1.Robbins, C. T. & Cunha, T. J. Wildlife Feeding and Nutrition (Elsevier Science, 2014).
Google Scholar
2.Murray, M. H., Becker, D. J., Hall, R. J. & Hernandez, S. M. Wildlife health and supplemental feeding: A review and management recommendations. Biol. Conserv. 204, 163–174 (2016).Article
Google Scholar
3.Barboza, P. S., Parker, K. L., & Hume, I. D. Integrative Wildlife Nutrition (Springer, 2009).Book
Google Scholar
4.Nyhus, P. J. Human-wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).Article
Google Scholar
5.Baynham-Herd, Z., Redpath, S., Bunnefeld, N. & Keane, A. Predicting intervention priorities for wildlife conflicts. Conserv. Biol. 34, 232–243 (2020).PubMed
Article
Google Scholar
6.Treves, A. & Santiago-Ávila, F. J. Myths and assumptions about human-wildlife conflict and coexistence. Conserv. Biol. 34, 811–818 (2020).PubMed
Article
PubMed Central
Google Scholar
7.Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: The role of geographical and environmental factors: Biogeographical variation in brown bear diet. Mammal Rev. 42, 120–143 (2012).Article
Google Scholar
8.Kavčič, I. et al. Fast food bears: Brown bear diet in a human-dominated landscape with intensive supplemental feeding. Wildl. Biol. 21, 1–8 (2015).Article
Google Scholar
9.Cozzi, G. et al. Anthropogenic food resources foster the coexistence of distinct life history strategies: Year-round sedentary and migratory brown bears. J. Zool. 300, 142–150 (2016).Article
Google Scholar
10.Lewis, D. L. et al. Foraging ecology of black bears in urban environments: Guidance for human-bear conflict mitigation. Ecosphere 6, art141 (2015).ADS
Article
Google Scholar
11.Naves, J., Fernández-Gil, A., Rodríguez, C. & Delibes, M. Brown bear food habits at the border of its range: A long-term study. J. Mammal. 87, 899–908 (2006).Article
Google Scholar
12.Rodríguez, C., Naves, J., Fernández-Gil, A., Obeso, J. R. & Delibes, M. Long-term trends in food habits of a relict brown bear population in northern Spain: The influence of climate and local factors. Environ. Conserv. 34, 36–44 (2007).Article
Google Scholar
13.Ciucci, P., Tosoni, E., Di Domenico, G., Quattrociocchi, F. & Boitani, L. Seasonal and annual variation in the food habits of Apennine brown bears, central Italy. J. Mammal. 95, 572–586 (2014).Article
Google Scholar
14.Reynolds-Hogland, M. J., Pacifici, L. B. & Mitchell, M. S. Linking resources with demography to understand resource limitation for bears: Linking resources and demography. J. Appl. Ecol. 44, 1166–1175 (2007).Article
Google Scholar
15.Robbins, C. T., Schwartz, C. C. & Felicetti, L. A. Nutritional ecology of ursids: A review of newer methods and management implications. Ursus 15, 161–171 (2004).Article
Google Scholar
16.Can, Ö. E., D’Cruze, N., Garshelis, D. L., Beecham, J. & Macdonald, D. W. Resolving human-bear conflict: A global survey of countries, experts, and key factors: Human-bear conflict. Conserv. Lett. 7, 501–513 (2014).Article
Google Scholar
17.Hobson, K. A., McLellan, B. N. & Woods, J. G. Using stable carbon (δ 13C) and nitrogen (δ 15N) isotopes to infer trophic relationships among black and grizzly bears in the upper Columbia River basin, British Columbia. Can. J. Zool. 78, 1332–1339 (2000).Article
Google Scholar
18.Mowat, G. & Heard, D. C. Major components of grizzly bear diet across North America. Can. J. Zool. 84, 473–489 (2006).CAS
Article
Google Scholar
19.Ben-David, M., Titus, K. & Beier, L. R. Consumption of salmon by Alaskan brown bears: A trade-off between nutritional requirements and the risk of infanticide?. Oecologia 138, 465–474 (2004).ADS
PubMed
Article
PubMed Central
Google Scholar
20.Hopkins, J. B. et al. Stable isotopes to detect food-conditioned bears and to evaluate human-bear management. J. Wildl. Manag. 76, 703–713 (2012).Article
Google Scholar
21.Hata, A. et al. Stable isotope and DNA analyses reveal the spatial distribution of crop-foraging brown bears. J. Zool. 303, 207–217 (2017).Article
Google Scholar
22.Hilderbrand, G. V., Jenkins, S. G., Schwartz, C. C., Hanley, T. A. & Robbins, C. T. Effect of seasonal differences in dietary meat intake on changes in body mass and composition in wild and captive brown bears. Can. J. Zool. 77, 1623–1630 (1999).Article
Google Scholar
23.Rode, K. D., Farley, S. D. & Robbins, C. T. Sexual dimorphism, reproductive strategy, and human activities determine resource use by brown bears. Ecology 87, 2636–2646 (2006).PubMed
Article
Google Scholar
24.Hilderbrand, G. V. et al. Use of stable isotopes to determine diets of living and extinct bears. Can. J. Zool. 74, 2080–2088 (1996).Article
Google Scholar
25.Murray, M. H., Fassina, S., Hopkins, J. B., Whittington, J. & St. Clair, C. C. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos) in a national park. PLoS ONE 12, e0175658 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
26.Mizukami, R. N., Goto, M., Izumiyama, S., Hayashi, H. & Yoh, M. Estimation of feeding history by measuring carbon and nitrogen stable isotope ratios in hair of Asiatic black bears. Ursus 16, 93–101 (2005).Article
Google Scholar
27.Mizukami, R. N. et al. Temporal diet changes recorded by stable isotopes in Asiatic black bear (Ursus thibetanus) hair. Isotopes Environ. Health Stud. 41, 87–94 (2005).CAS
PubMed
Article
Google Scholar
28.Hopkins, J. B. & Kurle, C. M. Measuring the realized niches of animals using stable isotopes: From rats to bears. Methods Ecol. Evol. 7, 210–221 (2016).Article
Google Scholar
29.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).PubMed
Article
Google Scholar
30.Careddu, G., Calizza, E., Costantini, M. L. & Rossi, L. Isotopic determination of the trophic ecology of a ubiquitous key species—The crab Liocarcinus depurator (Brachyura: Portunidae). Estuar. Coast. Shelf Sci. 191, 106–114 (2017).ADS
CAS
Article
Google Scholar
31.Blasi, M. F. et al. Assessing resource use patterns of Mediterranean loggerhead sea turtles Caretta caretta (Linnaeus, 1758) through stable isotope analysis. Eur. Zool. J. 85, 71–87 (2018).Article
CAS
Google Scholar
32.Cicala, D. et al. Spatial variation in the feeding strategies of Mediterranean fish: Flatfish and mullet in the Gulf of Gaeta (Italy). Aquat. Ecol. 53, 529–541 (2019).CAS
Article
Google Scholar
33.Bearhop, S., Adams, C. E., Waldron, S., Fuller, R. A. & Macleod, H. Determining trophic niche width: A novel approach using stable isotope analysis: Stable isotopes as measures of niche width. J. Anim. Ecol. 73, 1007–1012 (2004).Article
Google Scholar
34.Newsome, S. D., Martinez del Rio, C., Bearhop, S. & Phillips, D. L. A niche for isotopic ecology. Front. Ecol. Environ. 5, 429–436 (2007).Article
Google Scholar
35.Hopkins, J. B. & Ferguson, J. M. Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE 7, e28478 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
36.Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352 (2012).Article
Google Scholar
37.Madeira, F. et al. Stable carbon and nitrogen isotope signatures to determine predator dispersal between alfalfa and maize. Biol. Control 77, 66–75 (2014).Article
Google Scholar
38.García-Vázquez, A., Pinto-Llona, A. C. & Grandal-d’Anglade, A. Brown bear (Ursus arctos L.) palaeoecology and diet in the Late Pleistocene and Holocene of the NW of the Iberian Peninsula: A study on stable isotopes. Quat. Int. 481, 42–51 (2018).Article
Google Scholar
39.Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).Article
Google Scholar
40.Felicetti, L. A. et al. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears. Can. J. Zool. 81, 763–770 (2003).Article
Google Scholar
41.Schwartz, C. C. et al. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: A reassessment. Wildl. Soc. Bull. 38, 664–670 (2014).Article
Google Scholar
42.Hopkins, J. B., Koch, P. L., Ferguson, J. M. & Kalinowski, S. T. The changing anthropogenic diets of American black bears over the past century in Yosemite National Park. Front. Ecol. Environ. 12, 107–114 (2014).Article
Google Scholar
43.Bentzen, T. W., Shideler, R. T. & O’Hara, T. M. Use of stable isotope analysis to identify food-conditioned grizzly bears on Alaska’s North Slope. Ursus 25, 14 (2014).Article
Google Scholar
44.Teunissen van Manen, J. L., Muller, L. I., Li, Z., Saxton, A. M. & Pelton, M. R. Using stable isotopes to assess dietary changes of American black bears from 1980 to 2001. Isotopes Environ. Health Stud. 50, 382–398 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Braunstein, J. L., Clark, J. D., Williamson, R. H. & Stiver, W. H. Black bear movement and food conditioning in an exurban landscape. J. Wildl. Manag. 84, 1038–1050 (2020).Article
Google Scholar
46.Narita, R., Mano, T., Yokoyama, R. & Takayanagi, A. Variation in maize consumption by brown bears (Ursus arctos ) in two coastal areas of Hokkaido, Japan. Mammal Study 36, 33–39 (2011).Article
Google Scholar
47.Matsubayashi, J., Morimoto, J., Mano, T., Aryal, A. & Nakamura, F. Using stable isotopes to understand the feeding ecology of the Hokkaido brown bear (Ursus arctos) in Japan. Ursus 25, 87–97 (2014).Article
Google Scholar
48.Javornik, J. et al. Effects of ethanol storage and lipids on stable isotope values in a large mammalian omnivore. J. Mammal. 100, 150–157 (2019).Article
Google Scholar
49.Pauli, J. N., Whiteman, J. P., Riley, M. D. & Middleton, A. D. Defining noninvasive approaches for sampling of vertebrates. Conserv. Biol. 24, 349–352 (2010).PubMed
Article
PubMed Central
Google Scholar
50.Ueda, M. & Bell, L. S. Assessing dual hair sampling for isotopic studies of grizzly bears. Rapid Commun. Mass Spectrom. 33, 1475–1480 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
51.Inger, R. & Bearhop, S. Applications of stable isotope analyses to avian ecology: Avian stable isotope analysis. Ibis 150, 447–461 (2008).Article
Google Scholar
52.Lerner, J. E. et al. Evaluating the use of stable isotope analysis to infer the feeding ecology of a growing US gray seal (Halichoerus grypus) population. PLoS ONE 13, e0192241 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
53.Woods, J. G. et al. Genetic tagging of free-ranging black and brown bears. Wildl. Soc. Bull. 1973–2006(27), 616–627 (1999).
Google Scholar
54.Ciucci, P. et al. Estimating abundance of the remnant Apennine brown bear population using multiple noninvasive genetic data sources. J. Mammal. 96, 206–220 (2015).Article
Google Scholar
55.Kendall, K. C. et al. Using bear rub data and spatial capture-recapture models to estimate trend in a brown bear population. Sci. Rep. 9, 16804 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
56.Kendall, K. C. et al. Grizzly bear density in glacier National Park, Montana. J. Wildl. Manag. 72, 1693–1705 (2008).Article
Google Scholar
57.Darimont, C. T. & Reimchen, T. E. Intra-hair stable isotope analysis implies seasonal shift to salmon in gray wolf diet. Can. J. Zool. 80, 1638–1642 (2002).Article
Google Scholar
58.Ayliffe, L. K. et al. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
59.Schwertl, M., Auerswald, K. & Schnyder, H. Reconstruction of the isotopic history of animal diets by hair segmental analysis. Rapid Commun. Mass Spectrom. 17, 1312–1318 (2003).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
60.Jones, E. S., Heard, D. C. & Gillingham, M. P. Temporal variation in stable carbon and nitrogen isotopes of grizzly bear guardhair and underfur. Wildl. Soc. Bull. 34, 1320–1325 (2006).Article
Google Scholar
61.Jacoby, M. E. et al. Trophic Relations of brown and black bears in several western North American ecosystems. J. Wildl. Manag. 63, 921 (1999).Article
Google Scholar
62.Jimbo, M. et al. Hair growth in brown bears and its application to ecological studies on wild bears. Mammal Study 45, 1–9 (2020).Article
Google Scholar
63.Mosbacher, J. B., Michelsen, A., Stelvig, M., Hendrichsen, D. K. & Schmidt, N. M. Show me your rump hair and I will tell you what you ate—the dietary history of muskoxen (Ovibos moschatus) revealed by sequential stable isotope analysis of guard hairs. PLoS ONE 11, e0152874 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
64.Hopkins, J. B., Ferguson, J. M., Tyers, D. B. & Kurle, C. M. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem. PLoS ONE 12, e0174903 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
65.Mowat, G., Curtis, P. J. & Lafferty, D. J. R. The influence of sulfur and hair growth on stable isotope diet estimates for grizzly bears. PLoS ONE 12, e0172194 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
66.Adams, M. S. et al. Intrapopulation diversity in isotopic niche over landscapes: Spatial patterns inform conservation of bear–salmon systems. Ecosphere 8, e01843 (2017).Article
Google Scholar
67.Reimchen, T. E. & Klinka, D. R. Niche differentiation between coat colour morphs in the Kermode bear (Ursidae) of coastal British Columbia. Biol. J. Linn. Soc. 122, 274–285 (2017).Article
Google Scholar
68.Kaczensky, P. et al. Status, Management and Distribution of Large Carnivores—Bear, Lynx, Wolf & Wolverine—in Europe (Verlag nicht ermittelbar, 2013).
Google Scholar
69.Rondinini, C., Battistoni, A., Peronace, V. & Teofili, C. Lista Rossa IUCN dei Vertebrati Italiani. Comitato Italiano IUCN e Ministero dell’Ambiente e del Mare, Roma 56, (2013).70.Ciucci, P. & Boitani, L. The Apennine brown bear: A critical review of its status and conservation problems. Ursus 19, 130–145 (2008).Article
Google Scholar
71.Ciucci, P. et al. Distribution of the brown bear (Ursus arctos marsicanus) in the Central Apennines, Italy, 2005–2014. Hystrix Ital. J. Mammal. 28, 86–91 (2017).
Google Scholar
72.Maiorano, L., Chiaverini, L., Falco, M. & Ciucci, P. Combining multi-state species distribution models, mortality estimates, and landscape connectivity to model potential species distribution for endangered species in human dominated landscapes. Biol. Conserv. 237, 19–27 (2019).Article
Google Scholar
73.Benazzo, A. et al. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers. Proc. Natl. Acad. Sci. 114, E9589–E9597 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
74.Gervasi, V. & Ciucci, P. Demographic projections of the Apennine brown bear population Ursus arctos marsicanus (Mammalia: Ursidae) under alternative management scenarios. Eur. Zool. J. 85, 242–252 (2018).Article
Google Scholar
75.Clevenger, A. P., Purroy, F. J. & Pelton, M. R. Food habits of brown bears (Ursus arctos) in the Cantabrian Mountains, Spain. J. Mammal. 73, 415–421 (1992).Article
Google Scholar
76.Servheen, C. Conservation of small bear populations through strategic planning. Ursus 10, 67–73 (1998).
Google Scholar
77.Tosoni, E., Mei, M. & Ciucci, P. Ants as food for Apennine brown bears. Eur. Zool. J. 85, 342–348 (2018).Article
Google Scholar
78.Pritchard, G. T. & Robbins, C. T. Digestive and metabolic efficiencies of grizzly and black bears. Can. J. Zool. 68, 1645–1651 (1990).Article
Google Scholar
79.Cameron, M. D. et al. Body size plasticity in North American black and brown bears. Ecosphere 11, e03235 (2020).Article
Google Scholar
80.Stock, B. C. et al. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 6, e5096 (2018).PubMed
PubMed Central
Article
Google Scholar
81.Banner, K. M., Irvine, K. M. & Rodhouse, T. J. The use of Bayesian priors in Ecology: The good, the bad and the not great. Methods Ecol. Evol. 11, 882–889 (2020).Article
Google Scholar
82.Lemoine, N. P. Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928 (2019).Article
Google Scholar
83.Franco-Trecu, V. et al. Bias in diet determination: Incorporating traditional methods in Bayesian mixing models. PLoS ONE 8, e80019 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
84.Johnson, D. L., Henderson, M. T., Anderson, D. L., Booms, T. L. & Williams, C. T. Bayesian stable isotope mixing models effectively characterize the diet of an Arctic raptor. J. Anim. Ecol. 89, 2972–2985 (2020).PubMed
Article
Google Scholar
85.Swan, G. J. F. et al. Evaluating Bayesian stable isotope mixing models of wild animal diet and the effects of trophic discrimination factors and informative priors. Methods Ecol. Evol. 11, 139–149 (2020).Article
Google Scholar
86.Ward, E. J., Semmens, B. X. & Schindler, D. E. Including source uncertainty and prior information in the analysis of stable isotope mixing models. Environ. Sci. Technol. 44, 4645–4650 (2010).ADS
CAS
PubMed
Article
Google Scholar
87.Keis, M., Tammeleht, E., Valdmann, H. & Saarma, U. Ants in brown bear diet, and discovery of a new ant species for Estonia from brown bear scats. Hystrix Ital. J. Mammal. 30, 0 (2019).
Google Scholar
88.Warlick, A. et al. Using Bayesian stable isotope mixing models and generalized additive models to resolve diet changes for fish-eating killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 649, 189–200 (2020).Article
Google Scholar
89.Derbridge, J. J. et al. Experimentally derived δ13C and δ15N discrimination factors for gray wolves and the impact of prior information in Bayesian mixing models. PLoS ONE 10, e0119940 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
90.Chiaradia, A., Forero, M. G., McInnes, J. C. & Ramírez, F. Searching for the true diet of marine predators: Incorporating Bayesian priors into stable isotope mixing models. PLoS ONE 9, e92665 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
91.Ciucci, P., Mancinelli, S., Boitani, L., Gallo, O. & Grottoli, L. Anthropogenic food subsidies hinder the ecological role of wolves: Insights for conservation of apex predators in human-modified landscapes. Glob. Ecol. Conserv. 21, e00841 (2020).Article
Google Scholar
92.Galluzzi, A., Donfrancesco, V., Mastrantonio, G., Sulli, C. & Ciucci, P. Cost of coexisting with a relict large carnivore population: Impact of Apennine brown bears, 2005–2015. Animals 11, 1453 (2021).PubMed
PubMed Central
Article
Google Scholar
93.Dahle, B., Sørensen, O. J., Wedul, E. H., Swenson, J. E. & Sandegren, F. The diet of brown bears Ursus arctos in central Scandinavia: Effect of access to free-ranging domestic sheep Ovis aries. Wildl. Biol. 4, 147–158 (1998).Article
Google Scholar
94.Persson, I.-L., Wikan, S., Swenson, J. E. & Mysterud, I. The diet of the brown bear Ursus arctos in the Pasvik Valley, northeastern Norway. Wildl. Biol. 7, 27–37 (2001).Article
Google Scholar
95.Welch, C. A., Keay, J., Kendall, K. C. & Robbins, C. T. Constraints on frugivory by bears. Ecology 78, 1105–1119 (1997).Article
Google Scholar
96.Rode, K. D., Robbins, C. T. & Shipley, L. A. Constraints on herbivory by grizzly bears. Oecologia 128, 62–71 (2001).ADS
PubMed
Article
Google Scholar
97.Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).Article
Google Scholar
98.Orlandi, L. et al. The effects of nitrogen pollutants on the isotopic signal (δ 15N) of Ulva lactuca: Microcosm experiments. Mar. Pollut. Bull. 115, 429–435 (2017).CAS
PubMed
Article
Google Scholar
99.Fiorentino, F. et al. Epilithon δ15N signatures indicate the origins of nitrogen loading and its seasonal dynamics in a volcanic Lake. Ecol. Indic. 79, 19–27 (2017).Article
CAS
Google Scholar
100.Noyce, K. V., Kannowski, P. B. & Riggs, M. R. Black bears as ant-eaters: Seasonal associations between bear myrmecophagy and ant ecology in north-central Minnesota. Can. J. Zool. 75, 1671–1686 (1997).Article
Google Scholar
101.Auger, J., Ogborn, G. L., Pritchett, C. L. & Black, H. L. selection of ants by the American black bear (Ursus americanos). West. North Am. Nat. 64, 166–174 (2004).
Google Scholar
102.Fujiwara, S., Koike, S., Yamazaki, K., Kozakai, C. & Kaji, K. Direct observation of bear myrmecophagy: Relationship between bears’ feeding habits and ant phenology. Mamm. Biol. 78, 34–40 (2013).Article
Google Scholar
103.Elgmork, K. & Kaasa, J. Food habits and foraging of the brown bear Ursus arctos in central South Norway. Ecography 15, 101–110 (1992).Article
Google Scholar
104.Swenson, J. E., Jansson, A., Riig, R. & Sandegren, F. Bears and ants: Myrmecophagy by brown bears in central Scandinavia. Can. J. Zool. 77, 551–561 (1999).Article
Google Scholar
105.Costello, C. M. et al. Diet and macronutrient optimization in wild ursids: A comparison of grizzly bears with sympatric and allopatric black bears. PLoS ONE 11, e0153702 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
106.Stenset, N. E. et al. Seasonal and annual variation in the diet of brown bears Ursus arctos in the boreal forest of southcentral Sweden. Wildl. Biol. 22, 107–116 (2016).Article
Google Scholar
107.Eagle, T. C. & Pelton, M. R. Seasonal nutrition of black bears in the Great Smoky Mountains National Park. Bears Their Biol. Manag. 5, 94 (1983).Article
Google Scholar
108.Redford, K. H. & Dorea, J. G. The nutritional value of invertebrates with emphasis on ants and termites as food for mammals. J. Zool. 203, 385–395 (2009).Article
Google Scholar
109.Rode, K. D. & Robbins, C. T. Why bears consume mixed diets during fruit abundance. Can. J. Zool. 78, 1640–1645 (2000).Article
Google Scholar
110.Erlenbach, J. A., Rode, K. D., Raubenheimer, D. & Robbins, C. T. Macronutrient optimization and energy maximization determine diets of brown bears. J. Mammal. 95, 160–168 (2014).Article
Google Scholar
111.Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
112.Mealey, S. P. The natural food habits of grizzly bears in Yellowstone National Park, 1973–74. Bears Biol. Manag. 4, 281 (1980).
Google Scholar
113.Cicnjak, L., Huber, D., Roth, H. U., Ruff, R. L. & Vinovrski, Z. Food habits of brown bears in Plitvice Lakes National Park, Yugoslavia. Bears Biol. Manag. 7, 221 (1987).
Google Scholar
114.Hamer, D. & Herrero, S. Grizzly bear food and habitat in the front ranges of Banff National Park, Alberta. Bears Biol. Manag. 7, 199 (1987).
Google Scholar
115.McLellan, B. N. & Hovey, F. W. The diet of grizzly bears in the Flathead River drainage of southeastern British Columbia. Can. J. Zool. 73, 704–712 (1995).Article
Google Scholar
116.Sikes, R. S. & Gannon, W. L. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Article
Google Scholar
117.Piovesan, G., Bernabei, M., Di Filippo, A., Romagnoli, M. & Schirone, B. A long-term tree ring beech chronology from a high-elevation old-growth forest of Central Italy. Dendrochronologia 21, 13–22 (2003).Article
Google Scholar
118.Mancinelli, S., Boitani, L. & Ciucci, P. Determinants of home range size and space use patterns in a protected wolf (Canis lupus) population in the central Apennines, Italy. Can. J. Zool. 96, 828–838 (2018).Article
Google Scholar
119.Gervasi, V. et al. Estimating survival in the Apennine brown bear accounting for uncertainty in age classification. Popul. Ecol. 59, 119–130 (2017).Article
Google Scholar
120.Hopkins, J. B. et al. A proposed lexicon of terms and concepts for human–bear management in North America. Ursus 21, 154–168 (2010).Article
Google Scholar
121.Costantini, M. L., Calizza, E. & Rossi, L. Stable isotope variation during fungal colonisation of leaf detritus in aquatic environments. Fungal Ecol. 11, 154–163 (2014).Article
Google Scholar
122.Rossi, L., di Lascio, A., Carlino, P., Calizza, E. & Costantini, M. L. Predator and detritivore niche width helps to explain biocomplexity of experimental detritus-based food webs in four aquatic and terrestrial ecosystems. Ecol. Complex. 23, 14–24 (2015).Article
Google Scholar
123.Ponsard, S. & Arditi, R. Detecting omnivory with δ15N. Trends Ecol. Evol. 16, 20–21 (2001).Article
Google Scholar
124.Smith, J. A., Mazumder, D., Suthers, I. M. & Taylor, M. D. To fit or not to fit: Evaluating stable isotope mixing models using simulated mixing polygons. Methods Ecol. Evol. 4, 612–618 (2013).Article
Google Scholar
125.Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet
MATH
Article
Google Scholar
126.McElreath, R. Statistical rethinking: a Bayesian course with examples in R and Stan (Taylor and Francis, CRC Press, 2020).Book
Google Scholar
127.Stock, B., Jackson, A., Ward, E. & Venkiteswaran, J. Brianstock/Mixsiar 3.1.9. (Zenodo, 2018) https://doi.org/10.5281/ZENODO.1209993.128.Koch, P. L. & Phillips, D. L. Incorporating concentration dependence in stable isotope mixing models: A reply to Robbins, Hilderbrand and Farley (2002). Oecologia 133, 14–18 (2002).ADS
PubMed
Article
PubMed Central
Google Scholar
129.Phillips, D. L. & Koch, P. L. Incorporating concentration dependence in stable isotope mixing models. Oecologia 130, 114–125 (2002).ADS
PubMed
Article
PubMed Central
Google Scholar
130.Phillips, D. L. et al. Best practices for use of stable isotope mixing models in food-web studies. Can. J. Zool. 92, 823–835 (2014).Article
Google Scholar
131.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020). More