More stories

  • in

    Labelling experiments in red deer provide a general model for early bone growth dynamics in ruminants

    1.Pontier, D. et al. Postnatal growth rate and adult body weight in mammals: A new approach. Oecologia 80, 390–394 (1989).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Dmitriew, C. M. The evolution of growth trajectories: What limits growth rate?. Biol. Rev. 86, 97–116 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Gotthard, K., Nylin, S. & Wiklund, C. Adaptive variation in growth rate: Life history costs and consequences in the speckled wood butterfly, Pararge aegeria. Oecologia 99, 281–289 (1994).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Arendt, J. D. Adaptive intrinsic growth rates: An integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).Article 

    Google Scholar 
    5.Gaillard, J. M. et al. Variation in growth form and precocity at birth in eutherian mammals. Proc. R. Soc. B Biol. Sci. 264, 859–868 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Gillooly, J. F., Charnov, E. L., Geoffrey, B. W., Savage, V. M. & James, H. B. Effects of size and temperature on developmental time. Nature 417, 70–73 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Brown, J. H., Gillooly, J. F., Allen, P. A., Savage, V. M. & Geoffrey, B. W. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    8.Roff, D. A. The Evolution of Life Histories: Theory and Analysis (Sinauer Associates, 1992).9.Stearns, S. C. The Evolution of Life Histories (Oxford University Press, 1992).10.Ferré, P., Decaux, J. F., Issad, T. & Girard, J. Changes in energy metabolism during the suckling and weaning period in the newborn. Reprod. Nutr. Dev. 26, 619–631 (1986).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Gadgil, M. & Bossert, W. H. Life history consequences of natural selection. Am. Nat. 104, 1–24 (1970).Article 

    Google Scholar 
    12.Lee, A. H., Huttenlocker, A. K., Padian, K. & Woodward, H. N. Analysis of growth rates. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 217–264 (University of California Press, 2013).13.Amprino, R. L. structure du tissu osseux envisagée comme expression de différences dans la vitesse de l’accroisement. Arch. Biol. (Liege) 58, 315–330 (1947).
    Google Scholar 
    14.Nacarino-Meneses, C. & Köhler, M. Limb bone histology records birth in mammals. PLoS One 13, 20 (2018).
    Google Scholar 
    15.Morris, P. A. A method for determining absolute age in the hedgehog. Notes Mammal Soc. 20, 277–280 (1970).
    Google Scholar 
    16.Castanet, et al. Lines of arrested growth in bone and age estimation in a small primate: Microcebus murinus. J. Zool. 263, 31–39 (2004).Article 

    Google Scholar 
    17.Klevezal, G. A. & Kleinenberg, S. E. Age determination of mammals by layered structures of teeth and bones. (1967).18.Barker, J. M., Boonstra, R. & Schulte-Hostedde, A. I. Age determination in yellow-pine chipmunks (Tamias amoenus): A comparison of eye lens masses and bone sections. Can. J. Zool. 81, 1774–1779 (2003).Article 

    Google Scholar 
    19.Amson, E., Kolb, C., Scheyer, T. M. & Sánchez-Villagra, M. R. Growth and life history of Middle Miocene deer (Mammalia, Cervidae) based on bone histology. C.R. Palevol 14, 637–645 (2015).Article 

    Google Scholar 
    20.Kolb, C. et al. Growth in fossil and extant deer and implications for body size and life history evolution. BMC Evol. Biol. 15, 19 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.de Buffrénil, V. & Pascal, M. Croissance et morphogénèse postnatales de la mandibule du vison (Mustela vison Schreiber): Données sur la dynamique et l’interprétation fonctionnelle des dépôts osseux mandibulaires. Can. J. Zool. 62, 2026–2037 (1984).Article 

    Google Scholar 
    22.Castanet, J., CurryRogers, K., Cubo, J. & Jacques-Boisard, J. Periosteal bone growth rates in extant ratites (ostriche and emu). Implications for assessing growth in dinosaurs. Comptes Rendus Acad. Sci. Ser. III Sci. Vie 323, 543–550 (2000).CAS 

    Google Scholar 
    23.Starck, J. M. & Chinsamy, A. Bone microstructure and developmental plasticity in birds and other dinosaurs. J. Morphol. 254, 232–246 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.de Margerie, E., Cubo, J. & Castanet, J. Bone typology and growth rate: Testing and quantifying ‘Amprino’s rule’ in the mallard (Anas platyrhynchos). Comptes Rendus Biol. 325, 221–230 (2002).Article 

    Google Scholar 
    25.de Margerie, E. et al. Assessing a relationship between bone microstructure and growth rate: A fluorescent labelling study in the king penguin chick (Aptenodytes patagonicus). J. Exp. Biol. 207, 869–879 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Bone remodeling in the longest living rodent, the naked mole-rat: Interelement variation and the effects of reproduction. J. Anat. https://doi.org/10.1111/joa.13404 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Smith, T. M. Experimental determination of the periodicity of incremental features in enamel. J. Anat. 208, 99–113 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kierdorf, H., Kierdorf, U., Frölich, K. & Witzel, C. Lines of evidence-incremental markings in molar enamel of Soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS One 8, 20 (2013).
    Google Scholar 
    29.Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. The pay-off of hypsodonty—timing and dynamics of crown growth and wear in molars of Soay sheep. BMC Evol. Biol. 18, 1–14 (2018).Article 

    Google Scholar 
    30.Kahle, P., Witzel, C., Kierdorf, U., Frölich, K. & Kierdorf, H. Mineral apposition rates in coronal dentine of mandibular first molars in Soay sheep: Results of a fluorochrome labeling study. Anat. Rec. 301, 902–912 (2018).CAS 
    Article 

    Google Scholar 
    31.van Gaalen, S. M. et al. Use of fluorochrome labels in in vivo bone tissue engineering research. Tissue Eng. Part B. Rev. 16, 209–217 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Shim, M.-J. Bone changes in femoral bone of mice using calcein labeling. Korean J. Clin. Lab. Sci. 48, 114–117 (2016).Article 

    Google Scholar 
    33.Klevezal, G. A. Recording Structures of Mammals (Balkema Publishers, 1996).34.Klevezal, G. A. & Mina, M. V. Tetracycline labelling as a method of field studies of individual growth and population structure in rodents. Lynx (Praha) 22, 67–78 (1984).
    Google Scholar 
    35.Smith, T. M., Reid, D. J. & Sirianni, J. E. The accuracy of histological assessments of dental development and age at death. J. Anat. 208, 125–138 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Curtin, A. J. et al. Noninvasive histological comparison of bone growth patterns among fossil and extant neonatal elephantids using synchrotron radiation X-ray microtomography. J. Vertebr. Paleontol. 32, 939–955 (2012).Article 

    Google Scholar 
    37.Hugi, J. & Snchez-Villagra, M. R. Life history and skeletal adaptations in the galapagos marine iguana (Amblyrhynchus cristatus) as reconstructed with bone histological dataa comparative study of iguanines. J. Herpetol. 46, 312–324 (2012).Article 

    Google Scholar 
    38.Chinsamy, A. & Hurum, J. H. Bone microstructure and growth patterns of early mammals. Acta Palaeontol. Pol. 51, 325–338 (2006).
    Google Scholar 
    39.Teagasc. Development of the Calf Digestive System. Teagasc Calf Rearing Manual: Best Practice from Birth to Three Months 59–76 (2017).40.Warren, L. K., Lawrence, L. M., Parker, A. L., Barnes, T. & Griffin, A. S. The effect of weaning age on foal growth and radiographic bone density. J. Equine Vet. Sci. 18, 335–340 (1998).Article 

    Google Scholar 
    41.Holland, J. L. et al. Weaning stress is affected by nutrition and weaning methods. Pferdeheilkunde 12, 257–260 (1996).Article 

    Google Scholar 
    42.Enríquez, D., Hötzel, M. J. & Ungerfeld, R. Minimising the stress of weaning of beef calves: A review. Acta Vet. Scand. 53, 1–8 (2011).Article 

    Google Scholar 
    43.Pollard, J. C., Asher, G. W. & Littlejohn, R. P. Weaning date affects calf growth rates and hind conception dates in farmed red deer (Cervus elaphus). Anim. Sci. 74, 111–116 (2002).Article 

    Google Scholar 
    44.Wolter, B. F. & Ellis, M. The effects of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. J. Anim. Sci. 81, 363–369 (2001).Article 

    Google Scholar 
    45.Pluske, J. R., Dividich, J. L. & Verstegen, M. W. A. Weaning the pig. Concepts and Consequences Weaning the Pig (Wageningen Academic Publishers, 2003). https://doi.org/10.3920/978-90-8686-513-0.46.Landete-Castillejos, T. et al. Milk production and composition in captive Iberian red deer (Cervus elaphus hispanicus): Effect of birth date. The online version of this article, along with updated information and services, is located on the World Wide Web at: Milk production. J. Anim. Sci. 78, 2771–2777 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Wang, Y., Bekhit, A. E. D. A., Morton, J. D. & Mason, S. Nutritional value of deer milk. In Nutrients in Dairy and Their Implications for Health and Disease 363–375 (2017). https://doi.org/10.1016/B978-0-12-809762-5.00028-048.Stein, K. & Prondvai, E. Rethinking the nature of fibrolamellar bone: An integrative biological revision of sauropod plexiform bone formation. Biol. Rev. 89, 24–47 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Clutton-Brock, T. H., Guiness, F. E. & Albon, S. D. Red Deer: Behaviour and Ecology of Two Sexes (The University of Chicago Press, 1982). https://doi.org/10.1016/0006-3207(83)90010-1.50.Festa-bianchet, M., Jorgenson, J. T. & Réale, D. Early development, adult mass, and reproductive success in bighorn sheep. Behav. Ecol. 11, 633–639 (2000).Article 

    Google Scholar 
    51.Cook, J. G. et al. Effects of summer–autumn nutrition and parturition date on reproduction and survival of elk. Wildl. Monogr. 20, 1–61 (2004).
    Google Scholar 
    52.Moore, G. H., Littlejohn, R. P. & Cowie, G. M. Liveweights, growth rates, and mortality of farmed red deer at Invermay. N. Z. J. Agric. Res. 31, 293–300 (1988).Article 

    Google Scholar 
    53.Ozanne, S. E. & Hales, C. N. Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech. Ageing Dev. 126, 852–854 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Van Eetvelde, M. & Opsomer, G. Innovative look at dairy heifer rearing: Effect of prenatal and post-natal environment on later performance. Reprod. Domest. Anim. 52, 30–36 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. 20, 205–216. https://doi.org/10.1111/joa.13016 (2019).Article 

    Google Scholar 
    56.Horner, J. R., De Ricqlès, A. & Padian, K. Long bone histology of the hadrosaurid dinosaur Maiasaura peeblesorum: Growth dynamics and physiology based on an ontogenetic series of skeletal elements. J. Vertebr. Paleontol. 20, 115–129 (2000).Article 

    Google Scholar 
    57.Padian, K., De Ricqlès, A. J. & Horner, J. R. Dinosaurian growth rates and bird-origins. Nature 412, 405–408 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Woodward, H. N., Padian, K. & Lee, A. H. Skeletochronology. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 195–216 (University of California Press, 2013).59.Pratt, I. V. & Cooper, D. M. L. The effect of growth rate on the three-dimensional orientation of vascular canals in the cortical bone of broiler chickens. J. Anat. 233, 531–541 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Enlow, D. H. A study of the post-natal growth and remodelling of bone. Am. J. Anat. 110, 79–101 (1962).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Chinsamy-Turan, A. The Microstructure of Dinosaur Bone (The Johns Hopkins University Press, 2005).62.de Buffrénil, V. & Quilhac, A. Bone tissue types: A brief account of currently used categories. in Vertebrate Skeletal Histology and Paleohistology (eds. de Buffrénil, V., de Riclès, J. A., Zylbeberg, L. & Padian, K.) 148–192 (CRC Press, 2021).63.Padian, K., Lamm, E.-T. & Werning, S. Selection of specimens. In Bone Histology of Fossil Tetrapods (eds Padian, K. & Lamm, E.-T.) 35–54 (University of California Press, 2013).64.Montoya-Sanhueza, G., Bennett, N. C., Oosthuizen, M. K., Dengler-Crish, C. M. & Chinsamy, A. Long bone histomorphogenesis of the naked mole-rat: Histodiversity and intraspecific variation. J. Anat. https://doi.org/10.1111/joa.13381 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Calderón, T., DeMiguel, D., Arnold, W., Stalder, G. & Köhler, M. Calibration of life history traits with epiphyseal closure, dental eruption and bone histology in captive and wild red deer. J. Anat. https://doi.org/10.1111/joa.13016 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Prondvai, E., Stein, K. H. W., de Ricqlès, A. & Cubo, J. Development-based revision of bone tissue classification: The importance of semantics for science. Biol. J. Linn. Soc. 112, 799–816 (2014).Article 

    Google Scholar 
    67.Francillon-Vieillot, H. et al. Microstructural and mineralization of vertebral skeletal tissues. In Skeletal Biommineralization: Patterns, Processes and Evolutionary Trends (ed. Carter, J. G.) (Van Nostrand Reinhold, 1990).68.Montes, L. et al. Relationships between bone growth rate, body mass and resting metabolic rate in growing amniotes: A phylogenetic approach. Biol. J. Linn. Soc. 92, 63–76 (2007).Article 

    Google Scholar 
    69.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Team, Rs. RStudio: Integrated Development for R. (2019).71.Muggeo, V. M. R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Z. J. Stat. 59, 311–322 (2017).MathSciNet 
    MATH 
    Article 

    Google Scholar  More

  • in

    Reply to: Shark mortality cannot be assessed by fishery overlap alone

    Centro de Investigação em Biodiversidade e Recursos Genéticos/Research Network in Biodiversity and Evolutionary Biology, Campus Agrário de Vairão, Universidade do Porto, Vairão, PortugalNuno Queiroz, Ana Couto, Marisa Vedor, Ivo da Costa, Gonzalo Mucientes & António M. SantosMarine Biological Association of the United Kingdom, Plymouth, UKNuno Queiroz, Nicolas E. Humphries, Lara L. Sousa, Samantha J. Simpson, Emily J. Southall & David W. SimsDepartamento de Biologia, Faculdade de Ciências da Universidade do Porto, Porto, PortugalMarisa Vedor & António M. SantosUWA Oceans Institute, Indian Ocean Marine Research Centre, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSchool of Biological Sciences, University of Western Australia, Crawley, Western Australia, AustraliaAna M. M. SequeiraSpanish Institute of Oceanography, Santa Cruz de Tenerife, SpainFrancisco J. AbascalAbercrombie and Fish, Port Jefferson Station, NY, USADebra L. AbercrombieMarine Biology and Aquaculture Unit, College of Science and Engineering, James Cook University, Cairns, Queensland, AustraliaKatya Abrantes, Adam Barnett, Richard Fitzpatrick & Marcus SheavesInstitute of Natural and Mathematical Sciences, Massey University, Palmerston North, New ZealandDavid Acuña-MarreroUniversidade Federal Rural de Pernambuco (UFRPE), Departamento de Pesca e Aquicultura, Recife, BrazilAndré S. Afonso, Natalia P. A. Bezerra, Fábio H. V. Hazin, Fernanda O. Lana, Bruno C. L. Macena & Paulo TravassosMARE, Marine and Environmental Sciences Centre, Instituto Politécnico de Leiria, Peniche, PortugalAndré S. AfonsoMARE, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Cascais, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreInstitute of Marine Research (IMAR), Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes, Bruno C. L. Macena & Frederic VandeperreOkeanos – Departamento de Oceanografia e Pescas, Universidade dos Açores, Horta, PortugalPedro Afonso, Jorge Fontes & Frederic VandeperreDepartment of Environmental Affairs, Oceans and Coasts Research, Cape Town, South AfricaDarrell Anders, Michael A. Meÿer, Sarika Singh & Laurenne B. SnydersLarge Marine Vertebrates Research Institute Philippines, Jagna, PhilippinesGonzalo AraujoFins Attached Marine Research and Conservation, Colorado Springs, CO, USARandall ArauzPrograma Restauración de Tortugas Marinas PRETOMA, San José, Costa RicaRandall ArauzMigraMar, Olema, CA, USARandall Arauz, Sandra Bessudo Lion, Eduardo Espinoza, Alex R. Hearn, Mauricio Hoyos, James T. Ketchum, A. Peter Klimley, Cesar Peñaherrera-Palma, George Shillinger & German SolerInstitut de Recherche pour le Développement, UMR MARBEC (IRD, Ifremer, Univ. Montpellier, CNRS), Sète, FrancePascal Bach, Antonin V. Blaison, Laurent Dagorn, John D. Filmalter, Fabien Forget, Francois Poisson, Marc Soria & Mariana T. TolottiBiology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USADiego Bernal & Heather MarshallRed Sea Research Center, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi ArabiaMichael L. Berumen, Jesse E. M. Cochran & Carlos M. DuarteFundación Malpelo y Otros Ecosistemas Marinos, Bogota, ColombiaSandra Bessudo Lion, Felipe Ladino, Lina Maria Quintero & German SolerHopkins Marine Station of Stanford University, Pacific Grove, CA, USABarbara A. Block, Taylor K. Chapple, George Shillinger & Timothy D. WhiteDepartment of Biological Sciences, Florida International University, North Miami, FL, USAMark E. Bond, Demian D. Chapman & Yannis P. PapastamatiouInstituto de Ciências do Mar, Universidade Federal do Ceará, Fortaleza, BrazilRamon BonfilCSIRO Oceans and Atmosphere, Hobart, Tasmania, AustraliaRussell W. Bradford & Barry D. BruceSchool of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USACamrin D. BraunBiology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USACamrin D. Braun & Simon R. ThorroldShark Research and Conservation Program, Cape Eleuthera Institute, Eleuthera, BahamasEdward J. Brooks, Annabelle Brooks & Sean WilliamsUniversity of Exeter, Exeter, UKAnnabelle BrooksSouth Atlantic Environmental Research Institute, Stanley, Falkland IslandsJudith BrownDepartment of Biological Sciences, The Guy Harvey Research Institute, Nova Southeastern University, Dania Beach, FL, USAMichael E. Byrne, Mahmood Shivji, Jeremy J. Vaudo & Bradley M. WetherbeeSchool of Natural Resources, University of Missouri, Columbia, MO, USAMichael E. ByrneLife and Environmental Sciences, University of Iceland, Reykjavik, IcelandSteven E. CampanaSchool of Marine Science and Policy, University of Delaware, Lewes, DE, USAAaron B. Carlisle & Gregory B. SkomalMassachusetts Division of Marine Fisheries, New Bedford, MA, USAJohn ChisholmMarine Research Facility, Jeddah, Saudi ArabiaChristopher R. Clarke & James S. E. LeaPSL, Labex CORAIL, CRIOBE USR3278 EPHE-CNRS-UPVD, Papetoai, French PolynesiaEric G. CluaAgence de Recherche pour la Biodiversité à la Réunion (ARBRE), Réunion, Marseille, FranceEstelle C. CrocheletInstitut de Recherche pour le Développement, UMR 228 ESPACE-DEV, Réunion, Marseille, FranceEstelle C. CrocheletSave Our Seas Foundation–D’Arros Research Centre (SOSF-DRC), Geneva, SwitzerlandRyan Daly & Clare A. Keating DalySouth African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South AfricaRyan Daly, John D. Filmalter, Enrico Gennari & Alison A. KockDepartment of Fisheries Evaluation, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChileDaniel Devia CortésSchool of Biological, Earth and Environmental Sciences, University College Cork, Cork, IrelandThomas K. Doyle & Luke HarmanMaREI Centre, Environmental Research Institute, University College Cork, Cork, IrelandThomas K. DoyleCollege of Science and Engineering, Flinders University, Adelaide, South Australia, AustraliaMichael Drew, Matthew Heard & Charlie HuveneersDepartment of Conservation, Auckland, New ZealandClinton A. J. DuffySouth African Institute for Aquatic Biodiversity, Geological Sciences, UKZN, Durban, South AfricaThor EriksonDireccion Parque Nacional Galapagos, Puerto Ayora, Galapagos, EcuadorEduardo EspinozaAustralian Institute of Marine Science, Indian Ocean Marine Research Centre (UWA), Crawley, Western Australia, AustraliaLuciana C. Ferreira, Mark G. Meekan & Michele ThumsDepartment of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USAFrancesco FerrettiOCEARCH, Park City, UT, USAG. Chris FischerBedford Institute of Oceanography, Dartmouth, Nova Scotia, CanadaMark Fowler, Warren Joyce & Anna MacDonnellNational Institute of Water and Atmospheric Research, Wellington, New ZealandMalcolm P. Francis & Warrick S. LyonBeneath the Waves, Herndon, VA, USAAustin J. GallagherRosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USAAustin J. Gallagher, Neil Hammerschlag & Emily R. NelsonOceans Research Institute, Mossel Bay, South AfricaEnrico GennariDepartment of Ichthyology and Fisheries Science, Rhodes University, Grahamstown, South AfricaEnrico Gennari & Alison TownerSARDI Aquatic Sciences, Adelaide, South Australia, AustraliaSimon D. Goldsworthy & Paul J. RogersZoological Society of London, London, UKMatthew J. Gollock & Fiona LlewellynGalapagos Whale Shark Project, Puerto Ayora, Galapagos, EcuadorJonathan R. GreenGriffith Centre for Coastal Management, Griffith University School of Engineering, Griffith University, Gold Coast, Queensland, AustraliaJohan A. GustafsonSaving the Blue, Cooper City, FL, USATristan L. GuttridgeSmithsonian Tropical Research Institute, Panama City, PanamaHector M. GuzmanLeonard and Jayne Abess Center for Ecosystem Science and Policy, University of Miami, Coral Gables, FL, USANeil HammerschlagGalapagos Science Center, San Cristobal, Galapagos, EcuadorAlex R. HearnUniversidad San Francisco de Quito, Quito, EcuadorAlex R. HearnBlue Water Marine Research, Tutukaka, New ZealandJohn C. HoldsworthUniversity of Queensland, Brisbane, Queensland, AustraliaBonnie J. HolmesMicrowave Telemetry, Columbia, MD, USALucy A. Howey & Lance K. B. JordanPelagios-Kakunja, La Paz, MexicoMauricio Hoyos & James T. KetchumMote Marine Laboratory, Center for Shark Research, Sarasota, FL, USARobert E. Hueter, John J. Morris & John P. TyminskiBiological Sciences, University of Windsor, Windsor, Ontario, CanadaNigel E. HusseyCape Research and Diver Development, Simon’s Town, South AfricaDylan T. IrionInstitute of Zoology, Zoological Society of London, London, UKDavid M. P. JacobyCentre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Perth, Western Australia, AustraliaOliver J. D. JewellDyer Island Conservation Trust, Western Cape, South AfricaOliver J. D. Jewell & Alison TownerBlue Wilderness Research Unit, Scottburgh, South AfricaRyan JohnsonUniversity of California Davis, Davis, CA, USAA. Peter KlimleyCape Research Centre, South African National Parks, Steenberg, South AfricaAlison A. KockShark Spotters, Fish Hoek, South AfricaAlison A. KockInstitute for Communities and Wildlife in Africa, Department of Biological Sciences, University of Cape Town, Rondebosch, South AfricaAlison A. KockWestern Cape Department of Agriculture, Veterinary Services, Elsenburg, South AfricaPieter KoenDepartamento de Biologia Marinha, Universidade Federal Fluminense (UFF), Niterói, BrazilFernanda O. LanaDepartment of Zoology, University of Cambridge, Cambridge, UKJames S. E. LeaAtlantic White Shark Conservancy, Chatham, MA, USAHeather MarshallFisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaJaime D. McAllister, Jayson M. Semmens, German Soler & Kilian M. StehfestPontificia Universidad Católica del Ecuador Sede Manabi, Portoviejo, EcuadorCesar Peñaherrera-PalmaMarine Megafauna Foundation, Truckee, CA, USASimon J. Pierce & Christoph A. RohnerConservation and Fisheries Department, Ascension Island Government, Georgetown, Ascension Island, UKAndrew J. RichardsonMarine Conservation Society Seychelles, Victoria, SeychellesDavid R. L. RowatCORDIO, East Africa, Mombasa, KenyaMelita SamoilysUpwell, Monterey, CA, USAGeorge ShillingerDepartment of Zoology and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South AfricaMalcolm J. SmaleNational Institute of Polar Research, Tachikawa, Tokyo, JapanYuuki Y. WatanabeSOKENDAI (The Graduate University for Advanced Studies), Tachikawa, Tokyo, JapanYuuki Y. WatanabeCentre for Ecology and Conservation, University of Exeter, Penryn, UKSam B. WeberDepartment of Biological Sciences, University of Rhode Island, Kingston, RI, USABradley M. WetherbeeDepartment of Oceanography and Environment, Fisheries Research Division, Instituto de Fomento Pesquero (IFOP), Valparaíso, ChilePatricia M. ZárateDepartment of Biological Sciences, Macquarie University, Sydney, New South Wales, AustraliaRobert HarcourtSchool of Life and Environmental Sciences, Deakin University, Geelong, Victoria, AustraliaGraeme C. HaysAZTI – BRTA, Pasaia, SpainXabier IrigoienIKERBASQUE, Basque Foundation for Science, Bilbao, SpainXabier IrigoienInstituto de Fisica Interdisciplinar y Sistemas Complejos, Consejo Superior de Investigaciones Cientificas, University of the Balearic Islands, Palma de Mallorca, SpainVictor M. EguiluzWildlife Conservation Research Unit, Department of Zoology, University of Oxford, Tubney, UKLara L. SousaOcean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UKSamantha J. Simpson & David W. SimsCentre for Biological Sciences, University of Southampton, Southampton, UKDavid W. SimsN.Q. and D.W.S. planned the data analysis. N.Q. led the data analysis with contributions from M.V., A.M.M.S. and D.W.S. N.E.H. contributed analysis tools. A.M.M.S. undertook linear-regression modelling. D.W.S. led the manuscript writing with contributions from N.Q., N.E.H., A.M.M.S and all authors. Six of the original authors were not included in the Reply authorship; two authors retired from science and the remaining four, although supportive of our Reply, declined to join the authorship due to potential conflicts of interest with the authors of the Comment and/or their institutions. More

  • in

    Spatiotemporal effects of urban sprawl on habitat quality in the Pearl River Delta from 1990 to 2018

    Study areaThe Pearl River Delta (112°45′–113°50′ E, 21°31′–23°10′ N) is located in the central and southern parts of Guangdong Province, including the lower reaches of the Pearl River, adjacent to Hong Kong and Macao, and facing Southeast Asia across the sea with convenient land and sea transportation. As shown in Fig. 1, the Pearl River Delta region includes nine prefecture-level cities, namely Guangzhou, Shenzhen, Zhongshan, Zhuhai, Dongguan, Zhaoqing, Foshan, Huizhou, and Jiangmen.Figure 1Geographical location of Pearl River Delta drawn in ArcGIS 10.6.Full size imageData sourceThe research framework of this paper is shown in Fig. 2, and the data sources are as follows. Taking the basin as the research unit, the raster data of 30 m and 1 km were analyzed by zoning statistics:

    (1)

    China’s land-use raster data for 1990, 2000, 2010, and 2018 were obtained from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http://www.resdc.cn), with a spatial resolution of 30 m. According to land resources and their utilization attributes, the dataset divides land cover types into six first-level categories: cultivated land, woodland, grassland, water area, construction land, unused land, and land reclamation from ocean. The land urbanization rate (LUR) refers to the proportion of construction land in the whole region, which is calculated by dividing the area of construction land by the area of all land use types.

    (2)

    Raster data of population density (POP) from 1990, 2000, 2010, and 2015 were obtained from the Environment and Resources Data Cloud Platform of the Chinese Academy of Sciences, with a spatial resolution of 1 km. Owing to the stable growth of population density under normal circumstances, the population density data of 2018 were obtained by linear fitting based on POP data from 2010 and 2015.

    (3)

    Nighttime Light (NTL) raster data from 1992 to 2018 were obtained from the Nature journal data (https://doi.org/10.6084/m9.figshare.9828827.v2) with a spatial resolution of 500 m45 Calibration was performed to eliminate the differences in the DMSP (1992–2013) and VIIRS (2012–2018) data, generating a complete and consistent NTL dataset on a global scale.

    Figure 2Research framework.Full size imageLand-use information TUPUThe land-use information graph is a geospatial analysis model combining attributes, processes, and spaces, which can reflect the spatial differences and temporal changes in land-use types46. In its function expression, let the state variables be (pleft( {p_{1} ,p_{2} ,p_{3} , ldots ,p_{n} } right)), and then set p as a function of spatial position r and time t, as follows:$$ begin{array}{*{20}c} {p = fleft( {r,t} right)} \ end{array} $$
    (1)
    where (p) represents land-use characteristics. (1) To realize the spatial description of land attributes, when t is constant, the function relation of (p) changing with (r) is constructed. (2) The process description of land attributes can be realized, and when (r) is constant, the function relation of (p) changing with (t) can be constructed. The combination of these two functions can form a conceptual model of the land-use information graph and realize a composite study of land space, process, and attributes.Habitat qualityHabitat quality evaluationWe used InVEST-HQ to evaluate the habitat quality in the Pearl River Delta region. Based on land-use types, InVEST-HQ calculated the habitat degradation degree and habitat quality index by using threat factors, the sensitivity of different habitat types to threat factors, and habitat suitability15. The InVEST-HQ model was co-developed by Stanford University, the Nature Conservancy, and the World Wide Fund for Nature15. InVEST-HQ has a low demand for data and a better spatial visualization effect, which is widely used in the field of urban ecology47,48,49. For example, The InVEST-HQ model has been used to assess dynamic changes in habitat quality in Scottish11, China50,51 and Portugal47. Habitat degradation and habitat quality were calculated using the following formulas:$$ begin{array}{*{20}c} {Q_{{xj}} = ~H_{j} left[ {1 – left( {frac{{D_{{xj}}^{2} }}{{D_{{xj}}^{2} + k^{2} )}}} right)} right]} \ end{array} $$
    (2)
    $$ begin{array}{*{20}c} {D_{{xj}} = ~mathop sum limits_{{r = 1}}^{r} mathop sum limits_{{y = 1}}^{y} left( {frac{{w_{r} }}{{mathop sum nolimits_{{r = 1}}^{r} w_{r} }}} right)r_{y} i_{{rxy}} beta _{x} S_{{jr}} } \ end{array} $$
    (3)
    where (Q_{{xj}}) is the habitat quality of grid x in land-use type j, (H_{j}) is the habitat suitability of land-use type j, (D_{{xj}}) is the habitat degradation degree of grid x in land-use type j, k is the half-satiety sum constant, r is the number of threat factors, and y is the relative sensitivity of threat sources. (r_{y} ,w_{r}), and (i_{{rxy}}) are, respectively, the interference intensity and weight of the grid where the threat factor r is located, and the interference generated by the habitat. (beta _{x} ,S_{{jr}}) are the anti-disturbance ability of habitat type x and its relative sensitivity to various threat sources, respectively.The value range of habitat degradation degree is [0, 1], and the larger the value, the more serious the habitat degradation. The value of habitat quality is between 0 and 1, and the higher the value, the better the habitat quality.$$ begin{array}{*{20}c} {Linear,attenuation:~i_{{rxy}} = 1 – left( {d_{{xy}} /d_{{r,max}} } right)} \ end{array} $$
    (4)
    $$ begin{array}{*{20}c} {Exponential,decay:~i_{{rxy}} = expleft[ { – 2.99d_{{xy}} /d_{{r{text{~}}max}} } right]} \ end{array} $$
    (5)

    where (d_{{xy}}) is the straight-line distance between grids x and y, and (d_{{r,max}}) is the maximum threat distance of threat factor r.Five categories of documentation are prepared before using InVEST-HQ: LULC maps, threat factor data, threat sources, accessibility of degradation sources, habitat types and their sensitivity to each threat. Threat sources were divided into Cropland, City/town, Rural settlements, Other construction land, Unused land, and land applications. The maps of threat sources are generated in ArcGIS. For example, in the map of threat sources of cultivated land, the raster value of cultivated land is set to 1, and the raster value of other land types is set to 0. Distance between habitats and threat sources, weight of threat factors, decay type of threats factors, habitat suitability and the sensitivity of different habitat types to threat factors were derived from previous studies in similar regions2,25,38,39,50 and user guide manual of InVEST model15, as shown in Tables 1 and 2.Table 1 Threat factors and related coefficients.Full size tableTable 2  Sensitivity of habitat types to each threat factor.Full size tableHabitat quality change index and contribution indexThe CI was used to analyze the causes of the changes in habitat quality, and the following formula was used to qu2,25,38,39,50antitatively represent the contribution of land-use conversion to habitat quality change. In this study, the total value of habitat quality loss caused by land transfer in areas related to construction land expansion from 1990 to 2018 can be expressed as follows:$$ begin{array}{*{20}c} {CI~ = ~frac{{mathop sum nolimits_{1}^{n} left( {Q_{{ij2018}} – Q_{{xj1990}} } right)}}{n}} \ end{array} $$
    (6)

    where n is the grid number of cultivated land transferred to construction land.To analyze the relationship between land-use change and habitat quality, the HQCI was constructed to describe the mean value of habitat quality reduction caused by land transfer in the areas related to construction land expansion during the study period. The formula is as follows:$$ begin{array}{*{20}c} {HQCI~ = CI_{{ij}} /S_{{ij}} } \ end{array} $$
    (7)
    where (CI_{{ij}}) represents the total value of habitat quality change when land-use type (i) is converted into land-use type (j), and (S_{{ij}}) represents the area converted from land-use type (i) into land-use type (j). The positive and negative values of HQCI, respectively, represent the positive and negative impacts of land-use change on the habitat, and the higher the absolute value of HQCI, the greater the impact.Correlation analysisGeographically weighted regressionBased on traditional OLS, GWR establishes local spatial regression and considers spatial location factors, which can effectively analyze the spatial heterogeneity of various elements at different locations52. The calculation formula is as follows:$$ Y_{i} = ~beta _{0} left( {mu _{i} ,v_{i} } right) + sum kbeta _{k} left( {mu _{i} ,v_{i} } right)X_{{ik}} + varepsilon _{i} $$where (Y_{i}) is the coupling coordination degree of the ith sample point, (left( {mu _{i} ,v_{i} } right)) is the spatial position coordinate of the ith sample point, (beta _{k} left( {mu _{i} ,v_{i} } right)) is the value of the continuous function (beta _{k} left( {mu ,v} right)) at (left( {mu _{i} ,v_{i} } right)), (X_{{ik}}) is the independent variable, (varepsilon _{i}) is the random error term, and k is the number of spatial units.To simplify the complicated urbanization process, it was divided into three aspects: economic urbanization, population urbanization, and land urbanization according to the existing research38. The NTL, POP, and LUR were used to represent the economic development, population scale, and land urbanization level of the city.The research unit is a river basin, which has both natural and social attributes. It is a relatively independent and complete system, which can connect and explain the coupling phenomenon of society, economy, and nature53. The hydrological analysis module in ArcGIS was used to divide the research area into 374 small basins. When calculating the cumulative flow of the grid, 100,000 was used as the threshold value, and basins less than 5 km2 were combined with the adjacent basins.Zone classification using the Self-organizing feature mapping neural networkThe SOFM neural network was proposed by Kohonen, a Finnish scholar, and constructed by simulating a “lateral inhibition” phenomenon in the human cerebral cortex. It has been widely applied in classification research in geographic and land system science42,43. The advantages of the SOFM neural network in classifying the coupling relationship between urbanization and habitat quality are as follows : (1) it simulates human brain neurons through unsupervised learning, which is objective and reliable. (2) It maintains the data topology during self-learning, training, and simulation to obtain reasonable partition results and identify the differences between different basins. (3) For massive data, the SOFM network has a good clustering function while maintaining its characteristics and uses the weight vector of the output node to represent the original input. The SOFM neural network can compress the data while maintaining a high similarity between the compression results and the original input data54. We exported the data from ArcGIS, and conducted cluster analysis on the four factors of NTL, POP, LUR and habitat quality using SOFM. Finally, the analysis results are imported into ArcGIS for display. More

  • in

    Newfound ‘fairy lantern’ could soon be snuffed out forever

    An umbrella-shaped structure of unknown function crowns a recently described species of fairy lantern. Credit: Siti Munirah Mat Yunoh et al./PhytoKeys (CC BY 4.0)

    Conservation biology
    07 July 2021
    Newfound ‘fairy lantern’ could soon be snuffed out forever

    Wild boars have destroyed three of the four known specimens of a bizarre plant in the forests of Malaysia.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Researchers have discovered a new species of ‘fairy lantern’, leafless plants that look like tiny glowing lights. Sadly, however, the organism might already be on the verge of extinction.Plants in the genus Thismia, colloquially called ‘fairy lanterns’, draw nutrients from underground fungi and grow in parts of Asia, Australasia and the Americas. Siti Munirah Mat Yunoh at the Forest Research Institute Malaysia in Kepong and her colleagues described a new species of Thismia that was first found in 2019 in a Malaysian rain forest. The scientists named the plant Thismia sitimeriamiae after the mother of the local explorer who discovered it, in honour of her support for her son’s nature-conservation efforts.Thismia sitimeriamiae is only about two centimetres tall, and sports an orange flower shaped like a funnel with an umbrella-like structure on top. The plant seems to be so rare that it should be considered critically endangered: just four individuals of T. sitimeriamiae have ever been seen, and wild boars have destroyed all but one of these, the authors say.

    PhytoKeys (2021)

    Conservation biology More

  • in

    Artificial nighttime lighting impacts visual ecology links between flowers, pollinators and predators

    1.Gaston, K. J., Bennie, J., Davies, T. W. & Hopkins, J. The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol. Rev. 88, 912–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Gaston, K. J., Davies, T. W., Nedelec, S. L. & Holt, L. A. Impacts of artificial light at night on biological timings. Annu. Rev. Ecol. Evol. Syst. 48, 49–68 (2017).Article 

    Google Scholar 
    3.Falchi, F. et al. The new world atlas of artificial night sky brightness. Sci. Adv. 2, e1600377 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Kyba, C. C. et al. Artificially lit surface of Earth at night increasing in radiance and extent. Sci. Adv. 3, e1701528 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Gaston, K. J., Gaston, S., Bennie, J. & Hopkins, J. Benefits and costs of artificial nighttime lighting of the environment. Environ. Rev. 23, 14–23 (2014).Article 

    Google Scholar 
    6.Sanders, D., Frago, E., Kehoe, R., Patterson, C. & Gaston, K. J. A meta-analysis of biological impacts of artificial light at night. Nat. Ecol. Evol. 5, 74–81 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Dominoni, D., Quetting, M. & Partecke, J. Artificial light at night advances avian reproductive physiology. Proc. R. Soc. B Biol. Sci. 280, 20123017 (2013).Article 
    CAS 

    Google Scholar 
    8.Owens, A. C. S. & Lewis, S. M. The impact of artificial light at night on nocturnal insects: a review and synthesis. Ecol. Evol. 8, 11337–11358 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Becker, A., Whitfield, A. K., Cowley, P. D., Järnegren, J. & Næsje, T. F. Potential effects of artificial light associated with anthropogenic infrastructure on the abundance and foraging behaviour of estuary-associated fishes. J. Appl. Ecol. 50, 43–50 (2013).Article 

    Google Scholar 
    10.van Grunsven, R. H. A. et al. Experimental light at night has a negative long-term impact on macro-moth populations. Curr. Biol. 30, R694–R695 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    11.Macgregor, C. J., Evans, D. M., Fox, R. & Pocock, M. J. O. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Glob. Change Biol. 23, 697–707 (2017).ADS 
    Article 

    Google Scholar 
    12.Knop, E. et al. Artificial light at night as a new threat to pollination. Nature 548, 206–209 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Lewis, S. M. et al. A global perspective on firefly extinction threats. BioScience 70, 157–167 (2020).Article 

    Google Scholar 
    14.Johnsen, S. et al. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. J. Exp. Biol. 209, 789–800 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10, e02550 (2019).Article 

    Google Scholar 
    16.Troscianko, J., Wilson-Aggarwal, J., Stevens, M. & Spottiswoode, C. N. Camouflage predicts survival in ground-nesting birds. Sci. Rep. 6, 19966 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Endler, J. A. Signals, signal conditions, and the direction of evolution. Am. Nat. S125–S153 (1992).18.Davies, T. W., Bennie, J., Inger, R., de Ibarra, N. H. & Gaston, K. J. Artificial light pollution: are shifting spectral signatures changing the balance of species interactions? Glob. Change Biol. 19, 1417–1423 (2013).ADS 
    Article 

    Google Scholar 
    19.Lamphar, H. A. S. & Kocifaj, M. Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions. PLoS ONE 8, e56563 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    20.Longcore, T. et al. Rapid assessment of lamp spectrum to quantify ecological effects of light at night. J. Exp. Zool. A Ecol. Integr. Physiol. 329, 511–521 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Seymoure, B. M., Linares, C. & White, J. Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms. J. Zool. 308, 93–110 (2019).Article 

    Google Scholar 
    22.Vorobyev, M. & Osorio, D. Receptor noise as a determinant of colour thresholds. Proc. R. Soc. Lond. B Biol. Sci. 265, 351–358 (1998).CAS 
    Article 

    Google Scholar 
    23.Kelber, A., Yovanovich, C. & Olsson, P. Thresholds and noise limitations of colour vision in dim light. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160065 (2017).Article 

    Google Scholar 
    24.Olsson, P., Lind, O. & Kelber, A. Bird colour vision: behavioural thresholds reveal receptor noise. J. Exp. Biol. 218, 184–193 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biol. Lett. 16, 20190877 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Kelber, A., Balkenius, A. & Warrant, E. J. Scotopic colour vision in nocturnal hawkmoths. Nature 419, 922–925 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Renoult, J. P., Kelber, A. & Schaefer, H. M. Colour spaces in ecology and evolutionary biology. Biol. Rev. 92, 292–315 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Cook, L. M., Grant, B. S., Saccheri, I. J. & Mallet, J. Selective bird predation on the peppered moth: the last experiment of Michael Majerus. Biol. Lett. 8, 609–612 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Svensson, M. G. E., Rydell, J. & Töve, J. Deep flowers for long tongues. Trends Ecol. Evol. 13, 460 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Dominoni, D. M. The effects of light pollution on biological rhythms of birds: an integrated, mechanistic perspective. J. Ornithol. 156, 409–418 (2015).Article 

    Google Scholar 
    31.Russ, A., Rüger, A. & Klenke, R. Seize the night: European Blackbirds (Turdus merula) extend their foraging activity under artificial illumination. J. Ornithol. 156, 123–131 (2015).Article 

    Google Scholar 
    32.Hart, N. S., Partridge, J. C., Cuthill, I. C. & Bennett, A. T. Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J. Comp. Physiol. A 186, 375–387 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Wink, M. & Theile, V. Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae). Chemoecology 12, 29–46 (2002).CAS 
    Article 

    Google Scholar 
    34.Hundsdoerfer, A. K., Tshibangu, J. N., Wetterauer, B. & Wink, M. Sequestration of phorbol esters by aposematic larvae of Hyles euphorbiae (Lepidoptera: Sphingidae)? Chemoecology 15, 261–267 (2005).CAS 
    Article 

    Google Scholar 
    35.Petschenka, G. & Dobler, S. Target-site sensitivity in a specialized herbivore towards major toxic compounds of its host plant: the Na+ K+-ATPase of the oleander hawk moth (Daphnisnerii) is highly susceptible to cardenolides. Chemoecology 19, 235 (2009).CAS 
    Article 

    Google Scholar 
    36.Vallin, A., Jakobsson, S. & Wiklund, C. “An eye for an eye”?—on the generality of the intimidating quality of eyespots in a butterfly and a hawkmoth. Behav. Ecol. Sociobiol. 61, 1419–1424 (2007).Article 

    Google Scholar 
    37.Barber, J. R. & Kawahara, A. Y. Hawkmoths produce anti-bat ultrasound. Biol. Lett. 9, 20130161 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Stevens, M., Troscianko, J., Wilson-Aggarwal, J. K. & Spottiswoode, C. N. Improvement of individual camouflage through background choice in ground-nesting birds. Nat. Ecol. Evol. 1, 1325 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kang, C., Moon, J.-Y., Lee, S.-I. & Jablonski, P. G. Moths use multimodal sensory information to adopt adaptive resting orientations. Biol. J. Linn. Soc. 111, 900–904 (2014).Article 

    Google Scholar 
    40.Kang, C., Stevens, M., Moon, J., Lee, S.-I. & Jablonski, P. G. Camouflage through behavior in moths: the role of background matching and disruptive coloration. Behav. Ecol. 26, 45–54 (2014).Article 

    Google Scholar 
    41.Falchi, F., Cinzano, P., Elvidge, C. D., Keith, D. M. & Haim, A. Limiting the impact of light pollution on human health, environment and stellar visibility. J. Environ. Manag. 92, 2714–2722 (2011).CAS 
    Article 

    Google Scholar 
    42.Gaston, K. J., Davies, T. W., Bennie, J. & Hopkins, J. Reducing the ecological consequences of night-time light pollution: options and developments. J. Appl. Ecol. 49, 1256–1266 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Longcore, T. et al. Tuning the White Light Spectrum of Light Emitting Diode Lamps to Reduce Attraction of Nocturnal Arthropods. Phil. Trans. B 370 (1667): 20140125 (2015).44.van Langevelde, F., Ettema, J. A., Donners, M., WallisDeVries, M. F. & Groenendijk, D. Effect of spectral composition of artificial light on the attraction of moths. Biol. Conserv. 144, 2274–2281 (2011).Article 

    Google Scholar 
    45.Somers-Yeates, R., Hodgson, D., McGregor, P. K., Spalding, A. & Ffrench-Constant, R. H. Shedding light on moths: shorter wavelengths attract noctuids more than geometrids. Biol. Lett. 9, 20130376 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Donners, M. et al. Colors of attraction: modeling insect flight to light behavior. J. Exp. Zoo. A 329, 434–440 (2018).Article 

    Google Scholar 
    47.Jones, T. M., Durrant, J., Michaelides, E. B. & Green, M. P. Melatonin: a possible link between the presence of artificial light at night and reductions in biological fitness. Philos. Trans. R. Soc. Lond. B 370, 20140122 (2015).Article 
    CAS 

    Google Scholar 
    48.Arnold, S. E., Faruq, S., Savolainen, V., McOwan, P. W. & Chittka, L. FReD: the floral reflectance database—a web portal for analyses of flower colour. PLoS ONE 5, e14287 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Troscianko, J. & Stevens, M. Image calibration and analysis toolbox – a free software suite for objectively measuring reflectance, colour and pattern. Methods Ecol. Evol. 6, 1320–1331 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2013).51.Gomez, D. et al. The intensity threshold of colour vision in a passerine bird, the blue tit (Cyanistes caeruleus). J. Exp. Biol. 217, 3775–3778 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    52.Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2014).53.Maia, R. & White, T. E. Comparing colors using visual models. Behav. Ecol. 29, 649–659 (2018).Article 

    Google Scholar 
    54.Maia, R., Gruson, H., Endler, J. A. & White, T. E. pavo 2: New tools for the spectral and spatial analysis of colour in r. Methods Ecol. Evol. 10, 1097–1107 (2019).Article 

    Google Scholar  More

  • in

    Colonization of Warsaw by the red fox Vulpes vulpes in the years 1976–2019

    1.Baker, P. J., Newman, T. & Harris, S. Bristol’s foxes—40 years of change. Br. Wildl. 12, 411–417 (2001).
    Google Scholar 
    2.Vuorisalo, T. et al. Urban development from an avian perspective: Causes of hooded crow (Corvus corone cornix) urbanization in two Finnish cities. Landsc. Urban Plan. 62, 69–87 (2003).Article 

    Google Scholar 
    3.Baker, P. J. & Harris, S. Urban mammals: What does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mammal Rev. 37, 297–315 (2007).
    Google Scholar 
    4.Evans, K. L., Hatchwell, B. J., Parnell, M. & Gaston, K. J. A conceptual framework for the colonization of urban areas: The blackbird Turdus merula as a case study. Biol. Rev. 85, 643–667 (2010).PubMed 

    Google Scholar 
    5.Geiger, M., Taucher, A. L., Gloor, S., Hegglin, D. & Bontadina, F. In the footsteps of city foxes: Evidence for a rise of urban badger populations in Switzerland. Hystrix It. J. Mamm. 29, 236–238 (2018).
    Google Scholar 
    6.Lesiński, G., Gryz, J., Krauze-Gryz, D. & Stolarz, P. Population increase and synurbization of the yellow-necked mouse Apodemus flavicollis in some wooded areas of Warsaw agglomeration, Poland, in the years 1983–2018. Urban Ecosyst. 24, 481–489 (2021).Article 

    Google Scholar 
    7.Andrzejewski, R., Babińska-Werka, J., Gliwicz, J. & Goszczyński, J. Synurbization processes in population of Apodemus agrarius. I. Characteristics of populations in an urbanization gradient. Acta Theriol. 23, 341–358 (1978).Article 

    Google Scholar 
    8.Doncaster, C. P. & MacDonald, D. W. Drifting territoriality in the red fox Vulpes vulpes. J. Anim. Ecol. 60, 423–439 (1991).Article 

    Google Scholar 
    9.Baker, P. J., Ansell, R. J., Dodds, P. A. A., Webber, C. E. & Harris, S. Factors affecting the distribution of small mammals in urban areas. Mammal Rev. 33, 95–100 (2003).Article 

    Google Scholar 
    10.Baker, P. J., Dowding, C. V., Molony, S. E., White, P. C. L. & Harris, S. Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav. Ecol. 35, 716–724 (2007).Article 

    Google Scholar 
    11.Bateman, P. W. & Fleming, P. A. Big city life: Carnivores in urban environments. J. Zool. 287, 1–23 (2012).Article 

    Google Scholar 
    12.Harris, S. Distribution, habitat utilisation and age structure of a suburban fox (Vulpes vulpes) population. Mammal Rev. 7, 25–39 (1977).Article 

    Google Scholar 
    13.Harris, S. & Rayner, J. M. V. Urban fox (Vulpes vulpes) population estimates and habitat requirements in several British cities. J. Anim. Ecol. 55, 575–591 (1986).Article 

    Google Scholar 
    14.Adkins, C. A. & Stott, P. Home ranges, movements and habitat associations of red foxes Vulpes vulpes in suburban Toronto, Ontario, Canada. J. Zool. 244, 335–346 (1998).Article 

    Google Scholar 
    15.Duduś, L., Zalewski, A., Kozioł, O., Jakubiec, Z. & Król, N. Habitat selection by two predators in an urban area: The stone marten and red fox in Wrocław (SW Poland). Mamm. Biol. 79, 71–76 (2014).Article 

    Google Scholar 
    16.Harris, S. The food of suburban foxes (Vulpes vulpes) with special reference to London. Mammal Rev. 11, 151–168 (1981).Article 

    Google Scholar 
    17.Doncaster, C. P., Dickman, C. R. & MacDonald, D. W. Feeding ecology of red foxes (Vulpes vulpes) in the city of Oxford, England. J. Mammal. 71, 188–194 (1990).Article 

    Google Scholar 
    18.Saunders, G., White, P. C. L., Harris, S. & Rayner, J. M. V. Urban foxes (Vulpes vulpes)—Food acquisition, time and energy budgeting of a generalized predator. Symp. Zool. Soc. Lond. 65, 215–234 (1993).
    Google Scholar 
    19.Contesse, P., Hegglin, D., Gloor, S., Bontadina, F. & Deplazes, P. The diet of urban foxes (Vulpes vulpes) in the city of Zurich, Switzerland. Mamm. Biol. 69, 81–95 (2004).Article 

    Google Scholar 
    20.Harris, S. An estimation of the number of foxes (Vulpes vulpes) in the city of Bristol and some possible factors affecting their distribution. J. Appl. Ecol. 18, 455–465 (1981).Article 

    Google Scholar 
    21.Marks, C. A. & Bloomfield, T. E. Distribution and density estimates for urban foxes (Vulpes vulpes) in Melbourne: Implications for rabies control. Wildl. Res. 26, 763–775 (1999).Article 

    Google Scholar 
    22.Gloor, S. The rise of urban foxes (Vulpes vulpes) in Switzerland and ecological and parasitological aspects of a population in the recently colonised city of Zurich. Dissertation thesis (University of Zurich, 2002).23.Gosselink, T. E., van Deelen, T. R., Warner, B. E. & Joselyn, M. G. Temporal habitat partitioning and spatial use of coyotes and red foxes in east-central Illinois. J. Wildl. Manag. 55, 433–441 (2003).
    Google Scholar 
    24.Gosselink, T. E., van Deelen, T. R., Warner, R. E. & Mankin, P. C. Survival and cause-specific mortality of red foxes in agricultural and urban areas of Illinois. J. Wildl. Manag. 7, 1862–1873 (2007).Article 

    Google Scholar 
    25.Soulsbury, C. D. et al. The impact of sarcoptic mange Sarcoptes scabiei on the British fox Vulpes vulpes population. Mammal Rev. 37, 278–296 (2007).
    Google Scholar 
    26.Macdonald, D. Running with the Fox (Unwin Hyman, 1987).
    Google Scholar 
    27.Lewis, J. C., Sallee, K. L. & Golightly, Jr R. T. Introduced red fox in California. http://morro-bay.com/educational/research-reports/red-fox–california-introduced-research-93_10.pdf (1993).28.Plumer, L., Davison, J. & Saarma, U. Rapid urbanization of red foxes in Estonia: Distribution, behaviour, attacks on domestic animals and health-risks related to zoonotic diseases. PLoS ONE 9, e115124. https://doi.org/10.1371/journal.pone.0115124 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sogliani, D. & Mori, E. ‘The Fox and the Cat’: Sometimes they do not agree. Mamm. Biol. 95, 150–154 (2019).Article 

    Google Scholar 
    30.König, A. Fears, attitudes and opinions of suburban residents with regards to their urban foxes. Eur. J. Wildl. Res. 54, 101–109 (2008).Article 

    Google Scholar 
    31.Kauhala, K., Talvitie, K. & Vuorisalo, T. Encounters between medium-sized carnivores and humans in the city of Turku, SW Finland, with special reference to the red fox. Mammal Res. 61, 25–33 (2016).Article 

    Google Scholar 
    32.Teagle, W. G. The fox in the London suburbs. Lond. Nat. 46, 44–68 (1967).
    Google Scholar 
    33.Pagh, S. The history of urban foxes in Aarhus and Copenhagen, Denmark. Lutra 51, 51–55 (2008).
    Google Scholar 
    34.Vuorisalo, T., Talvitie, K., Kauhala, K., Blauerc, A. & Lahtinene, R. Urban red foxes (Vulpes vulpes L.) in Finland: A historical perspective. Landsc. Urban Plan. 124, 109–117 (2014).Article 

    Google Scholar 
    35.Seebeck, J. H. Mammals in the Melbourne metropolitan area. Vic. Nat. 94, 165–171 (1977).
    Google Scholar 
    36.Gloor, S., Bontadina, F., Hegglin, D., Deplazes, P. & Breitenmoser, U. The rise of urban fox populations in Switzerland. Mamm. Biol. 66, 155–164 (2001).
    Google Scholar 
    37.Soulsbury, C. D., Baker, P. J., Iossa, G. & Harris, S. Red foxes (Vulpes vulpes). In Urban Carnivores Ecology, Conflict, and Conservation (eds Gehrt, S. D. et al.) 63–75 (The Johns Hopkins University Press, 2010).
    Google Scholar 
    38.Chautan, M., Pontier, D. & Artois, M. The role of rabies in recent demographic changes in red fox populations in Europe. Mammalia 46, 391–410 (2000).
    Google Scholar 
    39.Doncaster, C. P. & MacDonald, D. W. Activity patterns and interactions of red fox (Vulpes vulpes) in Oxford city. J. Zool. 241, 73–87 (1997).Article 

    Google Scholar 
    40.Harris, S. Surveying the urban fox. Biologist 35, 259–264 (1985).
    Google Scholar 
    41.Uraguchi, K., Yamamura, K. & Saitoh, T. Estimating number of families for an urban fox population by using two public data sets. Popul. Ecol. 51, 1–7 (2009).Article 

    Google Scholar 
    42.Scott, D. M. et al. A citizen science based survey method for estimating the density of urban carnivores. PLoS ONE 13, e0197445. https://doi.org/10.1371/journal.pone.0197445 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Sadlier, L. M. J., Webbon, C. C., Baker, P. J. & Harris, S. Methods of monitoring red foxes Vulpes vulpes and badgers Meles meles: Are field signs the answer?. Mammal Rev. 34, 75–98 (2004).Article 

    Google Scholar 
    44.Baker, P. J., Harris, S., Robertson, C. P. J., Saunders, G. & White, P. C. L. Is it possible to monitor mammal population changes from counts of road traffic casualties? An analysis using Bristol’s red foxes Vulpes vulpes as an example. Mammal Rev. 34, 115–130 (2004).Article 

    Google Scholar 
    45.Statistics Poland. Statistical Yearbook of Warsaw (Zakład Wydawnictw Statystycznych, 2019).
    Google Scholar 
    46.Climate-data.org. https://pl.climate-data.org/europa/polska/masovian-voivodeship/warszawa-4560/ (2020).47.Goszczyński, J. & Romanowski, J. The mammals of the between-floodbanks area of the Middle Vistula Valley. In The Between Floodbanks Area of the Vistula as an Unique Natural System (Pilica-Narew section) (eds Matuszkiewicz, J. M. & Roo-Zielińska, E.) 107–117 (Polish Academy of Sciences, 2000).
    Google Scholar 
    48.Romanowski, J. Vistula River valley as the ecological corridor for mammals. Pol. J. Ecol. 55, 805–819 (2007).
    Google Scholar 
    49.Romanowski, J., Kowalczyk, K. & Rau, K. Population viability modelling and potential threats to the beaver in the Vistula River valley, Poland. Ann. Zool. Fenn. 45, 323–328 (2008).Article 

    Google Scholar 
    50.Luniak, M., Kozłowski, P. & Nowicki, W. Magpie Pica pica in Warsaw—abundance, distribution and changes in its population. Acta Ornithol. 32, 77–86 (1997).
    Google Scholar 
    51.Gryz, J., Lesiński, G., Krauze-Gryz, D. & Stolarz, P. Woodland reserves within an urban agglomeration as important refuges for small mammals. Folia For. Pol. Ser. A For. 59, 3–13 (2017).
    Google Scholar 
    52.Sison, C. P. & Glaz, J. Simultaneous confidence intervals and sample size determination for multinomial proportions. J. Am. Stat. Assoc. 90, 366–369 (1995).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    53.Signorell, A. et al. DescTools: Tools for descriptive statistics. R package version 0.99. 26. The Comprehensive R Archive Network (2018).54.Wood, S. N. Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).MATH 
    Book 

    Google Scholar 
    55.Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: Estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    56.Copernicus ,. Mapping Guide for an European Urban Atlas (European Union, 2018).
    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
    Google Scholar 
    58.ESRI. ArcGIS Desktop: Release 10 (Enviromental Systems Research Institute, 2011).
    Google Scholar 
    59.Wałecki, A. Fauna zwierząt ssących Warszawy i jej stosunek do fauny całego kraju in Pamiętnik Fizjograficzny Vol. 1, 268–291 (E. Dziewulski i Br. Znatowicz, 1881).
    Google Scholar 
    60.Wandeler, P., Funk, S. M., Largiader, C. R., Gloor, S. & Breitenmoster, U. The city-fox phenomenon: Genetic consequences of a recent colonization of urban habitat. Mol. Ecol. 12, 647–656 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.DeCandia, A. L. et al. Urban colonization through multiple genetic lenses: The city-fox phenomenon revisited. Ecol. Evol. 9, 2046–2060 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Kimmig, S. E. et al. Beyond the landscape: Resistance modelling infers physical and behavioural gene flow barriers to a mobile carnivore across a metropolitan area. Mol. Ecol. 29, 466–484 (2020).PubMed 
    Article 

    Google Scholar 
    63.Kato, Y. et al. Population genetic structure of the urban fox in Sapporo, northern Japan. J. Zool. 301, 118–124 (2017).Article 

    Google Scholar 
    64.Baker, P. J., Dowding, C. V., Molony, S. E., White, P. C. L. & Harris, S. Activity patterns of urban red foxes (Vulpes vulpes) reduce the risk of traffic-induced mortality. Behav. Ecol. 18, 716–724 (2007).Article 

    Google Scholar 
    65.Gehrt, S. D. The urban ecosystem. In Urban Carnivores Ecology, Conflict, and Conservation (eds Gehrt, S. D. et al.) 3–11 (The Johns Hopkins University Press, 2010).
    Google Scholar 
    66.Kolb, H. H. Factors affecting the movements of dog foxes in Edinburgh. J. Appl. Ecol. 21, 161–173 (1984).Article 

    Google Scholar 
    67.Douglas, I. & Sadler, J. P. Urban wildlife corridors. Conduits for movement or linear habitats? In The Routledge Handbook of Urban Ecology (eds Douglas, I. et al.) 274–288 (Routledge, 2011).
    Google Scholar 
    68.Tsukada, H., Morishima, Y., Nonaka, N., Oku, Y. & Kamiya, M. Preliminary study of the role of red foxes in Echinococcus multilocularis transmission in the urban area of Sapporo, Japan. Parasitology 120, 423–428 (2000).PubMed 
    Article 

    Google Scholar 
    69.Robinson, N. A. & Marks, C. A. Genetic structure and dispersal of red foxes (Vulpes vulpes) in urban Melbourne. Aust. J. Zool. 49, 589–601 (2001).Article 

    Google Scholar 
    70.Walter, T., Zink, R., Laaha, G., Zaller, J. G. & Heigl, F. Fox sightings in a city are related to certain land use classes and sociodemographics: Results from a citizen science project. BMC Ecol. 18, 50. https://doi.org/10.1186/s12898-018-0207-7 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.Cavallini, P. & Lovari, S. Home range, habitat selection and activity of the red fox in a Mediterranean coastal ecotone. Acta Theriol. 39, 279–287 (1994).Article 

    Google Scholar 
    72.Frey, S. N. & Conover, M. R. Habitat use by meso-predators in a corridor environment. J. Wildl. Manag. 70, 1111–1118 (2006).Article 

    Google Scholar 
    73.Díaz-Ruíz, F., Caro, J., Delibes-Mateos, M., Arroyo, B. & Ferreras, P. Drivers of red fox (Vulpes vulpes) daily activity: Prey availability, human disturbance or habitat structure?. J. Zool. 298, 128–138 (2016).Article 

    Google Scholar 
    74.Gaffron, P. Urban transport, environmental justice and human daily activity patterns. Transp. Policy 20, 114–127 (2012).Article 

    Google Scholar 
    75.Eguchi, K. & Nakazano, T. Activity studies of Japanese red foxes, Vulpes vulpes japonica Gray. Jpn. J. Ecol. 30, 9–17 (1980).
    Google Scholar 
    76.Travaini, A., Aldama, J. J., Laffitte, R. & Delibes, M. Home range and activity patterns of red fox Vulpes vulpes breeding females. Acta Theriol. 38, 427–434 (1993).Article 

    Google Scholar 
    77.Cavallini, P. Ranging behaviour of red foxes during the mating and breeding seasons. Ethol. Ecol. Evol. 8, 57–65 (1996).Article 

    Google Scholar 
    78.Robertson, C. P. J., Baker, P. J. & Harris, S. Ranging behaviour of juvenile red foxes and its implications for management. Acta Theriol. 45, 525–535 (2000).Article 

    Google Scholar 
    79.Goszczyński, J. Lis. Monografia przyrodniczo-łowiecka (OIKOS Oficyna Wydawnicza, 1995).
    Google Scholar 
    80.Tolhurst, B. A., Baker, R. J., Cagnacci, F. & Scott, D. M. Spatial aspects of gardens drive ranging in urban foxes (Vulpes vulpes): The resource dispersion hypothesis revisited. Animals 10, 1167. https://doi.org/10.3390/ani10071167 (2020).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    81.Hofer, S. et al. High prevalence of Echinococcus multilocularis in urban red foxes (Vulpes vulpes) and voles (Arvicola terrestris) in the city of Zurich, Switzerland. Parasitology 120, 135–142 (2000).PubMed 
    Article 

    Google Scholar 
    82.Jiang, S., Ferreira, Jr J. & Gonzalez, M. C. Discovering urban spatial–temporal structure from human activity patterns. In Proceedings of the ACM SIGKDD International Workshop on Urban Computing (UrbComp ’12) (ACM New York, 2012).83.Newman, T. J. et al. Changes in red fox habitat preference and rest site fidelity following a disease-induced population decline. Acta Theriol. 48, 79–91 (2003).Article 

    Google Scholar 
    84.Fischer, C., Reperant, L., Weber, J. M., Ochs, H. & Deplazes, P. Relation in the presence of various parasites in the red fox (Vulpes vulpes) in Geneva. Swiss Med. Wkly. 133, 61 (2003).
    Google Scholar 
    85.Deplazes, S., Hegglin, D., Gloor, S. & Romig, T. Wilderness in the city: The urbanization of Echinococcus multilocularis. Trends Parasitol. 20, 77–84 (2004).PubMed 
    Article 

    Google Scholar 
    86.Official Website of Republic of Poland. https://www.gov.pl/web/uw-mazowiecki/obszar-zagrozony-wscieklizna-na-terenie-wojewodztwa-mazowieckiego (2021).87.Wilkinson, D. & Smith, G. C. A preliminary survey for changes in urban fox (Vulpes vulpes) densities in England and Wales, and implications for rabies control. Mammal Rev. 31, 107–110 (2001).Article 

    Google Scholar 
    88.Baker, P. J., Funk, S. M., Harris, S. & White, P. C. L. Flexible spatial organization of urban foxes, Vulpes vulpes, before and during an outbreak of sarcoptic mange. Anim. Behav. 59, 127–146 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Goszczyński, J. The effect of structural differentation of ecological landscape on the predator–prey interaction. Treatises Monogr. 46, 1–80 (1985).
    Google Scholar 
    90.Goszczyński, J., Misiorowska, M. & Juszko, S. Changes in the density and spatial distribution of red fox dens and cub numbers in central Poland following rabies vaccination. Acta Theriol. 53, 121–127 (2008).Article 

    Google Scholar  More

  • in

    Protect pollinators — reform pesticide regulations

    CORRESPONDENCE
    06 July 2021

    Protect pollinators — reform pesticide regulations

    Adrian Fisher

     ORCID: http://orcid.org/0000-0001-5300-1910

    0

    Adrian Fisher

    Arizona State University, Tempe, Arizona, USA. On behalf of 14 co-signatories.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Many approved pesticides still damage pollinator health at doses used in agriculture (see, for example, A. R. Main et al. Agric. Ecosyst. Environ. 287, 106693; 2020). We argue that this is due to a systemic failure in pesticide regulations (see, for instance, S. López-Cubillos et al. Nature 573, 196; 2019) that has been exacerbated by weak enforcement. Stricter laws are needed that are evidence-based, override vested interests and recognize pollinators as essential contributors to food security.Policymakers must learn from failures in neonicotinoid regulation (see, for example, F. Sgolastra et al. Biol. Conserv. 241, 108356; 2020). Before approval, pesticide risk assessment should incorporate protocols that address sub-lethal effects on pollinators. These include alterations in their behaviour and fitness under ecologically realistic conditions; mandatory testing on diverse species of native pollinators and of colonies for eusocial pollinators; and toxicity evaluation when combined with other chemicals such as proprietary additives, co-occurring pesticides and environmental residues.Long-term monitoring after approval by appropriate governmental organizations will be necessary to pick up unforeseen environmental interactions promptly.

    Nature 595, 172 (2021)
    doi: https://doi.org/10.1038/d41586-021-01818-xA full list of co-signatories to this letter appears in Supplementary Information.

    Supplementary Information

    List of co-signatories

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Law

    Ecology

    Agriculture

    Latest on:

    Law

    Astronomers victimized colleagues — and put historic Swedish department in turmoil
    News 22 JUN 21

    Forensic database challenged over ethics of DNA holdings
    News Feature 15 JUN 21

    Wanted: rules for pandemic data access that everyone can trust
    Editorial 01 JUN 21

    Ecology

    Integrate conservation reserves for China’s homeless elephants
    Correspondence 06 JUL 21

    UK biodiversity: close gap between reality and rhetoric
    Correspondence 06 JUL 21

    Beyond coronavirus: the virus discoveries transforming biology
    News Feature 30 JUN 21

    Agriculture

    Yuan Longping (1930–2021)
    Obituary 24 JUN 21

    Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans
    Article 23 JUN 21

    How ancient people fell in love with bread, beer and other carbs
    News Feature 22 JUN 21

    Jobs

    Senior Talent Acquisition Associate – Scientific Recruiter

    Baylor College of Medicine (BCM)

    Radiation Oncology Faculty Members

    New York University (NYU)

    Radiation Oncology Physician-Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Radiation Oncology Faulty Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Epidemiological overview of multidimensional chromosomal and genome toxicity of cannabis exposure in congenital anomalies and cancer development

    1.Geber, W. F. & Schramm, L. C. Effect of marihuana extract on fetal hamsters and rabbits. Toxicol. Appl. Pharmacol. 14, 276–282 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Geber, W. F. & Schramm, L. C. Teratogenicity of marihuana extract as influenced by plant origin and seasonal variation. Arch. Int. Pharmacodyn. Ther. 177, 224–230 (1969).CAS 
    PubMed 

    Google Scholar 
    3.Graham, J. D. P. Cannabis and health. In Cannabis and Health Vol. 1 (ed. Graham, J. D. P.) 271–320 (Academic Press, 1976).
    Google Scholar 
    4.Reece, A. S. & Hulse, G. K. Chromothripsis and epigenomics complete causality criteria for cannabis- and addiction-connected carcinogenicity, congenital toxicity and heritable genotoxicity. Mutat. Res. 789, 15–25 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of Cannabinoids on spermatogenesis in mice. In Marihuana and Medicine (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).Chapter 

    Google Scholar 
    6.Morishima, A. Effects of cannabis and natural cannabinoids on chromosomes and ova. NIDA Res. Monogr. 44, 25–45 (1984).CAS 
    PubMed 

    Google Scholar 
    7.Henrich, R. T., Nogawa, T. & Morishima, A. In vitro induction of segregational errors of chromosomes by natural cannabinoids in normal human lymphocytes. Environ. Mutagen 2, 139–147 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Reece, A. S. & Hulse, G. K. Cannabis teratology explains current patterns of coloradan congenital defects: The contribution of increased cannabinoid exposure to rising teratological trends. Clin. Pediatr. 58, 1085–1123 (2019).Article 

    Google Scholar 
    9.Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: Reflections on Murphy et al.’ cannabinoid exposure and altered DNA methylation in rat and human sperm’ epigenetics 2018. Epigenetics 14, 1041–1056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Reece, A. S. & Hulse, G. K. Canadian cannabis consumption and patterns of congenital anomalies: An ecological geospatial analysis. J. Addict. Med. 14, e195–e210 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Reece, A. S., Wang, W. & Hulse, G. K. Pathways from epigenomics and glycobiology towards novel biomarkers of addiction and its radical cure. Med. Hypotheses 116, 10–21 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Reece, A. S. & Hulse, G. K. Rapid Response to Lane. Re: Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study, 2016. BMJ Open 6, e011891–e011902 (2020).Article 

    Google Scholar 
    13.McClean, D. K. & Zimmerman, A. M. Action of delta 9-tetrahydrocannabinol on cell division and macromolecular synthesis in division-synchronized protozoa. Pharmacology 14, 307–321 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Tahir, S. K. & Zimmerman, A. M. Influence of marihuana on cellular structures and biochemical activities. Pharmacol. Biochem. Behav. 40, 617–623 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Wilson, R. G. Jr., Tahir, S. K., Mechoulam, R., Zimmerman, S. & Zimmerman, A. M. Cannabinoid enantiomer action on the cytoarchitecture. Cell. Biol. Int. 20, 147–157 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Wang, J., Yuan, W. & Li, M. D. Genes and pathways co-associated with the exposure to multiple drugs of abuse, including alcohol, amphetamine/methamphetamine, cocaine, marijuana, morphine, and/or nicotine: A review of proteomics analyses. Mol. Neurobiol. 44, 269–286 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on chromatin structure and function in human cells. Biochem. Pharmacol. 30, 45–58 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Mon, M. J., Haas, A. E., Stein, J. L. & Stein, G. S. Influence of psychoactive and nonpsychoactive cannabinoids on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 30, 31–43 (1981).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.DiNieri, J. A. et al. Maternal cannabis use alters ventral striatal dopamine D2 gene regulation in the offspring. Biol. Psychiatry 70, 763–769 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Szutorisz, H. et al. Parental THC exposure leads to compulsive heroin-seeking and altered striatal synaptic plasticity in the subsequent generation. Neuropsychopharmacology 39, 1315–1323 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Szutorisz, H., Egervari, G., Sperry, J., Carter, J. M. & Hurd, Y. L. Cross-generational THC exposure alters the developmental sensitivity of ventral and dorsal striatal gene expression in male and female offspring. Neurotoxicol. Teratol. 58, 107–114 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Szutorisz, H. & Hurd, Y. L. Epigenetic effects of cannabis exposure. Biol. Psychiatry 79, 586–594 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Watson, C. T. et al. Genome-wide DNA methylation profiling reveals epigenetic changes in the rat nucleus accumbens associated with cross-generational effects of adolescent THC exposure. Neuropsychopharmacology 40, 2993–3005 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Murphy, S. K. et al. Cannabinoid exposure and altered DNA methylation in rat and human sperm. Epigenetics 13, 1208–1212 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Schrott, R. et al. Cannabis use is associated with potentially heritable widespread changes in autism candidate gene DLGAP2 DNA methylation in sperm. Epigenetics 15, 161–173 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Vela, G. et al. Maternal exposure to delta9-tetrahydrocannabinol facilitates morphine self-administration behavior and changes regional binding to central mu opioid receptors in adult offspring female rats. Brain Res. 807, 101–109 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Fish, E. W. et al. Cannabinoids exacerbate alcohol teratogenesis by a CB1-hedgehog interaction. Sci. Rep. 9, 16057 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Callén, L. et al. Cannabinoid receptors CB1 and CB2 form functional heteromers in brain. J. Biol. Chem. 287, 20851–20865 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Rozenfeld, R. et al. Receptor heteromerization expands the repertoire of cannabinoid signaling in rodent neurons. PLoS ONE 7, e29239 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Schoffelmeer, A. N., Hogenboom, F., Wardeh, G. & De Vries, T. J. Interactions between CB1 cannabinoid and mu opioid receptors mediating inhibition of neurotransmitter release in rat nucleus accumbens core. Neuropharmacology 51, 773–781 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Rozenfeld, R. et al. AT1R-CB1R heteromerization reveals a new mechanism for the pathogenic properties of angiotensin II. EMBO J. 30, 2350–2363 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Viñals, X. et al. Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol. 13, e1002194 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Kargl, J. et al. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J. Biol. Chem. 287, 44234–44248 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ellis, J., Pediani, J. D., Canals, M., Milasta, S. & Milligan, G. Orexin-1 receptor-cannabinoid CB1 receptor heterodimerization results in both ligand-dependent and -independent coordinated alterations of receptor localization and function. J. Biol. Chem. 281, 38812–38824 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kearn, C. S., Blake-Palmer, K., Daniel, E., Mackie, K. & Glass, M. Concurrent stimulation of cannabinoid CB1 and dopamine D2 receptors enhances heterodimer formation: A mechanism for receptor cross-talk?. Mol. Pharmacol. 67, 1697–1704 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Carriba, P. et al. Striatal adenosine A2A and cannabinoid CB1 receptors form functional heteromeric complexes that mediate the motor effects of cannabinoids. Neuropsychopharmacology 32, 2249–2259 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Forrester, M. B. & Merz, R. D. Risk of selected birth defects with prenatal illicit drug use, Hawaii, 1986–2002. J. Toxicol. Environ. Health 70, 7–18 (2007).CAS 
    Article 

    Google Scholar 
    38.Reece, A.S. & Hulse, G.K. Broad spectrum epidemiological contribution of cannabis and other substances to the teratological profile of Northern New South Wales: Geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21(1), 75 (2020).39.Reece, A.S. & Hulse, G.K. Cannabis in pregnancy: Rejoinder, exposition and cautionary tales. Psychiatric Times. https://www.bing.com/search?q=Cannabis+in+Pregnancy+%E2%80%93+Rejoinder%82C+Exposition+and+Cautionary+Tales&cvid=22538e20124c04711b92017489c92063214a&aqs=edge..92017469i92017457.92017439j92017480j92017481&pglt=92017443&FORM=ANSPA92017481&PC=U92017531 (2020).40.Cheng, L. et al. Testicular cancer. Nat. Rev. Dis. Primers 4, 29 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Oosterhuis, J. W. & Looijenga, L. H. J. Germ cell tumors from a developmental perspective: Cells of origin, pathogenesis, and molecular biology (emerging patterns). In Pathology and Biology of Human Germ Cell Tumors (eds Nogales, F. F. & Jimenez, R. E.) 23–129 (Springer, 2017).Chapter 

    Google Scholar 
    42.Shen, H. et al. Integrated molecular characterization of testicular germ cell tumors. Cell. Rep. 23, 3392–3406 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Daling, J. R. et al. Association of marijuana use and the incidence of testicular germ cell tumors. Cancer 115, 1215–1223 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Callaghan, R. C., Allebeck, P., Akre, O., McGlynn, K. A. & Sidorchuk, A. Cannabis use and incidence of testicular cancer: A 42-year follow-up of Swedish men between 1970 and 2011. Cancer Epidemiol. Biomarkers Prev. 26, 1644–1652 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Trabert, B., Sigurdson, A. J., Sweeney, A. M., Strom, S. S. & McGlynn, K. A. Marijuana use and testicular germ cell tumors. Cancer 117, 848–853 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Lacson, J. C. et al. Population-based case-control study of recreational drug use and testis cancer risk confirms an association between marijuana use and nonseminoma risk. Cancer 118, 5374–5383 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Volkow, N. D., Compton, W. M. & Wargo, E. M. The risks of marijuana use during pregnancy. JAMA 317, 129–130 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Volkow, N. D., Han, B., Compton, W. M. & Blanco, C. Marijuana use during stages of pregnancy in the United States. Ann. Intern. Med. 166, 763–764 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Efird, J. T. et al. The risk for malignant primary adult-onset glioma in a large, multiethnic, managed-care cohort: Cigarette smoking and other lifestyle behaviors. J. Neurooncol. 68, 57–69 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Grufferman, S., Schwartz, A. G., Ruymann, F. B. & Maurer, H. M. Parents’ use of cocaine and marijuana and increased risk of rhabdomyosarcoma in their children. Cancer Causes Control 4, 217–224 (1993).CAS 
    PubMed 

    Google Scholar 
    51.Kuijten, R. R., Bunin, G. R., Nass, C. C. & Meadows, A. T. Gestational and familial risk factors for childhood astrocytoma: Results of a case-control study. Cancer Res. 50, 2608–2612 (1990).CAS 
    PubMed 

    Google Scholar 
    52.Reece, A. S. & Hulse, G. K. A geospatiotemporal and causal inference epidemiological exploration of substance and cannabinoid exposure as drivers of rising US pediatric cancer rates. BMC Cancer 21, 197 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    54.Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.McCantz-Katz, E. 2017 Annual Report Snippets, NSDUH, SAMHSA, USA DHHS: Selected streamlined trends. Vol. 1 (ed. Substance Abuse and Mental Health Services Administration US Department of Health and Human Services) 1–78 (SAMHSA, DHHS, 2018).56.McCantz-Katz, E. The National Survey of Drug Use and Health: 2019. Vol. 1 (eds. Substance Abuse and Mental Health Services Administration & US Department of Health and Human Services) 1–63 (SAMHSA, US DHHS, 2020).57.Substance Abuse and Mental Health Services Administration (SAMHSA), Department of Health and Human Services (HHS) & United States of America. National Survey on Drug Use and Health. Vol. 2018 (Department of Health and Human Services, 2018).58.United National Office of Drugs and Crime. World Drug Report 2019. Vol. 1–5 (ed. World Health Organization Office of Drugs and Crime) https://wdr.unodc.org/wdr2019/index.html (United National World Health Organization, 2019).59.Busch, F. W., Seid, D. A. & Wei, E. T. Mutagenic activity of marihuana smoke condensates. Cancer Lett. 6, 319–324 (1979).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Zimmerman, A. M. & Raj, A. Y. Influence of cannabinoids on somatic cells in vivo. Pharmacology 21, 277–287 (1980).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Tahir, S. K., Trogadis, J. E., Stevens, J. K. & Zimmerman, A. M. Cytoskeletal organization following cannabinoid treatment in undifferentiated and differentiated PC12 cells. Biochem. Cell Biol. 70, 1159–1173 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.United States Department of Health and Human Services, Centers for Disease Control and Prevention and & National Cancer Institute. National Program of Cancer Registries and Surveillance, Epidemiology, and End Results SEER*Stat Database: NPCR and SEER Incidence: U.S. Cancer Statistics Public Use Research Database, 2019 submission (2001–2017), United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. Released June 2020. www.cdc.gov/cancer/public-use. Vol. 2020 (ed. United States Department of Health and Human Services, C.f.D.C.a.P.a.N.C.I.) (United States Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute, 2020).63.National Birth Defects Prevention Network. National Birth Defects Prevention Network. Vol. 2018 (ed. Network, N.B.D.P.) (National Birth Defects Prevention Network, 2018).64.Abeywardana, S. & Sullivan, E. A. Congenital Anomalies in Australia 2002–2003 (Australian Institute of Health and Welfare, 2008).
    Google Scholar 
    65.Bird, T. M., Hobbs, C. A., Cleves, M. A., Tilford, J. M. & Robbins, J. M. National rates of birth defects among hospitalized newborns. Birth. Defects Res. A 76, 762–769 (2006).CAS 
    Article 

    Google Scholar 
    66.Natoli, J. L., Ackerman, D. L., McDermott, S. & Edwards, J. G. Prenatal diagnosis of Down syndrome: A systematic review of termination rates (1995–2011). Prenat. Diagn. 32, 142–153 (2012).PubMed 
    Article 

    Google Scholar 
    67.Substance Abuse and Mental Health Network. Substance Abuse and Mental Health Data Archive (SAMHDA). Vol. 2019 (ed. Substance Abuse and Mental Health Services Administration) (Substance Abuse and Mental Health Services Administration, Substance Abuse and Mental Health Services Administration, 2019).68.ElSohly, M. A. et al. Changes in cannabis potency over the last 2 decades (1995–2014): Analysis of current data in the United States. Biol. Psychiatry 79, 613–619 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Chandra, S. et al. New trends in cannabis potency in USA and Europe during the last decade (2008–2017). Eur. Arch. Psychiatry Clin. Neurosci. 269, 5–15 (2019).PubMed 
    Article 

    Google Scholar 
    70.ElSohly, M. A. et al. Potency trends of delta9-THC and other cannabinoids in confiscated marijuana from 1980–1997. J. Forensic Sci. 45, 24–30 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.VanderWeele, T. J., Ding, P. & Mathur, M. Technical considerations in the use of the e-value. J. Causal Inference 7, 1–11 (2019).Article 

    Google Scholar 
    72.Pearl, J. & Mackaenzie, D. The Book of Why (Basic Books, 2019).
    Google Scholar 
    73.Sarafian, T. A., Kouyoumjian, S., Khoshaghideh, F., Tashkin, D. P. & Roth, M. D. Delta 9-tetrahydrocannabinol disrupts mitochondrial function and cell energetics. Am. J. Physiol. 284, L298-306 (2003).CAS 

    Google Scholar 
    74.Sarafian, T. A. et al. Inhaled marijuana smoke disrupts mitochondrial energetics in pulmonary epithelial cells in vivo. Am. J. Physiol. 290, L1202-1209 (2006).CAS 

    Google Scholar 
    75.Morimoto, S. et al. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells. J. Biol. Chem. 282, 20739–20751 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Shoyama, Y., Sugawa, C., Tanaka, H. & Morimoto, S. Cannabinoids act as necrosis-inducing factors in Cannabis sativa. Plant Signal Behav. 3, 1111–1112 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Fisar, Z., Singh, N. & Hroudova, J. Cannabinoid-induced changes in respiration of brain mitochondria. Toxicol. Lett. 231, 62–71 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Koller, V. J. et al. Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497–C8. Toxicol. Appl. Pharmacol. 277, 164–171 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Koller, V. J. et al. Genotoxic properties of representatives of alkylindazoles and aminoalkyl-indoles which are consumed as synthetic cannabinoids. Food Chem. Toxicol. 80, 130–136 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Singh, N., Hroudova, J. & Fisar, Z. Cannabinoid-induced changes in the activity of electron transport chain complexes of brain mitochondria. J. Mol. Neurosci. 56, 926–931 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 1–195 (2018).
    Google Scholar 
    82.Reece, A. S. & Hulse, G. K. Broad Spectrum epidemiological contribution of cannabis and other substances to the teratological profile of northern New South Wales: geospatial and causal inference analysis. BMC Pharmacol. Toxicol. 21, 75 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Reece, A. S. & Hulse, G. K. Cannabis consumption patterns explain the east-west gradient in Canadian Neural Tube Defect Incidence: An ecological study. Glob. Pediatr. Health 6, 2333 (2019).
    Google Scholar 
    84.Gurney, J., Shaw, C., Stanley, J., Signal, V. & Sarfati, D. Cannabis exposure and risk of testicular cancer: A systematic review and meta-analysis. BMC Cancer 15, 897 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Song, A. et al. Incident testicular cancer in relation to using marijuana and smoking tobacco: A systematic review and meta-analysis of epidemiologic studies. Urol. Oncol. 38(642), e641-642 (2020).
    Google Scholar 
    86.Torchiano M. effzise: Efficient Effect Size Computation. Vol. 2020 (CRAN, 2020). https://CRAN.R-project.org/package=effsize.87.Agence France-Presse in Paris. France to investigate cause of upper limb defects in babies. In The Guardian (The Guardian, London, 2018).88.Robinson M. Babies born with deformed hands spark investigation in Germany. Vol. 2019 (ed. Health, C.) (CNN News, 2019). https://edition.cnn.com/2019/09/16/health/hand-deformities-babies-gelsenkirchen-germany-intl-scli-grm/index.html.89.Robison, L. L. et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring: An epidemiologic investigation implicating marijuana (a report from the Childrens Cancer Study Group). Cancer 63, 1904–1911 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    90.Wen, W. Q. et al. Paternal military service and risk for childhood leukemia in offspring. Am. J. Epidemiol. 151, 231–240 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    91.Society, A.C. Cancer Facts & Figures 2020 Vol. 2020 (American Cancer Society, 2020).
    Google Scholar 
    92.Patsenker, E. & Stickel, F. Cannabinoids in liver diseases. Clin. Liver Dis. 7, 21–25 (2016).Article 

    Google Scholar 
    93.Yang, Y. Y. et al. Effect of chronic CB1 cannabinoid receptor antagonism on livers of rats with biliary cirrhosis. Clin. Sci. 112, 533–542 (2007).CAS 
    Article 

    Google Scholar 
    94.Mukhopadhyay, B. et al. Cannabinoid receptor 1 promotes hepatocellular carcinoma initiation and progression through multiple mechanisms. Hepatology 61, 1615–1626 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Zimmerman, A. M., Zimmerman, S. & Raj, A. Y. Effects of cannabinoids on spermatogensis in mice. In Marijuana and Medicine Vol. 1 (eds Nahas, G. G. et al.) 347–358 (Humana Press, 1999).
    Google Scholar 
    96.Huang, H. F. S., Nahas, G. G. & Hembree, W. C. Effects of marijuana inhalantion on spermatogenesis of the rat. In Marijuana in Medicine Vol. 1 (eds Nahas, G. G. et al.) 359–366 (Human Press, 1999).
    Google Scholar 
    97.Russo, C. et al. Low doses of widely consumed cannabinoids (cannabidiol and cannabidivarin) cause DNA damage and chromosomal aberrations in human-derived cells. Arch. Toxicol. 93, 179–188 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    98.Szutorisz, H. & Hurd, Y. L. High times for cannabis: Epigenetic imprint and its legacy on brain and behavior. Neurosci. Biobehav. Rev. 85, 93–101 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Mon, M. J., Jansing, R. L., Doggett, S., Stein, J. L. & Stein, G. S. Influence of delta9-tetrahydrocannabinol on cell proliferation and macromolecular biosynthesis in human cells. Biochem. Pharmacol. 27, 1759–1765 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Zimmerman, A. M. & Zimmerman, S. Cytogenetic studies of cannabinoid effects. In Genetic and Perinatal Effects of Abused Substances Vol. 1 (eds Braude, M. C. & Zimmerman, A. M.) 95–112 (Academic Press Inc, 1987).
    Google Scholar 
    101.Zimmerman, A. M., Stich, H. & San, R. Nonmutagenic action of cannabinoids in vitro. Pharmacology 16, 333–343 (1978).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Zimmerman, S. & Zimmerman, A. M. Genetic effects of marijuana. Int. J. Addict. 25, 19–33 (1990).PubMed 
    Article 

    Google Scholar 
    103.Nahas, G. G., Morishima, A. & Desoize, B. Effects of cannabinoids on macromolecular synthesis and replication of cultured lymphocytes. Fed. Proc. 36, 1748–1752 (1977).CAS 
    PubMed 

    Google Scholar 
    104.Blevins, R. D. & Regan, J. D. delta-9-Tetrahydrocannabinol: Effect on macromolecular synthesis in human and other mammalian cells. Arch. Toxicol. 35, 127–135 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Gadadhar, S. et al. Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility. Science 371, 4916 (2021).Article 
    CAS 

    Google Scholar 
    106.Alberts, B. et al. (eds) Molecular Biology of the Cell, 1601 (Garland Science, 2008).
    Google Scholar 
    107.Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Kloosterman, W. P. Genetics: Making heads or tails of shattered chromosomes. Science 348, 1205–1206 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    109.de Pagter, M. S. et al. Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am. J. Hum. Genet. 96, 651–656 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    110.Kloosterman, W. P. et al. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum. Mol. Genet. 20, 1916–1924 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    111.Kuznetsova, A. Y. et al. Chromosomal instability, tolerance of mitotic errors and multidrug resistance are promoted by tetraploidization in human cells. Cell Cycle 14, 2810–2820 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    112.Hatch, E. M. & Hetzer, M. W. Linking micronuclei to chromosome fragmentation. Cell 161, 1502–1504 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    113.Lusk, C. P. & King, M. C. Rotten to the core: Why micronuclei rupture. Dev. Cell 47, 265–266 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    114.Terzoudi, G. I. et al. Stress induced by premature chromatin condensation triggers chromosome shattering and chromothripsis at DNA sites still replicating in micronuclei or multinucleate cells when primary nuclei enter mitosis. Mutat. Res. Genet. Toxicol. Environ. Mutagen 793, 185–198 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Norppa, H. & Falck, G. C. What do human micronuclei contain?. Mutagenesis 18, 221–233 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Knouse, K. A. & Amon, A. Cell biology: The micronucleus gets its big break. Nature 522, 162–163 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Waldron, D. Genome stability: Chromothripsis and micronucleus formation. Nat. Rev. Genet. 16, 376–377 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    118.Fenech, M. et al. Micronuclei as biomarkers of DNA damage, aneuploidy, inducers of chromosomal hypermutation and as sources of pro-inflammatory DNA in humans. Mutat Res 786, 108342 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    119.Beck, D., Ben Maamar, M. & Skinner, M. K. Integration of sperm ncRNA-directed DNA methylation and DNA methylation-directed histone retention in epigenetic transgenerational inheritance. Epigenet. Chromatin 14, 1–14 (2021).Article 
    CAS 

    Google Scholar 
    120.Yang, Y. & Li, G. Post-translational modifications of PRC2: signals directing its activity. Epigenet. Chromatin 13, 47 (2020).CAS 
    Article 

    Google Scholar 
    121.Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26(11), 1742–1753 (2020).122.Reece A. S. & Hulse G. K. Cannabis and pregnancy don’t mix. Mo. Med. 117(6), 530–531 (2020).123.Reece, A. S. & Hulse, G. K. Impact of lifetime opioid exposure on arterial stiffness and vascular age: Cross-sectional and longitudinal studies in men and women. BMJ Open 4, 1–19 (2014).Article 

    Google Scholar 
    124.Hill, A. B. The environment and disease: Association or causation?. Proc. R. Soc. Med. 58, 295–300 (1965).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    125.Robins, J. M., Hernán, M. Á. & Brumback, B. Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550–560 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Raad, H., Cornelius, V., Chan, S., Williamson, E. & Cro, S. An evaluation of inverse probability weighting using the propensity score for baseline covariate adjustment in smaller population randomised controlled trials with a continuous outcome. BMC Med. Res. Methodol. 20, 70 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    127.Seaman, S. R. & White, I. R. Review of inverse probability weighting for dealing with missing data. Stat. Methods Med. Res. 22, 278–295 (2013).MathSciNet 
    PubMed 
    Article 

    Google Scholar 
    128.Reece, A. S. & Hulse, G. K. Effect of cannabis legalization on US autism incidence and medium term projections. Clin. Pediatr. Open Access 4, 1–17 (2019).
    Google Scholar 
    129.Reece, A. S. & Hulse, G. K. Impacts of cannabinoid epigenetics on human development: reflections on Murphy et al. “cannabinoid exposure and altered DNA methylation in rat and human sperm” epigenetics. Epigenetics 14, 1041–1056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Reece, A. S. & Hulse, G. K. Contemporary epidemiology of rising atrial septal defect trends across USA 1991–2016: A combined ecological geospatiotemporal and causal inferential study. BMC Pediatr. 20, 539 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    131.Reece, A. S., Norman, A. & Hulse, G. K. Cannabis exposure as an interactive cardiovascular risk factor and accelerant of organismal ageing: A longitudinal study. BMJ Open 6, e011891 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    132.Corsi, D. J. et al. Maternal cannabis use in pregnancy and child neurodevelopmental outcomes. Nat. Med. 26, 1536–1540 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Corsi, D. J. The potential association between prenatal cannabis use and congenital anomalies. J. Addict. Med. 14, 451–453 (2020).PubMed 
    Article 

    Google Scholar 
    134.Reece, A. S. & Hulse, G. K. Epidemiological associations of various substances and multiple cannabinoids with autism in USA. Clin. Pediatr. Open Access 4, 1–20 (2019).
    Google Scholar 
    135.Brents L. Correlates and consequences of Prenatal Cannabis Exposure (PCE): Identifying and Characterizing Vulnerable Maternal Populations and Determining Outcomes in Exposed Offspring in Handbook of Cannabis and Related Pathologies: Biology, Pharmacology, Diagnosis and Treatment, Vol. 1 (ed. Preedy V.R.) 160–170 (Academic Press, 2017).136.Smith, A. M., Longo, C. A., Fried, P. A., Hogan, M. J. & Cameron, I. Effects of marijuana on visuospatial working memory: An fMRI study in young adults. Psychopharmacology 210, 429–438 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    137.Smith, A. M. et al. Prenatal marijuana exposure impacts executive functioning into young adulthood: An fMRI study. Neurotoxicol. Teratol. 58, 53–59 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    138.Fine, J. D. et al. Association of prenatal cannabis exposure with psychosis proneness among children in the adolescent brain cognitive development (ABCD) study. JAMA Psychiat. 76, 762–764 (2019).Article 

    Google Scholar 
    139.Paul, S. E. et al. Associations between prenatal cannabis exposure and childhood outcomes: Results from the ABCD study. JAMA Psychiat. 78, 1–64 (2020).
    Google Scholar 
    140.Women and Newborn Health Service, Department of Health & Government of Western Australia. Western Australian Register of Developmental Anomalies 1980–2014. Vol. 1 (ed. Western Australia Health) 28 (Western Australia Health, 2015).141.Walker, K., Herman, M. & Eberwein, K. tidycensus: Load US Census Boundary and Attribute Data as ‘tidyverse’ and ‘sf’-Ready Data Frames. Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2020).142.Wikipedia. Legality of Cannabis by U.S. Juridicition. Vol. 2020 (Wikipedia, 2020). https://en.wikipedia.org/wiki/Legality_of_cannabis_by_U.S._jurisdiction.143.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686–1691 (2019).ADS 
    Article 

    Google Scholar 
    144.Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix. Vol. 2020 Version 0.84 (CRAN, 2017). https://github.com/taiyun/corrplot.145.Wright, K. corrgram: Plot a Correlogram. In CRAN, Vol. 2020 (ed. Network, C.C.R.A.) (CRAN, 2018). https://CRAN.R-project.org/package=corrgram.146.Kliber, C. & Zeileis, A. Applied Econometrics with R (Springer-Verlag, New York, 2008). https://CRAN.R-project.org/package=AER.147.Lumley, T. Complex Surveys: A Guide to Analysis Using R (Wiley, 2010).Book 

    Google Scholar 
    148.Revelle, W. psych: Procedures for Psychological, Psychometric, and Personality Research (Northwestern University, 2020).
    Google Scholar 
    149.Wal, W. & Geskus, R. ipw: An R package for inverse probability weighting. J. Stat. Softw. 43, 13 (2011).Article 

    Google Scholar  More