More stories

  • in

    Experimental evidence of parasite-induced behavioural alterations modulated by food availability in wild capuchin monkeys

    Moore, J. An overview of parasite-induced behavioral alterations – and some lessons from bats. J. Exp. Biol. 216, 11–17 (2012).Article 

    Google Scholar 
    Nunn, C. L. & Altizer, S. Infectious Diseases in Primates: Behavior, Ecology and Evolution (Oxford University Press, 2006).Book 

    Google Scholar 
    Hutchings, M. R., Athanasiadou, S., Kyriazakis, I. & Gordon, I. J. Nutrition and Behaviour Group Symposium on ‘Exploitation of medicinal properties of plants by animals and man through food intake and foraging behaviour’: Can animals use foraging behaviour to combat parasites?. Proc. Nutr. Soc. 62, 361–370 (2003).Article 

    Google Scholar 
    Hawley, D. M., Etienne, R. S., Ezenwa, V. O. & Jolles, A. E. Does animal behavior underlie covariation between hosts’ exposure to infectious agents and susceptibility to infection? Implications for disease dynamics. Integr. Comp. Biol. 51, 528–539 (2011).Article 

    Google Scholar 
    Rimbach, R. et al. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140110 (2015).Article 

    Google Scholar 
    Friant, S., Ziegler, T. E. & Goldberg, T. L. Changes in physiological stress and behaviour in semi-free-ranging red-capped mangabeys (Cercocebus torquatus) following antiparasitic treatment. Proc. R. Soc. B Biol. Sci. 283, 20161201 (2016).Article 

    Google Scholar 
    Hudson, P. J. & Dobson, A. P. Macroparasites: Observed patterns in naturally fluctuating animal populations. In Ecology of infectious diseases in natural populations (eds Grenfell, B. T. & Dobson, A. P.) 144–176 (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511629396.006.Chapter 

    Google Scholar 
    Murray, D. L., Lloyd, B. K. & Cary, J. R. Do parasitism and nutritional status interact to affect production in snowshoe hares?. Ecology 79, 1209–1222 (1998).Article 

    Google Scholar 
    Coop, R. L. & Holmes, P. H. Nutrition and parasite interaction. Int. J. Parasitol. 26, 951–962 (1996).Article 
    CAS 

    Google Scholar 
    Møller, A. P., de Lope, F., Moreno, J., González, G. & Pérez, J. J. Ectoparasites and host energetics: House martin bugs and house martin nestlings. Oecologia 98, 263–268 (1994).Article 
    ADS 

    Google Scholar 
    Munger, J. C. & Karasov, W. H. Sublethal parasites and host energy budgets: Tapeworm infection in white-footed mice. Ecology 70, 904–921 (1989).Article 

    Google Scholar 
    Hicks, O. et al. The energetic cost of parasitism in a wild population. Proc. R. Soc. B Biol. Sci. 285, 20180489 (2018).Article 

    Google Scholar 
    Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: A review and meta-analysis. Ecol. Lett. 21, 1869–1884 (2018).Article 

    Google Scholar 
    Kyriazakis, I., Tolkamp, B. J. & Hutchings, M. R. Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim. Behav. 56, 265–274 (1998).Article 
    CAS 

    Google Scholar 
    Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).Article 
    CAS 

    Google Scholar 
    Lopes, P. C., Block, P. & König, B. Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Pelletier, F. & Festa-Bianchet, M. Effects of body mass, age, dominance and parasite load on foraging time of bighorn rams. Ovis canadensis. Behav. Ecol. Sociobiol. 56, 546–551 (2004).Article 

    Google Scholar 
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).Article 

    Google Scholar 
    Hart, B. L. The behavior of sick animals. Vet. Clin. North Am. Small Anim. Pract. 21, 225–237 (1991).Article 
    CAS 

    Google Scholar 
    Poulin, R. Meta-analysis of parasite-induced behavioural changes. Anim. Behav. 48, 137–146 (1994).Article 

    Google Scholar 
    Janson, C. H. Toward an experiemental socioecology of primates. Examples from Argentine brown capuchin monkeys (Cebus apella nigritus). In Adaptive Radiations of Neotropical Primates (eds Janson, C. H. et al.) 309–325 (Plenum Press, 1996).Chapter 

    Google Scholar 
    Robinson, J. G. Seasonal variation in use of time and space by the wedge-capped capuchin monkey, Cebus olivaceus: Implications for foraging theory. Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.431 (1986).Article 

    Google Scholar 
    Saj, T., Sicotte, P. & Paterson, J. D. Influence of human food consumption on the time budget of vervets. Int. J. Primatol. 20, 977–994 (1999).Article 

    Google Scholar 
    Ghai, R. R., Fugère, V., Chapman, C. A., Goldberg, T. L. & Davies, T. J. Sickness behaviour associated with non-lethal infections in wild primates. Proc. Biol. Sci. 282, 20151436 (2015).
    Google Scholar 
    Blersch, R. et al. Sick and tired: Sickness behaviour, polyparasitism and food stress in a gregarious mammal. Behav. Ecol. Sociobiol. 75, 169 (2021).Article 

    Google Scholar 
    Müller-Klein, N. et al. Physiological and social consequences of gastrointestinal nematode infection in a nonhuman primate. Behav. Ecol. 30, 322–335 (2019).Article 

    Google Scholar 
    Chapman, C. A. et al. Social behaviours and networks of vervet monkeys are influenced by gastrointestinal parasites. PLoS ONE 11, e0161113 (2016).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: characterization and seasonal variation. J. Ornithol. 148, 583–591 (2007).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Seasonal modulation of sickness behavior in free-living northwestern song sparrows (Melospiza melodia morphna). J. Exp. Biol. 209, 3062–3070 (2006).Article 

    Google Scholar 
    Janson, C. H. & Di Bitetti, M. S. Experimental analysis of food detection in capuchin monkeys: Effects of distance, travel speed, and resource size. Behav. Ecol. Sociobiol. 41, 17–24 (1997).Article 

    Google Scholar 
    Di Bitetti, M. S. Food-associated calls in the tufted capuchin monkey (Cebus apella). PhD Thesis. (Stony Brook University, New York, 2001).Di Bitetti, M. S. & Janson, C. H. Reproductive socioecology of tufted capuchins (Cebus apella nigritus) in Norteastern Argentina. Int. J. Primatol. 22, 127–142 (2001).Article 

    Google Scholar 
    Janson, C., Baldovino, M. C. & Di Bitetti, M. The group life cycle and demography of brown capuchin monkeys (Cebus [apella] nigritus) in Iguazú National Park, Argentina. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 185–212 (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-22514-7_9.Chapter 

    Google Scholar 
    Robinson, J. C. & Galán Saúco, V. Bananas and plantains. (Crop production science in horticulture series N. 19, CAB International, 2010). https://doi.org/10.1079/9781845936587.0000Tiddi, B., Pfoh, R. & Agostini, I. The impact of food provisioning on parasite infection in wild black capuchin monkeys: A network approach. Primates 60, 297–306 (2019).Article 

    Google Scholar 
    Agostini, I., Vanderhoeven, E., Di Bitetti, M. S. & Beldomenico, P. M. Experimental testing of reciprocal effects of nutrition and parasitism in wild black capuchin monkeys. Sci. Rep. 7, 1–11 (2017).Article 

    Google Scholar 
    de Vries, H., Netto, W. J. & Hanegraaf, P. L. H. Matman: a program for the analysis of sociometric matrices and behavioural transition matrices. Behaviour 125, 157–175 (1993).Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, 1993). https://doi.org/10.1017/cbo9780511810893.Book 

    Google Scholar 
    Cox, D. D. & Todd, A. C. Survey of gastrointestinal parasitism in Wisconsin dairy cattle. J. Am. Vet. Med. Assoc. 141, 706–709 (1962).CAS 

    Google Scholar 
    Ballweber, L. R., Beugnet, F., Marchiondo, A. A. & Payne, P. A. American association of veterinary parasitologists’ review of veterinary fecal flotation methods and factors influencing their accuracy and use—Is there really one best technique?. Vet. Parasitol. 204, 73–80 (2014).Article 
    CAS 

    Google Scholar 
    Godfrey, S. S. Networks and the ecology of parasite transmission: a framework for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 (2013).Article 

    Google Scholar 
    Sosa, S., Sueur, C. & Puga-Gonzalez, I. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol. Evol. 2020, 1–12 (2020).
    Google Scholar 
    Sosa, S. et al. A multilevel statistical toolkit to study animal social networks: The Animal Network Toolkit Software (ANTs) R package. Sci. Rep. 10, 12507 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Croft, D. P., Madden, J. R., Franks, D. W. & James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 502–507 (2011).Article 

    Google Scholar 
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecological Modelling (Springer, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. 63 (2016). citeulike:11961261Carlton, E. D., Demas, G. E. & French, S. S. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm. Behav. 62, 272–279 (2012).Article 
    CAS 

    Google Scholar 
    Tizard, I. Sickness behavior, its mechanisms and significance. Anim. Health Res. Rev. 9, 87–99 (2008).Article 

    Google Scholar 
    Inoue, W. & Luheshi, G. N. Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1709-19 (2010).Article 

    Google Scholar 
    Macdonald, L., Radler, M., Paolini, A. G. & Kent, S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an antiinflammatory bias. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, 172–184 (2011).Article 

    Google Scholar 
    Wisse, B. E. et al. Physiological regulation of hypothalamic IL-1β gene expression by leptin and glucocorticoids: implications for energy homeostasis. Am. J. Physiol. Endocrinol. Metab. 287, R1107–R1113 (2004).Article 

    Google Scholar 
    Pohl, J., Woodside, B. & Luheshi, G. N. Changes in hypothalamically mediated acute-phase inflammatory responses to lipopolysaccharide in diet-induced obese rats. Endocrinology 150, 4901–4910 (2009).Article 
    CAS 

    Google Scholar 
    Bretscher, P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: classical observations must not be ignored. Front. Immunol. 10, 1–7 (2019).Article 

    Google Scholar 
    Poppi, D. P., Sykes, A. R. & Dynes, R. A. The effect of endoparasitism on host nutrition – the implications for nutrient manipulation. Proc. New Zeal. Soc. Anim. Prod. 50, 237–243 (1990).
    Google Scholar 
    Coulson, G., Cripps, J. K., Garnick, S., Bristow, V. & Beveridge, I. Parasite insight: assessing fitness costs, infection risks and foraging benefits relating to gastrointestinal nematodes in wild mammalian herbivores. Philos. Trans. R. Soc. B Biol. Sci. 373, 197 (2018).Article 

    Google Scholar 
    Worsley-Tonks, K. E. L. & Ezenwa, V. O. Anthelmintic treatment affects behavioural time allocation in a free-ranging ungulate. Anim. Behav. 108, 47–54 (2015).Article 

    Google Scholar 
    Jones, O. R., Anderson, R. M. & Pilkington, J. G. Parasite-induced anorexia in a free-ranging mammalian herbivore: An experimental test using Soay sheep. Can. J. Zool. 84, 685–692 (2006).Article 

    Google Scholar 
    Cripps, J. K., Martin, J. K. & Coulson, G. Anthelmintic treatment does not change foraging strategies of female eastern grey kangaroos, Macropus giganteus. PLoS ONE 11, e0147384 (2016).Article 

    Google Scholar 
    Giles, N. Predation risk and reduced foraging activity in fish: experiments with parasitized and non-parasitized three-spined sticklebacks, Gasterosteus aculeatus L.. J. Fish Biol. 31, 37–44 (1987).Article 

    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Wu, Q. C., Ortega, C. N. & Rohr, J. R. Host resistance and tolerance of parasitic gut worms depend on resource availability. Oecologia 183, 1031–1040 (2017).Article 
    ADS 

    Google Scholar 
    Lopes, P. C., French, S. S., Woodhams, D. C. & Binning, S. A. Metabolic response of dolphins to short-term fasting reveals physiological changes that differ from the traditional fasting model. J. Exp. Biol. 224, jeb225847 (2021).Article 

    Google Scholar 
    Behringer, D. C., Butler, M. J. & Shields, J. D. Ecology: Avoidance of disease by social lobsters. Nature 441, 421 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Poirotte, C. et al. Mandrills use olfaction to socially avoid parasitized conspecifics. Sci. Adv. 3, e1601721 (2017).Article 
    ADS 

    Google Scholar  More

  • in

    Exploring soil bacterial diversity in different micro-vegetational habitats of Dachigam National Park in North-western Himalaya

    Hatton, P. J., Castanha, C., Torn, M. S. & Bird, J. A. Litter type control on soil C and N stabilization dynamics in a temperate forest. Glob. Change Biol. 21(3), 1358–1367. https://doi.org/10.1111/gcb.12786 (2015).Article 
    ADS 

    Google Scholar 
    Lladó, S., López-Mondéjar, R. & Baldrian, P. Forest soil bacteria: Diversity, involvement in ecosystem processes, and response to global change. Microbiol. Mol. Biol. Rev. 81(2), e00063–16. https://doi.org/10.1128/mmbr.00063-16 (2017).Article 
    CAS 

    Google Scholar 
    Ranjard, L. & Richaume, A. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 152(8), 707–716. https://doi.org/10.1016/S0923-2508(01)01251-7 (2001).Article 
    CAS 

    Google Scholar 
    Nannipieri, P., Badalucco, L., Benbi, D. K., & Nieder, R. Handbook of processes and modelling in the soil-plant system. Biological Processes, 57–82 (2003).Wixon, D. L. & Balser, T. C. Complexity, climate change and soil carbon: A systems approach to microbial temperature response. Syst. Res. Behav. Sci. 26(5), 601–620. https://doi.org/10.1002/sres.995 (2009).Article 

    Google Scholar 
    Van Der Heijden, M. G., Bardgett, R. D. & Van Straalen, N. M. The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11(3), 296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x (2008).Article 

    Google Scholar 
    Tisdall, J. M. Possible role of soil microorganisms in aggregation in soils. Plant Soil 159, 115–121. https://doi.org/10.1007/BF00000100 (1994).Article 

    Google Scholar 
    Ingham, E. R. Soil biology primer, Chapter 4: Soil fungus. Soil and Water Conservation 22–23 (Soil and Water Conservation Society, 2009).
    Google Scholar 
    Stevens, W. B., Sainju, U. M., Caesar, A. J., West, M. & Gaskin, J. F. Soil-aggregating bacterial community as affected by irrigation, tillage, and cropping system in the northern great plains. Soil Sci. 179(1), 11–20 (2014).Article 
    ADS 

    Google Scholar 
    Islam, K. R. Lecture on Soil Physics, Personal Collection of K. Islam (Ohio State University, 2008).
    Google Scholar 
    López-Mondéjar, R., Zühlke, D., Becher, D., Riedel, K. & Baldrian, P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Sci. Rep. 6(1), 25279. https://doi.org/10.1038/srep25279 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Wardle, D. A., Nilsson, M. C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320(5876), 629–629. https://doi.org/10.1126/science.1154960 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Shelobolina, E., Roden, E., Benzine, J. & Xiong, M. Y. Using phyllosilicate-Fe (II)-oxidizing soil bacteria to improve Fe and K plant nutrition. U.S. Patent Application 14/924,397 (Wisconsin Alumni Research Foundation, 2016).
    Google Scholar 
    Kumar, A., & Verma, J. P. The role of microbes to improve crop productivity and soil health. In Ecological Wisdom Inspired Restoration Engineering 249–265. https://doi.org/10.1007/978-981-13-0149-0_14 (2019).Dick, W. Lecture on Biochemistry Process in Soil Microbiology, Personal Collection of W. Dick (The Ohio State University School of Environment and Natural Resources, 2009).
    Google Scholar 
    Reed, S. C., Cleveland, C. C. & Townsend, A. R. Functional ecology of free-living nitrogen fixation: A contemporary perspective. Annu. Rev. Ecol. Evol. Syst. 42, 489–512. https://doi.org/10.1146/annurev-ecolsys-102710-145034 (2011).Article 

    Google Scholar 
    Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G. & Zuberer, D. A. Principles and Applications of Soil Microbiology (No. QR111 S674 2005) 2nd edn. (Prentice Hall, 2005).
    Google Scholar 
    Torsvik, V., Daae, F. L., Sandaa, R. A. & Øvreås, L. Novel techniques for analysing microbial diversity in natural and perturbed environments. J. Biotechnol. 64(1), 53–62. https://doi.org/10.1016/s0168-1656(98)00103-5 (1998).Article 
    CAS 

    Google Scholar 
    Roesch, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1(4), 283–290. https://doi.org/10.1038/ismej.2007.53 (2007).Article 
    CAS 

    Google Scholar 
    Rousk, J., Brookes, P. C. & Bååth, E. The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42(3), 516–520. https://doi.org/10.1016/j.soilbio.2009.11.026 (2010).Article 
    CAS 

    Google Scholar 
    Brockett, B. F., Prescott, C. E. & Grayston, S. J. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol. Biochem. 44(1), 9–20. https://doi.org/10.1016/j.soilbio.2011.09.003 (2012).Article 
    CAS 

    Google Scholar 
    Urbanová, M., Šnajdr, J. & Baldrian, P. Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees. Soil Biol. Biochem. 84, 53–64. https://doi.org/10.1016/j.soilbio.2015.02.011 (2015).Article 
    CAS 

    Google Scholar 
    Binkley, D. & Vitousek, P. M. Soil nutrient availability. In Plant Physiological, Field Methods and Instrumentation (eds Pearey, R. W. et al.) 75–96 (Champan and Hall, 1989).Chapter 

    Google Scholar 
    Ruess, J. O. & Innis, G. S. A grassland nitrogen flow simulation mode. Ecology 58, 348–429. https://doi.org/10.2307/1935612 (1977).Article 

    Google Scholar 
    Kumar, M., Sharma, C. M. & Rajwar, G. S. Physico-chemical properties of forest soil along altitudinal gradient in Garhwal Himalaya. J. Hill Res. 17(2), 60–64 (2004).
    Google Scholar 
    Smit, E. et al. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67(5), 2284–2291. https://doi.org/10.1128/AEM.67.5.2284-2291.2001 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Qazi, P. H. Bioprospecting Himalayan microbial diversity. ENVIS Newsletter on Himalayan Ecology 12(4). http://gbpihedenvis.nic.in/ENVIS%20Newsletter/vol%2012(4).pdf (2015).Pradhan, S. et al. Bacterial biodiversity from Roopkund glacier, Himalayan Mountain ranges, India. Extremophiles 14, 377–395. https://doi.org/10.1007/s00792-010-0318-3 (2010).Article 
    CAS 

    Google Scholar 
    Shivaji, S. et al. Bacterial diversity of soil in the vicinity of Pindari glacier, Himalayan Mountain ranges, India, using culturable bacteria and soil 16S rRNA gene clones. Extremophiles 15, 1–22. https://doi.org/10.1007/s00792-010-0333-4 (2011).Article 
    CAS 

    Google Scholar 
    Das, J. & Dangar, T. K. Microbial population dynamics, especially stress tolerant Bacillus thuringiensis, in partially anaerobic rice field soils during post-harvest period of the Himalayan, island, brackish water and coastal habitats of India. World J. Microbiol. Biotechnol. 24, 1403–1410. https://doi.org/10.1007/s11274-007-9620-3 (2008).Article 

    Google Scholar 
    Lyngwi, N. A., Koijam, K., Sharma, D. & Joshi, S. R. Cultivable bacterial diversity along the altitudinal zonation and vegetation range of tropical Eastern Himalaya. Rev. Biol. Trop. 61(1), 467–490. https://doi.org/10.15517/rbt.v61i1.11141 (2013).Article 

    Google Scholar 
    Pandey, S., Singh, S., Yadav, A. N., Nain, L. & Saxena, A. K. Phylogenetic diversity and characterization of novel and efficient cellulase producing bacterial isolates from various extreme environments. Biosci. Biotechnol. Biochem. 77(7), 1474–1480. https://doi.org/10.1271/bbb.130121 (2013).Article 
    CAS 

    Google Scholar 
    Venkatachalam, S., Gowdaman, V. & Prabagaran, S. R. Culturable and culture-independent bacterial diversity and the prevalence of cold-adapted enzymes from the Himalayan Mountain ranges of India and Nepal. Microb. Ecol. 69, 472–491. https://doi.org/10.1007/s00248-014-0476-4 (2015).Article 
    CAS 

    Google Scholar 
    Saxena, A. K., Yadav, A. N., Kaushik, R., Tyagi, S. P., & Shukla, L. Biotechnological applications of microbes isolated from cold environments in agriculture and allied sectors. In International Conference on Low Temperature Science and Biotechnological Advances, Vol. 104 (Society of Low Temperature Biology, 2015).Singh, R. N. et al. First high-quality draft genome sequence of a plant growth promoting and cold active enzyme producing psychrotrophic Arthrobacter agilis strain L77. Stand. Genom. Sci. 11, 1–9. https://doi.org/10.1186/s40793-016-0176-4 (2016).Article 
    CAS 

    Google Scholar 
    Mushtaq, H. et al. Biochemical characterization and functional analysis of heat stable high potential protease of Bacillus amyloliquefaciens strain HM48 from soils of Dachigam National Park in Kashmir Himalaya. Biomolecules 11(1), 117. https://doi.org/10.3390/biom11010117 (2021).Article 
    CAS 

    Google Scholar 
    Maharana, A. K. & Ray, P. Isolation and screening of cold active extracellular enzymes producing psychrotrophic bacteria from soil of Jammu City. Biosci. Biotechnol. Res. Asia 10(1), 267–273. https://doi.org/10.13005/bbra/1120 (2013).Article 

    Google Scholar 
    Rehakova, K., Chlumska, Z. & Dolezal, J. Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb. Ecol. 62, 337–346. https://doi.org/10.1007/s00248-011-9878-8 (2011).Article 
    CAS 

    Google Scholar 
    Rehakova, K. et al. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Front. Microbiol. 6, 304. https://doi.org/10.3389/fmicb.2015.00304 (2015).Article 

    Google Scholar 
    Gupta, P. & Vakhlu, J. Culturable bacterial diversity and hydrolytic enzymes from Drass, a cold desert in India. Afr. J. Microbiol. Res. 9, 1866–1876. https://doi.org/10.5897/AJMR2015.7424 (2015).Article 

    Google Scholar 
    Yadav, A. N. et al. Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J. Microbiol. Biotechnol. 31, 95–108. https://doi.org/10.1007/s11274-014-1768-z (2015).Article 
    CAS 

    Google Scholar 
    Farooq, S., Nazir, R., Ganai, B. A., Mushtaq, H. & Dar, G. J. Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia 77, 203–213. https://doi.org/10.1007/s11756-021-00915-6 (2022).Article 
    CAS 

    Google Scholar 
    Ahmad, N., Johri, S., Abdin, M. Z. & Qazi, G. N. Molecular characterization of bacterial population in the forest soil of Kashmir, India. World J. Microbiol. Biotechnol. 25, 107–113. https://doi.org/10.1007/s11274-008-9868-2 (2009).Article 
    CAS 

    Google Scholar 
    Thakur, D., Yadav, A., Gogoi, B. K. & Bora, T. C. Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J. Mycol. Méd. 17(4), 242–249. https://doi.org/10.1016/j.mycmed.2007.08.001 (2007).Article 

    Google Scholar 
    Rina, K., Hiral, P., Payal, P., Dharaiya, N. & Patel, R. K. Study on microbial diversity of Wild Ass Sanctuary, Little Rann of Kutch, Gujarat, India. ICFAI Univ. J. Life Sci. 3(1), 34–41 (2009).
    Google Scholar 
    Das, S., Saikia, P., Baruah, P. P. & Chakraborty, A. Isolation and identification of soil bacteria collected from Dibru-Saikhowa, the National Park and Biosphere Reserve Forest of Assam, India. Int. J. Sci. Res. (IJSR), 1937–1940 (2016).De Mandal, S., Lalremsanga, H. T. & Kumar, N. S. Bacterial diversity of Murlen National Park located in Indo-Burman Biodiversity hotspot region: A metagenomic approach. Genom. Data 5, 25–26. https://doi.org/10.1016/j.gdata.2015.04.025 (2015).Article 

    Google Scholar 
    Megha, B., Sejal, P., Puja, P. & Jasrai, Y. T. Isolation and identification of soil microflora of national parks of Gujarat, India. Int. J. Curr. Microbiol. Appl. Sci. 4(3), 421–429 (2015).
    Google Scholar 
    Kumar, A., Singh, R. D., Patra, A. K., Sahu, S. K. & Singh, M. Impact of oak and pine canopy cover on soil biochemical and microbial indicators of Binsar Wildlife Sanctuary in the Western Himalaya, India. J. Pure Appl. Microbiol. 11(3), 1599–1607. https://doi.org/10.22207/JPAM.11.3.47 (2017).Article 
    CAS 

    Google Scholar 
    Dhiman, P., Mehta, J. P., Singh, P. & andSharesthBaldotra, S. S.,. Effect of prescribe fire on bacterial abundance and their enzymatic activity in burnt and unburnt soil of Chilla Forest, Raja Ji National Park, Uttarakhand, India. Plant Arch. 18(1), 1125–1128 (2018).
    Google Scholar 
    Behera, P. et al. Spatial and temporal heterogeneity in the structure and function of sediment bacterial communities of a tropical mangrove forest. Environ. Sci. Pollut. Res. 26, 3893–3908 (2019).Article 
    CAS 

    Google Scholar 
    Sharma, P. & Thakur, D. Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci. Rep. 10(1), 1–18. https://doi.org/10.1038/s41598-020-60968-6 (2020).Article 
    CAS 

    Google Scholar 
    Dar, G. H., Bhagat, R. C. & Khan, M. A. Biodiversity of the Kashmir Himalaya (Valley Book House, 2002).
    Google Scholar 
    Shameem, S. A., Kangroo, N. I. & Bhat, G. A. Comparative assessment of edaphic features and herbaceous diversity in lower Dachigam national park, Kashmir, Himalaya. J. Ecol. Nat. Environ. 3(6), 196–204 (2011).
    Google Scholar 
    Thakur, M., Sharma, L. K., Charoo, S. A. & Sathyakumar, S. Conflict bear translocation: Investigating population genetics and fate of bear translocation in Dachigam National Park, Jammu and Kashmir, India. PLoS One 10, e0132005. https://doi.org/10.1371/journal.pone.0132005 (2015).Article 
    CAS 

    Google Scholar 
    Ahmad, K., Qureshi, Q., Agoramoorthy, G. & Nigam, P. Habitat use patterns and food habits of the Kashmir red deer or Hangul (Cervus elaphus hanglu) in Dachigam National Park, Kashmir, India. Ethol. Ecol. Evol. 28(1), 85–101. https://doi.org/10.1080/03949370.2015.1018955 (2016).Article 

    Google Scholar 
    Jammu and Kashmir Forest Department (JKFD). Handbook of Forest Statistics (Jammu and Kashmir Forest Department, 2011).
    Google Scholar 
    Anderson, J. M. & Ingram, J. S. I. A Handbook of Methods 62–65 (CAB International, 1993).
    Google Scholar 
    Joshi, S. R., Chauhan, M. A. N. J. U., Sharma, G. D. & Mishra, R. R. Effect of deforestation on microbes, VAM fungi and their enzymatic activity in Eastern Himalaya. In Studies in Himalayan Ecobiology 141–152 (Today and Tommorows Publication, 1991).
    Google Scholar 
    Jackson, M. L. Soil Chemical Analysis 151–154 (Prentice-Hall, 1958). https://doi.org/10.1002/jpln.19590850311.Book 

    Google Scholar 
    Gardner, W. H. Water content. Methods of soil analysis: Part 1. Phys. Mineral. Methods 5, 493–544 (1986).
    Google Scholar 
    Walkley, A. & Black, I. A. Estimation of soil organic carbon by the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).Article 
    ADS 
    CAS 

    Google Scholar 
    Bremner, J. M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 55(1), 1–23 (1960).Article 

    Google Scholar 
    Coursey, D. G. & Eggins, H. O. W. Microorganismes responsables de l’altération de l’huile de palme pendant le stockage. Oléagineux 16, 227–233 (1961).CAS 

    Google Scholar 
    Kumar, R., Acharya, C. & Joshi, S. R. Isolation and analyses of uranium tolerant Serratia marcescens strains and their utilization for aerobic uranium U (VI) bioadsorption. J. Microbiol. 49, 568–574. https://doi.org/10.1007/s12275-011-0366-0 (2011).Article 
    CAS 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. https://www.R-project.org (R Foundation for Statistical Computing, 2017).Bergey, D. H. & Holt, J. G. Bergey’s Manual of Determinative Bacteriology (Lippincott Williams & Wilkins, 1994).
    Google Scholar 
    Gürtler, V. & Stanisich, V. A. New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142(1), 3–16 (1996).Article 

    Google Scholar 
    Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 1–9 (2001).
    Google Scholar 
    Sorensen, T. A. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Skar. 5, 1–34 (1948).
    Google Scholar 
    Muhumuza, M. & Balkwill, K. Factors affecting the success of conserving biodiversity in national parks: A review of case studies from Africa. Int. J. Biodivers. https://doi.org/10.1155/2013/798101 (2013).Article 

    Google Scholar 
    Yaqoob, A., Yunus, M., Bhat, G. A. & Singh, D. P. Phytodiversity and seasonal variations in the soil characteristics of shrublands of Dachigam National Park, Jammu and Kashmir, India. Clim. Change Environ. Sustain. 3(2), 137–143. https://doi.org/10.5958/2320-642X.2015.00015.0 (2015).Article 

    Google Scholar 
    Mir, Z. R., Noor, A., Habib, B. & Veeraswami, G. G. Seasonal population density and winter survival strategies of endangered Kashmir gray langur (Semnopithecus ajax) in Dachigam National Park, Kashmir, India. Springer Plus 4, 1–8. https://doi.org/10.1186/s40064-015-1366-z (2015).Article 
    CAS 

    Google Scholar 
    Buchan, G. D. Soil temperature regime. In Soil and Environmental Analysis: Physical Methods (eds Smith, K. A. & Mullins, C.) 539–594 (Marcel Dekker, 2001).
    Google Scholar 
    Buchan, G. D. Temperature effects in soil. In Encyclopedia of Agrophysics, Encyclopedia of Earth Sciences Series (Springer, 2011).
    Google Scholar 
    Chiemeka, I. U. Soil temperature profile at Uturu, Nigeria. Pac. J. Sci. Technol. 11(1), 478–482 (2010).
    Google Scholar 
    Decker, K. L. M., Wang, D., Waite, C. & Scherbatskoy, T. Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Sci. Soc. Am. J. 67(4), 1234–1242. https://doi.org/10.2136/sssaj2003.1234 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Abu-Hamdeh, N. H. & Reeder, R. C. Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 64(4), 1285–1290. https://doi.org/10.2136/sssaj2000.6441285x (2000).Article 
    ADS 
    CAS 

    Google Scholar 
    Lu, S., Ren, T., Gong, Y. & Horton, R. An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. J. 71(1), 8–14. https://doi.org/10.2136/sssaj2006.0041 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Elizbarashvili, E. S., Urushadze, T. F., Elizbarashvili, M. E., Elizbarashvili, S. E. & Schaefer, M. K. Temperature regime of some soil types in Georgia. Eurasian Soil Sci. 43(4), 427–435. https://doi.org/10.1134/S1064229310040083 (2010).Article 
    ADS 

    Google Scholar 
    Walter, H. & Burnett, J. H. Ecology of Tropical and Subtropical Vegetation Vol. 539, xviii+-539 (Oliver and Boyd, 1971).
    Google Scholar 
    Callaway, R. M. Positive interactions and interdependence in plant communities. Springer Science Business Media https://doi.org/10.1007/978-1-4020-6224-7 (2007).Article 

    Google Scholar 
    Song, Y. et al. Effects of vegetation height and density on soil temperature variations. Chin. Sci. Bull. 58(8), 907–912. https://doi.org/10.1007/s11434-012-5596-y (2013).Article 

    Google Scholar 
    Dimri, B. M., Singh, S. B., Baneriee, S. K. & Singh, B. Relation of age and dominance of tree species with soil chemical attributes in Kalimpong and Kurseong District of West Bengal. Indian For. 113(4), 307–311 (1987).
    Google Scholar 
    Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl. Acad. Sci. 94(14), 7362–7366. https://doi.org/10.1073/pnas.94.14.7362 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Wilson, S. D. Competition between grasses and woody plants. In Population Biology of Grasses (ed. Cheplick, G. P.) 231–254 (Cambridge University Press, 1998).Chapter 

    Google Scholar 
    Reth, S., Reichstein, M. & Falge, E. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux—A modified model. Plant Soil 268, 21–33. https://doi.org/10.1007/s11104-005-0175-5 (2005).Article 
    CAS 

    Google Scholar 
    Zinke, P. J. The pattern of influence of individual forest trees on soil properties. Ecology 43(1), 130–133 (1962).Article 

    Google Scholar 
    Patric, J. H. Forest management and nutrient cycling in eastern hardwoods Vol. 324 (Forest Service, US Department of Agriculture, Northeastern Forest Experiment Station, 1975).
    Google Scholar 
    Mroz, G. D., Jurgensen, M. F. & Frederick, D. J. Soil nutrient changes following whole tree harvesting on three northern hardwood sites. Soil Sci. Soc. Am. J. 49(6), 1552–1557. https://doi.org/10.2136/sssaj1985.03615995004900060044x (1985).Article 
    ADS 

    Google Scholar 
    Maggs, J. & Hewett, B. Organic C and nutrients in surface soils from some primary rainforests, derived grasslands and secondary rainforests on the Atherton Tableland in North East Queensland. Soil Res. 31(3), 343–350 (1993).Article 
    CAS 

    Google Scholar 
    Hart, S. C. & Perry, D. A. Transferring soils from high-to low-elevation forests increases nitrogen cycling rates: Climate change implications. Glob. Change Biol. 5(1), 23–32 (1999).Article 
    ADS 

    Google Scholar 
    Atlas, R. M. Diversity of microbial communities. Adv. Microb. Ecol., 1–47 (1984).Dimitriu, P. A. & Grayston, S. J. Relationship between soil properties and patterns of bacterial β-diversity across reclaimed and natural boreal forest soils. Microb. Ecol. 59, 563–573. https://doi.org/10.1007/s00248-009-9590-0 (2010).Article 

    Google Scholar 
    Bele, S. S. Soil Testing and Soil Microbiology 79–108 (Satyam Publishers and Distributors, 2014). https://doi.org/10.1007/s11356-018-3927-5.Book 

    Google Scholar 
    Cattelan, A. J., Hartel, P. G. & Fuhrmann, J. J. Bacterial composition in the rhizosphere of nodulating and non-nodulating soybean. Soil Sci. Soc. Am. J. 62(6), 1549–1555. https://doi.org/10.2136/sssaj1998.03615995006200060011x (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Silva, P. D. & Nahas, E. Bacterial diversity in soil in response to different plans, phosphate fertilizers and liming. Braz. J. Microbiol. 33, 304–310 (2002).Article 

    Google Scholar 
    Begum, K. et al. Isolation and characterization of bacteria with biochemical and pharmacological importance from soil samples of Dhaka City. Dhaka Univ. J. Pharm. Sci. 16(1), 129–136. https://doi.org/10.3329/dujps.v16i1.33390 (2017).Article 

    Google Scholar 
    Liu, D., Liu, Y., Fang, S. & Tian, Y. Tree species composition influenced microbial diversity and nitrogen availability in rhizosphere soil. Plant Soil Environ. 61(10), 438–443. https://doi.org/10.17221/94/2015-PSE (2015).Article 
    CAS 

    Google Scholar 
    Chodak, M., Klimek, B., Azarbad, H. & Jaźwa, M. Functional diversity of soil microbial communities under Scots pine, Norway spruce, silver birch and mixed boreal forests. Pedobiologia 58(2–3), 81–88 (2015).Article 

    Google Scholar 
    Gartzia-Bengoetxea, N., Kandeler, E., de Arano, I. M. & Arias-González, A. Soil microbial functional activity is governed by a combination of tree species composition and soil properties in temperate forests. Appl. Soil. Ecol. 100, 57–64 (2016).Article 

    Google Scholar 
    Shameem, S. A., Mushtaq, H., Wani, A. A., Ahmad, N. & Hai, A. Phytodiversity of herbaceous vegetation in disturbed and undisturbed forest ecosystems of Pahalgam valley, Kashmir Himalaya, India. Br. J. Environ. Clim. Change 7(3), 148–167 (2017).Article 

    Google Scholar 
    Felske, A., Wolterink, A., Van Lis, R. & Akkermans, A. D. Phylogeny of the main bacterial 16S rRNA sequences in Drentse A grassland soils (The Netherlands). Appl. Environ. Microbiol. 64(3), 871–879. https://doi.org/10.1128/aem.64.3.871-879.1998 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K. & Niklińska, M. Soil chemical properties affect the reaction of forest soil bacteria to drought and rewetting stress. Ann. Microbiol. 65, 1627–1637. https://doi.org/10.1007/s13213-014-1002-0 (2015).Article 
    CAS 

    Google Scholar 
    Lugo, M. A. et al. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland. Microb. Ecol. 55, 705–713. https://doi.org/10.1007/s00248-007-9313-3 (2008).Article 
    CAS 

    Google Scholar 
    Wang, Q., Wang, S., Fan, B. & Yu, X. Litter production, leaf litter decomposition and nutrient return in Cunninghamia lanceolata plantations in south China: Effect of planting conifers with broadleaved species. Plant Soil 297, 201–211. https://doi.org/10.1007/s11104-007-9333-2 (2007).Article 
    CAS 

    Google Scholar 
    Nüsslein, K. & Tiedje, J. M. Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl. Environ. Microbiol. 65(8), 3622–3626. https://doi.org/10.1128/aem.65.8.3622-3626.1999 (1999).Article 
    ADS 

    Google Scholar 
    Hackl, E., Zechmeister-Boltenstern, S., Bodrossy, L. & Sessitsch, A. Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 70(9), 5057–5065. https://doi.org/10.1128/AEM.70.9.5057-5065.2004 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Chan, C. et al. Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbiol. Ecol. 64(3), 449–458. https://doi.org/10.1111/j.1574-6941.2008.00488.x (2008).Article 
    CAS 

    Google Scholar 
    Adamczyk, B., Kitunen, V. & Smolander, A. Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biol. Fertil. Soils 45(1), 55–64. https://doi.org/10.1007/s00374-008-0308-0 (2008).Article 
    CAS 

    Google Scholar 
    Kanerva, S., Kitunen, V., Loponen, J. & Smolander, A. Phenolic compounds and terpenes in soil organic horizon layers under silver birch, Norway spruce and Scots pine. Biol. Fertil. Soils 44(4), 547–556. https://doi.org/10.1007/s00374-007-0234-6 (2008).Article 
    CAS 

    Google Scholar 
    Ushio, M., Balser, T. C. & Kitayama, K. Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant Soil 365(1), 157–170. https://www.jstor.org/stable/42952341 (2013).Lomolino, M. V. Elevation gradients of species-density: Historical and prospective views. Glob. Ecol. Biogeogr. 10(1), 3–13. https://doi.org/10.1046/j.1466-822x.2001.00229.x (2001).Article 

    Google Scholar 
    Thomson, B. C. et al. Vegetation affects the relative abundances of dominant soil bacterial taxa and soil respiration rates in an upland grassland soil. Microb. Ecol. 59(2), 335–343. https://doi.org/10.1007/s00248-009-9575-z (2010).Article 

    Google Scholar 
    May, R. M. Patterns of species abundance and diversity. In Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M.) 81–120 (Harvard University, 1975).
    Google Scholar 
    Kapur, M. & Jain, R. K. Microbial diversity: Exploring the unexplored. World Federation of Culture Collection Newsletter 39, 12–16 (2004).
    Google Scholar 
    Bryant, J. A. et al. Microbes on mountainsides: Contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. 105(Suppl 1), 11505–11511 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Fierer, N. et al. Microbes do not follow the elevational diversity patterns of plants and animals. Ecology 92(4), 797–804. https://doi.org/10.1890/10-1170.1 (2011).Article 

    Google Scholar  More

  • in

    The Cenomanian/Turonian boundary in light of new developments in terrestrial palynology

    Benca, J. P., Duijnstee, I. A. & Looy, C. V. Fossilized pollen malformations as indicators of past environmental stress and meiotic disruption: Insights from modern conifers. Paleobiology, 1–34 (2022).Marshall, J. E., Lakin, J., Troth, I. & Wallace-Johnson, S. M. Uv-b radiation was the devonian-carboniferous boundary terrestrial extinction kill mechanism. Sci. Adv. 6, eaba0768 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. & Visscher, H. Life in the end-permian dead zone. Proc. Natl. Acad. Sci. 98, 7879–7883 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Foster, C. & Afonin, S. Abnormal pollen grains: An outcome of deteriorating atmospheric conditions around the permian-triassic boundary. J. Geol. Soc. 162, 653–659 (2005).Article 
    ADS 

    Google Scholar 
    Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G. & Bucher, H. Evidence for atmospheric pollution across the permian-triassic transition. Geology 45, 1123–1126 (2017).Article 
    ADS 

    Google Scholar 
    Galasso, F., Bucher, H. & Schneebeli-Hermann, E. Mapping monstrosity: Malformed sporomorphs across the smithian/spathian boundary interval and beyond (salt range, pakistan). Global Planet. Change 219, 103975 (2022).Article 

    Google Scholar 
    Van de Schootbrugge, B. et al. Floral changes across the triassic/jurassic boundary linked to flood basalt volcanism. Nat. Geosci. 2, 589–594 (2009).Article 
    ADS 

    Google Scholar 
    Lindström, S. et al. Volcanic mercury and mutagenesis in land plants during the end-triassic mass extinction. Sci. Adv. 5, eaaw4018 (2019).Article 
    ADS 

    Google Scholar 
    Gravendyck, J., Schobben, M., Bachelier, J. B. & Kürschner, W. M. Macroecological patterns of the terrestrial vegetation history during the end-triassic biotic crisis in the central european basin: A palynological study of the bonenburg section (nw-germany) and its supra-regional implications. Global Planet. Change 194, 103286 (2020).Article 

    Google Scholar 
    Vilas-Boas, M., Pereira, Z., Cirilli, S., Duarte, L. V. & Fernandes, P. New data on the palynology of the triassic-jurassic boundary of the silves group, lusitanian basin, portugal. Rev. Palaeobot. Palynol. 290, 104426 (2021).Article 

    Google Scholar 
    Galasso, F., Feist-Burkhardt, S. & Schneebeli-Hermann, E. The palynology of the toarcian oceanic anoxic event at dormettingen, southwest germany, with emphasis on changes in vegetational dynamics. Rev. Palaeobotany Palynol. 304, 104701 (2022).Article 

    Google Scholar 
    Galasso, F., Feist-Burkhardt, S. & Schneebeli-Hermann, E. Do spores herald the toarcian oceanic anoxic event?. Rev. Palaeobot. Palynol. 306, 104748 (2022).Article 

    Google Scholar 
    Hay, W. W. & Floegel, S. New thoughts about the cretaceous climate and oceans. Earth Sci. Rev. 115, 262–272 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Faucher, G., Erba, E., Bottini, C. & Gambacorta, G. Calcareous nannoplankton response to the latest cenomanian oceanic anoxic event 2 perturbation. RIVISTA ITALIANA DI PALEONTOLOGIA E STRATIGRAFIA (2017).Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. The ics international chronostratigraphic chart. Epis. J. Int. Geosci. 36, 199–204 (2013).
    Google Scholar 
    Caron, M. & Homewood, P. Evolution of early planktic foraminifers. Mar. Micropaleontol. 7, 453–462 (1983).Article 
    ADS 

    Google Scholar 
    Jarvis, I. et al. Microfossil assemblages and the cenomanian-turonian (late cretaceous) oceanic anoxic event. Cretac. Res. 9, 3–103 (1988).Article 

    Google Scholar 
    Huber, B. T., Leckie, R. M., Norris, R. D., Bralower, T. J. & CoBabe, E. Foraminiferal assemblage and stable isotopic change across the cenomanian-turonian boundary in the subtropical north atlantic. J. Foraminiferal Res. 29, 392–417 (1999).
    Google Scholar 
    Culver, S. J. & Rawson, P. F. Biotic response to global change: The last 145 million years (Cambridge University Press, 2006).Erba, E. Calcareous nannofossils and mesozoic oceanic anoxic events. Mar. Micropaleontol. 52, 85–106 (2004).Article 
    ADS 

    Google Scholar 
    Gebhardt, H., Kuhnt, W. & Holbourn, A. Foraminiferal response to sea level change, organic flux and oxygen deficiency in the cenomanian of the tarfaya basin, southern morocco. Mar. Micropaleontol. 53, 133–157 (2004).Article 
    ADS 

    Google Scholar 
    Hardenbol, J. et al. Mesozoic and cenozoic sequence chronostratigraphic framework of european basins. Soc. Sediment. Geol. (1998).Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Voigt, S., Gale, A. S. & Voigt, T. Sea-level change, carbon cycling and palaeoclimate during the late cenomanian of northwest europe; an integrated palaeoenvironmental analysis. Cretac. Res. 27, 836–858 (2006).Article 

    Google Scholar 
    Haq, B. U. Cretaceous eustasy revisited. Global Planet. Change 113, 44–58 (2014).Article 
    ADS 

    Google Scholar 
    Sames, B. et al. Short-term sea-level changes in a greenhouse world-a view from the cretaceous. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 393–411 (2016).Article 

    Google Scholar 
    Arthur, M. A., Dean, W. E. & Pratt, L. M. Geochemical and climatic effects of increased marine organic carbon burial at the cenomanian/turonian boundary. Nature 335, 714–717 (1988).Article 
    ADS 

    Google Scholar 
    Tsikos, H. et al. Carbon-isotope stratigraphy recorded by the cenomanian-turonian oceanic anoxic event: Correlation and implications based on three key localities. J. Geol. Soc. 161, 711–719 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Jarvis, I., Lignum, J. S., Gröcke, D. R., Jenkyns, H. C. & Pearce, M. A. Black shale deposition, atmospheric co2 drawdown, and cooling during the cenomanian-turonian oceanic anoxic event. Paleoceanography26 (2011).van Bentum, E. C., Reichart, G.-J. & Damsté, J. S. S. Organic matter provenance, palaeoproductivity and bottom water anoxia during the cenomanian/turonian oceanic anoxic event in the newfoundland basin (northern proto north atlantic ocean). Org. Geochem. 50, 11–18 (2012).Article 

    Google Scholar 
    Owens, J. D., Lyons, T. W. & Lowery, C. M. Quantifying the missing sink for global organic carbon burial during a cretaceous oceanic anoxic event. Earth Planet. Sci. Lett. 499, 83–94 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bralower, T. J. Calcareous nannofossil biostratigraphy and assemblages of the cenomanian-turonian boundary interval: Implications for the origin and timing of oceanic anoxia. Paleoceanography 3, 275–316 (1988).Article 
    ADS 

    Google Scholar 
    Leckie, R. M., Bralower, T. J. & Cashman, R. Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-cretaceous. Paleoceanography 17, 13–1 (2002).Article 

    Google Scholar 
    Slater, S. M., Bown, P., Twitchett, R. J., Danise, S. & Vajda, V. Global record of “ghost’’ nannofossils reveals plankton resilience to high co2 and warming. Science 376, 853–856 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Forster, A., Schouten, S., Moriya, K., Wilson, P. A. & Sinninghe Damsté, J. S. Tropical warming and intermittent cooling during the cenomanian/turonian oceanic anoxic event 2: Sea surface temperature records from the equatorial atlantic. Paleoceanography22 (2007).Barclay, R. S., McElwain, J. C. & Sageman, B. B. Carbon sequestration activated by a volcanic co2 pulse during ocean anoxic event 2. Nat. Geosci. 3, 205–208 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Damsté, J. S. S., van Bentum, E. C., Reichart, G.-J., Pross, J. & Schouten, S. A co2 decrease-driven cooling and increased latitudinal temperature gradient during the mid-cretaceous oceanic anoxic event 2. Earth Planet. Sci. Lett. 293, 97–103 (2010).Article 
    ADS 

    Google Scholar 
    Heimhofer, U. et al. Vegetation response to exceptional global warmth during oceanic anoxic event 2. Nat. Commun. 9, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the cretaceous hot greenhouse climate. Global Planet. Change 167, 1–23 (2018).Article 
    ADS 

    Google Scholar 
    Robinson, S. A. et al. Southern hemisphere sea-surface temperatures during the cenomanian-turonian: Implications for the termination of oceanic anoxic event 2. Geology 47, 131–134 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Voigt, S., Gale, A. S. & Flögel, S. Midlatitude shelf seas in the cenomanian-turonian greenhouse world: Temperature evolution and north atlantic circulation. Paleoceanography19 (2004).Van Helmond, N. et al. Freshwater discharge controlled deposition of cenomanian-turonian black shales on the nw european epicontinental shelf (wunstorf, north germany). Clim. Past Discuss 10, 3755–3786 (2014).ADS 

    Google Scholar 
    Li, Y.-X., Montanez, I. P., Liu, Z. & Ma, L. Astronomical constraints on global carbon-cycle perturbation during oceanic anoxic event 2 (oae2). Earth Planet. Sci. Lett. 462, 35–46 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: Constraints from tex86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).Article 
    ADS 

    Google Scholar 
    Jones, C. E. & Jenkyns, H. C. Seawater strontium isotopes, oceanic anoxic events, and seafloor hydrothermal activity in the jurassic and cretaceous. Am. J. Sci. 301, 112–149 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Snow, L. J., Duncan, R. A. & Bralower, T. J. Trace element abundances in the rock canyon anticline, pueblo, colorado, marine sedimentary section and their relationship to caribbean plateau construction and oxygen anoxic event 2. Paleoceanography20 (2005).Kuroda, J. et al. Contemporaneous massive subaerial volcanism and late cretaceous oceanic anoxic event 2. Earth Planet. Sci. Lett. 256, 211–223 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Turgeon, S. C. & Creaser, R. A. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323–326 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Floegel, S. et al. Simulating the biogeochemical effects of volcanic co2 degassing on the oxygen-state of the deep ocean during the cenomanian/turonian anoxic event (oae2). Earth Planet. Sci. Lett. 305, 371–384 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Tegner, C. et al. Magmatism and eurekan deformation in the high arctic large igneous province: 40ar-39ar age of kap washington group volcanics, north greenland. Earth Planet. Sci. Lett. 303, 203–214 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Du Vivier, A. D. et al. Marine 187os/188os isotope stratigraphy reveals the interaction of volcanism and ocean circulation during oceanic anoxic event 2. Earth Planet. Sci. Lett. 389, 23–33 (2014).Article 
    ADS 

    Google Scholar 
    Du Vivier, A., Selby, D., Condon, D., Takashima, R. & Nishi, H. Pacific 187os/188os isotope chemistry and u-pb geochronology: Synchroneity of global os isotope change across oae 2. Earth Planet. Sci. Lett. 428, 204–216 (2015).Article 
    ADS 

    Google Scholar 
    Meyers, P. A. Why are the (delta )13corg values in phanerozoic black shales more negative than in modern marine organic matter?. Geochem. Geophys. Geosyst. 15, 3085–3106 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Jenkyns, H. C., Dickson, A. J., Ruhl, M. & Van den Boorn, S. H. Basalt-seawater interaction, the plenus cold event, enhanced weathering and geochemical change: Deconstructing oceanic anoxic event 2 (cenomanian-turonian, late cretaceous). Sedimentology 64, 16–43 (2017).Article 
    CAS 

    Google Scholar 
    Scaife, J. et al. Sedimentary mercury enrichments as a marker for submarine large igneous province volcanism? evidence from the mid-cenomanian event and oceanic anoxic event 2 (late cretaceous). Geochem. Geophys. Geosyst. 18, 4253–4275 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Schröder-Adams, C. J., Herrle, J. O., Selby, D., Quesnel, A. & Froude, G. Influence of the high arctic igneous province on the cenomanian/turonian boundary interval, sverdrup basin, high canadian arctic. Earth Planet. Sci. Lett. 511, 76–88 (2019).Article 
    ADS 

    Google Scholar 
    Jolet, P., Philip, J., Thomel, G., Lopez, G. & Tronchetti, G. Nouvelles données biostratigraphiques sur la limite cénomanien-turonien. la coupe de cassis (sud-est de la france): Proposition d’un hypostratotype européen. Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science325, 703–709 (1997).Bown, P. R. & Young, J. Calcareous nannofossil biostratigraphy (Springer, 1998).Green, T., Renne, P. R. & Keller, C. B. Continental flood basalts drive phanerozoic extinctions. Proc. Natl. Acad. Sci. 119, e2120441119 (2022).Article 
    CAS 

    Google Scholar 
    Percival, L. M. et al. Does large igneous province volcanism always perturb the mercury cycle? Comparing the records of oceanic anoxic event 2 and the end-cretaceous to other mesozoic events. Am. J. Sci. 318, 799–860 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Salazar, L. et al. Diversity patterns of ferns along elevational gradients in andean tropical forests. Plant Ecol. Divers. 8, 13–24 (2015).Article 

    Google Scholar 
    Mehltreter, K., Walker, L. R. & Sharpe, J. M. Fern ecology (Cambridge University Press, 2010).Carvajal-Hernández, C. I., Gómez-Díaz, J. A., Kessler, M. & Krömer, T. Influence of elevation and habitat disturbance on the functional diversity of ferns and lycophytes. Plant Ecol. Divers. 11, 335–347 (2018).Article 

    Google Scholar 
    Kürschner, W. M., Batenburg, S. J. & Mander, L. Aberrant classopollis pollen reveals evidence for unreduced (2 n) pollen in the conifer family cheirolepidiaceae during the triassic-jurassic transition. Proc. Royal Soc. B: Biol. Sci. 280, 20131708 (2013).Article 

    Google Scholar 
    Traverse, A. Paleopalynology Vol. 28 (Springer Science & Business Media, 2007).Tyson, R. V. Palynofacies investigation of callovian (middle jurassic) sediments from dsdp site 534, blake-bahama basin, western central atlantic. Mar. Pet. Geol. 1, 3–13 (1984).Article 

    Google Scholar 
    RV, T. Sedimentary organic matter: Organic facies and palynofacieschapman & hall. London, 615pp (1995).Vakhrameyev, V. Classopollis pollen as an indicator of jurassic and cretaceous climate. Int. Geol. Rev. 24, 1190–1196 (1982).Article 

    Google Scholar 
    Vakhrameev, V. Range and palaeoecology of mesozoic conifers, the cheirolepidiaceae. Paleontol. Zh. 1, 19–34 (1970).
    Google Scholar 
    WATSON, J. Some lower cretaceous conifers of the cheirolepidiaceae from the usa and england. Palaeontology 20, 715–749 (1977).
    Google Scholar 
    Fonseca, C., Mendonça Filho, J. G., Lézin, C., De Oliveira, A. D. & Duarte, L. V. Organic matter deposition and paleoenvironmental implications across the cenomanian-turonian boundary of the subalpine basin (se france): Local and global controls. Int. J. Coal Geol. 218, 103364 (2020).Article 
    CAS 

    Google Scholar 
    Benca, J. P., Duijnstee, I. A. & Looy, C. V. Uv-b-induced forest sterility: Implications of ozone shield failure in earth’s largest extinction. Sci. Adv. 4, e1700618 (2018).Article 
    ADS 

    Google Scholar 
    Wilson, L. A study in variation of picea glauca (moench) voss pollen. Grana 4, 380–387 (1963).
    Google Scholar 
    Lindström, S., McLoughlin, S. & Drinnan, A. N. Intraspecific variation of taeniate bisaccate pollen within permian glossopterid sporangia, from the prince charles mountains, antarctica. Int. J. Plant Sci. 158, 673–684 (1997).Article 

    Google Scholar 
    Leitch, A. & Leitch, I. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 194, 629–646 (2012).Article 
    CAS 

    Google Scholar 
    Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).Article 
    ADS 

    Google Scholar 
    Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into gondwana coals. Nature 435, 479–482 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Bond, D. P., Wignall, P. B., Keller, G. & Kerr, A. Large igneous provinces and mass extinctions: An update. Volcan., Impacts, Mass Extinc.: Causes Effects 505, 29–55 (2014).
    Google Scholar 
    Burgess, S., Bowring, S., Fleming, T. & Elliot, D. High-precision geochronology links the ferrar large igneous province with early-jurassic ocean anoxia and biotic crisis. Earth Planet. Sci. Lett. 415, 90–99 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of siberian traps sills as the trigger of the end-permian mass extinction. Nat. Commun. 8, 1–6 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Ernst, R. E. & Youbi, N. How large igneous provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 30–52 (2017).Article 

    Google Scholar 
    Ruhl, M. et al. Reduced plate motion controlled timing of early jurassic karoo-ferrar large igneous province volcanism. Sci. Adv. 8, eabo0866 (2022).Article 
    CAS 

    Google Scholar 
    Dickens, G. R., Paull, C. K. & Wallace, P. Direct measurement of in situ methane quantities in a large gas-hydrate reservoir. Nature 385, 426–428 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C.R. Geosci. 335, 113–140 (2003).Article 
    ADS 

    Google Scholar 
    Rampino, M. R., Rodriguez, S., Baransky, E. & Cai, Y. Global nickel anomaly links siberian traps eruptions and the latest permian mass extinction. Sci. Rep. 7, 1–6 (2017).Article 
    CAS 

    Google Scholar 
    Clapham, M. E. & Renne, P. R. Flood basalts and mass extinctions. Annu. Rev. Earth Planet. Sci. 47, 275–303 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    McElwain, J. C., Popa, M. E., Hesselbo, S. P., Haworth, M. & Surlyk, F. Macroecological responses of terrestrial vegetation to climatic and atmospheric change across the triassic/jurassic boundary in east greenland. Paleobiology 33, 547–573 (2007).Article 

    Google Scholar 
    Van de Schootbrugge, B. et al. End-triassic calcification crisis and blooms of organic-walled ‘disaster species’. Palaeogeogr. Palaeoclimatol. Palaeoecol. 244, 126–141 (2007).Article 

    Google Scholar 
    Ruckwied, K., Götz, A. E., Pálfy, J. & Török, Á. Palynology of a terrestrial coal-bearing series across the triassic/jurassic boundary (mecsek mts, hungary). Central Euro. Geol. 51, 1–15 (2008).Article 
    CAS 

    Google Scholar 
    Götz, A., Ruckwied, K., Pálfy, J. & Haas, J. Palynological evidence of synchronous changes within the terrestrial and marine realm at the triassic/jurassic boundary (csővár section, hungary). Rev. Palaeobot. Palynol. 156, 401–409 (2009).Article 

    Google Scholar 
    Hochuli, P. A., Hermann, E., Vigran, J. O., Bucher, H. & Weissert, H. Rapid demise and recovery of plant ecosystems across the end-permian extinction event. Global Planet. Change 74, 144–155 (2010).Article 
    ADS 

    Google Scholar 
    Bonis, N. et al.Palaeoenvironmental changes and vegetation history during the Triassic-Jurassic transition (LPP Contribution Series No. 29, 2010).Bonis, N. R. & Kürschner, W. M. Vegetation history, diversity patterns, and climate change across the triassic/jurassic boundary. Paleobiology 38, 240–264 (2012).Article 

    Google Scholar 
    Visscher, H. et al. Environmental mutagenesis during the end-permian ecological crisis. Proc. Natl. Acad. Sci. 101, 12952–12956 (2004).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Taxonomic composition, community structure and molecular novelty of microeukaryotes in a temperate oligomesotrophic lake as revealed by metabarcoding

    Pawlowski, J. et al. CBOL Protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLOS Biol. 10, e1001419 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Handbook of the Protists (Springer, 2017). https://doi.org/10.1007/978-3-319-28149-0.Lang, B. F., O’Kelly, C., Nerad, T., Gray, M. W. & Burger, G. The closest unicellular relatives of animals. Curr. Biol. 12, 1773–1778 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. Life 6, e26036 (2017).
    Google Scholar 
    Gawryluk, R. M. R. et al. Non-photosynthetic predators are sister to red algae. Nature 572, 240–243 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gabr, A., Grossman, A. R. & Bhattacharya, D. Paulinella, a model for understanding plastid primary endosymbiosis. J. Phycol. 56, 837–843 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z., Karlsson, I., Geisen, S., Kowalchuk, G. & Jousset, A. Protists: Puppet masters of the rhizosphere microbiome. Trends Plant Sci. 24, 165–176 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Caron, D. A. New accomplishments and approaches for assessing protistan diversity and ecology in natural ecosystems. Bioscience 59, 287–299 (2009).Article 

    Google Scholar 
    Gooday, A. J., Schoenle, A., Dolan, J. R. & Arndt, H. Protist diversity and function in the dark ocean: Challenging the paradigms of deep-sea ecology with special emphasis on foraminiferans and naked protists. Eur. J. Protistol. 75, 125721 (2020).Article 
    PubMed 

    Google Scholar 
    Stoecker, D. K., Johnson, M. D., de Vargas, C. & Not, F. Acquired phototrophy in aquatic protists. Aquat. Microb. Ecol. 57, 279–310 (2009).Article 

    Google Scholar 
    Strom, S. L., Benner, R., Ziegler, S. & Dagg, M. J. Planktonic grazers are a potentially important source of marine dissolved organic carbon. Limnol. Oceanogr. 42, 1364–1374 (1997).Article 
    ADS 
    CAS 

    Google Scholar 
    Orsi, W. D. et al. Identifying protist consumers of photosynthetic picoeukaryotes in the surface ocean using stable isotope probing. Environ. Microbiol. 20, 815–827 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corno, G. & Jürgens, K. Direct and indirect effects of protist predation on population size structure of a bacterial strain with high phenotypic plasticity. Appl. Environ. Microbiol. 72, 78–86 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahé, F. et al. Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 91 (2017).Article 
    PubMed 

    Google Scholar 
    Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: A systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).Article 

    Google Scholar 
    Epstein, S. & López-García, P. “Missing” protists: a molecular prospective. Biodivers. Conserv. 17, 261–276 (2008).Article 

    Google Scholar 
    López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607 (2001).Article 
    ADS 
    PubMed 

    Google Scholar 
    Lovejoy, C., Massana, R. & Pedrós-Alió, C. Diversity and distribution of marine microbial eukaryotes in the Arctic Ocean and adjacent seas. Appl. Environ. Microbiol. 72, 3085–3095 (2006).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worden, A. Z., Cuvelier, M. L. & Bartlett, D. H. In-depth analyses of marine microbial community genomics. Trends Microbiol. 14, 331–336 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Countway, P. D. et al. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol. 9, 1219–1232 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Massana, R. & Pedrós-Alió, C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 11, 213–218 (2008).Article 
    PubMed 

    Google Scholar 
    Alexander, E. et al. Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ. Microbiol. 11, 360–381 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Logares, R. et al. Patterns of rare and abundant marine microbial eukaryotes. Curr. Biol. 24, 813–821 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 150 (2015).Article 

    Google Scholar 
    Fell, J. W., Scorzetti, G., Connell, L. & Craig, S. Biodiversity of micro-eukaryotes in Antarctic Dry Valley soils with More

  • in

    Disentangling the causes of temporal variation in the opportunity for sexual selection

    Darwin, C. The Descent of Man and Selection in Relation to Sex. (John Murray, 1871).Andersson, M. Sexual Selection. (Princeton University Press, 1994).Shuster, S. & Wade, M. J. Mating Systems and Strategies. (Princeton University Press, 2003).Gosden, T. P. & Svensson, E. I. Spatial and temporal dynamics in a sexual selection mosaic. Evolution 62, 845–856 (2008).Article 
    PubMed 

    Google Scholar 
    Kasumovic, M. M., Bruce, M. J., Andrade, M. C. B. & Herberstein, M. E. Spatial and temporal demographic variation drives within-season fluctuations in sexual selection. Evolution 62, 2316–2325 (2008).Article 
    PubMed 

    Google Scholar 
    Mobley, K. B. & Jones, A. G. Environmental, demographic, and genetic mating system variation among five geographically distinct dusky pipefish (Syngnathus floridae) populations. Mol. Ecol. 18, 1476–1490 (2009).Article 
    PubMed 

    Google Scholar 
    Hoffer, J. N., Mariën, J., Ellers, J. & Koene, J. M. Sexual selection gradients change over time in a simultaneous hermaphrodite. eLife 6, e25139 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sih, A., Montiglio, P.-O., Wey, T. W. & Fogarty, S. Altered physical and social conditions produce rapidly reversible mating systems in water striders. Behav. Ecol. 28, 632–639 (2017).Article 

    Google Scholar 
    Preston, B. T., Stevenson, I. R., Pemberton, J. M. & Wilson, K. Dominant rams lose out by sperm depletion. Nature 409, 681–682 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cornwallis, C. K. & Uller, T. Towards an evolutionary ecology of sexual traits. Trends Ecol. Evol. 25, 145–152 (2010).Article 
    PubMed 

    Google Scholar 
    Forsgren, E., Amundsen, T., Borg, A. A. & Bjelvenmark, J. Unusually dynamic sex roles in a fish. Nature 429, 551–554 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hare, R. M. & Simmons, L. W. Sexual selection maintains a female-specific character in a species with dynamic sex roles. Behav. Ecol. 32, 609–616 (2021).Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B 374, 20180174 (2019).Article 

    Google Scholar 
    Ingleby, F. C., Hunt, J. & Hosken, D. J. The role of genotype-by-environment interactions in sexual selection. J. Evol. Biol. 23, 2031–2045 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lindström, J., Pike, T. W., Blount, J. D. & Metcalfe, N. B. Optimization of resource allocation can explain the temporal dynamics and honesty of sexual signals. Am. Nat. 174, 515–525 (2009).Article 
    PubMed 

    Google Scholar 
    Janicke, T., David, P. & Chapuis, E. Environment-dependent sexual selection: Bateman’s parameters under varying levels of food availability. Am. Nat. 185, 756–768 (2015).Article 
    PubMed 

    Google Scholar 
    Morimoto, J., Pizzari, T. & Wigby, S. Developmental environment effects on sexual selection in male and female Drosophila melanogaster. PLoS ONE 11, e0154468 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cattelan, S., Evans, J. P., Garcia-Gonzalez, F., Morbiato, E. & Pilastro, A. Dietary stress increases the total opportunity for sexual selection and modifies selection on condition-dependent traits. Ecol. Lett. 23, 447–456 (2020).Article 
    PubMed 

    Google Scholar 
    Glavaschi, A., Cattelan, S., Grapputo, A. & Pilastro, A. Imminent risk of predation reduces the relative strength of postcopulatory sexual selection in the guppy. Philos. Trans. R. Soc. B 375, 20200076 (2020).Article 

    Google Scholar 
    Clark, D. C., DeBano, S. J. & Moore, A. J. The influence of environmental quality on sexual selection in Nauphoeta cinerea (Dictyoptera: Blaberidae). Behav. Ecol. 8, 46–53 (1997).Article 

    Google Scholar 
    Emlen, S. & Oring, L. Ecology, sexual selection and the evolution of mating systems. Science 197, 215–223 (1977).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Liker, A., Freckleton, R. P. & Székely, T. The evolution of sex roles in birds is related to adult sex ratio. Nat. Commun. 4, 1–6 (2013).Article 

    Google Scholar 
    Wacker, S. et al. Operational sex ratio but not density affects sexual selection in a fish. Evolution 67, 1937–1949 (2013).Article 
    PubMed 

    Google Scholar 
    Wacker, S., Ness, M. H., Östlund-Nilsson, S. & Amundsen, T. Social structure affects mating competition in a damselfish. Coral Reefs 36, 1279–1289 (2017).Article 
    ADS 

    Google Scholar 
    Janicke, T. & Morrow, E. H. Operational sex ratio predicts the opportunity and direction of sexual selection across animals. Ecol. Lett. 21, 384–391 (2018).Article 
    PubMed 

    Google Scholar 
    Procter, D. S., Moore, A. J. & Miller, C. W. The form of sexual selection arising from male-male competition depends on the presence of females in the social environment. J. Evol. Biol. 25, 803–812 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eldakar, O. T., Dlugos, M. J., Pepper, J. W. & Wilson, D. S. Population structure mediates sexual conflict in Water striders. Science 326, 816–816 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Martin, A. M., Festa-Bianchet, M., Coltman, D. W. & Pelletier, F. Demographic drivers of age-dependent sexual selection. J. Evol. Biol. 29, 1437–1446 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pilakouta, N. & Ålund, M. Sexual selection and environmental change: what do we know and what comes next? Curr. Zool. 67, 293–298 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kahn, A. T., Dolstra, T., Jennions, M. D. & Backwell, P. R. Y. Strategic male courtship effort varies in concert with adaptive shifts in female mating preferences. Behav. Ecol. 24, 906–913 (2013).Article 

    Google Scholar 
    Jordan, L. A. & Brooks, R. C. Recent social history alters male courtship preferences. Evolution 66, 280–287 (2012).Article 
    PubMed 

    Google Scholar 
    Wilson, D. R., Nelson, X. J. & Evans, C. S. Seizing the opportunity: Subordinate male fowl respond rapidly to variation in social context. Ethology 115, 996–1004 (2009).Article 

    Google Scholar 
    Gwynne, D. T., Bailey, W. J. & Annells, A. The sex in short supply for matings varies over small Spatial scales in a Katydid (Kawanaphila nartee, Orthoptera: Tettigoniidae). Behav. Ecol. Sociobiol. 42, 157–162 (1998).Article 

    Google Scholar 
    Fedina, T. Y. & Lewis, S. M. Female mate choice across mating stages and between sequential mates in flour beetles. J. Evol. Biol. 20, 2138–2143 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Clark, H. L. & Backwell, P. R. Y. Temporal and spatial variation in female mating preferences in a fiddler crab. Behav. Ecol. Sociobiol. 69, 1779–1784 (2015).Article 

    Google Scholar 
    Serbezov, D., Bernatchez, L., Olsen, E. M. & Vøllestad, L. A. Mating patterns and determinants of individual reproductive success in brown trout (Salmo trutta) revealed by parentage analysis of an entire stream living population. Mol. Ecol. 19, 3193–3205 (2010).Article 
    PubMed 

    Google Scholar 
    Gerlach, N. M., McGlothlin, J. W., Parker, P. G. & Ketterson, E. D. Reinterpreting Bateman gradients: multiple mating and selection in both sexes of a songbird species. Behav. Ecol. 23, 1078–1088 (2012).Article 

    Google Scholar 
    Dubuc, C., Ruiz-Lambides, A. & Widdig, A. Variance in male lifetime reproductive success and estimation of the degree of polygyny in a primate. Behav. Ecol. 25, 878–889 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Breuer, T. et al. Variance in the male reproductive success of western gorillas: acquiring females is just the beginning. Behav. Ecol. Sociobiol. 64, 515–528 (2010).Article 

    Google Scholar 
    Germain, R. R., Hallworth, M. T., Kaiser, S. A., Sillett, T. S. & Webster, M. S. Variance in within-pair reproductive success influences the opportunity for selection annually and over the lifetimes of males in a multi-brooded songbird. Evolution 75, 915–930 (2021).Article 
    PubMed 

    Google Scholar 
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 
    PubMed 

    Google Scholar 
    Klug, H., Heuschele, J., Jennions, M. D. & Kokko, H. The mismeasurement of sexual selection. J. Evol. Biol. 23, 447–462 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jennions, M. D., Kokko, H. & Klug, H. The opportunity to be misled in studies of sexual selection. J. Evol. Biol. 25, 591–598 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Krakauer, A. H., Webster, M. S., Duval, E. H., Jones, A. G. & Shuster, S. M. The opportunity for sexual selection: not mismeasured, just misunderstood. J. Evol. Biol. 24, 2064–2071 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hebets, E. A., Stafstrom, J. A., Rodriguez, R. L. & Wilgers, D. J. Enigmatic ornamentation eases male reliance on courtship performance for mating success. Anim. Behav. 81, 963–972 (2011).Article 

    Google Scholar 
    Fitzpatrick, J. L. & Lüpold, S. Sexual selection and the evolution of sperm quality. Mol. Hum. Reprod. 20, 1180–1189 (2014).Article 
    PubMed 

    Google Scholar 
    Jones, A. G. On the opportunity for sexual selection, the Bateman gradient and the maximum intensity of sexual selection. Evolution 63, 1673–1684 (2009).Article 
    PubMed 

    Google Scholar 
    Henshaw, J. M., Kahn, A. T. & Fritzsche, K. A rigorous comparison of sexual selection indexes via simulations of diverse mating systems. Proc. Natl Acad. Sci. USA 113, E300–E308 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, J. P. & Garcia-Gonzalez, F. The total opportunity for sexual selection and the integration of pre- and post-mating episodes of sexual selection in a complex world. J. Evol. Biol. 29, 2338–2361 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Downhower, J. F., Blumer, L. S. & Brown, L. Opportunity for selection: an appropriate measure for evaluating variation in the potential for selection? Evolution 41, 1395–1400 (1987).Article 
    PubMed 

    Google Scholar 
    Klug, H. & Stone, L. More than just noise: Chance, mating success, and sexual selection. Ecol. Evol. 11, 6326–6340 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anthes, N., Häderer, I. K., Michiels, N. K. & Janicke, T. Measuring and interpreting sexual selection metrics: evaluation and guidelines. Methods Ecol. Evol. 8, 918–931 (2016).Article 

    Google Scholar 
    Klug, H., Lindström, K. & Kokko, H. Who to include in measures of sexual selection is no trivial matter. Ecol. Lett. 13, 1094–1102 (2010).Article 
    PubMed 

    Google Scholar 
    Collet, J. M., Dean, R. F., Worley, K., Richardson, D. S. & Pizzari, T. The measure and significance of Bateman’s principles. Proc. R. Soc. B 281, 20132973 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collet, J., Richardson, D. S., Worley, K. & Pizzari, T. Sexual selection and the differential effect of polyandry. Proc. Natl Acad. Sci. USA 109, 8641–8645 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Pre- and postcopulatory sexual selection favor aggressive, young males in polyandrous groups of red junglefowl. Evolution 71, 1653–1669 (2017).Article 
    PubMed 

    Google Scholar 
    Morimoto, J. et al. Sex peptide receptor-regulated polyandry modulates the balance of pre- and post-copulatory sexual selection in Drosophila. Nat. Commun. 10, 283 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shuster, S. M., Willen, R. M., Keane, B. & Solomon, N. G. Alternative mating tactics in socially monogamous prairie voles, Microtus ochrogaster. Front. Ecol. Evol. 7, 7 (2019).Article 

    Google Scholar 
    Dowling, J. & Webster, M. S. Working with what you’ve got: unattractive males show greater mate-guarding effort in a duetting songbird. Biol. Lett. 13, 20160682 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pizzari, T. & McDonald, G. C. Sexual selection in socially structured, polyandrous populations: Some insights from the fowl. Adv. Study Behav. 51, 77–141 (2019).Article 

    Google Scholar 
    Archer, M. S. & Elgar, M. A. Female preference for multiple partners: sperm competition in the hide beetle, Dermestes maculatus (DeGeer). Anim. Behav. 58, 669–675 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qvarnström, A. & Forsgren, E. Should females prefer dominant males? Trends Ecol. Evol. 13, 498–501 (1998).Article 
    PubMed 

    Google Scholar 
    Webster, M. S., Tarvin, K. A., Tuttle, E. M. & Pruett-Jones, S. Promiscuity drives sexual selection in a socially monogamous bird. Evolution 61, 2205–2211 (2007).Article 
    PubMed 

    Google Scholar 
    Brunton, D. H. Energy expenditure in reproductive effort of male and female Killdeer (Charadrius vociferus). Auk 105, 553–564 (1988).Article 

    Google Scholar 
    Johnson, L. S., Hicks, B. G. & Masters, B. S. Increased cuckoldry as a cost of breeding late for male house wrens (Troglodytes aedon). Behav. Ecol. 13, 670–675 (2002).Article 

    Google Scholar 
    Boinski, S. Mating patterns in squirrel monkeys (Saimiri oerstedi): implications for seasonal sexual dimorphism. Behav. Ecol. Sociobiol. 21, 13–21 (1987).Article 

    Google Scholar 
    McDonald, G. C., Spurgin, L. G., Fairfield, E. A., Richardson, D. S. & Pizzari, T. Differential female sociality is linked with the fine-scale structure of sexual interactions in replicate groups of red junglefowl, Gallus gallus. Proc. R. Soc. B 286, 20191734 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carleial, R. et al. Temporal dynamics of competitive fertilization in social groups of red junglefowl (Gallus gallus) shed new light on avian sperm competition. Philos. Trans. R. Soc. B 375, 20200081 (2020).Article 

    Google Scholar 
    Lessells, C. M. & Birkhead, T. R. Mechanisms of sperm competition in birds: mathematical models. Behav. Ecol. Sociobiol. 27, 325–337 (1990).Article 

    Google Scholar 
    Taborsky, T., Oliveira, R. F. & Brockmann, H. J. The Evolution of Alternative Reproductive Tactics: Concepts and Questions. in Alternative Reproductive Tactics: An Integrative Approach (Cambridge University Press, 2008).Ghislandi, P. G. et al. Resource availability, mating opportunity and sexual selection intensity influence the expression of male alternative reproductive tactics. J. Evol. Biol. 31, 1035–1046 (2018).Article 
    PubMed 

    Google Scholar 
    Lehtonen, T. K., Wong, B. B. M. & Lindström, K. Fluctuating mate preferences in a marine fish. Biol. Lett. 6, 21–23 (2010).Article 
    PubMed 

    Google Scholar 
    Chaine, A. S. & Lyon, B. E. Adaptive plasticity in female mate choice dampens sexual selection on male ornaments in the lark bunting. Science 319, 459–462 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).Article 

    Google Scholar 
    Oklander, L. I., Kowalewski, M. & Corach, D. Male reproductive strategies in black and gold howler monkeys (Alouatta caraya). Am. J. Primatol. 76, 43–55 (2014).Article 
    PubMed 

    Google Scholar 
    Pröhl, H. & Hödl, W. Parental investment, potential reproductive rates, and mating system in the strawberry dart-poison frog, Dendrobates pumilio. Behav. Ecol. Sociobiol. 46, 215–220 (1999).Article 

    Google Scholar 
    Turnell, B. R. & Shaw, K. L. High opportunity for postcopulatory sexual selection under field conditions. Evolution 69, 2094–2104 (2015).Article 
    PubMed 

    Google Scholar 
    Gill, L. F., van Schaik, J., von Bayern, A. M. P. & Gahr, M. L. Genetic monogamy despite frequent extrapair copulations in “strictly monogamous” wild jackdaws. Behav. Ecol. 31, 247–260 (2020).Article 
    PubMed 

    Google Scholar 
    Carleial, R., McDonald, G. C. & Pizzari, T. Dynamic phenotypic correlates of social status and mating effort in male and female red junglefowl, Gallus gallus. J. Evol. Biol. 33, 22–40 (2020).Article 
    PubMed 

    Google Scholar 
    McDonald, G. C. & Pizzari, T. Structure of sexual networks determines the operation of sexual selection. Proc. Natl Acad. Sci. USA 115, E53–E61 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Janicke, T., Häderer, I. K., Lajeunesse, M. J. & Anthes, N. Darwinian sex roles confirmed across the animal kingdom. Sci. Adv. 2, e1500983 (2016).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Webster, M. S., Pruett-Jones, S., Westneat, D. F. & Arnold, S. J. Measuring the effects of pairing success, extra-pair copulations and mate quality on the opportunity for sexual selection. Evolution 49, 1147–1157 (1995).PubMed 

    Google Scholar 
    Etches, R. J. Reproduction in Poultry. (CABI, 1996).Schielzeth, H. Simple means to improve the interpretability of regression coefficients: Interpretation of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    Løvlie, H., Cornwallis, C. K. & Pizzari, T. Male mounting alone reduces female promiscuity in the fowl. Curr. Biol. 15, 1222–1227 (2005).Article 
    PubMed 

    Google Scholar 
    Berglund, A. Many mates make male pipefish choosy. Behaviour 132, 213–218 (1995).Article 

    Google Scholar 
    Carleial, R., Pizzari, T., Richardson, D. S. & McDonald, G. C. Data for: Disentangling the causes of temporal variation in the opportunity for sexual selection. figshare Dataset (2023) https://doi.org/10.6084/m9.figshare.21902133.v1.McLain, D. K., Burnette, L. B. & Deeds, D. A. Within season variation in the intensity of sexual selection on body size in the bug Margus obscurator (Hemiptera Coreidae). Ethol. Ecol. Evol. 5, 75–86 (1993).Article 

    Google Scholar 
    Schlicht, E. & Kempenaers, B. Effects of social and extra-pair mating on sexual selection in Blue tits (Cyanistes caeruleus). Evolution 67, 1420–1434 (2013).PubMed 

    Google Scholar  More

  • in

    Cell aggregation is associated with enzyme secretion strategies in marine polysaccharide-degrading bacteria

    Strains belonging to the same species display distinct growth dynamics on the marine polysaccharide alginateWe first quantified the growth dynamics of the 12 Vibrionaceae strains (Supplementary Table 1) on alginate in well-mixed batch cultures. Growth of populations was initiated at approximately the same inoculum density (105 colony forming units (c.f.u.) ml−1). We tracked the growth dynamics by measuring the optical density at 600 nm and compared the maximum population size reached over the course of 36 h (Fig. 1 and S1). We found significant differences in the maximal optical density achieved by different strains within each species (Fig. 1 and S1). In V. splendidus, strains 12B01 and FF6 reached a lower maximum population size compared to strains 1S124 and 13B01 (Fig. 1 and S1A). In V. cyclitrophicus, strain ZF270 reached a lower maximum population size compared to strains 1F175, 1F111, and ZF28 (Fig. 1 and S1A). Similarly, in V. sp. F13, strain 9ZC77 reached a lower maximum population size than strains 9CS106, 9ZC13, and ZF57 (Fig. 1 and S1A). These findings suggest that some strains are limited in their growth abilities in well-mixed environments, perhaps as a consequence of differences in the amount and activity of enzymes they release (Supplementary Table 1).Fig. 1: Vibrionaceae strains differ in their growth dynamics on the marine polysaccharide alginate under well-mixed conditions.Maximum optical density (measured at 600 nm) achieved by populations of strains belonging to Vibrio splendidus, Vibrio cyclitrophicus, and Vibrio sp. F13 during the course of a 36 h growth cycle on the same concentration (0.1% weight/volume) of the polysaccharide alginate. Points and error bars indicate the mean of measurements across populations within each ecotype (npopulations = 3) and the 95% confidence interval (CI), respectively. Different letters indicate statistically significant differences between strains within one species (One-way ANOVA and Dunnett’s post-hoc test; V. splendidus: p  More

  • in

    The spatio-temporal distribution of alkaline phosphatase activity and phoD gene abundance and diversity in sediment of Sancha Lake

    Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems: A global problem. Environ. Sc. Pollut. R. Int. 10, 126–139 (2003).Article 
    CAS 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading an analysis of contemporary long term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Kim, L. H., Choi, E. & Michal, K. S. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere 50, 53–61 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, X. J., Xiang, C. & Yao, Y. Effects of biological activity, light, temperature and oxygen on phosphorus release processes at the sediment and water interface of Taihu Lake, China. Water Res. 42, 2251–2259 (2008).Article 
    CAS 

    Google Scholar 
    Wang, S. R., Jin, X. C. & Bu, Q. Y. Effects of dissolved oxygen supply level on phosphorus release from lake sediments. Colloids Surf. A 316, 245–252 (2008).Article 
    CAS 

    Google Scholar 
    Miao, S. Y., De-Laune, R. D. & Jug-Sujinda, A. Influence of sediment redox conditions on release/solubility of metals and nutrients in a Louisiana Mississippi River deltaic plain freshwater lake. Sci. Total Environ. 371, 334–343 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Smits, J. G. C. & Van Beek, J. K. L. ECO: A generic eutrophication model including comprehensive sediment-water interaction. PLoS ONE 8, e68104 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Topcu, A. & Pulatsu, S. Phosphorus fractions and cycling in the sediment of a shallow eutrophic pond. Tarim Bilim. Derg. 20, 63–70 (2014).Article 

    Google Scholar 
    Jeppesen, E., Sondergaard, M. & Jensen, J. P. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshw. Biol. 50, 1747–1771 (2005).Article 
    CAS 

    Google Scholar 
    Song, C. L., Cao, X. Y. & Liu, Y. B. Seasonal variations in chlorophyll a concentrations in relation to potentials of sediment phosphate release by different mechanisms in a large chinese shallow eutrophic lake (Lake Taihu). Geomicrobiol. J. 26, 508–515 (2009).Article 
    CAS 

    Google Scholar 
    Pop, O., Martin, U., Abel, C. & Müller, J. P. The twin-arginine signal peptide of PhoD and the TatAd/Cd proteins of Bacillus subtilis form an autonomous tat translocation system. J. Biol. Chem. 277, 3268–3273 (2002).Article 
    CAS 

    Google Scholar 
    Luo, H. W., Zhang, H. M. & Long, R. A. Depth distributions of alkaline phosphatase and phosphonate utilization genes in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 62, 61–69 (2011).Article 

    Google Scholar 
    Tan, H. et al. Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol. Fertil. Soils 49, 661–672 (2012).Article 

    Google Scholar 
    Wan, W. J. et al. Spatial differences in soil microbial diversity caused by pH-driven organic phosphorus mineralization. Land Degrad. Dev. 32, 766–776 (2021).Article 

    Google Scholar 
    Chen, X. et al. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials. Appl. Soil Ecol. 119, 197–204 (2017).Article 
    ADS 

    Google Scholar 
    Sagnon, A. et al. Amendment with Burkina Faso phosphate rock-enriched composts alters soil chemical properties and microbial structure, and enhances sorghum agronomic performance. Sci. Rep. 12, 13945 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Chhabra, S. et al. Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol. Fertil. Soils 49, 31–39 (2012).Article 

    Google Scholar 
    Luo, H. W., Benner, R., Long, R. A. & Hu, J. J. Subcellular localization of marine bacterial alkaline phosphatases. Proc. Natl. Acad. Sci. 106, 212–219 (2009).Article 

    Google Scholar 
    Zhang, T. X. et al. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. Sci. Total Environ. 728, 138615 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Li, H. et al. Nutrients regeneration pathway, release potential, transformation pattern and algal utilization strategies jointly drove cyanobacterial growth and their succession. J. Environ. Sci. 103, 255–267 (2021).Article 
    CAS 

    Google Scholar 
    Sun, T. T., Huang, T. & Liu, Y. X. Effects of cyanobacterial growth and decline on the phoD-harboring bacterial community structure in sediments of Lake Chaohu. J. Lake Sci. 34, 32 (2022).ADS 

    Google Scholar 
    Li, Y., Ai, M. J., Sun, Y., Zhang, Y. Q. & Zhang, J. Q. Spirosoma lacussanchae sp. nov., a phosphate-solubilizing bacterium isolated from a freshwater reservoir. Int. J. Syst. Evol. Microbiol. 67, 3144–3149 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Xu, W. L. & Mou, Z. S. Microbial community structure in the sediments and its relation to environmental factors in eutrophicated Sancha Lake. Int. J. Environ. Res. Public Health 16, 1931–1946 (2019).Article 
    CAS 

    Google Scholar 
    Jia, B. Y., Tang, Y. & Fu, W. L. Relationship among sediment characteristics, eutrophication process and human activities in the Sancha Lake. China Environ. Sci. 33, 1638–1644 (2013).CAS 

    Google Scholar 
    Li, Y., Zhang, J. J., Zhang, J. Q., Xu, W. L. & Mou, Z. S. Characteristics of inorganic phosphate-solubilizing bacteria from the sediments of a Eutrophic Lake. Int. J. Environ. Res. Public Health 16, 2141 (2019).Article 
    CAS 

    Google Scholar 
    Ruban, V., Brigault, S., Demare, D. & Philippe, A. M. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues reservoir, France. J. Environ. Monit. 1, 403–407 (1999).Article 
    CAS 

    Google Scholar 
    Ruban, V., López-Sánchez, J. F. & Pardo, P. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works. Fresenius J. Anal. Chem. 370, 224–228 (2001).Article 
    CAS 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Fu, W. L. & Wu, D. M. Fractions and temporal and spatial distribution of phosphorus in the sediments of Sancha lake. Appl. Ecol. Environ. Res. 17, 11731–11743 (2019).Article 

    Google Scholar 
    Li, Y., Zhang, J. Q., Gong, Z. L., Xu, W. L. & Mou, Z. S. Gcd gene diversity of quinoprotein glucose dehydrogenase in the sediment of Sancha lake and its response to the environment. Int. J. Environ. Res. Public Health 16, 1–10 (2019).Article 

    Google Scholar 
    Luo, G. W. et al. Long-term fertilisation regimes affect the composition of the alkaline phosphomonoesterase encoding microbial community of a vertisol and its derivative soil fractions. Biol. Fertil. Soils 53, 375–388 (2017).Article 
    CAS 

    Google Scholar 
    Lagos, L. et al. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol. Fertil. Soils 52, 1007–1019 (2016).Article 
    CAS 

    Google Scholar 
    Acuña, J. et al. Bacterial alkaline phosphomono-esterase in the rhizospheres of plants grown in chilean extreme environments. Biol. Fertil. Soils 52, 763–773 (2016).Article 

    Google Scholar 
    Nicholas, A. B. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods. 10, 57–59 (2013).Article 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).Article 
    CAS 

    Google Scholar 
    Fan, X. F. & Xing, P. The vertical distribution of sediment archaeal community in the (black bloom) disturbing Zhushan Bay of Lake Taihu. Archaea 2016, 201–208 (2016).Article 

    Google Scholar 
    White, J. R., Nagarajan, N. & Pop, M. O. Statistical methods for detecting differentially abundant features in clinical metagenomic samples (differential abundance in clinical metagenomics). PLoS Comput. Biol. 5, 1–11 (2009).Article 

    Google Scholar 
    Hu, H., Chen, X. J., Hou, F. J., Wu, Y. P. & Cheng, Y. X. Bacterial and fungal community structures in loess plateau grasslands with different grazing intensities. Front. Microbiol. 8, 606 (2017).Article 

    Google Scholar 
    Dai, J. Y. et al. Bacterial alkaline phosphatases and affiliated encoding genes in natural waters: A review. J. Lake Sci. 28, 1153–1166 (2016).Article 

    Google Scholar 
    Chróst, R. J. & Overbeck, J. Kinetics of alkaline phosphatase activity and phosphorus availability for phytoplankton and bacterio-plankton in lake plusee (North German Eutrophic Lake). Microb. Ecol. 13, 229–248 (1987).Article 

    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci. Rep. 7, 1337 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhao, D. D., Luo, J. F., Huang, X. Y. & Lin, W. T. Diversity of bacterial APase phoD gene in the Pearl River water. Acta Sci. Circum. 35, 722–728 (2015).CAS 

    Google Scholar 
    Valdespino-Castillo, P. M. et al. Alkaline phosphatases in microbialites and bacterioplankton from Alchichica soda lake, Mexico. FEMS Microbiol. Ecol. 90, 504–519 (2014).CAS 

    Google Scholar 
    Ni, Z. K., Li, Y. & Wang, S. R. Cognizing and characterizing the organic phosphorus in lake sediments: Advances and challenges. Water Res. 220, 118663 (2022).Article 
    CAS 

    Google Scholar 
    Han, S. S. & Wen, T. M. Phosphorus release and affecting factors in the sediments of eutrophic water. J. Ecol. 23, 98–101 (2004).
    Google Scholar 
    Wang, F. F., Qu, J. H. & Hu, Y. S. Spatio-temporal characteristics and correlation of phosphate, pH and alkaline phosphatase on water-sediment interface of Lake Taihu. Ecol. Environ. Sci. 21, 907–912 (2012).
    Google Scholar 
    Lu, Y. M. et al. Bioavailability of organic phosphorus in Lake Chaohu sediments. J. Environ. Eng. Technol. 10, 197–204 (2020).
    Google Scholar 
    LeBrun, E. S., King, R. S., Back, J. A. & Kang, S. Microbial community structure and function decoupling across a phosphorus gradient in streams. Microb. Ecol. 75, 64–73 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, J. et al. Connecting sources, fractions and algal availability of sediment phosphorus in shallow lakes: An approach to the criteria for sediment phosphorus concentrations. J. Environ. Sci. 25, 798–810 (2023).Article 

    Google Scholar 
    Hu, Y. J. et al. Effects of long-term fertilization on phoD-harboring bacterial community in Karst soils. Sci. Total Environ. 628–629, 53–63 (2018).Article 
    ADS 

    Google Scholar  More

  • in

    Public interest in individual study animals can bolster wildlife conservation

    Benson, E. S. Sci. Context 29, 107–128 (2016).Article 
    PubMed 

    Google Scholar 
    Buckmaster, C. A. Lab Anim. 44, 237 (2015).Article 

    Google Scholar 
    Kelly, M. J. et al. J. Zool. 244, 473–488 (1998).Article 

    Google Scholar 
    Spagnuolo, O. S. B., Lemerle, M. A., Holekamp, K. E. & Wiesel, I. Mamm. Biol. https://doi.org/10.1007/s42991-022-00309-4 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    California Department of Fish and Wildlife. Mountain lion P-22 compassionately euthanized following complete health evaluation results. wildlife.ca.gov, https://wildlife.ca.gov/News/mountain-lion-p-22-compassionately-euthanized-following-complete-health-evaluation-results (17 December 2022).Road Ecology Center, UC Davis. California roadkill observation system, https://www.wildlifecrossing.net/california/ (accessed 19 December 2022).Wong-Parodi, G. & Feygina, I. Environ. Commun. 15, 571–593 (2021).Article 

    Google Scholar 
    Carmi, N., Arnon, S. & Orion, N. J. Environ. Educ. 46, 183–201 (2015).Article 

    Google Scholar 
    Manfredo, M. J., Urquiza-Haas, E. G., Don Carlos, A. W., Bruskotter, J. T. & Dietsch, A. M. Biol. Conserv. 241, 108297 (2020).Article 

    Google Scholar 
    Schueler, D. S. & Newberry, M. G. III Appl. Environ. Educ. Commun. 19, 259–273 (2020).Article 

    Google Scholar 
    Jennings, L. Public gets to name Dallas Zoo’s baby giraffe. Dallas Zoo https://zoohoo.dallaszoo.com/2014/11/05/public-gets-to-name-dallas-zoos-baby-giraffe/ (5 November 2014).Verma, A., van der Wal, R. & Fischer, A. Ambio 44(Suppl 4), 648–660 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macdonald, D. W., Jacobsen, K. S., Burnham, D., Johnson, P. J. & Loveridge, A. J. Animals 6, 26 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, M. D., Shanahan, E. A. & McBeth, M. K. The Science of Stories: Applications of the Narrative Policy Framework in Public Policy Analysis (Palgrave MacMillan, 2014). More