More stories

  • in

    Factors associated with baseline mortality in Norwegian Atlantic salmon farming

    1.SERNAPESCA (Servicio Nacional de Pesca y Acuicultura). Informe Sanitario de Salmonicultura. http://www.sernapesca.cl/sites/default/files/informe_sanitario_salmonicultura_en_centros_marinos_2018_final.pdf (2018).2.Bang Jensen, B., Qviller, L. & Toft, N. Spatio-temporal variations in mortality during the seawater production phase of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 43, 445–457 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Moriarty, M. et al. Modelling temperature and fish biomass data to predict annual Scottish farmed salmon, Salmo salar L., losses: Development of an early warning tool. Prev. Vet. Med. 178, 104985. https://doi.org/10.1016/j.prevetmed.2020.104985 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Sommerset, I. et al. The Health Situation in Norwegian Aquaculture 2019. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2020/fiskehelserapporten-2019 (2020).5.Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2021—risikovurdering. https://www.hi.no/hi/nettrapporter/rapport-fra-havforskningen-2021-8 (2021).6.Overton, K. et al. Salmon lice treatments and salmon mortality in Norwegian aquaculture: A review. Rev. Aquac. 11, 1398–1417 (2019).Article 

    Google Scholar 
    7.Soares, S., Green, D. M., Turnbull, J. F., Crumlish, M. & Murray, A. G. A baseline method for benchmarking mortality losses in Atlantic salmon (Salmo salar) production. Aquaculture 314, 7–12 (2011).Article 

    Google Scholar 
    8.Santurtun, E., Broom, D. & Phillips, C. A review of factors affecting the welfare of Atlantic salmon (Salmo salar). Anim. Welf. 27, 193–204 (2018).Article 

    Google Scholar 
    9.Ellis, T., Berrill, I., Lines, J., Turnbull, J. F. & Knowles, T. G. Mortality and fish welfare. Fish Physiol. Biochem. 38, 189–199 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Crockford, T., Menzies, F., McLoughlin, M., Wheatley, S. & Goodall, E. Aspects of the epizootiology of pancreas disease in farmed Atlantic salmon Salmo salar in Ireland. Dis. Aquat. Organ. 36, 113–119 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Stormoen, M., Kristoffersen, A. B. & Jansen, P. A. Mortality related to pancreas disease in Norwegian farmed salmonid fish, Salmo salar L. and Oncorhynchus mykiss (Walbaum). J. Fish Dis. 36, 639–645 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Taksdal, T. et al. Mortality and weight loss of Atlantic salmon, Salmon salar L., experimentally infected with salmonid alphavirus subtype 2 and subtype 3 isolates from Norway. J. Fish Dis. 38, 1047–1061 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Hammell, K. L. & Dohoo, I. R. Mortality patterns in infectious salmon anaemia virus outbreaks in New Brunswick, Canada. J. Fish Dis. 28, 639–650 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Glover, K. A. et al. Size-dependent susceptibility to infectious salmon anemia virus (ISAV) in Atlantic salmon (Salmo salar L.) of farm, hybrid and wild parentage. Aquaculture 254, 82–91 (2006).Article 

    Google Scholar 
    15.Roberts, R. J. & Pearson, M. D. Infectious pancreatic necrosis in Atlantic salmon, Salmo salar L. J. Fish Dis. 28, 383–390 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bang Jensen, B. & Kristoffersen, A. Risk factors for outbreaks of infectious pancreatic necrosis (IPN) and associated mortality in Norwegian salmonid farming. Dis. Aquat. Organ. 114, 177–187 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Brun, E., Poppe, T., Skrudland, A. & Jarp, J. Cardiomyopathy syndrome in farmed Atlantic salmon Salmo salar: Occurrence and direct financial losses for Norwegian aquaculture. Dis. Aquat. Organ. 56, 241–247 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Bang Jensen, B., Brun, E., Fineid, B., Larssen, R. & Kristoffersen, A. Risk factors for cardiomyopathy syndrome (CMS) in Norwegian salmon farming. Dis. Aquat. Organ. 107, 141–150 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Løvoll, M. et al. Atlantic salmon bath challenged with Moritella viscosa—Pathogen invasion and host response. Fish Shellfish Immunol. 26, 877–884 (2009).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Delghandi, M. R., El-Matbouli, M. & Menanteau-Ledouble, S. Renibacterium salmoninarum—The causative agent of bacterial kidney disease in salmonid fish. Pathogens 9, 845. https://doi.org/10.3390/pathogens9100845 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lhorente, J. P., Gallardo, J. A., Villanueva, B., Carabaño, M. J. & Neira, R. Disease resistance in Atlantic Salmon (Salmo salar): Coinfection of the intracellular bacterial pathogen Piscirickettsia salmonis and the Sea Louse Caligus rogercresseyi. PLoS ONE 9, e95397. https://doi.org/10.1371/journal.pone.0095397 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Kristoffersen, A. B. et al. Quantitative risk assessment of salmon louse-induced mortality of seaward-migrating post-smolt Atlantic salmon. Epidemics 23, 19–33 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Vollset, K. W. Parasite induced mortality is context dependent in Atlantic salmon: Insights from an individual-based model. Sci. Rep. 9, 17377. https://doi.org/10.1038/s41598-019-53871-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Taylor, R. S., Kube, P. D., Muller, W. J. & Elliott, N. G. Genetic variation of gross gill pathology and survival of Atlantic salmon (Salmo salar L.) during natural amoebic gill disease challenge. Aquaculture 294, 172–179 (2009).Article 

    Google Scholar 
    25.Carvalho, L. A. et al. Impact of co-infection with Lepeophtheirus salmonis and Moritella viscosa on inflammatory and immune responses of Atlantic salmon (Salmo salar). J. Fish Dis. 43, 459–473 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Barker, S. E. et al. Sea lice, Lepeophtheirus salmonis (Krøyer 1837), infected Atlantic salmon (Salmo salar L.) are more susceptible to infectious salmon anemia virus. PLoS ONE 14, e0209178. https://doi.org/10.1371/journal.pone.0209178 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Staurnes, M., Sigholt, T., Åsgård, T. & Baeverfjord, G. Effects of a temperature shift on seawater challenge test performance in Atlantic salmon (Salmo salar) smolt. Aquaculture 201, 153–159 (2001).Article 

    Google Scholar 
    28.Ytrestøyl, T. et al. Performance and welfare of Atlantic salmon, Salmo salar L. post-smolts in recirculating aquaculture systems: Importance of salinity and water velocity. J. World Aquac. Soc. 51, 373–392 (2020).Article 
    CAS 

    Google Scholar 
    29.Montes, R. M., Rojas, X., Artacho, P., Tello, A. & Quiñones, R. A. Quantifying harmful algal bloom thresholds for farmed salmon in southern Chile. Harmful Algae 77, 55–65 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.León-Muñoz, J., Urbina, M. A., Garreaud, R. & Iriarte, J. L. Hydroclimatic conditions trigger record harmful algal bloom in western Patagonia (summer 2016). Sci. Rep. 8, 1330. https://doi.org/10.1038/s41598-018-19461-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Groner, M. L., McEwan, G. F., Rees, E. E., Gettinby, G. & Revie, C. W. Quantifying the influence of salinity and temperature on the population dynamics of a marine ectoparasite. Can. J. Fish. Aquat. Sci. 73, 1281–1291 (2016).Article 

    Google Scholar 
    32.Sievers, M., Oppedal, F., Ditria, E. & Wright, D. W. The effectiveness of hyposaline treatments against host-attached salmon lice. Sci. Rep. 9, 6976. https://doi.org/10.1038/s41598-019-43533-8 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Tunsjø, H. S. et al. Adaptive response to environmental changes in the fish pathogen Moritella viscosa. Res. Microbiol. 158, 244–250 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    34.Guomundsdóttir, S. et al. Measures applied to control Renibacterium salmoninarum infection in Atlantic salmon: A retrospective study of two sea ranches in Iceland. Aquaculture 186, 193–203 (2000).Article 

    Google Scholar 
    35.Jansen, M. D. et al. Salmonid alphavirus (SAV) and pancreas disease (PD) in Atlantic salmon, Salmo salar L., in freshwater and seawater sites in Norway from 2006 to 2008. J. Fish Dis. 33, 391–402 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Jensen, B. B., Kristoffersen, A. B., Myr, C. & Brun, E. Cohort study of effect of vaccination on pancreas disease in Norwegian salmon aquaculture. Dis. Aquat. Organ. 102, 23–31 (2012).Article 

    Google Scholar 
    37.Karlsen, C., Thorarinsson, R., Wallace, C., Salonius, K. & Midtlyng, P. J. Atlantic salmon winter-ulcer disease: Combining mortality and skin ulcer development as clinical efficacy criteria against Moritella viscosa infection. Aquaculture 473, 538–544 (2017).Article 

    Google Scholar 
    38.Jansen, P. A. et al. Sea lice as a density-dependent constraint to salmonid farming. Proc. R. Soc. B Biol. Sci. 279, 2330–2338 (2012).Article 

    Google Scholar 
    39.Overton, K., Samsing, F., Oppedal, F., Stien, L. H. & Dempster, T. Lowering treatment temperature reduces salmon mortality: A new way to treat with hydrogen peroxide in aquaculture. Pest Manag. Sci. 74, 535–540 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Helgesen, K. O., Romstad, H., Aaen, S. M. & Horsberg, T. E. First report of reduced sensitivity towards hydrogen peroxide found in the salmon louse Lepeophtheirus salmonis in Norway. Aquac. Rep. 1, 37–42 (2015).Article 

    Google Scholar 
    41.Walde, C. S., Bang Jensen, B., Pettersen, J. M. & Stormoen, M. Estimating cage level mortality distributions following different delousing treatments of Atlantic salmon (Salmo salar) in Norway. J. Fish Dis. 44, jfd.13348. https://doi.org/10.1111/jfd.13348 (2021).Article 

    Google Scholar 
    42.Aaen, S. M., Helgesen, K. O., Bakke, M. J., Kaur, K. & Horsberg, T. E. Drug resistance in sea lice: A threat to salmonid aquaculture. Trends Parasitol. 31, 72–81 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Gismervik, K., Nielsen, K. V., Lind, M. B. & Viljugrein, H. Mekanisk avlusing med FLS-avlusersystem—dokumentasjon av fiskevelferd og effekt mot lus. Veterinærinstituttets rapportserie 6–2017. See https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2017/mekanisk-avlusing-dokumentasjon-av-fiskevelferd-og-effekt-mot-lus (2017).44.Grøntvedt, R. N. et al. Thermal de-licing of salmonid fish—Documentation of fish welfare and effect. Norwegian Veterinary Institute`s Report series 13–2015. https://www.vetinst.no/rapporter-og-publikasjoner/rapporter/2015/thermal-de-licing-of-salmonid-fish-documentation-of-fish-welfare-and-effect (2015).45.Gismervik, K. et al. Thermal injuries in Atlantic salmon in a pilot laboratory trial. Vet. Anim. Sci. 8, 100081. https://doi.org/10.1016/j.vas.2019.100081 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).ADS 
    Article 

    Google Scholar 
    47.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    48.Auguie B. gridExtra: Miscellaneous functions for “grid” graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra (2017).49.Salama, N. K. G., Murray, A. G., Christie, A. J. & Wallace, I. S. Using fish mortality data to assess reporting thresholds as a tool for detection of potential disease concerns in the Scottish farmed salmon industry. Aquaculture 450, 283–288 (2016).Article 

    Google Scholar 
    50.Aunsmo, A. et al. Methods for investigating patterns of mortality and quantifying cause-specific mortality in sea-farmed Atlantic salmon Salmo salar. Dis. Aquat. Organ. 81, 99–107 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Usher, M. L., Talbot, C. & Eddy, F. B. Effects of transfer to seawater on growth and feeding in Atlantic salmon smolts (Salmo salar L.). Aquaculture 94, 309–326 (1991).Article 

    Google Scholar 
    52.Johansson, L.-H., Timmerhaus, G., Afanasyev, S., Jørgensen, S. M. & Krasnov, A. Smoltification and seawater transfer of Atlantic salmon (Salmo salar L.) is associated with systemic repression of the immune transcriptome. Fish Shellfish Immunol. 58, 33–41 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Ellis, T., Turnbull, J. F., Knowles, T. G., Lines, J. A. & Auchterlonie, N. A. Trends during development of Scottish salmon farming: An example of sustainable intensification?. Aquaculture 458, 82–99 (2016).Article 

    Google Scholar 
    54.Kristensen, T. et al. Effects of production intensity and production strategies in commercial Atlantic salmon smolt (Salmo salar L.) production on subsequent performance in the early sea stage. Fish Physiol. Biochem. 38, 273–282 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Handeland, S. O., Björnsson, B. T., Arnesen, A. M. & Stefansson, S. O. Seawater adaptation and growth of post-smolt Atlantic salmon (Salmo salar) of wild and farmed strains. Aquaculture 220, 367–384 (2003).Article 

    Google Scholar 
    56.Bjørndal, T. & Tusvik, A. Economic analysis of on-growing of salmon post-smolts. Aquac. Econ. Manag. 24, 355–386 (2020).Article 

    Google Scholar 
    57.Bang Jensen, B., Mårtensson, A. & Kristoffersen, A. B. Estimating risk factors for the daily risk of developing clinical cardiomyopathy syndrome (CMS) on a fishgroup level. Prev. Vet. Med. 175, 104852. https://doi.org/10.1016/j.prevetmed.2019.104852 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Iversen, M. et al. Stress responses in Atlantic salmon (Salmo salar L.) smolts during commercial well boat transports, and effects on survival after transfer to sea. Aquaculture 243, 373–382 (2005).Article 

    Google Scholar 
    59.Intorre, L. Safety of azamethiphos in eel, seabass and trout. Pharmacol. Res. 49, 171–176 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Olsvik, P. A., Ørnsrud, R., Lunestad, B. T., Steine, N. & Fredriksen, B. N. Transcriptional responses in Atlantic salmon (Salmo salar) exposed to deltamethrin, alone or in combination with azamethiphos. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 162, 23–33 (2014).CAS 
    Article 

    Google Scholar 
    61.Johnson, S., Constible, J. & Richard, J. Laboratory investigations on the efficacy of hydrogen peroxide against the salmon louse Lepeophtheirus salmonis and its lexicological and histopathological effects on Atlantic salmon Salmo salar and Chinook salmon Oncorhynchus tshawytscha. Dis. Aquat. Organ. 17, 197–204 (1993).CAS 
    Article 

    Google Scholar 
    62.Nilsson, J. et al. Sudden exposure to warm water causes instant behavioural responses indicative of nociception or pain in Atlantic salmon. Vet. Anim. Sci. 8, 100076. https://doi.org/10.1016/j.vas.2019.100076 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Stien, L. H., Lind, M. B., Oppedal, F., Wright, D. W. & Seternes, T. Skirts on salmon production cages reduced salmon lice infestations without affecting fish welfare. Aquaculture 490, 281–287 (2018).Article 

    Google Scholar 
    64.Barrett, L. T., Oppedal, F., Robinson, N. & Dempster, T. Prevention not cure: A review of methods to avoid sea lice infestations in salmon aquaculture. Rev. Aquac. 12, 2527–2543 (2020).Article 

    Google Scholar 
    65.Overton, K., Barrett, L. T., Oppedal, F., Kristiansen, T. S. & Dempster, T. Sea lice removal by cleaner fish in salmon aquaculture: A review of the evidence base. Aquac. Environ. Interact. 12, 31–44 (2020).Article 

    Google Scholar 
    66.Tully, O., Daly, P., Lysaght, S., Deady, S. & Varian, S. J. A. Use of cleaner-wrasse (Centrolabrus exoletus (L.) and Ctenolabrus rupestris (L.)) to control infestations of Caligus elongatus Nordmann on farmed Atlantic salmon. Aquaculture 142, 11–24 (1996).Article 

    Google Scholar 
    67.Imsland, A. K. D. et al. It works! Lumpfish can significantly lower sea lice infestation in large-scale salmon farming. Biol. Open 7, bio036301. https://doi.org/10.1242/bio.036301 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    68.Erkinharju, T., Dalmo, R. A., Hansen, M. & Seternes, T. Cleaner fish in aquaculture: Review on diseases and vaccination. Rev. Aquac. 13, 189–237 (2021).Article 

    Google Scholar 
    69.Elliott, J. M. & Elliott, J. A. Temperature requirements of Atlantic salmon Salmo salar, brown trout Salmo trutta and Arctic charr Salvelinus alpinus: Predicting the effects of climate change. J. Fish Biol. 77, 1793–1817 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Finstad, T. & Sigholt, B. Effect of low temperature on seawater tolerance in Atlantic salmon (Salmo salar) smolts. Aquaculture 84, 167–172 (1990).Article 

    Google Scholar 
    71.Grefsrud, E. S. et al. Risikorapport norsk fiskeoppdrett 2018. https://www.hi.no/resources/publikasjoner/risikorapport-norsk-fiskeoppdrett/2018/risikorapport_2018.pdf (2018).72.Hvas, M., Folkedal, O. & Oppedal, F. Fish welfare in offshore salmon aquaculture. Rev. Aquac. 13, 836–852 (2021).Article 

    Google Scholar 
    73.Dórea, F. C. & Vial, F. Animal health syndromic surveillance: A systematic literature review of the progress in the last 5 years (2011–2016). Vet. Med. Res. Rep. 7, 157–170 (2016).
    Google Scholar 
    74.Fernández-Fontelo, A. et al. Enhancing the monitoring of fallen stock at different hierarchical administrative levels: An illustration on dairy cattle from regions with distinct husbandry, demographical and climate traits. BMC Vet. Res. 16, 110 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Samsing, F., Johnsen, I., Dempster, T., Oppedal, F. & Treml, E. A. Network analysis reveals strong seasonality in the dispersal of a marine parasite and identifies areas for coordinated management. Landsc. Ecol. 32, 1953–1967 (2017).Article 

    Google Scholar 
    76.Samsing, F., Johnsen, I., Treml, E. A. & Dempster, T. Identifying ‘firebreaks’ to fragment dispersal networks of a marine parasite. Int. J. Parasitol. 49, 277–286 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Myksvoll, M. S. et al. Evaluation of a national operational salmon lice monitoring system—From physics to fish. PLoS ONE 13, e0201338. https://doi.org/10.1371/journal.pone.0201338 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    78.Pebesma, E. Simple features for R: Standardized support for spatial vector data. R J. 10, 439–446 (2018).Article 

    Google Scholar 
    79.Tennekes, M. tmap: Thematic maps in R. J. Stat. Softw. 84, 1–39 (2018).Article 

    Google Scholar 
    80.NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/SF/forskrift/2012-12-05-1140 (2012).81.NFD (Nærings- og fiskeridepartementet). Forskrift om bekjempelse av lakselus i akvakulturanlegg. Lovdata. https://lovdata.no/dokument/LTI/forskrift/2012-12-05-1140 (2012).82.Asplin, L., Albretsen, J., Johnsen, I. A. & Sandvik, A. D. The hydrodynamic foundation for salmon lice dispersion modeling along the Norwegian coast. Ocean Dyn. 70, 1151–1167 (2020).ADS 
    Article 

    Google Scholar 
    83.Pierce, D. ncdf4: Interface to Unidata netCDF (Version 4 or Earlier) Format Data Files. CRAN. https://cran.r-project.org/web/packages/ncdf4/ncdf4.pdf (2019).84.Dohoo I., Martin W. & Stryhn H. Veterinary Epidemiologic Research (2nd edn) Charlottetown, Prince Edward Island (VER Inc., 2009).85.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    86.Lüdecke, D., Makowski, D., Waggoner, P. & Patil, I. performance: Assessment of regression models performance. CRAN. https://easystats.github.io/performance (2020).87.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. CRAN. https://cran.r-project.org/web/packages/DHARMa/DHARMa.pdf (2020). More

  • in

    Changes in climate drive recent monarch butterfly dynamics

    1.van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    2.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Wepprich, T., Adrion, J. R., Ries, L., Wiedmann, J. & Haddad, N. M. Butterfly abundance declines over 20 years of systematic monitoring in Ohio, USA. PLoS ONE 14, e0216270 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: death by a thousand cuts. Proc. Natl Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 

    Google Scholar 
    6.Winfree, R., Fox, J. W., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    7.Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Google Scholar 
    8.Brower, L. P. et al. Decline of monarch butterflies overwintering in Mexico: is the migratory phenomenon at risk? Insect Conserv. Divers. 5, 95–100 (2012).
    Google Scholar 
    9.Agrawal, A. A. & Inamine, H. Mechanisms behind the monarch’s decline. Science 360, 1294–1296 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Schultz, C. B., Brown, L. M., Pelton, E. & Crone, E. E. Citizen science monitoring demonstrates dramatic declines of monarch butterflies in western North America. Biol. Conserv. 214, 343–346 (2017).
    Google Scholar 
    11.Thogmartin, W. E. et al. Monarch butterfly population decline in North America: identifying the threatening processes. R. Soc. Open Sci. 4, 170760 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    12.Boyle, J. H., Dalgleish, H. J. & Puzey, J. R. Monarch butterfly and milkweed declines substantially predate the use of genetically modified crops. Proc. Natl Acad. Sci. USA 116, 3006–3011 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Hann, N. L. & Landis, D. A. The importance of shifting disturbance regimes in monarch butterfly decline and recovery. Front. Ecol. Evol. 7, 191 (2019).
    Google Scholar 
    14.Oberhauser, K. S. et al. Temporal and spatial overlap between monarch larvae and corn pollen. Proc. Natl Acad. Sci. USA 98, 11913–11918 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Pleasants, J. M. & Oberhauser, K. S. Milkweed loss in agricultural fields because of herbicide use: effect on the monarch butterfly population. Insect Conserv. Divers. 6, 135–144 (2013).
    Google Scholar 
    16.Ries, L., Taron, D. J. & Rendón-Salinas, E. The disconnect between summer and winter monarch trends for the eastern migratory population: possible links to differing drivers. Ann. Entomol. Soc. Am. 108, 691–699 (2015).
    Google Scholar 
    17.Inamine, H., Ellner, S. P., Springer, J. P. & Agrawal, A. A. Linking the continental migratory cycle of the monarch butterfly to understand its population decline. Oikos 125, 1081–1091 (2016).
    Google Scholar 
    18.Saunders, S. P. et al. Multiscale seasonal factors drive the size of winter monarch colonies. Proc. Natl Acad. Sci. USA 116, 8609–8614 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Zalucki, M. P. Temperature and rate of development in Danaus plexippus L. and D. chrysippus L. (Lepidoptera: Nymphalidae). Aust. J. Entomol. 21, 241–246 (1982).
    Google Scholar 
    20.Zipkin, E. F., Ries, L., Reeves, R., Regetz, J. & Oberhauser, K. S. Tracking climate impacts on the migratory monarch butterfly. Glob. Change Biol. 18, 3039–3049 (2012).
    Google Scholar 
    21.Saunders, S. P., Ries, L., Oberhauser, K. S., Thogmartin, W. E. & Zipkin, E. F. Local and cross-seasonal associations of climate and land use with abundance of monarch butterflies. Ecography 41, 278–290 (2018).
    Google Scholar 
    22.Batalden, R. V., Oberhauser, K. & Peterson, A. T. Ecological niches in sequential generations of eastern North American monarch butterflies: the ecology of migration and likely climate change implications. Environ. Entomol. 36, 1365–1373 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    23.Lemoine, N. P. Climate change may alter breeding ground distributions of eastern migratory monarchs via range expansion of Asclepias host plants. PLoS ONE 10, e0118614 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    24.Vidal, O. & Rendón-Salinas, E. Dynamics and trends of overwintering colonies of the monarch butterfly in Mexico. Biol. Conserv. 180, 165–175 (2014).
    Google Scholar 
    25.Thogmartin, W. E. et al. Density estimates of monarch butterflies overwintering in central Mexico. PeerJ 5, e3221 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    26.Flockhart, D. T. T., Pichancourt, J.-B., Norris, D. R. & Martin, T. G. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies. J. Anim. Ecol. 84, 155–165 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    27.Oberhauser, K. et al. A trans-national monarch butterfly population model and implications for regional conservation priorities. Ecol. Entomol. 42, 51–60 (2017).
    Google Scholar 
    28.Wilcox, A. A. E., Flockhart, D. T. T., Newman, A. E. M. & Norris, D. R. An evaluation of studies on the potential threats contributing to the decline of eastern migratory North American monarch butterflies (Danaus plexippus). Front. Ecol. Evol. 7, 99 (2019).
    Google Scholar 
    29.Chevan, A. & Sutherland, M. Hierarchical partitioning. Am. Stat. 45, 90–96 (1991).
    Google Scholar 
    30.Dai, S., Shulski, M. D., Hubbard, K. G. & Takle, E. S. A spatiotemporal analysis of Midwest US temperature and precipitation trends during the growing season from 1980 to 2013. Int. J. Climatol. 36, 517–525 (2016).
    Google Scholar 
    31.Feng, Z. et al. More frequent intense and long-lived storms dominate the springtime trend in central US rainfall. Nat. Commun. 7, 13429 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Crimmins, T. M. & Crimmins, M. A. Biologically-relevant trends in springtime temperatures across the United States. Geophys. Res. Lett. 46, 12377–12387 (2019).
    Google Scholar 
    33.Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2001).
    Google Scholar 
    34.Nelson, W. A., Bjørnstad, O. N. & Yamanaka, T. Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 341, 796–799 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds. Field, C. B. et al.) (Cambridge Univ. Press, 2014).36.Diffenbaugh, N. S. & Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Change 114, 813–822 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    37.Cook, K. H., Vizy, E. K., Launer, Z. S. & Patricola, C. M. Springtime intensification of the Great Plains low-level jet and Midwest precipitation in GCM simulations of the twenty-first century. J. Clim. 21, 6321–6340 (2008).
    Google Scholar 
    38.Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Wagner, D. L. Insect declines in the Anthropocene. Ann. Rev. Entomol. 65, 457–480 (2020).CAS 

    Google Scholar 
    40.Forister, M. L. et al. Fewer butterflies seen by community scientists across the warming and drying landscapes of the American West. Science 371, 1042–1045 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Flockhart, D. T. T. et al. Regional climate on the breeding grounds predicts variation in the natal origin of monarch butterflies overwintering in Mexico over 38 years. Glob. Change Biol. 23, 2565–2576 (2017).
    Google Scholar 
    43.Wassenaar, L. I. & Hobson, K. A. Natal origins of migratory monarch butterflies at wintering colonies in Mexico: new isotopic evidence. Proc. Natl Acad. Sci. USA 95, 15436–15439 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Oberhauser, K. S. et al. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 13–30 (Cornell Univ. Press, 2015).45.Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).
    Google Scholar 
    46.Saunders, S. P., Ries, L., Obserhauser, K. S. & Zipkin, E. F. Evaluating confidence in climate-based predictions of population change in a migratory species. Glob. Ecol. Biogeogr. 25, 1000–1012 (2016).
    Google Scholar 
    47.Missrie, M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 141–150 (Cornell Univ. Press, 2004).48.García-Serrano, E., Reyes, J. L. & Alvarez, B. X. M. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 129–133 (Cornell Univ. Press, 2004).49.Ramírez, M. I., Sáenz-Romero, C., Rehfeldt, G. & Salas-Canela, L. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 157–168 (Cornell Univ. Press, 2015).50.Howard, E. & Davis, A. K. Investigating long-term changes in the spring migration of monarch butterflies (Lepidoptera: Nymphalidae) using 18 years of data from Journey North, a citizen science program. Ann. Entomol. Soc. Am. 108, 664–669 (2015).
    Google Scholar 
    51.McMaster, G. S. & Wilhelm, W. Growing degree-days: one equation, two interpretations. Agric. Meteorol. 87, 291–300 (1997).
    Google Scholar 
    52.Thornton, P. E. et al. Daymet: Daily Surface Weather Data on a 1-km Grid for North America Version 3 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/132853.Hartzler, R. G. & Buhler, D. D. Occurrence of common milkweed (Asclepias syriaca) in cropland and adjacent areas. Crop Prot. 19, 363–366 (2000).
    Google Scholar 
    54.Hartzler, R. G. Reduction in common milkweed (Asclepias syriaca) occurrence in Iowa cropland from 1999 to 2009. Crop Prot. 29, 1542–1544 (2010).
    Google Scholar 
    55.Homer, C. G. et al. Completion of the 2011 National Land Cover Database for the conterminous United States—representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81, 345–354 (2015).
    Google Scholar 
    56.Douglas, M. R., Sponsler, D. B., Lonsdorf, E. V. & Grozinger, C. M. County-level analysis reveals a rapidly shifting landscape of insecticide hazard to honey bees (Apis mellifera) on US farmland. Sci. Rep. 10, 797 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Benbrook, C. M. Trends in glyphosate herbicide use in the United States and globally. Environ. Sci. Eur. 28, 3 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    58.Pesticide National Synthesis Project (US Geological Survey, 2020); https://water.usgs.gov/nawqa/pnsp/usage/maps/county-level/59.Quick Stats (US Department of Agriculture, National Agricultural Statistics Service, 2020); http://quickstats.nass.usda.gov60.Crops (Ontario Ministry of Agriculture, Food and Rural Affairs, 2020); http://www.omafra.gov.on.ca/english/crops/61.Batalden, R. V. & Oberhauser, K. S. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 215–224 (Cornell Univ. Press, 2015).62.Alonso-Mejía, A., Rendón-Salinas, E., Montesinos-Patiño, E. & Brower, L. P. Use of lipid reserves by monarch butterflies overwintering in Mexico: implications for conservation. Ecol. Appl. 7, 934–947 (1997).
    Google Scholar 
    63.Brower, L. P., Fink, L. S. & Walford, P. Fueling the fall migration of the monarch butterfly. Integr. Comp. Biol. 46, 1123–1142 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    64.Tracy, J. L., Kantola, T., Baum, K. A. & Coulson, R. N. Modeling fall migration pathways and spatially identifying potential migratory hazards for the eastern monarch butterfly. Landsc. Ecol. 34, 443–458 (2019).
    Google Scholar 
    65.Feldman, R. E. & McGill, B. J. How important is nectar in shaping spatial variation in the abundance of temperate breeding hummingbirds? J. Biogeogr. 41, 489–500 (2014).
    Google Scholar 
    66.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015); https://doi.org/10.5067/MODIS/MOD13Q1.00667.Vidal, O., López-García, J. & Rendón-Salinas, E. Trends in deforestation and forest degradation after a decade of monitoring in the Monarch Butterfly Biosphere Reserve in Mexico. Conserv. Biol. 28, 177–186 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    68.Williams, E. H. & Brower, L. P. in Monarchs in a Changing World: Biology and Conservation of an Iconic Butterfly (eds. Oberhauser, K. S. et al.) 109–116 (Cornell Univ. Press, 2015).69.Brower, L. P. et al. in The Monarch Butterfly: Biology and Conservation (eds. Obserhauser, K. S. & Solensky, M. J.) 151–166 (Cornell Univ. Press, 2004).70.Brower, L. P. et al. Butterfly mortality and salvage logging from the March 2016 storm in the Monarch Butterfly Biosphere Reserve in Mexico. Am. Entom. 63, 151–164 (2017).
    Google Scholar 
    71.Farfán-Gutiérrez, M. et al. Modeling anthropic factors as drivers of wildfire occurrence at the Monarch Butterfly Biosphere. Madera y Bosques 24, e2431591 (2018).
    Google Scholar 
    72.Ramírez, M. I., López-Sánchez, J. G. & Barrasa, S. Mapa de Vegetación y Cubiertas del Suelo, Reserva de la Biosfera Mariposa Monarca Vol. II (CIGA-UNAM, 2019).73.Flores-Martínez, J. J. et al. Recent forest cover loss in the core zones of the Monarch Butterfly Biosphere Reserve in Mexico. Front. Ecol. Evol. 7, 167 (2019).
    Google Scholar 
    74.Ramírez, M. I., Gímenez-Azcárate, J. & Luna, L. Effects of human activities on monarch butterfly habitat in protected mountain forests, Mexico. For. Chron. 79, 242–246 (2003).
    Google Scholar 
    75.Ramírez, M. I., Miranda, R., Zubieta, R. & Jiménez, M. Land cover and road network map for the Monarch Butterfly Biosphere Reserve in Mexico 2003. J. Maps 3, 181–190 (2007).
    Google Scholar 
    76.Zuur, A. F. & Ieno, E. N. Beginner’s Guide to Zero-Inflated Models with R (Highland Statistics Ltd, 2016).77.Yackulic, C. B., Dodrill, M., Dzul, M., Sanderlin, J. S. & Reid, J. A. A need for speed in Bayesian population models: a practical guide to marginalizing and recovering discrete latent states. Ecol. Appl. 30, e02112 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    78.Murray, K. & Conner, M. M. Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    79.Mac Nally, R. Hierarchical partitioning as an interpretative tool in multivariate inference. Austral Ecol. 21, 224–228 (1996).
    Google Scholar 
    80.Gelman, A., Goodrich, B., Gabry, J. & Vehtari, A. R-squared for Bayesian regression models. Am. Stat. 73, 307–309 (2019).
    Google Scholar 
    81.Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1 (2017).
    Google Scholar 
    82.Stan Development Team. rstan: the R Interface to Stan. R package version 2.17.3 http://mc-stan.org/ (2018).83.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.R-project.org/84.Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).
    Google Scholar 
    85.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007). More

  • in

    Benefit of woodland and other natural environments for adolescents’ cognition and mental health

    1.Giles-Corti, B. et al. City planning and population health: a global challenge. Lancet 388, 2912–2924 (2016).Article 

    Google Scholar 
    2.World Urbanization Prospects: The 2018 Revision ST/ESA/SER.A/420 (UN DESA, 2019).3.Okkels, N., Kristiansen, C. B., Munk-Jørgensen, P. & Sartorius, N. Urban mental health. Curr. Opin. Psychiatry 31, 258–264 (2018).Article 

    Google Scholar 
    4.Robbins, R. N., Scott, T., Joska, J. A. & Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 32, 210–217 (2019).Article 

    Google Scholar 
    5.Sarkar, C., Webster, C. & Gallacher, J. Residential greenness and prevalence of major depressive disorders: a cross-sectional, observational, associational study of 94 879 adult UK Biobank participants. Lancet Planet. Health 2, e162–e173 (2018).Article 

    Google Scholar 
    6.Engemann, K. et al. Residential green space in childhood is associated with lower risk of psychiatric disorders from adolescence into adulthood. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/PNAS.1807504116 (2019).7.Dadvand, P. et al. Green spaces and cognitive development in primary schoolchildren. Proc. Natl Acad. Sci. USA 112, 7937–7942 (2015).CAS 
    Article 

    Google Scholar 
    8.Franco, L. S., Shanahan, D. F. & Fuller, R. A. A review of the benefits of nature experiences: more than meets the eye. Int. J. Environ. Res. Public Health 14, 864 (2017).Article 

    Google Scholar 
    9.Cox, D. T. C. et al. Skewed contributions of individual trees to indirect nature experiences. Landsc. Urban Plan. 185, 28–34 (2019).Article 

    Google Scholar 
    10.Irvine, K. N. et al. Green space, soundscape and urban sustainability: an interdisciplinary, empirical study. Local Environ. 14, 155–172 (2009).Article 

    Google Scholar 
    11.Weber, S. T. & Heuberger, E. The impact of natural odors on affective states in humans. Chem. Senses 33, 441–447 (2008).Article 

    Google Scholar 
    12.Li, Q. Effect of forest bathing trips on human immune function. Environ. Health Prev. Med. 15, 9–17 (2010).CAS 
    Article 

    Google Scholar 
    13.Rook, G. A., Raison, C. L. & Lowry, C. A. Can we vaccinate against depression? Drug Discov. Today 17, 451–458 (2012).Article 

    Google Scholar 
    14.Markevych, I. et al. Access to urban green spaces and behavioural problems in children: results from the GINIplus and LISAplus studies. Environ. Int. 71, 29–35 (2014).Article 

    Google Scholar 
    15.Taylor, M. S., Wheeler, B. W., White, M. P., Economou, T. & Osborne, N. J. Research note: urban street tree density and antidepressant prescription rates—a cross-sectional study in London, UK. Landsc. Urban Plan. 136, 174–179 (2015).16.Akpinar, A., Barbosa-Leiker, C. & Brooks, K. R. Does green space matter? Exploring relationships between green space type and health indicators. Urban For. Urban Green. 20, 407–418 (2016).Article 

    Google Scholar 
    17.Cox, D. T. C., Shanahan, D. F., Hudson, H. L., Fuller, R. A. & Gaston, K. J. The impact of urbanisation on nature dose and the implications for human health. Landsc. Urban Plan. 179, 72–80 (2018).Article 

    Google Scholar 
    18.Amoly, E. et al. Green and blue spaces and behavioral development in Barcelona schoolchildren: the BREATHE Project. Environ. Health Perspect. 122, 1351–1358 (2014).Article 

    Google Scholar 
    19.Astell-Burt, T. & Feng, X. Association of urban green space with mental health and general health among adults in Australia. JAMA Netw. Open 2, e198209 (2019).Article 

    Google Scholar 
    20.Barton, J. & Pretty, J. What is the best dose of nature and green exercise for improving mental health? A multi-study analysis. Environ. Sci. Technol. 44, 3947–3955 (2010).CAS 
    Article 

    Google Scholar 
    21.Gascon, M. et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int. J. Environ. Res. Public Health 12, 4354–4379 (2015).Article 

    Google Scholar 
    22.The Mental Health of Children and Young People in London (PHE, 2016).23.Bijnens, E. M., Derom, C., Thiery, E., Weyers, S. & Nawrot, T. S. Residential green space and child intelligence and behavior across urban, suburban, and rural areas in Belgium: a longitudinal birth cohort study of twins. PLoS Med. 17, e1003213 (2020).Article 

    Google Scholar 
    24.Milligan, C. & Bingley, A. Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. Health Place 13, 799–811 (2007).Article 

    Google Scholar 
    25.Toledano, M. B. et al. Cohort profile: the study of cognition, adolescents and mobile phones (SCAMP). Int. J. Epidemiol. 48, 25–26l (2018).Article 

    Google Scholar 
    26.Afifi, M. Gender differences in mental health. Singapore Med. J. 48, 385–391 (2007).CAS 

    Google Scholar 
    27.Guhn, M., Emerson, S. D., Mahdaviani, D. & Gadermann, A. M. Associations of birth factors and socio-economic status with indicators of early emotional development and mental health in childhood: a population-based linkage study. Child Psychiatry Hum. Dev. 51, 80–93 (2020).Article 

    Google Scholar 
    28.Morita, E. et al. Psychological effects of forest environments on healthy adults: shinrin-yoku (forest-air bathing, walking) as a possible method of stress reduction. Public Health 121, 54–63 (2007).CAS 
    Article 

    Google Scholar 
    29.Thompson, C. W. et al. Health impacts of environmental and social interventions designed to increase deprived communities’ access to urban woodlands: a mixed-methods study. Public Health Res. 27, 1–172 (2019).Article 

    Google Scholar 
    30.Hedblom, M., Heyman, E., Antonsson, H. & Gunnarsson, B. Bird song diversity influences young people’s appreciation of urban landscapes. Urban For. Urban Green. 13, 469–474 (2014).Article 

    Google Scholar 
    31.Liao, J. et al. Residential exposure to green space and early childhood neurodevelopment. Environ. Int. 128, 70–76 (2019).Article 

    Google Scholar 
    32.Picavet, H. S. J. et al. Greener living environment healthier people? Exploring green space, physical activity and health in the Doetinchem Cohort Study. Prev. Med. 89, 7–14 (2016).Article 

    Google Scholar 
    33.Francis, J., Wood, L. J., Knuiman, M. & Giles-Corti, B. Quality or quantity? Exploring the relationship between public open space attributes and mental health in Perth, Western Australia. Soc. Sci. Med. 74, 1570–1577 (2012).Article 

    Google Scholar 
    34.Nutsford, D., Pearson, A. L., Kingham, S. & Reitsma, F. Residential exposure to visible blue space (but not green space) associated with lower psychological distress in a capital city. Health Place 39, 70–78 (2016).Article 

    Google Scholar 
    35.Little, S. & Derr, V. in Research Handbook on Childhoodnature (eds Cutter-Mackenzie-Knowles, A. et al.) 151–178 (Springer, 2020).36.Bell, S. L., Phoenix, C., Lovell, R. & Wheeler, B. W. Seeking everyday wellbeing: the coast as a therapeutic landscape. Soc. Sci. Med. 142, 56–67 (2015).Article 

    Google Scholar 
    37.Bratman, G. N. et al. Nature and mental health: an ecosystem service perspective. Sci. Adv. 5, 903–927 (2019).Article 

    Google Scholar 
    38.Hartig, T., Mitchell, R., de Vries, S. & Frumkin, H. Nature and health. Annu. Rev. Public Health 35, 207–228 (2014).Article 

    Google Scholar 
    39.Tarling, R. & Roger, R. D. Socio-economic determinants of crime rates: modelling local area police-recorded crime. Howard J. Crime Justice 55, 207–225 (2016).Article 

    Google Scholar 
    40.Rose, D., Pevalin, D. J. & O’Reilly, K. The National Statistics Socio-economic Classification: Origins, Development and Use (Palgrave MacMillan, 2005).41.Carstairs, V. & Morris, R. Deprivation and health in Scotland. Health Bull. 48, 162–175 (1990).CAS 

    Google Scholar 
    42.2011 Census Aggregate Data (Office of National Statistics, 2012); https://www.ons.gov.uk/census/2011census43.Luciana, M. & Nelson, C. A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4- to 12-year-old children. Dev. Neuropsychol. 22, 595–624 (2002).Article 

    Google Scholar 
    44.Tombaugh, T. N. Trail Making Test A and B: Normative data stratified by age and education. Arch. Clin. Neuropsychol. 19, 203–214 (2004).Article 

    Google Scholar 
    45.Wechsler, D. The Measurement of Adult Intelligence (Williams & Wilkins, 1944).46.Burgess, P. W. in Methodology of Frontal and Executive Function (ed. Rabbitt, P.) 79–113 (Taylor and Francis, 2004).47.Goodman, R., Meltzer, H. & Bailey, V. The Strengths and Difficulties Questionnaire: a pilot study on the validity of the self-report version. Int. Rev. Psychiatry 15, 173–177 (2003).CAS 
    Article 

    Google Scholar 
    48.Cronbach, L. J. Coefficient alpha and the internal structure of tests. Psychometrika 16, 297–334 (1951).Article 

    Google Scholar 
    49.The KIDSCREEN Group Europe The Kidscreen Questionnaires: Quality of Life Questionnaires for Children and Adolescents (Pabst Science, 2006).50.Berman, A. H., Liu, B., Ullman, S., Jadbäck, I. & Engström, K. Children’s quality of life based on the KIDSCREEN-27: child self-report, parent ratings and child–parent agreement in a Swedish random population sample. PLoS ONE 11, e0150545 (2016).Article 
    CAS 

    Google Scholar 
    51.Sentinel-2 User Handbook (ESA, 2015).52.Gascon, M. et al. Normalized Difference Vegetation Index (NDVI) as a marker of surrounding greenness in epidemiological studies: the case of Barcelona city. Urban For. Urban Green. 19, 88–94 (2016).Article 

    Google Scholar 
    53.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    54.Open Map—Local (Ordnance Survey, 2019); http://os.uk55.Miura, N. & Jones, S. D. Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens. Environ. 114, 1069–1076 (2010).Article 

    Google Scholar 
    56.Dadvand, P. et al. The association between greenness and traffic-related air pollution at schools. Sci. Total Environ. 523, 59–63 (2015).CAS 
    Article 

    Google Scholar 
    57.Sunyer, J. et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: a prospective cohort study. PLoS Med. 12, e1001792 (2015).Article 
    CAS 

    Google Scholar 
    58.Roberts, S. et al. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 272, 8–17 (2019).CAS 
    Article 

    Google Scholar 
    59.Tzivian, L. et al. Effect of long-term outdoor air pollution and noise on cognitive and psychological functions in adults. Int. J. Hyg. Environ. Health 218, 1–11 (2015).Article 

    Google Scholar 
    60.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. B 71, 319–392 (2009).Article 

    Google Scholar  More

  • in

    All shallow coastal habitats matter as nurseries for Mediterranean juvenile fish

    1.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    2.Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lindeboom, H. The coastal zone: An ecosystem under pressure. In Oceans 2020: Science Trends and the Challenge of Sustainability (ed. Field, J. G.) 49–84 (Island Press, 2002).
    Google Scholar 
    5.Airoldi, L., Balata, D. & Beck, M. W. The Gray Zone: Relationships between habitat loss and marine diversity and their applications in conservation. J. Exp. Mar. Biol. Ecol. 366, 8–15 (2008).Article 

    Google Scholar 
    6.Islam, S. & Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 48, 624–649 (2004).CAS 
    Article 

    Google Scholar 
    7.Vikas, M. & Dwarakish, G. S. Coastal pollution: A review. Aquat. Procedia 4, 381–388 (2015).Article 

    Google Scholar 
    8.Blaber, S. J. M. et al. Effects of fishing on the structure and functioning of estuarine and nearshore ecosystems. ICES J. Mar. Sci. 57, 590–602 (2000).Article 

    Google Scholar 
    9.Hussein, C. et al. Assessing the impact of artisanal and recreational fishing and protection on a white seabream (Diplodus sargus sargus) population in the north-western Mediterranean Sea using a simulation model. Part 1: Parameterization and simulations. Fish. Res. 108, 163–173 (2011).Article 

    Google Scholar 
    10.Hawkins, A. D. & Popper, A. N. A sound approach to assessing the impact of underwater noise on marine fishes and invertebrates. ICES J. Mar. Sci. 74, 635–651 (2017).Article 

    Google Scholar 
    11.Beck, M. W. et al. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. Bioscience 51, 633–641 (2001).Article 

    Google Scholar 
    12.Carr, M. H. Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J. Exp. Mar. Biol. Ecol. 146, 113–137 (1991).Article 

    Google Scholar 
    13.Sheaves, M., Baker, R. & Johnston, R. Marine nurseries and effective juvenile habitats: an alternative view. Mar. Ecol. Prog. Ser. 318, 303–306 (2006).ADS 
    Article 

    Google Scholar 
    14.Leis, J. M. Are larvae of demersal fishes plankton or nekton?. Adv. Mar. Biol. https://doi.org/10.1016/S0065-2881(06)51002-8 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Raventos, N. & Macpherson, E. Planktonic larval duration and settlement marks on the otoliths of Mediterranean littoral fishes. Mar. Biol. 138, 1115–1120 (2001).Article 

    Google Scholar 
    16.Di Franco, A. et al. Dispersal of larval and juvenile seabream: Implications for Mediterranean marine protected areas. Biol. Conserv. 192, 361–368 (2015).Article 

    Google Scholar 
    17.Di Franco, A. et al. Assessing dispersal patterns of fish propagules from an effective Mediterranean marine protected area. PLoS ONE 7, e52108 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Di Franco, A. & Guidetti, P. Patterns of variability in early-life traits of fishes depend on spatial scale of analysis. Biol. Lett. 7, 454–456 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Dahlgren, C. P. & Eggleston, D. B. Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81, 2227–2240 (2000).Article 

    Google Scholar 
    20.Macpherson, E. Ontogenetic shifts in habitat use and aggregation in juvenile sparid fishes. J. Exp. Mar. Biol. Ecol. 220, 127–150 (1998).Article 

    Google Scholar 
    21.Dahlgren, C. P. et al. Marine nurseries and effective juvenile habitats: Concepts and applications. Mar. Ecol. Prog. Ser. 312, 291–295 (2006).ADS 
    Article 

    Google Scholar 
    22.Jennings, S. & Blanchard, J. L. Fish abundance with no fishing: predictions based on macroecological theory. J. Anim. Ecol. 73, 632–642 (2004).Article 

    Google Scholar 
    23.Jones, G. P. The importance of recruitment to the dynamics of a coral reef fish population. Ecology 71, 1691–1698 (1990).Article 

    Google Scholar 
    24.Sheaves, M., Baker, R., Nagelkerken, I. & Connolly, R. M. True value of estuarine and coastal nurseries for fish: Incorporating complexity and dynamics. Estuaries Coasts 38, 401–414 (2015).Article 

    Google Scholar 
    25.Harmelin-Vivien, M. L., Harmelin, J. G. & Leboulleux, V. Microhabitat requirements for settlement of juvenile Sparid fishes on Mediterranean rocky shores. Hydrobiologia 301, 309–320 (1995).Article 

    Google Scholar 
    26.Garcia-Rubies, A. & Macpherson, E. Substrate use and temporal pattern of recruitment in juvenile fishes of the Mediterranean littoral. Mar. Biol. 124, 35–42 (1995).Article 

    Google Scholar 
    27.Vigliola, L. Contrôle et régulation du recrutement des Sparidés (Poissons, Téléostéens) en Méditerranée : importance des processus pré- et post-installation benthique. Thèse Doct Sci Univ Aix-Marseille II Marseille. (1998).28.Cheminée, A. Ecological Functions, Transformations and Management of Infralittoral Rocky Habitats from the North-Western Mediterranean: The Case of Fish (Teleostei) Nursery Habitats (University of Nice, 2012).
    Google Scholar 
    29.Macpherson, E. & Zika, U. Temporal and spatial variability of settlement success and recruitment level in three blennoid fishes in the northwestern Mediterranean. Mar. Ecol. Prog. Ser. 182, 269–282 (1999).ADS 
    Article 

    Google Scholar 
    30.Heck, K., Hays, G. & Orth, R. Critical evaluation of the nursery role hypothesis for seagrass meadows. Mar. Ecol. Prog. Ser. 253, 123–136 (2003).ADS 
    Article 

    Google Scholar 
    31.Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, A. & García-Charton, J. A. Temporal patterns of settlement, recruitment and post-settlement losses in a rocky reef fish assemblage in the South-Western Mediterranean Sea. Mar. Biol. 160, 2337–2352 (2013).Article 

    Google Scholar 
    32.Cuadros, A. Settlement and Post-Settlement Processes of Mediterranean Littoral Fishes: Influence of Seascape Attributes and Environmental Conditions at Different Spatial Scales (Universidad de las Islas Baleares, 2015).
    Google Scholar 
    33.Bussotti, S. & Guidetti, P. Timing and habitat preferences for settlement of juvenile fishes in the marine protected area of torre guaceto (south-eastern Italy, Adriatic Sea). Ital. J. Zool. 78, 243–254 (2011).Article 

    Google Scholar 
    34.Bariche, M., Letourneur, Y. & Harmelin-Vivien, M. Temporal fluctuations and settlement patterns of native and lessepsian herbivorous fishes on the lebanese coast (Eastern Mediterranean). Environ. Biol. Fishes 70, 81–90 (2004).Article 

    Google Scholar 
    35.Mosconi, P. & Chauvet, C. Growth spatio-temporal variability of juveniles of sea-bream (Sparus aurata) between lagoonal and sea areas in the south of Lion’s Gulf. Vie Milieu Paris 40, 305–311 (1990).
    Google Scholar 
    36.Verdiell-Cubedo, D., Oliva-Paterna, F. J., Ruiz-Navarro, A. & Torralva, M. Assessing the nursery role for marine fish species in a hypersaline coastal lagoon (Mar Menor, Mediterranean Sea). Mar. Biol. Res. 9, 739–748 (2013).Article 

    Google Scholar 
    37.Letourneur, Y., Darnaude, A., Salen-Picard, C. & Harmelin-vivien, M. Spatial and temporal variations of fish assemblages in a shallow Mediterranean soft-bottom area (Gulf of Fos, France). Oceanol. Acta 24, 273–285 (2001).Article 

    Google Scholar 
    38.Le Pape, O. et al. Sources of organic matter for flatfish juveniles in coastal and estuarine nursery grounds: A meta-analysis for the common sole (Solea solea) in contrasted systems of Western Europe. J. Sea Res. 75, 85–95 (2013).Article 

    Google Scholar 
    39.Guidetti, P. & Bussotti, S. Recruitment of Diplodus annularis and Spondyliosoma cantharus (Sparidae) in shallow seagrass beds along the Italian coasts (Mediterranean Sea). Mar. Life 7, 47–52 (1997).
    Google Scholar 
    40.Guidetti, P. & Bussotti, S. Fish fauna of a mixed meadow composed by the seagrasses Cymodocea nodosa and Zostera noltii in the Western Mediterranean. Oceanol. Acta 23, 759–770 (2000).Article 

    Google Scholar 
    41.Guidetti, P. & Bussotti, S. Effects of seagrass canopy removal on fish in shallow Mediterranean seagrass (Cymodocea nodosa and Zostera noltii) meadows: a local-scale approach. Mar. Biol. 140, 445–453 (2002).Article 

    Google Scholar 
    42.Cuadros, A. et al. The three-dimensional structure of Cymodocea nodosa meadows shapes juvenile fish assemblages (Fornells Bay, Minorca Island). Reg. Stud. Mar. Sci. (2017).43.Francour, P. & Le Direac’h, L. Recrutement de l’ichtyofaune dans l’herbier superficiel à Posidonia oceanica de la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale): données préliminaires. Trav. Sci. Parc. Nat. Régional Corse 46, 71–91 (1994).
    Google Scholar 
    44.Francour, P. & Le Direac’h, L. Analyse spatiale du recrutement des poissons de l’herbier à Posidonia oceanica dans la réserve naturelle de Scandola (Corse, Méditerranée nord-occidentale). Contrat Parc Naturel Régional de la Corse & GIS Posidonie. LEML Publ Nice 1–23 (2001).45.Francour, P. & Le Direach, L. Le recrutement des poissons dans les herbiers à Posidonia oceanica : quels sont les facteurs influents ? in XXXIX AFL Congress 67–78 (1995).46.Le Direac’h, L. & Francour, P. Recrutement de Diplodus annularis (Sparidae) dans les herbiers de posidonie de la Réserve Naturelle de Scandola (Corse). Trav. Sci. Parc. Nat. Rég. Corse 57, 42–75 (1998).
    Google Scholar 
    47.Guidetti, P. Differences among fish assemblages associated with Nearshore Posidonia oceanica Seagrass Beds, Rocky–algal Reefs and unvegetated sand habitats in the Adriatic Sea. Estuar. Coast. Shelf Sci. 50, 515–529 (2000).ADS 
    Article 

    Google Scholar 
    48.Félix-Hackradt, F. C., Hackradt, C. W., Treviño-Otón, J., Pérez-Ruzafa, Á. & García-Charton, J. A. Habitat use and ontogenetic shifts of fish life stages at rocky reefs in South-western Mediterranean Sea. J. Sea Res. 88, 67–77 (2014).ADS 
    Article 

    Google Scholar 
    49.Félix-Hackradt, F. C. et al. Environmental determinants on fish post-larval distribution in coastal areas of south-western Mediterranean Sea. Estuar. Coast. Shelf Sci. 129, 59–72 (2013).ADS 
    Article 

    Google Scholar 
    50.Cheminée, A. et al. Nursery value of Cystoseira forests for Mediterranean rocky reef fishes. J. Exp. Mar. Biol. Ecol. 442, 70–79 (2013).Article 

    Google Scholar 
    51.Cheminée, A. et al. Juvenile fish assemblages in temperate rocky reefs are shaped by the presence of macro-algae canopy and its three-dimensional structure. Sci. Rep. 7, 14638 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Cuadros, A. et al. Juvenile fish in Cystoseira forests: Influence of habitat complexity and depth on fish behaviour and assemblage composition. Mediterr. Mar. Sci. 20, 380–392 (2019).Article 

    Google Scholar 
    53.Hinz, H., Reñones, O., Gouraguine, A., Johnson, A. F. & Moranta, J. Fish nursery value of algae habitats in temperate coastal reefs. PeerJ 7, e6797 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Thiriet, P. D. et al. Abundance and diversity of Crypto- and Necto-Benthic coastal fish are higher in marine forests than in structurally less complex macroalgal assemblages. PLoS ONE 11, e0164121 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Thiriet, P. Comparaison de la Structure des Peuplements de Poissons et des Processus Écologiques Sous-Jacents, Entre les Forêts de Cystoseires et des Habitats Structurellement Moins Complexes, dans l’Infralittoral Rocheux de Méditerranée Nord-Occidentale (University of Nice, 2014).
    Google Scholar 
    56.Cheminée, A. et al. Shallow rocky nursery habitat for fish: Spatial variability of juvenile fishes among this poorly protected essential habitat. Mar. Pollut. Bull. 119, 245–254 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    57.Mercader, M. et al. Spatial distribution of juvenile fish along an artificialized seascape, insights from common coastal species in the Northwestern Mediterranean Sea. Mar. Environ. Res. 137, 60–72 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Tournois, J. et al. Lagoon nurseries make a major contribution to adult populations of a highly prized coastal fish. Limnol. Oceanogr. 62, 1219–1233 (2017).ADS 
    Article 

    Google Scholar 
    59.Cuadros, A. et al. Settlement and post-settlement survival rates of the white seabream (Diplodus sargus) in the western Mediterranean Sea. PLoS ONE 13, e0190278 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    60.Cheminée, A., Francour, P. & Harmelin-Vivien, M. Assessment of Diplodus spp. (Sparidae) nursery grounds along the rocky shore of Marseilles (France, NW Mediterranean). Sci. Mar. 75, 181–188 (2011).Article 

    Google Scholar 
    61.Pastor, J., Koeck, B., Astruch, P. & Lenfant, P. Coastal man-made habitats: Potential nurseries for an exploited fish species, Diplodus sargus (Linnaeus, 1758). Fish. Res. 148, 74–80 (2013).Article 

    Google Scholar 
    62.Vigliola, L. et al. Spatial and temporal patterns of settlement among sparid fishes of the genus Diplodus in the northwestern Mediterranean. Mar. Ecol.-Prog. Ser. 168, 45–56 (1998).ADS 
    Article 

    Google Scholar 
    63.Vigliola, L. & Harmelin-Vivien, M. Post-settlement ontogeny in three Mediterranean reef fish species of the Genus Diplodus. Bull. Mar. Sci. 68, 271–286 (2001).
    Google Scholar 
    64.Cuadros, A. et al. Seascape attributes, at different spatial scales, determine settlement and post-settlement of juvenile fish. Estuar. Coast. Shelf Sci. 185, 120–129 (2017).ADS 
    Article 

    Google Scholar 
    65.Morat, F. et al. Diet of the Mediterranean european shag, Phalacrocorax aristotelis desmarestii, in a northwestern mediterranean area: a competitor for local fisheries?. Sci. Rep. Port. Cros. Natl. Park 28, 113–132 (2014).
    Google Scholar 
    66.Morat, F. et al. Offshore–onshore linkages in the larval life history of sole in the Gulf of Lions (NW-Mediterranean). Estuar. Coast. Shelf Sci. 149, 194–202 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    67.La Mesa, G., Louisy, P. & Vacchi, M. Assessment of microhabitat preferences in juvenile dusky grouper (Epinephelus marginatus) by visual sampling. Mar. Biol. 140, 175–185 (2002).Article 

    Google Scholar 
    68.Vacchi, M., La Mesa, G., Finoia, M. G., Guidetti, P. & Bussotti, S. Protection measures and juveniles of dusky grouper, Epinephelus marginatus (Lowe, 1834) (Pisces, Serranidae), in the Marine Reserve of Ustica Island (Italy, Mediterranean Sea). Mar. Life 9, 63–70 (1999).
    Google Scholar 
    69.Bodilis, P., Ganteaume, A. & Francour, P. Presence of 1 year-old dusky groupers along the French Mediterranean coast. J. Fish Biol. 62, 242–246 (2003).Article 

    Google Scholar 
    70.Bodilis, P., Ganteaume, A. & Francour, P. Recruitment of the dusky grouper (Epinephelus marginatus) in the north-western Mediterranean Sea. Cybium 27, 123–129 (2003).
    Google Scholar 
    71.Mercader, M. et al. Observation of juvenile dusky groupers (Epinephelus marginatus) in artificial habitats of North-Western Mediterranean harbors. Mar. Biodivers. 47, 371–372 (2016).Article 

    Google Scholar 
    72.Raventos, N. & Macpherson, E. Environmental influences on temporal patterns of settlement in two littoral labrid fishes in the Mediterranean Sea. Estuar. Coast. Shelf Sci. 63, 479–487 (2005).ADS 
    Article 

    Google Scholar 
    73.Raventos, N. & Macpherson, E. Effect of pelagic larval growth and size-at-hatching on post-settlement survivorship in two temperate labrid fish of the genus Symphodus. Mar. Ecol. Prog. Ser. 285, 205–211 (2005).ADS 
    Article 

    Google Scholar 
    74.Macpherson, E. & Raventos, N. Settlement patterns and post-settlement survival in two Mediterranean littoral fishes: influences of early-life traits and environmental variables. Mar. Biol. 148, 167–177 (2005).Article 

    Google Scholar 
    75.Raventos, N. Effects of wave action on nesting activity in the littoral five-spotted wrasse, Symphodus roissali,(Labridae), in the northwestern Mediterranean Sea. Sci. Mar. 68, 257–264 (2004).Article 

    Google Scholar 
    76.Schunter, C. et al. A novel integrative approach elucidates fine-scale dispersal patchiness in marine populations. Sci. Rep. 9, 10796 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Biagi, F., Gambaccini, S. & Zazzetta, M. Settlement and recruitment in fishes: The role of coastal areas. Ital. J. Zool. 65, 269–274 (1998).Article 

    Google Scholar 
    78.Franco, A. et al. Use of shallow water habitats by fish assemblages in a Mediterranean coastal lagoon. Estuar. Coast. Shelf Sci. 66, 67–83 (2006).ADS 
    Article 

    Google Scholar 
    79.Harmelin-Vivien, M. L. et al. Évaluation visuelle des peuplements et populations de Poissons: Méthodes et problèmes. Rev. Ecol. Terre Vie 40, 467–539 (1985).
    Google Scholar 
    80.Faillettaz, R. et al. Spatio-temporal patterns of larval fish settlement in the northwestern Mediterranean Sea. Mar. Ecol. Prog. Ser. 650, 153–173 (2020).ADS 
    Article 

    Google Scholar 
    81.Le Direach, L. et al. Programme NUhAGE : Nurseries, habitats, génie écologique, Rapport final. Contrat GIS Posidonie: MIO: P2A développement/Agence de l’Eau Rhône-Méditerranée-Corse-Conseil Général du Var. 1–146 (2015).82.Orellana, S., Hernández, M. & Sansón, M. Diversity of Cystoseira sensu lato (Fucales, Phaeophyceae) in the eastern Atlantic and Mediterranean based on morphological and DNA evidence, including Carpodesmia gen. emend. and Treptacantha gen. emend. Eur. J. Phycol. 54, 447–465 (2019).CAS 
    Article 

    Google Scholar 
    83.Ballesteros, E. Els vegetals i la zonació litoral: espècies, comunitats i factors que influeixen en la seva distribució. (1992).84.Medrano, A. et al. Ecological traits, genetic diversity and regional distribution of the macroalga Treptacantha elegans along the Catalan coast (NW Mediterranean Sea). Sci. Rep. 10, 19219 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Clarke, K. R., Gorley, R. N., Somerfield, P. J. & Warwick, R. M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. (Primer-E Ltd, 2001).86.Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial-Primer-E Ltd. (2006).87.Anderson, M., Gorley, R. & Clarke, K. PERMANOVA+ for PRIMER: guide to software and statistical methods. (Primer-e, 2008).88.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2017).89.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    90.August, P. V. The role of habitat complexity and heterogeneity in structuring tropical mammal communities. Ecology 64, 1495–1507 (1983).Article 

    Google Scholar 
    91.Wedding, L. M., Lepczyk, C. A., Pittman, S. J., Friedlander, A. M. & Jorgensen, S. Quantifying seascape structure: Extending terrestrial spatial pattern metrics to the marine realm. Mar. Ecol. Prog. Ser. 427, 219–223 (2011).ADS 
    Article 

    Google Scholar 
    92.Thiriet, P., Cheminée, A., Mangialajo, L. & Francour, P. How 3D complexity of macrophyte-formed habitats affect the processes structuring fish assemblages within coastal temperate seascapes? in Underwater Seascapes (eds. Musard, O. et al.) 185–199 (Springer, 2014).93.Cheminée, A., Merigot, B., Vanderklift, M. A. & Francour, P. Does habitat complexity influence fish recruitment?. Mediterr. Mar. Sci. 17, 39–46 (2016).Article 

    Google Scholar 
    94.Mercader, M. et al. Is artificial habitat diversity a key to restoring nurseries for juvenile coastal fish? Ex situ experiments on habitat selection and survival of juvenile seabreams. Restor. Ecol. 27, 1155–1165 (2019).Article 

    Google Scholar 
    95.Winemiller, K. O. & Leslie, M. A. Fish assemblages across a complex, tropical freshwater/marine ecotone. Environ. Biol. Fishes 34, 29–50 (1992).Article 

    Google Scholar 
    96.Nagelkerken, I. et al. Importance of mangroves, seagrass beds and the shallow coral reef as a nursery for important coral reef fishes, using a visual census technique. Estuar. Coast. Shelf Sci. 51, 31–44 (2000).ADS 
    Article 

    Google Scholar 
    97.Adams, A. J. et al. Nursery function of tropical back-reef systems. Mar. Ecol. Prog. Ser. 318, 287–301 (2006).ADS 
    Article 

    Google Scholar 
    98.Vigliola, L., Harmelin-Vivien, M. & Meekan, M. G. Comparison of techniques of back-calculation of growth and settlement marks from the otoliths of three species of Diplodus from the Mediterranean Sea. Can. J. Fish. Aquat. Sci. 57, 1291–1299 (2000).Article 

    Google Scholar 
    99.Ventura, D., Lasinio, G. J. & Ardizzone, G. Temporal partitioning of microhabitat use among four juvenile fish species of the genus Diplodus (Pisces: Perciformes, Sparidae). Mar. Ecol. 36, 1013–1032 (2015).ADS 
    Article 

    Google Scholar 
    100.Thibaut, T., Blanfune, A., Boudouresque, C. F. & Verlaque, M. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?. Mediterr. Mar. Sci. 16, 206–224 (2015).Article 

    Google Scholar 
    101.Thibaut, T., Pinedo, S., Torras, X. & Ballesteros, E. Long-term decline of the populations of Fucales (Cystoseira spp. and Sargassum spp.) in the Alberes coast (France, North-western Mediterranean). Mar. Pollut. Bull. 50, 1472–1489 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    102.Thibaut, T. et al. Unexpected temporal stability of cystoseira and sargassum forests in port-cros, one of the Oldest Mediterranean Marine National Parks. Cryptogam. Algol. 37, 61–90 (2016).Article 

    Google Scholar 
    103.Blanfuné, A., Boudouresque, C. F., Verlaque, M. & Thibaut, T. The fate of Cystoseira crinita, a forest-forming Fucale (Phaeophyceae, Stramenopiles), in France (North Western Mediterranean Sea). Estuar. Coast. Shelf Sci. 181, 196–208 (2016).ADS 
    Article 

    Google Scholar 
    104.Sales, M., Cebrian, E., Tomas, F. & Ballesteros, E. Pollution impacts and recovery potential in three species of the genus Cystoseira (Fucales, Heterokontophyta). Estuar. Coast. Shelf Sci. 92, 347–357 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    105.Sala, E., Boudouresque, C. F. & Harmelin-Vivien, M. Fishing, trophic cascades, and the structure of algal assemblages: Evaluation of an old but untested paradigm. Oikos 82, 425–439 (1998).Article 

    Google Scholar 
    106.Sala, E., Kizilkaya, Z., Yildirim, D. & Ballesteros, E. Alien marine fishes deplete algal biomass in the Eastern Mediterranean. PLoS ONE 6, e17356 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Planes, S. et al. Spatio-temporal variability in growth of juvenile sparid fishes from the Mediterranean littoral zone. J. Mar. Biol. Assoc. UK 79, 137–143 (1999).Article 

    Google Scholar 
    108.Macpherson, E. et al. Mortality of juvenile fishes of the genus Diplodus in protected and unprotected areas in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 160, 135–147 (1997).ADS 
    Article 

    Google Scholar 
    109.Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62, 1015–1026 (2011).CAS 
    Article 

    Google Scholar 
    110.Hidalgo, M. et al. Accounting for ocean connectivity and hydroclimate in fish recruitment fluctuations within transboundary metapopulations. Ecol. Appl. 29, e01913 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Nagelkerken, I., Sheaves, M., Baker, R. & Connolly, R. M. The seascape nursery: A novel spatial approach to identify and manage nurseries for coastal marine fauna. Fish Fish. 16, 362–371 (2015).Article 

    Google Scholar 
    112.Colloca, F. et al. The seascape of demersal fish nursery areas in the North Mediterranean Sea, a first step towards the implementation of spatial planning for trawl fisheries. PLoS ONE 10, e0119590 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    113.Cheminée, A., Feunteun, E., Clerici, S., Bertrand, C. & Francour, P. Management of infralittoral habitats: towards a seascape scale approach. in Underwater Seascapes: From geographical to ecological perspectives (eds. Musard, O., Francour, P. & Feunteun, E.) 240 (Springer, 2014).114.Grober-Dunsmore, R., Pittman, S. J., Caldow, C., Kendall, M. S. & Frazer, T. K. A landscape ecology approach for the study of ecological connectivity across tropical marine seascapes. Ecol. Connect. Trop. Coast. Ecosyst. 1, 493–530 (2009).
    Google Scholar 
    115.Meinesz, A., Lefevre, J. R. & Astier, J. M. Impact of coastal development on the infralittoral zone along the southeastern Mediterranean shore of continental France. Mar. Pollut. Bull. 23, 343–347 (1991).Article 

    Google Scholar 
    116.Boudouresque, C. F. et al. The Management of Mediterranean Coastal Habitats: A Plea for a Socio-ecosystem-Based Approach. in Evolution of Marine Coastal Ecosystems under the Pressure of Global Changes (eds. Ceccaldi, H.-J. et al.) 297–320 (Springer, 2020).117.Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).Article 

    Google Scholar 
    118.Boudouresque, C. F. et al. Protection and conservation of Posidonia oceanica meadows. RAMOGE and RAC. (SPA publisher, 2012).119.Sartoretto, S. et al. An integrated method to evaluate and monitor the conservation state of coralligenous habitats: The INDEX-COR approach. Mar. Pollut. Bull. 120, 222–231 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Meinesz, A. & Blanfuné, A. 1983–2013: Development of marine protected areas along the French Mediterranean coasts and perspectives for achievement of the Aichi target. Mar. Policy 54, 10–16 (2015).Article 

    Google Scholar  More

  • in

    Microplastic contamination of the drilling bivalve Hiatella arctica in Arctic rhodolith beds

    1.PlasticsEurope. Plastics the—Facts 2019: An Analysis of European Plastics Production, Demand and Waste Data (PlasticsEurope, 2019).
    Google Scholar 
    2.Eriksen, M. et al. Plastic pollution in the world’s oceans: More than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. PLoS ONE 9, e111913. https://doi.org/10.1371/journal.pone.0111913 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518. https://doi.org/10.1126/science.aba3656 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Bergmann, M., Tekman, M. B. & Gutow, L. Sea change for plastic pollution. Nature 544, 297. https://doi.org/10.1038/544297a (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Imhof, H. K. et al. Spatial and temporal variation of macro-, meso- and microplastic abundance on a remote coral island of the Maldives, Indian Ocean. Mar. Pollut. Bull. 116, 340–347. https://doi.org/10.1016/j.marpolbul.2017.01.010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Obbard, R. W. Microplastics in polar regions: The role of long range transport. Curr. Opin. Environ. Sci. Health 1, 24–29. https://doi.org/10.1016/j.coesh.2017.10.004 (2018).Article 

    Google Scholar 
    7.Wessel, C. C., Lockridge, G. R., Battiste, D. & Cebrian, J. Abundance and characteristics of microplastics in beach sediments: Insights into microplastic accumulation in northern Gulf of Mexico estuaries. Mar. Pollut. Bull. 109, 178–183. https://doi.org/10.1016/j.marpolbul.2016.06.002 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. Royal Soc. Open Sci. https://doi.org/10.1098/rsos.140317 (2014).Article 

    Google Scholar 
    9.Barnes, D. K. A., Galgani, F., Thompson, R. C. & Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. Royal Soc. Lond. Ser. B, Biol. Sci. 364, 1985–1998. https://doi.org/10.1098/rstb.2008.0205 (2009).CAS 
    Article 

    Google Scholar 
    10.Arthur, C., Baker, J. E. & Bamford, H. A. Proceedings of the International Research Workshop on the Occurrence, Effects, and Fate of Microplastic Marine Debris, September 9–11, 2008 (University of Washington Tacoma, 2009).
    Google Scholar 
    11.Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic Debris. Environ. Sci. Technol. 53, 1039–1047. https://doi.org/10.1021/acs.est.8b05297 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Lusher, A. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 245–307 (Springer International Publishing, 2015).13.Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62, 2588–2597. https://doi.org/10.1016/j.marpolbul.2011.09.025 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Wright, S. L., Thompson, R. C. & Galloway, T. S. The physical impacts of microplastics on marine organisms: A review. Environ. Pollut. 178, 483–492. https://doi.org/10.1016/j.envpol.2013.02.031 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.de Sá, L. C., Oliveira, M., Ribeiro, F., Rocha, T. L. & Futter, M. N. Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future?. Sci. Total Environ. 645, 1029–1039. https://doi.org/10.1016/j.scitotenv.2018.07.207 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Bråte, I. L. N. et al. Mytilus spp. as sentinels for monitoring microplastic pollution in Norwegian coastal waters: A qualitative and quantitative study. Environ. Pollut. 243, 383–393. https://doi.org/10.1016/j.envpol.2018.08.077 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Cózar, A. et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation. Sci. Adv. 3, e1600582. https://doi.org/10.1126/sciadv.1600582 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Kanhai, L. D. K. et al. Microplastics in sub-surface waters of the Arctic Central Basin. Mar. Pollut. Bull. 130, 8–18. https://doi.org/10.1016/j.marpolbul.2018.03.011 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Tekman, M. B. et al. Tying up loose ends of microplastic pollution in the Arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environ. Sci. Technol. 54, 4079–4090. https://doi.org/10.1021/acs.est.9b06981 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Obbard, R. W. et al. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2, 315–320. https://doi.org/10.1002/2014EF000240 (2014).ADS 
    Article 

    Google Scholar 
    22.Peeken, I. et al. Arctic sea ice is an important temporal sink and means of transport for microplastic. Nat. Commun. 9, 1505. https://doi.org/10.1038/s41467-018-03825-5 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Kanhai, L. D. K., Gardfeldt, K., Krumpen, T., Thompson, R. C. & O’Connor, I. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean. Sci. Rep. 10, 5004. https://doi.org/10.1038/s41598-020-61948-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. J. Sci. Adv. 5, eaax1157. https://doi.org/10.1126/sciadv.aax1157 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Amélineau, F. et al. Microplastic pollution in the Greenland Sea: Background levels and selective contamination of planktivorous diving seabirds. Environ. Pollut. 219, 1131–1139. https://doi.org/10.1016/j.envpol.2016.09.017 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Kühn, S. et al. Plastic ingestion by juvenile polar cod (Boreogadus saida) in the Arctic Ocean. Polar Biol. 41, 1269–1278. https://doi.org/10.1007/s00300-018-2283-8 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Fang, C. et al. Microplastic contamination in benthic organisms from the Arctic and sub-Arctic regions. Chemosphere 209, 298–306. https://doi.org/10.1016/j.chemosphere.2018.06.101 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Bråte, I. L. N. et al. Microplastics in Marine Bivalves from the Nordic Environment Vol. 504 (Nordic Council of Ministers, 2020).Book 

    Google Scholar 
    29.Misund, O. A. et al. Norwegian fisheries in the Svalbard zone since 1980. Regulations, profitability and warming waters affect landings. Polar Sci. 10, 312–322. https://doi.org/10.1016/j.polar.2016.02.001 (2016).ADS 
    Article 

    Google Scholar 
    30.Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. Oikos 69, 373–386. https://doi.org/10.2307/3545850 (1994).Article 

    Google Scholar 
    31.Foster, M. S. Rhodoliths: Between rocks and soft places. J. Phycol. 37, 659–667 (2001).Article 

    Google Scholar 
    32.Fredericq, S. et al. The critical importance of rhodoliths in the life cycle completion of both macro- and microalgae, and as holobionts for the establishment and maintenance of marine biodiversity. Front. Mar. Sci. https://doi.org/10.3389/fmars.2018.00502 (2019).Article 

    Google Scholar 
    33.Krayesky-Self, S. et al. Eukaryotic life inhabits rhodolith-forming coralline algae (Hapalidiales, Rhodophyta), remarkable marine benthic microhabitats. Sci. Rep. 7, 45850. https://doi.org/10.1038/srep45850 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Kamenos, N. A., Moore, P. G., Hall-Spencer, J. & Donnan, D. Maerl: Its value as a habitat for commercial species. Shellfish News 18, 8–9 (2004).
    Google Scholar 
    35.Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Nursery-area function of maerl grounds for juvenile queen scallops Aequipecten opercularis and other invertebrates. Mar. Ecol. Prog. Ser. 274, 183–189. https://doi.org/10.3354/meps274183 (2004).ADS 
    Article 

    Google Scholar 
    36.Gagnon, P., Matheson, K. & Stapleton, M. Variation in rhodolith morphology and biogenic potential of newly discovered rhodolith beds in Newfoundland and Labrador (Canada). Bot. Mar. 55, 85–99 (2012).Article 

    Google Scholar 
    37.Teichert, S. et al. Rhodolith beds (Corallinales, Rhodophyta) and their physical and biological environment at 80°31’N in Nordkappbukta (Nordaustlandet, Svalbard Archipelago, Norway). Phycologia 51, 371–390 (2012).Article 

    Google Scholar 
    38.Teichert, S. et al. Arctic rhodolith beds and their environmental controls. Facies 60, 15–37. https://doi.org/10.1007/s10347-013-0372-2 (2014).Article 

    Google Scholar 
    39.Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 6972. https://doi.org/10.1038/srep06972 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Denisenko, S. G., Denisenko, N. V., Lehtonen, K. K., Andersin, A. B. & Laine, A. O. Macrozoobenthos of the Pechora Sea (SE Barents Sea): Community structure and spatial distribution in relation to environmental conditions. Mar. Ecol. Prog. Ser. 258, 109–123 (2003).ADS 
    Article 

    Google Scholar 
    41.Rees, H. L. & Dare, P. J. Sources of Mortality and Associated Life-Cycle Traits of Selected Benthic Species: A Review Vol. 33, 36 (CEFAS Directorate of Fisheries Research, 1993).
    Google Scholar 
    42.Sejr, M. K. et al. Growth and production of Hiatella arctica (Bivalvia) in a high-Arctic fjord (Young Sound, Northeast Greenland). Mar. Ecol. Prog. Ser. 244, 163–169. https://doi.org/10.3354/meps244163 (2002).ADS 
    Article 

    Google Scholar 
    43.Witman, J. D. & Sebens, K. P. Regional variation in fish predation intensity: A historical perspective in the Gulf of Maine. Oecologia 90, 305–315. https://doi.org/10.1007/bf00317686 (1992).ADS 
    Article 
    PubMed 

    Google Scholar 
    44.Kamenos, N. A., Moore, P. G. & Hall-Spencer, J. M. Small-scale distribution of juvenile gadoids in shallow inshore waters; what role does maerl play?. ICES J. Mar. Sci. 61, 422–429 (2004).Article 

    Google Scholar 
    45.Teichert, S., Voigt, N. & Wisshak, M. Do skeletal Mg/Ca ratios of Arctic rhodoliths reflect atmospheric CO2 concentrations?. Polar Biol. 43, 2059–2069. https://doi.org/10.1007/s00300-020-02767-3 (2020).Article 

    Google Scholar 
    46.Ragazzola, F. et al. Phenotypic plasticity of coralline algae in a High CO2 world. Ecol. Evol. 3, 3436–3446. https://doi.org/10.1002/ece3.723 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Teichert, S. & Freiwald, A. Polar coralline algal CaCO3-production rates correspond to intensity and duration of the solar radiation. Biogeosciences 11, 833–842. https://doi.org/10.5194/bg-11-833-2014 (2014).ADS 
    Article 

    Google Scholar 
    48.Büdenbender, J., Riebesell, U. & Form, A. Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Mar. Ecol. Prog. Ser. 441, 79–87 (2011).ADS 
    Article 

    Google Scholar 
    49.Wisshak, M. et al. Habitat Characteristics and Carbonate Cycling of Macrophyte-Supported Polar Carbonate Factories (Svalbard)—Cruise No. MSM55—June 11–June 29, 2016—Reykjavik (Iceland)—Longyearbyen (Norway) 58 (Bremen, 2017).50.Löder, M. G. J. et al. Enzymatic purification of microplastics in environmental samples. Environ. Sci. Technol. 51, 14283–14292. https://doi.org/10.1021/acs.est.7b03055 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Hufnagl, B. et al. A methodology for the fast identification and monitoring of microplastics in environmental samples using random decision forest classifiers. Anal. Methods 11, 2277–2285. https://doi.org/10.1039/C9AY00252A (2019).CAS 
    Article 

    Google Scholar 
    52.Yanfang, L., Hua, Z. & Cheng, T. A review of possible pathways of marine microplastics transport in the ocean. Anthr. Coasts 3, 6–13. https://doi.org/10.1139/anc-2018-0030 (2020).Article 

    Google Scholar 
    53.Erni-Cassola, G., Zadjelovic, V., Gibson, M. I. & Christie-Oleza, J. A. Distribution of plastic polymer types in the marine environment; A meta-analysis. J. Hazard. Mater. 369, 691–698. https://doi.org/10.1016/j.jhazmat.2019.02.067 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843. https://doi.org/10.1038/s41598-019-44117-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Kooi, M. et al. The effect of particle properties on the depth profile of buoyant plastics in the ocean. Sci. Rep. 6, 33882. https://doi.org/10.1038/srep33882 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Vinay Kumar, B. N., Löschel, L. A., Imhof, H. K., Löder, M. G. J. & Laforsch, C. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Environ. Pollut. https://doi.org/10.1016/j.envpol.2020.116147 (2020).Article 
    PubMed 

    Google Scholar 
    57.Löder, M. G. J. & Gerdts, G. in Marine Anthropogenic Litter (eds Bergmann, M., Gutow, L. & Klages, M.) 201–227 (Springer International Publishing, 2015).58.Wisshak, M. et al. Epibenthos dynamics and environmental fluctuations in two contrasting Polar carbonate factories (Mosselbukta and Bjørnøy-Banken, Svalbard). Front. Mar. Sci. 6, 667. https://doi.org/10.3389/fmars.2019.00667 (2019).Article 

    Google Scholar 
    59.Frias, J. P. G. L., Lyashevska, O., Joyce, H., Pagter, E. & Nash, R. Floating microplastics in a coastal embayment: A multifaceted issue. Mar. Pollut. Bull. 158, 111361. https://doi.org/10.1016/j.marpolbul.2020.111361 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.Rochman, C. M. et al. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340. https://doi.org/10.1038/srep14340 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Digka, N., Tsangaris, C., Torre, M., Anastasopoulou, A. & Zeri, C. Microplastics in mussels and fish from the Northern Ionian Sea. Mar. Pollut. Bull. 135, 30–40. https://doi.org/10.1016/j.marpolbul.2018.06.063 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T. & Turra, A. Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Mar. Pollut. Bull. 106, 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Gomiero, A., Strafella, P., Øysæd, K. B. & Fabi, G. First occurrence and composition assessment of microplastics in native mussels collected from coastal and offshore areas of the northern and central Adriatic Sea. Environ. Sci. Pollut. Res. Int. 26, 24407–24416. https://doi.org/10.1007/s11356-019-05693-y (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Mathalon, A. & Hill, P. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar. Pollut. Bull. 81, 69–79. https://doi.org/10.1016/j.marpolbul.2014.02.018 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10–17. https://doi.org/10.1016/j.envpol.2015.01.008 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Li, J. et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ. Pollut. 244, 522–533. https://doi.org/10.1016/j.envpol.2018.10.032 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Woodall, L. C. et al. Using a forensic science approach to minimize environmental contamination and to identify microfibres in marine sediments. Mar. Pollut. Bull. 95, 40–46. https://doi.org/10.1016/j.marpolbul.2015.04.044 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Kowalski, N., Reichardt, A. M. & Waniek, J. J. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 109, 310–319. https://doi.org/10.1016/j.marpolbul.2016.05.064 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Kooi, M., Nes, E. H. V., Scheffer, M. & Koelmans, A. A. Ups and downs in the ocean: Effects of biofouling on vertical transport of microplastics. Environ. Sci. Technol. 51, 7963–7971. https://doi.org/10.1021/acs.est.6b04702 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Barrows, A. P. W., Cathey, S. E. & Petersen, C. W. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ. Pollut. 237, 275–284. https://doi.org/10.1016/j.envpol.2018.02.062 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Halsband, C. & Herzke, D. Plastic litter in the European Arctic: What do we know?. Emerg. Contam. 5, 308–318. https://doi.org/10.1016/j.emcon.2019.11.001 (2019).Article 

    Google Scholar 
    72.Bergmann, M., Lutz, B., Tekman, M. B. & Gutow, L. Citizen scientists reveal: Marine litter pollutes Arctic beaches and affects wild life. Mar. Pollut. Bull. 125, 535–540. https://doi.org/10.1016/j.marpolbul.2017.09.055 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    73.von Moos, N., Burkhardt-Holm, P. & Köhler, A. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ. Sci. Technol. 46, 11327–11335. https://doi.org/10.1021/es302332w (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Kolandhasamy, P. et al. Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Sci. Total Environ. 610–611, 635–640. https://doi.org/10.1016/j.scitotenv.2017.08.053 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Löder, M. G. J., Kuczera, M., Mintenig, S., Lorenz, C. & Gerdts, G. Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. J. Environ. Chem. 12, 563–581. https://doi.org/10.1071/EN14205 (2015).CAS 
    Article 

    Google Scholar 
    76.Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    77.R Foundation for Statistical Computing. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    78.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn, 498 (Springer, 2002).Book 

    Google Scholar 
    79.Vegan: Community Ecology Package (2020). More

  • in

    A global dataset of inland fisheries expert knowledge

    Freshwater fish are important contributors to human livelihoods, food and nutrition, recreation, ecosystem services, and biological diversity. Yet, they inhabit some of the most threatened ecosystems globally1, face higher declines relative to marine and terrestrial species2, and are disproportionally understudied3,4. Inland fisheries are subjected to a suite of anthropogenic stressors across aquatic-terrestrial landscapes5, including flow alterations, dams, invasive species, sedimentation, drought, and pollution6,7,8. Evaluating stressors and their impacts on global inland fisheries is essential for effective management, monitoring, and conservation6, but unlike marine fisheries, there is no standardized method to assess inland fisheries9.Data inputs for a fisheries threat assessment typically include baseline information, such as species-specific landings or in situ population data (volume and composition), size (population and landings), and biomass. In addition, multi-stressor interactions (e.g., synergistic, additive) across complex habitats often warrant cross-ecosystem and cross-sector evaluations at multiple scales10,11. However, in the case of inland fisheries, these data inputs are severely deficient and often disparate in many regions12,13, which challenges the development of a global assessment. Thus, evaluating stressors and their impacts on inland fisheries necessitates the use of additional data sources (e.g., expert knowledge) beyond those typically derived directly from fish or fish habitats12,14. Local and subject-matter expertise can provide contextualized insights where spatial data are limited or unattainable (e.g., emerging threats15) and where empirical evidence is incomplete (e.g., multi-stressor interactions).Expert elicitation (i.e., expert opinion synthesis, where opinion is the preliminary state of knowledge of an individual) is increasingly used to inform ecological evaluations and guide water infrastructure, development, food security, and conservation decision-making and assessments, especially in data-poor scenarios14,16. While spatial data can be integrated as a suite of individual stressors (i.e., input variables) within ranking systems for the development of vulnerability or habitat assessments for conservation purposes14,17, the utilization of spatial variables is limited by the method for determining relative impacts (i.e., value judgment)18. Cumulate impact scores and systematic weighted ranking of threats are often based on geographically biased, small sized, or non-representative subsets of experts’ opinions (e.g., global weight determination from eight experts5). Thus, data collection for this study was motivated by the development of a global assessment of threats to major inland fisheries, and the overarching need for tractable freshwater indicators. The data generated contribute essential relative influence scores for the assessment and provide a timely snapshot of inland fisheries as perceived by fisheries professionals. Threat composition and influence have broader potential applications to inform vulnerability and adaptation components of freshwater conservation and management targets (e.g., United Nations (UN) Sustainable Development Goals, UN International Decade “Water for Sustainable Development,” Convention on Biological Diversity, Ramsar Convention on Wetlands).This paper introduces a dataset that can help address a knowledge gap in understanding natural and human influences on inland fisheries with local, contextualized fishery evaluations. Derived from an electronic survey, data comprise perceptions from fisheries professionals (n = 536) on the relative influence and spatial associations of fishery threats, recent successes, and adaptive capacity measures within the respondent’s fishery of expertise.In the context of the survey, we use the term “threat” as a proximate human activity or process (“direct threat”) causing degradation or impairment (“stress”; e.g., reduced population size, fragmented riparian habitat) to ecological targets (e.g., species, communities, ecosystems; in this case, fishery)19. We considered only the threats most proximate and direct to the target (fishery) and excluded stresses (i.e., symptoms, degraded key attributes) and contributing factors (i.e., root causes, underlying factors). For example, we considered pollutants (direct threat) rather than the pollution source (contributing factor) or the resulting contaminated water (stress, effect). We addressed the ambiguity of the term ‘fishery’20 by allowing respondents to indicate a geographic location (specific point) within their fishery area. This allows for spatial attribution with an inclusive use of ‘fishery’ as it pertains to threats (e.g., threats to a fish population of fishery-targeted species, catch characteristics, or the habitat in which the fishery operates).We structured survey questions about the occurrence and relative influence of threats to the production and health of inland fisheries using 29 specified individual threats derived from well-studied pressures to inland fisheries in addition to pressures emerging as threats to fisheries (e.g., climate change, plastics15). We categorized individual threats into five well-established categories: habitat degradation, pollution, overexploitation, species invasion, and climate change1,7 for organizational context in the survey. We also designed survey questions specifically to understand the social adaptive capacity of fishers using five major community-level domains: fisher access to assets (e.g., financial, technological, service), fisher and institutional flexibility to adapt to changing conditions (e.g., livelihood alternatives, adaptive management), social capital and organization to enable cooperation and collective action (e.g., co-management), learning and problem-solving for responding to threats, and fishers’ sense of agency to influence and shape actions and outcomes21.This dataset can be useful as an overview assessment, on which future assessments may expand for specific temporal or spatial interests. Some data in this dataset (e.g., microplastics, invasive species disturbances) are otherwise unattainable at relevant scales from geospatial information and therefore provide novel information. Potential uses include demographic influences on threat perceptions, spatial distribution of adaptive capacity measures paired with climate change or other threats, external factors driving multi-stressor interactions, and paired geospatial and expert-derived threat analysis. These data can provide insights on fisheries as a coupled human-natural system and inform regional and global freshwater assessments. More

  • in

    Wood-inhabiting fungal responses to forest naturalness vary among morpho-groups

    1.Keenan, R. J. et al. Forest ecology and management dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 352, 9–20 (2015).Article 

    Google Scholar 
    2.Siitonen, J. Forest management, coarse woody debris and saproxylic organisms: Fennoscandian boreal forests as an example. Ecol. Bull. 49, 11–41 (2001).
    Google Scholar 
    3.Stokland, J. N., Siitonen, J. & Jonsson, B. G. Biodiversity in Dead Wood (Cambridge University Press, 2012).Book 

    Google Scholar 
    4.Nordén, J., Penttilä, R., Siitonen, J., Tomppo, E. & Ovaskainen, O. Specialist species of wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. J. Ecol. 101, 701–712 (2013).Article 

    Google Scholar 
    5.Tikkanen, O.-P., Martikainen, P., Hyvärinen, E., Junninen, K. & Kouki, J. Red-listed boreal forest species of Finland: Associations with forst structure, tree species, and decaying wood. Ann. Zool. Fennici 43, 373–383 (2006).
    Google Scholar 
    6.Sippola, A.-L., Lehesvirta, T. & Renvall, P. Effect of selective logging on coarse woody debris and diversity of wood-decaying polypores in eastern Finland. Ecol. Bull. 49, 243–254 (2001).
    Google Scholar 
    7.Axelsson, A. L., Östlund, L. & Hellberg, E. Changes in mixed deciduous forests of boreal Sweden 1866–1999 based on interpretation of historical records. Landsc. Ecol. 17, 403–418 (2002).Article 

    Google Scholar 
    8.Eriksson, S., Skånes, H., Hammer, M. & Lönn, M. Current distribution of older and deciduous forests as legacies from historical use patterns in a Swedish boreal landscape (1725–2007). For. Ecol. Manag. 260, 1095–1103 (2010).Article 

    Google Scholar 
    9.Wallenius, T. H., Lilja, S. & Kuuluvainen, T. Fire history and tree species composition in managed Picea abies stands in southern Finland: Implications for restoration. For. Ecol. Manag. 250, 89–95 (2007).Article 

    Google Scholar 
    10.Stokland, J. N. Host-tree associattions. In Biodiversity in Dead Wood (eds Stokland, J. N. et al.) 82–109 (Cambridge University Press, 2012).Chapter 

    Google Scholar 
    11.Kouki, J., Arnold, K. & Martikainen, P. Long-term persistence of aspen – A key host for many threatened species—Is endangered in old-growth conservation areas in Finland. J. Nat. Conserv. 12, 41–52 (2004).Article 

    Google Scholar 
    12.Komonen, A., Tuominen, L., Purhonen, J. & Halme, P. Landscape structure influences browsing on a keystone tree species in conservation areas. For. Ecol. Manag. 457, 117724 (2020).Article 

    Google Scholar 
    13.Purhonen, J. et al. Morphological traits predict host-tree specialization in wood-inhabiting fungal communities. Fungal Ecol. 46, 100863 (2020).Article 

    Google Scholar 
    14.Dowding, P. Nutrient uptake and allocation during substrate exploitation by fungi. In The Fungal Community. Its Organization and Role in the Ecosystems (eds Wicklow, D. T. & Carroll, G. C.) 612–636 (Marcel Dekker Inc, 1981).
    Google Scholar 
    15.Boddy, L., Frankland, J. & van West, P. Ecology of Saprotrophic Basidiomycetes (Elsevier Ltd, 2008).
    Google Scholar 
    16.Kahl, T. et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 391, 86–95 (2017).Article 

    Google Scholar 
    17.Abrego, N. & Salcedo, I. Variety of woody debris as the factor influencing wood-inhabiting fungal richness and assemblages: Is it a question of quantity or quality?. For. Ecol. Manag. 291, 377–385 (2013).Article 

    Google Scholar 
    18.Lindblad, I. Wood-inhabiting fungi on fallen logs of Norway spruce: Relations to forest management and substrate quality. Nord. J. Bot. 18, 243–255 (1998).Article 

    Google Scholar 
    19.Tomao, A., Antonio Bonet, J., Castaño, C. & de-Miguel, S. How does forest management affect fungal diversity and community composition? Current knowledge and future perspectives for the conservation of forest fungi. For. Ecol. Manag. 457, 1176 (2020).Article 

    Google Scholar 
    20.Bader, P., Jansson, S. & Jonsson, B. G. Wood-inhabiting fungi and substratum decline in selectively logged boreal spruce forests. Biol. Conserv. 72, 355–362 (1995).Article 

    Google Scholar 
    21.Heilmann-Clausen, J. & Christensen, M. Does size matter?. For. Ecol. Manag. 201, 105–117 (2004).Article 

    Google Scholar 
    22.Nordén, B., Götmark, F., Tönnberg, M. & Ryberg, M. Dead wood in semi-natural temperate broadleaved woodland: Contribution of coarse and fine dead wood, attached dead wood and stumps. For. Ecol. Manag. 194, 235–248 (2004).Article 

    Google Scholar 
    23.Ottosson, E. et al. Diverse ecological roles within fungal communities in decomposing logs of Picea abies. FEMS Microbiol. Ecol. 91, 1–13 (2015).Article 
    CAS 

    Google Scholar 
    24.Juutilainen, K., Mönkkönen, M., Kotiranta, H. & Halme, P. The effects of forest management on wood-inhabiting fungi occupying dead wood of different diameter fractions. For. Ecol. Manag. 313, 283–291 (2014).Article 

    Google Scholar 
    25.Jönsson, M., Ruete, A., Kellner, O., Gunnarsson, U. & Snäll, T. Will forest conservation areas protect functionally important diversity of fungi and lichens over time?. Biodivers. Conserv. https://doi.org/10.1007/s10531-015-1035-0 (2016).Article 

    Google Scholar 
    26.Abrego, N., Norberg, A. & Ovaskainen, O. Measuring and predicting the influence of traits on the assembly processes of wood-inhabiting fungi. J. Ecol. https://doi.org/10.1111/1365-2745.12722 (2017).Article 

    Google Scholar 
    27.Bässler, C. et al. Functional response of lignicolous fungal guilds to bark beetle deforestation. Ecol. Indic. 65, 149–160 (2016).Article 

    Google Scholar 
    28.Bässler, C., Heilmann-Clausen, J., Karasch, P., Brandl, R. & Halbwachs, H. Ectomycorrhizal fungi have larger fruit bodies than saprotrophic fungi. Fungal Ecol. 17, 205–212 (2015).Article 

    Google Scholar 
    29.Sherwood, M. A. Convergent evolution in discomycetes from bark and wood. Bot. J. Linn. Soc. 82, 15–34 (1981).Article 

    Google Scholar 
    30.Unterseher, M., Otto, P. & Morawetz, W. Species richness and substrate specificity of lignicolous fungi in the canopy of a temperate, mixed deciduous forest. Mycol. Prog. 4, 117–132 (2005).Article 

    Google Scholar 
    31.Dawson, S. K. & Jönsson, M. Just how big is intraspecific trait variation in basidiomycete wood fungal fruit bodies?. Fungal Ecol. 46, 100865 (2020).Article 

    Google Scholar 
    32.Dawson, S. K. et al. Handbook for the measurement of macrofungal functional traits: A start with basidiomycete wood fungi. Funct. Ecol. 33, 372–387 (2019).Article 

    Google Scholar 
    33.Zanne, A. E. et al. Fungal functional ecology: Bringing a trait-based approach to plant-associated fungi. Biol. Rev. 95, 409–433 (2020).PubMed 
    Article 

    Google Scholar 
    34.Nordén, B., Ryberg, M., Götmark, F. & Olausson, B. Relative importance of coarse and fine woody debris for the diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol. Conserv. 117, 1–10 (2004).Article 

    Google Scholar 
    35.Stokland, J. N. & Larsson, K. Forest ecology and management legacies from natural forest dynamics : Different effects of forest management on wood-inhabiting fungi in pine and spruce forests. For. Ecol. Manag. 261, 1707–1721 (2011).Article 

    Google Scholar 
    36.Cajander, A. K. Forest types and their significance. Acta For. Fenn. 56, 1–69 (1949).
    Google Scholar 
    37.Ahti, T., Hämet-Ahti, L. & Jalas, J. Vegetation zones and their sections in northwestern Europe. Ann. Bot. Fenn. 5, 169–211 (1968).
    Google Scholar 
    38.Renaud, V., Innes, J. L., Dobbertin, M. & Rebetez, M. Comparison between open-site and below-canopy climatic conditions in Switzerland for different types of forests over 10 years (1998–2007). Theor. Appl. Climatol. 105, 119–127 (2011).ADS 
    Article 

    Google Scholar 
    39.Renvall, P. Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35, 1–51 (1995).Article 

    Google Scholar 
    40.Abrego, N., Halme, P., Purhonen, J. & Ovaskainen, O. Fruit body based inventories in wood-inhabiting fungi: Should we replicate in space or time?. Fungal Ecol. 20, 225–232 (2016).Article 

    Google Scholar 
    41.Halme, P. & Kotiaho, J. S. The importance of timing and number of surveys in fungal biodiversity research. Biodivers. Conserv. 21, 205–219 (2012).Article 

    Google Scholar 
    42.Purhonen, J., Huhtinen, S., Kotiranta, H. & Kotiaho, J. S. Detailed information on fruiting phenology provides new insights on wood-inhabiting fungal detection. Fungal Ecol. 27, 175–177 (2017).Article 

    Google Scholar 
    43.Royal Botanic Gardens Kew, Landcare Research-NZ & Chinese Academy of Science. Index Fungorum. www.indexfungorum.org 01.03.2017 (2017).44.Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn 15.11.2020 (2019).45.R Core Team. R: A Language and Environment for Statistical Computing. Available at: https://www.r-project.org/ (2017).46.Magnusson, A. et al. glmmTMB: Generalized Linear Mixed Models Using Template Model Builder. https://cran.r-project.org/web/packages/glmmTMB/glmmTMB.pdf 30.08.2018 (2018).47.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.4-4. https://cran.r-project.org/web/packages/vegan/index.html 30.12.2017 (2017).48.Abrego, N., Bässler, C., Christensen, M. & Heilmann-Clausen, J. Implications of reserve size and forest connectivity for the conservation of wood-inhabiting fungi in Europe. Biol. Conserv. 191, 469–477 (2015).Article 

    Google Scholar 
    49.Halme, P. et al. The effects of habitat degradation on metacommunity structure of wood-inhabiting fungi in European beech forests. Biol. Conserv. 168, 24–30 (2013).Article 

    Google Scholar 
    50.Edman, M., Kruys, N. & Jonsson, B. G. Local dispersal sources strongly affect colonization patterns of wood-decaying fungi on spruce logs. Ecol. Appl. 14, 893–901 (2004).Article 

    Google Scholar 
    51.Komonen, A. & Müller, J. Dispersal ecology of deadwood organisms and connectivity conservation. Conserv. Biol. 32, 535–545 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Abrego, N. & Salcedo, I. How does fungal diversity change based on woody debris type? A case study in Northern Spain. Ekologija 57, 109–119 (2011).Article 

    Google Scholar 
    53.Juutilainen, K., Halme, P., Kotiranta, H. & Mönkkönen, M. Size matters in studies of dead wood and wood-inhabiting fungi. Fungal Ecol. 4, 342–349 (2011).Article 

    Google Scholar 
    54.Heilmann-Clausen, J. & Christensen, M. Wood-inhabiting macrofungi in Danish beech-forests ? conflicting diversity patterns and their implications in a conservation perspective. Biol. Conserv. 122, 633–642 (2005).Article 

    Google Scholar 
    55.Moore, D., Gange, A. C., Gange, E. G. & Boddy, L. Fruit bodies: Their production and develpoment in relation to environment. In Ecology of Saprotrophic Basidiomycetes (eds Boddy, L. et al.) (Elsevier, 2008).
    Google Scholar 
    56.Junninen, K., Similä, M., Kouki, J. & Kotiranta, H. Assemblages of wood-inhabiting fungi along the gradients of succession and naturalness in boreal pine-dominated forests in Fennoscandia. Ecography (Cop.) 29, 75–83 (2006).Article 

    Google Scholar 
    57.Agren, J. & Zackrisson, O. Age and size structure of Pinus sylvestris populations on mires in Central and Northern Sweden. J. Ecol. 78, 1049–1062 (1990).Article 

    Google Scholar 
    58.Niemelä, T., Wallenius, T. & Kotiranta, H. The kelo tree, a vanishing substrate of specified wood-inhabiting fungi. Polish Bot. J. 47, 91–101 (2002).
    Google Scholar 
    59.Venugopal, P., Julkunen-Tiitto, R., Junninen, K. & Kouki, J. Phenolic compounds in Scots pine heartwood: Are kelo trees a unique woody substrate?. Can. J. For. Res. 46, 225–233 (2016).CAS 
    Article 

    Google Scholar 
    60.Jonsson, B. G. et al. Dead wood availability in managed Swedish forests – Policy outcomes and implications for biodiversity. For. Ecol. Manag. 376, 174–182 (2016).Article 

    Google Scholar 
    61.Runnel, K. & Lõhmus, A. Deadwood-rich managed forests provide insights into the old-forest association of wood-inhabiting fungi. Fungal Ecol. 27, 155–167 (2017).Article 

    Google Scholar 
    62.Junninen, K. & Komonen, A. Conservation ecology of boreal polypores: A review. Biol. Conserv. 144, 11–20 (2011).Article 

    Google Scholar 
    63.Krah, F. S. et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J. Ecol. 106, 1428–1442. https://doi.org/10.1111/1365-2745.12939 (2018).Article 

    Google Scholar 
    64.Hoppe, B. et al. Linking molecular deadwood-inhabiting fungal diversity and community dynamics to ecosystem functions and processes in Central European forests. Fungal Divers. 77, 367–379 (2016).Article 

    Google Scholar 
    65.Kubartová, A., Ottosson, E., Dahlberg, A. & Stenlid, J. Patterns of fungal communities among and within decaying logs, revealed by 454 sequencing. Mol. Ecol. 21, 4514–4532 (2012).PubMed 
    Article 

    Google Scholar 
    66.Kazartsev, I., Shorohova, E., Kapitsa, E. & Kushnevskaya, H. Decaying Picea abies log bark hosts diverse fungal communities. Fungal Ecol. 33, 1–12 (2018).Article 

    Google Scholar 
    67.von Bonsdorff, T. et al. New national and regional biological records for Finland 8. Contributions to agaricoid, gastroid and ascomycetoid taxa of fungi 5. Memo. Soc. pro Fauna Flora Fenn. 92, 120–128 (2016).
    Google Scholar 
    68.von Bonsdorff, T. et al. New national and regional biological records for Finland 5. Contributions to agaricoid and ascomycetoid taxa of fungi 4. Memo. Soc. pro Fauna Flora Fenn. 91, 56–66 (2015).
    Google Scholar 
    69.Frøslev, T. G. et al. Man against machine: Do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients?. Biol. Conserv. 233, 201–212 (2019).Article 

    Google Scholar 
    70.Esri. ArcMap, version 10.5.1. http://desktop.arcgis.com/en/arcmap/ 04.09.2017 (2017). Available at: http://desktop.arcgis.com/en/arcmap/. More

  • in

    Towards omics-based predictions of planktonic functional composition from environmental data

    From SSN to PFCsWe analyzed the 1,914,171 proteins from 885 MAGs from marine plankton, recovered from 12 geographically bound assemblies of metagenomic sets corresponding to a total of 93 Tara Oceans samples from the 0.2 to 3 µm and 0.2 to 1.6 µm size fractions21. A flowchart of our bioinformatic pipeline is available in Supplementary Fig. 1. 39.6% of the MAGs’ proteins (757,457) were involved in our SSN, i.e., they had at least one similarity relationship with another protein that satisfied the chosen threshold of 80% similarity and 80% coverage (see “Methods”). In total, 51.1% of the network proteins could be annotated to 4922 unique molecular function IDs in the KEGG database37, associated with 327 distinct metabolic pathways (a full list of these pathways is available in Supplementary Data 1). In total, 85.2% of the network proteins were annotated to 17,009 eggNOG functional descriptions38,39.The SSN involved 233,756 connected components (CCs), i.e., groups of nodes (here proteins) connected together by at least one path and disconnected from the rest of the network. According to KEGG and eggNOG databases, 15.3% and 48.5% of the CCs remained without any functional annotation (i.e., all sequences from the CC were unmatched in the databases, or had a match but were not yet linked to any biological function, Table 1), and 14.8% were functionally unannotated for both databases. We ranked the functional homogeneity of CCs involving at least one functional annotation from 0 (all annotations in the CC are different) to 1 (all annotations in the CC are the same) and found mean homogeneity scores of 0.99 over 1 for KEGG annotations and 0.94 over 1 for eggNOG ones (see “Methods” for score calculation details). Only 88 (0.04%) CCs had a homogeneity score below 0.5 in both annotation databases, all with sizes below five proteins. 177 CCs (0.07%) had a score below 0.8 in both databases, all under 12 proteins in size. These CCs were kept in the analysis while tagged as poorly homogenous. We thereafter considered each CC as a PFC, numbered from #1 to #233,756.Table 1 Metrics computed on the 233,756 protein functional clusters (PFC) from the sequence similarity network of MAGs proteins.Full size tableTo check for the influence of taxonomic relationships between the MAGs on our PFCs, we computed different metrics based on MAGs taxonomic annotations provided by Delmont et al.21. (Table 1). This taxonomic annotation based on 43 single-copy core genes allowed to annotate 100% of the MAGs at the domain level, and 95% of the MAGs at the phylum level, the remaining 5% corresponding to Bacteria MAGs of unidentified phyla21. Only 1330 PFCs (0.6%) mixed proteins from the Archaea and Bacteria domains. PFCs were very homogeneous at the phylum level, then the homogeneity decreased at lower taxonomic rank, meaning that PFCs studied here were generally not specific from a single class, order, family, genus, or MAG (Table 1). In total, 7834 PFCs (3.4%) were only composed of proteins with no functional annotation in KEGG and eggNOG databases, and no taxonomic annotation under the phylum level. Their sizes ranged from 2 to 30 proteins (mean of 2.62). Their 20,552 proteins came from Euryarchaeota MAGs (12,458; 60.6%), Bacteria MAGs of unidentified phylum (2742; 13.3%), Candidatus Marinimicrobia MAGs (2451; 11.9%), Proteobacteria MAGs (1528; 7.4%), Acidobacteria MAGs (1031; 5%), Verrucomicrobia MAGs (103; 0.5%), Planctomycetes MAGs (89; 0.4%), Bacteroidetes MAGs (79; 0.4%), Chloroflexi MAGs (59; 0.3%) and Candidate Phyla Radiation MAGs (12; 0.05%). We hereafter considered these functionally and taxonomically unknown PFCs as “dark” PFCs40,41. Their nucleotidic sequences are available in separate supplementary files (see “Data availability”). The abundance of dark PFCs was significantly different from the abundance of other PFCs in 85 samples over 93 (two-sided Wilcoxon rank-sum test, p-value  More