More stories

  • in

    A thousand-genome panel retraces the global spread and adaptation of a major fungal crop pathogen

    Global genetic structure of the pathogen tracks the historical spread of wheatWe assessed the evolutionary trajectory of the pathogen in conjunction with the history of global wheat cultivation (Fig. 1a). For this, we assembled a worldwide collection of Z. tritici isolates from naturally infected fields (Fig. 1b). We selected isolates covering most wheat production areas, both in the center of origin of the crop (i.e., the Fertile Crescent in the Middle East), and in areas where wheat was introduced during the last millennia (i.e., Europe and North Africa), or last centuries (i.e., the Americas and Oceania; Fig. 1c). We called variants in a set of 1109 high-quality short-read resequencing datasets (Supplementary Data 1, 2) covering 42 countries and a broad range of climates. Using a joint genotyping approach, we produced raw variant calls mapped to the telomere-to-telomere assembled reference genome IPO323. To assess genotyping accuracy, we used eight isolates with replicate sequencing data to analyze discrepancies. We adjusted quality thresholds targeting specifically the type of genotyping errors observed in our data set (Fig. S1). The improved filtering yielded 8,406,818 high-confidence short variants (short indels and SNPs). The final variant set included 5,578,488 biallelic SNPs corresponding to 14.1% of the genome.Fig. 1: Global sampling of the wheat pathogen Zymoseptoria tritici retracing the historical spread of its host.a Schematic representation of the introduction of wheat across continents. b Septoria tritici blotch symptoms caused by Z. tritici on wheat leaves. Pictures taken by B. A. McDonald, ETH Zurich. c Map of the sampling scheme for the global collection of 1109 isolates for whole-genome sequencing.Full size imageWe tested whether global diversity patterns of pathogen populations are likely a consequence of the history of wheat cultivation. We first performed unsupervised clustering of genotypes and identified eleven well-supported clusters (Fig. 2a, Figs. S2,3). Over 90% of the genotypes were clearly assigned to a single cluster (Fig. 2a, Supplementary Data 3). Two clusters were identified among genotypes originating from the pathogen center of origin, distinguishing collections from Iran and Middle Eastern regions. Genotypes from Africa and Europe split into two distinct genetic clusters without any apparent secondary structure within clusters. This lack of any fine-scale structure is remarkable given the extensive geographic sampling of European genotypes and suggests extensive gene flow within the continent. Genotypes from Oceania grouped into three distinct clusters marked by collections from Tasmania, the Australian mainland, and New Zealand. Genotypes from North America formed two clusters along a North-South separation. Finally, South American genotypes formed two clusters split along the Andes (Chile versus Argentina and Uruguay). Some uncertainty exists in the assessment of regional population structure by low coverage of major wheat-producing countries such as Russia and Ukraine. Septoria tritici blotch is only sporadically reported in China. In complementary analyses, we found that a phylogenetic network accounting for the high frequency of recombination consistently reflected the global population structure (Fig. S4). A principal component analysis of all genotypes confirmed the nested genetic structure with differentiation at the continent level, subdivisions within some continents and the existence of admixed genotypes (Fig. 2b, Fig. S5).Fig. 2: Global genetic structure based on 1109 genomes.a Map of the genetic clustering based on a thinned genome-wide SNP dataset using sNMF. Each color represents a different genetic cluster, and the sizes of the slices represent the average attribution to the cluster across the isolates from each location. Fractions representing less than 10% of all genotypes of a location were colored in grey to improve clarity. The large pie chart outside of the map represents the proportion of isolates assigned clearly (≥75%) to a single genetic cluster (pure; in teal) and isolates identified as hybrids (admixed) between clusters (in yellow). Names of the clusters include an abbreviation of continents and a more precise geographical location (MEA: Middle East and Africa; NA: North America; SA: South America; OC: Oceania). b Principal component analysis, showing the first and second component (PCs) based on a subset of variants. Colors and shapes indicate the genomic clusters identified with the sNMF method (with hybrids in grey). The marginal distributions represent the distribution for each PC. PCs 1 to 8 are shown in Fig S4. c Population tree based on Treemix, rooted using two genomes from the sister species Z. passerinii and Z. ardabiliae. The colors are the same as in the previous panels and only samples which were fully assigned to a cluster were used. d Diversity estimated with using pi per genetic cluster. The boxplots are ordered according to the tree of panel. c. The lower and upper hinges correspond to the first and third quartiles, the whiskers to the largest value are within 1.5 times the inter-quartile range, and the central horizontal line defines the median. e Linkage disequilibrium (r2) between variants per genetic cluster. Colors are identical among panels.Full size imageWe analyzed the history of population splits and admixture using allele frequency information (Fig. 2c). The analyses largely supported a genetic structure shaped by the introduction of wheat across continents. The historical relationships between clusters show an early divergence of the Middle Eastern and North African clusters matching the early introduction of agriculture in these regions. Populations in Europe and the Americas share a similar time point of divergence consistent with extensive contributions of European genotypes to the Western hemisphere. Oceanian groups have diverged as a single branch from genotypes most closely related to extant European populations. Matching the introduction of wheat to Oceania from the European continent, the Australian and New Zealand pathogen populations share a common origin rooted in European genetic diversity. Populations from Australia show also a striking loss of diversity and higher linkage disequilibrium compared to European diversity consistent with a significant founder effect (Fig. 2d, e). Similarly, populations in South and North America have reduced genetic diversity compared to extant European populations as suggested previously based on Sanger sequencing16. The highest diversity was found in populations from Africa and the Middle East closest to the center of origin. Overall, the global genetic structure of the pathogen reveals multiple founder events associated with the introduction of wheat to new continents.Ongoing gene flow among regions should lead to admixed genotypes. We found that nearly 10% of all analyzed genotypes showed contributions from at least two clusters. The most significant recent gene flow was detected between Middle Eastern/North African clusters and European clusters in North Africa (i.e., Algeria and Tunisia) as well as Southern and Eastern Europe (i.e., France, Italy, Hungary, Ukraine, Portugal, and Spain; Supplementary Data 3). We found a particularly high incidence of recent immigration in a durum wheat population in the south of France. The population consisted only of hybrids or atypical genotypes suggesting either recent migration from North Africa or host specialization on durum wheat varieties. Additionally, we found hybrid genotypes with European ancestry in both North America and in Oceania. The relatively balanced ancestry proportions in these hybrids suggest very recent gene flow dating back to only a few generations. We further investigated past gene flow between clusters by allowing Treemix to infer migration events, thus creating a population network (Fig. S6a–d). Three distinct recent migration events were best explaining the data with specific migration routes from the Middle East/African clusters to North America, from an Australian cluster to South America and between two Oceanian clusters (Fig. S6d). However, the migration events did not affect the overall shape of the inferred population tree (Fig. 2c, Fig. S6b–d). To better understand effects of long-distance gene flow, we investigated the relationship between relatedness among genotypes (i.e., identity-by-state) and geographic distance. At the continent level, we observed a negative relationship between identity-by-state and geographic distance (Fig. S7). The wide distribution of identity-by-state values shows that although closely related isolates tend to be found at closer geographic distance, distantly related isolates can be found at both far and close geographic distances. Long-distance migration events are most likely caused by international trade similar as for other crop pathogens17,18,19. In combination, our findings show an important role of long-distance dispersal impacting the genetic make-up of populations from individual fields to continental scale genetic diversity.Relaxation of genomic defenses against transposable elements concurrent with global spreadTransposable elements (TEs) are drivers of genome evolution. In Z. tritici, TE activity created beneficial mutations for fungicide resistance and virulence on the wheat host20,21. Rapid recent adaptation of the pathogen has benefitted from the activity of TEs with consequences for genome size22. Unchecked transposition of TEs can be deleterious and an array of defenses mechanisms has evolved to counteract their activity both at the genomic and epigenetic level including targeted mutations and silencing23. To analyze the effectiveness of genomic defenses against active TEs, we screened all genomes for evidence of TE insertions. We mapped short-read sequencing data on the reference genome and a species-specific TE sequence library. We classified evidence for TEs in each of the analyzed isolates as reference TEs (i.e. also present in the reference genome) and non-reference TE (i.e. absent). Detected TEs among isolates were binned into loci (width 100 bp) to account for uncertainties about the precise mapping of the insertion point. We found that the frequency spectrum of TE insertions is heavily skewed towards low frequencies with 77% of TE insertions being found in single isolates (~0.1% frequency) and 96% of insertions were found in ten or fewer isolates ( More

  • in

    Environmental changes associated with drying climate are expected to affect functional groups of pro- and microeukaryotes differently in temporary saline waters

    Céréghino, R., Biggs, J., Oertli, B. & Declerck, S. The ecology of European ponds: Defining the characteristics of a neglected freshwater habitat. In Pond Conservation in Europe (eds Oertli, B. et al.) 1–6 (Springer Netherlands, 2007).
    Google Scholar 
    Olmo, C. et al. The environmental framework of temporary ponds: A tropical-Mediterranean comparison. CATENA 210, 105845 (2022).CAS 

    Google Scholar 
    Griffiths, R. A. Temporary ponds as amphibian habitats. Aquat. Conserv. Mar. Freshw. Ecosyst. 7, 119–126 (1997).
    Google Scholar 
    Boix, D. et al. Conservation of temporary wetlands. In Encyclopedia of the World’s Biomes 279–294 (Elsevier, 2020). https://doi.org/10.1016/B978-0-12-409548-9.12003-2.Chapter 

    Google Scholar 
    Fritz, K. A. & Whiles, M. R. Reciprocal subsidies between temporary ponds and riparian forests. Limnol. Oceanogr. 66, 3149–3161 (2021).ADS 

    Google Scholar 
    Jeffries, M. The spatial and temporal heterogeneity of macrophyte communities in thirty small, temporary ponds over a period of ten years. Ecography 31, 765–775 (2008).
    Google Scholar 
    Hassall, C. The ecology and biodiversity of urban ponds. WIREs Water 1, 187–206 (2014).
    Google Scholar 
    Lukács, B. A. et al. Macrophyte diversity of lakes in the Pannon Ecoregion (Hungary). Limnologica 53, 74–83 (2015).
    Google Scholar 
    Florencio, M., Díaz-Paniagua, C., Gómez-Rodríguez, C. & Serrano, L. Biodiversity patterns in a macroinvertebrate community of a temporary pond network. Insect Conserv. Divers. 7, 4–21 (2014).
    Google Scholar 
    Meland, S., Sun, Z., Sokolova, E., Rauch, S. & Brittain, J. E. A comparative study of macroinvertebrate biodiversity in highway stormwater ponds and natural ponds. Sci. Total Environ. 740, 140029 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hahn, M. W. The microbial diversity of inland waters. Curr. Opin. Biotechnol. 17, 256–261 (2006).CAS 
    PubMed 

    Google Scholar 
    Felföldi, T. Microbial communities of soda lakes and pans in the Carpathian Basin: A review. Biol. Futura 71, 393–404 (2020).
    Google Scholar 
    Grossart, H., Massana, R., McMahon, K. D. & Walsh, D. A. Linking metagenomics to aquatic microbial ecology and biogeochemical cycles. Limnol. Oceanogr. 65, S2–S20 (2020).CAS 

    Google Scholar 
    Marrone, F., Fontaneto, D. & Naselli-Flores, L. Cryptic diversity, niche displacement and our poor understanding of taxonomy and ecology of aquatic microorganisms. Hydrobiologia https://doi.org/10.1007/s10750-022-04904-x (2022).Article 

    Google Scholar 
    Ducklow, H. Microbial services: Challenges for microbial ecologists in a changing world. Aquat. Microb. Ecol. 53, 13–19 (2008).ADS 

    Google Scholar 
    Bodelier, P. L. E. Toward understanding, managing, and protecting microbial ecosystems. Front. Microbiol. 2, 80 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L. & Lilley, A. K. The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Trivedi, C. et al. Losses in microbial functional diversity reduce the rate of key soil processes. Soil Biol. Biochem. 135, 267–274 (2019).CAS 

    Google Scholar 
    Wellborn, G. A., Skelly, D. K. & Werner, E. E. Mechanisms creating community structure across freshwater habitat gradient. Annu. Rev. Ecol. Syst. 27, 337–363 (1996).
    Google Scholar 
    Chase, J. M. Drought mediates the importance of stochastic community assembly. Proc. Natl. Acad. Sci. 104, 17430–17434 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tweed, S., Grace, M., Leblanc, M., Cartwright, I. & Smithyman, D. The individual response of saline lakes to a severe drought. Sci. Total Environ. 409, 3919–3933 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Aguilar, P., Acosta, E., Dorador, C. & Sommaruga, R. Large differences in bacterial community composition among three nearby extreme waterbodies of the High Andean Plateau. Front. Microbiol. 7, 976 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Boros, E., Balogh, K., Vörös, L. & Horváth, Z. Multiple extreme environmental conditions of intermittent soda pans in the Carpathian Basin (Central Europe). Limnologica 62, 38–46 (2017).CAS 
    PubMed 

    Google Scholar 
    Lengyel, E., Pálmai, T., Padisák, J. & Stenger-Kovács, C. Annual hydrological cycle of environmental variables in astatic soda pans (Hungary). J. Hydrol. 575, 1188–1199 (2019).ADS 
    CAS 

    Google Scholar 
    Vieira-Silva, S. & Rocha, E. P. C. The Systemic imprint of growth and its uses in ecological (Meta)genomics. PLoS Genet. 6, e1000808 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Cunillera-Montcusí, D. et al. Freshwater salinisation: A research agenda for a saltier world. Trends Ecol. Evol. 37, 440–453 (2022).PubMed 

    Google Scholar 
    Šolić, M. et al. Structure of microbial communities in phosphorus-limited estuaries along the eastern Adriatic coast. J. Mar. Biol. Assoc. U.K. 95, 1565–1578 (2015).
    Google Scholar 
    Traving, S. J. et al. The Effect of increased loads of dissolved organic matter on estuarine microbial community composition and function. Front. Microbiol. 8, 351 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, G. et al. Salinity controls soil microbial community structure and function in coastal estuarine wetlands. Environ. Microbiol. 23, 1020–1037 (2021).CAS 
    PubMed 

    Google Scholar 
    Tkavc, R. et al. Bacterial communities in the ‘petola’ microbial mat from the Sečovlje salterns (Slovenia): Bacterial communities in the ‘petola’. FEMS Microbiol. Ecol. 75, 48–62 (2011).CAS 
    PubMed 

    Google Scholar 
    Ali, I. et al. Comparative study of physical factors and microbial diversity of four man-made extreme ecosystems. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 86, 767–778 (2016).
    Google Scholar 
    Paul, V., Banerjee, Y., Ghosh, P. & Busi, S. B. Depthwise microbiome and isotopic profiling of a moderately saline microbial mat in a solar saltern. Sci. Rep. 10, 20686 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenger-Kovács, C. et al. Vanishing world: Alkaline, saline lakes in Central Europe and their diatom assemblages. Inland Waters 4, 383–396 (2014).
    Google Scholar 
    Stenger-Kovács, C., Hajnal, É., Lengyel, E., Buczkó, K. & Padisák, J. A test of traditional diversity measures and taxonomic distinctness indices on benthic diatoms of soda pans in the Carpathian basin. Ecol. Indic. 64, 1–8 (2016).
    Google Scholar 
    Szabó, B., Lengyel, E., Padisák, J., Vass, M. & Stenger-Kovács, C. Structuring forces and β-diversity of benthic diatom metacommunities in soda pans of the Carpathian Basin. Eur. J. Phycol. 53, 219–229 (2018).
    Google Scholar 
    Szabó, A. et al. Soda pans of the Pannonian steppe harbor unique bacterial communities adapted to multiple extreme conditions. Extremophiles 21, 639–649 (2017).PubMed 

    Google Scholar 
    Szabó, A. et al. Grazing pressure-induced shift in planktonic bacterial communities with the dominance of acIII-A1 actinobacterial lineage in soda pans. Sci. Rep. 10, 19871 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).PubMed 

    Google Scholar 
    Horváth, Z. et al. Opposing patterns of zooplankton diversity and functioning along a natural stress gradient: When the going gets tough, the tough get going. Oikos 123, 461–471 (2014).
    Google Scholar 
    Mo, Y. et al. Low shifts in salinity determined assembly processes and network stability of microeukaryotic plankton communities in a subtropical urban reservoir. Microbiome 9, 128 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pekel, J.-F., Cottam, A., Gorelick, N. & Belward, A. S. High-resolution mapping of global surface water and its long-term changes. Nature 540, 418–422 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gómez-Rodríguez, C., Bustamante, J. & Díaz-Paniagua, C. Evidence of hydroperiod shortening in a preserved system of temporary ponds. Remote Sens. 2, 1439–1462 (2010).ADS 

    Google Scholar 
    Finger Higgens, R. A. et al. Changing lake dynamics indicate a drier arctic in western greenland. J. Geophys. Res. Biogeosciences 124, 870–883 (2019).ADS 

    Google Scholar 
    Zacharias, I. & Zamparas, M. Mediterranean temporary ponds. A disappearing ecosystem. Biodivers. Conserv. 19, 3827–3834 (2010).
    Google Scholar 
    Horváth, Z., Ptacnik, R., Vad, C. F. & Chase, J. M. Habitat loss over six decades accelerates regional and local biodiversity loss via changing landscape connectance. Ecol. Lett. 22, 1019–1027 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Grillas, P., Rhazi, L., Lefebvre, G., El Madihi, M. & Poulin, B. Foreseen impact of climate change on temporary ponds located along a latitudinal gradient in Morocco. Inland Waters 11, 492–507 (2021).CAS 

    Google Scholar 
    Xi, Y., Peng, S., Ciais, P. & Chen, Y. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Change 11, 45–51 (2021).ADS 

    Google Scholar 
    Zhong, Y. et al. Shrinking habitats and native species loss under climate change: a multifactorial risk Assessment of China’s inland wetlands. 28 (2022).Atkinson, S. T. et al. Substantial long-term loss of alpha and gamma diversity of lake invertebrates in a landscape exposed to a drying climate. Glob. Change Biol. 27, 6263–6279 (2021).CAS 

    Google Scholar 
    Whiting, G. J. & Chanton, J. P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration: Greenhouse carbon balance of wetlands. Tellus B 53, 521–528 (2001).ADS 

    Google Scholar 
    Mitsch, W. J. et al. Wetlands, carbon, and climate change. Landsc. Ecol. 28, 583–597 (2013).
    Google Scholar 
    Ardón, M., Helton, A. M. & Bernhardt, E. S. Salinity effects on greenhouse gas emissions from wetland soils are contingent upon hydrologic setting: A microcosm experiment. Biogeochemistry 140, 217–232 (2018).
    Google Scholar 
    Jeppesen, E., Beklioğlu, M., Özkan, K. & Akyürek, Z. Salinization increase due to climate change will have substantial negative effects on inland waters: A call for multifaceted research at the local and global scale. Innovation 1, 100030 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Boros, E., Horváth, Z., Wolfram, G. & Vörös, L. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Ann. Limnol. Int. J. Limnol. 50, 59–69 (2014).
    Google Scholar 
    Sorokin, D. Y. et al. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18, 791–809 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horváth, Z., Vad, C. F., Vörös, L. & Boros, E. The keystone role of anostracans and copepods in European soda pans during the spring migration of waterbirds: The keystone trophic role of crustaceans in European soda pans. Freshw. Biol. 58, 430–440 (2013).
    Google Scholar 
    Stenger-Kovács, C. & Lengyel, E. Taxonomical and distribution guide of diatoms in soda pans of Central Europe. Stud. Bot. Hung. 46, 3–203 (2015).
    Google Scholar 
    Szabó, B. et al. Microbial stowaways: Waterbirds as dispersal vectors of aquatic pro- and microeukaryotic communities. J. Biogeogr. 49, 1286–1298 (2022).
    Google Scholar 
    Williams, D. D. The Ecology of Temporary Waters (Springer Netherlands, 1987).
    Google Scholar 
    Hammer, U. T. The effects of climate change on the salinity, water levels and biota of Canadian prairie saline lakes. SIL Proc. 1922–2010(24), 321–326 (1990).
    Google Scholar 
    Schallenberg, M., Hall, C. & Burns, C. Consequences of climate-induced salinity increases on zooplankton abundance and diversity in coastal lakes. Mar. Ecol. Prog. Ser. 251, 181–189 (2003).ADS 

    Google Scholar 
    Felföldi, T., Somogyi, B., Márialigeti, K. & Vörös, L. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J. Limnol. 68, 385 (2009).
    Google Scholar 
    Somogyi, B. et al. Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquat. Ecol. 43, 735–744 (2009).CAS 

    Google Scholar 
    Pálffy, K. et al. Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan. Extremophiles 18, 111–119 (2014).PubMed 

    Google Scholar 
    Padisák, J. & Naselli-Flores, L. Phytoplankton in extreme environments: Importance and consequences of habitat permanency. Hydrobiologia 848, 157–176 (2021).
    Google Scholar 
    Olli, K., Ptacnik, R., Klais, R. & Tamminen, T. Phytoplankton species richness along coastal and estuarine salinity continua. Am. Nat. 194, E41–E51 (2019).PubMed 

    Google Scholar 
    Olli, K., Tamminen, T. & Ptacnik, R. Predictable shifts in diversity and ecosystem function in phytoplankton communities along coastal salinity continua. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10242 (2022).Article 

    Google Scholar 
    Tikhonenkov, D. V., Burkovsky, I. V. & Mazei, Y. A. Is there a relation between the distribution of heterotrophic flagellates and the zonation of a marine intertidal flat?. Oceanology 55, 13 (2015).
    Google Scholar 
    Arndt, H. et al. Functional diversity of heterotrophic flagellates in aquatic ecosystems. In Flagellates 252–280 (CRC Press, 2000). https://doi.org/10.1201/9781482268225-18.Chapter 

    Google Scholar 
    JeLee, W. & Patterson, D. J. Diversity and geographic distribution of free-living heterotrophic flagellates—Analysis by PRIMER. Protist 149, 229–244 (1998).CAS 

    Google Scholar 
    Azovsky, A. I., Tikhonenkov, D. V. & Mazei, Y. A. An estimation of the global diversity and distribution of the smallest eukaryotes: Biogeography of marine benthic heterotrophic flagellates. Protist 167, 411–424 (2016).PubMed 

    Google Scholar 
    Tikhonenkov, D. V., Mazei, Y. A. & Mylnikov, A. P. Species diversity of heterotrophic flagellates in White Sea littoral sites. Eur. J. Protistol. 42, 191–200 (2006).PubMed 

    Google Scholar 
    Van der Gucht, K. et al. The power of species sorting: Local factors drive bacterial community composition over a wide range of spatial scales. Proc. Natl. Acad. Sci. 104, 20404–20409 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Vanschoenwinkel, B. et al. Species sorting in space and time—The impact of disturbance regime on community assembly in a temporary pool metacommunity. J. North Am. Benthol. Soc. 29, 1267–1278 (2010).
    Google Scholar 
    Datry, T. et al. Metacommunity patterns across three neotropical catchments with varying environmental harshness. Freshw. Biol. 61, 277–292 (2016).
    Google Scholar 
    Hansen, H. P. & Koroleff, F. Determination of nutrients. In Methods of Seawater Analysis (eds Grasshoff, K. et al.) 159–228 (Wiley-VCH Verlag GmbH, 1999).
    Google Scholar 
    Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard methods for examination of water and wastewater. 20th ed. http://ipkosar.ir/jspui/handle/961944/280820 (1999).Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples: Primers for marine microbiome studies. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Ray, J. L. et al. Metabarcoding and metabolome analyses of copepod grazing reveal feeding preference and linkage to metabolite classes in dynamic microbial plankton communities. Mol. Ecol. 25, 5585–5602 (2016).CAS 
    PubMed 

    Google Scholar 
    Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PLoS One 9, e87624 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence sata on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kunin, V., Engelbrektson, A., Ochman, H. & Hugenholtz, P. Wrinkles in the rare biosphere: Pyrosequencing errors can lead to artificial inflation of diversity estimates. Environ. Microbiol. 12, 118–123 (2010).CAS 
    PubMed 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Rohwer, R. R., Hamilton, J. J., Newton, R. J. & McMahon, K. D. TaxAss: Leveraging a custom freshwater database achieves fine-scale taxonomic resolution. mSphere 3, e00327-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): A catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7. https://CRAN.R-project.org/package=vegan (2020).Martinez Arbizu, P. pairwiseAdonis: Pairwise multilevel comparison using Adonis. Pairwise Adonis R package version 0.4. R package. https://cran.r-project.org/web/packages/pairwise/index.html (2017).Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. ggpubr R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr (2020).Burian, A. et al. Predation increases multiple components of microbial diversity in activated sludge communities. ISME J. 16, 1086–1094 (2022).CAS 
    PubMed 

    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology, picante R package version 1.8.2. Bioinformatics 26, 1463–1464. https://cran.r-project.org/web/packages/picante/index.html (2010).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. 4th ed. MASS R package version 7.3-54 (Springer, 2002). https://cran.r-project.org/web/packages/MASS/index.html. ISBN 0-387-95457-0.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. mgcv R package version 1.8-38. J. R. Stat. Soc. B 73(1), 3–36. https://cran.r-project.org/web/packages/mgcv/index.html (2011).Gu, Z. Complex heatmap visualization. iMeta 1 (2022).R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2022). https://www.R-project.org/. More

  • in

    Decadal decline in maternal body condition of a Southern Ocean capital breeder

    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. IPCC Special Report on the Ocean Cryosphere in a Changing Climate 477–587 (2019).Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).Article 
    ADS 

    Google Scholar 
    Lowther, A. D., Staniland, I., Lydersen, C. & Kovacs, K. M. Male Antarctic fur seals: Neglected food competitors of bioindicator species in the context of an increasing Antarctic krill fishery. Sci. Rep. 10, 1–12 (2020).Article 

    Google Scholar 
    Barbosa, A., Benzal, J., de León, A. & Moreno, J. Population decline of chinstrap penguins (Pygoscelis antarctica) on Deception Island, South Shetlands, Antarctica. Polar Biol. 35, 1453–1457 (2012).Article 

    Google Scholar 
    Forcada, J., Trathan, P. N., Reid, K. & Murphy, E. J. The effects of global climate variability in pop production of Antarctic fur seals. Ecology 86, 2408–2417 (2005).Article 

    Google Scholar 
    Forcada, J. & Trathan, P. N. Penguin responses to climate change in the Southern Ocean. Glob. Change Biol. https://doi.org/10.1111/j.1365-2486.2009.01909.x (2009).Article 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 
    ADS 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).Article 
    ADS 

    Google Scholar 
    Gosler, A. G. Environmental and social determinants of winter fat storage in the great tit Parus major. J. Anim. Ecol. 65, 1–17 (1996).Article 

    Google Scholar 
    Green, A. J. Mass/Length residuals: Measures of body condition or generators of spurious results?. Ecology 13, 1473–1483 (2001).Article 

    Google Scholar 
    Schulte-Hostedde, A. I., Zinner, B., Millar, J. S. & Hickling, G. J. Restitution of mass-size residuals: Validating body condition indices. Ecology 86, 155–163 (2005).Article 

    Google Scholar 
    Arnbom, T., Fedak, M. A. & Boyd, I. L. Factors affecting maternal expenditure in southern elephant seals during lactation. Ecology 78, 471–483 (1997).Article 

    Google Scholar 
    Boltnev, A. I. & York, A. E. Maternal investment in northern fur seals (Callorhinus ursinus): Interrelationships among mothers’ age, size, parturition date, offspring size and sex ratios. J. Zool. 254, 219–228 (2001).Article 

    Google Scholar 
    Tollefson, T. N., Shipley, L. A., Myers, W. L., Keisler, D. H. & Dasgupta, N. Influence of summer and autumn nutrition on body condition and reproduction in lactating mule deer. J. Wildl. Manag. 74, 974–986 (2010).Article 

    Google Scholar 
    Wheatley, K. E., Bradshaw, C. J. A., Davis, L. S., Harcourt, R. G. & Hindell, M. A. Influence of maternal mass and condition on energy transfer in Weddell seals. J. Anim. Ecol. 75, 724–733 (2006).Article 
    PubMed 

    Google Scholar 
    Miller, C. A. et al. Blubber thickness in right whales Eubalaena glacialis and Eubalaena australis related with reproduction, life history status and prey abundance. Mar. Ecol. Prog. Ser. 438, 267–283 (2011).Article 
    ADS 

    Google Scholar 
    Christiansen, F., Víkingsson, G. A., Rasmussen, M. H. & Lusseau, D. Female body condition affects foetal growth in a capital breeding mysticete. Funct. Ecol. 28, 579–588 (2014).Article 

    Google Scholar 
    Christiansen, F. et al. Maternal body size and condition determine calf growth rates in southern right whales. Mar. Ecol. Prog. Ser. 592, 267–282 (2018).Article 
    ADS 

    Google Scholar 
    Norris, K. S. Some observations on the migration and orientation of marine mammals. Anim. Orientat. Migr. 101, 125 (1967).
    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?. Mar. Mammal Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    Frazer, J. F. D. & Huggett, A. S. G. Specific foetal growth rates of cetaceans. J. Zool. 169, 111–126 (1973).Article 

    Google Scholar 
    Stearns, S. C. Trade-offs in life-history evolution. Funct. Ecol. 3, 259–268 (1989).Article 

    Google Scholar 
    Castrillon, J. & Bengtson Nash, S. Evaluating cetacean body condition; A review of traditional approaches and new developments. Ecol. Evol. 10, 6144–6162 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leaper, R. et al. Global climate drives southern right whale (Eubalaena australis) population dynamics. Biol. Lett. 2, 289–292 (2006).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockyer, C. All creatures great and smaller: A study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).Article 

    Google Scholar 
    Seyboth, E. et al. Southern right whale (Eubalaena australis) reproductive success is influenced by Krill (Euphausia superba) density and climate. Sci. Rep. 6, 28205 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, R. et al. Evidence for density-dependent changes in body condition and pregnancy rate of North Atlantic fin whales over four decades of varying environmental conditions. ICES J. Mar. Sci. 70, 1273–1280 (2013).Article 

    Google Scholar 
    Best, P. B. Trends in the inshore right whale population off South Africa, 1969–1987. Mar. Mammal Sci. 6, 93–108 (1990).Article 

    Google Scholar 
    Best, P. B. Seasonality of reproduction and the length of gestation in southern right whales Eubalaena australis. J. Zool. 232, 175–189 (1994).Article 

    Google Scholar 
    Best, P. B., Brandão, A. & Butterworth, D. S. Demographic parameters of southern right whales off South Africa. J. Cetacean Res. Manag. https://doi.org/10.47536/jcrm.vi.296 (2001).Article 

    Google Scholar 
    Vermeulen, E., Wilkinson, C. & Thornton, M. Report of the 2018 South African Southern Right. Paper SC/68A/SH/01 Presented to IWC Scientific Committee, 2019 (unpublished). 25 pp. (Available from Off. this Journal) (2019).Knowlton, A. R., Kraus, S. D. & Kenney, R. D. Reproduction in North Atlantic right whales (Eubalaena glacialis). Can. J. Zool. 72, 1297–1305 (1994).Article 

    Google Scholar 
    van den Berg, G. L. et al. Decadal shift in foraging strategy of a migratory Southern Ocean predator. Glob. Change Biol. https://doi.org/10.1111/gcb.15465 (2021).Article 

    Google Scholar 
    Carroll, E. L. et al. First Direct evidence for natal wintering ground fidelity and estimate of Juvenile Survival in the New Zealand southern right whale Eubalaena australis. PLoS ONE 11, e0146590 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Best, P. B. & Ruther, H. Aerial photogrammetry of southern right whales, Eubalaena australis. J. Zool. 228, 595–614 (1992).Article 

    Google Scholar 
    Mate, B., Best, P., Lagerquist, B. A. & Winsor, M. H. Coastal, offshore, and migratory movements of South African right whales revealed by satellite telemetry. Mar. Mammal Sci. 27, 455–476 (2011).Article 

    Google Scholar 
    Christiansen, F., Dujon, A. M., Sprogis, K. R., Arnould, J. P. Y. & Bejder, L. Non-invasive unmanned aerial vehicle provides estimates of the energetic cost of reproduction in humpback whales. Ecosphere 7, 1–7 (2016).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (2020).Lockyer, C. Growth and energy budgets of large baleen whales from the Southern Hemisphere. Mamm. Seas, vol. 3, (FAO Fisheries Series No. 5) 379–487 (1981).Christiansen, F. et al. Estimating body mass of free-living whales using aerial photogrammetry and 3D volumetrics. Methods Ecol. Evol. 10, 2034–2044 (2019).Article 

    Google Scholar 
    Christiansen, F. et al. Population comparison of right whale body condition reveals poor state of the North Atlantic right whale. Mar. Ecol. Prog. Ser. 640, 1–16 (2020).Article 
    ADS 

    Google Scholar 
    Braithwaite, J. E., Meeuwig, J. J., Letessier, T. B., Jenner, K. C. S. & Brierley, A. S. From sea ice to blubber: Linking whale condition to krill abundance using historical whaling records. Polar Biol. 38, 1195–1202 (2015).Article 

    Google Scholar 
    Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the antarctic peninsula pelagic marine ecosystem. Antarct. Sci. 21, 135–148 (2009).Article 
    ADS 

    Google Scholar 
    Reid, K. & Croxall, J. P. Environmental response of upper trophic-level predators reveals a system change in an Antarctic marine ecosystem. Proc. R. Soc. B Biol. Sci. 268, 377–384 (2001).Article 
    CAS 

    Google Scholar 
    Trathan, P. N., Forcada, J. & Murphy, E. J. Environmental forcing and Southern Ocean marine predator populations: Effects of climate change and variability. Philos. Trans. R. Soc. Biol. Sci. https://doi.org/10.1098/rstb.2006.1953 (2007).Article 

    Google Scholar 
    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the Southern Oceans. J. Mar. Syst. 78, 363–376 (2009).Article 

    Google Scholar 
    Crocker, D. E., Costa, D. P., Le Boeuf, B. J., Webb, P. M. & Houser, D. S. Impact of El Niño on the foraging behavior of female northern elephant seals. Mar. Ecol. Prog. Ser. 309, 1–10 (2006).Article 
    ADS 

    Google Scholar 
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19 (2012).Article 
    ADS 

    Google Scholar 
    Forcada, J. et al. Responses of Antarctic pack-ice seals to environmental change and increasing krill fishing. Biol. Conserv. 149, 40–50 (2012).Article 

    Google Scholar 
    Garcia-Rojas, M. I. et al. Environmental evidence for a pygmy blue whale aggregation area in the Subtropical Convergence Zone south of Australia. Mar. Mammal Sci. 34, 901–923 (2018).Article 

    Google Scholar 
    Tormosov, D. et al. Soviet catches of southern right whales Eubalaena australis, 1951–1971: Biological data and conservation implications. Biol. Conserv. 86, 185–197 (1998).Article 

    Google Scholar 
    Trathan, P. N. et al. Foraging dynamics of macaroni penguins Eudyptes chrysolophus at South Georgia during brood-guard. Mar. Ecol. Prog. Ser. 323, 239–251 (2006).Article 
    ADS 

    Google Scholar 
    Murphy, E. J. et al. Climatically driven fluctuations in Southern Ocean ecosystems. Proc. R. Soc. B Biol. Sci. 274, 3057–3067 (2007).Article 

    Google Scholar 
    Nicol, S. Krill, currents, and sea ice: Euphausia superba and its changing environment. Bioscience 56, 111–120 (2006).Article 

    Google Scholar 
    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Atkinson, A. et al. South Georgia, Antarctica: A productive, cold water, pelagic ecosystem. Mar. Ecol. Prog. Ser. 216, 279–308 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Atkinson, A., Ward, P., Hill, A., Brierley, A. S. & Cripps, G. C. Krill-copepod interactions at South Georgia, Antarctica, II. Euphausia superba as a major control on copepod abundance. Mar. Ecol. Prog. Ser. 176, 63–79 (1999).Article 
    ADS 

    Google Scholar 
    DeLorenzo Costa, A., Durbin, E. G. & Mayo, C. A. Variability in the nutritional value of the major copepods in Cape Cod Bay (Massachusetts, USA) with implications for right whales. Mar. Ecol. 27, 109–123 (2006).Article 
    ADS 

    Google Scholar 
    Linder, M., Belhaj, N., Sautot, P. & Tehrany, E. A. From krill to whale: An overview of marine fatty acids and lipid compositions. Oleagineux Corps Gras Lipides: OCL 17, 194–204 (2010).Article 

    Google Scholar 
    McKinstry, C. A. E., Westgate, A. J. & Koopman, H. N. Annual variation in the nutritional value of stage V Calanus finmarchicus: Implications for right whales and other copepod predators. Endanger. Species Res. 20, 195–204 (2013).Article 

    Google Scholar 
    Maron, C. F. et al. Fatty acids and stable isotopes (13C, 15N) in southern right whale Eubalaena australis calves in relation toage and mortality at Peninsula Valdes, Argentina. Mar. Ecol. Prog. Ser. 646, 189–200 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Thomas, V. G. Control of reproduction in animal species with high and low body fat reserves. Prog. Reprod. Biol. Med. 14, 27–41 (1990).
    Google Scholar 
    Ford, J. K. B., Ellis, G. M., Olesiuk, P. F. & Balcomb, K. C. Linking killer whale survival and prey abundance: Food limitation in the oceans’ apex predator?. Biol. Lett. 6, 139–142 (2010).Article 
    PubMed 

    Google Scholar 
    Greene, C. H., Pershing, A. J., Kenney, R. D. & Jossi, J. W. Impact of climate variability on the recovery of endangered North Atlantic right whales. Oceanography 16, 98–103 (2003).Article 

    Google Scholar 
    Vermeulen, E., Wilkinson, C. & Van Den Berg, G. Report of the Southern Right Whale Aerial Surveys—2019. Paper SC/68B/SH/02 Presented to IWC Scientific Committee, 2020 (unpublished). 25 pp. (Available from Off. this Journal) (2020).Douhard, F., Gaillard, J. M., Pellerin, M., Jacob, L. & Lemaître, J. F. The cost of growing large: Costs of post-weaning growth on body mass senescence in a wild mammal. Oikos 126, 1329–1338 (2017).Article 

    Google Scholar 
    Sigurjónsson, J., Halldórsson, S. D. & Konráðsson, A. New Information on Age and Reproduction in Minke Whales (Balaenoptera acutorostrata) in Icelandic Waters. Page Doc. SC/42/NHMi27 Scientific Communication International Whaling Commission. Noordwijkerhout, Netherlands (1990).Charlton, C. et al. Demographic Parameters of Southern Right Whales (Eubalaena australis) off Australia. Paper SC/67B/INFO/22 Presented to IWC Scientific Committee, 2018 (Unpublished). 28 pp. (Available from Off. This Journal) (2018).Marón, C. F. et al. Increased wounding of southern right Whale (Eubalaena australis) calves by Kelp Gulls (Larus dominicanus) at Península Valdés, Argentina. PLoS ONE 10, 1–20 (2015).
    Google Scholar 
    Rowntree, V. J. et al. Unexplained recurring high mortality of southern right whale Eubalaena australis calves at Península Valdés, Argentina. Mar. Ecol. Prog. Ser. 493, 275–289 (2013).Article 
    ADS 

    Google Scholar 
    Brandão, A., Vermeulen, E., Ross-gillespie, A., Findlay, K. & Butterworth, D. S. Updated Application of a Photo-Identification Based Assessment Model to Southern Right Whales in South African Waters , Focussing on Inferences to be Drawn from a Series of Appreciably Lower Counts of Calving Females Over 2015 to 2017. Paper SC/67B/SH2 Presented to IWC Scientific Committee, 2018 (unpublished). 18 pp. (Available from Off. this Journal) (2018).Crespo, E. A. et al. The southwestern Atlantic southern right whale, Eubalaena australis, population is growing but at a decelerated rate. Mar. Mammal Sci. 35, 93–107 (2019).Article 

    Google Scholar 
    Agrelo, M. et al. Ocean warming threatens southern right whale population recovery. Sci. Adv. 7, eabh2823 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science (80-) 297, 1292–1296 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Nicol, S., Worby, A. & Leaper, R. Changes in the Antarctic sea ice ecosystem: Potential effects on krill and baleen whales. Mar. Freshw. Res. 59, 361–382 (2008).Article 

    Google Scholar 
    Meredith, M. P. & King, J. C. Rapid climate change in the ocean west of the Antarctic Peninsula during the second half of the 20th century. Geophys. Res. Lett. 32, 1–5 (2005).Article 

    Google Scholar 
    Croxall, J., Reid, K. & Prince, P. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar. Ecol. Prog. Ser. 177, 115–131 (1999).Article 
    ADS 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science (80-) 328, 1523–1528 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    González Carman, V., Piola, A., O’Brien, T. D., Tormosov, D. D. & Acha, E. M. Circumpolar frontal systems as potential feeding grounds of Southern Right whales. Prog. Oceanogr. 176, 102123 (2019).Article 

    Google Scholar  More

  • in

    Genetic diversity of virus auxiliary metabolism genes associated with phosphorus metabolism in Napahai plateau wetland

    Screening for viral AMGsViral protein annotation using VIBRANT and DRAM-v software combined with manual proofreading identified the viral AMGs in Napahai plateau wetland, including the viral AMGs phoH, phoU and pstS, which were associated with phosphorus metabolism.Phylogenetic analysis of AMGs associated with phosphorus metabolism in Napahai plateau wetlandThere were 24 amino acid sequences of phoH gene in Napahai plateau wetland (Fig. 1A). They were divided into 5 clusters, the largest of which had 10 sequences, while the smallest cluster had only 1 sequence. The remaining 3 clusters contained 6, 5 and 2 sequences, respectively. The phoH gene was genetically diverse in Napahai plateau wetland, which might be related to the different host origins. A total of 74 sequences of phoU gene could be found in seven clusters (Fig. 1B), with the largest cluster containing 27 sequences and the smallest cluster having two sequences. Similar to phoH, phoU was also genetically diverse, but richer than that of phoH. There were 71 pstS sequences forming 9 clusters, with the largest cluster of 23 sequences and the smallest cluster only 1 sequence (Fig. 1C). It could be seen that the genetic diversity of pstS was better than that of phoH and phoU, which might be related to the unique geographical location. Napahai plateau wetland is located in the Three Parallel Rivers of Yunnan protected areas, which forms a complex landscape, and then controls the evolution and characteristics of organisms, thus showing abundant biodiversity. Li et al. obtained 58 phoH gene sequences from Northeastern wetland sediments of China, which were 22%–99% consistent at the amino acid level, and found that the phoH gene could regulate phosphate uptake and metabolism under the low phosphate or phosphate limitation conditions16. However, the exact function remained unclear. The phoH gene clustered into five clusters in Napahai plateau wetland, indicating high genetic diversity. Additionally, water and soil samples were collected from eight separate sampling sites, and there were differences between samples environments, which might also have an impact on the genetic diversity of the three genes.Figure 1Phylogenetic analysis of phosphorus metabolism AMGs in Napahai plateau wetland, different colors represent different branches. (A) Phylogenetic analysis of phoH genes. (B) Phylogenetic analysis of phoU genes. (C) Phylogenetic analysis of pstS genes.Full size imagePhylogenetic analysis and PCoA analysis of AMGs associated with phosphorus metabolism from different habitats and host originsIn order to understand the genetic diversity of viral AMGs (phoH, phoU, pstS) associated with phosphorus metabolism in Napahai plateau wetland, a phylogenetic tree of phosphorus metabolism AMGs from different habitats was constructed, and PCoA analysis was performed (Fig. 2). The results showed that most sequences of phoH, phoU and pstS genes in Napahai plateau wetland clustered individually, especially phoU and pstS genes, and only a few sequences were closely related to those of other habitats. In Fig. 2A, 14 sequences clustered individually and were relatively far from sequences of other habitats, whereas 7 sequences were close to those from freshwater lakes, and other 3 sequences were close to those from rice fields, oceans and other wetlands, respectively. Therefore, the genetic diversity of phoH in Napahai plateau wetland was independent of the habitat. Moreover, some of the phoH sequences were clustered with those of other habitats and distributed in the fourth quadrants (Fig. 2D). From Fig. 2B, apart from 3 sequences which clustered with those from the marine habitats and freshwater lakes, the rest were clustered separately. Whereas in Fig. 2E, apart from only a few sequences, most sequences of phoU were far away from those of different habitats, which was consistent with Fig. 2B. Thus, the genetic diversity of phoU gene in Napahai wetland was also independent of habitat, where the separately clustered sequences may be unique. From Fig. 2C, we can seen that apart from 8 sequences which more closely related to those from the freshwater lake, ocean, rice field, and other wetlands, all the rest were individually clustered. The result was consistent with that of Fig. 2F. Therefore, the genetic diversity of the pstS gene was also habitat-independent.Figure 2Phylogenetic analysis and PCoA of phosphorus metabolism AMGs in different habitats, different colors represent different habitats. (A) Phylogenetic analysis of phoH genes in different habitats. (B) Phylogenetic analysis of phoU genes in different habitats. (C) Phylogenetic analysis of pstS genes in different habitats. (D) PCoA analysis of phoH genes in different habitats. (E) PCoA analysis of phoU genes in different habitats. (F) PCoA analysis of pstS genes in different habitats.Full size imageTo study whether the genetic diversity was related to host origins, three AMGs associated with phosphorus metabolism were selected for phylogenetic and PCoA analyses with AMGs sequences from different host origins (Fig. 3). It showed that some sequences of all three genes were similar to those from different host origins, while the remaining were separately clustered. In Fig. 3A, apart from 14 sequences which clustered with those from fungi, bacteria, non-culturable phages, phages and viruses, all the rest were clustered separately. Whereas, most sequences were clustered with those from different host origins together, and only six sequences were far from other sequences of different host origins based on PCoA analysis (Fig. 3D). Only three sequences were clustered with those of archaea and uncultured archaea, and the rest were clustered together to form independent clusters (Fig. 3B). A small amount of sequences were gathered with bacteria, uncultured bacteria, archaea and uncultured archaea, and the rest were clustered individually (Fig. 3E). As can be seen in Fig. 3C, six sequences were clustered with those of archaea, fungi, bacteria, while the rest were clustered separately. Some sequences were gathered with bacteria, uncultured bacteria, archaea and uncultured archaea, and others were clustered separately (Fig. 3F). PCoA analysis was largely consistent with phylogenetic analysis. So the genetic diversity of phoH, phoU and pstS genes in Napahai plateau wetland was independent of the host origins.Figure 3Phylogenetic analysis and PCoA of phosphorus metabolism AMGs from different host origins, different colors represent different host origins. (A) Phylogenetic analysis of phoH gene from different host origins. (B) Phylogenetic analysis of phoU gene from different host origins. (C) Phylogenetic analysis of pstS gene from different host origins. (D) PCoA analysis of phoH genes from different host origins. (E) PCoA analysis of phoU genes from different host origins. (F) PCoA analysis of pstS genes from different host origins.Full size imageOverall, the genetic diversity of phoH, phoU and pstS genes associated with phosphorus metabolism in Napahai plateau wetland was independent of both the habitats and host origins based on phylogenetic and PCoA analyses. It suggested that three genes showed relatively rich genetic diversity and were not genetically limited by differences in habitats or host origins. Han et al. showed that phoH sequences were widely distributed in soil, freshwater, and seawater environments in different locations around the world, indicating the genetic diversity independent of the environment17, which corroborated the conclusions in our study. Phylogenetic analysis of the 58 viral phoH gene sequences in Northeastern wetland of China revealed that some sequences were clustered with bacterial sequences and others clustered with phages sequences16. In Napahai plateau wetland, some phoH gene sequences were clustered with fungal, bacterial, phage, uncultured phage, and viruses. Hence, the genetic diversity of phoH gene was independent of the host origins in either Northeastern wetland or Napahai plateau wetland. Compared with Northeastern wetland, the phoH genes in Napahai plateau wetland showed more abundant genetic diversity, which may be related to geographical location and climate. Additionally, compared with sequences from different habitats and host sources, partial sequences from Napahai plateau wetland were clustered individually, thus they were unique, which might be related to the unique geography. Napahai plateau wetland is located in the Three Parallel Rivers with low latitude and high altitude, and shows specific characteristics which not found in other habitats, and then the species very different, thus providing the possibility for the emergence of unique genetic sequences. Of course, it would require further verification by subsequent study.As far as the current studies are concerned, most reports on phosphorus AMGs focused on the function. Wang et al. mentioned that the phoH gene regulated phosphate uptake or metabolism under the low phosphorus or phosphate limitation conditions18. Kelly et al. isolated several phages from oligotrophic water bodies with low phosphorus condition, found that they contained the phosphate binding transporter gene pstS by sequencing, which enhanced the host cell with increasing the infection cycle of phages by increasing phosphate utilization19. Gardner et al. studied the PhoR-PhoB two-component regulatory system in E. coli, which regulated the expression of relevant genes according to environmental phosphate concentration and enabled cells to adapt the phosphate starvation20. The phoU existed in many bacteria and was identified as an auxiliary protein of the phosphate-specific transporter system, regulating phosphate metabolism in the host cell acting as phosphate regulators21. Few studies had been conducted on its genetic diversity, therefore, the information on the genetic diversity was relatively scarce.α diversity analysis of phosphorus metabolism AMGs in different habitats and different host originsChao, Shannon and Simpson diversity indices are common mathematical measure of species alpha diversity in the community. Chao focuses on species richness. Shannon index and Simpson index measure species richness and evenness. Simpson reinforces evenness and Shannon reinforces richness22.Sequences from different habitats, such as Napahai plateau wetland, Pacific Ocean, Lake Baikal, Northeast rice fields, glaciers, and wetlands, were selected for α-diversity analysis (Fig. 4). The genetic diversity indices, such as Chao, Shannon and Simpson, calculated based on the OUT dataset, were used to characterize the alpha diversity. Among them, larger Chao values, smaller Simpson values or larger Shannon values indicate higher genetic diversity. Only at the level of Chao values (Fig. 4A,D,G) and Shannon values (Fig. 4B,E,H), the values of phoH, phoU, and pstS in Napahai plateau wetland were greater than those from other habitats, indicating better heritable, which might be related to the unique geographical location and abundant water resources. The geographical location made it unique and less influenced by external factors, and abundant water resources created a rich biodiversity, thus providing a good genetic environment. From the Simpson values (Fig. 4C,F,I), the values of phoU and pstS genes were smaller than those of other habitats, indicating better inherited. For the phoH gene, the Simpson value was closer in magnitude and lower than those in Antarctic Lake and wetlands, indicating better heritable.Figure 4Plots of genetic diversity indices analysis of phosphorus metabolism AMGs in different habitats, different colors represent different genetic diversity indices. (A, D, G) Represent respectively the Chao values of phoH, phoU, and pstS genes in different habitats. (B, E, H) Represent respectively the Shannon values of phoH, phoU, and pstS genes in different habitats. (C, F, I) Represent respectively the Simpson values of phoH, phoU, and pstS genes in different habitats.Full size imageThree AMGs associated with phosphorus metabolism in Napahai plateau wetland were selected for α-diversity analysis with AMGs sequences from different host origins (Fig. 5). In Fig. 5A, the Chao values of phoH gene from bacteria, phages, uncultured phages and uncultured viruses in Napahai plateau wetland were smaller than those of bacteria, phages, uncultured phages and uncultured viruses, indicating the poor genetic diversity. In addition, compared to the genetic diversity of sequences from other host sources, the genetic diversity of phoH gene from bacteria in Napahai plateau wetland was better. As can be seen in Fig. 5D, G, the Chao values of phoU and pstS genes from bacteria in Napahai plateau wetland were greater than those of other host origins, indicating better genetic diversity, while the Chao values of pstS genes from archaea in Napahai plateau wetland were smaller than those of other host origins, indicating poor genetic diversity.Figure 5Plots of genetic diversity indices analysis of phosphorus metabolism AMGs from different host origins, different colors represent different genetic diversity indices. (A, D, G) Represent respectively the Chao values of phoH, phoU, and pstS genes from different host origins. (B, E, H) Represent respectively the Shannon values of phoH, phoU, and pstS genes from different host origins. (C, F, I) Represent respectively the Simpson values of phoH, phoU, and pstS genes from different host origins.Full size imageThe Shannon value of phoH gene from bacteria in Napahai plateau wetland was smaller than that of bacteria and uncultured viruses, indicating poor diversity, but larger than other host sources, indicating better genetic diversity (Fig. 5B). The Shannon values of phoH gene from phages and uncultured phages in Napahai plateau wetland were lower than those of other host origins, indicating poor diversity. The Shannon value of phoH genes from uncultured viruses in Napahai plateau wetland was 0, probably due to sample size too small to calculate the Shannon value. In Fig. 5E, H, the Chao values of phoU and pstS genes from bacteria in Napahai plateaus wetland were greater than those from other host sources, indicating better diversity, while the Shannon value of pstS gene from archaea in the Napahai plateau wetland was 0, probably small sample size.The Simpson values of phoH genes from phage, uncultured phage and uncultured virus in Napahai plateau wetland were smaller than those of other host origins (except uncultured virus), indicating better diversity. The smaller Simpson values of phoH genes related to fungi, phages, uncultured phages, and viruses indicated better diversity, while the larger Simpson values compared to bacteria, phages, and uncultured viruses indicated poor diversity (Fig. 5C). As can be seen in Figs. 5F,I, the Simpson values of phoU genes from bacteria and pstS genes from bacteria and archaea in Napahai plateau wetland were smaller than those of other host origins, indicating better genetic diversity.Currently, most studies on phosphorus AMGs employed phylogenetic analysis16,23. In contrast, relatively few AMGs associated with phosphorus had been reported based on α-diversity analysis, so it was difficult to obtain specific values of α-diversity indices in other studies.Biogeochemical cycling of AMGs associated with phosphorus metabolism in Napahai plateau wetlandViruses are the gene carriers in susceptible hosts, and AMGs introduced by viruses into new hosts can enhance viral replication and/or influence key microbial metabolic pathways of the biogeochemical cycles24. It is well known that phosphorus is an essential nutrient and plays essential roles in cells25. Phosphorus deficiency leads to restricted cell division, down-regulation of photosynthesis, reduced protein and nitrogen content and chlorophyll synthesis26. To study the effect of AMGs associated with phosphorus metabolism, a phosphorus metabolic pathway containing phoH, phoU and pstS genes was constructed based on metagenomic data (Fig. 6). When phosphorus deficiency occurs in the host, it leads to the expression of phoH, phoU and pstS genes. phoH is a phosphate starvation inducible gene, while pstS acts as a phosphate transport gene and phoU belongs to a phosphate regulatory gene that produces dissolved inorganic phosphorus (DIPs), which then undergoes a series of reactions to produce ATP. The generated ATP becomes PolyP under the action of ppK which encoding polyphosphate kinase, or is used in Calvin cycle to provide energy for Ru5P to produce RuBP, or is used for DNA biosynthesis to provide energy. PolyP is regenerate into DIP with ppX which encoding exopolyphosphatase, and also involves in the biosynthesis process of DNA as Pi to provide phosphate for the nucleic acids synthesis. Thus, phosphorus metabolism of AMGs invoved plays a significant role in the life process of the virus and host. In addition, phoE and ugpQ genes also are identified in Napahai plateau wetland, but their roles in the phosphorus cycling are currently unknown and need further study.Figure 6Biogeochemical cycling of AMGs associated with phosphorus metabolism in Napahai plateau wetland. Red line indicates the process of phosphorus metabolism.Full size imageBased on the phylogenetic and PCoA analyses, we found that the phoH, phoU, and pstS genes all showed unique sequences, which might be drive the microorganisms to produce the phosphorus metabolic pathway in Napahai plateau wetland. Of course, in order to prove this pathway, further validation might be done by metabolomics or metabolic flow method. Furthermore, the phosphorus metabolic pathway was poorly reported, so we could not compare with the phosphorus pathway from other environment to find commonalities and differences. More

  • in

    Brown bear skin-borne secretions display evidence of individuality and age-sex variation

    Zala, S. M., Potts, W. K. & Penn, D. J. Scent-marking displays provide honest signals of health and infection. Behav. Ecol. 15, 338–344 (2004).Article 

    Google Scholar 
    Allen, M. L., Wallace, C. F. & Wilmers, C. C. Patterns in bobcat (Lynx rufus) scent marking and communication behaviors. J. Ethol. 33, 9–14 (2014).Article 

    Google Scholar 
    White, A. M., Swaisgood, R. R. & Zhang, H. The highs and lows of chemical communication in giant pandas (Ailuropoda melanoleuca): Effect of scent deposition height on signal discrimination. Behav. Ecol. Sociobiol. 51, 519–529 (2002).Article 

    Google Scholar 
    Scordato, E. S., Dubay, G. & Drea, C. M. Chemical composition of scent marks in the ringtailed lemur (Lemur catta): Glandular differences, seasonal variation, and individual signatures. Chem. Senses 32, 493–504 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maynard Smith, J. & Harper, D. Animal Signals (Oxford University Press, 2003).
    Google Scholar 
    Stockley, P., Bottell, L. & Hurst, J. L. Wake up and smell the conflict: Odour signals in female competition. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 368, 20130082 https://doi.org/10.1098/rstb.2013.0082 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petrulis, A. Chemosignals, hormones and mammalian reproduction. Horm. Behav. 63, 723–741 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coombes, H. A., Stockley, P. & Hurst, J. L. Female chemical signalling underlying reproduction in mammals. J. Chem. Ecol. 44, 851–873 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harmsen, B. J., Foster, R. J., Gutierrez, S. M., Marin, S. Y. & Patrick, C. Scrape-marking behavior of jaguars (Panthera onca) and pumas (Puma concolor). J. Mammal. 91, 1225–1234 (2010).Article 

    Google Scholar 
    Lamb, C. T. et al. Density-dependent signaling: An alternative hypothesis on the function of chemical signaling in a non-territorial solitary carnivore. PLoS ONE 12, e0184176 https://doi.org/10.1371/journal.pone.0184176 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woodmansee, K. B., Zabel, C. J., Glickman, S. E., Frank, L. G. & Keppel, G. Scent marking (pasting) in a colony of immature spotted hyenas (Crocuta crocuta): A developmental study. J. Comp. Psychol. 105, 10–14 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rasmussen, L. E. L., Riddle, H. S. & Krishnamurthy, V. Mellifluous matures to malodorous in musth. Nature 415, 975–976 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Surov, A. V. & Maltsev, A. N. Analysis of chemical communication in mammals: Zoological and ecological aspects. Biol. Bull. 43, 1175–1183 (2016).Article 

    Google Scholar 
    Hurst, J. L. Female recognition and assessment of males through scent. Behav. Brain Res. 200, 295–303 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mills, M. G. L. & Gorman, M. L. The scent-marking behaviour of the spotted hyaena Crocuta crocuta in the southern Kalahari. J. Zool. 212, 483–497 (1987).Article 

    Google Scholar 
    Gassett, J. W. et al. Volatile compounds from interdigital gland of male white-tailed deer (Odocoileus virginianus). J. Chem. Ecol. 22, 1689–1696 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeckelhuber, M., Sliwa, A. & Welsch, U. Histo-physiology of the scent-marking glands of the penile pad, anal Pouch, and the forefoot in the aardwolf (Proteles cristatus). Anat. Rec. 259, 312–326 (2000).Article 
    CAS 

    Google Scholar 
    Begg, C. M., Begg, K. S., Du Toit, J. T. & Mills, M. G. L. Scent-marking behaviour of the honey badger, Mellivora capensis (Mustelidae), in the southern Kalahari. Anim. Behav. 66, 917–929 (2003).Article 

    Google Scholar 
    Yasui, T., Tsukise, A. & Meyer, W. Histochemical analysis of glycoconjugates in the eccrine glands of the raccoon digital pads. Eur. J. Histochem. 48, 393–402 (2004).CAS 
    PubMed 

    Google Scholar 
    Johnston, R. E. Scent marking by male golden hamsters (Mesocricetus aurutus) I. Effects of odors and social encounters. Z. Tierpsychol. 37, 75–98 (1975).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caspers, B., Wibbelt, G. & Voigt, C. C. Histological examinations of facial glands in Saccopteryx bilineata (Chiroptera, Emballonuridae), and their potential use in territorial marking. Zoomorphology 128, 37–43 (2008).Article 

    Google Scholar 
    Lawson, R. E., Putnam, R. J. & Fielding, A. H. Individual signatures in scent gland secretions of Eurasian deer. J. Zool. 251, 399–410 (2000).Article 

    Google Scholar 
    Smith, T. E., Tomlinson, A. J., Mlotkiewicz, J. A. & Abbott, D. H. Female marmoset monkeys (Callithrix jacchus) can be identified from the chemical composition of their scent marks. Chem. Senses 26, 449–458 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    del Barco-Trillo, J., LaVenture, A. B. & Johnston, R. E. Male hamsters discriminate estrous state from vaginal secretions and individuals from flank marks. Behav. Process. 82, 18–24 (2009).Article 

    Google Scholar 
    Sun, L. & Müller-Schwarze, D. Anal gland secretion codes for family membership in the beaver. Behav. Ecol. Sociobiol. 44, 199–208 (1998).Article 

    Google Scholar 
    Zhang, J. X. et al. Possible coding for recognition of sexes, individuals and species in anal gland volatiles of Mustela eversmanni and M. sibirica. Chem. Senses 28, 381–388 (2003).Article 
    PubMed 

    Google Scholar 
    Kean, E. F., Müller, C. T. & Chadwick, E. A. Otter scent signals age, sex, and reproductive status. Chem. Senses 36, 555–564 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rosell, F. et al. Brown bears possess anal sacs and secretions may code for sex. J. Zool. 283, 143–152 (2011).Article 

    Google Scholar 
    Buesching, C. D., Waterhouse, J. S. & Macdonald, D. W. Gas-chromatographic analyses of the subcaudal gland secretion of the European badger (Meles meles) part I: Chemical differences related to individual parameters. J. Chem. Ecol. 28, 41–56 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yuan, H. et al. Anogenital gland secretions code for sex and age in the giant panda, Ailuropoda melanoleuca. Can. J. Zool. 82, 1596–1604 (2004).Article 

    Google Scholar 
    Kent, L. & Tang-Martínez, Z. Evidence of individual odors and individual discrimination in the raccoon, Procyon lotor. J. Mammal. 95, 1254–1262 (2014).Article 

    Google Scholar 
    Woodley, S. K. & Baum, M. J. Differential activation of glomeruli in the ferret’s main olfactory bulb by anal scent gland odours from males and females: An early step in mate identification. Eur. J. Neurosci. 20, 1025–1032 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, M. L. et al. The role of scent marking in mate selection by female pumas (Puma concolor). PLoS ONE 10, e0139087 https://doi.org/10.1371/journal.pone.0139087 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latour, P. Interactions between free-ranging, adult male polar bears (Ursus maritimus Phipps): A case of adult social play. Can. J. Zool. 59, 1775–1783 (1981).Article 

    Google Scholar 
    Nie, Y., Swaisgood, R. R., Zhang, Z., Liu, X. & Wei, F. Reproductive competition and fecal testosterone in wild male giant pandas (Ailuropoda melanoleuca). Behav. Ecol. Sociobiol. 66, 721–730 (2012).Article 

    Google Scholar 
    Clapham, M. & Kitchin, J. Social play in wild brown bears of varying age-sex class. Acta Ethol. 19, 181–188 (2016).Article 

    Google Scholar 
    Stonorov, D. & Stokes, A. W. Social behavior of the Alaska brown bear. Int. Conf. Bear Res. Manag. 2, 232–242 (1972).
    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. A hypothetico-deductive approach to assessing the social function of chemical signalling in a non-territorial solitary carnivore. PLoS ONE 7, e35404 https://doi.org/10.1371/journal.pone.0035404 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. The function of strategic tree selectivity in the chemical signalling of brown bears. Anim. Behav. 85, 1351–1357 (2013).Article 

    Google Scholar 
    Owen, M. A. et al. An experimental investigation of chemical communication in the polar bear. J. Zool. 295, 36–43 (2015).Article 

    Google Scholar 
    Sergiel, A. et al. Histological, chemical and behavioural evidence of pedal communication in brown bears. Sci. Rep. 7, 1052 https://doi.org/10.1038/s41598-017-01136-1 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Morphological and histological features of the vomeronasal organ in the brown bear. J. Anat. 231, 749–757 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Testicular regulation of seasonal change in apocrine glands in the back skin of the brown bear (Ursus arctos). J. Vet. Med. Sci. 80, 1034–1040 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomiyasu, J. et al. Testosterone-related and seasonal changes in sebaceous glands in the back skin of adult male brown bears (Ursus arctos). Can. J. Zool. 96, 205–211 (2018).Article 
    CAS 

    Google Scholar 
    Burst, T. L. & Pelton, M. R. Black bear mark trees in the Smoky mountains. Int. Conf. Bear Res. Manag. 5, 45–53 (1983).
    Google Scholar 
    Mattson, D. J. & Greene, G. I. Tree rubbing by Yellowstone grizzly bears Ursus arctos. Wildl. Biol. 1, 1–9 (2003).
    Google Scholar 
    Nie, Y. et al. Giant panda scent-marking strategies in the wild: Role of season, sex and marking surface. Anim. Behav. 84, 39–44 (2012).Article 

    Google Scholar 
    Revilla, E. et al. Brown bear communication hubs: Patterns and correlates of tree rubbing and pedal marking at a long-term marking site. PeerJ 9, 10447 https://doi.org/10.7717/peerj.10447 (2021).Article 

    Google Scholar 
    Clapham, M., Nevin, O. T., Ramsey, A. D. & Rosell, F. Scent-marking investment and motor patterns are affected by the age and sex of wild brown bears. Anim. Behav. 94, 107–116 (2014).Article 

    Google Scholar 
    Taylor, A. P., Gunther, M. S. & Allen, M. L. Black bear marking behaviour at rub trees during the breeding season in northern California. Behaviour 152, 1097–1111 (2015).Article 

    Google Scholar 
    Filipczyková, E., Heitkönig, I., Castellanos, A., Hantson, W. & Steyaert, S. Marking behavior of Andean bears in an Ecuadorian cloud forest: A pilot study. Ursus 27, 122–128 (2017).Article 

    Google Scholar 
    Stringham, S. F. Aggressive body language of bears and wildlife viewing: A response to Geist (2011). Hum.-Wildl. Interact. 5, 4 (2011).
    Google Scholar 
    Swaisgood, R. R., Lindburg, D. G. & Zhang, H. Discrimination of oestrous status in giant pandas (Ailuropoda melanoleuca) via chemical cues in urine. J. Zool. 257, 381–386 (2002).Article 

    Google Scholar 
    Wilson, A. E. et al. Behavioral, semiochemical and androgen responses by male giant pandas to the olfactory sexual receptivity cues of females. Theriogenology 114, 330–337 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sillero-Zubiri, C. & Macdonald, D. W. Scent-marking and territorial behaviour of Ethiopian wolves Canis simensis. J. Zool. 245, 351–361 (1998).Article 

    Google Scholar 
    Stępniak, K. M., Niedźwiecka, N., Szewczyk, M. & Mysłajek, R. W. Scent marking in wolves Canis lupus inhabiting managed lowland forests in Poland. Mammal Res. 65, 629–638 (2020).Article 

    Google Scholar 
    Liu, D. et al. Do anogenital gland secretions of giant panda code for their sexual ability? Chin. Sci. Bull. 51, 1986–1995 (2006).Article 
    CAS 

    Google Scholar 
    Tattoni, C., Bragalanti, N., Groff, C. & Rovero, F. Patterns in the use of rub trees by the Eurasian brown bear. Hystrix 26, 118 (2015).
    Google Scholar 
    Zhang, J. X. et al. Potential chemosignals in the anogenital gland secretion of giant pandas, Ailuropoda melanoleuca, associated with sex and individual identity. J. Chem. Ecol. 34, 398–407 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Swaisgood, R. R., Lindburg, D. G., Zhou, X. & Owen, M. A. The effects of sex, reproductive condition and context on discrimination of conspecific odours by giant pandas. Anim. Behav. 60, 227–237 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Swaisgood, R., Lindburg, D. & Zhou, X. Giant pandas discriminate individual differences in conspecific scent. Anim. Behav. 57, 1045–1053 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Liu, D. et al. Do urinary chemosignals code for sex, age, and season in the giant panda, Ailuropoda melanoleuca? in Chemical Signals in Vertebrates. Vol. 12. 207–222 (eds. East, M. L. & Dehnhard, M.). https://doi.org/10.1007/978-1-4614-5927-9_16 (Springer, 2013).Hagey, L. & MacDonald, E. Chemical cues identify gender and individuality in giant pandas (Ailuropoda melanoleuca). J. Chem. Ecol. 29, 1479–1488 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, A. E., Sparks, D. L., Knott, K. K., Willard, S. & Brown, A. Implementing solid phase microextraction (SPME) as a tool to detect volatile compounds produced by giant pandas in the environment. PLoS ONE 13, e0208618 https://doi.org/10.1371/journal.pone.0208618 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. E. et al. Field air analysis of volatile compounds from free-ranging giant pandas. Ursus 29, 75–81 (2019).Article 

    Google Scholar 
    Crupi, A. P., Waite, J. N., Flynn, R. W. & Beier, L. Brown bear population estimation in Yakutat, Southeast Alaska. Alaska Department of Fish and Game https://doi.org/10.13140/RG.2.2.35947.54568 (2017).Article 

    Google Scholar 
    Sikes, R. S., Gannon, W. L. & The Animal Care and Use Committee of the American Society of Mammalogists. Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J. Mammal. 92, 235–253 (2011).Matson, G. et al. A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear First Premolar Teeth. Alaska Department of Fish and Game, Division of Wildlife Conservation https://www.adfg.alaska.gov/index.cfm?adfg=librarypublications.wildlifepublicationsdetails&pubidentifier=3374 (1993).Seryodkin, I. V. Marking activity of the Kamchatka brown bear (Ursus arctos piscator). Achiev. Life Sci. 8, 153–161 (2014).
    Google Scholar 
    Peralbo-Molina, A., Calderón-Santiago, M., Jurado-Gámez, B., Luque De Castro, M. D. & Priego-Capote, F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci. Rep. 7, 1421 https://doi.org/10.1038/s41598-017-01564-z (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, D. et al. Male panda (Ailuropoda melanoleuca) urine contains kinship information. Chin. Sci. Bull. 53, 2793–2800 (2008).CAS 

    Google Scholar 
    Kean, E. F., Chadwick, E. A. & Müller, C. T. Scent signals individual identity and country of origin in otters. Mamm. Biol. Z. Säugetierkd. 80, 99–105 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org/ (2020).Harris, R. L., Holland, B. R., Cameron, E. Z., Davies, N. W. & Nicol, S. C. Chemical signals in the echidna: Differences between seasons, sexes, individuals and gland types. J. Zool. 293, 171–180 (2014).Article 

    Google Scholar 
    Vaglio, S. et al. Sternal gland scent-marking signals sex, age, rank, and group identity in captive mandrills. Chem. Senses 41, 177–186 (2016).PubMed 

    Google Scholar 
    Knott, K. K. et al. Blood-based biomarkers of selenium and thyroid status indicate possible adverse biological effects of mercury and polychlorinated biphenyls in Southern Beaufort Sea polar bears. Environ. Res. 111, 1124–1136 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. E. et al. Development and validation of protein biomarkers of health in grizzly bears. Conserv. Physiol. 8, coaa056 https://doi.org/10.1093/conphys/coaa056 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Vegan: community ecology package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2020).Williams, C. L., Ybarra, A. R., Meredith, A. N., Durrant, B. S. & Tubbs, C. W. Gut microbiota and phytoestrogen-associated infertility in Southern White Rhinoceros. MBio 10, e00311-19 https://doi.org/10.1128/mBio.00311-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dill-McFarland, K. A., Breaker, J. D. & Suen, G. Microbial succession in the gastrointestinal tract of dairy cows from 2 weeks to first lactation. Sci. Rep. 7, 40864 https://doi.org/10.1038/srep40864 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williams, C. L. et al. Dietary changes during weaning shape the gut microbiota of red pandas (Ailurus fulgens). Conserv. Physiol. 6, cox075 https://doi.org/10.1093/conphys/cox075 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolar, K. STAT: interactive document for working with basic statistical analysis. R package version 0.1.0. https://CRAN.R-project.org/package=STAT (2019).Gese, E. & Ruff, R. Scent-marking by coyotes, Canis latrans: The influence of social and ecological factors. Anim. Behav. 54, 1155–1166 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thompson, C. L. et al. What smells? Developing in-field methods to characterize the chemical composition of wild mammalian scent cues. Ecol. Evol. 10, 4691–4701 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charpentier, M. J. E., Barthes, N., Proffit, M., Bessière, J.-M. & Grison, C. Critical thinking in the chemical ecology of mammalian communication: Roadmap for future studies. Funct. Ecol. 26, 769–774 (2012).Article 

    Google Scholar 
    Martín, J., Carranza, J., López, P., Alarcos, S. & Pérez-González, J. A new sexual signal in rutting male red deer: Age related chemical scent constituents in the belly black spot. Mamm. Biol. 79, 362–368 (2014).Article 

    Google Scholar 
    Carranza, J. et al. The dark ventral patch: A bimodal flexible trait related to male competition in red deer. PLoS ONE 15, 0241374 https://doi.org/10.1371/journal.pone.0241374 (2020).Article 
    CAS 

    Google Scholar 
    Kean, E. F., Bruford, M. W., Russo, I. R. M., Müller, C. T. & Chadwick, E. A. Odour dialects among wild mammals. Sci. Rep. 7, 13593 https://doi.org/10.1038/s41598-017-12706-8 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marneweck, C., Jürgens, A. & Shrader, A. M. The role of middens in white rhino olfactory communication. Anim. Behav. 140, 7–18 (2018).Article 

    Google Scholar 
    Linklater, W. L., Mayer, K. & Swaisgood, R. R. Chemical signals of age, sex and identity in black rhinoceros. Anim. Behav. 85, 671–677 (2013).Article 

    Google Scholar 
    White, A. M., Swaisgood, R. R. & Zhang, H. Chemical communication in the giant panda (Ailuropoda melanoleuca): The role of age in the signaller and assessor. J. Zool. 259, 171–178 (2003).Article 

    Google Scholar 
    Steiger, S., Schmitt, T. & Schaefer, H. M. The origin and dynamic evolution of chemical information transfer. Proc. R. Soc. B Biol. Sci. 278, 970–979 https://doi.org/10.1098/rspb.2010.2285 (2011).Article 

    Google Scholar 
    Williams, C. L. et al. Wildlife-microbiome interactions and disease: Exploring opportunities for disease mitigation across ecological scales. Drug Discov. Today Dis. Models 28, 105–115 (2018).Article 

    Google Scholar 
    Chiang, Y. R., Wei, S. T. S., Wang, P. H., Wu, P. H. & Yu, C. P. Microbial degradation of steroid sex hormones: Implications for environmental and ecological studies. Microb. Biotechnol. 13, 926–949 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Williams, C. L., Garcia-Reyero, N., Martyniuk, C. J., Tubbs, C. W. & Bisesi, J. H. Regulation of endocrine systems by the microbiome: Perspectives from comparative animal models. Gen. Comp. Endocrinol. 292, 113437 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Theis, K. R., Venkataraman, A., Wagner, A. P., Holekamp, K. E. & Schmidt, T. M. Age-related variation in the scent pouch bacterial communities of striped hyenas (Hyaena hyaena). Chem. Signals Vertebr. 13, 87–103 (2016).Article 

    Google Scholar 
    Steyaert, S. M. J. G., Endrestøl, A., Hackländer, K., Swenson, J. E. & Zedrosser, A. The mating system of the brown bear Ursus arctos. Mammal Rev. 42, 12–34 (2012).Article 

    Google Scholar 
    Bellemain, E. et al. The dilemma of female mate selection in the brown bear, a species with sexually selected infanticide. Proc. R. Soc. B Biol. Sci. 273, 283–291 https://doi.org/10.1098/rspb.2005.3331 (2006).Article 

    Google Scholar 
    Zedrosser, A., Bellemain, E., Taberlet, P. & Swenson, J. E. Genetic estimates of annual reproductive success in male brown bears: The effects of body size, age, internal relatedness and population density. J. Anim. Ecol. 76, 368–375 (2007).Article 
    PubMed 

    Google Scholar 
    Schwartz, C. C. et al. Reproductive maturation and senescence in the female brown bear. Ursus 14, 109–119 (2003).
    Google Scholar 
    Schulte, B. A., Freeman, E. W., Goodwin, T. E., Hollister-Smith, J. & Rasmussen, L. E. L. Honest signalling through chemicals by elephants with applications for care and conservation. Appl. Anim. Behav. Sci. 102, 344–363 (2007).Article 

    Google Scholar 
    Støen, O.-G., Bellemain, E., Sæbø, S. & Swenson, J. E. Kin-related spatial structure in brown bears Ursus arctos. Behav. Ecol. Sociobiol. 59, 191–197 (2005).Article 

    Google Scholar 
    Egbert, A. L. & Stokes, A. W. The social behaviour of brown bears on an Alaskan salmon stream. Int. Conf. Bear Res. Manag. 3, 41–56 (1976).
    Google Scholar 
    Craighead, J. J., Sumner, J. S. & Mitchell, J. A. The Grizzly Bears of Yellowstone: Their Ecology in the Yellowstone Ecosystem, 1959–1992 (Island Press, 1995).
    Google Scholar 
    Burgener, N., Dehnhard, M., Hofer, H. & East, M. L. Does anal gland scent signal identity in the spotted hyaena? Anim.
    Behav. 77, 707–715 (2009).Article 

    Google Scholar 
    Noonan, M. J. et al. Knowing me, knowing you: Anal gland secretion of European badgers (Meles meles) codes for individuality, sex and social group membership. J. Chem. Ecol. 45, 823–837 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sun, L. & Müller-Schwarze, D. Sibling recognition in the beaver: A field test for phenotype matching. Anim. Behav. 54, 493–502 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thom, M. D. & Hurst, J. L. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787 (2004).
    Google Scholar 
    Roberts, S. A. et al. Individual odour signatures that mice learn are shaped by involatile major urinary proteins (MUPs). BMC Biol. 16, 1–19 https://doi.org/10.1186/s12915-018-0512-9 (2018).Article 
    CAS 

    Google Scholar 
    Henkel, S. & Setchell, J. M. Group and kin recognition via olfactory cues in chimpanzees (Pan troglodytes). Proc. R. Soc. B Biol. Sci. 285, 20181527 https://doi.org/10.1098/rspb.2018.1527 (2018).Article 

    Google Scholar 
    Vogt, K., Boos, S., Breitenmoser, U. & Kölliker, M. Chemical composition of Eurasian lynx urine conveys information on reproductive state, individual identity, and urine age. Chemoecology 26, 205–217 (2016).Article 
    CAS 

    Google Scholar 
    Wyatt, T. D. Pheromones and signature mixtures: Defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 196, 685–700 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Johnston, R. E. Chemical communication in rodents: From pheromones to individual recognition. J. Mammal. 84, 1141–1162 (2003).Article 

    Google Scholar 
    Dehnhard, M. Mammal semiochemicals: Understanding pheromones and signature mixtures for better zoo-animal husbandry and conservation. Int. Zoo Yearb. 45, 55–79 (2011).Article 

    Google Scholar 
    Brennan, P. A. & Kendrick, K. M. Mammalian social odours: Attraction and individual recognition. Philos. Trans. R. Soc. B Biol. Sci. 361, 2061–2078 https://doi.org/10.1098/rstb.2006.1931 (2006).Article 
    CAS 

    Google Scholar 
    Bellemain, E., Swenson, J. E. & Taberlet, P. Mating strategies in relation to sexually selected infanticide in a non-social carnivore: The brown bear. Ethology 112, 238–246 (2006).Article 

    Google Scholar 
    Rogers, L. L. Effects of food supply and kinship on social behavior, movements, and population growth of black bears in northeastern Minnesota. Wildl. Monogr. 97, 72 (1987).
    Google Scholar 
    Noyce, K. V. & Garshelis, D. L. Follow the leader: Social cues help guide landscape-level movements of American black bears (Ursus americanus). Can. J. Zool. 92, 1005–1017 (2014).Article 

    Google Scholar 
    Hansen, J. E., Hertel, A. G., Frank, S. C., Kindberg, J. & Zedrosser, A. Social environment shapes female settlement decisions in a solitary carnivore. Behav. Ecol. 33, 137–146 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morehouse, A. T., Loosen, A. E., Graves, T. A. & Boyce, M. S. The smell of success: Reproductive success related to rub behavior in brown bears. PLoS ONE 16, 247964 https://doi.org/10.1371/journal.pone.0247964 (2021).Article 
    CAS 

    Google Scholar 
    Tschanz, B., Meyer-Holzapfel, M. & Bachmann, S. Das informationssystem bei Braunbären. Z. Tierpsychol. 27, 47–72 (1970).Article 

    Google Scholar 
    Tattoni, C., Bragalanti, N., Ciolli, M., Groff, C. & Rovero, F. Behavior of the European brown bear at rub trees. Ursus 32e9, 1–11https://doi.org/10.2192/URSUS-D-20-00022.3 (2021).Article 

    Google Scholar 
    Alberts, A. C. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).Article 

    Google Scholar  More

  • in

    Modeling present and future distribution of plankton populations in a coastal upwelling zone: the copepod Calanus chilensis as a study case

    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    González, C. E., Medellín-Mora, J. & Escribano, R. Environmental gradients and spatial patterns of calanoid copepods in the southeast pacific. Front. Ecol. Evol. 8, 1–16 (2020).Article 

    Google Scholar 
    Rombouts, I. et al. Global latitudinal variations in marine copepod diversity and environmental factors. Proc. R. Soc. B Biol. Sci. 276, 3053–3062 (2009).Article 

    Google Scholar 
    Brandão, M. C. et al. Macroscale patterns of oceanic zooplankton composition and size structure. Sci. Rep. 11, 1–19 (2021).
    Google Scholar 
    Mcclain, C. R. & Barry, J. P. Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91, 964–976 (2010).Article 
    PubMed 

    Google Scholar 
    Escribano, R. & Rodriguez, L. Life cycle of Calanus chilensis Brodsky in Bay of San Jorge, Antofagasta Chile. Hydrobiologia 292–293, 289–294 (1994).Article 

    Google Scholar 
    Strub, P. T., Mesías, M. J., Montecino, V., Rutllant, J. & Salinas, S. Coastal ocean circulation off western South America coastal segment. Sea 11, 273–313 (1998).
    Google Scholar 
    Montecino, V. & Lange, C. The Humboldt current system: Ecosystem components and processes, fisheries, and sediment studies. Prog. Oceanogr. 83, 65–79 (2009).Article 
    ADS 

    Google Scholar 
    Miloslavich, P. et al. Marine biodiversity in the Atlantic and Pacific coasts of South America: Knowledge and gaps. PLoS ONE 6, e14631 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marín, V., Espinoza, S. & Fleminger, A. Morphometric study of Calanus chilensis males along the Chilean coast. Hydrobiologia 292, 75–80 (1994).Article 

    Google Scholar 
    Escribano, R. & McLaren, I. Production of Calanus chilensis in the upwelling area of Antofagasta Northern Chile. Mar. Ecol. Prog. Ser. 177, 147–156 (1999).Article 
    ADS 

    Google Scholar 
    Escribano, R. & Hidalgo, P. Spatial distribution of copepods in the north of the Humboldt Current region off Chile during coastal upwelling. J. Mar. Biol. Assoc. U. K. 80, 283–290 (2000).Article 

    Google Scholar 
    Hirche, H. J., Barz, K., Ayon, P. & Schulz, J. High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system. Deep Res. I Oceanogr. Res. Pap. 88, 63–73 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Sabatini, M., rez, F. & Martos, P. Distribution pattern and population structure of Calanus australis Brodsky, 1959 over the southern Patagonian Shelf off Argentina in summer. ICES J. Mar. Sci. 57, 1856–1866 (2000).Article 

    Google Scholar 
    Escribano, R. Population dynamics of Calanus chilensis in the Chilean Eastern Boundary Humboldt Current. Fish. Oceanogr. 7, 245–251 (1998).Article 

    Google Scholar 
    Hidalgo, P. et al. Patterns of copepod diversity in the Chilean coastal upwelling system. Deep Sea Res. Part II Top. Stud. Oceanogr. 57, 2089–2097 (2010).Article 
    ADS 

    Google Scholar 
    Hidalgo, P., Escribano, R., Fuentes, M., Jorquera, E. & Vergara, O. How coastal upwelling influences spatial patterns of size-structured diversity of copepods off central-southern Chile (summer 2009). Prog. Oceanogr. 92–95, 134–145 (2012).Article 
    ADS 

    Google Scholar 
    Giraldo, A., Escribano, R. & Marin, V. Spatial distribution of Calanus chilensis off Mejillones Peninsula (northern Chile): Ecological consequences upon coastal upwelling. Mar. Ecol. Prog. Ser. 230, 225–234 (2002).Article 
    ADS 

    Google Scholar 
    Gonzalez, A. & Marin, V. Distribution and life cycle of Calanus chilensis and Centropages brachiatus (Copepoda) in Chilean coastal waters: A GIS approach. Mar. Ecol. Prog. Ser. 165, 109–117 (1998).Article 
    ADS 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).Article 
    ADS 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: The need for a yardstick. Proc. R. Soc. B Biol. Sci. 272, 2561–2569 (2005).Article 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl. Acad. Sci. 118, e2015094118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrier, S., Drielsma, M., Manion, G. & Watson, G. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. II. Community-level modelling. Biodivers. Conserv. 11, 2309–2338 (2002).Article 

    Google Scholar 
    Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, e157 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, A. T. et al. Ecological Niches and Geographic Distributions (MPB-49) (Princeton University Press, 2011). https://doi.org/10.2307/j.ctt7stnh.Book 

    Google Scholar 
    Franklin, J. Spatial Inference and Prediction. Mapping Species Distributions Vol. 141 (Cambridge University Press, 2010).Book 

    Google Scholar 
    Guisan, A., Thuiller, W. & Zimmermann, N. E. Habitat Suitability and Distribution Models: With Applications in R. Ecology Biodiversity and Conservation (Cambridge University Press, 2017). https://doi.org/10.1017/9781139028271.Book 

    Google Scholar 
    Freer, J. J., Partridge, J. C., Tarling, G. A., Collins, M. A. & Genner, M. J. Predicting ecological responses in a changing ocean: The effects of future climate uncertainty. Mar. Biol. 165, 7 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, N. M., Nelson, W. A., Costello, M. J., Sutherland, J. E. & Lundquist, C. J. A systematic review of marine-based species distribution models (SDMs) with recommendations for best practice. Front. Mar. Sci. 4, 421 (2017).Article 

    Google Scholar 
    Pennino, M. G. et al. Accounting for preferential sampling in species distribution models. Ecol. Evol. 9, 653–663 (2019).Article 
    PubMed 

    Google Scholar 
    Coll, M., Pennino, M. G., Steenbeek, J., Sole, J. & Bellido, J. M. Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches. Ecol. Model. 405, 86–101 (2019).Article 

    Google Scholar 
    Stock, B. C. et al. Comparing predictions of fisheries bycatch using multiple spatiotemporal species distribution model frameworks. Can. J. Fish. Aquat. Sci. 77, 146–163 (2019).Article 

    Google Scholar 
    Lezama-Ochoa, N. et al. Spatio-temporal distribution of the spinetail devil ray mobula mobular in the Eastern tropical Atlantic ocean. Endanger. Species Res. 43, 447–460 (2020).Article 

    Google Scholar 
    Marshall, C. E., Glegg, G. A. & Howell, K. L. Species distribution modelling to support marine conservation planning: The next steps. Mar. Policy 45, 330–332 (2014).Article 

    Google Scholar 
    Hunt, T. N., Allen, S. J., Bejder, L. & Parra, G. J. Identifying priority habitat for conservation and management of Australian humpback dolphins within a marine protected area. Sci. Rep. 10, 1–14 (2020).Article 

    Google Scholar 
    Champion, C., Brodie, S. & Coleman, M. A. Climate-driven range shifts are rapid yet variable among recreationally important coastal-pelagic fishes. Front. Mar. Sci. 8, 1–13 (2021).Article 

    Google Scholar 
    Przeslawski, R., Falkner, I., Ashcroft, M. B. & Hutchings, P. Using rigorous selection criteria to investigate marine range shifts. Estuar. Coast. Shelf Sci. 113, 205–212 (2012).Article 
    ADS 

    Google Scholar 
    Januario, S. M., Estay, S. A., Labra, F. A. & Lima, M. Combining environmental suitability and population abundances to evaluate the invasive potential of the tunicate Ciona intestinalis along the temperate South American coast. PeerJ 3, e1357. https://doi.org/10.7717/peerj.1357 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinochet, J., Rivera, R., Neill, P. E., Brante, A. & Hernández, C. E. Spread of the non-native anemone Anemonia alicemartinae Häussermann & Försterra, 2001 along the Humboldt-current large marine ecosystem: An ecological niche model approach. PeerJ https://doi.org/10.7717/peerj.7156 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lh, G., Rj, R. & Brante, A. One step ahead of sea anemone invasions with ecological niche modeling: Potential distributions and niche dynamics of three successful invasive species. Mar. Ecol. Prog. Ser. 690, 83–95 (2022).Article 

    Google Scholar 
    Allynid, A. J. et al. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. PLoS ONE 15, 1–28 (2020).
    Google Scholar 
    Pennino, M. G. et al. Current and future influence of environmental factors on small pelagic fish distributions in the northwestern mediterranean sea. Front. Mar. Sci. 7, 1–20 (2020).Article 

    Google Scholar 
    Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: A literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).Article 

    Google Scholar 
    Rosa, R., Dierssen, H. M., Gonzalez, L. & Seibel, B. A. Ecological biogeography of cephalopod molluscs in the Atlantic Ocean: Historical and contemporary causes of coastal diversity patterns. Glob. Ecol. Biogeogr. 17, 600–610 (2008).Article 

    Google Scholar 
    Barton, A. D., Dutkiewicz, S., Flierl, G., Bragg, J. & Follows, M. J. Patterns of diversity in marine phytoplankton. Science 327, 1509–1511 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rodríguez-Ramos, T., Marañón, E. & Cermeño, P. Marine nano- and microphytoplankton diversity: Redrawing global patterns from sampling-standardized data. Glob. Ecol. Biogeogr. 24, 527–538 (2015).Article 

    Google Scholar 
    Righetti, D., Vogt, M., Gruber, N., Psomas, A. & Zimmermann, N. E. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci. Adv. 5, eaau6253 (2022).Article 
    ADS 

    Google Scholar 
    Busseni, G. et al. Large scale patterns of marine diatom richness: Drivers and trends in a changing ocean. Glob. Ecol. Biogeogr. 29, 1915–1928 (2020).Article 

    Google Scholar 
    Ruz, P. M., Hidalgo, P., Yáñez, S., Escribano, R. & Keister, J. E. Egg production and hatching success of Calanus chilensis and Acartia tonsa in the northern Chile upwelling zone (23°S) Humboldt Current System. J. Mar. Syst. 148, 200–212 (2015).Article 

    Google Scholar 
    Ashlock, L., García-Reyes, M., Gentemann, C., Batten, S. & Sydeman, W. Temperature and patterns of occurrence and abundance of key copepod taxa in the Northeast Pacific. Front. Mar. Sci. 8, 1–10 (2021).
    Article 
    ADS 

    Google Scholar 
    Campbell, M. D. et al. Testing Bergmann’s rule in marine copepods. Ecography 44, 1283–1295 (2021).Article 

    Google Scholar 
    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).Article 
    PubMed 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. U. S. A. 106, 19644–19650 (2009).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morales, C. E. et al. Mesoscale structure of copepod assemblages in the coastal transition zone and oceanic waters off central-southern Chile. Prog. Oceanogr. 84, 158–173 (2010).Article 
    ADS 

    Google Scholar 
    Gonzalez, R. R. & Quiñones, R. A. Ldh activity in Euphausia mucronata and Calanus chilensis: Implications for vertical migration behaviour. J. Plankton Res. 24, 1349–1356 (2002).Article 
    CAS 

    Google Scholar 
    Escribano, R., Hidalgo, P. & Krautz, C. Zooplankton associated with the oxygen minimum zone system in the northern upwelling region of Chile during March 2000. Deep Sea Res. Part II Top. Stud. Oceanogr. 56, 1083–1094 (2009).Article 
    ADS 

    Google Scholar 
    Fernández-Urruzola, I. et al. Plankton respiration in the Atacama Trench region: Implications for particulate organic carbon flux into the hadal realm. Limnol. Oceanogr. 66, 3134–3148 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).Article 
    PubMed 

    Google Scholar 
    Tutasi, P. & Escribano, R. Zooplankton diel vertical migration and downward~C flux into the oxygen minimum zone in the highly productive upwelling region off northern Chile. Biogeosciences 17, 455–473 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Gonzalez, A. & Marín, V. H. Distribution and life cycle of Calanus chilensis and Centropages brachiatus (Copepoda) in chilean coastal waters: A GIS approach. Mar. Ecol. Prog. Ser. 165, 109–117 (1998).Article 
    ADS 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).Article 

    Google Scholar 
    Dias, P. C. Sources and sinks in population biology. Trends Ecol. Evol. 11, 326–330 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ding, M., Lin, P., Liu, H., Hu, A. & Liu, C. Lagrangian eddy kinetic energy of ocean mesoscale eddies and its application to the Northwestern Pacific. Sci. Rep. 10, 12791 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morales, C. E. et al. The distribution of chlorophyll-a and dominant planktonic components in the coastal transition zone off Concepción, central Chile, during different oceanographic conditions. Prog. Oceanogr. 75, 452–469 (2007).Article 
    ADS 

    Google Scholar 
    Escribano, R. & Rodriguez, L. Life cycle of Calanus chilensis Brodsky in Bay of San Jorge, Antofagasta Chile. Hydrobiologia 292, 289–294 (1994).Article 

    Google Scholar 
    Hidalgo, P. & Escribano, R. Coupling of life cycles of the copepods Calanus chilensis and Centropages brachiatus to upwelling induced variability in the central-southern region of Chile. Prog. Oceanogr. 75, 501–517 (2007).Article 
    ADS 

    Google Scholar 
    Sobarzo, M., Bravo, L., Donoso, D., Garcés-Vargas, J. & Schneider, W. Coastal upwelling and seasonal cycles that influence the water column over the continental shelf off central Chile. Prog. Oceanogr. 75, 363–382 (2007).Article 
    ADS 

    Google Scholar 
    Carlson, C. J. embarcadero: Species distribution modelling with Bayesian additive regression trees in r. Methods Ecol. Evol. 11, 850–858 (2020).Article 

    Google Scholar 
    Gelfand, A. et al. Explaining species distribution patterns through hierarchical modeling. Bayesian Anal. https://doi.org/10.1214/06-BA102 (2006).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Hortal, J. et al. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu. Rev. Ecol. Evol. Syst. 46, 523–549 (2015).Article 

    Google Scholar 
    Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article 

    Google Scholar 
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography 39, 542–552 (2016).Article 

    Google Scholar 
    Gaul, W. et al. Data quantity is more important than its spatial bias for predictive species distribution modelling. PeerJ 8, e10411 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beck, J., Böller, M., Erhardt, A. & Schwanghart, W. Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecol. Inform. 19, 10–15 (2014).Article 

    Google Scholar 
    Breiner, F. T., Guisan, A., Bergamini, A. & Nobis, M. P. Overcoming limitations of modelling rare species by using ensembles of small models. Methods Ecol. Evol. 6, 1210–1218 (2015).Article 

    Google Scholar 
    Breiner, F. T., Nobis, M. P., Bergamini, A. & Guisan, A. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods Ecol. Evol. 9, 802–808 (2018).Article 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl. Acad. Sci. 117, 12891–12896 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richardson, A., Schoeman, D., Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the Northeast Atlantic. Science 305, 1609–1612 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chiba, S., Sugisaki, H., Nonaka, M. & Saino, T. Geographical shift of zooplankton communities and decadal dynamics of the Kuroshio-Oyashio currents in the western North Pacific. Glob. Change Biol. 15, 1846–1858 (2009).Article 
    ADS 

    Google Scholar 
    Reygondeau, G. & Beaugrand, G. Future climate-driven shifts in distribution of Calanus finmarchicus. Glob. Change Biol. 17, 756–766 (2011).Article 
    ADS 

    Google Scholar 
    Beaugrand, G., Lindley, J. A., Helaouet, P. & Bonnet, D. Macroecological study of Centropages typicus in the North Atlantic Ocean. Prog. Oceanogr. 72, 259–273 (2007).Article 
    ADS 

    Google Scholar 
    Hirche, H. J., Barz, K., Ayon, P. & Schulz, J. High resolution vertical distribution of the copepod Calanus chilensis in relation to the shallow oxygen minimum zone off northern Peru using LOKI, a new plankton imaging system. Deep Sea Res. I Oceanogr. Res. Pap. 88, 63–73 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Barve, N. et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 222, 1810–1819 (2011).Article 

    Google Scholar 
    Riquelme-Bugueño, R. et al. The influence of upwelling variation on the spatially-structured euphausiid community off central-southern Chile in 2007–2008. Prog. Oceanogr. 92–95, 146–165 (2012).Article 
    ADS 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Provoost, P. & Bosch, S. robis: Ocean Biodiversity Information System (OBIS) Client (2020).Chamberlain, S. & Oldoni, D. rgbif: Interface to the Global Biodiversity Information Facility API (2021).R Core Team. R: A Language and Environment for Statistical Computing (2021).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.4.1 (Envrionmental Systems Research Institute, 2016).
    Google Scholar 
    De Marco, P. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE 13, e202403 (2018).Article 

    Google Scholar 
    Feng, X. et al. A checklist for maximizing reproducibility of ecological niche models. Nat. Ecol. Evol. 3, 1382–1395 (2019).Article 
    PubMed 

    Google Scholar 
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling?. Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellison, A. M. Bayesian inference in ecology. Ecol. Lett. 7, 509–520 (2004).Article 

    Google Scholar 
    Pennino, M. G., Muñoz, F., Conesa, D., López-Quílez, A. & Bellido, J. M. Bayesian spatio-temporal discard model in a demersal trawl fishery. J. Sea Res. 90, 44–53 (2014).Article 

    Google Scholar 
    Di Cola, V. et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 40, 774–787 (2017).Article 

    Google Scholar 
    Engler, R., Guisan, A. & Rechsteiner, L. An improved approach for predicting the distribution of rare and endangered species from occurrence and pseudo-absence data. J. Appl. Ecol. 41, 263–274 (2004).Article 

    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).Article 

    Google Scholar 
    Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article 

    Google Scholar 
    Hirzel, A. H., Le Lay, G., Helfer, V., Randin, C. & Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 199, 142–152 (2006).Article 

    Google Scholar 
    Warren, D. & Dinnage, R. ENMTools: Analysis of Niche Evolution using Niche and Distribution Models (2020).Assis, J. et al. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Glob. Ecol. Biogeogr. 27, 277–284 (2018).Article 

    Google Scholar 
    Elith, J., Kearney, M. & Phillips, S. The art of modelling range-shifting species. Methods Ecol. Evol. 1, 330–342 (2010).Article 

    Google Scholar 
    Osorio-Olvera, L. et al. ntbox: An r package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol. Evol. 11, 1199–1206 (2020).Article 

    Google Scholar 
    Bosch, S., Tyberghein, L. & De Clerck, O. ‘sdmpredictors’: Species distribution modelling predictor datasets. R package version 0.2.6. R Packag. version 0.2.6 (2018).Thuiller, W., Georges, D., Engler, R. & Breiner, F. biomod2: Ensemble platform for species distribution modeling (2020).Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography 43, 1261–1277 (2020).Article 

    Google Scholar  More

  • in

    Novel plant–frugivore network on Mauritius is unlikely to compensate for the extinction of seed dispersers

    Whittaker, R. J., Fernández-Palacios, J. M., Matthews, T. J., Borregaard, M. K. & Triantis, K. A. Island biogeography: taking the long view of nature’s laboratories. Science 357, eaam8326 (2017).Article 
    PubMed 

    Google Scholar 
    Boyer, A. G. & Jetz, W. Biogeography of body size in Pacific island birds. Ecography 33, 369–379 (2010).
    Google Scholar 
    Heinen, J. H., van Loon, E. E., Hansen, D. M. & Kissling, W. D. Extinction‐driven changes in frugivore communities on oceanic islands. Ecography 41, 1245–1255 (2018).Article 

    Google Scholar 
    Sayol, F., Steinbauer, M. J., Blackburn, T. M., Antonelli, A. & Faurby, S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steadman, D. W. & Martin, P. S. The late quaternary extinction and future resurrection of birds on Pacific islands. Earth Sci. Rev. 61, 133–147 (2003).Article 
    ADS 

    Google Scholar 
    Blackburn, T. M., Cassey, P., Duncan, R. P., Evans, K. L. & Gaston, K. J. Avian extinction and mammalian introductions on oceanic islands. Science 305, 1955–1958 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Blackburn, T. M., Lockwood, J. L., & Cassey, P. (2009). Avian Invasions: The Ecology and Evolution of Exotic Birds (Oxford University Press, 2009).Steadman, D. W. Extinction and Biogeography of Tropical Pacific Birds (University of Chicago Press, 2006).Boyer, A. G. & Jetz, W. Extinctions and the loss of ecological function in island bird communities. Glob. Ecol. Biogeogr. 23, 679–688 (2014).Article 

    Google Scholar 
    Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: a case history of Guam. Annu. Rev. Ecol. Syst. 29, 113–140 (1998).Article 

    Google Scholar 
    Vidal, M. M. et al. Frugivores at higher risk of extinction are the key elements of a mutualistic network. Ecology 95, 3440–3447 (2014).Article 

    Google Scholar 
    Pires, M. M. et al. Reconstructing past ecological networks: the reconfiguration of seed-dispersal interactions after megafaunal extinction. Oecologia 175, 1247–1256 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Heinen, J. H., Rahbek, C. & Borregaard, M. K. Conservation of species interactions to achieve self-sustaining ecosystems. Ecography 43, 1603–1611 (2020).Article 

    Google Scholar 
    Moreno-Mateos, D. et al. The long-term restoration of ecosystem complexity. Nat. Ecol. Evol. 4, 676–685 (2020).Article 
    PubMed 

    Google Scholar 
    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dunn, R. R. Coextinction: anecdotes, models, and speculation. In Holocene Extinctions (ed. Turvey, S. T.) 167–180 (Oxford University Press, 2009).Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wotton, D. M. & Kelly, D. Do larger frugivores move seeds further? Body size, seed dispersal distance, and a case study of a large, sedentary pigeon. J. Biogeogr. 39, 1973–1983 (2012).Article 

    Google Scholar 
    Anderson, S. H., Kelly, D., Ladley, J. J., Molloy, S. & Terry, J. Cascading effects of bird functional extinction reduce pollination and plant density. Science 331, 1068–1071 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pérez-Méndez, N., Jordano, P., García, C. & Valido, A. The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse. Sci. Rep. 6, 1–9 (2016).Article 

    Google Scholar 
    Wotton, D. M. & Kelly, D. Frugivore loss limits recruitment of large-seeded trees. Proc. R. Soc. B Biol. Sci. 278, 3345–3354 (2011).Article 

    Google Scholar 
    Traveset, A. Effect of seed passage through vertebrate frugivores’ guts on germination: a review. Perspect. Plant Ecol. Evol. Syst. 1, 151–190 (1998).Article 

    Google Scholar 
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Connell, J. H. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, 1971).Farwig, N. & Berens, D. G. Imagine a world without seed dispersers: a review of threats, consequences and future directions. Basic Appl. Ecol. 13, 109–115 (2012).Article 

    Google Scholar 
    Meehan, H. J., McConkey, K. R. & Drake, D. R. Potential disruptions to seed dispersal mutualisms in Tonga, Western Polynesia. J. Biogeogr. 29, 695–712 (2002).Article 

    Google Scholar 
    Pérez-Méndez, N., Jordano, P. & Valido, A. Downsized mutualisms: consequences of seed dispersers’ body-size reduction for early plant recruitment. Perspect. Plant Ecol. Evol. Syst. 17, 151–159 (2015).Article 

    Google Scholar 
    Rodriguez, L. F. Can invasive species facilitate native species? Evidence of how, when, and why these impacts occur. Biol. Invasions 8, 927–939 (2006).Article 

    Google Scholar 
    Griffiths, C. J., Hansen, D. M., Jones, C. G., Zuël, N. & Harris, S. Resurrecting extinct interactions with extant substitutes. Curr. Biol. 21, 762–765 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thibault, J.-C. & Cibois, A. Birds Of Eastern Polynesia: A Biogeographic Atlas (Lynx Edicions, 2017).Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawaiʻi. Science 364, 78–82 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Case, S. B. & Tarwater, C. E. Functional traits of avian frugivores have shifted following species extinction and introduction in the Hawaiian Islands. Funct. Ecol. 34, 2467–2476 (2020).Article 

    Google Scholar 
    Albert, S., Flores, O. & Strasberg, D. Collapse of dispersal trait diversity across a long‐term chronosequence reveals a strong negative impact of frugivore extinctions on forest resilience. J. Ecol. 108, 1386–1397 (2020).Article 

    Google Scholar 
    Cheke, A. S. & Hume, J. P. Lost Land of the Dodo: The Ecological History of Mauritius, Réunion & Rodrigues 464 (T. & A. D. Poyser, 2008).Hammond, D. S. et al. Threats to environmentally sensitive areas from peri-urban expansion in Mauritius. Environ. Conserv. 42, 256–267 (2015).Article 

    Google Scholar 
    Florens, F. V., Baider, C., Seegoolam, N. B., Zmanay, Z. & Strasberg, D. Long‐term declines of native trees in an oceanic island’s tropical forests invaded by alien plants. Appl. Veg. Sci. 20, 94–105 (2017b).Article 

    Google Scholar 
    McConkey, K. R. & O’Farrill, G. Cryptic function loss in animal populations. Trends Ecol. Evol. 30, 182–189 (2015).Article 
    PubMed 

    Google Scholar 
    Carpenter, J. K. et al. The forgotten fauna: Native vertebrate seed predators on islands. Funct. Ecol. 34, 1802–1813 (2020).Article 

    Google Scholar 
    Perea, R., Delibes, M., Polko, M., Suárez-Esteban, A. & Fedriani, J. M. Context‐dependent fruit–frugivore interactions: partner identities and spatio‐temporal variations. Oikos 122, 943–951 (2013).Article 

    Google Scholar 
    Dracxler, C. M. & Kissling, W. D. The mutualism–antagonism continuum in Neotropical palm–frugivore interactions: from interaction outcomes to ecosystem dynamics. Biol. Rev. 97, 527–553 (2022).Article 

    Google Scholar 
    Baider, C. & Florens, F. B. V. Current decline of the ‘Dodo-tree’: a case of broken-down interactions with extinct species or the result of new interactions with alien invaders? In Emerging Threats to Tropical Forests (eds Laurance, W. & Peres, C.) 199–214 (Chicago University Press, 2006).Reinegger, R. D., Oleksy, R. Z., Bissessur, P., Naujeer, H. & Jones, G. First come, first served: fruit availability to keystone bat species is potentially reduced by invasive macaques. J. Mammal. 102, 428–439 (2021).Article 

    Google Scholar 
    Reinegger, R. D., Oleksy, R. Z., Gazagne, E. & Jones, G. Foraging strategies of invasive Macaca fascicularis may promote plant invasion in Mauritius. Int. J. Primatol. 44, 1–31 (2022).O’Connor, S. J. & Kelly, D. Seed dispersal of matai (Prumnopitys taxifolia) by feral pigs (Sus scrofa). N.Z. J. Ecol. 36, 228–231 (2012).
    Google Scholar 
    Shiels, A. B. & Drake, D. R. Are introduced rats (Rattus rattus) both seed predators and dispersers in Hawaii? Biol. Invasions 13, 883–894 (2011).Article 

    Google Scholar 
    Florens, F. B. V. et al. Disproportionately large ecological role of a recently mass-culled flying fox in native forests of an oceanic island. J. Nat. Conserv. 40, 85–93 (2017a).Article 

    Google Scholar 
    Bissessur, P., Bunsy, Y., Baider, C. & Florens, F. B. V. Non-intrusive systematic study reveals mutualistic interactions between threatened island endemic species and points to more impactful conservation. J. Nat. Conserv. 49, 108–117 (2019).Article 

    Google Scholar 
    Hume, J. P. & Winters, R. Captive birds on Dutch Mauritius: bad-tempered parrots, warty pigeons and notes on other native animals. Hist. Biol. 28, 812–822 (2016).Article 

    Google Scholar 
    Kingston, T., Florens, F. B. V., Oleksy, R., Ruhomaun, K. & Tatayah, V. Pteropus niger. The IUCN Red List of Threatened Species (2018).Hume, J. P. The history of the dodo Raphus cucullatus and the penguin of Mauritius. Hist. Biol. 18, 65–89 (2006).Article 

    Google Scholar 
    Hume, J. P. Reappraisal of the parrots (Aves: Psittacidae) from the Mascarene Islands, with comments on their ecology, morphology and affinities. Zootaxa 1513, 1–76 (2007).Article 

    Google Scholar 
    Hume, J. P. Systematics, morphology, and ecological history of the Mascarene starlings (Aves: Sturnidae) with the description of a new genus and species from Mauritius. Zootaxa 3849, 1–75 (2014).Article 
    PubMed 

    Google Scholar 
    Albert, S., Flores, O., Baider, C., Florens, F. B. V. & Strasberg, D. Differing severity of frugivore loss contrasts the fate of native forests on the land of the Dodo (Mascarene archipelago). Biol. Conserv. 257, 109–131 (2021).Article 

    Google Scholar 
    Florens, F. B. V. Conservation in Mauritius and Rodrigues: challenges and achievements from two ecologically devastated oceanic islands. In Conservation Biology: Voices from the Tropics (eds Raven, P. H., Sodhi, N. S. & Gibson, L.) 40–50 (Wiley-Blackwell, 2013).Krivek, G., Florens, F. B. V., Baider, C., Seegobin, V. O. & Haugaasen, T. Invasive alien plant control improves foraging habitat quality of a threatened island flying fox. J. Nat. Conserv. 54, 125805 (2020).Article 

    Google Scholar 
    Monty, M. F., Florens, F. B. V. & Baider, C. Invasive alien plants elicit reduced production of flowers and fruits in various native forest species on the tropical island of Mauritius (Mascarenes, Indian Ocean). Trop. Conserv. Sci. 6, 35–49 (2013).Article 

    Google Scholar 
    Florens, F. B. V. & Baider, C. Ecological restoration in a developing island nation: how useful is the science? Restor. Ecol. 21, 1–5 (2013).Article 

    Google Scholar 
    Nogués-Bravo, D., Simberloff, D., Rahbek, C. & Sanders, N. J. Rewilding is the new Pandora’s box in conservation. Curr. Biol. 26, R87–R91 (2016).Article 
    PubMed 

    Google Scholar 
    Linnebjerg, J. F., Hansen, D. M., Bunbury, N. & Olesen, J. M. Diet composition of the invasive red-whiskered bulbul Pycnonotus jocosus in Mauritius. J. Trop. Ecol. 26, 347–350 (2010).Article 

    Google Scholar 
    Sperry, J. H. et al. Fruit and seed traits of native and invasive plant species in Hawai’i: implications for seed dispersal by non-native birds. Biol. Invasions 23, 1819–1835 (2021).Article 

    Google Scholar 
    Hansen, D. M., Donlan, C. J., Griffiths, C. J. & Campbell, K. J. Ecological history and latent conservation potential: large and giant tortoises as a model for taxon substitutions. Ecography 33, 272–284 (2010).
    Google Scholar 
    Oleksy, R. Z. et al. The movement ecology of the Mauritian flying fox (Pteropus niger): a long-term study using solar-powered GSM/GPS tags. Mov. Ecol. 7, 1–12 (2019).Article 

    Google Scholar 
    Seegobin, V. O., Oleksy, R. Z. & Florens, F. B. V. Foraging and roosting patterns of a repeatedly mass-culled island flying fox offer avenues to mitigate human-wildlife conflict. Biodiversity 23, 49–60 (2022).Article 

    Google Scholar 
    Baider, C. et al. Status of plant conservation in oceanic islands of the Western Indian Ocean. In Proceedings of the 4th Global Botanic Gardens Congress (National Botanic Gardens of Ireland, Dublin, 2010).Humphreys, A. M., Govaerts, R., Ficinski, S. Z., Lughadha, E. N. & Vorontsova, M. S. Global dataset shows geography and life form predict modern plant extinction and rediscovery. Nat. Ecol. Evol. 3, 1043–1047 (2019).Article 
    PubMed 

    Google Scholar 
    BGCI. State of the World’s Trees (BGCI, 2021).Vázquez-Yanes, C. & Orozco-Segovia, A. Patterns of seed longevity and germination in the tropical rainforest. Annu. Rev. Ecol. Syst. 24, 69–87 (1993).Article 

    Google Scholar 
    Gallaher, T., Callmander, M. W., Buerki, S. & Keeley, S. C. A long distance dispersal hypothesis for the Pandanaceae and the origins of the Pandanus tectorius complex. Mol. Phylogenet. Evol. 83, 20–32 (2015).Article 
    PubMed 

    Google Scholar 
    Hansen, D. M., Kaiser, C. N. & Müller, C. B. Seed dispersal and establishment of endangered plants on oceanic islands: the Janzen-Connell model, and the use of ecological analogues. PLoS ONE 3, e2111 (2008).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albert, S., Flores, O., Stahl, M., Guilhabert, F. & Strasberg, D. Tree recruitment after native frugivore extinction? A field experiment to test the impact of fruit flesh persistence in a tropical oceanic island. J. Trop. Ecol. 38, 370–376 (2022).Article 

    Google Scholar 
    Witmer, M. C. & Cheke, A. S. The dodo and the tambalacoque tree: an obligate mutualism reconsidered. Oikos 61, 133–137 (1991).Bosser, J., Cadet, T., Guého, J. & Marais, W. Flore des Mascareignes: La Réunion, Maurice, Rodrigues (MSIRI/ORSTOM-IRD/Kew, Mauritius, 1976-onwards).Jordano, P. Fruits and frugivory. In Seeds: The Ecology of Regeneration in Plant Communities (ed. Fenner, N.) 125–165 (CABI Publishing, 2000).van der Pijl, L. Principles of Dispersal in Higher Plants 218 (Springer-Verlag, 1969).Dominy, N. J., Svenning, J. C. & Li, W. H. Historical contingency in the evolution of primate color vision. J. Hum. Evol. 44, 25–45 (2003).Article 
    PubMed 

    Google Scholar 
    Oba, S. et al. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19, 2088–2096 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stekhoven, D. J. & Bühlmann, P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics 28, 112–118 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qian, H. & Jin, Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J. Plant Ecol. 9, 233–239 (2016).Article 

    Google Scholar 
    Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    Santos, T., Diniz-Filho, J. A., e Luis, T. R., Bini, M., & Santos, M. T. Package ‘PVR’. Phylogenetic Eigenvectors Regression and Phylogentic Signal-Representation, 3274 (2018).Hume, J. P. Extinct Birds 2nd edn (Bloomsbury, 2017).Safford, R. & Hawkins, F. The Birds of Africa: Volume VIII: The Malagasy Region: Madagascar, Seychelles, Comoros, Mascarenes 960 (Bloomsbury Publishing, 2013).Albert, S., Flores, O., Ah-Peng, C. & Strasberg, D. Forests without frugivores and frugivores without forests—an investigation into the causes of a paradox in one of the last archipelagos colonized by humans. Front. Ecol. Evol. 9, 539 (2021).Albert, S. et al. Rediscovery of the mistletoe Bakerella hoyifolia subsp. bojeri (Loranthaceae) on Reunion Island: population status assessment for its conservation. Bot. Lett. 164, 229–236 (2017).Article 

    Google Scholar 
    Atkinson, R. & Sevathian, J.-C. A Guide to the Plants in Mauritius 188 (Mauritian Wildlife Foundation, 2005).Austin, J. J. & Arnold, E. N. Using ancient and recent DNA to explore relationships of extinct and endangered Leiolopisma skinks (Reptilia: Scincidae) in the Mascarene islands. Mol. Phylogenet. Evol. 39, 503–511 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bissessur, P., Probst, J.-M. & Florens, F. B. V. Le Merle noir ou Bulbul de Maurice Hypsipetes olivaceus. Bull. Phaethon 46, 86–90 (2017).
    Google Scholar 
    Bullock, D. J. The ecology and conservation of reptiles on Round Island and Gunner’s Quion, Mauritius. Biol. Conserv. 37, 135–156 (1986).Article 

    Google Scholar 
    Cadet, L. J. T. La végétation de l’ile de La Réunion. Etude phytoécologique et phytosociologique. PhD thesis, Université Aix-Marseille, France, 362 (1977).Cheke, A. S. The ecology of the smaller land-birds of Mauritius. In Studies of Mascarene Islands Birds (ed. Diamond, A. W.) 151–207 (Cambridge University Press, 1987).Cole, R., Ladkoo, A., Tatayah, V. & Jones, C. Mauritius Olive White-eye Recovery Programme 2007-08 (Mauritian Wildlife Foundation, Vacoas, Mauritius, 2008).Falcón, W., Moll, D. & Hansen, D. M. Frugivory and seed dispersal by chelonians: a review and synthesis. Biol. Rev. 95, 142–166 (2020).Article 
    PubMed 

    Google Scholar 
    Guérin, R. Faune ornithologique ancienne et actuelle des îles Mascareignes, Seychelles, Comores et des îles avoisinantes, Vol. 3 (General Printing & Stationery Co., 1940–53).Günther, A. C. L. G. The Gigantic Land-tortoises (Living and Extinct) in the Collection of the British Museum 96 (Order of the Trustees, London, 1877).Hansen, D. M. Ecology, Evolution, and Conservation of Plant-Animal Interactions in Islands. PhD thesis, University of Zurich, 192 (2006).Hansen, D. M. & Müller, C. B. Invasive ants disrupt gecko pollination and seed dispersal of the endangered plant Roussea simplex in Mauritius. Biotropica 41, 202–208 (2009).Article 

    Google Scholar 
    Harper, G. A. & Bunbury, N. Invasive rats on tropical islands: their population biology and impacts on native species. Glob. Ecol. Conserv. 3, 607–627 (2015).Article 

    Google Scholar 
    Henkel, F. W. & Schmidt, W. Amphibians and Reptiles of Madagascar and the Mascarene, Seychelles, and Comoro Islands 316 (Krieger Publishing, 2000).Hume, J. P. Systematics, morphology, and ecology of pigeons and doves (Aves: Columbidae) of the Mascarene Islands, with three new species. Zootaxa 3124, 1–62 (2011).Article 

    Google Scholar 
    Hume, J. P. Systematics, morphology, and ecology of rails (Aves: Rallidae) of the Mascarene Islands, with one new species. Zootaxa 4626, 001–107 (2019).Article 

    Google Scholar 
    Jones, C. G. The larger land-birds of Mauritius. In Studies of Mascarene Island birds (ed. Diamond, A. W.) 208–300 (Cambridge University Press, 1987).Jones, C. G. Studies on the Biology of the Pink Pigeon. Columba mayeri. PhD thesis, University College of Swansea, University of Wales, UK (1995).Larosa, A. M., Smith, C. W. & Gardner, D. E. Role of alien and native birds in the dissemination of firetree (Myrica faya Ait.-Myriacaceae) and associated plants in Hawaii. Pac. Sci. 39, 372–378 (1985).
    Google Scholar 
    Leguat de la Fougère, F. Voyage et aventures de François Leguat et de ses compagnons en deux iles désertes des Indes Orientales, Vol. 2 (J.J. Delorme, Amsterdam, 1707).Linnebjerg, J. F., Hansen, D. M. & Olesen, J. M. Gut passage effect of the introduced red-whiskered bulbul (Pycnonotus jocosus) on germination of invasive plant species in Mauritius. Austral. Ecol. 34, 272–277 (2009).Article 

    Google Scholar 
    Lorence, D. H. A monograph of the Monimiaceae (Laurales) in the Malagasy region (southwest Indian Ocean). Ann. Mo. Bot. Gard. 72, 1–165 (1985).Article 

    Google Scholar 
    Maggs, G. et al. Quantifying drivers of supplementary food use by a reintroduced, critically endangered passerine to inform management and habitat restoration. Biol. Conserv. 238, 108240 (2019).Article 

    Google Scholar 
    Meyer, J. Y. & Butaud, J. F. The impacts of rats on the endangered native flora of French Polynesia (Pacific Islands): drivers of plant extinction or coup de grâce species? Biol. Invasions 11, 1569–1585 (2009).Article 

    Google Scholar 
    Moorhouse-Gann, R. J. et al. New universal ITS2 primers for high-resolution herbivory analyses using DNA metabarcoding in both tropical and temperate zones. Sci. Rep. 8, 1–15 (2018).Article 
    CAS 

    Google Scholar 
    Nyhagen, D. F., Kragelund, C., Olesen, J. M. & Jones, C. G. Insular interactions between lizards and flowers: flower visitation by an endemic Mauritian gecko. J. Trop. Ecol. 17, 755–761 (2001).Article 

    Google Scholar 
    Nyhagen, D. F., Turnbull, S. D., Olesen, J. M. & Jones, C. G. An investigation into the role of the Mauritian flying fox, Pteropus niger, in forest regeneration. Biol. Conserv. 122, 491–497 (2005).Article 

    Google Scholar 
    Probst, J.-M. Les Bulbuls du genre Hypsipetes dans les Mascareignes (Océan Indien). Observations Mascarines 1, 34–36 (1988).
    Google Scholar 
    Probst, J. M. Capacité de vol étonnante du Bulbul orphée Pycnonotus jocosus (Ile aux Aigrettes–Ile Maurice). Bull. Phaethon 1, 14–17 (1995).
    Google Scholar 
    Safford, R. Conservation of the Forest-living Native Birds of Mauritius. PhD thesis, University of Kent at Canterbury, 265 (1994).Sengupta, S. Food and feeding ecology of the common myna, Acridotheres tristis (Linn.). J. Proc. Indian Natl Sci. Acad. Part B Biol. Sci. 42, 338–345 (1976).
    Google Scholar 
    Staub, F. Evolutionary trends in some Mauritian phanerogams in relation to their pollinators. Proc. R. Soc. Arts Sci. Maurit. 5, 7–78 (1988).
    Google Scholar 
    Strahm, W. A. The Conservation and Restoration of the Flora of Mauritius and Rodrigues, Vol. 2. PhD thesis, University of Reading (1993) .Sussman, R. W. & Tattersall, I. Behavior and ecology of Macaca fascicularis in Mauritius: a preliminary study. Primates 22, 192–205 (1981).Article 

    Google Scholar 
    Sussman, R. W. & Tattersall, I. Distribution, abundance, and putative ecological strategy of Macaca fascicularis on the island of Mauritius, southwestern Indian Ocean. Folia Primatol. 46, 28–43 (1986).Article 

    Google Scholar 
    Valido, A. & Olesen, J. M. The importance of lizards as frugivores and seed dispersers. In Seed Dispersal: Theory and Its Application in a Changing World (eds Dennis, A. J. et al.) 124–147 (CAB International, 2007).Vinson, J. & Vinson, J. M. Notes on the reptiles of Round Island. Maurit. Inst. Bull. 8, 49–67 (1975).
    Google Scholar 
    von Bethlenfalvy, G. Vertebrate Seed Dispersers in Mauritius: Fruit Traits and Fruit Traits Preferences. MSc thesis, Institute of Zoology, University of Zurich, Switzerland (2006).Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals: ecological archives E095-178. Ecology 95, 2027–2027 (2014).Article 

    Google Scholar 
    Winters, R. & Hume, J. P. The dodo, the deer and a 1647 voyage to Japan. Historical. Biology 27, 258–264 (2015).
    Google Scholar 
    Zuël, N. Ecology and Conservation of an Endangered Reptile Community on Round Island, Mauritius. Doctoral dissertation, University of Zurich (2009).Zuël, N. et al. Ingestion by an endemic frugivore enhances seed germination of endemic plant species but decreases seedling survival of exotics. J. Biogeogr. 39, 2021–2030 (2012).Article 

    Google Scholar 
    Kissling, W. D., Böhning–Gaese, K. & Jetz, W. The global distribution of frugivory in birds. Glob. Ecol. Biogeogr. 18, 150–162 (2009).Article 

    Google Scholar 
    Sandom, C. et al. Mammal predator and prey species richness are strongly linked at macroscales. Ecology 94, 1112–1122 (2013).Article 
    PubMed 

    Google Scholar 
    Hume, J. P. A new subfossil bulbul (Aves: Passerines: Pycnonotidae) from Rodrigues Island, Mascarenes, southwestern Indian Ocean. Ostrich 86, 247–260 (2015).Article 

    Google Scholar 
    Austin, J. J., Arnold, E. N. & Jones, C. G. Reconstructing an island radiation using ancient and recent DNA: the extinct and living day geckos (Phelsuma) of the Mascarene islands. Mol. Phylogenet. Evol. 31, 109–122 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Malaria-driven adaptation of MHC class I in wild bonobo populations

    World Health Organization. World malaria report 2022. (2022).Kariuki, S. N. & Williams, T. N. Human genetics and malaria resistance. Hum. Gen. 139, 801–811 (2020).Article 

    Google Scholar 
    Watson, J. A., White, N. J. & Dondorp, A. M. Falciparum malaria mortality in sub-Saharan Africa in the pretreatment era. Trends Parasitol. 38, 11–14 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sanchez-Mazas, A. A review of HLA allele and SNP associations with highly prevalent infectious diseases in human populations. Swiss Med. Wkly. 150, w20214 (2020).PubMed 

    Google Scholar 
    Heijmans, C. M. C., de Groot, N. G. & Bontrop, R. E. Comparative genetics of the major histocompatibility complex in humans and nonhuman primates. Int. J. Immunogenet. 47, 243–260 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Neefjes, J., Jongsma, M. L., Paul, P. & Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 11, 823–836 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zinkernagel, R. M. & Doherty, P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Colonna, M. & Samaridis, J. Cloning of Immunoglobulin-Superfamily Members Associated with HLA-C and HLA-B Recognition by Human Natural Killer Cells. Science 268, 405–408 (1995).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hill, A. V. et al. Common west African HLA antigens are associated with protection from severe malaria. Nature 352, 595–600 (1991).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sanchez‐Mazas, A. et al. The HLA‐B landscape of Africa: signatures of pathogen‐driven selection and molecular identification of candidate alleles to malaria protection. Mol. Ecol. 26, 6238–6252 (2017).Article 
    PubMed 

    Google Scholar 
    Hill, A. V. et al. Molecular analysis of the association of HLA-B53 and resistance to severe malaria. Nature 360, 434–439 (1992).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Norman, P. J. et al. Co-evolution of human leukocyte antigen (HLA) class I ligands with killer-cell immunoglobulin-like receptors (KIR) in a genetically diverse population of sub-Saharan Africans. PLoS Genet. 9, e1003938 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharp, P. M., Plenderleith, L. J. & Hahn, B. H. Ape origins of human malaria. Annu. Rev. Microbiol. 74, 39–63 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, W. et al. Wild bonobos host geographically restricted malaria parasites including a putative new Laverania species. Nat. Commun. 8, 1635 (2017).Liu, W. et al. African origin of the malaria parasite Plasmodium vivax. Nat. Commun. 5, 3346 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Liu, W. et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 467, 420–425 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, W. et al. Multigenomic delineation of Plasmodium species of the Laverania subgenus infecting wild-living chimpanzees and gorillas. Genome Biol. Evol. 8, 1929–1939 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Nys, H. M. et al. Age-related effects on malaria parasite infection in wild chimpanzees. Biol. Lett. 9, 20121160 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Nys, H. M. et al. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 13, 1–6 (2014).
    Google Scholar 
    Mapua, M. I. et al. Ecology of malaria infections in western lowland gorillas inhabiting Dzanga Sangha Protected Areas, Central African Republic. Parasitology 142, 890–900 (2015).Article 
    PubMed 

    Google Scholar 
    Scully, E. J. et al. The ecology and epidemiology of malaria parasitism in wild chimpanzee reservoirs. Commun. Biol. 5, 1020 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbert, A. et al. Malaria-like symptoms associated with a natural Plasmodium reichenowi infection in a chimpanzee. Malar. J. 14, 1–8 (2015).Article 

    Google Scholar 
    De Nys, H. M., Löhrich, T., Wu, D., Calvignac-Spencer, S. & Leendertz, F. H. Wild African great apes as natural hosts of malaria parasites: current knowledge and research perspectives. Primate Biol. 4, 47–59 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takemoto, H., Kawamoto, Y. & Furuichi, T. How did bonobos come to range south of the congo river? Reconsideration of the divergence of Pan paniscus from other Pan populations. Evol. Anthropol. 24, 170–184 (2015).Article 
    PubMed 

    Google Scholar 
    Takemoto, H., Kawamoto, Y. & Furuichi, T. The formation of Congo River and the origin of bonobos: A new hypothesis. in Bonobos: unique in mind, brain, and behavior (eds. Hare, B. & Yamamoto, S.) 235-248 (Oxford University Press, 2017).Takemoto, H. et al. The mitochondrial ancestor of bonobos and the origin of their major haplogroups. PLoS One. 12, e0174851 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pilbrow, V. & Groves, C. Evidence for divergence in populations of bonobos (Pan paniscus) in the Lomami-Lualaba and Kasai-Sankuru regions based on preliminary analysis of craniodental variation. Int. J. Primatol. 34, 1244–1260 (2013).Article 

    Google Scholar 
    de Groot, N. G., Stevens, J. M. & Bontrop, R. E. Does the MHC confer protection against malaria in bonobos? Trends Immunol. 39, 768–771 (2018).Article 
    PubMed 

    Google Scholar 
    Sidney, J., Peters, B., Frahm, N., Brander, C. & Sette, A. HLA class I supertypes: a revised and updated classification. BMC Immunol. 9, 1 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wroblewski, E. E. et al. Bonobos maintain immune system diversity with three functional types of MHC-B. J. Immunol. 198, 3480–3493 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bjorkman, P. et al. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329, 512–518 (1987).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Guethlein, L. A., Norman, P. J., Hilton, H. G. & Parham, P. Co-evolution of MHC class I and variable NK cell receptors in placental mammals. Immunol. Rev. 267, 259–282 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wroblewski, E. E. et al. Signature patterns of MHC diversity in three Gombe communities of wild chimpanzees reflect fitness in reproduction and immune defense against SIVcpz. PLoS. Biol. 13, e1002144 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. et al. Eastern chimpanzees, but not bonobos, represent a simian immunodeficiency virus reservoir. J. Virol. 18, 10776–10791 (2012).Article 

    Google Scholar 
    Yang, C. et al. Sequence variations in the non-repetitive regions of the liver stage-specific antigen-1 (LSA-1) of Plasmodium falciparum from field isolates,. Mol. Biochem Parasitol. 71, 291–294 (1995).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fidock, D. A. et al. Plasmodium falciparum liver stage antigen-1 is well conserved and contains potent B and T cell determinants. J. Immunol. 153, 190–204 (1994).Article 
    CAS 
    PubMed 

    Google Scholar 
    Aurrecoechea, C. et al. PlasmoDB: a functional genomic database for malaria parasites. Nucl. Acids Res. 37, D539–D543 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hughes, A. L. & Yeager, M. Natural selection at major histocompatibility complex loci of vertebrates. Annu. Rev. Genet. 32, 415–435 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Trowsdale, J. The MHC, disease and selection. Immunol. Lett. 137, 1–8 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Crow, J. & Kimura, M. An Introduction To Population Genetics Theory. (Alpha Editions, 1970).Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature 499, 471 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Digitale, J. C. et al. HLA alleles B* 53:01 and C* 06:02 are associated with higher risk of P. falciparum parasitemia in a cohort in Uganda. Front. Immunol. 12, 650028 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyke, K. E. et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 77, 562–571 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Osafo-Addo, A. D. et al. HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am. J. Trop. Med. 78, 251–255 (2008).Article 

    Google Scholar 
    Jallow, M. et al. Genome-wide and fine-resolution association analysis of malaria in West Africa. Nat. Genet. 41, 657–665 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malaria Genomic Epidemiology Network. Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania. Nat. Commun. 10, 5732 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Ravenhall, M. et al. Novel genetic polymorphisms associated with severe malaria and under selective pressure in North-eastern Tanzania. PLoS Genet. 14, e1007172 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Damena, D., Denis, A., Golassa, L. & Chimusa, E. R. Genome-wide association studies of severe P. falciparum malaria susceptibility: progress, pitfalls and prospects. BMC Med. Genom. 12, 1–14 (2019).Article 
    CAS 

    Google Scholar 
    Kennedy, A. E., Ozbek, U. & Dorak, M. T. What has GWAS done for HLA and disease associations? Int. J. Immunogenet. 44, 195–211 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tukwasibwe, S. et al. Variations in killer-cell immunoglobulin-like receptor and human leukocyte antigen genes and immunity to malaria. Cell. Mol. Immunol. 17, 799–806 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leffler, E. M. et al. Multiple instances of ancient balancing selection shared between humans and chimpanzees. Science 339, 1578–1582 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, M. et al. Malaria. Nat. Rev. Dis. Prim. 3, 17050 (2017).Article 
    PubMed 

    Google Scholar 
    Samandary, S. et al. Associations of HLA-A, HLA-B and HLA-C alleles frequency with prevalence of herpes simplex virus infections and diseases across global populations: implication for the development of an universal CD8+ T-cell epitope-based vaccine. Hum. Immunol. 75, 715–729 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miranda-Katz, M. et al. Novel HLA-B7-restricted human metapneumovirus epitopes enhance viral clearance in mice and are recognized by human CD8+ T cells. Sci. Rep. 11, 20769 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Appanna, R., Ponnampalavanar, S., Lum Chai See, L. & Sekaran, S. D. Susceptible and protective HLA class 1 alleles against dengue fever and dengue hemorrhagic fever patients in a Malaysian population. PloS One 5, e13029 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. NEJM 344, 1668–1675 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sharp, P. M. & Hahn, B. H. Origins of HIV and the AIDS pandemic. Cold Spring Harb. Perspect. Med. 1, a006841 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbian, H. J. et al. CHIIMP: An automated high‐throughput microsatellite genotyping platform reveals greater allelic diversity in wild chimpanzees. Ecol. Evol. 8, 7946–7963 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sullivan, K. M., Mannucci, A., Kimpton, C. P. & Gill, P. A rapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin. Biotechniques 15, 636–638 (1993). 640-631.CAS 
    PubMed 

    Google Scholar 
    de Groot, N. G. et al. Nomenclature report 2019: major histocompatibility complex genes and alleles of Great and Small Ape and Old and New World monkey species. Immunogenet 72, 25–36 (2020).Article 

    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Thomsen, M., Lundegaard, C., Buus, S., Lund, O. & Nielsen, M. MHCcluster, a method for functional clustering of MHC molecules. Immunogenet 65, 655–665 (2013).Article 
    CAS 

    Google Scholar 
    Maibach, V. & Vigilant, L. Reduced bonobo MHC class I diversity predicts a reduced viral peptide binding ability compared to chimpanzees. BMC Evol. Biol. 19, 1–15 (2019).Article 

    Google Scholar 
    Wroblewski, E. E., Parham, P. & Guethlein, L. A. Two to tango: co-evolution of hominid natural killer cell receptors and MHC. Front. Immunol. 10 https://doi.org/10.3389/fimmu.2019.00177 (2019).Raymond, M. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: a complete re‐implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).Article 
    PubMed 

    Google Scholar 
    Wilson, M. L. et al. Lethal aggression in Pan is better explained by adaptive strategies than human impacts. Nature 513, 414–417 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cheng, L., Samuni, L., Lucchesi, S., Deschner, T. & Surbeck, M. Love thy neighbour: behavioural and endocrine correlates of male strategies during intergroup encounters in bonobos. Anim. Behav. 187, 319–330 (2022).Article 

    Google Scholar 
    Lucchesi, S. et al. Beyond the group: how food, mates, and group size influence intergroup encounters in wild bonobos. Behav. Ecol. 31, 519–532 (2020).Article 

    Google Scholar 
    Plumptre, A., Robbins, M. M. & Williamson, E. A. Gorilla beringei. The IUCN Red List of Threatened Species 2019: e.T39994A115576640. (2019).Maisels, F., Bergl, R. A. & Williamson, E. A. Gorilla gorilla (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2018: e.T9404A136250858. (2018).Humle, T., Maisels, F., Oates, J.F., Plumptre, A. & Williamson, E.A. Pan troglodytes (errata version published in 2018). The IUCN Red List of Threatened Species 2016: e.T15933A129038584. (2016).Fruth, B. et al. Pan paniscus (errata version published in 2016). The IUCN Red List of Threatened Species 2016: e.T15932A102331567. (2016). More