More stories

  • in

    Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA)

    1.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).Article 

    Google Scholar 
    2.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    3.Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15. https://doi.org/10.1098/rsbl.2018.0781 (2019).4.Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688. https://doi.org/10.1038/nature03906 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211. https://doi.org/10.1016/j.oneear.2020.07.010 (2020).Article 

    Google Scholar 
    6.Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Alongi, D. M. Carbon cycling in the world’s mangrove ecosystems revisited: Significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests 11, 1–17. https://doi.org/10.3390/f11090977 (2020).Article 

    Google Scholar 
    8.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Alongi, D. M. Global significance of mangrove blue carbon in climate change mitigation. Science 2, 67 (2020).Article 

    Google Scholar 
    10.Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14. https://doi.org/10.1098/rsbl.2018.0251 (2018).11.Rivera-Monroy, V. H. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 347–381 (Springer, 2017).12.Yao, Q., Liu, K.-B., Platt, W. J. & Rivera-Monroy, V. H. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene. Quatern. Res. 83, 449–458. https://doi.org/10.1016/j.yqres.2015.03.005 (2015).ADS 
    Article 

    Google Scholar 
    13.Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E. & Davis, S. in Coastal Wetlands (eds. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Hopkinson, C. S.) 717–785 (Elsevier, 2019).14.Woodroffe, C., Robertson, A. & Alongi, D. Mangrove sediments and geomorphology. Trop. Mangrove Ecosyst. Coastal Estuarine Stud. 41 (1992).15.Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538. https://doi.org/10.1038/s41558-018-0162-5 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Twilley, R. R. & Rivera-Monroy, V. H. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coastal Res. 79–93 (2005).17.Bunting, P. et al. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).ADS 
    Article 

    Google Scholar 
    18.Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).Article 

    Google Scholar 
    19.Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45. https://doi.org/10.1038/s41561-018-0279-1 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Rovai, A. S. et al. Macroecological patterns of forest structure and allometric scaling in mangrove forests. Glob. Ecol. Biogeogr. 30, 1000–1013. https://doi.org/10.1111/geb.13268 (2021).Article 

    Google Scholar 
    22.Bouillon, S. et al. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem. Cycles 22 (2008).23.Breithaupt, J. L., Smoak, J. M., Smith III, T. J., Sanders, C. J. & Hoare, A. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochem. Cycles 26. https://doi.org/10.1029/2012gb004375 (2012).24.Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968. https://doi.org/10.1038/nclimate1970 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:Teotwa]2.0.Co;2 (2001).Article 

    Google Scholar 
    26.Lugo, A. E. & Snedaker, S. C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5, 39–64 (1974).Article 

    Google Scholar 
    27.Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855. https://doi.org/10.1111/gcb.15275 (2020).ADS 
    Article 

    Google Scholar 
    28.Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449 (2016).Article 

    Google Scholar 
    29.Kristensen, E. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 163–209 (Springer, 2017).30.Friess, D. A. JG Watson, Inundation classes, and their influence on paradigms in mangrove forest ecology. Wetlands 37, 603–613. https://doi.org/10.1007/s13157-016-0747-6 (2017).Article 

    Google Scholar 
    31.Krauss, K. W., Doyle, T. W., Twilley, R. R., Rivera-Monroy, V. H. & Sullivan, J. K. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569, 311–324. https://doi.org/10.1007/s10750-006-0139-7 (2006).CAS 
    Article 

    Google Scholar 
    32.Zhao, X. C. et al. Modeling soil porewater salinity in mangrove forests (Everglades, Florida, USA) impacted by hydrological restoration and a warming climate. Ecol. Model. 436. https://doi.org/10.1016/j.ecolmodel.2020.109292 (2020).33.Sippo, J. Z. et al. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochim. Cosmochim. Acta 253, 142–158. https://doi.org/10.1016/j.gca.2019.03.003 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225. https://doi.org/10.1016/j.gca.2014.11.023 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Chen, X. et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: An important component of blue carbon budgets?. J. Geophys. Res. Oceans 123, 6962–6979. https://doi.org/10.1029/2018JC014448 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyeare, B. D. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink?. Limnol. Oceanogr. 58, 475–488 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Sadat-Noori, M., Santos, I. R., Tait, D. R., Reading, M. J. & Sanders, C. J. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. J. Hydrol. 553, 188–198. https://doi.org/10.1016/j.jhydrol.2017.07.058 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Saderne, V. et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-08842-6 (2019).39.Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 64, 996–1013. https://doi.org/10.1002/lno.11090 (2019).40.Sippo, J. Z. et al. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnol. Oceanogr. Lett. 2, 1–8. https://doi.org/10.1002/lol2.10031 (2017).Article 

    Google Scholar 
    41.Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. BioRxiv. 1–22. https://doi.org/10.1101/2020.08.27.271189 (2020).42.Volta, C. et al. Seasonal variations in dissolved carbon inventory and fluxes in a mangrove-dominated estuary. Global Biogeochem. Cycles 34. https://doi.org/10.1029/2019GB006515 (2020).43.Barr, J. G. et al. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J. Geophys. Res. Biogeosci. 115. https://doi.org/10.1029/2009jg001186 (2010).44.Barr, J. G., Engel, V., Smith, T. J. & Fuentes, J. D. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agric. For. Meteorol. 153, 54–66. https://doi.org/10.1016/j.agrformet.2011.07.022 (2012).ADS 
    Article 

    Google Scholar 
    45.Chen, H., Lu, W., Yan, G., Yang, S. & Lin, G. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China. Biogeosciences 11, 5323–5333 (2014).ADS 
    Article 

    Google Scholar 
    46.Ray, R. et al. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest. Tellus B Chem. Phys. Meteorol. 65, 1–11. https://doi.org/10.3402/tellusb.v65i0.18981 (2013).CAS 
    Article 

    Google Scholar 
    47.Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. & Eyeare, B. D. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks—A revision of global mangrove CO2 emissions. Geochim. Cosmochim. Acta 222, 729–745. https://doi.org/10.1016/j.gca.2017.11.026 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyeare, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4. https://doi.org/10.1126/sciadv.aao4985 (2018).49.Troxler, T. G. et al. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agric. For. Meteorol. 213, 273–282. https://doi.org/10.1016/j.agrformet.2014.12.012 (2015).ADS 
    Article 

    Google Scholar 
    50.Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecol. 33, 368–398. https://doi.org/10.1111/j.1442-9993.2008.01894.x (2008).Article 

    Google Scholar 
    51.Dvorak, V. F. Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Weather Rev. 103, 420–430. https://doi.org/10.1175/1520-0493(1975)103%3c0420:Tciaaf%3e2.0.Co;2 (1975).ADS 
    Article 

    Google Scholar 
    52.Doyle, T. W., Smith III, T. J. & Robblee, M. B. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. J. Coastal Res. 159–168 (1995).53.Imbert, D., Labbe, P. & Rousteau, A. Hurricane damage and forest structure in Guadeloupe, French West Indies. J. Trop. Ecol. 12, 663–680 (1996).Article 

    Google Scholar 
    54.Kauffman, J. B. & Cole, T. G. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30, 1077–1084. https://doi.org/10.1007/s13157-010-0114-y (2010).Article 

    Google Scholar 
    55.Lagomasino, D. et al. Storm surge, not wind, caused mangrove dieback in southwest Florida following Hurricane Irma. https://doi.org/10.31223/osf.io/q4exh (2020).56.Paling, E. I., Kobryn, H. T. & Humphreys, G. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 77, 603–613 (2008).ADS 
    Article 

    Google Scholar 
    57.Radabaugh, K. R. et al. Mangrove damage, delayed mortality, and early recovery following Hurricane Irma at two landfall sites in Southwest Florida, USA. Estuaries Coasts 43, 1104–1118. https://doi.org/10.1007/s12237-019-00564-8 (2020).Article 

    Google Scholar 
    58.Salmo, S. G., Lovelock, C. E. & Duke, N. C. Assessment of vegetation and soil conditions in restored mangroves interrupted by severe tropical typhoon ‘Chan-hom’in the Philippines. Hydrobiologia 733, 85–102 (2014).Article 

    Google Scholar 
    59.Sherman, R. E., Fahey, T. J. & Martinez, P. Hurricane impacts on a mangrove forest in the Dominican Republic: Damage patterns and early recovery 1. Biotropica 33, 393–408. https://doi.org/10.1646/0006-3606(2001)033[0393:Hioamf]2.0.Co;2 (2001).Article 

    Google Scholar 
    60.Smith, T. J., Robblee, M. B., Wanless, H. R. & Doyle, T. W. Mangroves, hurricanes, and lightning strikes. Bioscience 44, 256–262. https://doi.org/10.2307/1312230 (1994).Article 

    Google Scholar 
    61.Baldwin, A., Egnotovich, M., Ford, M. & Platt, W. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecol. 157, 151–164 (2001).Article 

    Google Scholar 
    62.Danielson, T. M. et al. Assessment of Everglades mangrove forest resilience: Implications for above-ground net primary productivity and carbon dynamics. For. Ecol. Manag. 404, 115–125 (2017).Article 

    Google Scholar 
    63.Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9. https://doi.org/10.1002/ecs2.2231 (2018).64.Piou, C., Feller, I. C., Berger, U. & Chi, F. Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane 1. Biotropica 38, 365–374. https://doi.org/10.1111/j.1744-7429.2006.00156.x (2006).Article 

    Google Scholar 
    65.Rivera-Monroy, V. H. et al. Long-term demography and stem productivity of Everglades mangrove forests (Florida, USA): Resistance to hurricane disturbance. For. Ecol. Manag. 440. https://doi.org/10.1016/j.foreco.2019.02.036 (2019).66.Ouyang, X., Guo, F. & Lee, S. Y. The impact of super-typhoon Mangkhut on sediment nutrient density and fluxes in a mangrove forest in Hong Kong. Sci. Total Environ. 142637. https://doi.org/10.1016/j.scitotenv.2020.142637 (2020).67.Xu, X., Hirata, E., Enoki, T. & Tokashiki, Y. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol. 173, 161–170. https://doi.org/10.1023/B:VEGE.0000029319.05980.70 (2004).Article 

    Google Scholar 
    68.Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 1–13 (2019).Article 

    Google Scholar 
    69.Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. U.S.A. 116, 12232–12237. https://doi.org/10.1073/pnas.1820067116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Rivera-Monroy, V. H. et al. Tropical cyclone landfall frequency and large-scale environmental impacts along Karstic Coastal Regions (Yucatan Peninsula, Mexico). Appl. Sci. 10, 5815 (2020).CAS 
    Article 

    Google Scholar 
    71.Benedetto, K. M. & Trepanier, J. C. Climatology and spatiotemporal analysis of North Atlantic rapidly intensifying hurricanes (1851–2017). Atmosphere 11. https://doi.org/10.3390/atmos11030291 (2020).72.Powell, M. D. & Reinhold, T. A. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 88, 513–526 (2007).ADS 
    Article 

    Google Scholar 
    73.Castañeda-Moya, E., Twilley, R. R. & Rivera-Monroy, V. H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For. Ecol. Manag. 307, 226–241 (2013).Article 

    Google Scholar 
    74.Adame, M. F. & Lovelock, C. E. Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663, 23–50. https://doi.org/10.1007/s10750-010-0554-7 (2011).CAS 
    Article 

    Google Scholar 
    75.Day, J. W. et al. A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat. Bot. https://doi.org/10.1016/0304-3770(96)01063-7 (1996).Article 

    Google Scholar 
    76.Ribeiro, R. d. A., Rovai, A. S., Twilley, R. R. & Castañeda-Moya, E. Spatial variability of mangrove primary productivity in the neotropics. Ecosphere 10, doi:https://doi.org/10.1002/ecs2.2841 (2019).77.Twilley, R. R. et al. Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111, 109–122. https://doi.org/10.1007/s004420050214 (1997).ADS 
    Article 
    PubMed 

    Google Scholar 
    78.Twilley, R. W., Lugo, A. E. & Patterson-Zucca, C. Litter production and turnover in basin mangrove forests in Southwest Florida. Ecology 67, 670–683. https://doi.org/10.2307/1937691 (1986).Article 

    Google Scholar 
    79.Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15. https://doi.org/10.1088/1748-9326/ab82cf (2020).80.Holland, G. J., Done, J. M., Douglas, R., Saville, G. R. & Ge, M. in Hurricane Risk 23–42 (Springer, 2019).81.Breithaupt, J. L., Smoak, J. M., Sanders, C. J. & Troxler, T. G. Spatial variability of organic carbon, CaCO3 and nutrient burial rates spanning a mangrove productivity gradient in the Coastal Everglades. Ecosystems 22, 844–858. https://doi.org/10.1007/s10021-018-0306-5 (2019).CAS 
    Article 

    Google Scholar 
    82.Ho, D. T. et al. Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades. Biogeosciences 14, 2543–2559. https://doi.org/10.5194/bg-14-2543-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Reithmaier, G., Johnston, S. G. & Maher, D. T. Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park, Florida Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park. 1–29 (2020).84.Han, X., Feng, L., Hu, C. & Kramer, P. Hurricane-induced changes in the Everglades National Park mangrove forest: Landsat observations between 1985 and 2017. J. Geophys. Res. Biogeosci. 123, 3470–3488. https://doi.org/10.1029/2018jg004501 (2018).Article 

    Google Scholar 
    85.Cortés-Ramos, J., Farfán, L. M. & Herrera-Cervantes, H. Assessment of tropical cyclone damage on dry forests using multispectral remote sensing: The case of Baja California Sur, Mexico. J. Arid Environ. 178. https://doi.org/10.1016/j.jaridenv.2020.104171 (2020).86.Doyle, T. W., Krauss, K. W. & Wells, C. J. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the Everglades. Wetlands 29, 44–53. https://doi.org/10.1672/07-233.1 (2009).Article 

    Google Scholar 
    87.Castañeda-Moya, E. et al. Sediment and nutrient deposition associated with hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries Coasts 33, 45–58. https://doi.org/10.1007/s12237-009-9242-0 (2010).CAS 
    Article 

    Google Scholar 
    88.Zhang, K. et al. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 102–103, 11–23. https://doi.org/10.1016/j.ecss.2012.02.021 (2012).ADS 
    Article 

    Google Scholar 
    89.Castaneda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U S A 117, 4831–4841. https://doi.org/10.1073/pnas.1908597117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Adame, M. F. et al. Drivers of mangrove litterfall within a Karstic Region affected by frequent hurricanes. Biotropica 45, 147–154. https://doi.org/10.1111/btp.12000 (2013).Article 

    Google Scholar 
    91.Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13. https://doi.org/10.1016/j.ecss.2007.08.024 (2008).ADS 
    Article 

    Google Scholar 
    92.Kovacs, J. M., Blanco-Correa, M. & Flores-Verdugo, F. A logistic regression model of hurricane impacts in a mangrove forest of the Mexican Pacific. J. Coastal Res. 17, 30–37 (2001).
    Google Scholar 
    93.Smith, T. J. et al. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29, 24 (2009).Article 

    Google Scholar 
    94.Vogt, J. et al. Investigating the role of impoundment and forest structure on the resistance and resilience of mangrove forests to hurricanes. Aquat. Bot. 97, 24–29. https://doi.org/10.1016/j.aquabot.2011.10.006 (2012).Article 

    Google Scholar 
    95.Osland, M. J. et al. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 214, 120–140. https://doi.org/10.1016/j.ecss.2018.09.006 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Ting, M., Kossin, J. P., Camargo, S. J. & Li, C. Past and future hurricane intensity change along the US East Coast. Sci. Rep. 9, 7795 (2019).ADS 
    Article 

    Google Scholar 
    97.Rego, J. L. & Li, C. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett. 36 (2009).98.Li, L. & Chakraborty, P. Slower decay of landfalling hurricanes in a warming world. Nature 587, 230–234. https://doi.org/10.1038/s41586-020-2867-7 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    99.Shi, L., Olabarrieta, M., Nolan, D. S. & Warner, J. C. Tropical cyclone rainbands can trigger meteotsunamis. Nat. Commun. 11. https://doi.org/10.1038/s41467-020-14423-9 (2020).100.Mazda, Y., Kobashi, D. & Okada, S. Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol. Manag. 13, 647–655 (2005).Article 

    Google Scholar 
    101.Krauss, K. W. et al. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29, 142–149. https://doi.org/10.1672/07-232.1 (2009).Article 

    Google Scholar 
    102.Smith, C. G., Price, R. M., Swarzenski, P. W. & Stalker, J. C. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark river slough, Florida Coastal Everglades, USA. Estuaries Coasts 39, 1600–1616. https://doi.org/10.1007/s12237-016-0079-z (2016).Article 

    Google Scholar 
    103.Wdowinski, S., Bray, R., Kirtman, B. P. & Wu, Z. H. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean Coastal Manag. 126, 1–8. https://doi.org/10.1016/j.ocecoaman.2016.03.002 (2016).Article 

    Google Scholar 
    104.Whelan, K. R. T., Smith, T. J., Anderson, G. H. & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23. https://doi.org/10.1672/08-125.1 (2009).Article 

    Google Scholar 
    105.Hogan, J. A. et al. The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests 8, 1–27. https://doi.org/10.3390/f9070404 (2018).CAS 
    Article 

    Google Scholar 
    106.Rivera-Monroy, V. H. et al. Current methods to evaluate net primary production and carbon budgets in mangrove forests. Methods Biogeochem. Wetlands, 243–288. https://doi.org/10.2136/sssabookser10.c14 (2013).107.Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-71194-5 (2020).CAS 
    Article 

    Google Scholar 
    108.Yao, Q. et al. A geochemical record of late-holocene hurricane events from the Florida Everglades. Water Resour. Res. 56, e2019WR026857. https://doi.org/10.1029/2019wr026857 (2020).109.Troxler, T. G. et al. Integrated carbon budget models for the everglades terrestrial-coastal-oceanic gradient current status and needs for inter-site comparisons. Oceanography 26, 98–107. https://doi.org/10.5670/oceanog.2013.51 (2013).Article 

    Google Scholar 
    110.Romigh, M. M., Davis, S. E., Rivera-Monroy, V. H. & Twilley, R. R. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569, 505–516. https://doi.org/10.1007/s10750-006-0152-x (2006).CAS 
    Article 

    Google Scholar 
    111.Heald, E. J. The production of organic detritus in a south Florida estuary. Univ. Miami Sea Grant Tech. Bull. 6, 1–116 (1971).
    Google Scholar 
    112.Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020 (2014).Article 
    PubMed 

    Google Scholar 
    113.Lin, T. C., Hogan, J. A. & Chang, C. T. Tropical cyclone ecology: A scale-link perspective. Trends Ecol. Evol. 35, 594–604. https://doi.org/10.1016/j.tree.2020.02.012 (2020).Article 
    PubMed 

    Google Scholar 
    114.Lucash, M. S. et al. More than the sum of its parts: how disturbance interactions shape forest dynamics under climate change. Ecosphere 9. https://doi.org/10.1002/ecs2.2293 (2018).115.Li, S.-B. et al. Factors regulating carbon sinks in mangrove ecosystems. Glob. Change Biol. 24, 4195–4210. https://doi.org/10.1111/gcb.14322 (2018).ADS 
    Article 

    Google Scholar 
    116.Odum, E. P. in Estuarine Perspectives (ed Kennedy, V.S.) 485–495 (Academic Press, 1980).117.Lee, S. Y. Mangrove outwelling: A review. Hydrobiologia 295, 203–212. https://doi.org/10.1007/BF00029127 (1995).Article 

    Google Scholar 
    118.Lee, S. Y. et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 23, 726–743 (2014).Article 

    Google Scholar 
    119.Ray, R., Baum, A., Rixen, T., Gleixner, G. & Jana, T. K. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci. Total Environ. 621, 535–547. https://doi.org/10.1016/j.scitotenv.2017.11.225 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    120.Price, R. M., Top, Z., Happell, J. D. & Swart, P. K. Use of tritium and helium to define groundwater flow conditions in Everglades National Park. Water Resour. Res. 39. https://doi.org/10.1029/2002WR001929 (2003).121.Saha, A. K. et al. A hydrological budget (2002–2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow. Estuaries Coasts 35, 459–474. https://doi.org/10.1007/s12237-011-9454-y (2012).CAS 
    Article 

    Google Scholar 
    122.Krauss, K. W. & Osland, M. J. Tropical cyclones and the organization of mangrove forests: a review. Ann. Bot. 125, 213–234. https://doi.org/10.1093/aob/mcz161 (2019).Article 
    PubMed Central 

    Google Scholar 
    123.Wade, J. E. & Hewson, E. W. Trees as a local climatic wind indicator. J. Appl. Meteorol. 18, 1182–1187 (1979).ADS 
    Article 

    Google Scholar 
    124.Zhang, K. et al. Airborne laser scanning quantification of disturbances from hurricanes and lightning strikes to mangrove forests in Everglades National Park, USA. Sensors (Basel) 8, 2262–2292. https://doi.org/10.3390/s8042262 (2008).ADS 
    Article 

    Google Scholar 
    125.Doyle, T. W., Girod, G. F. & Books, M. A. Chapter 12: Modeling mangrove forest migration along the southwest coast of Florida under climate change. in (Ning, Z.H., Turner, R.E., Doyle, T.W., Abdollahi, K. eds.) (2003).126.Grueters, U. et al. The mangrove forest dynamics model mesoFON. Ecol. Model. 291, 28–41 (2014).Article 

    Google Scholar 
    127.Lienard, J., Strigul, N., Liénard, J. & Strigul, N. An individual-based forest model links canopy dynamics and shade tolerances along a soil moisture gradient. R. Soc. Open Sci. 3, 150589. https://doi.org/10.1098/rsos.150589 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Amir, A. A. & Duke, N. C. Distinct characteristics of canopy gaps in the subtropical mangroves of Moreton Bay, Australia. Estuar. Coast. Shelf Sci. 222, 66–80. https://doi.org/10.1016/j.ecss.2019.04.007 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    129.Craighead, F. C. & Gilbert, V. C. the effects of hurricane Donna on the vegetation of southern Florida. Q. J. Florida Acad. Sci. 25, 1–28 (1962).
    Google Scholar 
    130.Tanner, E. V. J., Kapos, V. & Healey, J. R. Hurricane effects on forest ecosystems in the Caribbean. Biotropica 23, 513–521. https://doi.org/10.2307/2388274 (1991).Article 

    Google Scholar 
    131.Stanturf, J. A., Goodrick, S. L. & Outcalt, K. W. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. For. Ecol. Manag. 250, 119–135. https://doi.org/10.1016/j.foreco.2007.03.015 (2007).Article 

    Google Scholar 
    132.Jentsch, A. et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J. Ecol. 99, 689–702. https://doi.org/10.1111/j.1365-2745.2011.01817.x (2011).Article 

    Google Scholar 
    133.Bongers, F. & Popma, J. Leaf dynamics of seedlings of rain forest species in relation to canopy gaps. Oecologia 82, 122–127 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    134.Hikosaka, K. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Ann. Bot. 95, 521–533. https://doi.org/10.1093/aob/mci050 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    135.Ouyang, X., Lee, S. Y., Connolly, R. M. & Kainz, M. J. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-21217-z (2018).CAS 
    Article 

    Google Scholar 
    136.Childers, D. L. et al. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnol. Oceanogr. 51, 602–616. https://doi.org/10.4319/lo.2006.51.1_part_2.0602 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    137.Chen, R. & Twilley, R. R. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22, 955–970 (1999).Article 

    Google Scholar 
    138.Simard, M. et al. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote. Sens. 72, 299–311 (2006).Article 

    Google Scholar 
    139.Ewe, S. M. L. et al. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569, 459–474. https://doi.org/10.1007/s10750-006-0149-5 (2006).Article 

    Google Scholar 
    140.He, D., Rivera-Monroy, V. H., Jaffé, R. & Zhao, X. Mangrove leaf species-specific isotopic signatures along a salinity and phosphorus soil fertility gradients in a subtropical estuary. Estuarine Coastal Shelf Sci. 106768. https://doi.org/10.1016/j.ecss.2020.106768 (2020).141.Wachnicka, A., Armitage, A. R., Zink, I., Browder, J. & Fourqurean, J. W. Major 2017 hurricanes and their cumulative impacts on coastal waters of the USA and the Caribbean. Estuaries Coasts 43, 941–942. https://doi.org/10.1007/s12237-020-00702-7 (2020).Article 

    Google Scholar 
    142.Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. 117. https://doi.org/10.1029/2011JD017139 (2012).143.Rivera-Monroy, V. H., Day, J. W., Twilley, R. R., Vera-Herrera, F. & Coronado-Molina, C. Flux of nitrogen and sediment in a fringe mangrove forest in terminos lagoon, Mexico. Estuar. Coast. Shelf Sci. 40, 139–160. https://doi.org/10.1016/S0272-7714(05)80002-2 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    144.Chen, R. & Twilley, R. R. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44, 93–118. https://doi.org/10.1007/BF00993000 (1999).Article 

    Google Scholar 
    145.Castañeda-Moya, E. et al. Patterns of root dynamics in Mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195. https://doi.org/10.1007/s10021-011-9473-3 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Indonesian palm oil

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    No longer winning

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Meth-addicted trout swim for a hit

    Brown trout can get hooked on methamphetamine, a highly addictive drug found in waterways around the world. Credit: Getty

    Ecology
    06 July 2021
    Meth-addicted trout swim for a hit

    Fish that have been exposed to the highly addictive stimulant for several weeks show signs of withdrawal if deprived of the drug.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Human drug use can spill over into streams and rivers, because the chemicals pass through wastewater systems that weren’t designed to extract them. To study the effects of a common illicit drug on wildlife, Pavel Horký at the Czech University of Life Sciences Prague and his colleagues looked to brown trout, Salmo trutta.For 8 weeks, the researchers held 60 trout in a tank spiked with methamphetamine at a concentration of 1 microgram per litre, and 60 control trout in a meth-free tank. The fish were then placed in a tank containing two separate streams of water — one with methamphetamine and one without — between which they could swim freely. Trout that had spent 2 months swimming in meth-spiked water were found on the meth side in 50.5% of observations, compared with only 41.5% for control trout. The authors interpret this preference as a sign of addiction.Fish from the drugged tank were also markedly less mobile for the first 96 hours after their last exposure to meth, suggesting that they were experiencing withdrawal. The researchers warn that fish that become addicted to drugs could congregate around wastewater discharges, with unknown ecological effects.

    J. Exp. Biol. (2021)

    Ecology More

  • in

    Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators

    1.Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88, 912–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).Article 

    Google Scholar 
    3.Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Kyba, C. C. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev. 23, 14–23 (2014).Article 

    Google Scholar 
    6.Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B Biol. Sci. 280, 20123017 (2013).Article 
    CAS 

    Google Scholar 
    8.Owens, A. C. S. & Lewis, S. M. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecol. Evol. 8, 11337–11358 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Becker, A., Whitfield, A. K., Cowley, P. D., Järnegren, J. & Næsje, T. F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 50, 43–50 (2013).Article 

    Google Scholar 
    10.van Grunsven, R. H. A. et al. Experimental light at night has a negative long-term impact on macro-moth populations. Curr. Biol. 30, R694–R695 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).ADS 
    Article 

    Google Scholar 
    12.Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Lewis, S. M. et al. A global perspective on firefly extinction threats. BioScience 70, 157–167 (2020).Article 

    Google Scholar 
    14.Johnsen, S. et al. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J. Exp. Biol. 209, 789–800 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10, e02550 (2019).Article 

    Google Scholar 
    16.Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. S125–S153 (1992).18.Davies, T. W., Bennie, J., Inger, R., de Ibarra, N. H. & Gaston, K. J. Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Glob. Change Biol. 19, 1417–1423 (2013).ADS 
    Article 

    Google Scholar 
    19.Lamphar, H. A. S. & Kocifaj, M. Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions. PLoS ONE 8, e56563 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    20.Longcore, T. et al. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 511–521 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Seymoure, B. M., Linares, C. & White, J. Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms. J. Zool. 308, 93–110 (2019).Article 

    Google Scholar 
    22.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. B Biol. Sci. 265, 351–358 (1998).CAS 
    Article 

    Google Scholar 
    23.Kelber, A., Yovanovich, C. & Olsson, P. Thresholds and noise limitations of colour vision in dim light. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160065 (2017).Article 

    Google Scholar 
    24.Olsson, P., Lind, O. & Kelber, A. Bird colour vision: behavioural thresholds reveal receptor noise. J. Exp. Biol. 218, 184–193 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biol. Lett. 16, 20190877 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Kelber, A., Balkenius, A. & Warrant, E. J. Scotopic colour vision in nocturnal hawkmoths. Nature 419, 922–925 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Cook, L. M., Grant, B. S., Saccheri, I. J. & Mallet, J. Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biol. Lett. 8, 609–612 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Svensson, M. G. E., Rydell, J. & Töve, J. Deep flowers for long tongues. Trends Ecol. Evol. 13, 460 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Dominoni, D. M. The effects of light pollution on biological rhythms of birds: an integrated, mechanistic perspective. J. Ornithol. 156, 409–418 (2015).Article 

    Google Scholar 
    31.Russ, A., Rüger, A. & Klenke, R. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131 (2015).Article 

    Google Scholar 
    32.Hart, N. S., Partridge, J. C., Cuthill, I. C. & Bennett, A. T. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J. Comp. Physiol. A 186, 375–387 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Wink, M. & Theile, V. Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae). Chemoecology 12, 29–46 (2002).CAS 
    Article 

    Google Scholar 
    34.Hundsdoerfer, A. K., Tshibangu, J. N., Wetterauer, B. & Wink, M. Sequestration of phorbol esters by aposematic larvae of Hyles euphorbiae (Lepidoptera: Sphingidae)? Chemoecology 15, 261–267 (2005).CAS 
    Article 

    Google Scholar 
    35.Petschenka, G. & Dobler, S. Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: the Na+ K+-ATPase of the oleander hawk moth (Daphnisnerii) is highly susceptible to cardenolides. Chemoecology 19, 235 (2009).CAS 
    Article 

    Google Scholar 
    36.Vallin, A., Jakobsson, S. & Wiklund, C. “An eye for an eye”?—on the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth. Behav. Ecol. Sociobiol. 61, 1419–1424 (2007).Article 

    Google Scholar 
    37.Barber, J. R. & Kawahara, A. Y. Hawkmoths produce anti-bat ultrasound. Biol. Lett. 9, 20130161 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kang, C., Moon, J.-Y., Lee, S.-I. & Jablonski, P. G. Moths use multimodal sensory information to adopt adaptive resting orientations. Biol. J. Linn. Soc. 111, 900–904 (2014).Article 

    Google Scholar 
    40.Kang, C., Stevens, M., Moon, J., Lee, S.-I. & Jablonski, P. G. Camouflage through behavior in moths: the role of background matching and disruptive coloration. Behav. Ecol. 26, 45–54 (2014).Article 

    Google Scholar 
    41.Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M. & Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 92, 2714–2722 (2011).CAS 
    Article 

    Google Scholar 
    42.Gaston, K. J., Davies, T. W., Bennie, J. & Hopkins, J. Reducing the ecological consequences of night-time light pollution: options and developments. J. Appl. Ecol. 49, 1256–1266 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Longcore, T. et al. Tuning the White Light Spectrum of Light Emitting Diode Lamps to Reduce Attraction of Nocturnal Arthropods. Phil. Trans. B 370 (1667): 20140125 (2015).44.van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281 (2011).Article 

    Google Scholar 
    45.Somers-Yeates, R., Hodgson, D., McGregor, P. K., Spalding, A. & Ffrench-Constant, R. H. Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biol. Lett. 9, 20130376 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Donners, M. et al. Colors of attraction: modeling insect flight to light behavior. J. Exp. Zoo. A 329, 434–440 (2018).Article 

    Google Scholar 
    47.Jones, T. M., Durrant, J., Michaelides, E. B. & Green, M. P. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness. Philos. Trans. R. Soc. Lond. B 370, 20140122 (2015).Article 
    CAS 

    Google Scholar 
    48.Arnold, S. E., Faruq, S., Savolainen, V., McOwan, P. W. & Chittka, L. FReD: the floral reflectance database—a web portal for analyses of flower colour. PLoS ONE 5, e14287 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2013).51.Gomez, D. et al. The intensity threshold of colour vision in a passerine bird, the blue tit (Cyanistes caeruleus). J. Exp. Biol. 217, 3775–3778 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    52.Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2014).53.Maia, R. & White, T. E. Comparing colors using visual models. Behav. Ecol. 29, 649–659 (2018).Article 

    Google Scholar 
    54.Maia, R., Gruson, H., Endler, J. A. & White, T. E. pavo 2: New tools for the spectral and spatial analysis of colour in r. Methods Ecol. Evol. 10, 1097–1107 (2019).Article 

    Google Scholar  More

  • in

    Colonization of Warsaw by the red fox Vulpes vulpes in the years 1976–2019

    1.Baker, P. J., Newman, T. & Harris, S. Bristol’s foxes—40 years of change. Br. Wildl. 12, 411–417 (2001).
    Google Scholar 
    2.Vuorisalo, T. et al. Urban development from an avian perspective: Causes of hooded crow (Corvus corone cornix) urbanization in two Finnish cities. Landsc. Urban Plan. 62, 69–87 (2003).Article 

    Google Scholar 
    3.Baker, P. J. & Harris, S. Urban mammals: What does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mammal Rev. 37, 297–315 (2007).
    Google Scholar 
    4.Evans, K. L., Hatchwell, B. J., Parnell, M. & Gaston, K. J. A conceptual framework for the colonization of urban areas: The blackbird Turdus merula as a case study. Biol. Rev. 85, 643–667 (2010).PubMed 

    Google Scholar 
    5.Geiger, M., Taucher, A. L., Gloor, S., Hegglin, D. & Bontadina, F. In the footsteps of city foxes: Evidence for a rise of urban badger populations in Switzerland. Hystrix It. J. Mamm. 29, 236–238 (2018).
    Google Scholar 
    6.Lesiński, G., Gryz, J., Krauze-Gryz, D. & Stolarz, P. Population increase and synurbization of the yellow-necked mouse Apodemus flavicollis in some wooded areas of Warsaw agglomeration, Poland, in the years 1983–2018. Urban Ecosyst. 24, 481–489 (2021).Article 

    Google Scholar 
    7.Andrzejewski, R., Babińska-Werka, J., Gliwicz, J. & Goszczyński, J. Synurbization processes in population of Apodemus agrarius. I. Characteristics of populations in an urbanization gradient. Acta Theriol. 23, 341–358 (1978).Article 

    Google Scholar 
    8.Doncaster, C. P. & MacDonald, D. W. Drifting territoriality in the red fox Vulpes vulpes. J. Anim. Ecol. 60, 423–439 (1991).Article 

    Google Scholar 
    9.Baker, P. J., Ansell, R. J., Dodds, P. A. A., Webber, C. E. & Harris, S. Factors affecting the distribution of small mammals in urban areas. Mammal Rev. 33, 95–100 (2003).Article 

    Google Scholar 
    10.Baker, P. J., Dowding, C. V., Molony, S. E., White, P. C. L. & Harris, S. Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav. Ecol. 35, 716–724 (2007).Article 

    Google Scholar 
    11.Bateman, P. W. & Fleming, P. A. Big city life: Carnivores in urban environments. J. Zool. 287, 1–23 (2012).Article 

    Google Scholar 
    12.Harris, S. Distribution, habitat utilisation and age structure of a suburban fox (Vulpes vulpes) population. Mammal Rev. 7, 25–39 (1977).Article 

    Google Scholar 
    13.Harris, S. & Rayner, J. M. V. Urban fox (Vulpes vulpes) population estimates and habitat requirements in several British cities. J. Anim. Ecol. 55, 575–591 (1986).Article 

    Google Scholar 
    14.Adkins, C. A. & Stott, P. Home ranges, movements and habitat associations of red foxes Vulpes vulpes in suburban Toronto, Ontario, Canada. J. Zool. 244, 335–346 (1998).Article 

    Google Scholar 
    15.Duduś, L., Zalewski, A., Kozioł, O., Jakubiec, Z. & Król, N. Habitat selection by two predators in an urban area: The stone marten and red fox in Wrocław (SW Poland). Mamm. Biol. 79, 71–76 (2014).Article 

    Google Scholar 
    16.Harris, S. The food of suburban foxes (Vulpes vulpes) with special reference to London. Mammal Rev. 11, 151–168 (1981).Article 

    Google Scholar 
    17.Doncaster, C. P., Dickman, C. R. & MacDonald, D. W. Feeding ecology of red foxes (Vulpes vulpes) in the city of Oxford, England. J. Mammal. 71, 188–194 (1990).Article 

    Google Scholar 
    18.Saunders, G., White, P. C. L., Harris, S. & Rayner, J. M. V. Urban foxes (Vulpes vulpes)—Food acquisition, time and energy budgeting of a generalized predator. Symp. Zool. Soc. Lond. 65, 215–234 (1993).
    Google Scholar 
    19.Contesse, P., Hegglin, D., Gloor, S., Bontadina, F. & Deplazes, P. The diet of urban foxes (Vulpes vulpes) in the city of Zurich, Switzerland. Mamm. Biol. 69, 81–95 (2004).Article 

    Google Scholar 
    20.Harris, S. An estimation of the number of foxes (Vulpes vulpes) in the city of Bristol and some possible factors affecting their distribution. J. Appl. Ecol. 18, 455–465 (1981).Article 

    Google Scholar 
    21.Marks, C. A. & Bloomfield, T. E. Distribution and density estimates for urban foxes (Vulpes vulpes) in Melbourne: Implications for rabies control. Wildl. Res. 26, 763–775 (1999).Article 

    Google Scholar 
    22.Gloor, S. The rise of urban foxes (Vulpes vulpes) in Switzerland and ecological and parasitological aspects of a population in the recently colonised city of Zurich. Dissertation thesis (University of Zurich, 2002).23.Gosselink, T. E., van Deelen, T. R., Warner, B. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in east-central Illinois. J. Wildl. Manag. 55, 433–441 (2003).
    Google Scholar 
    24.Gosselink, T. E., van Deelen, T. R., Warner, R. E. & Mankin, P. C. Survival and cause-specific mortality of red foxes in agricultural and urban areas of Illinois. J. Wildl. Manag. 7, 1862–1873 (2007).Article 

    Google Scholar 
    25.Soulsbury, C. D. et al. The impact of sarcoptic mange Sarcoptes scabiei on the British fox Vulpes vulpes population. Mammal Rev. 37, 278–296 (2007).
    Google Scholar 
    26.Macdonald, D. Running with the Fox (Unwin Hyman, 1987).
    Google Scholar 
    27.Lewis, J. C., Sallee, K. L. & Golightly, Jr R. T. Introduced red fox in California. http://morro-bay.com/educational/research-reports/red-fox–california-introduced-research-93_10.pdf (1993).28.Plumer, L., Davison, J. & Saarma, U. Rapid urbanization of red foxes in Estonia: Distribution, behaviour, attacks on domestic animals and health-risks related to zoonotic diseases. PLoS ONE 9, e115124. https://doi.org/10.1371/journal.pone.0115124 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sogliani, D. & Mori, E. ‘The Fox and the Cat’: Sometimes they do not agree. Mamm. Biol. 95, 150–154 (2019).Article 

    Google Scholar 
    30.König, A. Fears, attitudes and opinions of suburban residents with regards to their urban foxes. Eur. J. Wildl. Res. 54, 101–109 (2008).Article 

    Google Scholar 
    31.Kauhala, K., Talvitie, K. & Vuorisalo, T. Encounters between medium-sized carnivores and humans in the city of Turku, SW Finland, with special reference to the red fox. Mammal Res. 61, 25–33 (2016).Article 

    Google Scholar 
    32.Teagle, W. G. The fox in the London suburbs. Lond. Nat. 46, 44–68 (1967).
    Google Scholar 
    33.Pagh, S. The history of urban foxes in Aarhus and Copenhagen, Denmark. Lutra 51, 51–55 (2008).
    Google Scholar 
    34.Vuorisalo, T., Talvitie, K., Kauhala, K., Blauerc, A. & Lahtinene, R. Urban red foxes (Vulpes vulpes L.) in Finland: A historical perspective. Landsc. Urban Plan. 124, 109–117 (2014).Article 

    Google Scholar 
    35.Seebeck, J. H. Mammals in the Melbourne metropolitan area. Vic. Nat. 94, 165–171 (1977).
    Google Scholar 
    36.Gloor, S., Bontadina, F., Hegglin, D., Deplazes, P. & Breitenmoser, U. The rise of urban fox populations in Switzerland. Mamm. Biol. 66, 155–164 (2001).
    Google Scholar 
    37.Soulsbury, C. D., Baker, P. J., Iossa, G. & Harris, S. Red foxes (Vulpes vulpes). In Urban Carnivores Ecology, Conflict, and Conservation (eds Gehrt, S. D. et al.) 63–75 (The Johns Hopkins University Press, 2010).
    Google Scholar 
    38.Chautan, M., Pontier, D. & Artois, M. The role of rabies in recent demographic changes in red fox populations in Europe. Mammalia 46, 391–410 (2000).
    Google Scholar 
    39.Doncaster, C. P. & MacDonald, D. W. Activity patterns and interactions of red fox (Vulpes vulpes) in Oxford city. J. Zool. 241, 73–87 (1997).Article 

    Google Scholar 
    40.Harris, S. Surveying the urban fox. Biologist 35, 259–264 (1985).
    Google Scholar 
    41.Uraguchi, K., Yamamura, K. & Saitoh, T. Estimating number of families for an urban fox population by using two public data sets. Popul. Ecol. 51, 1–7 (2009).Article 

    Google Scholar 
    42.Scott, D. M. et al. A citizen science based survey method for estimating the density of urban carnivores. PLoS ONE 13, e0197445. https://doi.org/10.1371/journal.pone.0197445 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Sadlier, L. M. J., Webbon, C. C., Baker, P. J. & Harris, S. Methods of monitoring red foxes Vulpes vulpes and badgers Meles meles: Are field signs the answer?. Mammal Rev. 34, 75–98 (2004).Article 

    Google Scholar 
    44.Baker, P. J., Harris, S., Robertson, C. P. J., Saunders, G. & White, P. C. L. Is it possible to monitor mammal population changes from counts of road traffic casualties? An analysis using Bristol’s red foxes Vulpes vulpes as an example. Mammal Rev. 34, 115–130 (2004).Article 

    Google Scholar 
    45.Statistics Poland. Statistical Yearbook of Warsaw (Zakład Wydawnictw Statystycznych, 2019).
    Google Scholar 
    46.Climate-data.org. https://pl.climate-data.org/europa/polska/masovian-voivodeship/warszawa-4560/ (2020).47.Goszczyński, J. & Romanowski, J. The mammals of the between-floodbanks area of the Middle Vistula Valley. In The Between Floodbanks Area of the Vistula as an Unique Natural System (Pilica-Narew section) (eds Matuszkiewicz, J. M. & Roo-Zielińska, E.) 107–117 (Polish Academy of Sciences, 2000).
    Google Scholar 
    48.Romanowski, J. Vistula River valley as the ecological corridor for mammals. Pol. J. Ecol. 55, 805–819 (2007).
    Google Scholar 
    49.Romanowski, J., Kowalczyk, K. & Rau, K. Population viability modelling and potential threats to the beaver in the Vistula River valley, Poland. Ann. Zool. Fenn. 45, 323–328 (2008).Article 

    Google Scholar 
    50.Luniak, M., Kozłowski, P. & Nowicki, W. Magpie Pica pica in Warsaw—abundance, distribution and changes in its population. Acta Ornithol. 32, 77–86 (1997).
    Google Scholar 
    51.Gryz, J., Lesiński, G., Krauze-Gryz, D. & Stolarz, P. Woodland reserves within an urban agglomeration as important refuges for small mammals. Folia For. Pol. Ser. A For. 59, 3–13 (2017).
    Google Scholar 
    52.Sison, C. P. & Glaz, J. Simultaneous confidence intervals and sample size determination for multinomial proportions. J. Am. Stat. Assoc. 90, 366–369 (1995).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    53.Signorell, A. et al. DescTools: Tools for descriptive statistics. R package version 0.99. 26. The Comprehensive R Archive Network (2018).54.Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).MATH 
    Book 

    Google Scholar 
    55.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: Estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    56.Copernicus ,. Mapping Guide for an European Urban Atlas (European Union, 2018).
    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    58.ESRI. ArcGIS Desktop: Release 10 (Enviromental Systems Research Institute, 2011).
    Google Scholar 
    59.Wałecki, A. Fauna zwierząt ssących Warszawy i jej stosunek do fauny całego kraju in Pamiętnik Fizjograficzny Vol. 1, 268–291 (E. Dziewulski i Br. Znatowicz, 1881).
    Google Scholar 
    60.Wandeler, P., Funk, S. M., Largiader, C. R., Gloor, S. & Breitenmoster, U. The city-fox phenomenon: Genetic consequences of a recent colonization of urban habitat. Mol. Ecol. 12, 647–656 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.DeCandia, A. L. et al. Urban colonization through multiple genetic lenses: The city-fox phenomenon revisited. Ecol. Evol. 9, 2046–2060 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Kimmig, S. E. et al. Beyond the landscape: Resistance modelling infers physical and behavioural gene flow barriers to a mobile carnivore across a metropolitan area. Mol. Ecol. 29, 466–484 (2020).PubMed 
    Article 

    Google Scholar 
    63.Kato, Y. et al. Population genetic structure of the urban fox in Sapporo, northern Japan. J. Zool. 301, 118–124 (2017).Article 

    Google Scholar 
    64.Baker, P. J., Dowding, C. V., Molony, S. E., White, P. C. L. & Harris, S. Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav. Ecol. 18, 716–724 (2007).Article 

    Google Scholar 
    65.Gehrt, S. D. The urban ecosystem. In Urban Carnivores Ecology, Conflict, and Conservation (eds Gehrt, S. D. et al.) 3–11 (The Johns Hopkins University Press, 2010).
    Google Scholar 
    66.Kolb, H. H. Factors affecting the movements of dog foxes in Edinburgh. J. Appl. Ecol. 21, 161–173 (1984).Article 

    Google Scholar 
    67.Douglas, I. & Sadler, J. P. Urban wildlife corridors. Conduits for movement or linear habitats? In The Routledge Handbook of Urban Ecology (eds Douglas, I. et al.) 274–288 (Routledge, 2011).
    Google Scholar 
    68.Tsukada, H., Morishima, Y., Nonaka, N., Oku, Y. & Kamiya, M. Preliminary study of the role of red foxes in Echinococcus multilocularis transmission in the urban area of Sapporo, Japan. Parasitology 120, 423–428 (2000).PubMed 
    Article 

    Google Scholar 
    69.Robinson, N. A. & Marks, C. A. Genetic structure and dispersal of red foxes (Vulpes vulpes) in urban Melbourne. Aust. J. Zool. 49, 589–601 (2001).Article 

    Google Scholar 
    70.Walter, T., Zink, R., Laaha, G., Zaller, J. G. & Heigl, F. Fox sightings in a city are related to certain land use classes and sociodemographics: Results from a citizen science project. BMC Ecol. 18, 50. https://doi.org/10.1186/s12898-018-0207-7 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Cavallini, P. & Lovari, S. Home range, habitat selection and activity of the red fox in a Mediterranean coastal ecotone. Acta Theriol. 39, 279–287 (1994).Article 

    Google Scholar 
    72.Frey, S. N. & Conover, M. R. Habitat use by meso-predators in a corridor environment. J. Wildl. Manag. 70, 1111–1118 (2006).Article 

    Google Scholar 
    73.Díaz-Ruíz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).Article 

    Google Scholar 
    74.Gaffron, P. Urban transport, environmental justice and human daily activity patterns. Transp. Policy 20, 114–127 (2012).Article 

    Google Scholar 
    75.Eguchi, K. & Nakazano, T. Activity studies of Japanese red foxes, Vulpes vulpes japonica Gray. Jpn. J. Ecol. 30, 9–17 (1980).
    Google Scholar 
    76.Travaini, A., Aldama, J. J., Laffitte, R. & Delibes, M. Home range and activity patterns of red fox Vulpes vulpes breeding females. Acta Theriol. 38, 427–434 (1993).Article 

    Google Scholar 
    77.Cavallini, P. Ranging behaviour of red foxes during the mating and breeding seasons. Ethol. Ecol. Evol. 8, 57–65 (1996).Article 

    Google Scholar 
    78.Robertson, C. P. J., Baker, P. J. & Harris, S. Ranging behaviour of juvenile red foxes and its implications for management. Acta Theriol. 45, 525–535 (2000).Article 

    Google Scholar 
    79.Goszczyński, J. Lis. Monografia przyrodniczo-łowiecka (OIKOS Oficyna Wydawnicza, 1995).
    Google Scholar 
    80.Tolhurst, B. A., Baker, R. J., Cagnacci, F. & Scott, D. M. Spatial aspects of gardens drive ranging in urban foxes (Vulpes vulpes): The resource dispersion hypothesis revisited. Animals 10, 1167. https://doi.org/10.3390/ani10071167 (2020).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    81.Hofer, S. et al. High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zurich, Switzerland. Parasitology 120, 135–142 (2000).PubMed 
    Article 

    Google Scholar 
    82.Jiang, S., Ferreira, Jr J. & Gonzalez, M. C. Discovering urban spatial–temporal structure from human activity patterns. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp ’12) (ACM New York, 2012).83.Newman, T. J. et al. Changes in red fox habitat preference and rest site fidelity following a disease-induced population decline. Acta Theriol. 48, 79–91 (2003).Article 

    Google Scholar 
    84.Fischer, C., Reperant, L., Weber, J. M., Ochs, H. & Deplazes, P. Relation in the presence of various parasites in the red fox (Vulpes vulpes) in Geneva. Swiss Med. Wkly. 133, 61 (2003).
    Google Scholar 
    85.Deplazes, S., Hegglin, D., Gloor, S. & Romig, T. Wilderness in the city: The urbanization of Echinococcus multilocularis. Trends Parasitol. 20, 77–84 (2004).PubMed 
    Article 

    Google Scholar 
    86.Official Website of Republic of Poland. https://www.gov.pl/web/uw-mazowiecki/obszar-zagrozony-wscieklizna-na-terenie-wojewodztwa-mazowieckiego (2021).87.Wilkinson, D. & Smith, G. C. A preliminary survey for changes in urban fox (Vulpes vulpes) densities in England and Wales, and implications for rabies control. Mammal Rev. 31, 107–110 (2001).Article 

    Google Scholar 
    88.Baker, P. J., Funk, S. M., Harris, S. & White, P. C. L. Flexible spatial organization of urban foxes, Vulpes vulpes, before and during an outbreak of sarcoptic mange. Anim. Behav. 59, 127–146 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Goszczyński, J. The effect of structural differentation of ecological landscape on the predator–prey interaction. Treatises Monogr. 46, 1–80 (1985).
    Google Scholar 
    90.Goszczyński, J., Misiorowska, M. & Juszko, S. Changes in the density and spatial distribution of red fox dens and cub numbers in central Poland following rabies vaccination. Acta Theriol. 53, 121–127 (2008).Article 

    Google Scholar  More

  • in

    Protect pollinators — reform pesticide regulations

    CORRESPONDENCE
    06 July 2021

    Protect pollinators — reform pesticide regulations

    Adrian Fisher

     ORCID: http://orcid.org/0000-0001-5300-1910

    0

    Adrian Fisher

    Arizona State University, Tempe, Arizona, USA. On behalf of 14 co-signatories.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Many approved pesticides still damage pollinator health at doses used in agriculture (see, for example, A. R. Main et al. Agric. Ecosyst. Environ. 287, 106693; 2020). We argue that this is due to a systemic failure in pesticide regulations (see, for instance, S. López-Cubillos et al. Nature 573, 196; 2019) that has been exacerbated by weak enforcement. Stricter laws are needed that are evidence-based, override vested interests and recognize pollinators as essential contributors to food security.Policymakers must learn from failures in neonicotinoid regulation (see, for example, F. Sgolastra et al. Biol. Conserv. 241, 108356; 2020). Before approval, pesticide risk assessment should incorporate protocols that address sub-lethal effects on pollinators. These include alterations in their behaviour and fitness under ecologically realistic conditions; mandatory testing on diverse species of native pollinators and of colonies for eusocial pollinators; and toxicity evaluation when combined with other chemicals such as proprietary additives, co-occurring pesticides and environmental residues.Long-term monitoring after approval by appropriate governmental organizations will be necessary to pick up unforeseen environmental interactions promptly.

    Nature 595, 172 (2021)
    doi: https://doi.org/10.1038/d41586-021-01818-xA full list of co-signatories to this letter appears in Supplementary Information.

    Supplementary Information

    List of co-signatories

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Law

    Ecology

    Agriculture

    Latest on:

    Law

    Astronomers victimized colleagues — and put historic Swedish department in turmoil
    News 22 JUN 21

    Forensic database challenged over ethics of DNA holdings
    News Feature 15 JUN 21

    Wanted: rules for pandemic data access that everyone can trust
    Editorial 01 JUN 21

    Ecology

    Integrate conservation reserves for China’s homeless elephants
    Correspondence 06 JUL 21

    UK biodiversity: close gap between reality and rhetoric
    Correspondence 06 JUL 21

    Beyond coronavirus: the virus discoveries transforming biology
    News Feature 30 JUN 21

    Agriculture

    Yuan Longping (1930–2021)
    Obituary 24 JUN 21

    Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans
    Article 23 JUN 21

    How ancient people fell in love with bread, beer and other carbs
    News Feature 22 JUN 21

    Jobs

    Senior Talent Acquisition Associate – Scientific Recruiter

    Baylor College of Medicine (BCM)

    Radiation Oncology Faculty Members

    New York University (NYU)

    Radiation Oncology Physician-Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Radiation Oncology Faulty Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development

    1.Geber, W. F. & Schramm, L. C. Effect of marihuana extract on fetal hamsters and rabbits. Toxicol. Appl. Pharmacol. 14, 276–282 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Geber, W. F. & Schramm, L. C. Teratogenicity of marihuana extract as influenced by plant origin and seasonal variation. Arch. Int. Pharmacodyn. Ther. 177, 224–230 (1969).CAS 
    PubMed 

    Google Scholar 
    3.Graham, J. D. P. Cannabis and health. In Cannabis and Health Vol. 1 (ed. Graham, J. D. P.) 271–320 (Academic Press, 1976).
    Google Scholar 
    4.Reece, A. S. & Hulse, G. K. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat. Res. 789, 15–25 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of Cannabinoids on spermatogenesis in mice. In Marihuana and Medicine (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).Chapter 

    Google Scholar 
    6.Morishima, A. Effects of cannabis and natural cannabinoids on chromosomes and ova. NIDA Res. Monogr. 44, 25–45 (1984).CAS 
    PubMed 

    Google Scholar 
    7.Henrich, R. T., Nogawa, T. & Morishima, A. In vitro induction of segregational errors of chromosomes by natural cannabinoids in normal human lymphocytes. Environ. Mutagen 2, 139–147 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Reece, A. S. & Hulse, G. K. Cannabis teratology explains current patterns of coloradan congenital defects: The contribution of increased cannabinoid exposure to rising teratological trends. Clin. Pediatr. 58, 1085–1123 (2019).Article 

    Google Scholar 
    9.Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: Reflections on Murphy et al.’ cannabinoid exposure and altered DNA methylation in rat and human sperm’ epigenetics 2018. Epigenetics 14, 1041–1056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Reece, A. S. & Hulse, G. K. Canadian cannabis consumption and patterns of congenital anomalies: An ecological geospatial analysis. J. Addict. Med. 14, e195–e210 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Reece, A. S., Wang, W. & Hulse, G. K. Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. Med. Hypotheses 116, 10–21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Reece, A. S. & Hulse, G. K. Rapid Response to Lane. Re: Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study, 2016. BMJ Open 6, e011891–e011902 (2020).Article 

    Google Scholar 
    13.McClean, D. K. & Zimmerman, A. M. Action of delta 9-tetrahydrocannabinol on cell division and macromolecular synthesis in division-synchronized protozoa. Pharmacology 14, 307–321 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tahir, S. K. & Zimmerman, A. M. Influence of marihuana on cellular structures and biochemical activities. Pharmacol. Biochem. Behav. 40, 617–623 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Wilson, R. G. Jr., Tahir, S. K., Mechoulam, R., Zimmerman, S. & Zimmerman, A. M. Cannabinoid enantiomer action on the cytoarchitecture. Cell. Biol. Int. 20, 147–157 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Wang, J., Yuan, W. & Li, M. D. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: A review of proteomics analyses. Mol. Neurobiol. 44, 269–286 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on chromatin structure and function in human cells. Biochem. Pharmacol. 30, 45–58 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 30, 31–43 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.DiNieri, J. A. et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70, 763–769 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Szutorisz, H. et al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology 39, 1315–1323 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Szutorisz, H., Egervari, G., Sperry, J., Carter, J. M. & Hurd, Y. L. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring. Neurotoxicol. Teratol. 58, 107–114 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Szutorisz, H. & Hurd, Y. L. Epigenetic effects of cannabis exposure. Biol. Psychiatry 79, 586–594 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Watson, C. T. et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40, 2993–3005 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Murphy, S. K. et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 13, 1208–1212 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Schrott, R. et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 15, 161–173 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Vela, G. et al. Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mu opioid receptors in adult offspring female rats. Brain Res. 807, 101–109 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Fish, E. W. et al. Cannabinoids exacerbate alcohol teratogenesis by a CB1-hedgehog interaction. Sci. Rep. 9, 16057 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Callén, L. et al. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J. Biol. Chem. 287, 20851–20865 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Rozenfeld, R. et al. Receptor heteromerization expands the repertoire of cannabinoid signaling in rodent neurons. PLoS ONE 7, e29239 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Schoffelmeer, A. N., Hogenboom, F., Wardeh, G. & De Vries, T. J. Interactions between CB1 cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51, 773–781 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Rozenfeld, R. et al. AT1R-CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 30, 2350–2363 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Viñals, X. et al. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol. 13, e1002194 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Kargl, J. et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J. Biol. Chem. 287, 44234–44248 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ellis, J., Pediani, J. D., Canals, M., Milasta, S. & Milligan, G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J. Biol. Chem. 281, 38812–38824 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kearn, C. S., Blake-Palmer, K., Daniel, E., Mackie, K. & Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: A mechanism for receptor cross-talk?. Mol. Pharmacol. 67, 1697–1704 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Carriba, P. et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32, 2249–2259 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Forrester, M. B. & Merz, R. D. Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986–2002. J. Toxicol. Environ. Health 70, 7–18 (2007).CAS 
    Article 

    Google Scholar 
    38.Reece, A.S. & Hulse, G.K. Broad spectrum epidemiological contribution of cannabis and other substances to the teratological profile of Northern New South Wales: Geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21(1), 75 (2020).39.Reece, A.S. & Hulse, G.K. Cannabis in pregnancy: Rejoinder, exposition and cautionary tales. Psychiatric Times. https://www.bing.com/search?q=Cannabis+in+Pregnancy+%E2%80%93+Rejoinder%82C+Exposition+and+Cautionary+Tales&cvid=22538e20124c04711b92017489c92063214a&aqs=edge..92017469i92017457.92017439j92017480j92017481&pglt=92017443&FORM=ANSPA92017481&PC=U92017531 (2020).40.Cheng, L. et al. Testicular cancer. Nat. Rev. Dis. Primers 4, 29 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Oosterhuis, J. W. & Looijenga, L. H. J. Germ cell tumors from a developmental perspective: Cells of origin, pathogenesis, and molecular biology (emerging patterns). In Pathology and Biology of Human Germ Cell Tumors (eds Nogales, F. F. & Jimenez, R. E.) 23–129 (Springer, 2017).Chapter 

    Google Scholar 
    42.Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell. Rep. 23, 3392–3406 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Daling, J. R. et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 115, 1215–1223 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Callaghan, R. C., Allebeck, P., Akre, O., McGlynn, K. A. & Sidorchuk, A. Cannabis use and incidence of testicular cancer: A 42-year follow-up of Swedish men between 1970 and 2011. Cancer Epidemiol. Biomarkers Prev. 26, 1644–1652 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Trabert, B., Sigurdson, A. J., Sweeney, A. M., Strom, S. S. & McGlynn, K. A. Marijuana use and testicular germ cell tumors. Cancer 117, 848–853 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Lacson, J. C. et al. Population-based case-control study of recreational drug use and testis cancer risk confirms an association between marijuana use and nonseminoma risk. Cancer 118, 5374–5383 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Volkow, N. D., Compton, W. M. & Wargo, E. M. The risks of marijuana use during pregnancy. JAMA 317, 129–130 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Volkow, N. D., Han, B., Compton, W. M. & Blanco, C. Marijuana use during stages of pregnancy in the United States. Ann. Intern. Med. 166, 763–764 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Efird, J. T. et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: Cigarette smoking and other lifestyle behaviors. J. Neurooncol. 68, 57–69 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Grufferman, S., Schwartz, A. G., Ruymann, F. B. & Maurer, H. M. Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 4, 217–224 (1993).CAS 
    PubMed 

    Google Scholar 
    51.Kuijten, R. R., Bunin, G. R., Nass, C. C. & Meadows, A. T. Gestational and familial risk factors for childhood astrocytoma: Results of a case-control study. Cancer Res. 50, 2608–2612 (1990).CAS 
    PubMed 

    Google Scholar 
    52.Reece, A. S. & Hulse, G. K. A geospatiotemporal and causal inference epidemiological exploration of substance and cannabinoid exposure as drivers of rising US pediatric cancer rates. BMC Cancer 21, 197 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.McCantz-Katz, E. 2017 Annual Report Snippets, NSDUH, SAMHSA, USA DHHS: Selected streamlined trends. Vol. 1 (ed. Substance Abuse and Mental Health Services Administration US Department of Health and Human Services) 1–78 (SAMHSA, DHHS, 2018).56.McCantz-Katz, E. The National Survey of Drug Use and Health: 2019. Vol. 1 (eds. Substance Abuse and Mental Health Services Administration & US Department of Health and Human Services) 1–63 (SAMHSA, US DHHS, 2020).57.Substance Abuse and Mental Health Services Administration (SAMHSA), Department of Health and Human Services (HHS) & United States of America. National Survey on Drug Use and Health. Vol. 2018 (Department of Health and Human Services, 2018).58.United National Office of Drugs and Crime. World Drug Report 2019. Vol. 1–5 (ed. World Health Organization Office of Drugs and Crime) https://wdr.unodc.org/wdr2019/index.html (United National World Health Organization, 2019).59.Busch, F. W., Seid, D. A. & Wei, E. T. Mutagenic activity of marihuana smoke condensates. Cancer Lett. 6, 319–324 (1979).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Zimmerman, A. M. & Raj, A. Y. Influence of cannabinoids on somatic cells in vivo. Pharmacology 21, 277–287 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Tahir, S. K., Trogadis, J. E., Stevens, J. K. & Zimmerman, A. M. Cytoskeletal organization following cannabinoid treatment in undifferentiated and differentiated PC12 cells. Biochem. Cell Biol. 70, 1159–1173 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.United States Department of Health and Human Services, Centers for Disease Control and Prevention and & National Cancer Institute. National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database: NPCR and SEER Incidence: U.S. Cancer Statistics Public Use Research Database, 2019 submission (2001–2017), United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Released June 2020. www.cdc.gov/cancer/public-use. Vol. 2020 (ed. United States Department of Health and Human Services, C.f.D.C.a.P.a.N.C.I.) (United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, 2020).63.National Birth Defects Prevention Network. National Birth Defects Prevention Network. Vol. 2018 (ed. Network, N.B.D.P.) (National Birth Defects Prevention Network, 2018).64.Abeywardana, S. & Sullivan, E. A. Congenital Anomalies in Australia 2002–2003 (Australian Institute of Health and Welfare, 2008).
    Google Scholar 
    65.Bird, T. M., Hobbs, C. A., Cleves, M. A., Tilford, J. M. & Robbins, J. M. National rates of birth defects among hospitalized newborns. Birth. Defects Res. A 76, 762–769 (2006).CAS 
    Article 

    Google Scholar 
    66.Natoli, J. L., Ackerman, D. L., McDermott, S. & Edwards, J. G. Prenatal diagnosis of Down syndrome: A systematic review of termination rates (1995–2011). Prenat. Diagn. 32, 142–153 (2012).PubMed 
    Article 

    Google Scholar 
    67.Substance Abuse and Mental Health Network. Substance Abuse and Mental Health Data Archive (SAMHDA). Vol. 2019 (ed. Substance Abuse and Mental Health Services Administration) (Substance Abuse and Mental Health Services Administration, Substance Abuse and Mental Health Services Administration, 2019).68.ElSohly, M. A. et al. Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the United States. Biol. Psychiatry 79, 613–619 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Chandra, S. et al. New trends in cannabis potency in USA and Europe during the last decade (2008–2017). Eur. Arch. Psychiatry Clin. Neurosci. 269, 5–15 (2019).PubMed 
    Article 

    Google Scholar 
    70.ElSohly, M. A. et al. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J. Forensic Sci. 45, 24–30 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.VanderWeele, T. J., Ding, P. & Mathur, M. Technical considerations in the use of the e-value. J. Causal Inference 7, 1–11 (2019).Article 

    Google Scholar 
    72.Pearl, J. & Mackaenzie, D. The Book of Why (Basic Books, 2019).
    Google Scholar 
    73.Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P. & Roth, M. D. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am. J. Physiol. 284, L298-306 (2003).CAS 

    Google Scholar 
    74.Sarafian, T. A. et al. Inhaled marijuana smoke disrupts mitochondrial energetics in pulmonary epithelial cells in vivo. Am. J. Physiol. 290, L1202-1209 (2006).CAS 

    Google Scholar 
    75.Morimoto, S. et al. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J. Biol. Chem. 282, 20739–20751 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Shoyama, Y., Sugawa, C., Tanaka, H. & Morimoto, S. Cannabinoids act as necrosis-inducing factors in Cannabis sativa. Plant Signal Behav. 3, 1111–1112 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fisar, Z., Singh, N. & Hroudova, J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol. Lett. 231, 62–71 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Koller, V. J. et al. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497–C8. Toxicol. Appl. Pharmacol. 277, 164–171 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Koller, V. J. et al. Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food Chem. Toxicol. 80, 130–136 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Singh, N., Hroudova, J. & Fisar, Z. Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J. Mol. Neurosci. 56, 926–931 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 1–195 (2018).
    Google Scholar 
    82.Reece, A. S. & Hulse, G. K. Broad Spectrum epidemiological contribution of cannabis and other substances to the teratological profile of northern New South Wales: geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21, 75 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Reece, A. S. & Hulse, G. K. Cannabis consumption patterns explain the east-west gradient in Canadian Neural Tube Defect Incidence: An ecological study. Glob. Pediatr. Health 6, 2333 (2019).
    Google Scholar 
    84.Gurney, J., Shaw, C., Stanley, J., Signal, V. & Sarfati, D. Cannabis exposure and risk of testicular cancer: A systematic review and meta-analysis. BMC Cancer 15, 897 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Song, A. et al. Incident testicular cancer in relation to using marijuana and smoking tobacco: A systematic review and meta-analysis of epidemiologic studies. Urol. Oncol. 38(642), e641-642 (2020).
    Google Scholar 
    86.Torchiano M. effzise: Efficient Effect Size Computation. Vol. 2020 (CRAN, 2020). https://CRAN.R-project.org/package=effsize.87.Agence France-Presse in Paris. France to investigate cause of upper limb defects in babies. In The Guardian (The Guardian, London, 2018).88.Robinson M. Babies born with deformed hands spark investigation in Germany. Vol. 2019 (ed. Health, C.) (CNN News, 2019). https://edition.cnn.com/2019/09/16/health/hand-deformities-babies-gelsenkirchen-germany-intl-scli-grm/index.html.89.Robison, L. L. et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring: An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 63, 1904–1911 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Wen, W. Q. et al. Paternal military service and risk for childhood leukemia in offspring. Am. J. Epidemiol. 151, 231–240 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Society, A.C. Cancer Facts & Figures 2020 Vol. 2020 (American Cancer Society, 2020).
    Google Scholar 
    92.Patsenker, E. & Stickel, F. Cannabinoids in liver diseases. Clin. Liver Dis. 7, 21–25 (2016).Article 

    Google Scholar 
    93.Yang, Y. Y. et al. Effect of chronic CB1 cannabinoid receptor antagonism on livers of rats with biliary cirrhosis. Clin. Sci. 112, 533–542 (2007).CAS 
    Article 

    Google Scholar 
    94.Mukhopadhyay, B. et al. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology 61, 1615–1626 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of cannabinoids on spermatogensis in mice. In Marijuana and Medicine Vol. 1 (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).
    Google Scholar 
    96.Huang, H. F. S., Nahas, G. G. & Hembree, W. C. Effects of marijuana inhalantion on spermatogenesis of the rat. In Marijuana in Medicine Vol. 1 (eds Nahas, G. G. et al.) 359–366 (Human Press, 1999).
    Google Scholar 
    97.Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 179–188 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Szutorisz, H. & Hurd, Y. L. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85, 93–101 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Mon, M. J., Jansing, R. L., Doggett, S., Stein, J. L. & Stein, G. S. Influence of delta9-tetrahydrocannabinol on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 27, 1759–1765 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Zimmerman, A. M. & Zimmerman, S. Cytogenetic studies of cannabinoid effects. In Genetic and Perinatal Effects of Abused Substances Vol. 1 (eds Braude, M. C. & Zimmerman, A. M.) 95–112 (Academic Press Inc, 1987).
    Google Scholar 
    101.Zimmerman, A. M., Stich, H. & San, R. Nonmutagenic action of cannabinoids in vitro. Pharmacology 16, 333–343 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Zimmerman, S. & Zimmerman, A. M. Genetic effects of marijuana. Int. J. Addict. 25, 19–33 (1990).PubMed 
    Article 

    Google Scholar 
    103.Nahas, G. G., Morishima, A. & Desoize, B. Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes. Fed. Proc. 36, 1748–1752 (1977).CAS 
    PubMed 

    Google Scholar 
    104.Blevins, R. D. & Regan, J. D. delta-9-Tetrahydrocannabinol: Effect on macromolecular synthesis in human and other mammalian cells. Arch. Toxicol. 35, 127–135 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Gadadhar, S. et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 371, 4916 (2021).Article 
    CAS 

    Google Scholar 
    106.Alberts, B. et al. (eds) Molecular Biology of the Cell, 1601 (Garland Science, 2008).
    Google Scholar 
    107.Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Kloosterman, W. P. Genetics: Making heads or tails of shattered chromosomes. Science 348, 1205–1206 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    109.de Pagter, M. S. et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 96, 651–656 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    110.Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Kuznetsova, A. Y. et al. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle 14, 2810–2820 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Hatch, E. M. & Hetzer, M. W. Linking micronuclei to chromosome fragmentation. Cell 161, 1502–1504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Lusk, C. P. & King, M. C. Rotten to the core: Why micronuclei rupture. Dev. Cell 47, 265–266 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    114.Terzoudi, G. I. et al. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Mutat. Res. Genet. Toxicol. Environ. Mutagen 793, 185–198 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Norppa, H. & Falck, G. C. What do human micronuclei contain?. Mutagenesis 18, 221–233 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Knouse, K. A. & Amon, A. Cell biology: The micronucleus gets its big break. Nature 522, 162–163 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Waldron, D. Genome stability: Chromothripsis and micronucleus formation. Nat. Rev. Genet. 16, 376–377 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Fenech, M. et al. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res 786, 108342 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Beck, D., Ben Maamar, M. & Skinner, M. K. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenet. Chromatin 14, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    120.Yang, Y. & Li, G. Post-translational modifications of PRC2: signals directing its activity. Epigenet. Chromatin 13, 47 (2020).CAS 
    Article 

    Google Scholar 
    121.Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26(11), 1742–1753 (2020).122.Reece A. S. & Hulse G. K. Cannabis and pregnancy don’t mix. Mo. Med. 117(6), 530–531 (2020).123.Reece, A. S. & Hulse, G. K. Impact of lifetime opioid exposure on arterial stiffness and vascular age: Cross-sectional and longitudinal studies in men and women. BMJ Open 4, 1–19 (2014).Article 

    Google Scholar 
    124.Hill, A. B. The environment and disease: Association or causation?. Proc. R. Soc. Med. 58, 295–300 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    125.Robins, J. M., Hernán, M. Á. & Brumback, B. Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550–560 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Raad, H., Cornelius, V., Chan, S., Williamson, E. & Cro, S. An evaluation of inverse probability weighting using the propensity score for baseline covariate adjustment in smaller population randomised controlled trials with a continuous outcome. BMC Med. Res. Methodol. 20, 70 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Seaman, S. R. & White, I. R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22, 278–295 (2013).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    128.Reece, A. S. & Hulse, G. K. Effect of cannabis legalization on US autism incidence and medium term projections. Clin. Pediatr. Open Access 4, 1–17 (2019).
    Google Scholar 
    129.Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: reflections on Murphy et al. “cannabinoid exposure and altered DNA methylation in rat and human sperm” epigenetics. Epigenetics 14, 1041–1056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Reece, A. S. & Hulse, G. K. Contemporary epidemiology of rising atrial septal defect trends across USA 1991–2016: A combined ecological geospatiotemporal and causal inferential study. BMC Pediatr. 20, 539 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Reece, A. S., Norman, A. & Hulse, G. K. Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study. BMJ Open 6, e011891 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Corsi, D. J. et al. Maternal cannabis use in pregnancy and child neurodevelopmental outcomes. Nat. Med. 26, 1536–1540 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Corsi, D. J. The potential association between prenatal cannabis use and congenital anomalies. J. Addict. Med. 14, 451–453 (2020).PubMed 
    Article 

    Google Scholar 
    134.Reece, A. S. & Hulse, G. K. Epidemiological associations of various substances and multiple cannabinoids with autism in USA. Clin. Pediatr. Open Access 4, 1–20 (2019).
    Google Scholar 
    135.Brents L. Correlates and consequences of Prenatal Cannabis Exposure (PCE): Identifying and Characterizing Vulnerable Maternal Populations and Determining Outcomes in Exposed Offspring in Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis and Treatment, Vol. 1 (ed. Preedy V.R.) 160–170 (Academic Press, 2017).136.Smith, A. M., Longo, C. A., Fried, P. A., Hogan, M. J. & Cameron, I. Effects of marijuana on visuospatial working memory: An fMRI study in young adults. Psychopharmacology 210, 429–438 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    137.Smith, A. M. et al. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol. Teratol. 58, 53–59 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    138.Fine, J. D. et al. Association of prenatal cannabis exposure with psychosis proneness among children in the adolescent brain cognitive development (ABCD) study. JAMA Psychiat. 76, 762–764 (2019).Article 

    Google Scholar 
    139.Paul, S. E. et al. Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiat. 78, 1–64 (2020).
    Google Scholar 
    140.Women and Newborn Health Service, Department of Health & Government of Western Australia. Western Australian Register of Developmental Anomalies 1980–2014. Vol. 1 (ed. Western Australia Health) 28 (Western Australia Health, 2015).141.Walker, K., Herman, M. & Eberwein, K. tidycensus: Load US Census Boundary and Attribute Data as ‘tidyverse’ and ‘sf’-Ready Data Frames. Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2020).142.Wikipedia. Legality of Cannabis by U.S. Juridicition. Vol. 2020 (Wikipedia, 2020). https://en.wikipedia.org/wiki/Legality_of_cannabis_by_U.S._jurisdiction.143.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686–1691 (2019).ADS 
    Article 

    Google Scholar 
    144.Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix. Vol. 2020 Version 0.84 (CRAN, 2017). https://github.com/taiyun/corrplot.145.Wright, K. corrgram: Plot a Correlogram. In CRAN, Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2018). https://CRAN.R-project.org/package=corrgram.146.Kliber, C. & Zeileis, A. Applied Econometrics with R (Springer-Verlag, New York, 2008). https://CRAN.R-project.org/package=AER.147.Lumley, T. Complex Surveys: A Guide to Analysis Using R (Wiley, 2010).Book 

    Google Scholar 
    148.Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (Northwestern University, 2020).
    Google Scholar 
    149.Wal, W. & Geskus, R. ipw: An R package for inverse probability weighting. J. Stat. Softw. 43, 13 (2011).Article 

    Google Scholar  More