1.Weishampel, D. B., Dodson, P. & Osmólska, H. The Dinosauria 2nd edn (University of California Press, 2004).2.Fastovsky, D. E. & Weishampel, D. B. The Evolution and Extinction of the Dinosaurs (Cambridge University Press, 2005).3.Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628–642 (2015).PubMed
Article
PubMed Central
Google Scholar
4.Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095–1108 (1980).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
5.Chiarenza, A. A. et al. Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction. Proc. Natl Acad. Sci. USA 117, 17084–17093 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
6.Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
7.Russell, D. A. The gradual decline of the dinosaurs—fact or fallacy? Nature 307, 360–361 (1984).ADS
Article
Google Scholar
8.Sloan, R. E., Rigby, J. K., Van Valen, L. M. & Gabriel, D. Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek Formation. Science 232, 629–633 (1986).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
9.Sheehan, P. M., Fastovsky, D. E., Hoffmann, R. G., Berghaus, C. B. & Gabriel, D. L. Sudden extinction of the dinosaurs: Latest Cretaceous, upper Great Plains, USA. Science 254, 835–839 (1991).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
10.Sakamoto, M., Benton, M. J. & Venditti, C. Dinosaurs in decline tens of millions of years before their final extinction. Proc. Natl Acad. Sci. USA 113, 5036–5040 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
11.Chiarenza, A. A. et al. Ecological niche modelling does not support climatically-driven dinosaur diversity decline before the Cretaceous/Paleogene mass extinction. Nat. Commun. 10, 1091 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
12.Russell, L. S. Body temperature of dinosaurs and its relationships to their extinction. J. Paleontol. 39, 497–501 (1965).
Google Scholar
13.Brusatte, S. L., Butler, R. J., Prieto-Márquez, A. & Norell, M. A. Dinosaur morphological diversity and the end-Cretaceous extinction. Nat. Commun. 3, 804 (2012).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
14.Benson, R. B. J. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
15.Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).ADS
PubMed
PubMed Central
Article
Google Scholar
16.Lloyd, G. T. et al. Dinosaurs and the Cretaceous Terrestrial Revolution. Proc. R. Soc. B Biol. Sci. 275, 2483–2490 (2008).Article
Google Scholar
17.Gates, T. A., Prieto-Márquez, A. & Zanno, L. E. Mountain building triggered Late Cretaceous North American megaherbivore dinosaur radiation. PLoS ONE 7, e42135 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
18.Loewen, M. A., Irmis, R. B., Sertich, J. J. W., Currie, P. J. & Sampson, S. D. Tyrant dinosaur evolution tracks the rise and fall of late Cretaceous oceans. PLoS ONE 8, e79420 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
19.Archibald, J. D. et al. Cretaceous extinctions: Multiple causes. Science 328, 973 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
20.Mitchell, J. S., Roopnarine, P. D. & Angielczyk, K. D. Late Cretaceous restructuring of terrestrial communities facilitated the end-Cretaceous mass extinction in North America. Proc. Natl Acad. Sci. USA 109, 18857–18861 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
21.Schoene, B. et al. U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
22.Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
23.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
24.Landman, N. H. et al. Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42, 707–710 (2014).ADS
CAS
Article
Google Scholar
25.Longrich, N. R., Martill, D. M. & Andres, B. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. PLoS Biol. 16, e2001663 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
26.Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. Proc. Natl Acad. Sci. USA 108, 15253–15257 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
27.Longrich, N. R., Bhullar, B.-A. S. & Gauthier, J. A. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 109, 21396–21401 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
28.Fastovsky, D. E. et al. Shape of Mesozoic dinosaur richness. Geology 32, 877–880 (2004).ADS
Article
Google Scholar
29.Archibald, J. D. in Volcanism, Impacts, and Mass Extinctions: Causes and Effects (eds. Keller, G. & Kerr, A. C.) 213–224 (The Geological Society of America Special Paper 505, 2014).30.Wang, S. C. & Dodson, P. Estimating the diversity of dinosaurs. Proc. Natl Acad. Sci. USA 103, 13601–13605 (2006).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
31.Starrfelt, J. & Liow, L. H. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150219 (2016).Article
CAS
Google Scholar
32.Bonsor, J. A., Barrett, P. M., Raven, T. J. & Cooper, N. Dinosaur diversification rates were not in decline prior to the K-Pg boundary. R. Soc. Open Sci. 7, 201195 (2020).ADS
PubMed
PubMed Central
Article
Google Scholar
33.Benton, M. J., Wills, M. A. & Hitchin, R. Quality of the fossil record through time. Nature 403, 534–537 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
34.Alroy, J. et al. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc. Natl Acad. Sci. USA 98, 6261–6266 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
35.Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
36.Close, R. A., Evers, S. W., Alroy, J. & Butler, R. J. How should we estimate diversity in the fossil record? Testing richness estimators using sampling-standardised discovery curves. Methods Ecol. Evol. 9, 1386–1400 (2018).Article
Google Scholar
37.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article
Google Scholar
38.Close, R. A., Benson, R. B. J., Saupe, E. E., Clapham, M. E. & Butler, R. J. The spatial structure of Phanerozoic marine animal diversity. Science 368, 420–424 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
39.Benton, M. J. Scientific methodologies in collision: The history of the study of the extinction of the dinosaurs. Evol. Biol. 24, 371–400 (1990).
Google Scholar
40.Butler, R. J., Benson, R. B. J., Carrano, M. T., Mannion, P. D. & Upchurch, P. Sea level, dinosaur diversity and sampling biases: Investigating the ‘common cause’ hypothesis in the terrestrial realm. Proc. R. Soc. B Biol. Sci. 278, 1165–1170 (2011).Article
Google Scholar
41.Zaffos, A., Finnegan, S. & Peters, S. E. Plate tectonic regulation of global marine animal diversity. Proc. Natl Acad. Sci. USA 114, 5653–5658 (2017).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
42.East, M., Müller, R. D., Williams, S., Zahirovic, S. & Heine, C. Subduction history reveals Cretaceous slab superflux as a possible cause for the mid-Cretaceous plume pulse and superswell events. Gondwana Res. 79, 125–139 (2020).ADS
Article
Google Scholar
43.Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).CAS
Article
Google Scholar
44.Miller, K. G. et al. The Phanerozoic record of global sea level change. Science 310, 1293–1298 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
45.Ray, D. C. et al. The magnitude and cause of short-term eustatic Cretaceous sea-level change: a synthesis. Earth Sci. Rev. 197, 102901 (2019).Article
Google Scholar
46.Coiffard, C., Gomez, B., Daviero-Gomez, V. & Dilcher, D. L. Rise to dominance of angiosperm pioneers in European Cretaceous environments. Proc. Natl Acad. Sci. USA 109, 20955–20959 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
47.Chaboureau, A.-C., Sepulchre, P., Donnadieu, Y. & Franc, A. Tectonic-driven climate change and the diversification of angiosperms. Proc. Natl Acad. Sci. USA 111, 14066–14070 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
48.Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. N. Phytol. 207, 437–453 (2015).Article
Google Scholar
49.Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019).PubMed
Article
PubMed Central
Google Scholar
50.Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
51.Grossnickle, D. M. & Newham, E. Therian mammals experience an ecomorphological radiation during the Late Cretaceous and selective extinction at the K–Pg boundary. Proc. R. Soc. B Biol. Sci. 283, 20160256 (2016).Article
Google Scholar
52.Liu, L. et al. Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary. Proc. Natl Acad. Sci. USA 114, E7282–E7290 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Arbour, V. M., Zanno, L. E. & Gates, T. A. Ankylosaurian dinosaur palaeoenvironmental associations were influenced by extirpation, sea-level fluctuation, and geodispersal. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 289–299 (2016).Article
Google Scholar
54.Tennant, J. P., Mannion, P. D. & Upchurch, P. Sea level regulated tetrapod diversity dynamics through the Jurassic/Cretaceous interval. Nat. Commun. 7, 12737 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
55.Silvestro, D., Schnitzler, J., Liow, L. H., Antonelli, A. & Salamin, N. Bayesian estimation of speciation and extinction from incomplete fossil occurrence data. Syst. Biol. 63, 349–367 (2014).PubMed
PubMed Central
Article
Google Scholar
56.Silvestro, D., Antonelli, A., Salamin, N. & Quental, T. B. The role of clade competition in the diversification of North American canids. Proc. Natl Acad. Sci. USA 112, 8684–8689 (2015).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
57.Lehtonen, S. et al. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci. Rep. 7, 4831 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
58.Condamine, F. L., Romieu, J. & Guinot, G. Climate cooling and clade competition likely drove the decline of lamniform sharks. Proc. Natl Acad. Sci. USA 116, 20584–20590 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Signor, P. W. & Lipps, J. H. in Geological Implications of Impacts of Large Asteroids and Comets on The Earth (eds. Silver, L. T. & Schultz, P. H.) vol. 190, 291–296 (Geological Society of America Special Publication, 1982).60.Benson, R. B. J. Dinosaur macroevolution and macroecology. Annu. Rev. Ecol. Evol. Syst. 49, 379–408 (2018).Article
Google Scholar
61.Dean, C. D., Chiarenza, A. A. & Maidment, S. C. R. Formation binning: a new method for increased temporal resolution in regional studies, applied to the Late Cretaceous dinosaur fossil record of North America. Palaeontology 63, 881–901 (2020).Article
Google Scholar
62.Moen, D. & Morlon, H. Why does diversification slow down? Trends Ecol. Evol. 29, 190–197 (2014).PubMed
Article
PubMed Central
Google Scholar
63.Condamine, F. L., Rolland, J. & Morlon, H. Assessing the causes of diversification slowdowns: Temperature-dependent and diversity-dependent models receive equivalent support. Ecol. Lett. 22, 1900–1912 (2019).PubMed
Article
PubMed Central
Google Scholar
64.Prieto-Márquez, A., Dalla Vecchia, F. M., Gaete, R. & Galobart, À. Diversity, relationships, and biogeography of the lambeosaurine dinosaurs from the European archipelago, with description of the new aralosaurin Canardia garonnensis. PLoS ONE 8, e69835 (2013).65.Prieto-Márquez, A., Fondevilla, V., Sellés, A. G., Wagner, J. R. & Galobart, À. Adynomosaurus arcanus, a new lambeosaurine dinosaur from the Late Cretaceous Ibero-Armorican Island of the European archipelago. Cretac. Res. 96, 19–37 (2019).Article
Google Scholar
66.Longrich, N. R., Suberbiola, X. P., Pyron, R. A. & Jalil, N.-E. The first duckbill dinosaur (Hadrosauridae: Lambeosaurinae) from Africa and the role of oceanic dispersal in dinosaur biogeography. Cretac. Res. 120, 104678 (2021).Article
Google Scholar
67.Kobayashi, Y., Takasaki, R., Kubota, K. & Fiorillo, A. R. A new basal hadrosaurid (Dinosauria: Ornithischia) from the latest Cretaceous Kita-ama Formation in Japan implies the origin of hadrosaurids. Sci. Rep. 11, 8547 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
68.Stubbs, T. L., Benton, M. J., Elsler, A. & Prieto-Márquez, A. Morphological innovation and the evolution of hadrosaurid dinosaurs. Paleobiology 45, 347–362 (2019).Article
Google Scholar
69.Reest, A. J. van der & Currie, P. J. Troodontids (Theropoda) from the Dinosaur Park Formation, Alberta, with a description of a unique new taxon: Implications for deinonychosaur diversity in North America. Can. J. Earth Sci. 54, 919–935 (2017).70.Hartman, S. et al. A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight. PeerJ 7, e7247 (2019).PubMed
PubMed Central
Article
Google Scholar
71.Horner, J. R., Varricchio, D. J. & Goodwin, M. B. Marine transgressions and the evolution of Cretaceous dinosaurs. Nature 358, 59–61 (1992).ADS
Article
Google Scholar
72.O’Brien, C. L. et al. Cretaceous sea-surface temperature evolution: Constraints from TEX86 and planktonic foraminiferal oxygen isotopes. Earth Sci. Rev. 172, 224–247 (2017).ADS
Article
CAS
Google Scholar
73.Huber, B. T., MacLeod, K. G., Watkins, D. K. & Coffin, M. F. The rise and fall of the Cretaceous Hot Greenhouse climate. Glob. Planet. Change 167, 1–23 (2018).ADS
Article
Google Scholar
74.Mannion, P. D. et al. A temperate palaeodiversity peak in Mesozoic dinosaurs and evidence for Late Cretaceous geographical partitioning. Glob. Ecol. Biogeogr. 21, 898–908 (2012).Article
Google Scholar
75.Forster, A., Schouten, S., Baas, M. & Damsté, J. S. S. Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35, 919–922 (2007).ADS
Article
Google Scholar
76.O’Connor, L. K. et al. Late Cretaceous temperature evolution of the southern high latitudes: a TEX86 perspective. Paleoceanogr. Paleoclimatol. 34, 436–454 (2019).ADS
Article
Google Scholar
77.Linnert, C. et al. Evidence for global cooling in the Late Cretaceous. Nat. Commun. 5, 4194 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
78.Crane, P. R. & Lidgard, S. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
79.Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
80.Condamine, F. L., Rolland, J. & Morlon, H. Macroevolutionary perspectives to environmental change. Ecol. Lett. 16, 72–85 (2013).PubMed
Article
PubMed Central
Google Scholar
81.Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. N. Phytol. 207, 425–436 (2015).Article
Google Scholar
82.Prokoph, A., Shields, G. A. & Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history. Earth Sci. Rev. 87, 113–133 (2008).ADS
CAS
Article
Google Scholar
83.Miller, K. G. et al. The phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
84.Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet. Sci. 42, 207–230 (2014).ADS
CAS
Article
Google Scholar
85.Grady, J. M., Enquist, B. J., Dettweiler-Robinson, E., Wright, N. A. & Smith, F. A. Evidence for mesothermy in dinosaurs. Science 344, 1268–1272 (2014).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
86.Eagle, R. A. et al. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs. Nat. Commun. 6, 8296 (2015).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
87.Paladino, F. V., Dodson, P., Hammond, J. K. & Spotila, J. R. Temperature-dependent sex determination in dinosaurs? Implications for population dynamics and extinction. in Paleobiology of the Dinosaurs (ed. Farlow, J. O.) vol. 238, 63–70 (Geological Society of America Special Papers, 1989).88.Vavrek, M. J. & Larsson, H. C. E. Low beta diversity of Maastrichtian dinosaurs of North America. Proc. Natl Acad. Sci. USA 107, 8265–8268 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
89.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article
Google Scholar
90.Brodie, J. F. et al. Secondary extinctions of biodiversity. Trends Ecol. Evol. 29, 664–672 (2014).PubMed
Article
PubMed Central
Google Scholar
91.Fraser, D. et al. Investigating biotic interactions in deep time. Trends Ecol. Evol. 36, 61–75 (2021).PubMed
Article
PubMed Central
Google Scholar
92.Mallon, J. C. Competition structured a Late Cretaceous megaherbivorous dinosaur assemblage. Sci. Rep. 9, 15447 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
93.Benton, M. J. Progress and competition in macroevolution. Biol. Rev. 62, 305–338 (1987).Article
Google Scholar
94.Fricke, H. C. & Pearson, D. A. Stable isotope evidence for changes in dietary niche partitioning among hadrosaurian and ceratopsian dinosaurs of the Hell Creek Formation, North Dakota. Paleobiology 34, 534–552 (2008).Article
Google Scholar
95.Mallon, J. C. & Anderson, J. S. Skull ecomorphology of megaherbivorous dinosaurs from the Dinosaur Park Formation (Upper Campanian) of Alberta, Canada. PLoS ONE 8, e67182 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
96.Nordén, K. K., Stubbs, T. L., Prieto-Márquez, A. & Benton, M. J. Multifaceted disparity approach reveals dinosaur herbivory flourished before the end-Cretaceous mass extinction. Paleobiology 44, 620–637 (2018).Article
Google Scholar
97.Lyson, T. R. & Longrich, N. R. Spatial niche partitioning in dinosaurs from the latest Cretaceous (Maastrichtian) of North America. Proc. R. Soc. B Biol. Sci. 278, 1158–1164 (2011).Article
Google Scholar
98.Li, Z. et al. Ultramicrostructural reductions in teeth: Implications for dietary transition from non-avian dinosaurs to birds. BMC Evol. Biol. 20, 46 (2020).PubMed
PubMed Central
Article
Google Scholar
99.Cau, A. et al. Synchrotron scanning reveals amphibious ecomorphology in a new clade of bird-like dinosaurs. Nature 552, 395–399 (2017).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
100.Cau, A. The body plan of Halszkaraptor escuilliei (Dinosauria, Theropoda) is not a transitional form along the evolution of dromaeosaurid hypercarnivory. PeerJ 8, e8672 (2020).PubMed
PubMed Central
Article
Google Scholar
101.Fowler, D. W., Freedman, E. A., Scannella, J. B. & Kambic, R. E. The predatory ecology of Deinonychus and the origin of flapping in birds. PLoS ONE 6, e28964 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
102.Frederickson, J. A., Engel, M. H. & Cifelli, R. L. Ontogenetic dietary shifts in Deinonychus antirrhopus (Theropoda; Dromaeosauridae): Insights into the ecology and social behavior of raptorial dinosaurs through stable isotope analysis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 552, 109780 (2020).Article
Google Scholar
103.O’Connor, J. et al. Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29, 2423–2429 (2019).PubMed
Article
CAS
PubMed Central
Google Scholar
104.King, J. L., Sipla, J. S., Georgi, J. A., Balanoff, A. M. & Neenan, J. M. The endocranium and trophic ecology of Velociraptor mongoliensis. J. Anat. 237, 861–869 (2020).PubMed
PubMed Central
Article
Google Scholar
105.Owocki, K., Kremer, B., Cotte, M. & Bocherens, H. Diet preferences and climate inferred from oxygen and carbon isotopes of tooth enamel of Tarbosaurus bataar (Nemegt Formation, Upper Cretaceous, Mongolia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 537, 109190 (2020).Article
Google Scholar
106.Dalman, S. & Lucas, S. New evidence for cannibalism in tyrannosaurid dinosaurs from the Late Cretaceous of New Mexico. N. Mex. Mus. Nat. Hist. Sci. Bull. 82, 39–56 (2021).
Google Scholar
107.Frederickson, J. A., Engel, M. H. & Cifelli, R. L. Niche partitioning in theropod dinosaurs: Diet and habitat preference in predators from the uppermost Cedar Mountain Formation (Utah, U.S.A.). Sci. Rep. 8, 17872 (2018).108.Hassler, A. et al. Calcium isotopes offer clues on resource partitioning among Cretaceous predatory dinosaurs. Proc. R. Soc. B Biol. Sci. 285, 20180197 (2018).109.Schroeder, K., Lyons, S. K. & Smith, F. A. The influence of juvenile dinosaurs on community structure and diversity. Science 371, 941–944 (2021).110.Currie, P. J., Badamgarav, D., Koppelhus, E. B., Sissons, R. & Vickaryous, M. K. Hands, feet, and behaviour in Pinacosaurus (Dinosauria: Ankylosauridae). Acta Palaeontol. Polon. 56, 489–504 (2011).Article
Google Scholar
111.Burns, M. E., Currie, P. J., Sissons, R. L. & Arbour, V. M. Juvenile specimens of Pinacosaurus grangeri Gilmore, 1933 (Ornithischia: Ankylosauria) from the Late Cretaceous of China, with comments on the specific taxonomy of Pinacosaurus. Cretac. Res. 32, 174–186 (2011).Article
Google Scholar
112.Burns, M. E., Tumanova, T. A. & Currie, P. J. Postcrania of juvenile Pinacosaurus grangeri (Ornithischia: Ankylosauria) from the Upper Cretaceous Alagteeg Formation, Alag Teeg, Mongolia: Implications for ontogenetic allometry in ankylosaurs. J. Paleontol. 89, 168–182 (2015).113.Botfalvai, G., Prondvai, E. & Ősi, A. Living alone or moving in herds? A holistic approach highlights complexity in the social lifestyle of Cretaceous ankylosaurs. Cretac. Res. 118, 104633 (2021).Article
Google Scholar
114.Arbour, V. M. & Zanno, L. E. The evolution of tail weaponization in amniotes. Proc. R. Soc. B Biol. Sci. 285, 20172299 (2018).Article
Google Scholar
115.Arbour, V. M. & Zanno, L. E. Tail weaponry in ankylosaurs and glyptodonts: An example of a rare but strongly convergent phenotype. Anat. Rec. 303, 988–998 (2020).Article
Google Scholar
116.Van Valen, L. A new evolutionary law. Evol. Theory 1, 1–30 (1973).117.Hagen, O., Andermann, T., Quental, T. B., Antonelli, A. & Silvestro, D. Estimating age-dependent extinction: Contrasting evidence from fossils and phylogenies. Syst. Biol. 67, 458–474 (2018).PubMed
Article
PubMed Central
Google Scholar
118.Finnegan, S., Payne, J. L. & Wang, S. C. The Red Queen revisited: Reevaluating the age selectivity of Phanerozoic marine genus extinctions. Paleobiology 34, 318–341 (2008).Article
Google Scholar
119.Doran, N. A., Arnold, A. J., Parker, W. C. & Huffer, F. W. Is extinction age dependent? PALAIOS 21, 571–579 (2006).ADS
Article
Google Scholar
120.Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
121.Romano, M. Disparity versus diversity in ankylosaurid dinosaurs: Explored morphospace indicates two separate evolutive radiations. Rend. Online Soc. Geol. It. 53, 2–8 (2021).122.Turner, A. H., Montanari, S. & Norell, M. A. A new dromaeosaurid from the Late Cretaceous Khulsan locality of Mongolia. Am. Mus. Novitat. 2020, 1–48 (2021).123.Maryańska, T. & Osmólska, H. Pachycephalosauria, a new suborder of ornithischian dinosaurs. Palaeontol. Polon. 30, 45–102 (1974).
Google Scholar
124.Sereno, P. C. National Geographic Research: Phylogeny of the bird-hipped dinosaurs (Order Ornithischia). Natl Geogr. Res. 2, 234–256 (1986). https://d3qi0qp55mx5f5.cloudfront.net/paulsereno/i/docs/86-NGRes-PhyloOrnithis_1.pdf?mtime=1591821557.125.Sullivan, R. M. A taxonomic review of the Pachycephalosauridae (Dinosauria: Ornithischia). N. Mex. Mus. Nat. Hist. Sci. Bull. 35, 347–365 (2006).
Google Scholar
126.Lee, M. S. Y., Cau, A., Naish, D. & Dyke, G. J. Morphological clocks in paleontology, and a mid-cretaceous origin of crown aves. Syst. Biol. 63, 442–449 (2014).PubMed
Article
PubMed Central
Google Scholar
127.Arbour, V. M. & Evans, D. C. A new ankylosaurine dinosaur from the Judith River Formation of Montana, USA, based on an exceptional skeleton with soft tissue preservation. R. Soc. Open Sci. 4, 161086 (2017).128.McDonald, A. T., Wolfe, D. G. & Dooley, A. C. Jr A new tyrannosaurid (Dinosauria: Theropoda) from the Upper Cretaceous Menefee Formation of New Mexico. PeerJ 6, e5749 (2018).PubMed
PubMed Central
Article
Google Scholar
129.Longrich, N. R. & Field, D. J. Torosaurus is not Triceratops: Ontogeny in chasmosaurine ceratopsids as a case study in dinosaur taxonomy. PLoS ONE 7, e32623 (2012).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
130.Larson, P. L. in Tyrannosaurid Paleobiology (eds. Parrish, J. M., Molnar, R. A., Currie, P. J. & Koppelhus, E. B.) 15–54 (Indiana University Press, 2013).131.Yun, C. Evidence points out that ‘Nanotyrannus’ is a juvenile Tyrannosaurus rex. PeerJ 3, e1052 (2015).Article
Google Scholar
132.Brusatte, S. L. et al. Dentary groove morphology does not distinguish ‘Nanotyrannus’ as a valid taxon of tyrannosauroid dinosaur. Comment on: “Distribution of the dentary groove of theropod dinosaurs: Implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988. Cretac. Res. 65, 232–237 (2016).Article
Google Scholar
133.Schmerge, J. D. & Rothschild, B. M. When a groove is not a groove: Clarification of the appearance of the dentary groove in tyrannosauroid theropods and the distinction between Nanotyrannus and Tyrannosaurus. Reply to Comment on: “Distribution of the dentary groove of theropod dinosaurs: Implications for theropod phylogeny and the validity of the genus Nanotyrannus Bakker et al., 1988. Cretac. Res. 65, 238–243 (2016).Article
Google Scholar
134.Xu, X., Zhou, Z., Sullivan, C., Wang, Y. & Ren, D. An updated review of the Middle-Late Jurassic Yanliao biota: Chronology, taphonomy, paleontology and paleoecology. Acta Geol. Sin. 90, 2229–2243 (2016).Article
Google Scholar
135.Cau, A., Brougham, T. & Naish, D. The phylogenetic affinities of the bizarre Late Cretaceous Romanian theropod Balaur bondoc (Dinosauria, Maniraptora): Dromaeosaurid or flightless bird? PeerJ 3, e1032 (2015).PubMed
PubMed Central
Article
Google Scholar
136.Agnolin, F. L. & Motta, M. J. Paravian phylogeny and the dinosaur-bird transition: An overview. Front. Earth Sci. 6, 252 (2019).ADS
Article
Google Scholar
137.Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed Its thresholds. Curr. Biol. 30, 4033–4046 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
138.Foth, C. & Rauhut, O. W. M. Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs. BMC Evol. Biol. 17, 236 (2017).139.Rauhut, O. W., Tischlinger, H. & Foth, C. A non-archaeopterygid avialan theropod from the Late Jurassic of southern Germany. eLife 8, e43789 (2019).PubMed
PubMed Central
Article
Google Scholar
140.Lefèvre, U. et al. A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers. Sci. Nat. 104, 74 (2017).Article
CAS
Google Scholar
141.Shen, C. et al. A new troodontid dinosaur from the Lower Cretaceous Yixian formation of Liaoning province. China Acta Geol. Sin. 91, 763–780 (2017).Article
Google Scholar
142.Arbour, V. M. & Currie, P. J. Euoplocephalus tutus and the diversity of ankylosaurid dinosaurs in the Late Cretaceous of Alberta, Canada, and Montana, USA. PLoS ONE 8, e62421 (2013).143.Arbour, V. M. & Currie, P. J. Systematics, phylogeny and palaeobiogeography of the ankylosaurid dinosaurs. J. Syst. Palaeontol. 14, 385–444 (2016).Article
Google Scholar
144.Arbour, V. M., Currie, P. J. & Badamgarav, D. The ankylosaurid dinosaurs of the Upper Cretaceous Baruungoyot and Nemegt formations of Mongolia. Zool. J. Linn. Soc. 172, 631–652 (2014).
Google Scholar
145.Arbour, V. M. et al. A new ankylosaurid dinosaur from the Upper Cretaceous (Kirtlandian) of New Mexico with implications for ankylosaurid diversity in the Upper Cretaceous of Western North America. PLoS ONE 9, e108804 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
146.Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M. The Geologic Time Scale 2012 (Elsevier B.V., 2012).147.Brown, C. M. & Henderson, D. M. A new horned dinosaur reveals convergent evolution in cranial ornamentation in Ceratopsidae. Curr. Biol. 25, 1641–1648 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
148.Jerzykiewicz, T., Currie, P. J., Fanti, F. & Lefeld, J. Lithobiotopes of the Nemegt Gobi Basin. Can. J. Earth Sci. https://doi.org/10.1139/cjes-2020-0148 (2021).149.Silvestro, D., Salamin, N. & Schnitzler, J. PyRate: A new program to estimate speciation and extinction rates from incomplete fossil data. Methods Ecol. Evol. 5, 1126–1131 (2014).Article
Google Scholar
150.Rambaut, A. R., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
151.Brusatte, S. L. et al. Tyrannosaur paleobiology: New research on ancient exemplar organisms. Science 329, 1481–1485 (2010).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
152.Ryan, M. J., Chinnery-Allgeier, B. J. & Eberth, D. A. New Perspectives on Horned Dinosaurs (Indiana University Press, 2010).153.Xu, X., Wang, K., Zhao, X. & Li, D. First ceratopsid dinosaur from China and its biogeographical implications. Chin. Sci. Bull. 55, 1631–1635 (2010).CAS
Article
Google Scholar
154.Hannisdal, B. & Peters, S. E. Phanerozoic Earth system evolution and marine biodiversity. Science 334, 1121–1124 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
155.Liow, L. H., Reitan, T. & Harnik, P. G. Ecological interactions on macroevolutionary time scales: Clams and brachiopods are more than ships that pass in the night. Ecol. Lett. 18, 1030–1039 (2015).PubMed
Article
PubMed Central
Google Scholar
156.Erwin, D. H. Climate as a driver of evolutionary change. Curr. Biol. 19, R575–R583 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
157.Mayhew, P. J., Bell, M. A., Benton, T. G. & McGowan, A. J. Biodiversity tracks temperature over time. Proc. Natl Acad. Sci. USA 109, 15141–15145 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
158.Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rythms, and aberration in global climate 65 Ma to present. Science 292, 686–693 (2001).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
159.Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
160.Cramer, B. S., Toggweiler, J. R., Wright, J. D., Katz, M. E. & Miller, K. G. Ocean overturning since the late cretaceous: Inferences from a new benthic foraminiferal isotope compilation. Paleoceanography 24, 1–14 (2009).Article
Google Scholar
161.Barba-Montoya, J., Reis, M., Schneider, H., Donoghue, P. C. J. & Yang, Z. Constraining uncertainty in the timescale of angiosperm evolution and the veracity of a Cretaceous Terrestrial Revolution. N. Phytol. 218, 819–834 (2018).Article
Google Scholar
162.Zhang, M., Dai, S., Du, B., Ji, L. & Hu, S. Mid-Cretaceous hothouse climate and the expansion of early angiosperms. Acta Geol. Sin. 92, 2004–2025 (2018).Article
Google Scholar More