More stories

  • in

    Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions

    1.Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, et al. Global carbon budget 2015. Earth Syst Sci Data. 2015;7:349–96.Article 

    Google Scholar 
    2.Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318:1737–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bell JJ, Bennett HM, Rovellini A, Webster NS. Sponges to be winners under near-future climate scenarios. Bioscience. 2018;68:955–68.Article 

    Google Scholar 
    4.Bell JJ. The functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–53.Article 

    Google Scholar 
    5.Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Smith AM, Berman J, Key MM Jr, Winter DJ. Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;392:463–72.Article 

    Google Scholar 
    7.Webster NS, Thomas T. The sponge hologenome. MBio. 2016;7:e00135–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol. 2014;4:176.PubMed 
    PubMed Central 

    Google Scholar 
    10.Fan L, Liu M, Simister R, Webster NS, Thomas T. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 2013;7:991–1002.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Egan S, Gardiner M. Microbial dysbiosis: rethinking disease in marine ecosystems. Front Microbiol. 2016;7:991.PubMed 
    PubMed Central 

    Google Scholar 
    12.Voolstra CR, Ziegler M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays. 2020;42:e2000004.PubMed 
    Article 

    Google Scholar 
    13.Botte ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J. 2015;9:894–908.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Pollock FJ, Lamb JB, van de Water J, Smith HA, Schaffelke B, Willis BL, et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R Soc Open Sci. 2019;6:190355.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Pinzon JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci. 2015;2:140214.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Pita L, Hoeppner MP, Ribes M, Hentschel U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci Rep. 2018;8:16081.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Guzman C, Conaco C. Gene expression dynamics accompanying the sponge thermal stress response. PLoS ONE. 2016;11:e0165368.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol. 2014;31:1102–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Germer J, Cerveau N, Jackson DJ. The holo-transcriptome of a calcified early branching metazoan. Front Mar Sci. 2017;4:81.21.Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics. 2016;17:158.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Hooper JNA, Van Soest RWM. Systema Porifera. A guide to the classification of sponges. In: Hooper JNA, Van Soest RWM, editors. Systema Porifera. New York, NY: Springer; 2002. p. 1–7.23.Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.24.Pierrot DE, Lewis E, Wallace DWR. MS Excel program developed for CO2 system calculations. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, ORNL/CDIAC-IOS; 2006.25.Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article 

    Google Scholar 
    31.McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    32.Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Asshauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    38.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D30.CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Alexa A, Rahnenführer J. Gene set enrichment analysis with topGO. Bioconductor Improv. 2009;27:1–26.44.Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D13.CAS 
    Article 

    Google Scholar 
    45.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. Gigascience. 2017;6:1–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun. 2019;10:992.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Guzman C, Conaco C. Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges. Sci Rep. 2016;6:18774.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Fortunato SA, Adamski M, Ramos OM, Leininger S, Liu J, Ferrier DE, et al. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature. 2014;514:620–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Voigt O, Fradusco B, Gut C, Kevrekidis C, Vargas S, Wörheide G. Carbonic anhydrases: an ancient tool in calcareous sponge biomineralization. Front Genet. 2021;12:624533.52.Yuen B, Bayes JM, Degnan SM. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol. 2014;31:106–20.CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.57.McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:262.58.Hori K, Matsumoto S. Bacterial adhesion: from mechanism to control. Biochem Eng J. 2010;48:424–34.CAS 
    Article 

    Google Scholar 
    59.Yao J, Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol. 2006;188:3697–708.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996;334:1717–25.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Hayden MS, Ghosh S. Regulation of NF-kappaB by TNF family cytokines. Semin Immunol. 2014;26:253–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5:a008672.64.Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, et al. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem. 2005;280:27949–59.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Muller WE, Muller IM. Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr Comp Biol. 2003;43:281–92.PubMed 
    Article 

    Google Scholar 
    66.Yuen B Deciphering the genomic toolkit underlying animal-bacteria interactions – insights through the demosponge Amphimedon queenslandica. Saint Lucia, QLD: School of Biological Sciences, The University of Queensland; 2016.67.Gauthier ME, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev. 2010;12:519–33.CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Roue M, Quevrain E, Domart-Coulon I, Bourguet-Kondracki ML. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat Prod Rep. 2012;29:739–51.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Steinert G, Busch K, Bayer K, Kodami S, Arbizu PM, Kelly M, et al. Compositional and quantitative insights into bacterial and archaeal communities of South Pacific deep-sea sponges (Demospongiae and Hexactinellida). Front Microbiol. 2020;11:716.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Yap NV, Whelan FJ, Bowdish DM, Golding GB. The evolution of the scavenger receptor cysteine-rich domain of the class a scavenger receptors. Front Immunol. 2015;6:342.PubMed 
    PubMed Central 

    Google Scholar 
    72.Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18:374–89.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu Rev Immunol. 2013;31:73–106.Article 
    CAS 

    Google Scholar 
    74.Robertson SJ, Rubino SJ, Geddes K, Philpott DJ. Examining host-microbial interactions through the lens of NOD: from plants to mammals. Semin Immunol. 2012;24:9–16.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28:285–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Messier-Solek C, Buckley KM, Rast JP. Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol. 2010;22:39–47.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Bennett HM, Altenrath C, Woods L, Davy SK, Webster NS, Bell JJ. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Glob Chang Biol. 2017;23:2031–46.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Luter HM, Andersen M, Versteegen E, Laffy P, Uthicke S, Bell JJ, et al. Cross-generational effects of climate change on the microbiome of a photosynthetic sponge. Environ Microbiol. 2020;22:4732–44.79.Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol. 2005;7:301–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun. 2019;10:3092.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.Ribes M, Calvo E, Movilla J, Logares R, Coma R, Pelejero C. Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environ Microbiol Rep. 2016;8:536–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11:2148–63.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    83.van de Water J, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, et al. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol. 2018;27:1065–80.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    84.Weisz JB, Lindquist N, Martens CS. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia. 2008;155:367–76.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Ludeman DA, Reidenbach MA, Leys SP. The energetic cost of filtration by demosponges and their behavioural response to ambient currents. J Exp Biol. 2017;220:995–1007.PubMed 
    Article 

    Google Scholar 
    86.Perea-Blazquez A, Davy SK, Bell JJ. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS ONE. 2012;7:e29569.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Morganti TM, Ribes M, Yahel G, Coma R. Size is the major determinant of pumping rates in marine sponges. Front Physiol. 2019;10:1474.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Peck LS, Clark MS, Power D, Reis J, Batista FM, Harper EM. Acidification effects on biofouling communities: winners and losers. Glob Chang Biol. 2015;21:1907–13.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Ribeiro B, Padua A, Barno A, Villela H, Duarte G, Rossi A, et al. Assessing skeleton and microbiome responses of a calcareous sponge under thermal and pH stresses. ICES J Mar Sci. 2020:fsaa231.90.Lanna E, Klautau M. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J Mar Biol Assoc UK. 2018;98:505–14.Article 

    Google Scholar 
    91.Pörtner HO, Langenbuch M, Michaelidis B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res. 2005;110:C09S10.92.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Genetic and phylogenetic analysis of dissimilatory iodate-reducing bacteria identifies potential niches across the world’s oceans

    1.Carpenter LJ. Biogeochemical cycles | iodine. Encyclopedia of Atmospheric Sciences: Elsevier; United States; 2015. p. 205–19.2.Chemburkar SR, Deming KC, Reddy RE. Chemistry of thyroxine: an historical perspective and recent progress on its synthesis. Tetrahedron. 2010;66:1955–62.CAS 
    Article 

    Google Scholar 
    3.Schweizer U, Steegborn C. Thyroid hormones—from crystal packing to activity to reactivity. Angew Chem. 2015;54:12856–8.CAS 
    Article 

    Google Scholar 
    4.Küpper FC, Feiters MC, Olofsson B, Kaiho T, Yanagida S, Zimmermann MB, et al. Commemorating two centuries of iodine research: an interdisciplinary overview of current research. Angew Chem. 2011;50:11598–620.Article 
    CAS 

    Google Scholar 
    5.Manley SL, Dastoor MN. Methyl iodide (CH3I) production by kelp and associated microbes. Mar Biol. 1988;98:477–82.CAS 
    Article 

    Google Scholar 
    6.Lebel LS, Dickson RS, Glowa GA. Radioiodine in the atmosphere after the Fukushima Dai-ichi nuclear accident. J Environ Radioact. 2016;151:82–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Luther GW, Wu J, Cullen JB. Redox chemistry of iodine in seawater. Aquatic chemistry. Advances in chemistry. 244: American Chemical Society; Washington, DC; 1995. p. 135–55.8.Gonzales J, Tymon T, Küpper FC, Edwards MS, Carrano CJ. The potential role of kelp forests on iodine speciation in coastal seawater. PloS ONE. 2017;12:e0180755.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Vedamati J, Goepfert T, Moffett JW. Iron speciation in the eastern tropical South Pacific oxygen minimum zone off Peru. Limnol Oceanogr. 2014;59:1945–57.Article 

    Google Scholar 
    10.Tsunogai S, Sase T. Formation of iodide-iodine in the ocean. Deep Sea Res Oceanogr Abstr. 1969;16:489–96.CAS 
    Article 

    Google Scholar 
    11.Councell TB, Landa ER, Lovley DR. Microbial reduction of iodate. Water Air Soil Pollut. 1997;100:99–106.CAS 
    Article 

    Google Scholar 
    12.Youngblut MD, Tsai C-L, Clark IC, Carlson HK, Maglaqui AP, Gau-Pan PS, et al. Perchlorate reductase is distinguished by active site aromatic gate residues. J Biol Chem. 2016;291:9190–202.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Farrenkopf AM, Dollhopf ME, Chadhain SN, Luther GW, Nealson KH. Reduction of iodate in seawater during Arabian Sea incubations and in laboratory cultures of the marine Shewanella putrefaciens strain MR-4 shipboard bacterium. Mar Chem. 1997;57:347–54.CAS 
    Article 

    Google Scholar 
    14.Amachi S, Kawaguchi N, Muramatsu Y, Tsuchiya S, Watanabe Y, Shinoyama H, et al. Dissimilatory iodate reduction by marine Pseudomonas sp. strain SCT. Appl Environ Microbiol. 2007;73:5725–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Yamazaki C, Kashiwa S, Horiuchi A, Kasahara Y, Yamamura S, Amachi S. A novel dimethylsulfoxide reductase family of molybdenum enzyme, Idr, is involved in iodate respiration by Pseudomonas sp. SCT. Environ Microbiol. 2020;22:2196–212.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Youngblut MD, Wang O, Barnum TP, Coates JD. (Per)chlorate in biology on earth and beyond. Annu Rev Microbiol. 2016;70:435–57.17.Toporek YJ, Mok JK, Shin HD, Lee BD, Lee MH, DiChristina TJ. Metal reduction and protein secretion genes required for Iodate Reduction by Shewanella oneidensis. Appl Environ Microbiol. 2019;85:e02115–18.18.Carlström CI, Lucas LN, Rohde RA, Haratian A, Engelbrektson AL, Coates JD. Characterization of an anaerobic marine microbial community exposed to combined fluxes of perchlorate and salinity. Appl Microbiol Biotechnol. 2016;100:9719–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    19.Yip KC-W, Gu J-D. A novel bacterium involved in the degradation of 2-methylindole isolated from sediment of Inner Deep Bay of Hong Kong. Appl Environ Biotechnol. 2015;1:52–63.Article 

    Google Scholar 
    20.Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, et al. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Micro Cell Fact. 2010;9:1–11.Article 
    CAS 

    Google Scholar 
    21.Loferer-Krössbacher M, Klima J, Psenner R. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Appl Environ Microbiol. 1998;64:688–94.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.McInerney MJ, Beaty PS. Anaerobic community structure from a nonequilibrium thermodynamic perspective. Can J Microbiol. 1988;34:487–93.CAS 
    Article 

    Google Scholar 
    23.Stern JH, Passchier AA. The heats of formation of triiodide and iodate ions. J Phys Chem. 1962;66:752–3.CAS 
    Article 

    Google Scholar 
    24.Weber KA, Achenbach LA, Coates JD. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol. 2006;4:752–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Leimkühler S, Iobbi-Nivol C. Bacterial molybdoenzymes: Old enzymes for new purposes. FEMS Microbiol Rev. 2016;40:1–18.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.McEwan AG, Ridge JP, McDevitt CA, Hugenholtz P. The DMSO reductase family of microbial molybdenum enzymes: Molecular properties and role in the dissimilatory reduction of toxic elements. Geomicrobiol J. 2002;19:3–21.CAS 
    Article 

    Google Scholar 
    27.Chaudhuri SK, O’Connor SM, Gustavson RL, Achenbach LA, Coates JD. Environmental factors that control microbial perchlorate reduction. Appl Environ Microbiol. 2002;68:4425–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Snel B, Bork P, Huynen MA. Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res. 2002;12:17–25.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Saunders JK, Fuchsman CA, McKay C, Rocap G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc Natl Acad Sci USA. 2019;116:9925–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Dabir DV, Leverich EP, Kim SK, Tsai FD, Hirasawa M, Knaff DB, et al. A role for cytochrome c and cytochrome c peroxidase in electron shuttling from Erv1. EMBO J. 2007;26:4801–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Martins D, Kathiresan M, English AM. Cytochrome c peroxidase is a mitochondrial heme-based H2O2 sensor that modulates antioxidant defense. Free Radic Biol Med. 2013;65:541–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat Biotechnol. 2019;37:420–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Berks BC. The twin-arginine protein translocation pathway. Annu Rev Biochem. 2015;84:843–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Toporek M, Michałowska-Kaczmarczyk AM, Michałowski T. Disproportionation reactions of HIO and NaIO in static and dynamic systems. Am J Anal Chem. 2014;5:1046.CAS 
    Article 

    Google Scholar 
    35.Ellis KV, Van Vree HBRJ. Iodine used as a water-disinfectant in turbid waters. Water Res. 1989;23:671–6.CAS 
    Article 

    Google Scholar 
    36.Alternative drinking-water disinfectants: bromine, iodine and silver. Geneva: World Health Organization; 2018. Licence: CC BY-NC-SA 3.0 IGO.37.Liebensteiner MG, Pinkse MWH, Schaap PJ, Stams AJM, Lomans BP. Archaeal (per)chlorate reduction at high temperature: An interplay of biotic and abiotic reactions. Science. 2013;340:85–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Dudley M, Salamone A, Nerenberg R. Kinetics of a chlorate-accumulating, perchlorate-reducing bacterium. Water Res. 2008;42:2403–10.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Melnyk RA, Youngblut MD, Clark IC, Carlson HK, Wetmore KM, Price MN, et al. Novel mechanism for scavenging of hypochlorite involving a periplasmic methionine-rich peptide and methionine sulfoxide reductase. MBio. 2015;6:e00233-15.40.Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017;35:1026–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ordoñez OF, Rasuk MC, Soria MN, Contreras M, Farías ME. Haloarchaea from the Andean Puna: biological role in the energy metabolism of arsenic. Microb Ecol. 2018;76:695–705.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    42.Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat Commun. 2016;7:1–11.Article 
    CAS 

    Google Scholar 
    43.Becraft ED, Woyke T, Jarett J, Ivanova N, Godoy-Vitorino F, Poulton N, et al. Rokubacteria: genomic giants among the uncultured bacterial phyla. Front Microbiol. 2017;8:2264.44.He Z, Cai C, Wang J, Xu X, Zheng P, Jetten MSM, et al. A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Sci Rep. 2016;6:1–10.Article 
    CAS 

    Google Scholar 
    45.Melnyk RA, Engelbrektson A, Clark IC, Carlson HK, Byrne-Bailey K, Coates JD. Identification of a perchlorate reduction genomic island with novel regulatory and metabolic genes. Appl Environ Microbiol. 2011;77:7401–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Scornavacca C, Zickmann F, Huson DH. Tanglegrams for rooted phylogenetic trees and networks. Bioinformatics. 2011;27:i248–56.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Juhas M, van der Meer JR, Gaillard M, Harding RM, Hood DW, Crook DW. Genomic islands: tools of bacterial horizontal gene transfer and evolution. FEMS Microbiol Rev. 2009;33:376–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Reiter WD, Palm P, Yeats S. Transfer RNA genes frequently serve as integration sites for prokaryotic genetic elements. Nucleic Acids Res. 1989;17:1907–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Larbig KD, Christmann A, Johann A, Klockgether J, Hartsch T, Merkl R, et al. Gene islands integrated into tRNAGly genes confer genome diversity on a Pseudomonas aeruginosa clone. J Bacteriol. 2002;184:6665–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Boyd E, Barkay T. The mercury resistance operon: From an origin in a geothermal environment to an efficient detoxification machine. Front Microbiol. 2012;3:349.PubMed 
    PubMed Central 

    Google Scholar 
    51.Besaury L, Bodilis J, Delgas F, Andrade S, De la Iglesia R, Ouddane B, et al. Abundance and diversity of copper resistance genes cusA and copA in microbial communities in relation to the impact of copper on Chilean marine sediments. Mar Pollut Bull. 2013;67:16–25.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Bertelli C, Laird MR, Williams KP, Simon Fraser University Research Computing Group, Lau BY, Hoad G, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Jin HM, Lee HJ, Kim JM, Park MS, Lee K, Jeon CO. Litorimicrobium taeanense gen. nov., sp. nov., isolated from a sandy beach. Int J Syst Evol Microbiol. 2011;61:1392–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Alex A, Antunes A. Comparative genomics reveals metabolic specificity of Endozoicomonas isolated from a marine sponge and the genomic repertoire for host-bacteria symbioses. Microorganisms. 2019;7:635.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    55.Kim Y-O, Park S, Nam B-H, Park J-M, Kim D-G, Yoon J-H. Litoreibacter ascidiaceicola sp. nov., isolated from the golden sea squirt Halocynthiaaurantium. Int J Syst Evol Microbiol. 2014;64:2545–50.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kupper FC, Carpenter LJ, McFiggans GB, Palmer CJ, Waite TJ, Boneberg EM, et al. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc Natl Acad Sci USA. 2008;105:6954–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Jung HS, Jeong SE, Chun BH, Quan Z-X, Jeon CO. Rhodophyticola porphyridii gen. nov., sp. nov., isolated from a red alga, Porphyridium marinum. Int J Syst Evol Microbiol. 2019;69:1656–61.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Wagner GP, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci. 2012;131:281–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Ribicic D, Netzer R, Hazen TC, Techtmann SM, Drabløs F, Brakstad OG. Microbial community and metagenome dynamics during biodegradation of dispersed oil reveals potential key-players in cold Norwegian seawater. Mar Pollut Bull. 2018;129:370–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Lachkar Z, Lévy M, Smith KS. Strong intensification of the Arabian Sea oxygen minimum zone in response to Arabian Gulf warming. Geophys Res Lett. 2019;46:5420–9.CAS 
    Article 

    Google Scholar 
    61.Farrenkopf AM, Luther GW. Iodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ. Deep-Sea Res Pt II. 2002;49:2303–18.CAS 
    Article 

    Google Scholar 
    62.Bertagnolli AD, Stewart FJ. Microbial niches in marine oxygen minimum zones. Nat Rev Microbiol. 2018;16:723–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Cutter GA, Moffett JW, Nielsdóttir MC, Sanial V. Multiple oxidation state trace elements in suboxic waters off Peru: In situ redox processes and advective/diffusive horizontal transport. Mar Chem. 2018;201:77–89.CAS 
    Article 

    Google Scholar 
    64.Karstensen J, Stramma L, Visbeck M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog Oceanogr. 2008;77:331–50.Article 

    Google Scholar 
    65.Farrenkopf AM, Luther GW, Truesdale VW, Van Der Weijden CH. Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon. Deep Sea Res Pt II. 1997;44:1391–409.CAS 
    Article 

    Google Scholar 
    66.Kalvelage T, Lavik G, Jensen MM, Revsbech NP, Löscher C, Schunck H, et al. Aerobic microbial respiration in oceanic oxygen minimum zones. PLoS ONE. 2015;10:e0133526.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Howarth RW. Nutrient limitation of net primary production in marine ecosystems. Annu Rev Ecol Syst. 1988;19:89–110.Article 

    Google Scholar 
    68.Shalel Levanon S, San K-Y, Bennett GN. Effect of oxygen on the Escherichia coli ArcA and FNR regulation systems and metabolic responses. Biotechnol Bioeng. 2005;89:556–64.Article 
    CAS 

    Google Scholar 
    69.Wright JJ, Konwar KM, Hallam SJ. Microbial ecology of expanding oxygen minimum zones. Nat Rev Microbiol. 2012;10:381–94.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Hardisty DS, Horner TJ, Evans N, Moriyasu R, Babbin AR, Wankel SD, et al. Limited iodate reduction in shipboard seawater incubations from the Eastern Tropical North Pacific oxygen deficient zone. Earth Planet Sci Lett. 2021;554:116676.CAS 
    Article 

    Google Scholar 
    71.Li H-P, Yeager CM, Brinkmeyer R, Zhang S, Ho Y-F, Xu C, et al. Bacterial production of organic acids enhances H2O2-dependent iodide oxidation. Environ Sci Technol. 2012;46:4837–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Shiroyama K, Kawasaki Y, Unno Y, Amachi S. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2. Biosci Biotechnol Biochem. 2015;79:1898–905.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Lavik G, Stührmann T, Brüchert V, Van der Plas A, Mohrholz V, Lam P, et al. Detoxification of sulphidic African shelf waters by blooming chemolithotrophs. Nature. 2009;457:581–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Wadley MR, Stevens DP, Jickells T, Hughes C, Chance R, Hepach H, et al. Modelling iodine in the ocean. Earth Space Sci Open Access Arch. 2020:46. https://doi.org/10.1002/essoar.10502078.1.75.Waite TJ, Truesdale VW. Iodate reduction by Isochrysis galbana is relatively insensitive to de-activation of nitrate reductase activity—are phytoplankton really responsible for iodate reduction in seawater? Mar Chem. 2003;81:137–48.CAS 
    Article 

    Google Scholar 
    76.Coates JD, Achenbach LA. Microbial perchlorate reduction: rocket-fuelled metabolism. Nat Rev Microbiol. 2004;2:569–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Jones DS, Bailey JV, Flood BE. Sedimenticola thiotaurini sp. nov., a sulfur-oxidizing bacterium isolated from salt marsh sediments, and emended descriptions of the genus Sedimenticola and Sedimenticola selenatireducens. Int J Syst Evol Microbiol. 2015;65:2522–30.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    78.Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Boden R, Hutt LP, Rae AW. Reclassification of Thiobacillus aquaesulis (Wood & Kelly, 1995) as Annwoodia aquaesulis gen. nov., comb. nov., transfer of Thiobacillus (Beijerinck, 1904) from the Hydrogenophilales to the Nitrosomonadales, proposal of Hydrogenophilalia class. nov. within the ‘Proteobacteria’, and four new families within the orders Nitrosomonadales and Rhodocyclales. Int J Syst Evol Microbiol. 2017;67:1191–205.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Brinkmann T, Specht CH, Frimmel FH. Non-linear calibration functions in ion chromatography with suppressed conductivity detection using hydroxide eluents. J Chromatogr. 2002;957:99–109.CAS 
    Article 

    Google Scholar 
    81.Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 2015;31:3350–2.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Finn RD, Clements J, Eddy SR. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011;39:W29–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Price MN, Dehal PS, Arkin AP. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    87.Huerta-Cepas J, Serra F, Bork P. ETE 3: Reconstruction, analysis, and visualization of phylogenomic data. Mol Biol Evol. 2016;33:1635–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Méheust R, Burstein D, Castelle CJ, Banfield JF. The distinction of CPR bacteria from other bacteria based on protein family content. Nat Commun. 2019;10:4173.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    89.Barnum TP, Figueroa IA, Carlström CI, Lucas LN, Engelbrektson AL, Coates JD. Genome-resolved metagenomics identifies genetic mobility, metabolic interactions, and unexpected diversity in perchlorate-reducing communities. ISME J. 2018;12:1568–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics. 2009;25:1422–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Karsenti E. The making of Tara Oceans: Funding blue skies research for our Blue Planet. Mol Syst Biol. 2015;11:811.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:1–16.Article 
    CAS 

    Google Scholar 
    93.Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    95.Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine learning in Python. J Mac Learn Res. 2011;12:2825–30.
    Google Scholar 
    96.Azur MJ, Stuart EA, Frangakis C, Leaf PJ. Multiple imputation by chained equations: what is it and how does it work? Int J methods Psychiatr Res. 2011;20:40–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Dissimilatory nitrate reduction by a freshwater cable bacterium

    1.Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, et al. Filamentous bacteria transport electrons over centimetre distances. Nature. 2012;491:218–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Meysman FJR, Cornelissen R, Trashin S, Bonné R, Martinez SH, van der Veen J, et al. A highly conductive fibre network enables centimetre-scale electron transport in multicellular cable bacteria. Nat Commun. 2019;10:4120.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M. Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature. 2010;463:1071–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Malkin SY, Rao AM, Seitaj D, Vasquez-Cardenas D, Zetsche EM, Hidalgo-Martinez S, et al. Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor. Isme J. 2014;8:1843–54.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Burdorf LDW, Tramper A, Seitaj D, Meire L, Hidalgo-Martinez S, Zetsche EM, et al. Long-distance electron transport occurs globally in marine sediments. Biogeosciences. 2017;14:683–701.CAS 
    Article 

    Google Scholar 
    6.Marzocchi U, Bonaglia S, van de Velde S, Hall POJ, Schramm A, Risgaard-Petersen N, et al. Transient bottom water oxygenation creates a niche for cable bacteria in long-term anoxic sediments of the Eastern Gotland Basin. Environ Microbiol. 2018;20:3031–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Risgaard-Petersen N, Kristiansen M, Frederiksen RB, Dittmer AL, Bjerg JT, Trojan D, et al. Cable bacteria in freshwater sediments. Appl Environ Microbiol. 2015;81:6003–11.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Risgaard-Petersen N, Revil A, Meister P, Nielsen LP. Sulfur, iron-, and calcium cycling associated with natural electric currents running through marine sediment. Geochim Cosmochim Acta. 2012;92:1–13.CAS 
    Article 

    Google Scholar 
    9.Seitaj D, Schauer R, Sulu-Gambari F, Hidalgo-Martinez S, Malkin SY, Burdorf LD, et al. Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins. Proc Natl Acad Sci USA. 2015;112:13278–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Sulu-Gambari F, Seitaj D, Meysman FJR, Schauer R, Polerecky L, Slomp CP. Cable bacteria control iron–phosphorus dynamics in sediments of a coastal hypoxic basin. Environ Sci Technol. 2016;50:1227–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Marzocchi U, Trojan D, Larsen S, Meyer RL, Revsbech NP, Schramm A, et al. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. ISME J. 2014;8:1682–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Risgaard-Petersen N, Damgaard LR, Revil A, Nielsen LP. Mapping electron sources and sinks in a marine biogeobattery. J Geophys Res Biogeosci. 2014;119:1475–86.CAS 
    Article 

    Google Scholar 
    13.Kessler AJ, Wawryk M, Marzocchi U, Roberts KL, Wong WW, Risgaard‐Petersen N, et al. Cable bacteria promote DNRA through iron sulfide dissolution. Limnol Oceanogr. 2018;64:1228–38.Article 
    CAS 

    Google Scholar 
    14.Kjeldsen KU, Schreiber L, Thorup CA, Boesen T, Bjerg JT, Yang T, et al. On the evolution and physiology of cable bacteria. Proc Natl Acad Sci USA. 2019;116:19116–25.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.MacGregor BJ, Biddle JF, Siebert JR, Staunton E, Hegg EL, Matthysse AG, et al. Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. Appl Environ Microbiol. 2013;79:1183–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Buckley A, MacGregor B, Teske A. Identification, expression and activity of candidate nitrite reductases from orange Beggiatoaceae, Guaymas Basin. Front Microbiol. 2019;10:644.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Sandfeld T, Marzocchi U, Petro C, Schramm A, Risgaard-Petersen N. Electrogenic sulfide oxidation mediated by cable bacteria stimulates sulfate reduction in freshwater sediments. ISME J. 2020;14:1233–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Damgaard LR, Risgaard‐Petersen N, Nielsen LP. Electric potential microelectrode for studies of electrobiogeophysics. J Geophys Res Biogeosci. 2014;119:1906–17.CAS 
    Article 

    Google Scholar 
    19.Archie GE. The electrical resistivity log as an aid in determining some reservoir characteristics. T Am I Min Met Eng. 1942;146:54–61.
    Google Scholar 
    20.Nielsen LP. Denitrification in sediment determined from nitrogen isotope pairing. Fems Microbiol Ecol. 1992;86:357–62.CAS 
    Article 

    Google Scholar 
    21.Risgaard-Petersen N, Rysgaard S. Nitrate reduction in sediments and waterlogged soil measured by 15N techniques. In: Alef K, Nannipieri P, editors. Methods in applied soil microbiology and biochemistry. Academic Press; 1995. p. 287–95.22.Risgaard-Petersen N, Rysgaard S, Revsbech NP. Combined microdiffusion-hypobromite oxidation method for determining N-15 isotope in ammonium. Soil Sci Soc Am J. 1995;59:1077–80.CAS 
    Article 

    Google Scholar 
    23.Bower CE, Holmhansen T. A salicylate-hypochlorite method for determining ammonia in seawater. Can J Fish Aquat Sci. 1980;37:794–8.CAS 
    Article 

    Google Scholar 
    24.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Bushmanova E, Antipov D, Lapidus A, Prjibelski AD. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. Gigascience. 2019; 8:giz100.26.Rho M, Tang H, Ye Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 2010;38:e191.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    27.Fish JA, Chai B, Wang Q, Sun Y, Brown CT, Tiedje JM, et al. FunGene: the functional gene pipeline and repository. Front Microbiol. 2013;4:291.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Welsh A, Chee-Sanford JC, Connor LM, Löffler FE, Sanford RA. Refined NrfA phylogeny improves PCR-based nrfA gene detection. Appl Environ Micro. 2014;80:2110–9.Article 
    CAS 

    Google Scholar 
    29.Jepson BJN, Marietou A, Mohan S, Cole JA, Butler CS, Richardson DJ. Evolution of the soluble nitrate reductase: defining the monomeric periplasmic nitrate reductase subgroup. Biochem Soc T. 2006;34:122–6.CAS 
    Article 

    Google Scholar 
    30.Haase D, Hermann B, Einsle O, Simon J. Epsilonproteobacterial hydroxylamine oxidoreductase (epsilon Hao): characterization of a ‘missing link’ in the multihaem cytochrome c family. Mol Microbiol. 2017;105:127–38.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Klotz MG, Schmid MC, Strous M, op den Camp HJ, Jetten MS, Hooper AB. Evolution of an octahaem cytochrome c protein family that is key to aerobic and anaerobic ammonia oxidation by bacteria. Environ Microbiol. 2008;10:3150–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Betlach MR, Tiedje JM. Kinetic explanation for accumulation of nitrite, nitric-oxide, and nitrous-oxide during bacterial denitrification. Appl Environ Micro. 1981;42:1074–84.CAS 
    Article 

    Google Scholar 
    33.Simon J, Klotz MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. BBA Bioenerg. 2013;1827:114–35.CAS 
    Article 

    Google Scholar 
    34.Hermans M, Lenstra WK, Hidalgo-Martinez S, van Helmond N, Witbaard R, Meysman FJR, et al. Abundance and biogeochemical impact of cable bacteria in Baltic sea sediments. Environ Sci Technol. 2019;53:7494–503.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Marshall IPG, Starnawski P, Cupit C, Fernandez Caceres E, Ettema TJG, Schramm A, et al. The novel bacterial phylum Calditrichaeota is diverse, widespread and abundant in marine sediments and has the capacity to degrade detrital proteins. Environ Microbiol Rep. 2017;9:397–403.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lefevre CT, Frankel RB, Abreu F, Lins U, Bazylinski DA. Culture-independent characterization of a novel, uncultivated magnetotactic member of the Nitrospirae phylum. Environ Microbiol. 2011;13:538–49.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Logares R, Brate J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Trojan D, Schreiber L, Bjerg JT, Boggild A, Yang T, Kjeldsen KU, et al. A taxonomic framework for cable bacteria and proposal of the candidate genera Electrothrix and Electronema. Syst Appl Microbiol. 2016;39:297–306.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Dam AS, Marshall IPG, Risgaard-Petersen N, Burdorf LDW, Marzocchi U. Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol. 2021;23:2605–16.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Jones CM, Stres B, Rosenquist M, Hallin S. Phylogenetic analysis of nitrite, nitric oxide, and nitrous oxide respiratory enzymes reveal a complex evolutionary history for denitrification. Mol Biol Evol. 2008;25:1955–66.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Graf DR, Jones CM, Hallin S. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS ONE. 2014;9:e114118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Kraft B, Strous M, Tegetmeyer HE. Microbial nitrate respiration – Genes, enzymes and environmental distribution. J Biotechnol. 2011;155:104–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Simon J, Sänger M, Schuster SC, Gross R. Electron transport to periplasmic nitrate reductase (NapA) of Wolinella succinogenes is independent of a NapC protein. Mol Microbiol. 2003;49:69–79.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Bjerg JT, Boschker HTS, Larsen S, Berry D, Schmid M, Millo D, et al. Long-distance electron transport in individual, living cable bacteria. Proc Natl Acad Sci USA. 2018;115:5786–91.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Venceslau SS, Lino RR, Pereira IAC. The Qrc membrane complex, related to the alternative complex III, is a menaquinone reductase involved in sulfate respiration. J Biol Chem. 2010;285:22774–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Meysman FJR, Risgaard-Petersen N, Malkin SY, Nielsen LP. The geochemical fingerprint of microbial long-distance electron transport in the seafloor. Geochim Cosmochim Ac. 2015;152:122–42.CAS 
    Article 

    Google Scholar 
    47.Kern M, Simon J. Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Biochim Biophys Acta. 2009;1787:646–56.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Chen Y, Wang F. Insights on nitrate respiration by Shewanella. Front Mar Sci. 2015; 1:80.49.Gao H, Yang ZK, Barua S, Reed SB, Romine MF, Nealson KH, et al. Reduction of nitrate in Shewanella oneidensis depends on atypical NAP and NRF systems with NapB as a preferred electron transport protein from CymA to NapA. ISME J. 2009;3:966–76.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Geerlings NMJ, Karman C, Trashin S, As KS, Kienhuis MVM, Hidalgo-Martinez S, et al. Division of labor and growth during electrical cooperation in multicellular cable bacteria. Proc Natl Acad Sci USA. 2020;117:5478–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Scilipoti S, Koren K, Risgaard-Petersen N, Schramm A, Nielsen LP. Oxygen consumption of individual cable bacteria. Sci Adv. 2021; 7:eabe1870.52.Bjerg JT, Damgaard LR, Holm SA, Schramm A, Nielsen LP. Motility of electric cable bacteria. Appl Environ Microbiol. 2016;82:3816–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Dam A-S, Marshall IPG, Petersen NR, Burdorf LDW, Marzocchi U. Effect of salinity on cable bacteria species composition and diversity. Environ Microbiol. 2021;23:2605–16.54.Westram R, Bader K, Pruesse E, Kumar Y, Meier H, Glöckner FO, et al. ARB: a software environment for sequence data. In: de Bruijn FJ, editor. Handbook of molecular microbial ecology I: metagenomics and complementary approaches. John Wiley & Sons, Inc.; Hoboken, New Jersey; 2011. p. 399–406. More

  • in

    Evaluation on soil fertility quality under biochar combined with nitrogen reduction

    Research areaThe study was conducted in the Yunyang Experimental Station (108° 54′ E, 30° 55′ N; altitude of 700 m), Southwest University, Chongqing, China. The study area has a subtropical monsoon humid climate with an average annual sunshine duration of 1500 h, average annual temperature of 18.4 °C average annual rainfall of 1100.1 mm, and the rain period predominantly prolongs from June to September. Local soil type is clay loam in texture and Dystric Purple-Udic Cambosols according to the Chinese Soil Taxonomy (CRGCST 2001). Basic properties of 0–20 cm soil layer were as follows: pH 7.29, total N 0.94 g kg−1, total C 7.14 g kg−1, available N 37.45 mg kg−1, available P 2.36 mg kg−1, and available K 72.58 mg kg−1, respectively.The tested biochar was purchased from the Nanjing Qinfeng Straw Technology Co., Ltd. (Nanjing, China), which was made by pyrolysis of the rice (Oryza sativa L.) straw with limited oxygen supply at 500 °C for 2 h. Its properties were as follows: total N 0.61 g kg−1, total P 1.99 g kg−1, total K 27.15 g kg−1, total C 537.97 g kg−1 and pH 8.70.Experimental designA two-year filed experiment (2017–2019) was performed in a completely randomized design with twelve treatments in triplicates including two factors. The first factor was the application of biochar including B0 (0 t ha−1), B10 (10 t ha−1), B20 (20 t ha−1) and B40 (40 t ha−1); and the second factor is the application level N fertilizer including conventional rate (application amount by local farmers)-180 kg N ha−1 (N100), 80% of conventional rate-144 kg N ha−1 (N80) and 60% of conventional rate-108 kg N ha−1 (N60). The plot size was 3 m × 6 m with a border (0.5 m wide) between plots. Biochar was applied to soil only in the first year before the sowing of rapeseed. Each treatment plot received the same amount of potassium (90 kg K2O ha−1) and phosphorus (90 kg P2O5 ha−1). Further details of fertilizer application have been reported by Tian et al.24, being the same for the two-year experiment. Weed, pesticide, and pest management kept the same with the local farmers’ rapeseed management practices. Winter rapeseed (Sanxiayou No.5) was used in the experiment, which was sowed on 21 October 2017 and on 16 October 2018, respectively, and was harvested on 1 May in both years (2018 and 2019).Sampling and analysis of soil and cropCrop yieldRapeseed was hand-harvested when 70–80% of total seeds changed their color from green to black on 1 May 2019, and each plot was separately harvested for seed yield. Seed yield was calculated using 6% as standard seed moisture content.Soil indicesAfter the rapeseed harvest, soil samples were collected from all plots. Five sampling points were randomly selected within each plot. At each point, twenty soil cores of 2.5 cm diameter and 20.0 cm depth were taken in a 1 m radius of the point. All soil cores from each point were put in a plastic bag and thoroughly bulked, crumbled and mixed for physical, chemical and biological analyses. By dividing each soil sample into two subsamples, one subsample was ground, passed through a 2-mm sieve and was air-dried for the analyses of soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkali-hydrolyzale nitrogen (AN), available phosphorus (AP), available potassium (AK)25, particulate organic carbon (POC), water-soluble organic carbon (DOC), easily oxidized organic carbon (AOC)26, sucrase (SUC) and urease (URE)27, and another one was ground, passed through a 2-mm sieve and was stored in a refrigerator at − 20 °C for the analyses of structural and functional characteristics of soil microbial community28. At the same time, mixed soil samples (0–20 cm) from five points in each plot were taken using a shovel for soil aggregates analyses24.Drying method was used to determine soil water content (SWC); soil temperature (ST) was measured by temperature probe on the LI6400–09 (LI-COR Inc., Lincoln, NE); potassium dichromate oxidation method was used to determine SOM and DOC content; TN was measured by the Kjeldahl method; TP was determined by Mo-Sb colorimetric method; TK was determined by NaOH melting and analyzed using an atomic spectrophotometry; AN was determined by diffusion-absorption method; AP was quantified by colorimetric analysis following extraction of soil with 0.5 mol L−1 NaHCO3; AK was measured using 1.0 mol L−1 CH3COONH4 extraction; POC was determined by sodium hexametaphosphate dispersion method; AOC was measured by potassium permanganate oxidation method; SUC was measured by 3,5-dinitrosalicylic acid colorimetric determination method; URE was measured by phenol-sodium hypochlorite indophenol colorimetry method; amount of bacteria (B), fungi (F), actinomycetes (A), gram-positive bacteria (GP), gram-negative bacteria (GN) was measured by the Bligh–Dyer method; utilization of sugars (S), amino acids (AA), phenolic acids (PA), carboxylic acids (CA), amines (AM) and polymers (P) by microorganism was measured using commercial Biolog EcoPlate (Biolog Inc., CA, USA).Shannon index (H), Simpson index (D), and evenness index (E) were calculated by the following equations:$$ {text{AWCD}} = sum {(C_{i} – R_{i} )} /n $$$$ {text{H}} = – sum {P_{i} } (ln P_{i} )quad P_{i} = (C_{i} – R_{i} )/sum {(C_{i} – R_{i} } ) $$$$ {text{D}} = 1 – sum P _{i}^{2} $$$$ {text{E}} = {text{H}}/ln {text{S}} $$where n is the 31 carbon sources on the ECO board; Ci and Ri and are the optical density values of the microwell and the control well respectively; Pi is the ratio of the absorbance of a particular well i to the sums of absorbance of all 31well at 120 h; S is the number of color change holes, which represents the number of carbon source used by the microbial community; Average well color development (AWCD), representing the overall carbon substrate utilization potential of cultural microbial communities across all wells per plate.In order to investigate the aggregate structure, all bulk clod samples from each plot were carefully mixed and then gently sieved to pass through a 10-mm sieve. According to the wet-sieving and dry-sieving protocol, the tested soil was fractionated into  > 5, 2 ~ 5, 1 ~ 2, 0.25 ~ 1 and  0.25} right)} }}{{sumnolimits_{{i = 1}}^{n} {(w_{i} )} }} times 100% $$$$ {text{D – MWD}}left( {{text{W – MWD}}} right) = sumlimits_{{i = 1}}^{n} {(bar{d}_{i} w_{i} )} $$$$ {text{D – GMD}}left( {{text{W – GMD}}} right) = exp left[ {frac{{sumlimits_{{i = 1}}^{n} {m_{i} ln bar{d}_{i} } }}{{sumlimits_{{i = 1}}^{n} {m_{i} } }}} right] $$where DR0.25 and WR0.25 are the proportion of  > 0.25 mm soil mechanical-stable aggregates and water-stable aggregates, respectively; D-MWD and W-MWD are the mean weight diameter of mechanical-stable aggregates and water-stable aggregates (mm), respectively; D-GMD and W-GMD are the mean geometric diameter of mechanical-stable aggregates and water-stable aggregates (mm), respectively; mi is mass in size fraction i; and wi is the proportion (%) of the total sample mass in size fraction i and di is mean diameter of size fraction i.Evaluation of soil fertilityGrey correlation analysisGrey correlation analysis refers to a method of quantitative description and comparison of a system’s development and change. The basic idea is to determine whether they are closely connected by determining the geometric similarity of the reference data column and several comparison data columns, which reflects the degree of correlation between the curves29. The grey relational coefficient ξi (k) can be expressed as follows:$$ xi (k) = frac{{mathop {min }limits_{i} mathop {min }limits_{k} left| {x_{0} (k) – x_{i} (k)} right| + rho mathop {max }limits_{i} mathop {max }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|}}{{left| {x_{0} (k) – x_{i} (k)} right| + rho mathop {max }limits_{i} max left| {mathop {x_{0} (k)}limits_{k} – x_{i} (k)} right|}} $$$$ x_{i}^{k} = frac{{x_{i}^{k} }}{{mathop {max }limits_{i} x_{i}^{k} }} $$$$ gamma _{i} = frac{1}{n}sumlimits_{{k = i}}^{n} {xi _{i} } (k) $$$$ omega _{{i(gamma )}} = frac{1}{n}sumlimits_{{i = 1}}^{n} {gamma _{i} } $$$$ G_{i}^{k} = sumlimits_{{i = 1}}^{n} {left( {xi _{i} times omega _{{i(gamma )}} } right),quad k = 1,2,3, ldots ,n;quad i = 1,2,3, ldots ,n} $$where (x_{i}^{k}) The i trait observation value of treatment k; (mathop {max }limits_{i} x_{i}^{k}) The maximum value of the i trait in all treatments; (mathop {min }limits_{i} x_{i}^{k}) The minimum value of the i trait in all treatments; (mathop {min }limits_{i} mathop {min }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|) Second level minimum difference; (mathop {max }limits_{i} mathop {max }limits_{k} left| {x_{0} (k) – x_{i} (k)} right|) Second level maximum difference; (rho) Resolution coefficient (0.5).Principal component analysisPrincipal component analysis refers to a multivariate statistical method that converts multiple indicators into several comprehensive indicators by the idea of dimensionality under the premise of losing little information. It simplifies the complexity in high-dimensional data while retaining trends and patterns30.Cluster analysisCluster analysis comprises a range of methods for classifying multivariate data into subgroups. Using the euclidean distance as a measure of the difference in the fertility of each treatment, the shortest distance method was used to systematically cluster according to the degree of intimacy and similarity of soil fertility levels. By organizing multivariate data into such subgroups, clustering can help reveal the characteristics of any structure or patterns present31.Statistical analysisCorrelation analysis was performed to assess the relationships between rapeseed yield and soil attributes. Grey correlation analysis and principal component analysis were performed to establish comprehensive score for soil fertility and the main soil factors affecting rapeseed yield. Cluster analysis was used to cluster the soil fertility of each treatment. All the statistical analyses were performed using Excel 2018 (Office Software, Inc., Beijing, China) and SPSS 17.0 (SPSS Inc., Chicago, Illinois, USA). The comparisons of treatment means were based on LSD test at the P  More

  • in

    Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles

    The cell modelGrowth rate of a cellThe growth rate of a bacteria cell depends on the acquisition of C (from the particle) and N (from the particle and through ({{rm{N}}}_{2}) fixation), as well as on metabolic expenses in terms of C.Uptake of C and NBacteria get C from glucose and both C and N from amino acids. The total amount of C available for the cell from monomers is (units of C per time)$${J}_{{rm{DOC}}}={f}_{{rm{G,C}}}J_{G}+{f}_{{rm{A}},{rm{C}}}{J}_{{rm{A}}},$$
    (8)
    and the amount of N available from monomer is (N per time)$${J}_{{rm{DON}}}={f}_{{rm{A}},{rm{N}}}{J}_{{rm{A}}},$$
    (9)
    where ({J}_{rm{G}}) and ({J}_{rm{A}}) are uptake rates of glucose and amino acids, ({f}_{rm{G,C}}) is the fraction of C in glucose, and ({f}_{rm{A,C}}) and ({f}_{rm{A,N}}) are fractions of C and N in amino acids.The rate of obtaining N through ({{rm{N}}}_{2}) fixation is:$${J}_{{{rm{N}}}_{2}}({{psi }})={{psi }}{M}_{{{rm{N}}}_{2}},$$
    (10)
    where ({psi },(0 < {{psi }} < 1)) regulates ({{rm{N}}}_{2}) fixation rate and fixation can happen at a maximum rate ({M}_{{{rm{N}}}_{2}}). ({{rm{N}}}_{2}) fixation is only limited by the maximum ({{rm{N}}}_{2}) fixation rate as dissolved dinitrogen (({{rm{N}}}_{2})) gas in seawater is assumed to be unlimited70.The total uptake of C and N from different sources becomes$${J}_{{rm{C}}}={J}_{{rm{DOC}}}$$ (11) $${J}_{{rm{N}}}({{psi }})={J}_{{rm{DON}}}+{J}_{{{rm{N}}}_{2}}({{psi }})$$ (12) CostsRespiratory costs of cellular processes together with ({{rm{N}}}_{2}) fixation and its associated ({{rm{O}}}_{2}) removal cost depend on the cellular ({{rm{O}}}_{2}) concentration. Two possible scenarios can be observed: Case 1: When ({O}_{2}) concentration is sufficient to maintain aerobic respiration Respiratory costs for bacterial cellular maintenance can be divided into two parts: one dependent on limiting substrates and the other one is independent of substrate concentration71. Here we consider only the basal respiratory cost ({R}_{rm{B}}{x}_{rm{B}}), which is independent of the limiting substrates and is assumed as proportional to the mass of the cell ({x}_{B}) (μg C). In order to solubilize particles, particle-attached bacteria produce ectoenzymes that cleave bonds to make molecules small enough to be transported across the bacterial cell membrane. Cleavage is represented by a biomass-specific ectoenzyme production cost ({R}_{rm{E}})72. The metabolic costs associated with the uptake of hydrolysis products and intracellular processing are assumed to be proportional to the uptake (({J}_{i})): ({R}_{{rm{G}}}{J}_{{rm{G}}}) and ({R}_{{rm{A}}}{J}_{{rm{A}}}) where the ({R}_{i})’s are costs per unit of resource uptake. In a similar way, the metabolic cost of ({{rm{N}}}_{2}) fixation is assumed as proportional to the ({{rm{N}}}_{2}) fixation rate: ({R}_{{{rm{N}}}_{2}}{rho }_{{rm{CN}},{rm{B}}}{J}_{{{rm{N}}}_{2}}), where ({rho }_{{rm{CN}},{rm{B}}}) is the bacterial C:N ratio. If we define all the above costs as direct costs, then the total direct respiratory cost becomes$${R}_{{rm{D}}}({{psi }})={R}_{{rm{B}}}{x}_{{rm{B}}}+{R}_{{rm{E}}}{x}_{{rm{B}}}+{R}_{{rm{G}}}{J}_{{rm{G}}}+{R}_{{rm{A}}}{J}_{{rm{A}}}+{R}_{{{rm{N}}}_{2}}{rho }_{{rm{CN}},{rm{B}}}{J}_{{{rm{N}}}_{2}}({{psi }}).$$ (13) Indirect costs related to ({{rm{N}}}_{2}) fixation arises from the removal of ({{rm{O}}}_{2}) from the cell and the production/replenishment of nitrogenase as the enzyme is damaged by ({{rm{O}}}_{2}). The cell can remove ({{rm{O}}}_{2}) either by increasing respiration73 or by increasing the production of nitrogenase enzyme itself74. Here we consider only the process of ({{rm{O}}}_{2}) removal by increasing respiration. To calculate this indirect cost, the concentration of ({{rm{O}}}_{2}) present in the cell needs to be estimated.Since the time scale of ({{rm{O}}}_{2}) concentration inside a cell is short, we have assumed a pseudo steady state inside the cell; the ({{rm{O}}}_{2}) diffusion rate inside a cell is always balanced by the respiration rate14, which can be expressed as$${rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2}}={R}_{{rm{D}}}left({{psi }}right).$$ (14) Here ({rho }_{{rm{CO}}}) is the conversion factor of respiratory ({{rm{O}}}_{2}) to C equivalents and ({F}_{{{rm{O}}}_{2}}) is the actual ({{rm{O}}}_{2}) diffusion rate into a cell from the particle and can be calculated as$${F}_{{{rm{O}}}_{2}}=4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}left({X}_{{{rm{O}}}_{2}}-{X}_{{{rm{O}}}_{2},{rm{C}}}right),$$ (15) where ({r}_{{rm{B}}}) is the cell radius, ({X}_{{{rm{O}}}_{2}}) is the local ({{rm{O}}}_{2}) concentration inside the particle, ({X}_{rm{{O}}_{2},{rm{C}}}) is the cellular ({{rm{O}}}_{2}) concentration, and ({K}_{{{rm{O}}}_{2}}) is the effective diffusion coefficient of ({{rm{O}}}_{2}) over cell membrane layers. The effective diffusion coefficient can be calculated according to Inomura et al.14 in terms of diffusion coefficient inside particles (({bar{D}}_{{{rm{O}}}_{2}})), the diffusivity of cell membrane layers relative to water (({varepsilon }_{{rm{m}}})), the radius of cellular cytoplasm (({r}_{{rm{C}}})), and the thickness of cell membrane layers (({L}_{{rm{m}}})) as$${K}_{{{rm{O}}}_{2}}={bar{D}}_{{{rm{O}}}_{2}}frac{{varepsilon }_{{rm{m}}}({r}_{{rm{C}}}+{L}_{{rm{m}}})}{{varepsilon }_{{rm{m}}}{r}_{{rm{C}}}+{L}_{{rm{m}}}}.$$ (16) The apparent diffusivity inside particles (({bar{D}}_{{{rm{O}}}_{2}})) is considered as a fraction ({f}_{{{rm{O}}}_{2}}) of the diffusion coefficient in seawater (({D}_{{{rm{O}}}_{2}}))$${bar{D}}_{{{rm{O}}}_{2}}={f}_{{{rm{O}}}_{2}}{D}_{{{rm{O}}}_{2}}.$$ (17) Combining (14) and (15) gives the cellular ({{rm{O}}}_{2}) concentration ({X}_{{rm{O}}_{2},{rm{C}}}) as$${X}_{{{rm{O}}}_{2},{rm{C}}}={{max }}left[0,{X}_{{{rm{O}}}_{2}}-frac{{R}_{{rm{D}}}left({{psi }}right)}{4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}{rho }_{{rm{CO}}}}right].$$ (18) If there is excess ({{rm{O}}}_{2}) present in the cell after respiration (({X}_{{rm{O}}_{2},{rm{C}}} , > , 0)), then the indirect cost of removing the excess ({{rm{O}}}_{2}) to be able to perform ({{rm{N}}}_{2}) fixation can be written as$${R}_{{{rm{O}}}_{2}}left({{psi }}right)=Hleft({{psi }}right){rho }_{{rm{CO}}}4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}{X}_{rm{{O}}_{2},{rm{C}}},$$
    (19)
    where (H({{psi }})) is the Heaviside function:$$Hleft({{psi }}right)=left{begin{array}{cc}0,&{rm{if}}{,}{{psi }}=0\ 1, &{rm{if}}{,}{{psi }} , > , 0end{array}right..$$
    (20)
    Therefore, the total aerobic respiratory cost becomes:$${R}_{{rm{tot}},{rm{A}}}left({{psi }}right)={R}_{{rm{D}}}left({{psi }}right)+{R}_{{{rm{O}}}_{2}}left({{psi }}right).$$
    (21)

    Case 2: Anaerobic respiration
    When available ({{rm{O}}}_{2}) is insufficient to maintain aerobic respiration (({R}_{{rm{tot}}}left({{psi }}right) , > , {rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2},{{max }}})), cells use ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) for respiration. The potential ({{{rm{NO}}}_{3}}^{-}) uptake, ({J}_{{{rm{NO}}}_{3},{rm{pot}}}), is$${J}_{{{rm{NO}}}_{3},{rm{pot}}}={M}_{{{rm{NO}}}_{3}}frac{{A}_{{{rm{NO}}}_{3}}{X}_{{{rm{NO}}}_{3}}}{{A}_{{{rm{NO}}}_{3}}{X}_{{{rm{NO}}}_{3}}+{M}_{{{rm{NO}}}_{3}}},$$
    (22)
    where ({M}_{{{rm{NO}}}_{3}}) and ({A}_{{{rm{NO}}}_{3}}) are maximum uptake rate and affinity for ({{{rm{NO}}}_{3}}^{-}) uptake, respectively. However, the actual rate of ({{{rm{NO}}}_{3}}^{-}) uptake, ({J}_{{{rm{NO}}}_{3}}), is determined by cellular respiration and can be written as$${J}_{{{rm{NO}}}_{3}}={{min }}left({J}_{{{rm{NO}}}_{3},{rm{pot}}},{{max }}left(0,frac{{R}_{{rm{tot}},{rm{A}}}left({{psi }}right)-{rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2},{{max }}}}{{rho }_{{rm{C}}{{rm{NO}}}_{3}}}right)right),$$
    (23)
    where ({rho }_{{rm{C}}{{rm{NO}}}_{3}}) is the conversion factor of respiratory ({{{rm{NO}}}_{3}}^{-}) to C equivalents and the maximum ({{rm{O}}}_{2}) diffusion rate into a cell ({F}_{{{rm{O}}}_{2},{{max }}}) can be obtained by making cellular ({{rm{O}}}_{2}) concentration ({X}_{{{rm{O}}}_{2},{rm{c}}}) zero in (15) as$${F}_{{{rm{O}}}_{2},{{max }}}=4{rm{pi }}{r}_{{rm{B}}}{K}_{{{rm{O}}}_{2}}{X}_{{{rm{O}}}_{2}},$$
    (24)
    Further, in the absence of sufficient ({{{rm{NO}}}_{3}}^{-}), the cell uses ({{{rm{SO}}}_{4}}^{2-}) as an electron acceptor for respiration. Since the average concentration of ({{{rm{SO}}}_{4}}^{2-}) in seawater is 29 mmol L−1 75, ({{{rm{SO}}}_{4}}^{2-}) is a nonlimiting nutrient for cell growth and the potential uptake rate of ({{{rm{SO}}}_{4}}^{2-}) is mainly governed by the maximum uptake rate as$${J}_{{{rm{SO}}}_{4},{rm{pot}}}={M}_{{{rm{SO}}}_{4}},$$
    (25)
    where ({M}_{{{rm{SO}}}_{4}}) is the maximum uptake rate for ({{{rm{SO}}}_{4}}^{2-}) uptake. The actual rate of ({{{rm{SO}}}_{4}}^{2-}) uptake, ({J}_{{{rm{SO}}}_{4}}), can be written as$${J}_{{{rm{SO}}}_{4}}={{min }}left({J}_{{{rm{SO}}}_{4},{rm{pot}}},{{max }}left(0,frac{{R}_{{rm{tot}},{rm{A}}}left({{psi }}right)-{rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2},{{max }}}-{rho }_{{rm{CN}}{{rm{O}}}_{3}}{F}_{{{rm{NO}}}_{3},{rm{pot}}}}{{rho }_{{rm{C}}{{rm{SO}}}_{4}}}right)right),$$
    (26)
    where ({rho }_{{rm{C}}{{rm{SO}}}_{4}}) is the conversion factor of respiratory ({{{rm{SO}}}_{4}}^{2-}) to C equivalents.According to formulations (23) and (26), ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) uptake occurs only when the diffusive flux of ({{rm{O}}}_{2}), and both ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) are insufficient to maintain respiration(.) Moreover, the uptake rates of ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) are regulated according to the cells’ requirements.Uptakes of ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) incur extra metabolic costs ({R}_{{{rm{NO}}}_{3}}{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}) and ({R}_{{{rm{SO}}}_{4}}{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}), where ({R}_{{{rm{NO}}}_{3}}) and ({R}_{{{rm{SO}}}_{4}}) are costs per unit of ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) uptake. The total respiratory cost can be written as$${R}_{{rm{tot}}}left({{psi }}right)={R}_{{rm{tot}},{rm{A}}}left({{psi }}right)+{R}_{{{rm{NO}}}_{3}}{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}+{R}_{{{rm{SO}}}_{4}}{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}.$$
    (27)
    Synthesis and growth rateThe assimilated C and N are combined to synthesize new structure. The synthesis rate is constrained by the limiting resource (Liebig’s law of the minimum) and by available electron acceptors such that the total flux of C available for growth ({J}_{{rm{tot}}}) (μg C d−1) is:$${J}_{{rm{tot}}}left({{psi }}right)={{min }}left[{J}_{{rm{C}}}-{R}_{{rm{tot}}}left({{psi }}right),{rho }_{{rm{CN,B}}}{J}_{{rm{N}}}left({{psi }}right),{rho }_{{rm{CO}}}{F}_{{{rm{O}}}_{2}}+{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}+{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}right].$$
    (28)
    Here, the total available C for growth is ({J}_{{rm{C}}}-{R}_{{rm{tot}}}({{psi }})), the C required to synthesize biomass from N source is ({rho }_{{rm{CN}},B}{J}_{rm{N}}), and the C equivalent inflow rate of electron acceptors to the cell is ({rho }_{{rm{CO}}}{F}_{{rm{O}}_{2}}+{rho }_{{rm{C}}{{rm{NO}}}_{3}}{J}_{{{rm{NO}}}_{3}}+{rho }_{{rm{C}}{{rm{SO}}}_{4}}{J}_{{{rm{SO}}}_{4}}). We assume that excess C or N is released from the cell instantaneously.Synthesis is not explicitly limited by a maximum synthesis capacity; synthesis is constrained by the C and N uptake in the functional responses (Eqs. 34 and 35). The division rate (mu) of the cell (d−1) is the total flux of C available for growth divided by the C mass of the cell (({x}_{rm{B}})):$$mu ({{psi }})={J}_{{rm{tot}}}({{psi }})/{x}_{rm{B}}.$$
    (29)
    The resulting division rate, (mu), is a measure of the bacterial fitness and we assume that the cell regulates its ({{rm{N}}}_{2}) fixation rate depending on the environmental conditions to gain additional N while maximizing its growth rate. The optimal value of the parameter regulating ({{rm{N}}}_{2}) fixation ({{psi }}) ((0le {{psi }}le 1)) then becomes:$${{{psi }}}^{ast }={{arg }}mathop{{{max }}}limits_{{{psi }}}{mu ({{psi }})},$$
    (30)
    and the corresponding optimal division rate becomes$${mu }^{ast }=mu left({{{psi }}}^{ast }right).$$
    (31)
    The particle modelWe consider a sinking particle of radius ({r}_{{rm{P}}}) (cm) and volume ({V}_{{rm{P}}}) (cm3) (Supplementary Fig. S1). The particle contains facultative nitrogen-fixing bacterial population (B(r)) (cells L−1), polysaccharides ({C}_{{rm{P}}}(r)) (μg G L−1), and polypeptides ({P}_{{rm{P}}}(r)) (μg A L−1) at a radial distance (r) (cm) from the center of the particle, where G and A stand for glucose and amino acids. We assume that only fractions ({f}_{{rm{C}}}) and ({f}_{{rm{P}}}) of these polymers are labile (({C}_{{rm{L}}}(r)={f}_{{rm{C}}}{C}_{{rm{P}}}(r),) ({P}_{{rm{L}}}(r)={f}_{{rm{P}}}{P}_{{rm{P}}}(r))), i.e., accessible by bacteria. Bacterial enzymatic hydrolysis converts the labile polysaccharides and polypeptides into monosaccharides (glucose) ((G) μg G L−1) and amino acids ((A) μg A L−1) that are efficiently taken up by bacteria. Moreover, the particle contains ({{rm{O}}}_{2}), ({{{rm{NO}}}_{3}}^{-}), and ({{{rm{SO}}}_{4}}^{2-}) with concentrations ({X}_{{{rm{O}}}_{2}}(r)) (μmol O2 L−1), ({X}_{{{rm{NO}}}_{3}}(r)) (μmol NO3 L−1), and ({X}_{{{rm{SO}}}_{4}}(r)) (μmol SO4 L−1). Glucose and amino acids diffuse out of the particle whereas ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) diffuse into the particle from the surrounding environment. Due to the high concentration of ({{{rm{SO}}}_{4}}^{2-}) in ocean waters, we assume that ({{{rm{SO}}}_{4}}^{2-}) is not diffusion limited inside particles, its uptake is limited by the maximum uptake capacity due to physical constraint. The interactions between particle, cells, and the surrounding environment are explained in Supplementary Fig. S1 and equations are provided in Table 1 of the main text.We assume that labile polysaccharide (({C}_{{rm{L}}})) and polypeptide (({P}_{{rm{L}}})) are hydrolyzed into glucose and amino acids at rates ({J}_{{rm{C}}}) and ({J}_{{rm{P}}}) with the following functional form$${J}_{{rm{C}}}={h}_{{rm{C}}}frac{{A}_{{rm{C}}}{C}_{{rm{L}}}}{{h}_{{rm{C}}}+{A}_{{rm{C}}}{C}_{{rm{L}}}}$$
    (32)
    $${J}_{{rm{P}}}={h}_{{rm{P}}}frac{{A}_{{rm{P}}}{P}_{{rm{L}}}}{{h}_{{rm{P}}}+{A}_{{rm{P}}}{P}_{{rm{L}}}}$$
    (33)
    where ({h}_{{rm{C}}}) and ({h}_{{rm{P}}}) are maximum hydrolysis rates of the carbohydrate and peptide pool, and ({A}_{{rm{C}}}) and ({A}_{{rm{P}}}) are respective affinities. ({J}_{{rm{G}}}) and ({J}_{{rm{A}}}) represent uptake of glucose and amino acids:$${J}_{{rm{G}}}={M}_{{rm{G}}}frac{{A}_{{rm{G}}}G}{{A}_{{rm{G}}}G+{M}_{{rm{G}}}}$$
    (34)
    $${J}_{{rm{A}}}={M}_{{rm{A}}}frac{{A}_{{rm{A}}}A}{{A}_{{rm{A}}}A+{M}_{{rm{A}}}}$$
    (35)
    where ({M}_{{rm{G}}}) and ({M}_{{rm{A}}}) are maximum uptake rates of glucose and amino acids, whereas ({A}_{{rm{G}}}) and ({A}_{{rm{A}}}) are corresponding affinities. Hydrolyzed monomers diffuse out of the particle at a rate ({D}_{{rm{M}}}).({mu }^{ast }) is the optimal division rate of cells (Eq. 31) and ({m}_{rm{B}}) represents the mortality rate (including predation) of bacteria. ({F}_{{{rm{O}}}_{2}}) and ({J}_{{{rm{NO}}}_{3}}) represent the diffusive flux of ({{rm{O}}}_{2}) and the consumption rate of ({{{rm{NO}}}_{3}}^{-}), respectively, through the bacterial cell membrane. ({bar{D}}_{{{rm{O}}}_{2}}) and ({bar{D}}_{{{rm{NO}}}_{3}}) are diffusion coefficients of ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) inside the particle.At the center of the particle ((r=0)) the gradient of all quantities vanishes:$${left.frac{partial G}{partial r}right|}_{r=0}={left.frac{partial A}{partial r}right|}_{r=0}={left.frac{partial {X}_{{{rm{O}}}_{2}}}{partial r}right|}_{r=0}={left.frac{partial {X}_{{rm{N}}{{rm{O}}}_{3}}}{partial r}right|}_{r=0}=0$$
    (36)
    At the surface of the particle ((r={r}_{{rm{P}}})) concentrations are determined by the surrounding environment:$${left.Gright|}_{r={r}_{{rm{P}}}}={G}_{infty },{left.Aright|}_{r={r}_{{rm{P}}}}={A}_{infty },{left.{X}_{{{rm{O}}}_{2}}right|}_{r={r}_{{rm{P}}}}={X}_{{{rm{O}}}_{2},infty },{left.{X}_{{{rm{NO}}}_{3}}right|}_{r={r}_{{rm{P}}}}={X}_{{{rm{NO}}}_{3},infty }$$
    (37)
    where ({G}_{infty },) ({A}_{infty ,}) ({X}_{{{rm{O}}}_{2},infty }) and ({X}_{{{rm{NO}}}_{3},infty }) are concentrations of glucose, amino acids, ({{rm{O}}}_{2}), and ({{{rm{NO}}}_{3}}^{-}) in the environment.Calculation of total N2 fixation rateThe total amount of fixed ({{rm{N}}}_{2}) in a specific size class of particle, ({{rm{N}}}_{{rm{fix}},{rm{P}}}) (({rm{mu }})g N particle−1), is calculated as$${{rm{N}}}_{{rm{fix}},{rm{P}}}=int int 4pi {{r}_{{rm{B}}}}^{2}B{J}_{{{rm{N}}}_{2}}{rm{d}}{r}_{{rm{P}}}{rm{dz}},$$
    (38)
    where ({r}_{{rm{P}}}) (cm) is the particle radius and z (m) represents the water column depth.({{rm{N}}}_{2}) fixation rate per unit volume of water, ({{rm{N}}}_{{rm{fix}},{rm{V}}}left(tright)) (({rm{mu }}{rm{mol}}) N m−3 d−1), is calculated as$${{rm{N}}}_{{rm{fix}},{rm{V}}}=int int 4pi {{r}_{{rm{B}}}}^{2}rho B{J}_{{{rm{N}}}_{2}}n(x){rm{d}}{r}_{{rm{P}}}{rm{d}}x,$$
    (39)
    Here (x) (cm) represents the size range (radius) of particles, (rho) is the fraction of diazotrophs of the total heterotrophic bacteria, and (n(x)) (number of particles per unit volume of water per size increment) is the size spectrum of particles that is most commonly approximated by a power law distribution of the form$$n(x)={n}_{0}{(2x)}^{xi }$$
    (40)
    where ({n}_{0}) is a constant that controls total particle abundance and the slope (xi) represents the relative concentration of small to large particles: the steeper the slope, the greater the proportion of smaller particles and the flatter the slope, and the greater the proportion of larger particles34.Depth-integrated ({{rm{N}}}_{2}) fixation rate, ({{rm{N}}}_{{rm{fix}},{rm{D}}}) (({rm{mu }}{rm{mol}}) N m−2 d−1), can be obtained by$${{rm{N}}}_{{rm{fix}},{rm{D}}}left(tright)=int {{rm{N}}}_{{rm{fix}},{rm{V}}}{rm{d}}z.$$
    (41)
    Assumptions and simplification in the modeling approachAccording to our current model formulation, the particle size remains constant while sinking. However, in nature, particle size is dynamic due to processes like bacterial remineralization, aggregation, and disaggregation. We neglect these complications to keep the model simple and to focus on revealing the coupling between particle-associated environmental conditions and ({{rm{N}}}_{2}) fixation by heterotrophic bacteria. These factors can, however, possibly be incorporated by using in situ data or by using the relationship between carbon content and the diameter of particles48 and including terms for aggregation and disaggregation55.Our model represents a population of facultative heterotrophic diazotrophs that grow at a rate similar to other heterotrophic bacteria but the whole community initiates ({{rm{N}}}_{2}) fixation when conditions become suitable. However, under natural conditions, diazotrophs may only constitute a fraction of the bacterial community, and their proliferation may be gradual21, presumably affected by multiple factors. In such case, our approach will overestimate diazotroph cell concentration and consequently the ({{rm{N}}}_{2}) fixation rate.For simplicity, our approach includes only aerobic respiration, ({{{rm{NO}}}_{3}}^{-}) and ({{{rm{SO}}}_{4}}^{2-}) respiration, although many additional aerobic and anaerobic processes likely occur on particles (e.g Klawonn et al.19). To our knowledge, a complete picture of such processes, their interactions and effects on particle biochemistry is unavailable. For example, we have assumed that when ({{rm{O}}}_{2}) and ({{{rm{NO}}}_{3}}^{-}) are insufficient to maintain respiration, heterotrophic bacteria start reducing ({{{rm{SO}}}_{4}}^{2-}). However, ({{{rm{SO}}}_{4}}^{2-}) reduction has been detected only with a significant lag after the occurrence of anaerobic conditions, suggesting it as a slow adapted process76, whereas we assume it to be instantaneous. On the other hand, the lag may not be real but due to a so called cryptic sulfur cycle, where ({{{rm{SO}}}_{4}}^{2-}) reduction is accompanied by concurrent sulfide oxidation effectively masking sulfide production77. Hopefully, future insights into interactions between diverse aerobic and anaerobic microbial processes can refine our modelling approach and fine-tune predictions of biochemistry in marine particles.Procedure of numerically obtaining optimal N2 fixation rateTo avoid making the optimization in Eq. (30) at every time step during the simulation, a lookup table of ({mu }^{ast }) (Eq. 31) over realistic ranges of the four resources (glucose, amino acids, ({{rm{O}}}_{2}), and ({{{rm{NO}}}_{3}}^{-})) and the parameter determining ({{rm{N}}}_{2}) fixation rate (({{psi }})) was created at the beginning of the simulation.The effects of temperature on N2 fixation rateTo examine the role of temperature variation on ({{rm{N}}}_{2}) fixation rate in sinking particles, we consider hydrolysis of polysaccharide and polypeptide, uptake of glucose and amino acids, uptake of ({{{rm{NO}}}_{3}}^{-}), respiration, and diffusion dependent on temperature. Apart from diffusion, all other processes are multiplied by a factor ({Q}_{10}) that represents the factorial increase in rates with ({10}^{0})C temperature increase. The rate (R) at a given temperature (T) is then$$R={R}_{{rm{ref}}}{{Q}_{10}}^{(T-{T}_{{rm{ref}}})/10}.$$
    (42)
    Here the reference rate ({R}_{{rm{ref}}}) is defined as the rate at the reference temperature ({T}_{{rm{ref}}}.) We set the reference temperature ({T}_{{rm{ref}}}) at room temperature of 20 °C. The effect of temperature on the diffusion coefficient D for glucose, amino acids, ({{rm{O}}}_{2}), and ({{{rm{NO}}}_{3}}^{-}) is described by Walden’s rule:$$D={D}_{{rm{ref}}}{eta }_{{rm{ref}}}T/(eta {T}_{{rm{ref}}})$$
    (43)
    where (eta) is the viscosity of water at the given temperature (T), and ({D}_{{rm{ref}}}) and ({eta }_{{rm{ref}}}) are diffusion coefficient and viscosity at ({T}_{{rm{ref}}}).({Q}_{10}) values for different enzyme classes responsible for hydrolysis (({Q}_{10,{rm{h}}})) lie within the range 1.1–2.978. Here, we have chosen ({Q}_{10,{rm{h}}}=2) for hydrolysis from the middle of the prescribed range. The ({Q}_{10}) values for uptake affinities (({Q}_{10,{rm{A}}})) are taken as 1.579. ({Q}_{10,{rm{R}}}=2) is chosen for all parameters related to respiration (({R}_{{rm{B}}}), ({R}_{{rm{E}}}), ({R}_{{rm{G}}}), ({R}_{{rm{A}}}), ({R}_{{{rm{N}}}_{2}}), ({R}_{{{rm{NO}}}_{3}}), ({R}_{{{rm{SO}}}_{4}}))80. ({R}_{{rm{ref}}}) and ({D}_{{rm{ref}}}) are the values of (R)’s and (D)’s provided in Table S1. The reference viscosity (({eta }_{{rm{ref}}})) and viscosities ((eta)) at different temperatures are taken from Jumars et al.80. More

  • in

    Phytotoxic effects of invasive Ageratina adenophora on two native subtropical shrubs in Nepal

    1.Cronk, Q. C. B. & Fuller, J. L. Plant Invaders: The Threat to Natural Ecosystems (Chapman and Hall, 1995).
    Google Scholar 
    2.Tererai, F. & Wood, A. R. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. S. Afr. J. Bot. 95, 152–158 (2014).Article 

    Google Scholar 
    3.Yu, F., Akin-Fajiye, M., Thapa Magar, K., Ren, J. & Gurevitch, J. A global systematic review of ecological field studies on two major invasive plant species, Ageratina adenophora and Chromolaena odorata. Divers. Distrib. 22, 1174–1185 (2016).Article 

    Google Scholar 
    4.Niu, H. B., Liu, W. X., Wan, F. H. & Liu, B. An invasive aster (Ageratina adenophora) invades and dominates forest understories in China: Altered soil microbial communities facilitate the invader and inhibit natives. Plant Soil 294, 73–85 (2007).CAS 
    Article 

    Google Scholar 
    5.Wang, J. J. Ageratina adenophora (Spreng.). In Biology and Management of Invasive Alien Species in Agriculture and Forestry (eds Wan, F. H. et al.) 651–661 (Science Press, 2005).
    Google Scholar 
    6.Yang, G., Gui, F., Liu, W. & Wan, F. Crofton weed Ageratina adenophora (Sprengel). In Biological Invasions and Its Management in China (eds Wan, F. et al.) 111–129 (Springer, 2017).Chapter 

    Google Scholar 
    7.Shrestha, B. B. Invasive alien plant species in Nepal. In Frontiers of Botany (eds Jha, P. K. et al.) 269–284 (Tribhuvan University, 2016).
    Google Scholar 
    8.Alka, C., Adhikari, B. S., Joshi, N. C. & Rawat, G. S. Patterns of invasion by crofton weed (Ageratina adenophora) in Kailash sacred landscape region of western Himalaya (India). Environ. Conserv. J. 20, 9–17 (2019).
    Google Scholar 
    9.Balami, S. & Thapa, L. B. Herbivory damage in native Alnus nepalensis and invasive Ageratina adenophora. Bot. Orient. 11, 7–11 (2017).Article 

    Google Scholar 
    10.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant communities and Ageratina adenophora invasion in lower montane vegetation, central Nepal. Int. J. Ecol. Dev. 31, 35–49 (2016).
    Google Scholar 
    11.Thapa, L. B., Thapa, H. & Magar, B. G. Perception, trends and impacts of climate change in Kailali District, Far West Nepal. Int. J. Environ. 4, 62–76 (2015).Article 

    Google Scholar 
    12.Thapa, N. & Maharjan, M. Invasive alien species: Threats and challenges for biodiversity conservation (A case study of Annapurna Conservation Area, Nepal). In Proc. International Conference on Invasive Alien Species Management, Chitwan, March 25–27, 2014 (eds Thapa, G. J. et al.) 18–22 (National Trust for Nature Conservation, 2014).
    Google Scholar 
    13.Tiwari, S., Adhikari, B., Siwakoti, M. & Subedi, K. An Inventory and Assessment of Invasive Alien Plant Species of Nepal (IUCN Nepal, 2005).
    Google Scholar 
    14.Tripathi, R. S., Yadav, A. S. & Kushwaha, S. P. S. Biology of Chromolaena odorata and Ageratina adenophora. In Invasive Alien Plants: An Ecological Appraisal for the Indian Subcontinent (eds Bhatt, J. R. et al.) 43–56 (CAB International Publishing, 2012).
    Google Scholar 
    15.Fu, D., Wu, X., Huang, N. & Duan, C. Effects of the invasive herb Ageratina adenophora on understory plant communities and tree seedling growth in Pinus yunnanensis forests in Yunnan, China. J. For. Res. 23, 112–119 (2018).CAS 
    Article 

    Google Scholar 
    16.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. “Soaked in rainwater” effect of Ageratina adenophora on seedling growth and development of native tree species in Nepal. Flora 263, 151554 (2020).Article 

    Google Scholar 
    17.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Airborne and belowground phytotoxicity of invasive Ageratina adenophora on native species in Nepal. Plant Ecol. 221, 883–892 (2020).Article 

    Google Scholar 
    18.Wan, F. et al. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci. China Life Sci. 53, 1291–1298 (2010).PubMed 
    Article 

    Google Scholar 
    19.Thapa, L. B., Kaewchumnong, K., Sinkkonen, A. & Sridith, K. Plant invasiveness and target plant density: High densities of native Schima wallichii seedlings reduce negative effects of invasive Ageratina adenophora. Weed Res. 57, 72–80 (2017).CAS 
    Article 

    Google Scholar 
    20.Wan, H., Liu, W. & Wan, F. Allelopathic effect of Ageratina adenophora (Spreng.) leaf litter on four herbaceous plants in invaded regions. Chin. J. Eco-Agric. 19, 130–134 (2011).ADS 
    Article 

    Google Scholar 
    21.Yang, G. Q., Wan, F. H., Guo, J. Y. & Liu, W. X. Cellular and ultrastructural changes in the seedling roots of upland rice (Oryza sativa) under the stress of two allelochemicals from Ageratina adenophora. Weed Biol. Manage. 11, 152–159 (2011).CAS 
    Article 

    Google Scholar 
    22.Zhang, F., Guo, J., Chen, F., Liu, W. & Wan, F. Identification of volatile compounds released by leaves of the invasive plant croftonweed (Ageratina adenophora, Compositae), and their inhibition of rice seedling growth. Weed Sci. 60, 205–211 (2012).CAS 
    Article 

    Google Scholar 
    23.Inderjit, E. H. et al. Volatile chemicals from leaf litter are associated with invasiveness of a Neotropical weed in Asia. Ecology 92, 316–324 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Yang, G. Q., Qiu, W. R., Jin, Y. N. & Wan, F. H. Potential allelochemicals from root exudates of invasive Ageratina adenophora. Allelopathy J. 32, 233 (2013).
    Google Scholar 
    25.Zhu, X. Z., Guo, J., Shao, H. & Yang, G. Q. Effects of allelochemicals from Ageratina adenophora (Spreng.) on its own autotoxicity. Allelopathy J. 34, 253 (2014).
    Google Scholar 
    26.Latif, S., Chiapusio, G. & Weston, L. A. Allelopathy and the role of allelochemicals in plant defence. Adv. Bot. Res. 82, 19–54 (2017).CAS 
    Article 

    Google Scholar 
    27.Siggia, S. Importance of functional group determination in organic quantitative analysis. J. Chem. Educ. 27(3), 141 (1950).Article 

    Google Scholar 
    28.Rogers, E. R., Zalesny, R. S., Hallett, R. A., Headlee, W. L. & Wiese, A. H. Relationships among root–shoot ratio, early growth, and health of hybrid poplar and willow clones grown in different landfill soils. Forests 10, 49 (2019).Article 

    Google Scholar 
    29.Thornley, J. H. M. A balanced quantitative model for root: Shoot ratios in vegetative plants. Ann. Bot. 36, 431–441 (1972).Article 

    Google Scholar 
    30.Mašková, T. & Herben, T. Root: Shoot ratio in developing seedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 8, 7143–7150 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Das, M. B. B., Acharya, B. D., Saquib, M. & Chettri, M. K. Effect of aqueous extract and compost of invasive weed Ageratina adenophora on seed germination and seedling growth of some crops and weeds. J. Biodivers. Conserv. Bioresour. Manage. 4, 11–20 (2018).CAS 
    Article 

    Google Scholar 
    32.Zhou, Z. Y. et al. Phenolics from Ageratina adenophora roots and their phytotoxic effects on Arabidopsis thaliana seed germination and seedling growth. J. Agric. Food Chem. 61, 11792–11799 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Zhang, M. et al. Bioactive quinic acid derivatives from Ageratina adenophora. Molecules 18, 14096–14104 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Dong, L. M. et al. Two new thymol derivatives from the roots of Ageratina adenophora. Molecules 22, 592 (2017).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    35.Zhao, X. et al. Terpenes from Eupatorium adenophorum and their allelopathic effects on Arabidopsis seeds germination. J. Agric. Food Chem. 57, 478–482 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Kollmann, J., Brink-Jensen, K., Frandsen, S. I. & Hansen, M. K. Uprooting and burial of invasive alien plants: A new tool in coastal restoration? Restor. Ecol. 19(3), 371–378 (2011).Article 

    Google Scholar 
    37.Jiao, Y. et al. In situ aerobic composting eliminates the toxicity of Ageratina adenophora to maize and converts it into a plant-and soil-friendly organic fertilizer. J. Hazard. Mater. 410, 124554 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Chen, X. et al. (2015) Impacts of four invasive Asteraceae on soil physico-chemical properties and AM fungi community. Am. J. Plant Sci. 6, 2734 (2009).Article 
    CAS 

    Google Scholar 
    39.Yu, F. K. et al. Impacts of Ageratina adenophora invasion on soil physical–chemical properties of Eucalyptus plantation and implications for constructing agro-forest ecosystem. Ecol. Eng. 64, 130–135 (2014).Article 

    Google Scholar 
    40.Nirola, R. & Jha, P. K. Phytodiversity and soil study of Shiwalik Hills of Ilam, Nepal: An ecological perspective. Ecoprint 18, 77–83 (2011).Article 

    Google Scholar 
    41.Lu, J. S., Shen, T., Guo, Z., Shen, X. W. & Zheng, S. Z. The chemical constituents of Elsholtzia blanda. Acta Bot. Sin. 43, 545–550 (2001).CAS 

    Google Scholar 
    42.Singh, T. T., Sharma, H. M., Devi, A. R. & Sharma, H. R. Plants used in the treatment of piles by the scheduled caste community of Andro village in Imphal East District, Manipur (India). J. Plant Sci. 2, 113–119 (2014).
    Google Scholar 
    43.Malla, B. & Chhetri, R. B. Indigenous knowledge on medicinal non-timber forest products (NTFP) in Parbat district of Nepal. Indo. Glob. J. Pharm. Sci. 2, 213–225 (2012).
    Google Scholar 
    44.Climate-data.org. Chitlang Climate (Nepal) (2021). https://en.climate-data.org/asia/nepal/central-development-region/chitlang-1061755/ (Accessed 2 April 2021).45.Walkley, A. & Black, I. A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934).ADS 
    CAS 
    Article 

    Google Scholar 
    46.Bremner, J. M. & Mulvaney, C. S. Nitrogen-total. In Methods of Soil Analysis, Part 2 (eds Page, A. L. et al.) 595–624 (American Society of Agronomy, 1982).
    Google Scholar 
    47.Olsen, S. R., Cole, C. V., Watanable, F. S. & Dean, L. A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. USDA Circular 939 (U.S. Govt Printing Office, 1954).
    Google Scholar 
    48.Toth, S. J. & Prince, A. L. Estimation of cation-exchange capacity and exchangeable Ca, K, and Na contents of soils by flame photometer techniques. Soil Sci. 67(6), 439–446 (1949).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Bajracharya, D. Experiments in Plant Physiology. 51-52 (Narosa Publishing House, New Delhi, India, 1999). More

  • in

    The rise and fall of proboscidean ecological diversity

    1.Surovell, T., Waguespack, N. & Brantingham, P. J. Global archaeological evidence for proboscidean overkill. Proc. Natl Acad. Sci. USA 102, 6231–6236 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the late Quaternary. Science 360, 310–313 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Faith, J. T., Rowan, J., Du, A. & Barr, W. A. The uncertain case for human-driven extinctions prior to Homo sapiens. Quat. Res. 96, 88–104 (2020).Article 

    Google Scholar 
    4.Cuvier, G. Mémoires sur les Espèces d’Éléphants Vivants et Fossiles. Mémoires de l’Institut des Sciences et Arts 2, 1–22 (1800); https://www.biodiversitylibrary.org/page/16303001#page/175/mode/1up5.Osborn, H. F. The ancestral tree of the Proboscidea. Discovery, evolution, migration and extinction over a 50,000,000 year period. Proc. Natl Acad. Sci. USA 21, 404–412 (1935).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.International Union for Conservation of Nature. The IUCN Red List of Threatened Species Version 2021-1 (IUCN, 2021); https://www.iucnredlist.org7.Maglio, V. J. Origin and evolution of the Elephantidae. Trans. Am. Philos. Soc. 63, 1–149 (1973).Article 

    Google Scholar 
    8.Zhang, H., Wang, Y., Janis, C. M., Goodall, R. H. & Purnell, M. A. An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis. Quat. Int. 445, 60–70 (2017).Article 

    Google Scholar 
    9.Saegusa, H. Stegodontidae and Anancus: keys to understanding dental evolution in Elephantidae. Quat. Sci. Rev. 231, 106176 (2020).Article 

    Google Scholar 
    10.Hempson, G. P., Archibald, S. & Bond, W. J. A continent-wide assessment of the form and intensity of large mammal herbivory in Africa. Science 350, 1056–1061 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article 

    Google Scholar 
    12.Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).Article 

    Google Scholar 
    13.Cantalapiedra, J. L., Hernández Fernández, M., Azanza, B. & Morales, J. Congruent phylogenetic and fossil signatures of mammalian diversification dynamics driven by Tertiary abiotic change. Evolution 69, 2941–2953 (2015).PubMed 
    Article 

    Google Scholar 
    14.Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Sepkoski, J. J. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology 4, 223–251 (1978).Article 

    Google Scholar 
    16.Tassy, P. in European Neogene Mammal Chronology (eds Lindsay, E. H. et al.) 237–252 (Plenus Press, 1989).17.van der Made, J. in Elefantentreich: eine Fossilwelt in Europa (ed. Meller, H.) 340–360 (Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt-Landesmuseum für Vorgeschichte, 2010).18.Saarinen, J. J. et al. Patterns of maximum body size evolution in Cenozoic land mammals: eco-evolutionary processes and abiotic forcing. Proc. Biol. Sci. 281, 20132049 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    19.Fortelius, M. et al. Evolution of Neogene mammals in Eurasia: environmental forcing and biotic interactions. Annu. Rev. Earth Planet Sci. 42, 579–604 (2014).CAS 
    Article 

    Google Scholar 
    20.Marshall, C. R. & Quental, T. B. The uncertain role of diversity dependence in species diversification and the need to incorporate time-varying carrying capacities. Philos. Trans. R. Soc. Lond. B 371, 20150217 (2016).Article 
    CAS 

    Google Scholar 
    21.Vrba, E. S. Evolution, species and fossils: how does life evolve? S. Afr. J. Sci. 76, 61–84 (1980).
    Google Scholar 
    22.Cantalapiedra, J. L., Prado, J. L., Hernández Fernández, M. & Alberdi, M. T. Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses. Science 355, 627–630 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Calandra, I., Göhlich, U. B. & Merceron, G. How could sympatric megaherbivores coexist? Example of niche partitioning within a proboscidean community from the Miocene of Europe. Naturwissenschaften 95, 831–838 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Sanders, W. J. Proboscidea from Kanapoi, Kenya. J. Hum. Evol. 140, 102547 (2020).PubMed 
    Article 

    Google Scholar 
    25.Wang, S. et al. Evolution of Protanancus (Proboscidea, Mammalia) in East Asia. J. Vertebr. Paleontol. 35, e881830 (2015).Article 

    Google Scholar 
    26.Lister, A. M. The role of behaviour in adaptive morphological evolution of African proboscideans. Nature 500, 331–334 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Lister, A. M., Sher, A. V., van Essen, H. & Wei, G. The pattern and process of mammoth evolution in Eurasia. Quat. Int. 126, 49–64 (2005).Article 

    Google Scholar 
    28.Wei, G. et al. New materials of the steppe mammoth, Mammuthus trogontherii, with discussion on the origin and evolutionary patterns of mammoths. Sci. China Earth Sci. 53, 956–963 (2010).Article 

    Google Scholar 
    29.Stanley, S. M. Macroevolution: Patterns and Processes (W. H. Freeman and Company, 1979).30.Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Faith, J. T., Rowan, J., Du, A. & Koch, P. L. Plio-Pleistocene decline of African megaherbivores: no evidence for ancient hominin impacts. Science 362, 938–941 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).PubMed 
    Article 

    Google Scholar 
    33.Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).Article 

    Google Scholar 
    34.Rivals, F., Semprebon, G. M. & Lister, A. M. Feeding traits and dietary variation in Pleistocene proboscideans: a tooth microwear review. Quat. Sci. Rev. 219, 145–153 (2019).Article 

    Google Scholar 
    35.Vrba, E. S. in Living Fossils (eds Eldredge, N. & Stanley, S. M.) 62–79 (Springer, 1984).36.Herrera‐Flores, J. A., Stubbs, T. L. & Benton, M. J. Macroevolutionary patterns in Rhynchocephalia: is the tuatara (Sphenodon punctatus) a living fossil? Palaeontology 60, 319–328 (2017).Article 

    Google Scholar 
    37.Todd, N. E. Trends in proboscidean diversity in the African Cenozoic. J. Mamm. Evol. 13, 1–10 (2006).Article 

    Google Scholar 
    38.Rivals, F., Mol, D., Lacombat, F., Lister, A. M. & Semprebon, G. M. Resource partitioning and niche separation between mammoths (Mammuthus rumanus and Mammuthus meridionalis) and gomphotheres (Anancus arvernensis) in the Early Pleistocene of Europe. Quat. Int. 379, 164–170 (2015).Article 

    Google Scholar 
    39.Sanders, W. J. & Haile-Selassie, Y. A new assemblage of mid-Pliocene proboscideans from the Woranso-Mille area, Afar region, Ethiopia: taxonomic, evolutionary, and paleoecological considerations. J. Mamm. Evol. 19, 105–128 (2012).Article 

    Google Scholar 
    40.van der Geer, A. A. E. et al. The effect of area and isolation on insular dwarf proboscideans. J. Biogeogr. 43, 1656–1666 (2016).Article 

    Google Scholar 
    41.Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Vrba, E. S. in African Biogeography, Climate Change, and Hominid Evolution (eds Bromage, T. G. & Shrenk, F.) 19–39 (Oxford Univ. Press, 1999).43.Stuart, A. J. Late Quaternary megafaunal extinctions on the continents: a short review. Geol. J. 50, 338–363 (2015).Article 

    Google Scholar 
    44.Jukar, A. M., Lyons, S. K., Wagner, P. J. & Uhen, M. D. Late Quaternary extinctions in the Indian subcontinent. Palaeogeogr. Palaeoclimatol. Palaeoecol. 562, 110137 (2021).Article 

    Google Scholar 
    45.Raup, D. M. Extinction: Bad Genes or Bad Luck? (Norton, 1991).46.Cantalapiedra, J. L. et al. Conserving evolutionary history does not result in greater diversity over geological time scales. Proc. Biol. Sci. 286, 20182896 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hublin, J.-J. et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 546, 289–292 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.O’Connell, J. F. et al. When did Homo sapiens first reach Southeast Asia and Sahul? Proc. Natl Acad. Sci. USA 115, 8482–8490 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Ardelean, C. F. et al. Evidence of human occupation in Mexico around the Last Glacial Maximum. Nature 584, 87–92 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Paradis, E. Analysis of Phylogenetics and Evolution with R (Springer, 2012).52.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    53.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    54.MacLatchy, L. M., Desilva, J., Sanders, W. J. & Wood, B. in Cenozoic Mammals of Africa (eds Werdelin, L. & Sanders, W. J.) 471–545 (Univ. California Press, 2010). More

  • in

    Mosquito species identification using convolutional neural networks with a multitiered ensemble model for novel species detection

    System overviewTo address the open-set novel species detection problem, our system leverages a two-step image recognition process. Given an image of a mosquito specimen, the first step uses CNNs trained for species classification to extract relevant features from the image. The second step is a novelty detection algorithm, which evaluates the features extracted by the CNNs in order to detect whether the mosquito is a member of one of the sixteen species known to the CNNs of the system. The second step consists of two stages of machine learning algorithms (tier II and tier III) that evaluate the features generated in step one to separate known species from unknown species. Tier II components evaluate the features directly and are trained using known and unknown species. Tier III evaluates the answers provided by the tier II components to determine the final answer, and is trained using known species, unknown species used for training tier II components, and still more unknown species not seen by previous components. If the mosquito is determined by tier III not to be a member of one of the known species, it is classified as an unknown species, novel to the CNNs. This detection algorithm is tested on truly novel mosquito species, never seen by the system in training, as well as the species used in training. If a mosquito is recognized by the system as belonging to one of the sixteen known species (i.e. not novel), the image proceeds to species classification with one of the CNNs used to extract features.Unknown detection accuracyIn distinguishing between unknown species and known species, the algorithm achieved an average accuracy of 89.50 ± 5.63% and 87.71 ± 2.57%, average sensitivity of 92.18 ± 6.34% and 94.09 ± 2.52%, and specificity of 80.79 ± 7.32% and 75.82 ± 4.65%, micro-averaged and macro-averaged respectively, evaluated over twenty-five-fold validation (Table 1). Here, micro-average refers to the metric calculated without regard to species, such that each image sample has an equal weight, considered an image sample level metric. Macro-average refers to the metric first calculated within a species, then averaged between all species within the relevant class (known or unknown). Macro-average can be considered a species level metric, or a species normalized metric. Macro-averages tend to be lower than the micro-averages when species with higher sample sizes have the highest metrics, whereas micro-averages are lower when species with lower sample sizes have the highest metrics. Cross validation by mixing up which species were known and unknown produced variable sample sizes in each iteration, because each species had a different number of samples in the generated image dataset. Further sample size variation occurred as a result of addressing class imbalance in the training set. The mean number of samples varied for each of the 25 iterations because of the mix-up in data partitioning for cross-validation (see Table 1 for generalized metrics; see Supplementary Table 1, Datafolds for detailed sampling data).Table 1 Micro- and macro-averaged metrics of the novelty detection algorithm on the test set using 50-fold validation.Full size tableDifferences within the unknown species dictated by algorithm structureThe fundamental aim of novelty detection is to determine if the CNN in question is familiar with the species, or class, shown in the image. CNNs are designed to identify visually distinguishable classes, or categories. In our open-set problem, the distinction between known and unknown species is arbitrary from a visual perspective; it is only a product of the available data. However, the known or unknown status of a specimen is a determinable product of the feature layer outputs, or features, produced by the CNN’s visual processing of the image. Thus, we take a tiered approach, where CNNs trained on a specific set of species extract a specimen’s features, and independent classifiers trained on a wider set of species analyze the features produced by the CNNs to assess whether the CNNs are familiar with the species in question. The novelty detection algorithm consists of three tiers, hereafter referred to as Tier I, II, and III, intended to determine if the specimen being analyzed is from a closed set of species known to the CNN:Tier I: two CNNs used to extract features from the images.Tier II: a set of classifiers, such as SVMs, random forests, and neural networks, which independently process the features from Tier I CNNs to distinguish a specimen as either known or unknown species.Tier III: soft voting of the Tier II classifications, with a clustering algorithm, in this case a Gaussian Mixture Model (GMM), which is used to make determinations in the case of unconfident predictions.The tiered architecture necessitated partitioning of groups of species between the tiers, and an overview of the structure is summarized in Fig. 2A. The training schema resulted in three populations of unknown species: set U1, consisting of species used to train Tier I, also made available for training subsequent Tiers II and III; set U2, consisting of additional species unknown to the CNNs used to train Tiers II and III; and set N, consisting of species used only for testing (see Fig. 2B). Species known to the CNNs are referred to as set K. It is critical to measure the difference between these species sets, as any of the species may be encountered in the wild. U1 achieved 97.85 ± 2.81% micro-averaged accuracy and 97.34 ± 3.52% macro-averaged accuracy; U2 achieved 97.05 ± 1.94% micro-averaged accuracy and 97.30 ± 1.41% macro-averaged accuracy; N achieved 80.83 ± 19.91% micro-averaged accuracy and 88.72 ± 5.42% macro-averaged accuracy. The K set achieved 80.79 ± 7.32% micro-averaged accuracy and 75.83 ± 5.42% macro-averaged accuracy (see Table 2). The test set sample sizes for each of the twenty five folds are as follows, (formatted [K-taxa,K-samples;U1-taxa,U1-samples;U2-taxa,U2-samples;N-taxa,N-samples]): [16,683;8,51;10,536;13,456], [16,673;8,51;9,537;13,485], [16,673;8,51;8,523;13,508], [16,673;8,46;6,159;11,869], [16,694;8,51;7,483;10,548], [15,409;9,62;11,2906;8,546], [15,456;9,62;9,2458;12,1024], [15,456;10,67;13,2359;9,1115], [15,456;9,62;8,3189;12,306], [15,456;10,67;10,2874;10,601], [16,543;10,56;12,1450;10,1052], [16,484;9,52;11,2141;10,312], [16,492;10,54;11,2185;12,263], [16,512;8,45;15,2292;10,189], [16,480;9,49;9,1652;13,790], [16,442;9,44;11,1253;11,665], [16,494;10,54;14,1727;10,228], [16,442;9,55;13,1803;10,96], [16,538;10,60;8,1509;9,502], [16,489;10,60;13,1764;9,184], [16,462;8,47;13,1415;11,452], [16,437;8,54;9,1548;11,320], [16,447;8,55;11,654;10,1193], [16,547;8,44;9,1437;11,531], [16,548;7,52;7,1464;11,499]. See Supplementary Table 1, Datafolds for more detailed sample information.Figure 2The novelty detection architecture was designed with three tiers to assess whether the CNNs were familiar with the species shown in each image. (A) Tier I consisted of two CNNs used as feature extractors. Tier II consisted of initial classifiers making an initial determination about whether the specimen is known or unknown by analyzing the features of one of the Tier I CNNs, and the logits in the case of the wide and deep neural network (WDNN). In this figure, SVM refers to a support vector machine, and RF refers to a random forest. Tier III makes the final classification, first with soft voting of the Tier II outputs, then sending high confidence predictions as the final output and low confidence predictions to a Gaussian Mixture Model (GMM) to serve as the arbiter for low confidence predictions. (B) Data partitioning for training each component of the architecture is summarized: Tier I is trained on the K set of species, known to the algorithm; Tier I open-set CNN is also trained on the U1 set of species, the first set of unknown species used in training; Tier II is trained on K set, U1 set, and the U2 set of species, the second set of unknown species used in training; Tier III is trained on the same species and data-split as Tier II. Data-split ratios were variable for each species over each iteration (Xs,m where s represents a species, m represents a fold, and X is a percentage of the data devoted to training) for Tiers II and III; Xs,m was adjusted to manage class imbalance within genus across known and unknown classes. Testing was performed on each of the K, U1, and U2 sets, as well as the N set, the final set of unknown species reserved for testing the algorithm, such that it is tested on previously unseen taxa, replicating the plausible scenario to be encountered in deployment of CNNs for species classification. Over the twenty-five folds, each known species was considered unknown for at least five folds and included as novel for at least one-fold.Full size imageTable 2 Accuracy metrics for the known, unknown, and novel unknown species sets over twenty-five-fold validation.Full size tableSubsequent species classificationFollowing the novelty detection algorithm, species identified as known are sent for species classification to the closed-set Xception model used in Tier I of the novelty detection algorithm. Figure 3A shows the species classification results independently over the five folds of Tier I, which achieved a micro-averaged accuracy 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%. Figure 3B shows the species classification cascaded with the novelty detection methods where all unknown species are grouped into a single unknown class alongside the known classes in an aggregated mean confusion matrix over the twenty-five folds of the full methods, yielding a micro-averaged accuracy of 89.07 ± 5.58%, and a macro F1-score of 79.74 ± 3.65%. The confusion matrix is normalized by species and shows the average classification accuracy and error distribution. The independent accuracy for classifying a single species ranged from 72.44 ± 13.83% (Culex salinarius) to 100 ± 0% (Aedes dorsalis, Psorophora cyanescens), and 15 of the 20 species maintained an average sensitivity above 95%. Test set sample size for each species were as follows (formatted as species, [fold1,fold2,fold3,fold4,fold5]): Ae. aegypti: [127,0,133,132,126]; Ae. albopictus: [103,90,0,99,102]; Ae. dorsalis: [43,41,42,0,41]; Ae. japonicus: [162,159,154,156,0]; Ae. sollicitans: [57,0,60,58,60]; Ae. taeniorhynchus: [0,25,27,25,24]; Ae. vexans: [50,48,0,46,49]; An. coustani: [29,21,18,0,22]; An. crucians s.l.: [56,58,61,61,0]; An. freeborni: [87,0,77,79,80]; An. funestus s.l.: [158, 174,0,173,175]; An. gambiae s.l.: [182,178,178,0,166]; An. punctipennis: [0,36,31,34,33]; An. quadrimaculatus: [0,28,28,28,30]; Cx. erraticus: [47,47,44,49,0]; Cx. pipiens s.l.: [212,0,218,219,205]; Cx. salinarius: [25,26,0,26,25]; Ps. columbiae: [66,59,67,0, 64]; Ps. cyanescens: [0,55,56,54,56]; Ps. ferox: [40,31,41,34,0].Figure 3Mean normalized confusion matrices for species classification shows the distribution of error within species. The species classification in these confusion matrices was performed by the Tier I CNN, the closed-set Xception model. The confusion matrix conveys the ground truth of the sample horizontally, labels on the left, and the prediction of the full methods vertically, labels on the bottom. Accurate classification is across the diagonal, where ground truth and prediction match, and all other cells on the matrix describe the error. Sixteen species were known for a given fold, and 51 species were considered unknown for a given fold, with each of the twenty known species considered unknown for one fold. (A) The species classification independent of novelty detection shows an average accuracy of 97.04 ± 0.87% and a macro F1-score of 96.64 ± 0.96%, calculated over the five folds of Tier I classifiers, trained and tested over an average of 7174.8 and 1544.6 samples. Of the error, 73.5% occurred with species of the same genus as the true species. (B) The species classification as a subsequent step after novelty detection yielded 89.07 ± 5.58% average accuracy, and a macro F1-score of 79.74 ± 3.65% trained and tested on an average of 7174.8 and 519.44 samples, evaluated over the twenty-five folds of the novelty detection methods. First, a sample was sent to the novelty detection algorithm. If the sample was predicted to be known to the species classifier, which was the closed-set Xception algorithm used in Tier I, then the sample was sent to the algorithm for classification.Full size imageMany of the species which were a part of the unknown datasets had enough data to perform preliminary classification experiments. Thirty-nine of the 67 species had more than 40 image samples. Species classification on these 39 species yielded an unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81% (see Fig. 4A). The average F1-score for any one species was plotted against the number of specimens representing the samples in the species, which elucidates the relationship between the training data available and the accuracy (see Fig. 4B). No species with more than 100 specimens produced an F1-score below 93%.Figure 4Species classification across 39 species shows the strength of CNNs for generalized mosquito classification, and elucidates a guideline for the number of specimens required for confident classification. Classification achieved unweighted accuracy of 93.06 ± 0.50% and a macro F1-score of 85.07 ± 1.81%, trained, validated, and tested over an average of 9080, 1945, and 1945 samples over five folds. (A) The majority of the error in this confusion matrix shows confusion between species of the same genera. Some of the confusion outside of genera is more intuitive from an entomologist perspective, such as the 10.2% of Deinocerites cancer samples classified as Culex spp. Other errors are less intuitive, such as the 28.61% of Culiseta incidens samples classified as Aedes atlanticus. (B) This plot of average F1-score of a species against the number of specimens which made up the samples available for training and testing shows the relationship between the available data for a given specimen and classification accuracy. When following the database development methods described in this work, a general guideline of 100 specimens’ worth of data can be extrapolated as a requirement for confident mosquito species classification.Full size imageTest set sample size for each species in the 39 species closed-set classification were as follows (formatted as species, [fold1,fold2,fold3,fold4, fold5]): Ae. aegypti: [131,127,127,124,133]; Ae. albopictus: [99,99,107,97,95]; Ae. atlanticus: [15,13,14,14,15]; Ae. canadensis: [17,21,21,21,20]; Ae. dorsalis: [42,41,43,40,43]; Ae. flavescens: [13,14,14,14,14]; Ae. infirmatus: [17,15,19,18,16]; Ae. japonicus: [155,153,151,160,150]; Ae. nigromaculis: [6,6,5,5,5]; Ae. sollicitans: [63,61,58,57,60]; Ae. taeniorhynchus: [30,25,27,25,25]; Ae. triseriatus s.l.: [14,16,17,14,13]; Ae. trivittatus: [28,24,25,24,23]; Ae. vexans: [46,58,57,51,50]; An. coustani: [25,32,27,33,27]; An. crucians s.l.: [64,57,60,59,62]; An. freeborni s.l.: [85,77,82,74,89]; An. funestus s.l.: [181,187,166,175,161]; An. gambiae s.l.: [191,182,178,185,194]; An. pseudopunctipennis: [10,8,12,9,9]; An. punctipennis: [32,28,38,32,32]; An. quadrimaculatus: [30,33,26,37,35]; Coquillettidia perturbans: [31,29,30,32,35]; Cx. coronator: [10,9,10,11,10]; Cx. erraticus: [48,51,49,53,50]; Cx. nigripalpus: [14,14,13,13,13]; Cx. pipiens s.l.: [205,203,216,208,216]; Cx. restuans: [12,13,12,14,12]; Cx. salinarius: [24,25,24,23,24]; Cus. incidens: [9,9,9,9,8]; Cus. inornata: [9,9,8,9,9]; Deinocerites cancer: [10,10,10,10,9]; De. sp. Cuba-1: [16,14,15,14,15]; Mansonia titillans: [15,16,15,14,13]; Ps. ciliata: [29,26,24,23,28]; Ps. columbiae: [62,59,63,60,61]; Ps. cyanescens: [55,54,57,55,55]; Ps. ferox: [32,48,31,36,34]; Ps. pygmaea: [24,25,25,24,25].Comparison to alternative methodsSome intuitive simplifications of our methods, along with some common direct methods for novel species detection, are compared to our full methods. All compared methods were found to be statistically different from the full methods using McNemar’s test. The compared methods tested, along with their macro F1-score, standard deviation, and p-value as compared to the full methods, were as follows: (1) soft voting of all Tier II component outputs, without a GMM arbiter (86.87 ± 3.11%, p  More