More stories

  • in

    Spatiotemporal effects of urban sprawl on habitat quality in the Pearl River Delta from 1990 to 2018

    Study areaThe Pearl River Delta (112°45′–113°50′ E, 21°31′–23°10′ N) is located in the central and southern parts of Guangdong Province, including the lower reaches of the Pearl River, adjacent to Hong Kong and Macao, and facing Southeast Asia across the sea with convenient land and sea transportation. As shown in Fig. 1, the Pearl River Delta region includes nine prefecture-level cities, namely Guangzhou, Shenzhen, Zhongshan, Zhuhai, Dongguan, Zhaoqing, Foshan, Huizhou, and Jiangmen.Figure 1Geographical location of Pearl River Delta drawn in ArcGIS 10.6.Full size imageData sourceThe research framework of this paper is shown in Fig. 2, and the data sources are as follows. Taking the basin as the research unit, the raster data of 30 m and 1 km were analyzed by zoning statistics:

    (1)

    China’s land-use raster data for 1990, 2000, 2010, and 2018 were obtained from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn), with a spatial resolution of 30 m. According to land resources and their utilization attributes, the dataset divides land cover types into six first-level categories: cultivated land, woodland, grassland, water area, construction land, unused land, and land reclamation from ocean. The land urbanization rate (LUR) refers to the proportion of construction land in the whole region, which is calculated by dividing the area of construction land by the area of all land use types.

    (2)

    Raster data of population density (POP) from 1990, 2000, 2010, and 2015 were obtained from the Environment and Resources Data Cloud Platform of the Chinese Academy of Sciences, with a spatial resolution of 1 km. Owing to the stable growth of population density under normal circumstances, the population density data of 2018 were obtained by linear fitting based on POP data from 2010 and 2015.

    (3)

    Nighttime Light (NTL) raster data from 1992 to 2018 were obtained from the Nature journal data (https://doi.org/10.6084/m9.figshare.9828827.v2) with a spatial resolution of 500 m45 Calibration was performed to eliminate the differences in the DMSP (1992–2013) and VIIRS (2012–2018) data, generating a complete and consistent NTL dataset on a global scale.

    Figure 2Research framework.Full size imageLand-use information TUPUThe land-use information graph is a geospatial analysis model combining attributes, processes, and spaces, which can reflect the spatial differences and temporal changes in land-use types46. In its function expression, let the state variables be (pleft( {p_{1} ,p_{2} ,p_{3} , ldots ,p_{n} } right)), and then set p as a function of spatial position r and time t, as follows:$$ begin{array}{*{20}c} {p = fleft( {r,t} right)} \ end{array} $$
    (1)
    where (p) represents land-use characteristics. (1) To realize the spatial description of land attributes, when t is constant, the function relation of (p) changing with (r) is constructed. (2) The process description of land attributes can be realized, and when (r) is constant, the function relation of (p) changing with (t) can be constructed. The combination of these two functions can form a conceptual model of the land-use information graph and realize a composite study of land space, process, and attributes.Habitat qualityHabitat quality evaluationWe used InVEST-HQ to evaluate the habitat quality in the Pearl River Delta region. Based on land-use types, InVEST-HQ calculated the habitat degradation degree and habitat quality index by using threat factors, the sensitivity of different habitat types to threat factors, and habitat suitability15. The InVEST-HQ model was co-developed by Stanford University, the Nature Conservancy, and the World Wide Fund for Nature15. InVEST-HQ has a low demand for data and a better spatial visualization effect, which is widely used in the field of urban ecology47,48,49. For example, The InVEST-HQ model has been used to assess dynamic changes in habitat quality in Scottish11, China50,51 and Portugal47. Habitat degradation and habitat quality were calculated using the following formulas:$$ begin{array}{*{20}c} {Q_{{xj}} = ~H_{j} left[ {1 – left( {frac{{D_{{xj}}^{2} }}{{D_{{xj}}^{2} + k^{2} )}}} right)} right]} \ end{array} $$
    (2)
    $$ begin{array}{*{20}c} {D_{{xj}} = ~mathop sum limits_{{r = 1}}^{r} mathop sum limits_{{y = 1}}^{y} left( {frac{{w_{r} }}{{mathop sum nolimits_{{r = 1}}^{r} w_{r} }}} right)r_{y} i_{{rxy}} beta _{x} S_{{jr}} } \ end{array} $$
    (3)
    where (Q_{{xj}}) is the habitat quality of grid x in land-use type j, (H_{j}) is the habitat suitability of land-use type j, (D_{{xj}}) is the habitat degradation degree of grid x in land-use type j, k is the half-satiety sum constant, r is the number of threat factors, and y is the relative sensitivity of threat sources. (r_{y} ,w_{r}), and (i_{{rxy}}) are, respectively, the interference intensity and weight of the grid where the threat factor r is located, and the interference generated by the habitat. (beta _{x} ,S_{{jr}}) are the anti-disturbance ability of habitat type x and its relative sensitivity to various threat sources, respectively.The value range of habitat degradation degree is [0, 1], and the larger the value, the more serious the habitat degradation. The value of habitat quality is between 0 and 1, and the higher the value, the better the habitat quality.$$ begin{array}{*{20}c} {Linear,attenuation:~i_{{rxy}} = 1 – left( {d_{{xy}} /d_{{r,max}} } right)} \ end{array} $$
    (4)
    $$ begin{array}{*{20}c} {Exponential,decay:~i_{{rxy}} = expleft[ { – 2.99d_{{xy}} /d_{{r{text{~}}max}} } right]} \ end{array} $$
    (5)

    where (d_{{xy}}) is the straight-line distance between grids x and y, and (d_{{r,max}}) is the maximum threat distance of threat factor r.Five categories of documentation are prepared before using InVEST-HQ: LULC maps, threat factor data, threat sources, accessibility of degradation sources, habitat types and their sensitivity to each threat. Threat sources were divided into Cropland, City/town, Rural settlements, Other construction land, Unused land, and land applications. The maps of threat sources are generated in ArcGIS. For example, in the map of threat sources of cultivated land, the raster value of cultivated land is set to 1, and the raster value of other land types is set to 0. Distance between habitats and threat sources, weight of threat factors, decay type of threats factors, habitat suitability and the sensitivity of different habitat types to threat factors were derived from previous studies in similar regions2,25,38,39,50 and user guide manual of InVEST model15, as shown in Tables 1 and 2.Table 1 Threat factors and related coefficients.Full size tableTable 2  Sensitivity of habitat types to each threat factor.Full size tableHabitat quality change index and contribution indexThe CI was used to analyze the causes of the changes in habitat quality, and the following formula was used to qu2,25,38,39,50antitatively represent the contribution of land-use conversion to habitat quality change. In this study, the total value of habitat quality loss caused by land transfer in areas related to construction land expansion from 1990 to 2018 can be expressed as follows:$$ begin{array}{*{20}c} {CI~ = ~frac{{mathop sum nolimits_{1}^{n} left( {Q_{{ij2018}} – Q_{{xj1990}} } right)}}{n}} \ end{array} $$
    (6)

    where n is the grid number of cultivated land transferred to construction land.To analyze the relationship between land-use change and habitat quality, the HQCI was constructed to describe the mean value of habitat quality reduction caused by land transfer in the areas related to construction land expansion during the study period. The formula is as follows:$$ begin{array}{*{20}c} {HQCI~ = CI_{{ij}} /S_{{ij}} } \ end{array} $$
    (7)
    where (CI_{{ij}}) represents the total value of habitat quality change when land-use type (i) is converted into land-use type (j), and (S_{{ij}}) represents the area converted from land-use type (i) into land-use type (j). The positive and negative values of HQCI, respectively, represent the positive and negative impacts of land-use change on the habitat, and the higher the absolute value of HQCI, the greater the impact.Correlation analysisGeographically weighted regressionBased on traditional OLS, GWR establishes local spatial regression and considers spatial location factors, which can effectively analyze the spatial heterogeneity of various elements at different locations52. The calculation formula is as follows:$$ Y_{i} = ~beta _{0} left( {mu _{i} ,v_{i} } right) + sum kbeta _{k} left( {mu _{i} ,v_{i} } right)X_{{ik}} + varepsilon _{i} $$where (Y_{i}) is the coupling coordination degree of the ith sample point, (left( {mu _{i} ,v_{i} } right)) is the spatial position coordinate of the ith sample point, (beta _{k} left( {mu _{i} ,v_{i} } right)) is the value of the continuous function (beta _{k} left( {mu ,v} right)) at (left( {mu _{i} ,v_{i} } right)), (X_{{ik}}) is the independent variable, (varepsilon _{i}) is the random error term, and k is the number of spatial units.To simplify the complicated urbanization process, it was divided into three aspects: economic urbanization, population urbanization, and land urbanization according to the existing research38. The NTL, POP, and LUR were used to represent the economic development, population scale, and land urbanization level of the city.The research unit is a river basin, which has both natural and social attributes. It is a relatively independent and complete system, which can connect and explain the coupling phenomenon of society, economy, and nature53. The hydrological analysis module in ArcGIS was used to divide the research area into 374 small basins. When calculating the cumulative flow of the grid, 100,000 was used as the threshold value, and basins less than 5 km2 were combined with the adjacent basins.Zone classification using the Self-organizing feature mapping neural networkThe SOFM neural network was proposed by Kohonen, a Finnish scholar, and constructed by simulating a “lateral inhibition” phenomenon in the human cerebral cortex. It has been widely applied in classification research in geographic and land system science42,43. The advantages of the SOFM neural network in classifying the coupling relationship between urbanization and habitat quality are as follows : (1) it simulates human brain neurons through unsupervised learning, which is objective and reliable. (2) It maintains the data topology during self-learning, training, and simulation to obtain reasonable partition results and identify the differences between different basins. (3) For massive data, the SOFM network has a good clustering function while maintaining its characteristics and uses the weight vector of the output node to represent the original input. The SOFM neural network can compress the data while maintaining a high similarity between the compression results and the original input data54. We exported the data from ArcGIS, and conducted cluster analysis on the four factors of NTL, POP, LUR and habitat quality using SOFM. Finally, the analysis results are imported into ArcGIS for display. More

  • in

    Newfound ‘fairy lantern’ could soon be snuffed out forever

    An umbrella-shaped structure of unknown function crowns a recently described species of fairy lantern. Credit: Siti Munirah Mat Yunoh et al./PhytoKeys (CC BY 4.0)

    Conservation biology
    07 July 2021
    Newfound ‘fairy lantern’ could soon be snuffed out forever

    Wild boars have destroyed three of the four known specimens of a bizarre plant in the forests of Malaysia.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Researchers have discovered a new species of ‘fairy lantern’, leafless plants that look like tiny glowing lights. Sadly, however, the organism might already be on the verge of extinction.Plants in the genus Thismia, colloquially called ‘fairy lanterns’, draw nutrients from underground fungi and grow in parts of Asia, Australasia and the Americas. Siti Munirah Mat Yunoh at the Forest Research Institute Malaysia in Kepong and her colleagues described a new species of Thismia that was first found in 2019 in a Malaysian rain forest. The scientists named the plant Thismia sitimeriamiae after the mother of the local explorer who discovered it, in honour of her support for her son’s nature-conservation efforts.Thismia sitimeriamiae is only about two centimetres tall, and sports an orange flower shaped like a funnel with an umbrella-like structure on top. The plant seems to be so rare that it should be considered critically endangered: just four individuals of T. sitimeriamiae have ever been seen, and wild boars have destroyed all but one of these, the authors say.

    PhytoKeys (2021)

    Conservation biology More

  • in

    Reply to: Caution over the use of ecological big data for conservation

    Centro de Investigação em Biodiversidade e Recursos Genéticos/Research Network in Biodiversity and Evolutionary Biology, Campus Agrário de Vairão, Universidade do Porto, Vairão, PortugalNuno Queiroz, Ana Couto, Marisa Vedor, Ivo da Costa, Gonzalo Mucientes & António M. SantosMarine Biological Association of the United Kingdom, Plymouth, UKNuno Queiroz, Nicolas E. Humphries, Lara L. Sousa, Samantha J. Simpson, Emily J. Southall & David W. SimsDepartamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, PortugalMarisa Vedor & António M. SantosUWA Oceans Institute, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSchool of Biological Sciences, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSpanish Institute of Oceanography, Santa Cruz de Tenerife, SpainFrancisco J. AbascalAbercrombie and Fish, Port Jefferson Station, NY, USADebra L. AbercrombieMarine Biology and Aquaculture Unit, College of Science and Engineering, James Cook University, Cairns, Queensland, AustraliaKatya Abrantes, Adam Barnett, Richard Fitzpatrick & Marcus SheavesInstitute of Natural and Mathematical Sciences, Massey University, Palmerston North, New ZealandDavid Acuña-MarreroUniversidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, BrazilAndré S. Afonso, Natalia P. A. Bezerra, Fábio H. V. Hazin, Fernanda O. Lana, Bruno C. L. Macena & Paulo TravassosMARE, Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, Peniche, PortugalAndré S. AfonsoMARE, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreInstitute of Marine Research (IMAR), Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes, Bruno C. L. Macena & Frederic VandeperreOkeanos – Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreDepartment of Environmental Affairs, Oceans and Coasts Research, Cape Town, South AfricaDarrell Anders, Michael A. Meÿer, Sarika Singh & Laurenne B. SnydersLarge Marine Vertebrates Research Institute Philippines, Jagna, PhilippinesGonzalo AraujoFins Attached Marine Research and Conservation, Colorado Springs, CO, USARandall ArauzPrograma Restauración de Tortugas Marinas PRETOMA, San José, Costa RicaRandall ArauzMigraMar, Olema, CA, USARandall Arauz, Sandra Bessudo Lion, Eduardo Espinoza, Alex R. Hearn, Mauricio Hoyos, James T. Ketchum, A. Peter Klimley, Cesar Peñaherrera-Palma, George Shillinger, German Soler & Patricia M. ZárateInstitut de Recherche pour le Développement, UMR MARBEC (IRD, Ifremer, Univ. Montpellier, CNRS), Sète, FrancePascal Bach, Antonin V. Blaison, Laurent Dagorn, John D. Filmalter, Fabien Forget, Francois Poisson, Marc Soria & Mariana T. TolottiBiology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USADiego Bernal & Heather MarshallRed Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaMichael L. Berumen, Jesse E. M. Cochran & Carlos M. DuarteFundación Malpelo y Otros Ecosistemas Marinos, Bogota, ColombiaSandra Bessudo Lion, Felipe Ladino, Lina Maria Quintero & German SolerHopkins Marine Station of Stanford University, Pacific Grove, CA, USABarbara A. Block, Taylor K. Chapple, George Shillinger & Timothy D. WhiteDepartment of Biological Sciences, Florida International University, North Miami, FL, USAMark E. Bond, Demian D. Chapman & Yannis P. PapastamatiouInstituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, BrazilRamon BonfilSchool of Fishery and Aquatic Sciences, University of Washington, Seattle, WA, USACamrin D. BraunBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USACamrin D. Braun & Simon R. ThorroldShark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, BahamasEdward J. Brooks, Annabelle Brooks & Sean WilliamsUniversity of Exeter, Exeter, UKAnnabelle BrooksSouth Atlantic Environmental Research Institute, Stanley, Falkland IslandsJudith BrownDepartment of Biological Sciences, The Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL, USAMichael E. Byrne, Mahmood Shivji, Jeremy J. Vaudo & Bradley M. WetherbeeSchool of Natural Resources, University of Missouri, Columbia, MO, USAMichael E. ByrneLife and Environmental Sciences, University of Iceland, Reykjavik, IcelandSteven E. CampanaSchool of Marine Science and Policy, University of Delaware, Lewes, DE, USAAaron B. CarlisleMassachusetts Division of Marine Fisheries, New Bedford, MA, USAJohn Chisholm & Gregory B. SkomalMarine Research Facility, Jeddah, Saudi ArabiaChristopher R. Clarke & James S. E. LeaPSL, Labex CORAIL, CRIOBE USR3278 EPHE-CNRS-UPVD, Papetoai, French PolynesiaEric G. CluaAgence de Recherche pour la Biodiversité à la Réunion (ARBRE), Réunion, Marseille, FranceEstelle C. CrocheletInstitut de Recherche pour le Développement, UMR 228 ESPACE-DEV, Réunion, Marseille, FranceEstelle C. CrocheletSave Our Seas Foundation–D’Arros Research Centre (SOSF-DRC), Geneva, SwitzerlandRyan Daly & Clare A. Keating DalySouth African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South AfricaRyan Daly, John D. Filmalter, Enrico Gennari & Alison A. KockDepartment of Fisheries Evaluation, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChileDaniel Devia CortésSchool of Biological, Earth and Environmental Sciences, University College Cork, Cork, IrelandThomas K. Doyle & Luke HarmanMaREI Centre, Environmental Research Institute, University College Cork, Cork, IrelandThomas K. DoyleCollege of Science and Engineering, Flinders University, Adelaide, South Australia, AustraliaMichael Drew, Matthew Heard & Charlie HuveneersDepartment of Conservation, Auckland, New ZealandClinton A. J. DuffySouth African Institute for Aquatic Biodiversity, Geological Sciences, UKZN, Durban, South AfricaThor EriksonDireccion Parque Nacional Galapagos, Puerto Ayora, Galapagos, EcuadorEduardo EspinozaAustralian Institute of Marine Science, Indian Ocean Marine Research Centre (UWA), Crawley Western Australia, Crawley, AustraliaLuciana C. Ferreira, Mark G. Meekan & Michele ThumsDepartment of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USAFrancesco FerrettiOCEARCH, Park City, Utah, USAG. Chris FischerBedford Institute of Oceanography, Dartmouth, Nova Scotia, CanadaMark Fowler, Warren Joyce & Anna MacDonnellNational Institute of Water and Atmospheric Research, Wellington, New ZealandMalcolm P. Francis & Warrick S. LyonBeneath the Waves, Herndon, VA, USAAustin J. GallagherRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USAAustin J. Gallagher, Neil Hammerschlag & Emily R. NelsonOceans Research Institute, Mossel Bay, South AfricaEnrico GennariDepartment of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South AfricaEnrico Gennari & Alison TownerSARDI Aquatic Sciences, Adelaide, South Australia, AustraliaSimon D. Goldsworthy & Paul J. RogersZoological Society of London, London, UKMatthew J. Gollock & Fiona LlewellynGalapagos Whale Shark Project, Puerto Ayora, Galapagos, EcuadorJonathan R. GreenGriffith Centre for Coastal Management, Griffith University School of Engineering, Griffith University, Gold Coast, Queensland, AustraliaJohan A. GustafsonSaving the Blue, Cooper City, FL, USATristan L. GuttridgeSmithsonian Tropical Research Institute, Panama City, PanamaHector M. GuzmanLeonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, USANeil HammerschlagGalapagos Science Center, San Cristobal, Galapagos, EcuadorAlex R. HearnUniversidad San Francisco de Quito, Quito, EcuadorAlex R. HearnBlue Water Marine Research, Tutukaka, New ZealandJohn C. HoldsworthUniversity of QueenslandBrisbane, Queensland, AustraliaBonnie J. HolmesMicrowave Telemetry, Columbia, MD, USALucy A. Howey & Lance K. B. JordanPelagios-Kakunja, La Paz, MexicoMauricio Hoyos & James T. KetchumMote Marine Laboratory, Center for Shark Research, Sarasota, FL, USARobert E. Hueter, John J. Morris & John P. TyminskiBiological Sciences, University of Windsor, Windsor, Ontario, CanadaNigel E. HusseyCape Research and Diver Development, Simon’s Town, South AfricaDylan T. IrionInstitute of Zoology, Zoological Society of London, London, UKDavid M. P. JacobyCentre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, AustraliaOliver J. D. JewellDyer Island Conservation Trust, Western Cape, South AfricaOliver J. D. Jewell & Alison TownerBlue Wilderness Research Unit, Scottburgh, South AfricaRyan JohnsonUniversity of California Davis, Davis, CA, USAA. Peter KlimleyCape Research Centre, South African National Parks, Steenberg, South AfricaAlison A. KockShark Spotters, Fish Hoek, South AfricaAlison A. KockInstitute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, South AfricaAlison A. KockWestern Cape Department of Agriculture, Veterinary Services, Elsenburg, South AfricaPieter KoenDepartamento de Biologia Marinha, Universidade Federal Fluminense (UFF), Niterói, BrazilFernanda O. LanaDepartment of Zoology, University of Cambridge, Cambridge, UKJames S. E. LeaAtlantic White Shark Conservancy, Chatham, MA, USAHeather MarshallFisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaJaime D. McAllister, Jayson M. Semmens, German Soler & Kilian M. StehfestPontificia Universidad Católica del Ecuador Sede Manabi, Portoviejo, EcuadorCesar Peñaherrera-PalmaMarine Megafauna Foundation, Truckee, CA, USASimon J. Pierce & Christoph A. RohnerConservation and Fisheries Department, Ascension Island Government, Georgetown, Ascension Island, UKAndrew J. RichardsonMarine Conservation Society Seychelles, Victoria, SeychellesDavid R. L. RowatCORDIO, East Africa, Mombasa, KenyaMelita SamoilysUpwell, Monterey, CA, USAGeorge ShillingerDepartment of Zoology and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South AfricaMalcolm J. SmaleNational Institute of Polar Research, Tachikawa, Tokyo, JapanYuuki Y. WatanabeSOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, JapanYuuki Y. WatanabeCentre for Ecology and Conservation, University of Exeter, Penryn, UKSam B. WeberDepartment of Biological Sciences, University of Rhode Island, Kingston, RI, USABradley M. WetherbeeDepartment of Oceanography and Environment, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChilePatricia M. ZárateDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaRobert HarcourtSchool of Life and Environmental Sciences, Deakin University, Geelong, Victoria, AustraliaGraeme C. HaysAZTI – BRTA, Pasaia, SpainXabier IrigoienIKERBASQUE, Basque Foundation for Science, Bilbao, SpainXabier IrigoienInstituto de Fisica Interdisciplinar y Sistemas Complejos, Consejo Superior de Investigaciones Cientificas, University of the Balearic Islands, Palma de Mallorca, SpainVictor M. EguiluzWildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney, UKLara L. SousaOcean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UKSamantha J. Simpson & David W. SimsCentre for Biological Sciences, University of Southampton, Southampton, UKDavid W. SimsN.Q. and D.W.S. planned the data analysis. N.Q. led the data analysis with contributions from M.V. and D.W.S. N.E.H. contributed analysis tools. D.W.S. led the manuscript writing with contributions from N.Q., N.E.H. and all authors. Seven of the original authors were not included in the Reply authorship; two authors retired from science and the remaining five, although supportive of our Reply, declined to join the authorship due to potential conflicts of interest with the authors of the Comment and/or their institutions. More

  • in

    Developmental environment shapes honeybee worker response to virus infection

    1.Gilbert, S. F. Ecological Developmental Biology. in eLS 1–8 (Wiley, 2017). https://doi.org/10.1002/9780470015902.a0020479.pub2.2.Bateson, P., Gluckman, P. & Hanson, M. The biology of developmental plasticity and the predictive adaptive response hypothesis. J. Physiol. https://doi.org/10.1113/jphysiol.2014.271460 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Emlen, D. J. & Nijhout, H. F. The development and evolution of exaggerated morphologies in insects. Annu. Rev. Entomol. https://doi.org/10.1146/annurev.ento.45.1.661 (2000).Article 
    PubMed 

    Google Scholar 
    4.Koyama, T., Mendes, C. C. & Mirth, C. K. Mechanisms regulating nutrition-dependent developmental plasticity through organ-specific effects in insects. Front. Physiol. https://doi.org/10.3389/fphys.2013.00263 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Wilson, E. O. The Insect Societies (Harvard University Press, 1971).
    Google Scholar 
    6.Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. https://doi.org/10.1056/nejmra0708473 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.Lummaa, V. & Clutton-Brock, T. Early development, survival and reproduction in humans. Trends Ecol. Evol. 17, 141–147 (2002).Article 

    Google Scholar 
    8.Griffin, R. M., Hayward, A. D., Bolund, E., Maklakov, A. A. & Lummaa, V. Sex differences in adult mortality rate mediated by early-life environmental conditions. Ecol. Lett. https://doi.org/10.1111/ele.12888 (2018).Article 
    PubMed 

    Google Scholar 
    9.Briga, M., Koetsier, E., Boonekamp, J. J., Jimeno, B. & Verhulst, S. Food availability affects adult survival trajectories depending on early developmental conditions. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2016.2287 (2017).Article 

    Google Scholar 
    10.Barrett, E. L. B., Hunt, J., Moore, A. J. & Moore, P. J. Separate and combined effects of nutrition during juvenile and sexual development on female life-history trajectories: The thrifty phenotype in a cockroach. Proc. R. Soc. B Biol. Sci. 276, 3257–3264 (2009).Article 

    Google Scholar 
    11.Kriengwatana, B., Wada, H., Macmillan, A. & MacDougall-Shackleton, S. A. Juvenile nutritional stress affects growth rate, adult organ mass, and innate immune function in zebra finches (Taeniopygia guttata). Physiol. Biochem. Zool. 86, 769–781 (2013).Article 

    Google Scholar 
    12.Birkhead, T. R., Fletcher, F. & Pellatt, E. J. Nestling diet, secondary sexual traits and fitness in the zebra finch. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.1999.0649 (1999).Article 

    Google Scholar 
    13.Tella, J. L. et al. Offspring body condition and immunocompetence are negatively affected by high breeding densities in a colonial seabird: A multiscale approach. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2001.1688 (2001).Article 

    Google Scholar 
    14.Naguib, M., Amrhein, V. & Kunc, H. P. Effects of territorial intrusions on eavesdropping neighbors: Communication networks in nightingales. Behav. Ecol. https://doi.org/10.1093/beheco/arh108 (2004).Article 

    Google Scholar 
    15.Stjernman, M., Råberg, L. & Nilsson, J. Å. Long-term effects of nestling condition on blood parasite resistance in blue tits (Cyanistes caeruleus). Can. J. Zool. https://doi.org/10.1139/Z08-071 (2008).Article 

    Google Scholar 
    16.Butler, M. W. & McGraw, K. J. Past or present? Relative contributions of developmental and adult conditions to adult immune function and coloration in mallard ducks (Anas platyrhynchos). J. Comp. Physiol. B. https://doi.org/10.1007/s00360-010-0529-z (2011).Article 
    PubMed 

    Google Scholar 
    17.De Coster, G. et al. Effects of early developmental conditions on innate immunity are only evident under favourable adult conditions in zebra finches. Naturwissenschaften https://doi.org/10.1007/s00114-011-0863-3 (2011).Article 
    PubMed 

    Google Scholar 
    18.Albon, S. D., Clutton-Brock, T. H. & Guinness, F. E. Early development and population dynamics in red deer. II. Density-independent effects and cohort variation. J. Anim. Ecol. https://doi.org/10.2307/4800 (1987).Article 

    Google Scholar 
    19.Meikle, D. & Westberg, M. Maternal nutrition and reproduction of daughters in wild house mice (Mus musculus). Reproduction https://doi.org/10.1530/rep.0.1220437 (2001).Article 
    PubMed 

    Google Scholar 
    20.Burton, T. & Metcalfe, N. B. Can environmental conditions experienced in early life influence future generations?. Proc. R. Soc. B Biol. Sci. 281, 20140311 (2014).Article 

    Google Scholar 
    21.Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science https://doi.org/10.1126/science.1153069 (2008).Article 
    PubMed 

    Google Scholar 
    22.Roth, A. et al. A genetic switch for worker nutritionmediated traits in honeybees. PLoS Biol. https://doi.org/10.1371/journal.pbio.3000171 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Slater, G. P., Yocum, G. D. & Bowsher, J. H. Diet quantity influences caste determination in honeybees (Apis mellifera). Proc. Biol. Sci. https://doi.org/10.1098/rspb.2020.0614 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Rembold, H., Lackner, B. & Geistbeck, I. The chemical basis of honeybee, Apis mellifera, caste formation: Partial purification of queen bee determinator from royal jelly. J. Insect Physiol. https://doi.org/10.1016/0022-1910(74)90063-8 (1974).Article 
    PubMed 

    Google Scholar 
    25.Mutti, N. S. et al. IRS and tor nutrient-signaling pathways act via juvenile hormone to influence honey bee caste fate. J. Exp. Biol. https://doi.org/10.1242/jeb.061499 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Scofield, H. N. & Mattila, H. R. Honey bee workers that are pollen stressed as larvae become poor foragers and waggle dancers as adults. PLoS ONE https://doi.org/10.1371/journal.pone.0121731 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Rittschof, C. C., Coombs, C. B., Frazier, M., Grozinger, C. M. & Robinson, G. E. Early-life experience affects honey bee aggression and resilience to immune challenge. Sci. Rep. https://doi.org/10.1038/srep15572 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Walton, A., Dolezal, A. G., Bakken, M. A. & Toth, A. L. Hungry for the queen: Honeybee nutritional environment affects worker pheromone response in a life stage-dependent manner. Funct. Ecol. https://doi.org/10.1111/1365-2435.13222 (2018).Article 

    Google Scholar 
    29.Dolezal, A. G. et al. Interacting stressors matter: Diet quality and virus infection in honeybee health. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181803 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Alaux, C. et al. A ‘Landscape physiology’ approach for assessing bee health highlights the benefits of floral landscape enrichment and semi-natural habitats. Sci. Rep. https://doi.org/10.1038/srep40568 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Naug, D. Nutritional stress due to habitat loss may explain recent honeybee colony collapses. Biol. Conserv. https://doi.org/10.1016/j.biocon.2009.04.007 (2009).Article 

    Google Scholar 
    32.Dolezal, A. G. & Toth, A. L. Feedbacks between nutrition and disease in honey bee health. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2018.02.006 (2018).Article 
    PubMed 

    Google Scholar 
    33.Alaux, C., Ducloz, F., Crauser, D. & Le Conte, Y. Diet effects on honeybee immunocompetence. Biol. Lett. https://doi.org/10.1098/rsbl.2009.0986 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Jack, C. J., Uppala, S. S., Lucas, H. M. & Sagili, R. R. Effects of pollen dilution on infection of Nosema ceranae in honey bees. J. Insect Physiol. 87, 12–19 (2016).CAS 
    Article 

    Google Scholar 
    35.Di Pasquale, G. et al. Influence of pollen nutrition on honey bee health: Do pollen quality and diversity matter?. PLoS ONE 8, e72016 (2013).ADS 
    Article 

    Google Scholar 
    36.Ramsey, S. D. et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1818371116 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. https://doi.org/10.1146/annurev-ento-011118-111942 (2019).Article 
    PubMed 

    Google Scholar 
    38.Traynor, K. S. et al. Varroa destructor: A complex parasite, crippling honey bees worldwide. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.04.004 (2020).Article 
    PubMed 

    Google Scholar 
    39.DeGrandi-Hoffman, G., Chen, Y., Huang, E. & Huang, M. H. The effect of diet on protein concentration, hypopharyngeal gland development and virus load in worker honey bees (Apis mellifera L.). J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2010.03.017 (2010).Article 
    PubMed 

    Google Scholar 
    40.Hsieh, E. M., Berenbaum, M. R. & Dolezal, A. G. Ameliorative effects of phytochemical ingestion on viral infection in honey bees. Insects https://doi.org/10.3390/insects11100698 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Rutter, L. et al. Transcriptomic responses to diet quality and viral infection in Apis mellifera. BMC Genomics https://doi.org/10.1186/s12864-019-5767-1 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Chen, Y. P. et al. Israeli acute paralysis virus: Epidemiology, pathogenesis and implications for honey bee health. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1004261 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Cox-Foster, D. L. et al. A metagenomic survey of microbes in honey bee colony collapse disorder. Science https://doi.org/10.1126/science.1146498 (2007).Article 
    PubMed 

    Google Scholar 
    44.Maori, E. et al. IAPV, a bee-affecting virus associated with colony collapse disorder can be silenced by dsRNA ingestion. Insect Mol. Biol. https://doi.org/10.1111/j.1365-2583.2009.00847.x (2009).Article 
    PubMed 

    Google Scholar 
    45.Hsieh, E. M., Carrillo-Tripp, J. & Dolezal, A. G. Preparation of virus-enriched inoculum for oral infection of honey bees (Apis Mellifera). J. Vis. Exp. https://doi.org/10.3791/61725 (2020).Article 
    PubMed 

    Google Scholar 
    46.Wang, Y., Kaftanoglu, O., Fondrk, M. K. & Page, R. E. Nurse bee behaviour manipulates worker honeybee (Apis mellifera L.) reproductive development. Anim. Behav. https://doi.org/10.1016/j.anbehav.2014.02.012 (2014).Article 

    Google Scholar 
    47.Wang, Y. et al. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.). J. Exp. Biol. 219, 960–968 (2016).Article 

    Google Scholar 
    48.Wang, Y., Kaftanoglu, O., Brent, C. S., Page, R. E. & Amdam, G. V. Starvation stress during larval development facilitates an adaptive response in adult worker honey bees (Apis mellifera L.). J. Exp. Biol. https://doi.org/10.1242/jeb.130435 (2016).Article 
    PubMed 

    Google Scholar 
    49.Toth, A. L. & Robinson, G. E. Worker nutrition and division of labour in honeybees. Anim. Behav. 69, 427–435 (2005).Article 

    Google Scholar 
    50.Dolezal, A. G., Carrillo-Tripp, J., Miller, W. A., Bonning, B. C. & Toth, A. L. Pollen contaminated with field-relevant levels of cyhalothrin affects honey bee survival, nutritional physiology, and pollen consumption behavior. J. Econ. Entomol. https://doi.org/10.1093/jee/tov301 (2016).Article 
    PubMed 

    Google Scholar 
    51.Carrillo-Tripp, J. et al. In vivo and in vitro infection dynamics of honey bee viruses. Sci. Rep. https://doi.org/10.1038/srep22265 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. https://doi.org/10.1371/journal.pbio.1000412 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Geffre, A. C. et al. Honey bee virus causes context-dependent changes in host social behavior. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.2002268117 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods https://doi.org/10.1006/meth.2001.1262 (2001).Article 
    PubMed 

    Google Scholar 
    55.Richard, F. J., Holt, H. L. & Grozinger, C. M. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics https://doi.org/10.1186/1471-2164-13-558 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. https://doi.org/10.1111/j.1365-2583.2006.00682.x (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Ryabov, E. V., Fannon, J. M., Moore, J. D., Wood, G. R. & Evans, D. J. The Iflaviruses Sacbrood virus and Deformed wing virus evoke different transcriptional responses in the honeybee which may facilitate their horizontal or vertical transmission. PeerJ https://doi.org/10.7717/peerj.1591 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Cerutti, H. & Casas-Mollano, J. A. On the origin and functions of RNA-mediated silencing: From protists to man. Curr. Genet. https://doi.org/10.1007/s00294-006-0078-x (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Harwood, G. P., Ihle, K. E., Salmela, H. & Amdam, G. V. Regulation of honeybee worker (Apis mellifera) life histories by Vitellogenin. in Hormones, Brain and Behavior: Third Edition (2017). https://doi.org/10.1016/B978-0-12-803592-4.00036-5.60.Team, R. C. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing (2016).61.Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. R Core Team (2014). nlme: linear and nonlinear mixed effects models. R package version 3.1–117. http://cran.r-project.org/web/packages/nlme/index.html (2014).62.Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means. R package version 1.15–15 (2020) https://doi.org/10.1080/00031305.1980.10483031 >.License.63.Crailsheim, K., Riessberger, U., Blaschon, B., Nowogrodzki, R. & Hrassnigg, N. Short-term effects of simulated bad weather conditions upon the behaviour of food-storer honeybees during day and night (Apis mellifera carnica Pollmann). Apidologie https://doi.org/10.1051/apido:19990406 (1999).Article 

    Google Scholar 
    64.McMullan, J. B. & Brown, M. J. F. The influence of small-cell brood combs on the morphometry of honeybees (Apis mellifera). Apidologie https://doi.org/10.1051/apido:2006041 (2006).Article 

    Google Scholar 
    65.Teicher, M. H. et al. The neurobiological consequences of early stress and childhood maltreatment. Neurosci. Biobehav. Rev. https://doi.org/10.1016/S0149-7634(03)00007-1 (2003).Article 
    PubMed 

    Google Scholar 
    66.Harlow, H. F., Dodsworth, R. O. & Harlow, M. K. Total social isolation in monkeys. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.54.1.90 (1965).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Toth, A. L., Kantarovich, S., Meisel, A. F. & Robinson, G. E. Nutritional status influences socially regulated foraging ontogeny in honey bees. J. Exp. Biol. https://doi.org/10.1242/jeb.01956 (2005).Article 
    PubMed 

    Google Scholar 
    68.St Clair, A. L., Zhang, G., Dolezal, A. G., O’Neal, M. E. & Toth, A. L. Diversified farming in a monoculture landscape: Effects on honey bee health and wild bee communities. Environ. Entomol. https://doi.org/10.1093/ee/nvaa031 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Dolezal, A. G., Clair, A. L. S., Zhang, G., Toth, A. L. & O’Neal, M. E. Native habitat mitigates feast–famine conditions faced by honey bees in an agricultural landscape. Proc. Natl. Acad. Sci. USA. 116, 25147–25155 (2019).CAS 
    Article 

    Google Scholar 
    70.Smart, M. D., Otto, C. R. V. & Lundgren, J. G. Nutritional status of honey bee (Apis mellifera L.) workers across an agricultural land-use gradient. Sci. Rep. https://doi.org/10.1038/s41598-019-52485-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Schmidt, J. O., Thoenes, S. C. & Levin, M. D. Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources. Ann. Entomol. Soc. Am. https://doi.org/10.1093/aesa/80.2.176 (1987).Article 

    Google Scholar 
    72.Schmidt, L. S., Schmidt, J. O., Hima, R., Wang, W. & Xu, L. Feeding preference and survival of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen. J. Econ. Entomol. https://doi.org/10.1093/jee/88.6.1591 (1995).Article 

    Google Scholar 
    73.Dolezal, A. G., Carrillo-Tripp, J., Allen Miller, W., Bonning, B. C. & Toth, A. L. Intensively cultivated landscape and varroa mite infestation are associated with reduced honey bee nutritional state. PLoS ONE https://doi.org/10.1371/journal.pone.0153531 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Failla, M. L. Trace elements and host defense: Recent advances and continuing challenges. J. Nutr. https://doi.org/10.1093/jn/133.5.1443s (2003).Article 
    PubMed 

    Google Scholar 
    75.Filipiak, M. et al. Ecological stoichiometry of the honeybee: Pollen diversity and adequate species composition are needed to mitigate limitations imposed on the growth and development of bees by pollen quality. PLoS ONE https://doi.org/10.1371/journal.pone.0183236 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Gems, D. & Partridge, L. Stress-response hormesis and aging: ‘That which does not kill us makes us stronger’. Cell Metab. https://doi.org/10.1016/j.cmet.2008.01.001 (2008).Article 
    PubMed 

    Google Scholar 
    77.Ihle, K. E., Baker, N. A. & Amdam, G. V. Insulin-like peptide response to nutritional input in honey bee workers. J. Insect Physiol. https://doi.org/10.1016/j.jinsphys.2014.05.026 (2014).Article 
    PubMed 

    Google Scholar 
    78.Paul, S. & Keshan, B. Ovarian development and vitellogenin gene expression under heat stress in silkworm, Bombyx mori. Psyche https://doi.org/10.1155/2016/4242317 (2016).Article 

    Google Scholar 
    79.Metcalfe, N. B. & Monaghan, P. Compensation for a bad start: Grow now, pay later?. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(01)02124-3 (2001).Article 
    PubMed 

    Google Scholar 
    80.Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B https://doi.org/10.1098/rstb.2007.0011 (2008).Article 

    Google Scholar 
    81.Lindström, J. Early development and fitness in birds and mammals. Trends Ecol. Evol. https://doi.org/10.1016/S0169-5347(99)01639-0 (1999).Article 
    PubMed 

    Google Scholar 
    82.Smart, M. D., Pettis, J. S., Euliss, N. & Spivak, M. S. Land use in the Northern Great Plains region of the US influences the survival and productivity of honey bee colonies. Agric. Ecosyst. Environ. https://doi.org/10.1016/j.agee.2016.05.030 (2016).Article 

    Google Scholar 
    83.Otto, C. R. V., Roth, C. L., Carlson, B. L. & Smart, M. D. Land-use change reduces habitat suitability for supporting managed honey bee colonies in the Northern Great Plains. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.1603481113 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Smart, M., Pettis, J., Rice, N., Browning, Z. & Spivak, M. Linking measures of colony and individual honey bee health to survival among apiaries exposed to varying agricultural land use. PLoS ONE https://doi.org/10.1371/journal.pone.0152685 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    85.Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol. https://doi.org/10.1146/annurev-ento-020117-043423 (2018).Article 
    PubMed 

    Google Scholar 
    86.De Smet, L. et al. Stress indicator gene expression profiles, colony dynamics and tissue development of honey bees exposed to sub-lethal doses of imidacloprid in laboratory and field experiments. PLoS ONE https://doi.org/10.1371/journal.pone.0171529 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    87.de Graaf, D. C. et al. Heritability estimates of the novel trait ‘suppressed in ovo virus infection’ in honey bees (Apis mellifera). Sci. Rep. https://doi.org/10.6084/m9.figshare.8170925 (2020). More

  • in

    Straw and residual film management enhances crop yield and weakens CO2 emissions in wheat–maize intercropping system

    1.Hu, F. et al. Improving N management through intercropping alleviates the inhibitory effect of mineral N on nodulation in pea. Plant Soil 412, 235–251 (2017).CAS 
    Article 

    Google Scholar 
    2.Akhtar, K., Wang, W., Ren, G., Khan, A. & Wang, H. Integrated use of straw mulch with nitrogen fertilizer improves soil functionality and soybean production. Environ. Int. 132, 105092 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Khan, I. et al. Yield gap analysis of major food crops in Pakistan: Prospects for food security. Environ. Sci. Pollut. R. 28, 1–18 (2020).
    Google Scholar 
    4.Khan, I. et al. Farm households’ risk perception, attitude and adaptation strategies in dealing with climate change: Promise and perils from rural Pakistan. Land Use Policy 91, 104395 (2020).Article 

    Google Scholar 
    5.Gan, Y., Chang, L., Wang, X. & Mcconkey, B. Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crops Res. 122, 199–206 (2011).Article 

    Google Scholar 
    6.Linquist, B., Groenigen, K., Adviento-Borbe, M. A., Pittelkow, C. & Kessel, C. V. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18, 194–209 (2015).ADS 
    Article 

    Google Scholar 
    7.Hu, L. A. et al. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat–maize rotation system in China. Agric. Ecosyst. Environ. 135, 24–33 (2010).Article 
    CAS 

    Google Scholar 
    8.Yang, X., Gao, W., Min, Z., Chen, Y. & Peng, S. Reducing agricultural carbon footprint through diversified crop rotation systems in the North China Plain. J. Clean. Prod. 76, 131–139 (2014).Article 

    Google Scholar 
    9.Wang, W. et al. Impact of straw management on seasonal soil carbon dioxide emissions, soil water content, and temperature in a semi-arid region of China. Sci. Total Environ. 652, 471–482 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.Liu, C., Cutforth, H., Chai, Q. & Gan, Y. Farming tactics to reduce the carbon footprint of crop cultivation in semiarid areas. A review. Agron. Sustain. Dev. 36, 69 (2016).Article 
    CAS 

    Google Scholar 
    11.Chai, Q., Qin, A., Gan, Y. & Yu, A. Higher yield and lower carbon emission by intercropping maize with rape, pea, and wheat in arid irrigation areas. Agron. Sustain. Dev. 34, 535–543 (2014).CAS 
    Article 

    Google Scholar 
    12.Mariela, et al. Conservation agriculture, increased organic carbon in the top-soil macro-aggregates and reduced soil CO2 emissions. Plant Soil 355, 183–197 (2012).Article 
    CAS 

    Google Scholar 
    13.Akhtar, K., Wang, W., Ren, G., Khan, A. & Wang, H. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 741, 140488 (2020).14.Hu, F. et al. Less carbon emissions of wheat–maize intercropping under reduced tillage in arid areas. Agron. Sustain. Dev. 35, 701–711 (2015).Article 
    CAS 

    Google Scholar 
    15.Cong, W. F. et al. Intercropping enhances soil carbon and nitrogen. Glob. Change Biol. 21, 1715–1726 (2015).ADS 
    Article 

    Google Scholar 
    16.Beedy, T. L., Snapp, S. S., Akinni Fe Si, F. K. & Sileshi, G. W. Impact of Gliricidia sepium intercropping on soil organic matter fractions in a maize-based cropping system. Agric. Ecosyst. Environ. 138, 139–146 (2010).Article 

    Google Scholar 
    17.Lithourgidis, A. S., Dhima, K. V., Vasilakoglou, I. B., Dordas, C. A. & Yiakoulaki, M. Sustainable production of barley and wheat by intercropping common vetch. Agron. Sustain. Dev. 27, 95–99 (2007).CAS 
    Article 

    Google Scholar 
    18.Fan, Z. et al. Yield and water consumption characteristics of wheat/maize intercropping with reduced tillage in an Oasis region. Europ. J. Agron. 45, 52–58 (2013).Article 

    Google Scholar 
    19.Qin, A. Z., Huang, G. B., Chai, Q., Yu, A. Z. & Huang, P. Grain yield and soil respiratory response to intercropping systems on arid land. Field Crops Res. 144, 1–10 (2013).Article 

    Google Scholar 
    20.Hu, F. et al. Integration of wheat–maize intercropping with conservation practices reduces CO2 emissions and enhances water use in dry areas. Soil Till. Res. 169, 44–53 (2017).Article 

    Google Scholar 
    21.Yin, W. et al. Reducing carbon emissions and enhancing crop productivity through strip intercropping with improved agricultural practices in an arid area. J. Clean. Prod. 166, 197–208 (2017).Article 

    Google Scholar 
    22.Hou, R., Zhu, O., Wilson, G. V., Li, Y. & Li, H. Response of carbon dioxide emissions to warming under no-till and conventional till systems. Soil Sci. Soc. Am. J. 78, 1434–1441 (2014).Article 
    CAS 

    Google Scholar 
    23.Yin, W. et al. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int. J. Biometeorol. 60, 1423–1437 (2016).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Lu, X., Lu, X., Tanveer, S. K., Wen, X. & Liao, Y. Effects of tillage management on soil CO2 emission and wheat yield under rain-fed conditions. Soil Res. 54, 38–48 (2016).25.Luo, Z., Wang, E. & Sun, O. J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments. Agr. Ecosyst. Environ. 139, 224–231 (2010).CAS 
    Article 

    Google Scholar 
    26.Akhtar, K., Wang, W., Ren, G., Khan, A. & Yang, G. Changes in soil enzymes, soil properties, and maize crop productivity under wheat straw mulching in Guanzhong, China. Soil Till. Res. 182, 94–102 (2018).27.Yang, C., Huang, G., Qiang, C. & Luo, Z. Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crops Res. 124, 426–432 (2011).Article 

    Google Scholar 
    28.Zhou, L. et al. Ridge-furrow and plastic-mulching tillage enhances maize–soil interactions: Opportunities and challenges in a semiarid agroecosystem. Field Crops Res. 126, 181–188 (2012).Article 

    Google Scholar 
    29.Zhou, L., Li, F., Jin, S. & Song, Y. How two ridges and the furrow mulched with plastic film affect soil water, soil temperature and yield of maize on the semiarid Loess Plateau of China. Field Crops Res. 113, 41–47 (2009).Article 

    Google Scholar 
    30.Cuello, J. P., Hwang, H. Y., Gutierrez, J., Kim, S. Y. & Kim, P. J. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 91, 48–57 (2015).Article 

    Google Scholar 
    31.Bu, L. D. et al. Source–sink capacity responsible for higher maize yield with removal of plastic film. Agron. J. 105, 591–598 (2013).Article 

    Google Scholar 
    32.Li, Y. S. et al. Influence of continuous plastic film mulching on yield, water use efficiency and soil properties of rice fields under non-flooding condition. Soil Till. Res. 93, 370–378 (2007).Article 

    Google Scholar 
    33.Liu, Q. et al. Plastic-film mulching and urea types affect soil CO2 emissions and grain yield in spring maize on the Loess Plateau, China. Sci. Rep. 6, 28150 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Sial, T. et al. Co-application of milk tea waste and NPK fertilizers to improve sandy soil biochemical properties and wheat growth. Molecules 24, 423–440 (2019).35.Willey, R. W. Resource use in intercropping systems. Agric. Water Manage. 17, 215–231 (2007).Article 

    Google Scholar 
    36.Li, L. et al. Wheat/maize or wheat/soybean strip intercropping: I. Yield advantage and interspecific interactions on nutrients. Field Crops Res. 71, 123–137 (2001).37.Yin, W. et al. Straw retention combined with plastic mulching improves compensation of intercropped maize in arid environment. Field Crops Res. 204, 42–51 (2017).Article 

    Google Scholar 
    38.Kashif, A., Wang, W., Ahmad, K., Ren, G. & Yang, G. Wheat straw mulching with fertilizer nitrogen: An approach for improving soil water storage and maize crop productivity. Plant Soil Environ. 64, 330–337 (2018).39.Ussiri, D. & Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Till. Res. 104, 39–47 (2009).Article 

    Google Scholar 
    40.Wu, Y., Huang, F., Jia, Z., Ren, X. & Cai, T. Response of soil water, temperature, and maize (Zea may L.) production to different plastic film mulching patterns in semi-arid areas of northwest China. Soil Till. Res. 166, 113–121 (2017).Article 

    Google Scholar 
    41.Liu, J. et al. Response of nitrous oxide emission to soil mulching and nitrogen fertilization in semi-arid farmland. Agric. Ecosyst. Environ. 188, 20–28 (2014).42.Ullah, A., Khan, D., Khan, I. & Zheng, S. Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. Environ. Sci. Pollut. R. 25, 13938–13955 (2018).CAS 
    Article 

    Google Scholar 
    43.Allison, S. D., Wallenstein, M. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    44.Chang, S. X., Zheng, S. & Thomas, B. R. Soil respiration and its temperature sensitivity in agricultural and afforested poplar plantation systems in northern Alberta. Biol. Fert. Soils 52, 629–641 (2016).CAS 
    Article 

    Google Scholar 
    45.Ding, W., Yan, C., Cai, Z., Yagi, K. & Zheng, X. Soil respiration under maize crops: Effects of water, temperature, and nitrogen fertilization. Soil Sci. Soc. Am. J. 71, 944–951 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Li, L. J. et al. Soil CO2 emissions from a cultivated Mollisol: Effects of organic amendments, soil temperature, and moisture. Eur. J. Soil Bio. 55, 83–90 (2013).Article 
    CAS 

    Google Scholar 
    47.Kong, D., Liu, N., Wang, W., Akhtar, K. & Ren, G. Soil respiration from fields under three crop rotation treatments and three straw retention treatments. PLoS ONE 14, e0219253 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Chen, C. R., Condron, L. M., Xu, Z. H., Davis, M. R. & Sherlock, R. R. Root, rhizosphere and root-free respiration in soils under grassland and forest plants. Eur. J. Agron. 57, 58–66 (2010).
    Google Scholar 
    49.Zhou, Z. et al. Predicting soil respiration using carbon stock in roots, litter and soil organic matter in forests of Loess Plateau in China. Soil Biol. Biochem. 57, 135–143 (2013).CAS 
    Article 

    Google Scholar 
    50.Zhang, F., Li, M., Zhang, W., Li, F. & Qi, J. Ridge–furrow mulched with plastic film increases little in carbon dioxide efflux but much significant in biomass in a semiarid rainfed farming system. Agric. Forest Meteorol. 244–245, 33–41 (2017).ADS 
    Article 

    Google Scholar 
    51.Malhi, S. S., Lemke, R., Wang, Z. H., Chhabra, B. S. J. S. & Research, T. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions. Soil Till. Res. 90, 171–183 (2006).Article 

    Google Scholar 
    52.Khan, I., Lei, H., Shah, A. A., Khan, I. & Muhammad, I. Climate change impact assessment, flood management, and mitigation strategies in Pakistan for sustainable future. Environ. Sci. Pollut. R. 28, 29720–29731 (2021).53.Gan, Y. T., Siddique, K., Turner, N. C., Li, X. G. & Liu, L. P. Ridge-furrow mulching systems—An innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agron. 118, 429–476 (2013).Article 

    Google Scholar 
    54.Ramakrishna, A., Tam, H. M., Wani, S. P. & Long, T. D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crops Res. 95, 115–125 (2006).Article 

    Google Scholar 
    55.Liu, X. E., Li, X. G., Long, H., Yong, P. W. & Li, F. M. Film-mulched ridge–furrow management increases maize productivity and sustains soil organic carbon in a dryland cropping system. Soil Sci. Soc. Am. J. 78, 1434–1441 (2014).ADS 
    Article 
    CAS 

    Google Scholar  More

  • in

    Protect pollinators — reform pesticide regulations

    CORRESPONDENCE
    06 July 2021

    Protect pollinators — reform pesticide regulations

    Adrian Fisher

     ORCID: http://orcid.org/0000-0001-5300-1910

    0

    Adrian Fisher

    Arizona State University, Tempe, Arizona, USA. On behalf of 14 co-signatories.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Many approved pesticides still damage pollinator health at doses used in agriculture (see, for example, A. R. Main et al. Agric. Ecosyst. Environ. 287, 106693; 2020). We argue that this is due to a systemic failure in pesticide regulations (see, for instance, S. López-Cubillos et al. Nature 573, 196; 2019) that has been exacerbated by weak enforcement. Stricter laws are needed that are evidence-based, override vested interests and recognize pollinators as essential contributors to food security.Policymakers must learn from failures in neonicotinoid regulation (see, for example, F. Sgolastra et al. Biol. Conserv. 241, 108356; 2020). Before approval, pesticide risk assessment should incorporate protocols that address sub-lethal effects on pollinators. These include alterations in their behaviour and fitness under ecologically realistic conditions; mandatory testing on diverse species of native pollinators and of colonies for eusocial pollinators; and toxicity evaluation when combined with other chemicals such as proprietary additives, co-occurring pesticides and environmental residues.Long-term monitoring after approval by appropriate governmental organizations will be necessary to pick up unforeseen environmental interactions promptly.

    Nature 595, 172 (2021)
    doi: https://doi.org/10.1038/d41586-021-01818-xA full list of co-signatories to this letter appears in Supplementary Information.

    Supplementary Information

    List of co-signatories

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Law

    Ecology

    Agriculture

    Latest on:

    Law

    Astronomers victimized colleagues — and put historic Swedish department in turmoil
    News 22 JUN 21

    Forensic database challenged over ethics of DNA holdings
    News Feature 15 JUN 21

    Wanted: rules for pandemic data access that everyone can trust
    Editorial 01 JUN 21

    Ecology

    Integrate conservation reserves for China’s homeless elephants
    Correspondence 06 JUL 21

    UK biodiversity: close gap between reality and rhetoric
    Correspondence 06 JUL 21

    Beyond coronavirus: the virus discoveries transforming biology
    News Feature 30 JUN 21

    Agriculture

    Yuan Longping (1930–2021)
    Obituary 24 JUN 21

    Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans
    Article 23 JUN 21

    How ancient people fell in love with bread, beer and other carbs
    News Feature 22 JUN 21

    Jobs

    Senior Talent Acquisition Associate – Scientific Recruiter

    Baylor College of Medicine (BCM)

    Radiation Oncology Faculty Members

    New York University (NYU)

    Radiation Oncology Physician-Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Radiation Oncology Faulty Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development

    1.Geber, W. F. & Schramm, L. C. Effect of marihuana extract on fetal hamsters and rabbits. Toxicol. Appl. Pharmacol. 14, 276–282 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Geber, W. F. & Schramm, L. C. Teratogenicity of marihuana extract as influenced by plant origin and seasonal variation. Arch. Int. Pharmacodyn. Ther. 177, 224–230 (1969).CAS 
    PubMed 

    Google Scholar 
    3.Graham, J. D. P. Cannabis and health. In Cannabis and Health Vol. 1 (ed. Graham, J. D. P.) 271–320 (Academic Press, 1976).
    Google Scholar 
    4.Reece, A. S. & Hulse, G. K. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat. Res. 789, 15–25 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of Cannabinoids on spermatogenesis in mice. In Marihuana and Medicine (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).Chapter 

    Google Scholar 
    6.Morishima, A. Effects of cannabis and natural cannabinoids on chromosomes and ova. NIDA Res. Monogr. 44, 25–45 (1984).CAS 
    PubMed 

    Google Scholar 
    7.Henrich, R. T., Nogawa, T. & Morishima, A. In vitro induction of segregational errors of chromosomes by natural cannabinoids in normal human lymphocytes. Environ. Mutagen 2, 139–147 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Reece, A. S. & Hulse, G. K. Cannabis teratology explains current patterns of coloradan congenital defects: The contribution of increased cannabinoid exposure to rising teratological trends. Clin. Pediatr. 58, 1085–1123 (2019).Article 

    Google Scholar 
    9.Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: Reflections on Murphy et al.’ cannabinoid exposure and altered DNA methylation in rat and human sperm’ epigenetics 2018. Epigenetics 14, 1041–1056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Reece, A. S. & Hulse, G. K. Canadian cannabis consumption and patterns of congenital anomalies: An ecological geospatial analysis. J. Addict. Med. 14, e195–e210 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Reece, A. S., Wang, W. & Hulse, G. K. Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. Med. Hypotheses 116, 10–21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Reece, A. S. & Hulse, G. K. Rapid Response to Lane. Re: Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study, 2016. BMJ Open 6, e011891–e011902 (2020).Article 

    Google Scholar 
    13.McClean, D. K. & Zimmerman, A. M. Action of delta 9-tetrahydrocannabinol on cell division and macromolecular synthesis in division-synchronized protozoa. Pharmacology 14, 307–321 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tahir, S. K. & Zimmerman, A. M. Influence of marihuana on cellular structures and biochemical activities. Pharmacol. Biochem. Behav. 40, 617–623 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Wilson, R. G. Jr., Tahir, S. K., Mechoulam, R., Zimmerman, S. & Zimmerman, A. M. Cannabinoid enantiomer action on the cytoarchitecture. Cell. Biol. Int. 20, 147–157 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Wang, J., Yuan, W. & Li, M. D. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: A review of proteomics analyses. Mol. Neurobiol. 44, 269–286 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on chromatin structure and function in human cells. Biochem. Pharmacol. 30, 45–58 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 30, 31–43 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.DiNieri, J. A. et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70, 763–769 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Szutorisz, H. et al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology 39, 1315–1323 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Szutorisz, H., Egervari, G., Sperry, J., Carter, J. M. & Hurd, Y. L. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring. Neurotoxicol. Teratol. 58, 107–114 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Szutorisz, H. & Hurd, Y. L. Epigenetic effects of cannabis exposure. Biol. Psychiatry 79, 586–594 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Watson, C. T. et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40, 2993–3005 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Murphy, S. K. et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 13, 1208–1212 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Schrott, R. et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 15, 161–173 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Vela, G. et al. Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mu opioid receptors in adult offspring female rats. Brain Res. 807, 101–109 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Fish, E. W. et al. Cannabinoids exacerbate alcohol teratogenesis by a CB1-hedgehog interaction. Sci. Rep. 9, 16057 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Callén, L. et al. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J. Biol. Chem. 287, 20851–20865 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Rozenfeld, R. et al. Receptor heteromerization expands the repertoire of cannabinoid signaling in rodent neurons. PLoS ONE 7, e29239 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Schoffelmeer, A. N., Hogenboom, F., Wardeh, G. & De Vries, T. J. Interactions between CB1 cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51, 773–781 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Rozenfeld, R. et al. AT1R-CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 30, 2350–2363 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Viñals, X. et al. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol. 13, e1002194 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Kargl, J. et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J. Biol. Chem. 287, 44234–44248 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ellis, J., Pediani, J. D., Canals, M., Milasta, S. & Milligan, G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J. Biol. Chem. 281, 38812–38824 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kearn, C. S., Blake-Palmer, K., Daniel, E., Mackie, K. & Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: A mechanism for receptor cross-talk?. Mol. Pharmacol. 67, 1697–1704 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Carriba, P. et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32, 2249–2259 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Forrester, M. B. & Merz, R. D. Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986–2002. J. Toxicol. Environ. Health 70, 7–18 (2007).CAS 
    Article 

    Google Scholar 
    38.Reece, A.S. & Hulse, G.K. Broad spectrum epidemiological contribution of cannabis and other substances to the teratological profile of Northern New South Wales: Geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21(1), 75 (2020).39.Reece, A.S. & Hulse, G.K. Cannabis in pregnancy: Rejoinder, exposition and cautionary tales. Psychiatric Times. https://www.bing.com/search?q=Cannabis+in+Pregnancy+%E2%80%93+Rejoinder%82C+Exposition+and+Cautionary+Tales&cvid=22538e20124c04711b92017489c92063214a&aqs=edge..92017469i92017457.92017439j92017480j92017481&pglt=92017443&FORM=ANSPA92017481&PC=U92017531 (2020).40.Cheng, L. et al. Testicular cancer. Nat. Rev. Dis. Primers 4, 29 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Oosterhuis, J. W. & Looijenga, L. H. J. Germ cell tumors from a developmental perspective: Cells of origin, pathogenesis, and molecular biology (emerging patterns). In Pathology and Biology of Human Germ Cell Tumors (eds Nogales, F. F. & Jimenez, R. E.) 23–129 (Springer, 2017).Chapter 

    Google Scholar 
    42.Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell. Rep. 23, 3392–3406 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Daling, J. R. et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 115, 1215–1223 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Callaghan, R. C., Allebeck, P., Akre, O., McGlynn, K. A. & Sidorchuk, A. Cannabis use and incidence of testicular cancer: A 42-year follow-up of Swedish men between 1970 and 2011. Cancer Epidemiol. Biomarkers Prev. 26, 1644–1652 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Trabert, B., Sigurdson, A. J., Sweeney, A. M., Strom, S. S. & McGlynn, K. A. Marijuana use and testicular germ cell tumors. Cancer 117, 848–853 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Lacson, J. C. et al. Population-based case-control study of recreational drug use and testis cancer risk confirms an association between marijuana use and nonseminoma risk. Cancer 118, 5374–5383 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Volkow, N. D., Compton, W. M. & Wargo, E. M. The risks of marijuana use during pregnancy. JAMA 317, 129–130 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Volkow, N. D., Han, B., Compton, W. M. & Blanco, C. Marijuana use during stages of pregnancy in the United States. Ann. Intern. Med. 166, 763–764 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Efird, J. T. et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: Cigarette smoking and other lifestyle behaviors. J. Neurooncol. 68, 57–69 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Grufferman, S., Schwartz, A. G., Ruymann, F. B. & Maurer, H. M. Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 4, 217–224 (1993).CAS 
    PubMed 

    Google Scholar 
    51.Kuijten, R. R., Bunin, G. R., Nass, C. C. & Meadows, A. T. Gestational and familial risk factors for childhood astrocytoma: Results of a case-control study. Cancer Res. 50, 2608–2612 (1990).CAS 
    PubMed 

    Google Scholar 
    52.Reece, A. S. & Hulse, G. K. A geospatiotemporal and causal inference epidemiological exploration of substance and cannabinoid exposure as drivers of rising US pediatric cancer rates. BMC Cancer 21, 197 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.McCantz-Katz, E. 2017 Annual Report Snippets, NSDUH, SAMHSA, USA DHHS: Selected streamlined trends. Vol. 1 (ed. Substance Abuse and Mental Health Services Administration US Department of Health and Human Services) 1–78 (SAMHSA, DHHS, 2018).56.McCantz-Katz, E. The National Survey of Drug Use and Health: 2019. Vol. 1 (eds. Substance Abuse and Mental Health Services Administration & US Department of Health and Human Services) 1–63 (SAMHSA, US DHHS, 2020).57.Substance Abuse and Mental Health Services Administration (SAMHSA), Department of Health and Human Services (HHS) & United States of America. National Survey on Drug Use and Health. Vol. 2018 (Department of Health and Human Services, 2018).58.United National Office of Drugs and Crime. World Drug Report 2019. Vol. 1–5 (ed. World Health Organization Office of Drugs and Crime) https://wdr.unodc.org/wdr2019/index.html (United National World Health Organization, 2019).59.Busch, F. W., Seid, D. A. & Wei, E. T. Mutagenic activity of marihuana smoke condensates. Cancer Lett. 6, 319–324 (1979).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Zimmerman, A. M. & Raj, A. Y. Influence of cannabinoids on somatic cells in vivo. Pharmacology 21, 277–287 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Tahir, S. K., Trogadis, J. E., Stevens, J. K. & Zimmerman, A. M. Cytoskeletal organization following cannabinoid treatment in undifferentiated and differentiated PC12 cells. Biochem. Cell Biol. 70, 1159–1173 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.United States Department of Health and Human Services, Centers for Disease Control and Prevention and & National Cancer Institute. National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database: NPCR and SEER Incidence: U.S. Cancer Statistics Public Use Research Database, 2019 submission (2001–2017), United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Released June 2020. www.cdc.gov/cancer/public-use. Vol. 2020 (ed. United States Department of Health and Human Services, C.f.D.C.a.P.a.N.C.I.) (United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, 2020).63.National Birth Defects Prevention Network. National Birth Defects Prevention Network. Vol. 2018 (ed. Network, N.B.D.P.) (National Birth Defects Prevention Network, 2018).64.Abeywardana, S. & Sullivan, E. A. Congenital Anomalies in Australia 2002–2003 (Australian Institute of Health and Welfare, 2008).
    Google Scholar 
    65.Bird, T. M., Hobbs, C. A., Cleves, M. A., Tilford, J. M. & Robbins, J. M. National rates of birth defects among hospitalized newborns. Birth. Defects Res. A 76, 762–769 (2006).CAS 
    Article 

    Google Scholar 
    66.Natoli, J. L., Ackerman, D. L., McDermott, S. & Edwards, J. G. Prenatal diagnosis of Down syndrome: A systematic review of termination rates (1995–2011). Prenat. Diagn. 32, 142–153 (2012).PubMed 
    Article 

    Google Scholar 
    67.Substance Abuse and Mental Health Network. Substance Abuse and Mental Health Data Archive (SAMHDA). Vol. 2019 (ed. Substance Abuse and Mental Health Services Administration) (Substance Abuse and Mental Health Services Administration, Substance Abuse and Mental Health Services Administration, 2019).68.ElSohly, M. A. et al. Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the United States. Biol. Psychiatry 79, 613–619 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Chandra, S. et al. New trends in cannabis potency in USA and Europe during the last decade (2008–2017). Eur. Arch. Psychiatry Clin. Neurosci. 269, 5–15 (2019).PubMed 
    Article 

    Google Scholar 
    70.ElSohly, M. A. et al. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J. Forensic Sci. 45, 24–30 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.VanderWeele, T. J., Ding, P. & Mathur, M. Technical considerations in the use of the e-value. J. Causal Inference 7, 1–11 (2019).Article 

    Google Scholar 
    72.Pearl, J. & Mackaenzie, D. The Book of Why (Basic Books, 2019).
    Google Scholar 
    73.Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P. & Roth, M. D. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am. J. Physiol. 284, L298-306 (2003).CAS 

    Google Scholar 
    74.Sarafian, T. A. et al. Inhaled marijuana smoke disrupts mitochondrial energetics in pulmonary epithelial cells in vivo. Am. J. Physiol. 290, L1202-1209 (2006).CAS 

    Google Scholar 
    75.Morimoto, S. et al. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J. Biol. Chem. 282, 20739–20751 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Shoyama, Y., Sugawa, C., Tanaka, H. & Morimoto, S. Cannabinoids act as necrosis-inducing factors in Cannabis sativa. Plant Signal Behav. 3, 1111–1112 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fisar, Z., Singh, N. & Hroudova, J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol. Lett. 231, 62–71 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Koller, V. J. et al. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497–C8. Toxicol. Appl. Pharmacol. 277, 164–171 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Koller, V. J. et al. Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food Chem. Toxicol. 80, 130–136 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Singh, N., Hroudova, J. & Fisar, Z. Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J. Mol. Neurosci. 56, 926–931 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 1–195 (2018).
    Google Scholar 
    82.Reece, A. S. & Hulse, G. K. Broad Spectrum epidemiological contribution of cannabis and other substances to the teratological profile of northern New South Wales: geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21, 75 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Reece, A. S. & Hulse, G. K. Cannabis consumption patterns explain the east-west gradient in Canadian Neural Tube Defect Incidence: An ecological study. Glob. Pediatr. Health 6, 2333 (2019).
    Google Scholar 
    84.Gurney, J., Shaw, C., Stanley, J., Signal, V. & Sarfati, D. Cannabis exposure and risk of testicular cancer: A systematic review and meta-analysis. BMC Cancer 15, 897 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Song, A. et al. Incident testicular cancer in relation to using marijuana and smoking tobacco: A systematic review and meta-analysis of epidemiologic studies. Urol. Oncol. 38(642), e641-642 (2020).
    Google Scholar 
    86.Torchiano M. effzise: Efficient Effect Size Computation. Vol. 2020 (CRAN, 2020). https://CRAN.R-project.org/package=effsize.87.Agence France-Presse in Paris. France to investigate cause of upper limb defects in babies. In The Guardian (The Guardian, London, 2018).88.Robinson M. Babies born with deformed hands spark investigation in Germany. Vol. 2019 (ed. Health, C.) (CNN News, 2019). https://edition.cnn.com/2019/09/16/health/hand-deformities-babies-gelsenkirchen-germany-intl-scli-grm/index.html.89.Robison, L. L. et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring: An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 63, 1904–1911 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Wen, W. Q. et al. Paternal military service and risk for childhood leukemia in offspring. Am. J. Epidemiol. 151, 231–240 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Society, A.C. Cancer Facts & Figures 2020 Vol. 2020 (American Cancer Society, 2020).
    Google Scholar 
    92.Patsenker, E. & Stickel, F. Cannabinoids in liver diseases. Clin. Liver Dis. 7, 21–25 (2016).Article 

    Google Scholar 
    93.Yang, Y. Y. et al. Effect of chronic CB1 cannabinoid receptor antagonism on livers of rats with biliary cirrhosis. Clin. Sci. 112, 533–542 (2007).CAS 
    Article 

    Google Scholar 
    94.Mukhopadhyay, B. et al. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology 61, 1615–1626 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of cannabinoids on spermatogensis in mice. In Marijuana and Medicine Vol. 1 (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).
    Google Scholar 
    96.Huang, H. F. S., Nahas, G. G. & Hembree, W. C. Effects of marijuana inhalantion on spermatogenesis of the rat. In Marijuana in Medicine Vol. 1 (eds Nahas, G. G. et al.) 359–366 (Human Press, 1999).
    Google Scholar 
    97.Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 179–188 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Szutorisz, H. & Hurd, Y. L. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85, 93–101 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Mon, M. J., Jansing, R. L., Doggett, S., Stein, J. L. & Stein, G. S. Influence of delta9-tetrahydrocannabinol on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 27, 1759–1765 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Zimmerman, A. M. & Zimmerman, S. Cytogenetic studies of cannabinoid effects. In Genetic and Perinatal Effects of Abused Substances Vol. 1 (eds Braude, M. C. & Zimmerman, A. M.) 95–112 (Academic Press Inc, 1987).
    Google Scholar 
    101.Zimmerman, A. M., Stich, H. & San, R. Nonmutagenic action of cannabinoids in vitro. Pharmacology 16, 333–343 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Zimmerman, S. & Zimmerman, A. M. Genetic effects of marijuana. Int. J. Addict. 25, 19–33 (1990).PubMed 
    Article 

    Google Scholar 
    103.Nahas, G. G., Morishima, A. & Desoize, B. Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes. Fed. Proc. 36, 1748–1752 (1977).CAS 
    PubMed 

    Google Scholar 
    104.Blevins, R. D. & Regan, J. D. delta-9-Tetrahydrocannabinol: Effect on macromolecular synthesis in human and other mammalian cells. Arch. Toxicol. 35, 127–135 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Gadadhar, S. et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 371, 4916 (2021).Article 
    CAS 

    Google Scholar 
    106.Alberts, B. et al. (eds) Molecular Biology of the Cell, 1601 (Garland Science, 2008).
    Google Scholar 
    107.Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Kloosterman, W. P. Genetics: Making heads or tails of shattered chromosomes. Science 348, 1205–1206 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    109.de Pagter, M. S. et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 96, 651–656 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    110.Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Kuznetsova, A. Y. et al. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle 14, 2810–2820 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Hatch, E. M. & Hetzer, M. W. Linking micronuclei to chromosome fragmentation. Cell 161, 1502–1504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Lusk, C. P. & King, M. C. Rotten to the core: Why micronuclei rupture. Dev. Cell 47, 265–266 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    114.Terzoudi, G. I. et al. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Mutat. Res. Genet. Toxicol. Environ. Mutagen 793, 185–198 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Norppa, H. & Falck, G. C. What do human micronuclei contain?. Mutagenesis 18, 221–233 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Knouse, K. A. & Amon, A. Cell biology: The micronucleus gets its big break. Nature 522, 162–163 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Waldron, D. Genome stability: Chromothripsis and micronucleus formation. Nat. Rev. Genet. 16, 376–377 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Fenech, M. et al. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res 786, 108342 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Beck, D., Ben Maamar, M. & Skinner, M. K. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenet. Chromatin 14, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    120.Yang, Y. & Li, G. Post-translational modifications of PRC2: signals directing its activity. Epigenet. Chromatin 13, 47 (2020).CAS 
    Article 

    Google Scholar 
    121.Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26(11), 1742–1753 (2020).122.Reece A. S. & Hulse G. K. Cannabis and pregnancy don’t mix. Mo. Med. 117(6), 530–531 (2020).123.Reece, A. S. & Hulse, G. K. Impact of lifetime opioid exposure on arterial stiffness and vascular age: Cross-sectional and longitudinal studies in men and women. BMJ Open 4, 1–19 (2014).Article 

    Google Scholar 
    124.Hill, A. B. The environment and disease: Association or causation?. Proc. R. Soc. Med. 58, 295–300 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    125.Robins, J. M., Hernán, M. Á. & Brumback, B. Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550–560 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Raad, H., Cornelius, V., Chan, S., Williamson, E. & Cro, S. An evaluation of inverse probability weighting using the propensity score for baseline covariate adjustment in smaller population randomised controlled trials with a continuous outcome. BMC Med. Res. Methodol. 20, 70 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Seaman, S. R. & White, I. R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22, 278–295 (2013).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    128.Reece, A. S. & Hulse, G. K. Effect of cannabis legalization on US autism incidence and medium term projections. Clin. Pediatr. Open Access 4, 1–17 (2019).
    Google Scholar 
    129.Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: reflections on Murphy et al. “cannabinoid exposure and altered DNA methylation in rat and human sperm” epigenetics. Epigenetics 14, 1041–1056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Reece, A. S. & Hulse, G. K. Contemporary epidemiology of rising atrial septal defect trends across USA 1991–2016: A combined ecological geospatiotemporal and causal inferential study. BMC Pediatr. 20, 539 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Reece, A. S., Norman, A. & Hulse, G. K. Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study. BMJ Open 6, e011891 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Corsi, D. J. et al. Maternal cannabis use in pregnancy and child neurodevelopmental outcomes. Nat. Med. 26, 1536–1540 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Corsi, D. J. The potential association between prenatal cannabis use and congenital anomalies. J. Addict. Med. 14, 451–453 (2020).PubMed 
    Article 

    Google Scholar 
    134.Reece, A. S. & Hulse, G. K. Epidemiological associations of various substances and multiple cannabinoids with autism in USA. Clin. Pediatr. Open Access 4, 1–20 (2019).
    Google Scholar 
    135.Brents L. Correlates and consequences of Prenatal Cannabis Exposure (PCE): Identifying and Characterizing Vulnerable Maternal Populations and Determining Outcomes in Exposed Offspring in Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis and Treatment, Vol. 1 (ed. Preedy V.R.) 160–170 (Academic Press, 2017).136.Smith, A. M., Longo, C. A., Fried, P. A., Hogan, M. J. & Cameron, I. Effects of marijuana on visuospatial working memory: An fMRI study in young adults. Psychopharmacology 210, 429–438 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    137.Smith, A. M. et al. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol. Teratol. 58, 53–59 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    138.Fine, J. D. et al. Association of prenatal cannabis exposure with psychosis proneness among children in the adolescent brain cognitive development (ABCD) study. JAMA Psychiat. 76, 762–764 (2019).Article 

    Google Scholar 
    139.Paul, S. E. et al. Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiat. 78, 1–64 (2020).
    Google Scholar 
    140.Women and Newborn Health Service, Department of Health & Government of Western Australia. Western Australian Register of Developmental Anomalies 1980–2014. Vol. 1 (ed. Western Australia Health) 28 (Western Australia Health, 2015).141.Walker, K., Herman, M. & Eberwein, K. tidycensus: Load US Census Boundary and Attribute Data as ‘tidyverse’ and ‘sf’-Ready Data Frames. Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2020).142.Wikipedia. Legality of Cannabis by U.S. Juridicition. Vol. 2020 (Wikipedia, 2020). https://en.wikipedia.org/wiki/Legality_of_cannabis_by_U.S._jurisdiction.143.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686–1691 (2019).ADS 
    Article 

    Google Scholar 
    144.Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix. Vol. 2020 Version 0.84 (CRAN, 2017). https://github.com/taiyun/corrplot.145.Wright, K. corrgram: Plot a Correlogram. In CRAN, Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2018). https://CRAN.R-project.org/package=corrgram.146.Kliber, C. & Zeileis, A. Applied Econometrics with R (Springer-Verlag, New York, 2008). https://CRAN.R-project.org/package=AER.147.Lumley, T. Complex Surveys: A Guide to Analysis Using R (Wiley, 2010).Book 

    Google Scholar 
    148.Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (Northwestern University, 2020).
    Google Scholar 
    149.Wal, W. & Geskus, R. ipw: An R package for inverse probability weighting. J. Stat. Softw. 43, 13 (2011).Article 

    Google Scholar  More

  • in

    Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico

    1.Froese, R. & Pauly, D. FishBase. Species 2000 www.catalogueoflife.org/annual-checklist/2019 (2019).2.Vanhove, M. P. M. et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 5, 13669. https://doi.org/10.1038/srep13669 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Canonico, G. C., Arthington, A., McCrary, J. K. & Thieme, M. L. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 463–483. https://doi.org/10.1002/aqc.699 (2005).Article 

    Google Scholar 
    4.Cassemiro, F. A. S., Bailly, D., Júnio da Graça, W. & Agostinho, A. A. The invasive potential of tilapias (Osteichthyes: Cichlidae) in the Americas. Hydrobiologia 817, 133–154. https://doi.org/10.1007/s10750-017-3471-1 (2018).Article 

    Google Scholar 
    5.Le-Roux, L. & Avenant-Oldewage, A. Checklist of the fish parasitic genus Cichlidogyrus (Monogenea), including its cosmopolitan distribution and host species. Afr. J. Aquat. Sci. 35, 21–36. https://doi.org/10.2989/16085914.2010.466632 (2010).Article 

    Google Scholar 
    6.Zhang, S. et al. Monogenean fauna of alien tilapias (Cichlidae) in south China. Parasite 26, 4. https://doi.org/10.1051/parasite/2019003 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.García-Vásquez, A. et al. Gyrodactylids (Gyrodactylidae, Monogenea) infecting Oreochromis niloticus niloticus (L.) and O. mossambicus (Peters) (Cichlidae): A pan-global survey. Acta Parasitol. 55, 215–229. https://doi.org/10.2478/s11686-010-0042-2 (2010).Article 

    Google Scholar 
    8.Salgado-Maldonado, G. & Rubio-Godoy, M. Helmintos parásitos de peces de agua dulce introducidos (eds. Mendoza, R. & Koleff, P.) 269–285 (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 2014).9.Jiménez-García, M. I., Vidal-Martínez, V. M. & López-Jiménez, S. Monogeneans in introduced and native cichlids in México: Evidence for transfer. J. Parasitol. 87, 907–909. https://doi.org/10.1645/0022-3395(2001)087[0907:MIIANC]2.0.CO;2 (2001).Article 
    PubMed 

    Google Scholar 
    10.Salgado-Maldonado, G., Aguilar-Aguilar, R., Cabañas-Carranza, G., Soto-Galera, E. & Mendoza-Palmero, C. Helminth parasites in freshwater fish from the Papaloapan river basin, Mexico. Parasitol. Res. 96, 69–89. https://doi.org/10.1007/s00436-005-1315-9 (2005).Article 
    PubMed 

    Google Scholar 
    11.Soler-Jiménez, L. C., Paredes-Trujillo, A. I. & Vidal-Martínez, V. M. Helminth parasites of finfish commercial aquaculture in Latin America. J. Helminthol. 91, 110–136. https://doi.org/10.1017/S0022149X16000833 (2017).Article 
    PubMed 

    Google Scholar 
    12.Mendoza-Garfias, B., García-Prieto, L. & Pérez-Ponce de León, G. Checklist of the Monogenea (Platyhelminthes) parasitic in Mexican aquatic vertebrates. Zoosystema 39, 501–598. https://doi.org/10.5252/z2017n4a5 (2017).Article 

    Google Scholar 
    13.Ek-Huchim, J. P., Jiménez-García, I., Pérez-Vega, J. A. & Rodríguez-Canul, R. Non-lethal detection of DNA from Cichlidogyrus spp. (Monogenea, Ancyrocephalinae) in gill mucus of the tilapia Oreochromis niloticus. Dis. Aquat. Org. 98, 155–162. https://doi.org/10.3354/dao02435 (2012).CAS 
    Article 

    Google Scholar 
    14.Paredes-Trujillo, A., Velázquez-Abunader, I., Torres-Irineo, E., Romero, D. & Vidal-Martínez, V. M. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasites Vectors 9, 2–16. https://doi.org/10.1186/s13071-016-1332-9 (2016).CAS 
    Article 

    Google Scholar 
    15.Grano-Maldonado, M. I., Rodríguez-Santiago, M. A., García-Vargas, F., Nieves-Soto, M. & Soares, F. An emerging infection caused by Gyrodactylus cichlidarum Paperna, 1968 (Monogenea: Gyrodactylidae) associated with massive mortality on farmed tilapia Oreochromis niloticus (L.) on the Mexican Pacific Coast. Lat. Am. J. Aquat. Res. 46, 961–968. https://doi.org/10.3856/vol46-issue5-fulltext-9 (2018).Article 

    Google Scholar 
    16.Morales-Serna, F. N., Medina-Guerrero, R. M., Pimentel-Acosta, C., Ramírez-Tirado, J. H. & Fajer-Ávila, E. J. Parasite infections in farmed Nile tilapia Oreochromis niloticus in Sinaloa, Mexico. Comp. Parasitol. 85, 212–216. https://doi.org/10.1654/1525-2647-85.2.212 (2018).Article 

    Google Scholar 
    17.Mendoza-Franco, E. F., Caspeta-Mandujano, J. M. & Tapia-Osorio, M. Ecto and endo-parasitic monogeneans (Platyhelminthes) on cultured freshwater exotic fish species in the state of Morelos, South-Central Mexico. ZooKeys 776, 1–8. https://doi.org/10.3897/zookeys.776.26149 (2018).Article 

    Google Scholar 
    18.Zahradníčková, P., Barson, M., Luus-Powell, W. L. & Přikrylová, I. Species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from Cichlids from Zambezi and Pimpopo river basins in Zimbawe and South Africa: Evidence for unexplored species richness. Syst. Parasitol. 93, 679–700. https://doi.org/10.1007/s11230-016-9652-x (2016).Article 
    PubMed 

    Google Scholar 
    19.García-Vásquez, A., Razo-Mendivil, U. & Rubio-Godoy, M. Triple trouble? Invasive poeciliid fishes carry the introduced tilapia pathogen Gyrodactylus cichlidarum in the Mexican highlands. Vet. Parasitol. 235, 37–40. https://doi.org/10.1016/j.vetpar.2017.01.014 (2017).Article 
    PubMed 

    Google Scholar 
    20.Harris, P. D., Shinn, A. P., Cable, J., Bakke, T. A. & Bron, J. GyroDb: Gyrodactylid monogeneans on the web. Trends Parasitol. 24, 109–111. https://doi.org/10.1016/j.pt.2007.12.004 (2008).Article 
    PubMed 

    Google Scholar 
    21.Shinn, A. P. et al. GyroDb World Wide Web electronic publication. http://www.gyrodb.net (2011).22.García-Vásquez, A., Hansen, H. & Shinn, A. P. A revised description of Gyrodactylus cichlidarum Paperna, 1968 (Gyrodactylidae) from the Nile tilapia, Oreochromis niloticus niloticus (Cichlidae), and its synonymy with G. niloticus Cone, Arthur et Bondad-Reantaso, 1995. Folia Parasitol. 54, 129–140. https://doi.org/10.14411/fp.2007.018 (2007).Article 

    Google Scholar 
    23.Paperna, I. Monogenetic trematodes collected from freshwater fish in Ghana. Second Rep. Bamidgeh 20, 88–90 (1968).
    Google Scholar 
    24.García-Vásquez, A., Hansen, H., Christison, K. W., Bron, J. E. & Shinn, A. P. Description of three new species of Gyrodactylus von Nordmann, 1832 (Monogenea) parasitising Oreochromis niloticus niloticus (L.) and O. mossambicus (Peters) (Cichlidae). Acta Parasitol. 56, 20–33. https://doi.org/10.2478/s11686-011-0005-2 (2011).Article 

    Google Scholar 
    25.Přikrylová, I., Matějusová, I., Musilová, N. & Gelnar, M. Gyrodactylus species (Monogenea: Gyrodactylidae) on the cichlid fishes of Senegal, with the description of Gyrodactylus ergensi n. sp. from Mango tilapia, Sarotherodon galilaeus L. (Teleostei: Cichilidae). Parasitol. Res. 106, 1–6. https://doi.org/10.1007/s00436-009-1600-0 (2009).Article 
    PubMed 

    Google Scholar 
    26.Přikrylová, I., Vanhove, M. P. M., Janssens, S. B., Billeter, P. A. & Huyse, T. Tiny worms from a mighty continent: High diversity and new phylogenetic lineages of African monogeneans. Mol. Phylogenet. Evol. 67, 43–52. https://doi.org/10.1016/j.ympev.2012.12.017 (2012).Article 
    PubMed 

    Google Scholar 
    27.Šimková, A. Transmission of parasites from introduced tilapias: a new threat to endemic Malagasy ichthyofauna. Biol. Invasions 21, 803–819. https://doi.org/10.1007/s10530-018-1859-0 (2019).Article 

    Google Scholar 
    28.Ek-Huchim, J. P., Jiménez-García, I. & Rodríguez-Canul, R. DNA detection of Gyrodactylus spp. in skin mucus of Nile tilapia Orechromis niloticus. Vet. Parasitol. 272, 75–78. https://doi.org/10.1016/j.vetpar.2019.07.004 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Rubio-Godoy, M., Paladini, G., Freeman, M. A., García-Vásquez, A. & Shinn, A. P. Morphological and molecular characterisation of Gyrodactylus salmonis (Platyhelminthes, Monogenea) isolates collected in Mexico from rainbow trout (Oncorhynchus mykiss Walbaum). Vet. Parasitol. 186, 289–300. https://doi.org/10.1016/j.vetpar.2011.11.005 (2012).Article 
    PubMed 

    Google Scholar 
    30.Garduño-Lugo, M., Granados-Alvarez, I., Olvera-Novoa, M. A. & Muñóz-Cordoba, G. Comparison of growth, fillet yield and proximate composition between Stirling Nile tilapia (wild type) (Oreochromis niloticus, Linnaeus) and red hybrid tilapia (Florida red tilapia x Stirling red O. niloticus) males. Aquac. Res. 34, 1023–1028. https://doi.org/10.1046/j.1365-2109.2003.00904.x (2003).Article 

    Google Scholar 
    31.Mendoza-Palmero, C., Blasco-Costa, I. & Pérez-Ponce de León, G. Morphological and molecular characterisation of a new species of Gyrodactylus von Nordmann, 1832 (Monogenoidea: Gyrodactylidae) of cichlid fishes (Perciformes) from Mexico. Parasitol. Int. 70, 102–111. https://doi.org/10.1016/j.parint.2019.02.009 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Rubio-Godoy, M., Paladini, G., García-Vásquez, A. & Shinn, A. P. Gyrodactylus jarocho sp. nov. and Gyrodactylus xalapensis sp. nov. (Platyhelminthes: Monogenea) from Mexican poeciliids (Teleostei: Cyprinodontiformes), with comments on the known gyrodactylid fauna infecting poeciliid fish. Zootaxa 2509, 1–29. https://doi.org/10.11646/zootaxa.2509.1.1 (2010).Article 

    Google Scholar 
    33.García-Vásquez, A., Razo-Mendivil, U. & Rubio-Godoy, M. Morphological and molecular description of eight new species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from poeciliid fishes, collected in their natural distribution range in the Gulf of Mexico slope, Mexico. Parasitol. Res. 114, 3337–3355. https://doi.org/10.1007/s00436-015-4559-z (2015).Article 
    PubMed 

    Google Scholar 
    34.Razo-Mendivil, U., García-Vásquez, A. & Rubio-Godoy, M. Spot the difference: Two cryptic species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) infecting Astyanax aeneus (Actinopterygii, Characidae) in Mexico. Parasitol. Int. 65, 389–400. https://doi.org/10.1016/j.parint.2016.05.009 (2016).Article 
    PubMed 

    Google Scholar 
    35.Rubio-Godoy, M. et al. To each his own: no evidence of gyrodactylid parasite host switches from invasive poeciliid fishes to Goodea atripinnis Jordan (Cyprinodontiformes: Goodeidae), the most dominant endemic freshwater goodeid fish in the Mexican Highlands. Parasites Vectors 9, 604. https://doi.org/10.1186/s13071-016-1861-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.García-Vásquez, A., Pinacho-Pinacho, C. D., Martínez-Ramírez, E. & Rubio-Godoy, M. Two new species of Gyrodactylus von Nordmann, 1832 from Profundulus oaxacae (Pisces: Profundulidae) from Oaxaca, Mexico, studied by morphology and molecular analyses. Parasitol. Int. 67, 517–527. https://doi.org/10.1016/j.parint.2018.03.003 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.García-Vásquez, A., Guzmán-Valdivieso, I., Razo-Mendivil, U. & Rubio-Godoy, M. Three new species of Gyrodactylus von Nordmann, 1832 described from Goodea atripinnis (Pisces: Goodeidae), an endemic freshwater fish from the central highlands of Mexico. Parasitol. Res. 117, 139–150. https://doi.org/10.1007/s00436-017-5680-y (2018).Article 
    PubMed 

    Google Scholar 
    38.García-Vásquez, A., Pinacho-Pinacho, C. P., Guzmán-Valdivieso, I., Salgado-Maldonado, G. & Rubio-Godoy, M. New species of Gyrodactylus von Nordmann, 1832 from native fish from Chiapas, Mexico, studied by morphology and molecular analyses. Acta Parasitol. 64, 551–565. https://doi.org/10.2478/s11686-019-00088-y (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Pinacho-Pinacho, C. D. et al. Species delimitation of Gyrodactylus (Monogenea: Gyrodactylidae) infecting the southernmost cyprinids (Actinopterygii: Cyprinidae) in the New World. Parasitol. Res. 120, 831–848. https://doi.org/10.1007/s00436-020-06987-8 (2021).Article 
    PubMed 

    Google Scholar 
    40.Araujo, S. B. L. et al. Understanding host-switching by ecological fitting. PLoS ONE 10, e0139225. https://doi.org/10.1371/journal.pone.0139225 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Friedman, M. et al. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc R Soc B. 280, 20131733. https://doi.org/10.1098/rspb.2013.1733 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Zambrano, L., Martínez-Meyer, E., Menezes, N. & Peterson, A. T. Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems. Can. J. Fish. Aquat. Sci. 63, 1903–1910. https://doi.org/10.1139/F06-088 (2006).Article 

    Google Scholar 
    43.Bakke, T. A., Cable, J. & Harris, P. D. The biology of gyrodactylid monogeneans: The “Russian-Doll Killers”. Adv. Parasitol. 64, 161–460. https://doi.org/10.1016/s0065-308x(06)64003-7 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Tripathi, A. The invasive potential of parasitic monogenoids (Platyhelminthes) via the aquarium fish trade: an appraisal with special reference to India. Rev. Aquacult. 6, 147–161. https://doi.org/10.1111/raq.12035 (2014).Article 

    Google Scholar 
    45.Huyse, T., Vanhove, M. P. M., Mombaerts, M., Volckaert, F. A. M. & Verreycken, H. Parasite introduction with an invasive goby in Belgium: Double trouble?. Parasitol. Res. 114, 2789–2793. https://doi.org/10.1007/s00436-015-4544-6 (2015).Article 
    PubMed 

    Google Scholar 
    46.Braga, M. P., Razzolini, E. & Boeger, W. A. Drivers of parasite sharing among Neotropical freshwater fishes. J. Anim. Ecol. 84, 487–497. https://doi.org/10.1111/1365-2656.12298 (2015).Article 
    PubMed 

    Google Scholar 
    47.Jovani, R. & Tella, J. L. Parasite prevalence and sample size: Misconceptions and solutions. Trends Parasitol. 22, 214–218. https://doi.org/10.1016/j.pt.2006.02.011 (2006).Article 
    PubMed 

    Google Scholar 
    48.Harris, P. D. & Cable, J. Gyrodactylus poeciliae n. sp. and G. milleri n. sp. (Monogenea: Gyrodactylidae) from Poecilia caucana (Steindachner) in Venezuela. Syst. Parasitol. 47, 79–85. https://doi.org/10.1023/A:1006413804061 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Bowles, J. & McManus, D. P. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RLFP method. Mol. Bioch. Parasitol. 57, 231–239. https://doi.org/10.1016/0166-6851(93)90199-8 (1993).CAS 
    Article 

    Google Scholar 
    50.Matejusová, I., Gelnar, M., McBeath, A. J. A., Collins, C. M. & Cunningham, C. O. Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). Int. J. Parasitol. 31, 738–745. https://doi.org/10.1016/S0020-7519(01)00176-X (2001).Article 
    PubMed 

    Google Scholar 
    51.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 (2006).CAS 
    Article 

    Google Scholar 
    54.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Rambaut, A. FigTree v1.3.1 Institute of Evolutionary Biology. University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ (2006).56.Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project http://qgis.osgeo.org (2019).57.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2017). More