More stories

  • in

    Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico

    1.Froese, R. & Pauly, D. FishBase. Species 2000 www.catalogueoflife.org/annual-checklist/2019 (2019).2.Vanhove, M. P. M. et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 5, 13669. https://doi.org/10.1038/srep13669 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Canonico, G. C., Arthington, A., McCrary, J. K. & Thieme, M. L. The effects of introduced tilapias on native biodiversity. Aquat. Conserv. Mar. Freshw. Ecosyst. 15, 463–483. https://doi.org/10.1002/aqc.699 (2005).Article 

    Google Scholar 
    4.Cassemiro, F. A. S., Bailly, D., Júnio da Graça, W. & Agostinho, A. A. The invasive potential of tilapias (Osteichthyes: Cichlidae) in the Americas. Hydrobiologia 817, 133–154. https://doi.org/10.1007/s10750-017-3471-1 (2018).Article 

    Google Scholar 
    5.Le-Roux, L. & Avenant-Oldewage, A. Checklist of the fish parasitic genus Cichlidogyrus (Monogenea), including its cosmopolitan distribution and host species. Afr. J. Aquat. Sci. 35, 21–36. https://doi.org/10.2989/16085914.2010.466632 (2010).Article 

    Google Scholar 
    6.Zhang, S. et al. Monogenean fauna of alien tilapias (Cichlidae) in south China. Parasite 26, 4. https://doi.org/10.1051/parasite/2019003 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.García-Vásquez, A. et al. Gyrodactylids (Gyrodactylidae, Monogenea) infecting Oreochromis niloticus niloticus (L.) and O. mossambicus (Peters) (Cichlidae): A pan-global survey. Acta Parasitol. 55, 215–229. https://doi.org/10.2478/s11686-010-0042-2 (2010).Article 

    Google Scholar 
    8.Salgado-Maldonado, G. & Rubio-Godoy, M. Helmintos parásitos de peces de agua dulce introducidos (eds. Mendoza, R. & Koleff, P.) 269–285 (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, 2014).9.Jiménez-García, M. I., Vidal-Martínez, V. M. & López-Jiménez, S. Monogeneans in introduced and native cichlids in México: Evidence for transfer. J. Parasitol. 87, 907–909. https://doi.org/10.1645/0022-3395(2001)087[0907:MIIANC]2.0.CO;2 (2001).Article 
    PubMed 

    Google Scholar 
    10.Salgado-Maldonado, G., Aguilar-Aguilar, R., Cabañas-Carranza, G., Soto-Galera, E. & Mendoza-Palmero, C. Helminth parasites in freshwater fish from the Papaloapan river basin, Mexico. Parasitol. Res. 96, 69–89. https://doi.org/10.1007/s00436-005-1315-9 (2005).Article 
    PubMed 

    Google Scholar 
    11.Soler-Jiménez, L. C., Paredes-Trujillo, A. I. & Vidal-Martínez, V. M. Helminth parasites of finfish commercial aquaculture in Latin America. J. Helminthol. 91, 110–136. https://doi.org/10.1017/S0022149X16000833 (2017).Article 
    PubMed 

    Google Scholar 
    12.Mendoza-Garfias, B., García-Prieto, L. & Pérez-Ponce de León, G. Checklist of the Monogenea (Platyhelminthes) parasitic in Mexican aquatic vertebrates. Zoosystema 39, 501–598. https://doi.org/10.5252/z2017n4a5 (2017).Article 

    Google Scholar 
    13.Ek-Huchim, J. P., Jiménez-García, I., Pérez-Vega, J. A. & Rodríguez-Canul, R. Non-lethal detection of DNA from Cichlidogyrus spp. (Monogenea, Ancyrocephalinae) in gill mucus of the tilapia Oreochromis niloticus. Dis. Aquat. Org. 98, 155–162. https://doi.org/10.3354/dao02435 (2012).CAS 
    Article 

    Google Scholar 
    14.Paredes-Trujillo, A., Velázquez-Abunader, I., Torres-Irineo, E., Romero, D. & Vidal-Martínez, V. M. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasites Vectors 9, 2–16. https://doi.org/10.1186/s13071-016-1332-9 (2016).CAS 
    Article 

    Google Scholar 
    15.Grano-Maldonado, M. I., Rodríguez-Santiago, M. A., García-Vargas, F., Nieves-Soto, M. & Soares, F. An emerging infection caused by Gyrodactylus cichlidarum Paperna, 1968 (Monogenea: Gyrodactylidae) associated with massive mortality on farmed tilapia Oreochromis niloticus (L.) on the Mexican Pacific Coast. Lat. Am. J. Aquat. Res. 46, 961–968. https://doi.org/10.3856/vol46-issue5-fulltext-9 (2018).Article 

    Google Scholar 
    16.Morales-Serna, F. N., Medina-Guerrero, R. M., Pimentel-Acosta, C., Ramírez-Tirado, J. H. & Fajer-Ávila, E. J. Parasite infections in farmed Nile tilapia Oreochromis niloticus in Sinaloa, Mexico. Comp. Parasitol. 85, 212–216. https://doi.org/10.1654/1525-2647-85.2.212 (2018).Article 

    Google Scholar 
    17.Mendoza-Franco, E. F., Caspeta-Mandujano, J. M. & Tapia-Osorio, M. Ecto and endo-parasitic monogeneans (Platyhelminthes) on cultured freshwater exotic fish species in the state of Morelos, South-Central Mexico. ZooKeys 776, 1–8. https://doi.org/10.3897/zookeys.776.26149 (2018).Article 

    Google Scholar 
    18.Zahradníčková, P., Barson, M., Luus-Powell, W. L. & Přikrylová, I. Species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from Cichlids from Zambezi and Pimpopo river basins in Zimbawe and South Africa: Evidence for unexplored species richness. Syst. Parasitol. 93, 679–700. https://doi.org/10.1007/s11230-016-9652-x (2016).Article 
    PubMed 

    Google Scholar 
    19.García-Vásquez, A., Razo-Mendivil, U. & Rubio-Godoy, M. Triple trouble? Invasive poeciliid fishes carry the introduced tilapia pathogen Gyrodactylus cichlidarum in the Mexican highlands. Vet. Parasitol. 235, 37–40. https://doi.org/10.1016/j.vetpar.2017.01.014 (2017).Article 
    PubMed 

    Google Scholar 
    20.Harris, P. D., Shinn, A. P., Cable, J., Bakke, T. A. & Bron, J. GyroDb: Gyrodactylid monogeneans on the web. Trends Parasitol. 24, 109–111. https://doi.org/10.1016/j.pt.2007.12.004 (2008).Article 
    PubMed 

    Google Scholar 
    21.Shinn, A. P. et al. GyroDb World Wide Web electronic publication. http://www.gyrodb.net (2011).22.García-Vásquez, A., Hansen, H. & Shinn, A. P. A revised description of Gyrodactylus cichlidarum Paperna, 1968 (Gyrodactylidae) from the Nile tilapia, Oreochromis niloticus niloticus (Cichlidae), and its synonymy with G. niloticus Cone, Arthur et Bondad-Reantaso, 1995. Folia Parasitol. 54, 129–140. https://doi.org/10.14411/fp.2007.018 (2007).Article 

    Google Scholar 
    23.Paperna, I. Monogenetic trematodes collected from freshwater fish in Ghana. Second Rep. Bamidgeh 20, 88–90 (1968).
    Google Scholar 
    24.García-Vásquez, A., Hansen, H., Christison, K. W., Bron, J. E. & Shinn, A. P. Description of three new species of Gyrodactylus von Nordmann, 1832 (Monogenea) parasitising Oreochromis niloticus niloticus (L.) and O. mossambicus (Peters) (Cichlidae). Acta Parasitol. 56, 20–33. https://doi.org/10.2478/s11686-011-0005-2 (2011).Article 

    Google Scholar 
    25.Přikrylová, I., Matějusová, I., Musilová, N. & Gelnar, M. Gyrodactylus species (Monogenea: Gyrodactylidae) on the cichlid fishes of Senegal, with the description of Gyrodactylus ergensi n. sp. from Mango tilapia, Sarotherodon galilaeus L. (Teleostei: Cichilidae). Parasitol. Res. 106, 1–6. https://doi.org/10.1007/s00436-009-1600-0 (2009).Article 
    PubMed 

    Google Scholar 
    26.Přikrylová, I., Vanhove, M. P. M., Janssens, S. B., Billeter, P. A. & Huyse, T. Tiny worms from a mighty continent: High diversity and new phylogenetic lineages of African monogeneans. Mol. Phylogenet. Evol. 67, 43–52. https://doi.org/10.1016/j.ympev.2012.12.017 (2012).Article 
    PubMed 

    Google Scholar 
    27.Šimková, A. Transmission of parasites from introduced tilapias: a new threat to endemic Malagasy ichthyofauna. Biol. Invasions 21, 803–819. https://doi.org/10.1007/s10530-018-1859-0 (2019).Article 

    Google Scholar 
    28.Ek-Huchim, J. P., Jiménez-García, I. & Rodríguez-Canul, R. DNA detection of Gyrodactylus spp. in skin mucus of Nile tilapia Orechromis niloticus. Vet. Parasitol. 272, 75–78. https://doi.org/10.1016/j.vetpar.2019.07.004 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Rubio-Godoy, M., Paladini, G., Freeman, M. A., García-Vásquez, A. & Shinn, A. P. Morphological and molecular characterisation of Gyrodactylus salmonis (Platyhelminthes, Monogenea) isolates collected in Mexico from rainbow trout (Oncorhynchus mykiss Walbaum). Vet. Parasitol. 186, 289–300. https://doi.org/10.1016/j.vetpar.2011.11.005 (2012).Article 
    PubMed 

    Google Scholar 
    30.Garduño-Lugo, M., Granados-Alvarez, I., Olvera-Novoa, M. A. & Muñóz-Cordoba, G. Comparison of growth, fillet yield and proximate composition between Stirling Nile tilapia (wild type) (Oreochromis niloticus, Linnaeus) and red hybrid tilapia (Florida red tilapia x Stirling red O. niloticus) males. Aquac. Res. 34, 1023–1028. https://doi.org/10.1046/j.1365-2109.2003.00904.x (2003).Article 

    Google Scholar 
    31.Mendoza-Palmero, C., Blasco-Costa, I. & Pérez-Ponce de León, G. Morphological and molecular characterisation of a new species of Gyrodactylus von Nordmann, 1832 (Monogenoidea: Gyrodactylidae) of cichlid fishes (Perciformes) from Mexico. Parasitol. Int. 70, 102–111. https://doi.org/10.1016/j.parint.2019.02.009 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    32.Rubio-Godoy, M., Paladini, G., García-Vásquez, A. & Shinn, A. P. Gyrodactylus jarocho sp. nov. and Gyrodactylus xalapensis sp. nov. (Platyhelminthes: Monogenea) from Mexican poeciliids (Teleostei: Cyprinodontiformes), with comments on the known gyrodactylid fauna infecting poeciliid fish. Zootaxa 2509, 1–29. https://doi.org/10.11646/zootaxa.2509.1.1 (2010).Article 

    Google Scholar 
    33.García-Vásquez, A., Razo-Mendivil, U. & Rubio-Godoy, M. Morphological and molecular description of eight new species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) from poeciliid fishes, collected in their natural distribution range in the Gulf of Mexico slope, Mexico. Parasitol. Res. 114, 3337–3355. https://doi.org/10.1007/s00436-015-4559-z (2015).Article 
    PubMed 

    Google Scholar 
    34.Razo-Mendivil, U., García-Vásquez, A. & Rubio-Godoy, M. Spot the difference: Two cryptic species of Gyrodactylus von Nordmann, 1832 (Platyhelminthes: Monogenea) infecting Astyanax aeneus (Actinopterygii, Characidae) in Mexico. Parasitol. Int. 65, 389–400. https://doi.org/10.1016/j.parint.2016.05.009 (2016).Article 
    PubMed 

    Google Scholar 
    35.Rubio-Godoy, M. et al. To each his own: no evidence of gyrodactylid parasite host switches from invasive poeciliid fishes to Goodea atripinnis Jordan (Cyprinodontiformes: Goodeidae), the most dominant endemic freshwater goodeid fish in the Mexican Highlands. Parasites Vectors 9, 604. https://doi.org/10.1186/s13071-016-1861-2 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.García-Vásquez, A., Pinacho-Pinacho, C. D., Martínez-Ramírez, E. & Rubio-Godoy, M. Two new species of Gyrodactylus von Nordmann, 1832 from Profundulus oaxacae (Pisces: Profundulidae) from Oaxaca, Mexico, studied by morphology and molecular analyses. Parasitol. Int. 67, 517–527. https://doi.org/10.1016/j.parint.2018.03.003 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.García-Vásquez, A., Guzmán-Valdivieso, I., Razo-Mendivil, U. & Rubio-Godoy, M. Three new species of Gyrodactylus von Nordmann, 1832 described from Goodea atripinnis (Pisces: Goodeidae), an endemic freshwater fish from the central highlands of Mexico. Parasitol. Res. 117, 139–150. https://doi.org/10.1007/s00436-017-5680-y (2018).Article 
    PubMed 

    Google Scholar 
    38.García-Vásquez, A., Pinacho-Pinacho, C. P., Guzmán-Valdivieso, I., Salgado-Maldonado, G. & Rubio-Godoy, M. New species of Gyrodactylus von Nordmann, 1832 from native fish from Chiapas, Mexico, studied by morphology and molecular analyses. Acta Parasitol. 64, 551–565. https://doi.org/10.2478/s11686-019-00088-y (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    39.Pinacho-Pinacho, C. D. et al. Species delimitation of Gyrodactylus (Monogenea: Gyrodactylidae) infecting the southernmost cyprinids (Actinopterygii: Cyprinidae) in the New World. Parasitol. Res. 120, 831–848. https://doi.org/10.1007/s00436-020-06987-8 (2021).Article 
    PubMed 

    Google Scholar 
    40.Araujo, S. B. L. et al. Understanding host-switching by ecological fitting. PLoS ONE 10, e0139225. https://doi.org/10.1371/journal.pone.0139225 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Friedman, M. et al. Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting. Proc R Soc B. 280, 20131733. https://doi.org/10.1098/rspb.2013.1733 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Zambrano, L., Martínez-Meyer, E., Menezes, N. & Peterson, A. T. Invasive potential of common carp (Cyprinus carpio) and Nile tilapia (Oreochromis niloticus) in American freshwater systems. Can. J. Fish. Aquat. Sci. 63, 1903–1910. https://doi.org/10.1139/F06-088 (2006).Article 

    Google Scholar 
    43.Bakke, T. A., Cable, J. & Harris, P. D. The biology of gyrodactylid monogeneans: The “Russian-Doll Killers”. Adv. Parasitol. 64, 161–460. https://doi.org/10.1016/s0065-308x(06)64003-7 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Tripathi, A. The invasive potential of parasitic monogenoids (Platyhelminthes) via the aquarium fish trade: an appraisal with special reference to India. Rev. Aquacult. 6, 147–161. https://doi.org/10.1111/raq.12035 (2014).Article 

    Google Scholar 
    45.Huyse, T., Vanhove, M. P. M., Mombaerts, M., Volckaert, F. A. M. & Verreycken, H. Parasite introduction with an invasive goby in Belgium: Double trouble?. Parasitol. Res. 114, 2789–2793. https://doi.org/10.1007/s00436-015-4544-6 (2015).Article 
    PubMed 

    Google Scholar 
    46.Braga, M. P., Razzolini, E. & Boeger, W. A. Drivers of parasite sharing among Neotropical freshwater fishes. J. Anim. Ecol. 84, 487–497. https://doi.org/10.1111/1365-2656.12298 (2015).Article 
    PubMed 

    Google Scholar 
    47.Jovani, R. & Tella, J. L. Parasite prevalence and sample size: Misconceptions and solutions. Trends Parasitol. 22, 214–218. https://doi.org/10.1016/j.pt.2006.02.011 (2006).Article 
    PubMed 

    Google Scholar 
    48.Harris, P. D. & Cable, J. Gyrodactylus poeciliae n. sp. and G. milleri n. sp. (Monogenea: Gyrodactylidae) from Poecilia caucana (Steindachner) in Venezuela. Syst. Parasitol. 47, 79–85. https://doi.org/10.1023/A:1006413804061 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Bowles, J. & McManus, D. P. Rapid discrimination of Echinococcus species and strains using a polymerase chain reaction-based RLFP method. Mol. Bioch. Parasitol. 57, 231–239. https://doi.org/10.1016/0166-6851(93)90199-8 (1993).CAS 
    Article 

    Google Scholar 
    50.Matejusová, I., Gelnar, M., McBeath, A. J. A., Collins, C. M. & Cunningham, C. O. Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). Int. J. Parasitol. 31, 738–745. https://doi.org/10.1016/S0020-7519(01)00176-X (2001).Article 
    PubMed 

    Google Scholar 
    51.Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Stamatakis, A. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690. https://doi.org/10.1093/bioinformatics/btl446 (2006).CAS 
    Article 

    Google Scholar 
    54.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Rambaut, A. FigTree v1.3.1 Institute of Evolutionary Biology. University of Edinburgh. http://tree.bio.ed.ac.uk/software/figtree/ (2006).56.Quantum GIS Development Team. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project http://qgis.osgeo.org (2019).57.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2017). More

  • in

    Integrate conservation reserves for China’s homeless elephants

    CORRESPONDENCE
    06 July 2021

    Integrate conservation reserves for China’s homeless elephants

    Nian Yang

    0
    ,

    Wenwen Li

    1
    ,

    Peng Liu

    2
    &

    Li Zhang

    3

    Nian Yang

    Beijing Normal University, Beijing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Wenwen Li

    First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Peng Liu

    The University of Hong Kong, Hong Kong, China

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Li Zhang

    Beijing Normal University, Beijing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Fifteen Asian elephants caught the world’s attention as they trekked northwards for about 500 kilometres from Xishuangbanna prefecture in China’s southwestern province of Yunnan (see go.nature.com/3wofhfc). Their epic journey is widely considered to be a quest for better resources — almost 40% of the animals’ habitat in Xishuangbanna has been lost to commercial development over the past 20 years. We call for an integrated system of national park reserves for China’s elephants. This should be protected and take into account their foraging habits, migration patterns and other phased activities.Conservation efforts have nearly doubled China’s Asian elephant population to about 300 individuals over 40 years (L. Zhang et al. PLoS ONE 10, e0124834; 2015). However, the destruction of habitat by extensive planting of cash crops such as rubber and tea has put them in conflict with humans. The government paid out about 22 million yuan (US$3.25 million) in compensation last year alone (unpublished data).Reconnecting, restoring and expanding existing habitats would cut the cost of such conflicts and boost profits from ecosystem services (see, for example, P. Liu et al. Ecosyst. Serv. 38, 100949; 2019).

    Nature 595, 172 (2021)
    doi: https://doi.org/10.1038/d41586-021-01820-3

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Animal behaviour

    Human behaviour

    Conservation biology

    Latest on:

    Animal behaviour

    Unravelling the enigma of bird magnetoreception
    News & Views 23 JUN 21

    A grey whale makes an epic swim into the record books
    Research Highlight 08 JUN 21

    From the archive
    News & Views 08 JUN 21

    Human behaviour

    Everyone should decide how their digital data are used — not just tech companies
    Comment 01 JUL 21

    Human social sensing is an untapped resource for computational social science
    Perspective 30 JUN 21

    Academic bullying: mediatiors hear both sides
    Correspondence 01 JUN 21

    Jobs

    Radiation Oncology Faculty Members

    New York University (NYU)

    Radiation Oncology Physician-Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Radiation Oncology Faulty Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Director of Manufacturing

    Encodia, Inc.

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    UK biodiversity: close gap between reality and rhetoric

    CORRESPONDENCE
    06 July 2021

    UK biodiversity: close gap between reality and rhetoric

    Sophus O. S. E. zu Ermgassen

    0
    ,

    Joseph W. Bull

    1
    &

    Ben Groom

    2

    Sophus O. S. E. zu Ermgassen

    Durrell Institute of Conservation and Ecology, Canterbury, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Joseph W. Bull

    Durrell Institute of Conservation and Ecology, Canterbury, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Ben Groom

    University of Exeter Business School, Exeter, UK.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    In a bid to position the United Kingdom as a global environmental leader before this year’s United Nations biodiversity conference (COP15) and climate-change conference (COP26), the UK government has announced biodiversity initiatives to halt species declines by 2030 and to protect 30% of its land area (see, for example, go.nature.com/3x4yk1k). These plans are at odds with its current spending on conservation.The government’s conservation funding fell by 42% in real terms between 2008 and 2018 to just 0.02% of gross domestic product (GDP; see go.nature.com/2udg3od). It missed 14 of its 20 international biodiversity commitments (Aichi targets) in 2020 (see go.nature.com/3dor8ra). This year it commissioned the Dasgupta Review, which calls for economic changes to stop biodiversity loss (see go.nature.com/3jozldl).However, even taking into account the May announcement of a 47% increase in Natural England’s funding (see go.nature.com/2t96qjn), the country still spends less than other nations with comparable GDP (see A. Seidl et al. Nature Ecol. Evol. 5, 530–539; 2021 and go.nature.com/2udg3od). The United Kingdom needs to reconsider its public expenditure priorities if it is to close the gap between rhetoric and reality.

    Nature 595, 172 (2021)
    doi: https://doi.org/10.1038/d41586-021-01819-w

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Government

    Funding

    Latest on:

    Biodiversity

    Indigenous lands: make Brazil stop mining to secure US deal
    Correspondence 08 JUN 21

    French vote for river barriers defies biodiversity strategy
    Correspondence 01 JUN 21

    Trade resolution further threatens Brazil’s amphibians
    Correspondence 25 MAY 21

    Government

    Cameroon: doubt could mean vaccine doses expire
    Correspondence 29 JUN 21

    It is dangerous to normalize solar geoengineering research
    Correspondence 29 JUN 21

    China’s economic approach to protecting its ecology
    Spotlight 29 JUN 21

    Funding

    Biologist to lead Europe’s premier research funder
    News 06 JUL 21

    It is dangerous to normalize solar geoengineering research
    Correspondence 29 JUN 21

    How science-funding giant Wellcome is tackling racism
    World View 16 JUN 21

    Jobs

    Radiation Oncology Faculty Members

    New York University (NYU)

    Radiation Oncology Physician-Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Radiation Oncology Faulty Scientist, Tenure/Tenure-Track at all Academic Ranks

    New York University (NYU)

    Director of Manufacturing

    Encodia, Inc.

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Tropical cyclones cumulatively control regional carbon fluxes in Everglades mangrove wetlands (Florida, USA)

    1.Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193. https://doi.org/10.1890/10-1510.1 (2011).Article 

    Google Scholar 
    2.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Chang. 26, 152–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002 (2014).Article 

    Google Scholar 
    3.Lovelock, C. E. & Duarte, C. M. Dimensions of blue carbon and emerging perspectives. Biol. Lett. 15. https://doi.org/10.1098/rsbl.2018.0781 (2019).4.Emanuel, K. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688. https://doi.org/10.1038/nature03906 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Lovelock, C. E. & Reef, R. Variable impacts of climate change on blue carbon. One Earth 3, 195–211. https://doi.org/10.1016/j.oneear.2020.07.010 (2020).Article 

    Google Scholar 
    6.Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    7.Alongi, D. M. Carbon cycling in the world’s mangrove ecosystems revisited: Significance of non-steady state diagenesis and subsurface linkages between the forest floor and the coastal ocean. Forests 11, 1–17. https://doi.org/10.3390/f11090977 (2020).Article 

    Google Scholar 
    8.Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297. https://doi.org/10.1038/ngeo1123 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Alongi, D. M. Global significance of mangrove blue carbon in climate change mitigation. Science 2, 67 (2020).Article 

    Google Scholar 
    10.Taillardat, P., Friess, D. A. & Lupascu, M. Mangrove blue carbon strategies for climate change mitigation are most effective at the national scale. Biol. Lett. 14. https://doi.org/10.1098/rsbl.2018.0251 (2018).11.Rivera-Monroy, V. H. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective: Structure, Function, and Services (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 347–381 (Springer, 2017).12.Yao, Q., Liu, K.-B., Platt, W. J. & Rivera-Monroy, V. H. Palynological reconstruction of environmental changes in coastal wetlands of the Florida Everglades since the mid-Holocene. Quatern. Res. 83, 449–458. https://doi.org/10.1016/j.yqres.2015.03.005 (2015).ADS 
    Article 

    Google Scholar 
    13.Twilley, R. R., Rivera-Monroy, V. H., Rovai, A. S., Castañeda-Moya, E. & Davis, S. in Coastal Wetlands (eds. Perillo, G. M. E., Wolanski, E., Cahoon, D. R. & Hopkinson, C. S.) 717–785 (Elsevier, 2019).14.Woodroffe, C., Robertson, A. & Alongi, D. Mangrove sediments and geomorphology. Trop. Mangrove Ecosyst. Coastal Estuarine Stud. 41 (1992).15.Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 8, 534–538. https://doi.org/10.1038/s41558-018-0162-5 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Twilley, R. R. & Rivera-Monroy, V. H. Developing performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. J. Coastal Res. 79–93 (2005).17.Bunting, P. et al. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 10, 1669 (2018).ADS 
    Article 

    Google Scholar 
    18.Giri, C. et al. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154–159 (2011).Article 

    Google Scholar 
    19.Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 8, 240 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Simard, M. et al. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 12, 40–45. https://doi.org/10.1038/s41561-018-0279-1 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Rovai, A. S. et al. Macroecological patterns of forest structure and allometric scaling in mangrove forests. Glob. Ecol. Biogeogr. 30, 1000–1013. https://doi.org/10.1111/geb.13268 (2021).Article 

    Google Scholar 
    22.Bouillon, S. et al. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochem. Cycles 22 (2008).23.Breithaupt, J. L., Smoak, J. M., Smith III, T. J., Sanders, C. J. & Hoare, A. Organic carbon burial rates in mangrove sediments: Strengthening the global budget. Global Biogeochem. Cycles 26. https://doi.org/10.1029/2012gb004375 (2012).24.Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I. & Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 3, 961–968. https://doi.org/10.1038/nclimate1970 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:Teotwa]2.0.Co;2 (2001).Article 

    Google Scholar 
    26.Lugo, A. E. & Snedaker, S. C. The ecology of mangroves. Annu. Rev. Ecol. Syst. 5, 39–64 (1974).Article 

    Google Scholar 
    27.Goldberg, L., Lagomasino, D., Thomas, N. & Fatoyinbo, T. Global declines in human-driven mangrove loss. Glob. Change Biol. 26, 5844–5855. https://doi.org/10.1111/gcb.15275 (2020).ADS 
    Article 

    Google Scholar 
    28.Hamilton, S. E. & Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 25, 729–738. https://doi.org/10.1111/geb.12449 (2016).Article 

    Google Scholar 
    29.Kristensen, E. et al. in Mangrove Ecosystems: A Global Biogeographic Perspective (eds. Rivera-Monroy, V.H., Lee, S.Y., Kristensen, E. & Twilley, R.R.) 163–209 (Springer, 2017).30.Friess, D. A. JG Watson, Inundation classes, and their influence on paradigms in mangrove forest ecology. Wetlands 37, 603–613. https://doi.org/10.1007/s13157-016-0747-6 (2017).Article 

    Google Scholar 
    31.Krauss, K. W., Doyle, T. W., Twilley, R. R., Rivera-Monroy, V. H. & Sullivan, J. K. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569, 311–324. https://doi.org/10.1007/s10750-006-0139-7 (2006).CAS 
    Article 

    Google Scholar 
    32.Zhao, X. C. et al. Modeling soil porewater salinity in mangrove forests (Everglades, Florida, USA) impacted by hydrological restoration and a warming climate. Ecol. Model. 436. https://doi.org/10.1016/j.ecolmodel.2020.109292 (2020).33.Sippo, J. Z. et al. Carbon outwelling across the shelf following a massive mangrove dieback in Australia: Insights from radium isotopes. Geochim. Cosmochim. Acta 253, 142–158. https://doi.org/10.1016/j.gca.2019.03.003 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Call, M. et al. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek. Geochim. Cosmochim. Acta 150, 211–225. https://doi.org/10.1016/j.gca.2014.11.023 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Chen, X. et al. Submarine groundwater discharge-derived carbon fluxes in mangroves: An important component of blue carbon budgets?. J. Geophys. Res. Oceans 123, 6962–6979. https://doi.org/10.1029/2018JC014448 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Maher, D. T., Santos, I. R., Golsby-Smith, L., Gleeson, J. & Eyeare, B. D. Groundwater-derived dissolved inorganic and organic carbon exports from a mangrove tidal creek: The missing mangrove carbon sink?. Limnol. Oceanogr. 58, 475–488 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Sadat-Noori, M., Santos, I. R., Tait, D. R., Reading, M. J. & Sanders, C. J. High porewater exchange in a mangrove-dominated estuary revealed from short-lived radium isotopes. J. Hydrol. 553, 188–198. https://doi.org/10.1016/j.jhydrol.2017.07.058 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Saderne, V. et al. Role of carbonate burial in blue carbon budgets. Nat. Commun. 10. https://doi.org/10.1038/s41467-019-08842-6 (2019).39.Santos, I. R., Maher, D. T., Larkin, R., Webb, J. R. & Sanders, C. J. Carbon outwelling and outgassing vs. burial in an estuarine tidal creek surrounded by mangrove and saltmarsh wetlands. Limnol. Oceanogr. 64, 996–1013. https://doi.org/10.1002/lno.11090 (2019).40.Sippo, J. Z. et al. Mangrove outwelling is a significant source of oceanic exchangeable organic carbon. Limnol. Oceanogr. Lett. 2, 1–8. https://doi.org/10.1002/lol2.10031 (2017).Article 

    Google Scholar 
    41.Adame, M. F. et al. Future carbon emissions from global mangrove forest loss. BioRxiv. 1–22. https://doi.org/10.1101/2020.08.27.271189 (2020).42.Volta, C. et al. Seasonal variations in dissolved carbon inventory and fluxes in a mangrove-dominated estuary. Global Biogeochem. Cycles 34. https://doi.org/10.1029/2019GB006515 (2020).43.Barr, J. G. et al. Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park. J. Geophys. Res. Biogeosci. 115. https://doi.org/10.1029/2009jg001186 (2010).44.Barr, J. G., Engel, V., Smith, T. J. & Fuentes, J. D. Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agric. For. Meteorol. 153, 54–66. https://doi.org/10.1016/j.agrformet.2011.07.022 (2012).ADS 
    Article 

    Google Scholar 
    45.Chen, H., Lu, W., Yan, G., Yang, S. & Lin, G. Typhoons exert significant but differential impacts on net ecosystem carbon exchange of subtropical mangrove forests in China. Biogeosciences 11, 5323–5333 (2014).ADS 
    Article 

    Google Scholar 
    46.Ray, R. et al. Improved model calculation of atmospheric CO2 increment in affecting carbon stock of tropical mangrove forest. Tellus B Chem. Phys. Meteorol. 65, 1–11. https://doi.org/10.3402/tellusb.v65i0.18981 (2013).CAS 
    Article 

    Google Scholar 
    47.Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. & Eyeare, B. D. Seasonal and temporal CO2 dynamics in three tropical mangrove creeks—A revision of global mangrove CO2 emissions. Geochim. Cosmochim. Acta 222, 729–745. https://doi.org/10.1016/j.gca.2017.11.026 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Rosentreter, J. A., Maher, D. T., Erler, D. V., Murray, R. H. & Eyeare, B. D. Methane emissions partially offset “blue carbon” burial in mangroves. Sci. Adv. 4. https://doi.org/10.1126/sciadv.aao4985 (2018).49.Troxler, T. G. et al. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agric. For. Meteorol. 213, 273–282. https://doi.org/10.1016/j.agrformet.2014.12.012 (2015).ADS 
    Article 

    Google Scholar 
    50.Lugo, A. E. Visible and invisible effects of hurricanes on forest ecosystems: An international review. Austral Ecol. 33, 368–398. https://doi.org/10.1111/j.1442-9993.2008.01894.x (2008).Article 

    Google Scholar 
    51.Dvorak, V. F. Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon. Weather Rev. 103, 420–430. https://doi.org/10.1175/1520-0493(1975)103%3c0420:Tciaaf%3e2.0.Co;2 (1975).ADS 
    Article 

    Google Scholar 
    52.Doyle, T. W., Smith III, T. J. & Robblee, M. B. Wind damage effects of Hurricane Andrew on mangrove communities along the southwest coast of Florida, USA. J. Coastal Res. 159–168 (1995).53.Imbert, D., Labbe, P. & Rousteau, A. Hurricane damage and forest structure in Guadeloupe, French West Indies. J. Trop. Ecol. 12, 663–680 (1996).Article 

    Google Scholar 
    54.Kauffman, J. B. & Cole, T. G. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30, 1077–1084. https://doi.org/10.1007/s13157-010-0114-y (2010).Article 

    Google Scholar 
    55.Lagomasino, D. et al. Storm surge, not wind, caused mangrove dieback in southwest Florida following Hurricane Irma. https://doi.org/10.31223/osf.io/q4exh (2020).56.Paling, E. I., Kobryn, H. T. & Humphreys, G. Assessing the extent of mangrove change caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia. Estuar. Coast. Shelf Sci. 77, 603–613 (2008).ADS 
    Article 

    Google Scholar 
    57.Radabaugh, K. R. et al. Mangrove damage, delayed mortality, and early recovery following Hurricane Irma at two landfall sites in Southwest Florida, USA. Estuaries Coasts 43, 1104–1118. https://doi.org/10.1007/s12237-019-00564-8 (2020).Article 

    Google Scholar 
    58.Salmo, S. G., Lovelock, C. E. & Duke, N. C. Assessment of vegetation and soil conditions in restored mangroves interrupted by severe tropical typhoon ‘Chan-hom’in the Philippines. Hydrobiologia 733, 85–102 (2014).Article 

    Google Scholar 
    59.Sherman, R. E., Fahey, T. J. & Martinez, P. Hurricane impacts on a mangrove forest in the Dominican Republic: Damage patterns and early recovery 1. Biotropica 33, 393–408. https://doi.org/10.1646/0006-3606(2001)033[0393:Hioamf]2.0.Co;2 (2001).Article 

    Google Scholar 
    60.Smith, T. J., Robblee, M. B., Wanless, H. R. & Doyle, T. W. Mangroves, hurricanes, and lightning strikes. Bioscience 44, 256–262. https://doi.org/10.2307/1312230 (1994).Article 

    Google Scholar 
    61.Baldwin, A., Egnotovich, M., Ford, M. & Platt, W. Regeneration in fringe mangrove forests damaged by Hurricane Andrew. Plant Ecol. 157, 151–164 (2001).Article 

    Google Scholar 
    62.Danielson, T. M. et al. Assessment of Everglades mangrove forest resilience: Implications for above-ground net primary productivity and carbon dynamics. For. Ecol. Manag. 404, 115–125 (2017).Article 

    Google Scholar 
    63.Imbert, D. Hurricane disturbance and forest dynamics in east Caribbean mangroves. Ecosphere 9. https://doi.org/10.1002/ecs2.2231 (2018).64.Piou, C., Feller, I. C., Berger, U. & Chi, F. Zonation patterns of Belizean offshore mangrove forests 41 years after a catastrophic hurricane 1. Biotropica 38, 365–374. https://doi.org/10.1111/j.1744-7429.2006.00156.x (2006).Article 

    Google Scholar 
    65.Rivera-Monroy, V. H. et al. Long-term demography and stem productivity of Everglades mangrove forests (Florida, USA): Resistance to hurricane disturbance. For. Ecol. Manag. 440. https://doi.org/10.1016/j.foreco.2019.02.036 (2019).66.Ouyang, X., Guo, F. & Lee, S. Y. The impact of super-typhoon Mangkhut on sediment nutrient density and fluxes in a mangrove forest in Hong Kong. Sci. Total Environ. 142637. https://doi.org/10.1016/j.scitotenv.2020.142637 (2020).67.Xu, X., Hirata, E., Enoki, T. & Tokashiki, Y. Leaf litter decomposition and nutrient dynamics in a subtropical forest after typhoon disturbance. Plant Ecol. 173, 161–170. https://doi.org/10.1023/B:VEGE.0000029319.05980.70 (2004).Article 

    Google Scholar 
    68.Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 1–13 (2019).Article 

    Google Scholar 
    69.Hochard, J. P., Hamilton, S. & Barbier, E. B. Mangroves shelter coastal economic activity from cyclones. Proc. Natl. Acad. Sci. U.S.A. 116, 12232–12237. https://doi.org/10.1073/pnas.1820067116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Rivera-Monroy, V. H. et al. Tropical cyclone landfall frequency and large-scale environmental impacts along Karstic Coastal Regions (Yucatan Peninsula, Mexico). Appl. Sci. 10, 5815 (2020).CAS 
    Article 

    Google Scholar 
    71.Benedetto, K. M. & Trepanier, J. C. Climatology and spatiotemporal analysis of North Atlantic rapidly intensifying hurricanes (1851–2017). Atmosphere 11. https://doi.org/10.3390/atmos11030291 (2020).72.Powell, M. D. & Reinhold, T. A. Tropical cyclone destructive potential by integrated kinetic energy. Bull. Am. Meteorol. Soc. 88, 513–526 (2007).ADS 
    Article 

    Google Scholar 
    73.Castañeda-Moya, E., Twilley, R. R. & Rivera-Monroy, V. H. Allocation of biomass and net primary productivity of mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. For. Ecol. Manag. 307, 226–241 (2013).Article 

    Google Scholar 
    74.Adame, M. F. & Lovelock, C. E. Carbon and nutrient exchange of mangrove forests with the coastal ocean. Hydrobiologia 663, 23–50. https://doi.org/10.1007/s10750-010-0554-7 (2011).CAS 
    Article 

    Google Scholar 
    75.Day, J. W. et al. A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat. Bot. https://doi.org/10.1016/0304-3770(96)01063-7 (1996).Article 

    Google Scholar 
    76.Ribeiro, R. d. A., Rovai, A. S., Twilley, R. R. & Castañeda-Moya, E. Spatial variability of mangrove primary productivity in the neotropics. Ecosphere 10, doi:https://doi.org/10.1002/ecs2.2841 (2019).77.Twilley, R. R. et al. Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111, 109–122. https://doi.org/10.1007/s004420050214 (1997).ADS 
    Article 
    PubMed 

    Google Scholar 
    78.Twilley, R. W., Lugo, A. E. & Patterson-Zucca, C. Litter production and turnover in basin mangrove forests in Southwest Florida. Ecology 67, 670–683. https://doi.org/10.2307/1937691 (1986).Article 

    Google Scholar 
    79.Taillie, P. J. et al. Widespread mangrove damage resulting from the 2017 Atlantic mega hurricane season. Environ. Res. Lett. 15. https://doi.org/10.1088/1748-9326/ab82cf (2020).80.Holland, G. J., Done, J. M., Douglas, R., Saville, G. R. & Ge, M. in Hurricane Risk 23–42 (Springer, 2019).81.Breithaupt, J. L., Smoak, J. M., Sanders, C. J. & Troxler, T. G. Spatial variability of organic carbon, CaCO3 and nutrient burial rates spanning a mangrove productivity gradient in the Coastal Everglades. Ecosystems 22, 844–858. https://doi.org/10.1007/s10021-018-0306-5 (2019).CAS 
    Article 

    Google Scholar 
    82.Ho, D. T. et al. Dissolved carbon biogeochemistry and export in mangrove-dominated rivers of the Florida Everglades. Biogeosciences 14, 2543–2559. https://doi.org/10.5194/bg-14-2543-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Reithmaier, G., Johnston, S. G. & Maher, D. T. Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park, Florida Mangroves as a Source of Alkalinity and Dissolved Carbon to the Coastal Ocean: A Case Study from the Everglades National Park. 1–29 (2020).84.Han, X., Feng, L., Hu, C. & Kramer, P. Hurricane-induced changes in the Everglades National Park mangrove forest: Landsat observations between 1985 and 2017. J. Geophys. Res. Biogeosci. 123, 3470–3488. https://doi.org/10.1029/2018jg004501 (2018).Article 

    Google Scholar 
    85.Cortés-Ramos, J., Farfán, L. M. & Herrera-Cervantes, H. Assessment of tropical cyclone damage on dry forests using multispectral remote sensing: The case of Baja California Sur, Mexico. J. Arid Environ. 178. https://doi.org/10.1016/j.jaridenv.2020.104171 (2020).86.Doyle, T. W., Krauss, K. W. & Wells, C. J. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the Everglades. Wetlands 29, 44–53. https://doi.org/10.1672/07-233.1 (2009).Article 

    Google Scholar 
    87.Castañeda-Moya, E. et al. Sediment and nutrient deposition associated with hurricane Wilma in mangroves of the Florida Coastal Everglades. Estuaries Coasts 33, 45–58. https://doi.org/10.1007/s12237-009-9242-0 (2010).CAS 
    Article 

    Google Scholar 
    88.Zhang, K. et al. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 102–103, 11–23. https://doi.org/10.1016/j.ecss.2012.02.021 (2012).ADS 
    Article 

    Google Scholar 
    89.Castaneda-Moya, E. et al. Hurricanes fertilize mangrove forests in the Gulf of Mexico (Florida Everglades, USA). Proc. Natl. Acad. Sci. U S A 117, 4831–4841. https://doi.org/10.1073/pnas.1908597117 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    90.Adame, M. F. et al. Drivers of mangrove litterfall within a Karstic Region affected by frequent hurricanes. Biotropica 45, 147–154. https://doi.org/10.1111/btp.12000 (2013).Article 

    Google Scholar 
    91.Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13. https://doi.org/10.1016/j.ecss.2007.08.024 (2008).ADS 
    Article 

    Google Scholar 
    92.Kovacs, J. M., Blanco-Correa, M. & Flores-Verdugo, F. A logistic regression model of hurricane impacts in a mangrove forest of the Mexican Pacific. J. Coastal Res. 17, 30–37 (2001).
    Google Scholar 
    93.Smith, T. J. et al. Cumulative impacts of hurricanes on Florida mangrove ecosystems: sediment deposition, storm surges and vegetation. Wetlands 29, 24 (2009).Article 

    Google Scholar 
    94.Vogt, J. et al. Investigating the role of impoundment and forest structure on the resistance and resilience of mangrove forests to hurricanes. Aquat. Bot. 97, 24–29. https://doi.org/10.1016/j.aquabot.2011.10.006 (2012).Article 

    Google Scholar 
    95.Osland, M. J. et al. Mangrove forests in a rapidly changing world: Global change impacts and conservation opportunities along the Gulf of Mexico coast. Estuar. Coast. Shelf Sci. 214, 120–140. https://doi.org/10.1016/j.ecss.2018.09.006 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Ting, M., Kossin, J. P., Camargo, S. J. & Li, C. Past and future hurricane intensity change along the US East Coast. Sci. Rep. 9, 7795 (2019).ADS 
    Article 

    Google Scholar 
    97.Rego, J. L. & Li, C. On the importance of the forward speed of hurricanes in storm surge forecasting: A numerical study. Geophys. Res. Lett. 36 (2009).98.Li, L. & Chakraborty, P. Slower decay of landfalling hurricanes in a warming world. Nature 587, 230–234. https://doi.org/10.1038/s41586-020-2867-7 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    99.Shi, L., Olabarrieta, M., Nolan, D. S. & Warner, J. C. Tropical cyclone rainbands can trigger meteotsunamis. Nat. Commun. 11. https://doi.org/10.1038/s41467-020-14423-9 (2020).100.Mazda, Y., Kobashi, D. & Okada, S. Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol. Manag. 13, 647–655 (2005).Article 

    Google Scholar 
    101.Krauss, K. W. et al. Water level observations in mangrove swamps during two hurricanes in Florida. Wetlands 29, 142–149. https://doi.org/10.1672/07-232.1 (2009).Article 

    Google Scholar 
    102.Smith, C. G., Price, R. M., Swarzenski, P. W. & Stalker, J. C. The role of ocean tides on groundwater-surface water exchange in a mangrove-dominated estuary: Shark river slough, Florida Coastal Everglades, USA. Estuaries Coasts 39, 1600–1616. https://doi.org/10.1007/s12237-016-0079-z (2016).Article 

    Google Scholar 
    103.Wdowinski, S., Bray, R., Kirtman, B. P. & Wu, Z. H. Increasing flooding hazard in coastal communities due to rising sea level: Case study of Miami Beach, Florida. Ocean Coastal Manag. 126, 1–8. https://doi.org/10.1016/j.ocecoaman.2016.03.002 (2016).Article 

    Google Scholar 
    104.Whelan, K. R. T., Smith, T. J., Anderson, G. H. & Ouellette, M. L. Hurricane Wilma’s impact on overall soil elevation and zones within the soil profile in a mangrove forest. Wetlands 29, 16–23. https://doi.org/10.1672/08-125.1 (2009).Article 

    Google Scholar 
    105.Hogan, J. A. et al. The frequency of cyclonic wind storms shapes tropical forest dynamism and functional trait dispersion. Forests 8, 1–27. https://doi.org/10.3390/f9070404 (2018).CAS 
    Article 

    Google Scholar 
    106.Rivera-Monroy, V. H. et al. Current methods to evaluate net primary production and carbon budgets in mangrove forests. Methods Biogeochem. Wetlands, 243–288. https://doi.org/10.2136/sssabookser10.c14 (2013).107.Worthington, T. A. et al. A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Sci. Rep. 10, 1–11. https://doi.org/10.1038/s41598-020-71194-5 (2020).CAS 
    Article 

    Google Scholar 
    108.Yao, Q. et al. A geochemical record of late-holocene hurricane events from the Florida Everglades. Water Resour. Res. 56, e2019WR026857. https://doi.org/10.1029/2019wr026857 (2020).109.Troxler, T. G. et al. Integrated carbon budget models for the everglades terrestrial-coastal-oceanic gradient current status and needs for inter-site comparisons. Oceanography 26, 98–107. https://doi.org/10.5670/oceanog.2013.51 (2013).Article 

    Google Scholar 
    110.Romigh, M. M., Davis, S. E., Rivera-Monroy, V. H. & Twilley, R. R. Flux of organic carbon in a riverine mangrove wetland in the Florida Coastal Everglades. Hydrobiologia 569, 505–516. https://doi.org/10.1007/s10750-006-0152-x (2006).CAS 
    Article 

    Google Scholar 
    111.Heald, E. J. The production of organic detritus in a south Florida estuary. Univ. Miami Sea Grant Tech. Bull. 6, 1–116 (1971).
    Google Scholar 
    112.Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020 (2014).Article 
    PubMed 

    Google Scholar 
    113.Lin, T. C., Hogan, J. A. & Chang, C. T. Tropical cyclone ecology: A scale-link perspective. Trends Ecol. Evol. 35, 594–604. https://doi.org/10.1016/j.tree.2020.02.012 (2020).Article 
    PubMed 

    Google Scholar 
    114.Lucash, M. S. et al. More than the sum of its parts: how disturbance interactions shape forest dynamics under climate change. Ecosphere 9. https://doi.org/10.1002/ecs2.2293 (2018).115.Li, S.-B. et al. Factors regulating carbon sinks in mangrove ecosystems. Glob. Change Biol. 24, 4195–4210. https://doi.org/10.1111/gcb.14322 (2018).ADS 
    Article 

    Google Scholar 
    116.Odum, E. P. in Estuarine Perspectives (ed Kennedy, V.S.) 485–495 (Academic Press, 1980).117.Lee, S. Y. Mangrove outwelling: A review. Hydrobiologia 295, 203–212. https://doi.org/10.1007/BF00029127 (1995).Article 

    Google Scholar 
    118.Lee, S. Y. et al. Ecological role and services of tropical mangrove ecosystems: A reassessment. Glob. Ecol. Biogeogr. 23, 726–743 (2014).Article 

    Google Scholar 
    119.Ray, R., Baum, A., Rixen, T., Gleixner, G. & Jana, T. K. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci. Total Environ. 621, 535–547. https://doi.org/10.1016/j.scitotenv.2017.11.225 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    120.Price, R. M., Top, Z., Happell, J. D. & Swart, P. K. Use of tritium and helium to define groundwater flow conditions in Everglades National Park. Water Resour. Res. 39. https://doi.org/10.1029/2002WR001929 (2003).121.Saha, A. K. et al. A hydrological budget (2002–2008) for a large subtropical wetland ecosystem indicates marine groundwater discharge accompanies diminished freshwater flow. Estuaries Coasts 35, 459–474. https://doi.org/10.1007/s12237-011-9454-y (2012).CAS 
    Article 

    Google Scholar 
    122.Krauss, K. W. & Osland, M. J. Tropical cyclones and the organization of mangrove forests: a review. Ann. Bot. 125, 213–234. https://doi.org/10.1093/aob/mcz161 (2019).Article 
    PubMed Central 

    Google Scholar 
    123.Wade, J. E. & Hewson, E. W. Trees as a local climatic wind indicator. J. Appl. Meteorol. 18, 1182–1187 (1979).ADS 
    Article 

    Google Scholar 
    124.Zhang, K. et al. Airborne laser scanning quantification of disturbances from hurricanes and lightning strikes to mangrove forests in Everglades National Park, USA. Sensors (Basel) 8, 2262–2292. https://doi.org/10.3390/s8042262 (2008).ADS 
    Article 

    Google Scholar 
    125.Doyle, T. W., Girod, G. F. & Books, M. A. Chapter 12: Modeling mangrove forest migration along the southwest coast of Florida under climate change. in (Ning, Z.H., Turner, R.E., Doyle, T.W., Abdollahi, K. eds.) (2003).126.Grueters, U. et al. The mangrove forest dynamics model mesoFON. Ecol. Model. 291, 28–41 (2014).Article 

    Google Scholar 
    127.Lienard, J., Strigul, N., Liénard, J. & Strigul, N. An individual-based forest model links canopy dynamics and shade tolerances along a soil moisture gradient. R. Soc. Open Sci. 3, 150589. https://doi.org/10.1098/rsos.150589 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    128.Amir, A. A. & Duke, N. C. Distinct characteristics of canopy gaps in the subtropical mangroves of Moreton Bay, Australia. Estuar. Coast. Shelf Sci. 222, 66–80. https://doi.org/10.1016/j.ecss.2019.04.007 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    129.Craighead, F. C. & Gilbert, V. C. the effects of hurricane Donna on the vegetation of southern Florida. Q. J. Florida Acad. Sci. 25, 1–28 (1962).
    Google Scholar 
    130.Tanner, E. V. J., Kapos, V. & Healey, J. R. Hurricane effects on forest ecosystems in the Caribbean. Biotropica 23, 513–521. https://doi.org/10.2307/2388274 (1991).Article 

    Google Scholar 
    131.Stanturf, J. A., Goodrick, S. L. & Outcalt, K. W. Disturbance and coastal forests: A strategic approach to forest management in hurricane impact zones. For. Ecol. Manag. 250, 119–135. https://doi.org/10.1016/j.foreco.2007.03.015 (2007).Article 

    Google Scholar 
    132.Jentsch, A. et al. Climate extremes initiate ecosystem-regulating functions while maintaining productivity. J. Ecol. 99, 689–702. https://doi.org/10.1111/j.1365-2745.2011.01817.x (2011).Article 

    Google Scholar 
    133.Bongers, F. & Popma, J. Leaf dynamics of seedlings of rain forest species in relation to canopy gaps. Oecologia 82, 122–127 (1990).ADS 
    CAS 
    Article 

    Google Scholar 
    134.Hikosaka, K. Leaf canopy as a dynamic system: Ecophysiology and optimality in leaf turnover. Ann. Bot. 95, 521–533. https://doi.org/10.1093/aob/mci050 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    135.Ouyang, X., Lee, S. Y., Connolly, R. M. & Kainz, M. J. Spatially-explicit valuation of coastal wetlands for cyclone mitigation in Australia and China. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-21217-z (2018).CAS 
    Article 

    Google Scholar 
    136.Childers, D. L. et al. Relating precipitation and water management to nutrient concentrations in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnol. Oceanogr. 51, 602–616. https://doi.org/10.4319/lo.2006.51.1_part_2.0602 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    137.Chen, R. & Twilley, R. R. Patterns of mangrove forest structure and soil nutrient dynamics along the Shark River Estuary, Florida. Estuaries 22, 955–970 (1999).Article 

    Google Scholar 
    138.Simard, M. et al. Mapping height and biomass of mangrove forests in Everglades National Park with SRTM elevation data. Photogramm. Eng. Remote. Sens. 72, 299–311 (2006).Article 

    Google Scholar 
    139.Ewe, S. M. L. et al. Spatial and temporal patterns of aboveground net primary productivity (ANPP) along two freshwater-estuarine transects in the Florida Coastal Everglades. Hydrobiologia 569, 459–474. https://doi.org/10.1007/s10750-006-0149-5 (2006).Article 

    Google Scholar 
    140.He, D., Rivera-Monroy, V. H., Jaffé, R. & Zhao, X. Mangrove leaf species-specific isotopic signatures along a salinity and phosphorus soil fertility gradients in a subtropical estuary. Estuarine Coastal Shelf Sci. 106768. https://doi.org/10.1016/j.ecss.2020.106768 (2020).141.Wachnicka, A., Armitage, A. R., Zink, I., Browder, J. & Fourqurean, J. W. Major 2017 hurricanes and their cumulative impacts on coastal waters of the USA and the Caribbean. Estuaries Coasts 43, 941–942. https://doi.org/10.1007/s12237-020-00702-7 (2020).Article 

    Google Scholar 
    142.Jones, P. D. et al. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. 117. https://doi.org/10.1029/2011JD017139 (2012).143.Rivera-Monroy, V. H., Day, J. W., Twilley, R. R., Vera-Herrera, F. & Coronado-Molina, C. Flux of nitrogen and sediment in a fringe mangrove forest in terminos lagoon, Mexico. Estuar. Coast. Shelf Sci. 40, 139–160. https://doi.org/10.1016/S0272-7714(05)80002-2 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    144.Chen, R. & Twilley, R. R. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44, 93–118. https://doi.org/10.1007/BF00993000 (1999).Article 

    Google Scholar 
    145.Castañeda-Moya, E. et al. Patterns of root dynamics in Mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14, 1178–1195. https://doi.org/10.1007/s10021-011-9473-3 (2011).CAS 
    Article 

    Google Scholar  More

  • in

    Marine conservation across protected area boundaries

    1.The State of World Fisheries and Aquaculture 2020 (Food and Agriculture Organization of the United Nations, 2020).2.Ohayon, S., Granot, I. & Belmaker, J. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01502-3 (2021).3.Lester, S. E. et al. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).Article 

    Google Scholar 
    4.Dwyer, R. G. et al. Curr. Biol. 30, 480–489 (2020).CAS 
    Article 

    Google Scholar 
    5.Krueck, N. C. et al. Conserv. Lett. 11, e12415 (2018).Article 

    Google Scholar 
    6.Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. Proc. Natl Acad. Sci. USA 117, 25595–25600 (2020).CAS 
    Article 

    Google Scholar 
    7.Harrison, H. B. et al. Curr. Biol. 22, 1023–1028 (2012).CAS 
    Article 

    Google Scholar 
    8.Williamson, D. H. et al. Mol. Ecol. 25, 6039–6054 (2016).Article 

    Google Scholar 
    9.Edgar, G. J. et al. Nature 506, 216–220 (2014).CAS 
    Article 

    Google Scholar 
    10.Cinner, J. E. et al. Proc. Natl Acad. Sci. USA 115, E6116–E6125 (2018).CAS 
    Article 

    Google Scholar 
    11.McClanahan, T. R. Mar. Policy 119, 104022 (2020).Article 

    Google Scholar 
    12.Worm, B. & Branch, T. A. Trends Ecol. Evol. 27, 594–599 (2012).Article 

    Google Scholar 
    13.Costello, C. et al. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).CAS 
    Article 

    Google Scholar 
    14.Mora, C. et al. PLoS Biol. 7, e1000131 (2009).Article 

    Google Scholar 
    15.White, A. T. et al. Coastal Manage. 42, 87–106 (2014).Article 

    Google Scholar 
    16.Abesamis, R. A. & Russ, G. R. Ecol. Appl. 15, 1798–1812 (2005).Article 

    Google Scholar 
    17.Claudet, J. et al. Ecol. Lett. 11, 481–489 (2008).Article 

    Google Scholar 
    18.Halpern, B. S., Gaines, S. D. & Warner, R. R. Ecol. Appl. 14, 1248–1256 (2004).Article 

    Google Scholar 
    19.Krueck, N. C. et al. Ecol. Appl. 27, 925–941 (2017).Article 

    Google Scholar 
    20.Krueck, N. C. et al. PLoS Biol. 15, e2000537 (2017).Article 

    Google Scholar 
    21.Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Ecol. Appl. 17, 1039–1054 (2007).Article 

    Google Scholar 
    22.Krueck, N. C., Abdurrahim, A. Y., Adhuri, D. S., Mumby, P. J. & Ross, H. Ecol. Soc. 24, 6 (2019).Article 

    Google Scholar 
    23.Green, A. L. et al. Biol. Rev. 90, 1215–1247 (2015).Article 

    Google Scholar  More

  • in

    Fire enhances forest degradation within forest edge zones in Africa

    1.Pan, Y. D. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).Article 

    Google Scholar 
    2.Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Change 2, 182–185 (2012).Article 

    Google Scholar 
    3.Matricardi, E. A. T. et al. Long-term forest degradation surpasses deforestation in the Brazilian Amazon. Science 369, 1378–1382 (2020).Article 

    Google Scholar 
    4.Bullock, E. L., Woodcock, C. E., Souza, C. & Olofsson, P. Satellite-based estimates reveal widespread forest degradation in the Amazon. Glob. Change Biol. 26, 2956–2969 (2020).Article 

    Google Scholar 
    5.Aragao, L. E. O. C. et al. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 9, 536 (2018).Article 

    Google Scholar 
    6.Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).Article 

    Google Scholar 
    7.Taubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).Article 

    Google Scholar 
    8.Kunert, N., Teophilo Aparecido, L. M., Higuchi, N., dos Santos, J. & Trumbore, S. Higher tree transpiration due to road-associated edge effects in a tropical moist lowland forest. Agric. For. Meteorol. 213, 183–192 (2015).Article 

    Google Scholar 
    9.Broadbent, E. N. et al. Forest fragmentation and edge effects from deforestation and selective logging in the Brazilian Amazon. Biol. Conserv. 141, 1745–1757 (2008).Article 

    Google Scholar 
    10.Laurance, W. F. et al. Biomass collapse in Amazonian forest fragments. Science 278, 1117–1118 (1997).Article 

    Google Scholar 
    11.Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).Article 

    Google Scholar 
    12.Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e150005 (2015).Article 

    Google Scholar 
    13.Briant, G., Gond, V. & Laurance, S. G. W. Habitat fragmentation and the desiccation of forest canopies: a case study from eastern Amazonia. Biol. Conserv. 143, 2763–2769 (2010).Article 

    Google Scholar 
    14.Laurance, W. F. et al. The fate of Amazonian forest fragments: a 32-year investigation. Biol. Conserv. 144, 56–67 (2011).Article 

    Google Scholar 
    15.FAOSTAT Database (FAO, 2020); http://www.fao.org/faostat/en/#data/FO16.World Urbanization Prospects: The 2018 Revision (UN Department of Economic and Social Affairs, 2018).17.Brandt, M. et al. Reduction of tree cover in West African woodlands and promotion in semi-arid farmlands. Nat. Geosci. 11, 328–333 (2018).Article 

    Google Scholar 
    18.Hufkens, K. et al. Historical aerial surveys map long-term changes of forest cover and structure in the central Congo basin. Remote Sens. 12, 638 (2020).Article 

    Google Scholar 
    19.van der Werf, G. R. et al. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707–11735 (2010).Article 

    Google Scholar 
    20.Ichoku, C. et al. Biomass burning, land-cover change, and the hydrological cycle in northern sub-Saharan Africa. Environ. Res. Lett. 11, 095005 (2016).Article 

    Google Scholar 
    21.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).Article 

    Google Scholar 
    22.Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Preprint at Copernicus https://doi.org/10.5194/essd-2020-148 (2020).23.Santoro, M. & Cartus, O. GlobBiomass dataset of forest biomass, Africa (25 m). Zenodo https://doi.org/10.5281/zenodo.4725667 (2020).24.Chuvieco, E., Pettinari, L. M., Lizundia Loiola, J., Storm, T. & Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Grid Product Version 5.1 (Centre for Environmental Data Analysis, 2019).25.Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019); https://doi.org/10.5067/MODIS/MCD12Q1.00626.Laurance, W. F. Theory meets reality: how habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008).Article 

    Google Scholar 
    27.Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).Article 

    Google Scholar 
    28.Kato, S. et al. Surface irradiances of edition 4.0 Clouds and the Earth’s radiant Energy System (CERES) Energy Balanced and Filled (EBAF) data product. J. Clim. 31, 4501–4527 (2018).Article 

    Google Scholar 
    29.Running, S., Mu, Q. & Zhao, M. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2017); https://doi.org/10.5067/MODIS/MOD16A2.00630.Hurtt, G. C. et al. Harmonization of global land-use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).Article 

    Google Scholar 
    31.Gaviria, J., Turner, B. L. & Engelbrecht, B. M. J. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8, e01712 (2017).Article 

    Google Scholar 
    32.Alemayehu, T., van Griensven, A., Woldegiorgis, B. T. & Bauwens, W. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrol. Earth Syst. Sci. 21, 4449–4467 (2017).Article 

    Google Scholar 
    33.Kotto-Same, J., Woomer, P. L., Appolinaire, M. & Louis, Z. Carbon dynamics in slash-and-burn agriculture and land use alternatives of the humid forest zone in Cameroon. Agric. Ecosyst. Environ. 65, 245–256 (1997).Article 

    Google Scholar 
    34.Tyukavina, A. et al. Congo basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).Article 

    Google Scholar 
    35.Rejou-Mechain, M. et al. Local spatial structure of forest biomass and its consequences for remote sensing of carbon stocks. Biogeosciences 11, 6827–6840 (2014).Article 

    Google Scholar 
    36.Tropek, R. et al. Comment on “high-resolution global maps of 21st-century forest cover change”. Science 344, 981 (2014).Article 

    Google Scholar 
    37.Global Forest Watch (World Resources Institute, 2019); https://data.globalforestwatch.org/datasets/planted-forests38.Roteta, E., Bastarrika, A., Padilla, M., Storm, T. & Chuvieco, E. Development of a Sentinel-2 burned area algorithm: generation of a small fire database for sub-Saharan Africa. Remote Sens. Environ. 222, 1–17 (2019).Article 

    Google Scholar 
    39.Bouvet, A. et al. An above-ground biomass map of African savannahs and woodlands at 25 m resolution derived from ALOS PALSAR. Remote Sens. Environ. 206, 156–173 (2018).Article 

    Google Scholar 
    40.Laurance, S. G. W. Responses of understory rain forest birds to road edges in central Amazonia. Ecol. Appl. 14, 1344–1357 (2004).Article 

    Google Scholar 
    41.Cochrane, M. A. & Laurance, W. F. Synergisms among fire, land use, and climate change in the Amazon. AMBIO 37, 522–527 (2008).Article 

    Google Scholar 
    42.Khanna, J., Medvigy, D., Fueglistaler, S. & Walko, R. Regional dry-season climate changes due to three decades of Amazonian deforestation. Nat. Clim. Change 7, 200–204 (2017).Article 

    Google Scholar 
    43.Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).Article 

    Google Scholar  More

  • in

    A meta-analysis reveals edge effects within marine protected areas

    1.Costello, M. J. & Ballantine, B. Biodiversity conservation should focus on no-take marine reserves: 94% of marine protected areas allow fishing. Trends Ecol. Evol. 30, 507–509 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    2.Edgar, G. J. et al. Global conservation outcomes depend on marine protected areas with five key features. Nature 506, 216–220 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Giakoumi, S. et al. Ecological effects of full and partial protection in the crowded Mediterranean Sea: a regional meta-analysis. Sci. Rep. 7, 8940 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    4.Sala, E. & Giakoumi, S. No-take marine reserves are the most effective protected areas in the ocean. ICES J. Mar. Sci. 75, 1166–1168 (2018).
    Google Scholar 
    5.Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Hansen, A. J. & Defries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 17, 974–988 (2016).
    Google Scholar 
    7.Roberts, C. M., Halpern, B., Palumbi, S. R. & Warner, R. R. Designing marine reserve networks. Why small, isolated protected areas are not enough. Conserv. Pract. 2, 10–17 (2001).
    Google Scholar 
    8.Walters, C. Impacts of dispersal, ecological interactions, and fishing effort dynamics on efficacy of marine protected areas: how large should protected areas be? Bull. Mar. Sci. 66, 745–757 (2000).
    Google Scholar 
    9.Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
    Google Scholar 
    10.Guidetti, P. et al. Large-scale assessment of Mediterranean marine protected areas effects on fish assemblages. PLoS One 9, e91841 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    11.Lester, S. E. et al. Biological effects within no-take marine reserves: a global synthesis. Mar. Ecol. Prog. Ser. 384, 33–46 (2009).
    Google Scholar 
    12.Di Lorenzo, M., Claudet, J. & Guidetti, P. Spillover from marine protected areas to adjacent fisheries has an ecological and a fishery component. J. Nat. Conserv. 32, 62–66 (2016).
    Google Scholar 
    13.Harmelin-Vivien, M. et al. Gradients of abundance and biomass across reserve boundaries in six Mediterranean marine protected areas: evidence of fish spillover? Biol. Conserv. 141, 1829–1839 (2008).
    Google Scholar 
    14.Abesamis, R. A. & Russ, G. R. Density-dependent spillover from a marine reserve: long-term evidence. Ecol. Appl. 15, 1798–1812 (2005).
    Google Scholar 
    15.Murawski, S. A., Wigley, S. E., Fogarty, M. J., Rago, P. J. & Mountain, D. G. Effort distribution and catch patterns adjacent to temperate MPAs. ICES J. Mar. Sci. 62, 1150–1167 (2005).
    Google Scholar 
    16.Kellner, J. B., Tetreault, I., Gaines, S. D. & Nisbet, R. M. Fishing the line near marine reserves in single and multispecies fisheries. Ecol. Appl. 17, 1039–1054 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    17.Stelzenmüller, V. et al. Spatial assessment of fishing effort around European marine reserves: implications for successful fisheries management. Mar. Pollut. Bull. 56, 2018–2026 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    18.Halpern, B. S., Lester, S. E. & Kellner, J. B. Spillover from marine reserves and the replenishment of fished stocks. Environ. Conserv. 36, 268–276 (2010).
    Google Scholar 
    19.Newmark, W. D. Isolation of African protected areas. Front. Ecol. Environ. 6, 321–328 (2008).
    Google Scholar 
    20.Defries, R., Hansen, A., Newton, A. C. & Hansen, M. C. Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol. Appl. 15, 19–26 (2005).
    Google Scholar 
    21.MPAtlas (Marine Conservation Institute, accessed 4 July 2020); http://www.mpatlas.org22.Willis, T. J., Millar, R. B., Babcock, R. C. & Tolimieri, N. Burdens of evidence and the benefits of marine reserves: putting Descartes before des horse? Environ. Conserv. 30, 97–103 (2003).
    Google Scholar 
    23.Roberts, C. M. et al. Application of ecological criteria in selecting marine reserves and developing reserve networks. Ecol. Appl. 13, 215–228 (2003).
    Google Scholar 
    24.Huntington, B. E., Karnauskas, M., Babcock, E. A. & Lirman, D. Untangling natural seascape variation from marine reserve effects using a landscape approach. PLoS One 5, e12327 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    25.Miller, K. I. & Russ, G. R. Studies of no-take marine reserves: methods for differentiating reserve and habitat effects. Ocean Coast. Manag. 96, 51–60 (2014).
    Google Scholar 
    26.Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–671 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Brill, G. C. & Raemaekers, S. J. P. N. A decade of illegal fishing in Table Mountain National Park (2000–2009): trends in the illicit harvest of abalone Haliotis midae and West Coast rock lobster Jasus lalandii. African. J. Mar. Sci. 35, 491–500 (2013).
    Google Scholar 
    28.Harasti, D., Davis, T. R., Jordan, A., Erskine, L. & Moltschaniwskyj, N. Illegal recreational fishing causes a decline in a fishery targeted species (snapper: Chrysophrys auratus) within a remote no-take marine protected area. PLoS One 14, e0209926 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Kleiven, P. J. N. et al. Fishing pressure impacts the abundance gradient of European lobsters across the borders of a newly established marine protected area. Proc. R. Soc. B Biol. Sci. 286, 20182455 (2019).
    Google Scholar 
    30.Simpson, S. D. et al. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 7, 10544 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Sarà, G. et al. Effect of boat noise on the behavior of bluefin tuna Thunnus thynnus in the Mediterranean Sea. Mar. Ecol. Prog. Ser. 331, 243–253 (2007).
    Google Scholar 
    32.Tran, D. S. C., Langel, K. A., Thomas, M. J. & Blumstein, D. T. Spearfishing-induced behavioral changes of an unharvested species inside and outside a marine protected area. Curr. Zool. 62, 39–44 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    33.Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    34.Potts, J. R., Hillen, T. & Lewis, M. A. The ‘edge effect’ phenomenon: deriving population abundance patterns from individual animal movement decisions. Theor. Ecol. 9, 233–247 (2016).
    Google Scholar 
    35.Gerber, L. R. et al. Population models for marine reserve design: a retrospective and prospective synthesis. Ecol. Appl. 13, 47–64 (2003).
    Google Scholar 
    36.Malvadkar, U. & Hastings, A.Persistence of mobile species in marine protected areas. Fish. Res. 91, 69–78 (2008).
    Google Scholar 
    37.Di Lorenzo, M., Guidetti, P., Calò, A. & Claudet, J. Assessing spillover from marine protected areas and its drivers: a meta-analytical approach. Fish Fish. 21, 906–915 (2020).
    Google Scholar 
    38.Goñi, R., Quetglas, A. & Reñones, O. Spillover of spiny lobsters Palinurus elephas from a marine reserve to an adjoining fishery. Mar. Ecol. Prog. Ser. 308, 207–219 (2006).
    Google Scholar 
    39.Stamoulis, K. A. & Friedlander, A. M. A seascape approach to investigating fish spillover across a marine protected area boundary in Hawai’i. Fish. Res. 144, 2–14 (2013).
    Google Scholar 
    40.Protected Planet: the World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, accessed July 2020); http://www.protectedplanet.net41.Kulbicki, M. et al. Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS One 8, e81847 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    42.Parravicini, V. et al. Global patterns and predictors of tropical reef fish species richness. Ecography 36, 1254–1262 (2013).
    Google Scholar 
    43.Froese, R. & Pauly, D. (eds). FishBase (accessed May 2020); http://www.fishbase.org44.Hedges, L. V., Gurevitch, J. & Curtis, P. S. The meta-analysis of response ratios in experimental ecology. Ecology 80, 1150–1156 (1999).
    Google Scholar 
    45.Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn (CRC Press, 2017).46.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    47.R Core Team. R: a language and environment for statistical computing. v.3.6.1 (2019).48.QGIS Geographic Information System. Open Source Geospatial Foundation Project (QGIS Development Team, 2020); http://qgis.osgeo.org49.Harmelin-Vivien, M. et al. Species richness, abundance and biomass data for assessing fish spillover from Mediterranean marine protected areas. SEANOE https://doi.org/10.17882/74396 (2020). More

  • in

    Radon emission fluctuation as a result of biochar application into the soil

    In order to study the impact of biochar application into the soil for the emanation coefficient and radon exhalation rate, biochar was applied to the soil in various doses. Then, after the soil stabilization period, samples were taken for laboratory tests and field measurements of exhalation arte were carried out. Based on the obtained results, a discussion was conducted focused on the perspective of environmental changes in the context of radon emission from soil depending on the dose of biochar. A detailed description of the materials and measurement methods used to conduct the research is presented in the following subsections.BiocharThe biochar incorporated in the field experiment was produced from sunflower husk in the pyrolysis process in the temperature range of 450–550 °C and consist on grains with diameters from 50 μm up to 10 mm. The biochar was characterized by specific surface area of 2.0 m2 g−1 in occupancy of Cu ions and 5.1 m2 g−1 for Ag ions23.Field experimentThe field experiment was conducted in ten plots, each with a dimension of 1.1 m × 1.1 m, located in Lublin/Felin at the Institute of Agrophysics of Polish Academy of Science. In addition one plot was left without biochar as a reference. The biochar was applied into the soil in April 2018. The soil presented on the fields were classified as Haplic Luvisol with 66% of sand, 23% of silt 11% of clay and 0.91% of organic matter (data for 0–15 cm layer)32. The following doses of biochar were applied for the following fields: 1, 5, 10, 20, 30, 40, 50, 60, 80, and 100 Mg ha−1 (which corresponded to the percentage of biochar per unit mass of soil: 0.05, 0.24, 0.48, 0.95, 1.43, 1.90, 2.28, 2.86, 3.81, and 4.76%, respectively). The fields were kept without vegetation by application of herbicide (Roundup 360 PLUS at 2.5 L ha−1). For the purpose of presented work six fields were investigated: with 0 (control), 20, 40, 60, 80 and 100 Mg ha−1 biochar doses.Soil sample collection and preparationThe soil samples were collected from five experimental plots, where the biochar was applied into the soil at the doses of 20, 40, 60, 80, and 100 Mg ha−1, and from a control field, where no biochar was applied (denoted as 0 Mg ha−1). Soil samples were collected from each field at five statistically chosen points to get about 2 kg of soil. After collection, the soil was mixed and dried at room temperature for two weeks. One sample for laboratory examinations was prepared from each part of the soil. The sample was a 4.7 cm high and 5.2 cm diameter steel cylinder, as presented in Fig. 1. The volume of each sample was 100 cm3. The bulk density of each sample was evaluated. The soil net weight of each sample was measured by measurements of each sample and subtraction of the weight of the steel cylinder. Next, the cylinders were closed on the bottom with a rubber cap to reduce the radon emanation surface to the size of 19.62 cm2 at the top of the sample.Figure 1The example of sample collected from the experimental field and prepared for measurements within the small accumulation chamber in the process of radon emanation assessment.Full size imageTotal porosity measurementsThe total porosity was measured with the weight method after water saturation. First, the samples were dried at 105 °C for 1 h and weighed to measure the total mass of the soil-biochar samples. To assess the total pore volume, the samples were placed in a tray filled with water for 24 h to reach saturation and the weight measurements were repeated. The total porosity η was calculated according to the equation:$$eta =frac{{V}_{p}}{{V}_{s}}=frac{{m}_{w}}{{rho }_{w}cdot {V}_{s}}=frac{left({m}_{s}-{m}_{d}right)}{{rho }_{w}cdot {V}_{s}}$$where ms is the mass of a saturated sample, md is the mass of a dried sample, Vs and Vp represent the sample volume (100 cm3) and pore volume, respectively, and ρw is water density. The weight measurements were realized by electronic laboratory balance with the accuracy of 0.1 mg. The total uncertainty of the method was assessed for 5%.The uncertainty for radon in air concentration measurements were assessed for 18% basing on the data provided by the instrument.Emanation coefficient assessmentThe radon emission from samples in the laboratory environment were measured using an AlphaGUARD instrument equipped with a measuring chamber made of stainless steel, as presented on the left in Fig. 2. The chamber was 11 cm in diameter and 12 cm in height, giving 0.00114 m3 of volume. The measurement of the radon concentration in air was made setting a 1 dm3 min−1 flow rate and 10 min reading cycles. Data were next averaged for 1 h, resulting to one data point represents the average values from six originally measured data points. Measurement for one sample took 20 h. Values of radon concentration in air was registered with the uncertainty for each data point assessed directly by the instrument.Figure 2Set up for radon accumulation measurements for assessment of the emanation coefficient in the laboratory environment. Set include the small accumulation chamber with the total volume of 0.00114 m3 (present on the left side) operating with the AlphaGuard instrument (presented on the right).Full size imageThe emanation coefficient ε was determined based on the Ra-226 activity concentration and radon potential Ω according to the methodology proposed by33 and making an additional assumption that the samples were dried to zero humidity, which implied that no pores filled with water were present within the samples during measurements. The assumption reduces the equation for calculating the time bound exhalation constant.The emanation coefficient expressed in % was evaluated according to the equation:$$varepsilon =frac{{Omega }}{{Ac}_{Ra}}cdot 100{%}$$
    (2)
    where AcRa represents the Ra-226 activity concentration in a soil sample expressed in Bq kg−1.The AcRa was assessed using gamma spectrometry and a high purity germanium detector according to the methodology described by25. For properly Ra-226 activity concentration in soil assessment the impact of 185.7 keV gammas from U-235 was subtracted after its evaluation basing on the 63.3 keV peak of Th-234.The main advantage of the proposed method is the ability to assess the emanation coefficient based on short-time measurements (below 24 h) with a cumulative chamber method. Originally, in the methodology developed by33, the assessment requires evaluation of Ω according to the formula:$$Omega = frac{{a + lambda _{{eff}} cdot C_{{Rn}}^{0} }}{{lambda _{{Rn}} }}~frac{{V_{e} }}{m}$$
    (3)
    where a (Bq m−3 s−1) represents the slope of the linear fit of radon exhalation rate data series measured in the cumulative chamber, λeff is an effective time constant (s−1), CRn0 is the initial Rn-222 concentration in the accumulation chamber (Bq m−3), λRn denotes the Rn-222 decay constant, Ve describes the effective accumulation volume in the experimental setup (m3), and m (kg) is the mass of the sample.The effective time constant describes the effective time of the presence of radon exhaled within the experimental set up and is the sum of the Rn-222 decay constant λRn (s−1), the bound exhalation constant λb (s−1) characterizing the sample, and the leakage constant characterizing the accumulation chamber equipment λl (s−1):$${lambda }_{eff}={lambda }_{Rn}+{lambda }_{b}+{lambda }_{l}$$
    (4)
    The λb coefficient is dependent on the soil sample porosity according to the simplified equation:$${lambda }_{b}={lambda }_{Rn}eta frac{{V}_{0}}{{V}_{e}}$$
    (5)
    where η represents the total porosity of the sample, as the assumption of zero humidity of samples during measurements was made, and V0 represents the volume of the sample.λl was evaluated experimentally by measuring the Rn-222 decay in the empty accumulation chamber system with a natural radon concentration at the starting point. The most significant compound of total uncertainty for the emanation coefficient was associated with estimation for slope a, CRn0 and with assessment of the total porosity for the samples η. The uncertainty was evaluated using differentiation method.Radon exhalation rate assessmentThe radon exhalation rate (ERn) was assessed according to the methodology presented in25. The field radon exhalation rate was assessed indirectly by measurement of radon concentration in air using an AlphaGUARD instrument equipped with accumulation open-wall chamber placed on the ground as presented on the Fig. 3. The chamber volume was 0.024 m3. The setup measuring parameters were the same as in the case of the laboratory measurements with the small closed chamber but the measuring time was 70 min giving seven data points for each field. Values of radon concentration in air was registered with the uncertainty for each data point assessed directly by the instrument.Figure 3Setup for assessment of the radon exhalation rate in the field measurements. The set consist of the accumulation chamber with 0.024 m3 in volume and the AlphaGuard instrument.Full size imageThe increase of radon concentration in air (CRn) in accumulation box were registered and the linear function was interpolated basing on seven measuring points registered for each experimental field. Basing on the measurement of radon concentration in air the radon exhalation rate could be assessed according to the equation:$${E}_{Rn}=frac{V}{A}frac{partial {C}_{Rn}}{partial t}$$
    (6)
    where V/A are the ratio of accumulation chamber volume to area covered by the chamber and is a constant value of 0.2, (frac{partial {C}_{Rn}}{partial t}) is a change of radon concentration in air registered in accumulation chamber in time t and was represented as a linear fit into the experimental data as:$${C}_{Rn}=acdot t+b$$
    (7)
    After differentiation we can compute the radon exhalation rate as slope, a of linear fit scaled by 0.2:$${E}_{Rn}=0.2a$$
    (8)
    The uncertainty for radon exhalation rate assessment was associated mainly with the assessment of the slope of linear fit ad was calculated as a standard deviation for data point used for linear fits. More