an extinct species of Zingiberaceae from the North American Cretaceous. Tert. Res. 9, 7–12 (1988).
Google Scholar
120.Janssen, T. & Bremer, K. The age of major monocot groups inferred from 800+rbcL sequences. Bot. J. Linn. Soc. 146, 385–398 (2004).Article
Google Scholar
121.Doyle, J. A. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44, 227–251 (2005).Article
Google Scholar
122.Rydin, C., Pedersen, K. R. & Friis, E. M. On the evolutionary history of Ephedra: cretaceous fossils and extant molecules. Proc. Natl Acad. Sci. USA 101, 16571–16576 (2004).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
123.Magallón, S. Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst. Biol. 59, 384–399 (2010).PubMed
Article
Google Scholar
124.Clarke, J. T., Warnock, R. C. & Donoghue, P. C. Establishing a time-scale for plant evolution. N. phytologist 192, 266–301 (2011).Article
Google Scholar
125.Heled, J. & Drummond, A. J. Calibrated tree priors for relaxed phylogenetics and divergence time estimation. Syst. Biol. 61, 138–149 (2012).PubMed
Article
Google Scholar
126.Llorens, C. et al. The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res. 39, D70–D74 (2011).CAS
PubMed
Article
Google Scholar
127.Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS
Article
Google Scholar
128.Yu, X. J., Zheng, H. K., Wang, J., Wang, W. & Su, B. Detecting lineage-specific adaptive evolution of brain-expressed genes in human using rhesus macaque as outgroup. Genomics 88, 745–751 (2006).CAS
PubMed
Article
Google Scholar
129.Birney, E., Clamp, M. & Durbin, R. GeneWise and genomewise. Genome Res. 14, 988–995 (2004).CAS
PubMed
PubMed Central
Article
Google Scholar
130.Vilella, A. J. et al. EnsemblCompara geneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
131.Seberg, O. & Petersen, G. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat. Rev. Genet. 10, 276 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
132.Chen, Y. et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).ADS
PubMed
PubMed Central
Google Scholar
133.Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
134.Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
135.Jühling, F. et al. Metilene: fast and sensitive calling of differentially methylated regions from bisulfite sequencing data. Genome Res. 26, 256–262 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
136.Xie, C. et al. KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 39, W316–W322 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
137.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS
PubMed
PubMed Central
Article
Google Scholar
138.Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).PubMed
PubMed Central
Article
CAS
Google Scholar
139.Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).CAS
PubMed
Article
Google Scholar
140.Kechin, A., Boyarskikh, U., Kel, A. & Filipenko, M. CutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J. Comput. Biol. 24, 1138–1143 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
141.Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, 25 (2009).Article
CAS
Google Scholar
142.Friedländer, M. R., Mackowiak, S. D., Li, N., Chen, W. & Rajewsky, N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40, 37–52 (2012).PubMed
Article
CAS
PubMed Central
Google Scholar
143.Kozomara, A., Birgaoanu, M. & Griffiths-Jones, S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 47, D155–d162 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
144.Li, Z. & He, Y. Roles of brassinosteroids in plant reproduction. Int. J. Mol. Sci. 21, 872 (2020).PubMed Central
Article
CAS
Google Scholar
145.Xin, P., Yan, J., Fan, J., Chu, J. & Yan, C. An improved simplified high-sensitivity quantification method for determining brassinosteroids in different tissues of rice and Arabidopsis. Plant Physiol. 162, 2056–2066 (2013).CAS
PubMed
PubMed Central
Article
Google Scholar
146.Li, L., Stoeckert, C. J. Jr. & Roos, D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189 (2003).CAS
PubMed
PubMed Central
Article
Google Scholar
147.Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
148.Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
149.Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).CAS
PubMed
Article
PubMed Central
Google Scholar
150.Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar More