Microbiome diversity and host immune functions influence survivorship of sponge holobionts under future ocean conditions
1.Le Quéré C, Moriarty R, Andrew RM, Canadell JG, Sitch S, Korsbakken JI, et al. Global carbon budget 2015. Earth Syst Sci Data. 2015;7:349–96.Article
Google Scholar
2.Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, et al. Coral reefs under rapid climate change and ocean acidification. Science. 2007;318:1737–42.CAS
PubMed
Article
PubMed Central
Google Scholar
3.Bell JJ, Bennett HM, Rovellini A, Webster NS. Sponges to be winners under near-future climate scenarios. Bioscience. 2018;68:955–68.Article
Google Scholar
4.Bell JJ. The functional roles of marine sponges. Estuar Coast Shelf Sci. 2008;79:341–53.Article
Google Scholar
5.Pita L, Rix L, Slaby BM, Franke A, Hentschel U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome. 2018;6:46.CAS
PubMed
PubMed Central
Article
Google Scholar
6.Smith AM, Berman J, Key MM Jr, Winter DJ. Not all sponges will thrive in a high-CO2 ocean: Review of the mineralogy of calcifying sponges. Palaeogeogr Palaeoclimatol Palaeoecol. 2013;392:463–72.Article
Google Scholar
7.Webster NS, Thomas T. The sponge hologenome. MBio. 2016;7:e00135–16.PubMed
PubMed Central
Article
Google Scholar
8.Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.CAS
PubMed
Article
PubMed Central
Google Scholar
9.Thompson JR, Rivera HE, Closek CJ, Medina M. Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol. 2014;4:176.PubMed
PubMed Central
Google Scholar
10.Fan L, Liu M, Simister R, Webster NS, Thomas T. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 2013;7:991–1002.CAS
PubMed
PubMed Central
Article
Google Scholar
11.Egan S, Gardiner M. Microbial dysbiosis: rethinking disease in marine ecosystems. Front Microbiol. 2016;7:991.PubMed
PubMed Central
Google Scholar
12.Voolstra CR, Ziegler M. Adapting with microbial help: microbiome flexibility facilitates rapid responses to environmental change. Bioessays. 2020;42:e2000004.PubMed
Article
Google Scholar
13.Botte ES, Nielsen S, Abdul Wahab MA, Webster J, Robbins S, Thomas T, et al. Changes in the metabolic potential of the sponge microbiome under ocean acidification. Nat Commun. 2019;10:4134.PubMed
PubMed Central
Article
CAS
Google Scholar
14.Morrow KM, Bourne DG, Humphrey C, Botté ES, Laffy P, Zaneveld J, et al. Natural volcanic CO2 seeps reveal future trajectories for host–microbial associations in corals and sponges. ISME J. 2015;9:894–908.CAS
PubMed
Article
PubMed Central
Google Scholar
15.Pollock FJ, Lamb JB, van de Water J, Smith HA, Schaffelke B, Willis BL, et al. Reduced diversity and stability of coral-associated bacterial communities and suppressed immune function precedes disease onset in corals. R Soc Open Sci. 2019;6:190355.CAS
PubMed
PubMed Central
Article
Google Scholar
16.Pinzon JH, Kamel B, Burge CA, Harvell CD, Medina M, Weil E, et al. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral. R Soc Open Sci. 2015;2:140214.PubMed
PubMed Central
Article
CAS
Google Scholar
17.Pita L, Hoeppner MP, Ribes M, Hentschel U. Differential expression of immune receptors in two marine sponges upon exposure to microbial-associated molecular patterns. Sci Rep. 2018;8:16081.PubMed
PubMed Central
Article
CAS
Google Scholar
18.Guzman C, Conaco C. Gene expression dynamics accompanying the sponge thermal stress response. PLoS ONE. 2016;11:e0165368.PubMed
PubMed Central
Article
CAS
Google Scholar
19.Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol. 2014;31:1102–20.CAS
PubMed
Article
PubMed Central
Google Scholar
20.Germer J, Cerveau N, Jackson DJ. The holo-transcriptome of a calcified early branching metazoan. Front Mar Sci. 2017;4:81.21.Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics. 2016;17:158.PubMed
PubMed Central
Article
CAS
Google Scholar
22.Hooper JNA, Van Soest RWM. Systema Porifera. A guide to the classification of sponges. In: Hooper JNA, Van Soest RWM, editors. Systema Porifera. New York, NY: Springer; 2002. p. 1–7.23.Pachauri RK, Allen MR, Barros VR, Broome J, Cramer W, Christ R, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC; 2014.24.Pierrot DE, Lewis E, Wallace DWR. MS Excel program developed for CO2 system calculations. Oak Ridge, TN: Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, ORNL/CDIAC-IOS; 2006.25.Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS
PubMed
PubMed Central
Article
Google Scholar
26.Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS
PubMed
PubMed Central
Article
Google Scholar
27.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3.CAS
PubMed
PubMed Central
Article
Google Scholar
28.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.CAS
PubMed
Article
Google Scholar
29.McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8:e61217.CAS
PubMed
PubMed Central
Article
Google Scholar
30.Dixon P. VEGAN, a package of R functions for community ecology. J Veg Sci. 2003;14:927–30.Article
Google Scholar
31.McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:e1003531.PubMed
PubMed Central
Article
CAS
Google Scholar
32.Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, et al. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.CAS
PubMed
PubMed Central
Article
Google Scholar
33.Asshauer KP, Wemheuer B, Daniel R, Meinicke P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics. 2015;31:2882–4.CAS
PubMed
PubMed Central
Article
Google Scholar
34.Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29:28–35.CAS
PubMed
Article
PubMed Central
Google Scholar
35.Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.CAS
PubMed
PubMed Central
Article
Google Scholar
36.Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc. 2013;8:1494.CAS
PubMed
Article
PubMed Central
Google Scholar
37.Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832.PubMed
Article
CAS
PubMed Central
Google Scholar
38.Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic Acids Res. 2014;42:D222–D30.CAS
PubMed
Article
Google Scholar
39.Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–63.CAS
PubMed
Article
Google Scholar
40.Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12:323.CAS
PubMed
PubMed Central
Article
Google Scholar
41.Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10:R25.PubMed
PubMed Central
Article
CAS
Google Scholar
42.Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS
PubMed
Article
Google Scholar
43.Alexa A, Rahnenführer J. Gene set enrichment analysis with topGO. Bioconductor Improv. 2009;27:1–26.44.Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–D13.CAS
Article
Google Scholar
45.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.CAS
PubMed
PubMed Central
Article
Google Scholar
46.Moitinho-Silva L, Nielsen S, Amir A, Gonzalez A, Ackermann GL, Cerrano C, et al. The sponge microbiome project. Gigascience. 2017;6:1–7.CAS
PubMed
Article
PubMed Central
Google Scholar
47.Lurgi M, Thomas T, Wemheuer B, Webster NS, Montoya JM. Modularity and predicted functions of the global sponge-microbiome network. Nat Commun. 2019;10:992.PubMed
PubMed Central
Article
CAS
Google Scholar
48.Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010;466:720–6.CAS
PubMed
PubMed Central
Article
Google Scholar
49.Guzman C, Conaco C. Comparative transcriptome analysis reveals insights into the streamlined genomes of haplosclerid demosponges. Sci Rep. 2016;6:18774.CAS
PubMed
PubMed Central
Article
Google Scholar
50.Fortunato SA, Adamski M, Ramos OM, Leininger S, Liu J, Ferrier DE, et al. Calcisponges have a ParaHox gene and dynamic expression of dispersed NK homeobox genes. Nature. 2014;514:620–3.CAS
PubMed
Article
Google Scholar
51.Voigt O, Fradusco B, Gut C, Kevrekidis C, Vargas S, Wörheide G. Carbonic anhydrases: an ancient tool in calcareous sponge biomineralization. Front Genet. 2021;12:624533.52.Yuen B, Bayes JM, Degnan SM. The characterization of sponge NLRs provides insight into the origin and evolution of this innate immune gene family in animals. Mol Biol Evol. 2014;31:106–20.CAS
PubMed
Article
Google Scholar
53.Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019;47:W636–41.CAS
PubMed
PubMed Central
Article
Google Scholar
54.Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011;27:1164–5.CAS
PubMed
Article
Google Scholar
55.Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.CAS
PubMed
Article
Google Scholar
56.Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer; 2016.57.McDevitt-Irwin JM, Baum JK, Garren M, Vega Thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:262.58.Hori K, Matsumoto S. Bacterial adhesion: from mechanism to control. Biochem Eng J. 2010;48:424–34.CAS
Article
Google Scholar
59.Yao J, Allen C. Chemotaxis is required for virulence and competitive fitness of the bacterial wilt pathogen Ralstonia solanacearum. J Bacteriol. 2006;188:3697–708.CAS
PubMed
PubMed Central
Article
Google Scholar
60.Chu H, Mazmanian SK. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat Immunol. 2013;14:668–75.CAS
PubMed
PubMed Central
Article
Google Scholar
61.Bazzoni F, Beutler B. The tumor necrosis factor ligand and receptor families. N Engl J Med. 1996;334:1717–25.CAS
PubMed
Article
Google Scholar
62.Hayden MS, Ghosh S. Regulation of NF-kappaB by TNF family cytokines. Semin Immunol. 2014;26:253–66.CAS
PubMed
PubMed Central
Article
Google Scholar
63.Parrish AB, Freel CD, Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb Perspect Biol. 2013;5:a008672.64.Wiens M, Korzhev M, Krasko A, Thakur NL, Perovic-Ottstadt S, Breter HJ, et al. Innate immune defense of the sponge Suberites domuncula against bacteria involves a MyD88-dependent signaling pathway. Induction of a perforin-like molecule. J Biol Chem. 2005;280:27949–59.CAS
PubMed
Article
Google Scholar
65.Muller WE, Muller IM. Origin of the metazoan immune system: identification of the molecules and their functions in sponges. Integr Comp Biol. 2003;43:281–92.PubMed
Article
Google Scholar
66.Yuen B Deciphering the genomic toolkit underlying animal-bacteria interactions – insights through the demosponge Amphimedon queenslandica. Saint Lucia, QLD: School of Biological Sciences, The University of Queensland; 2016.67.Gauthier ME, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev. 2010;12:519–33.CAS
PubMed
Article
Google Scholar
68.Roue M, Quevrain E, Domart-Coulon I, Bourguet-Kondracki ML. Assessing calcareous sponges and their associated bacteria for the discovery of new bioactive natural products. Nat Prod Rep. 2012;29:739–51.CAS
PubMed
Article
Google Scholar
69.Steinert G, Busch K, Bayer K, Kodami S, Arbizu PM, Kelly M, et al. Compositional and quantitative insights into bacterial and archaeal communities of South Pacific deep-sea sponges (Demospongiae and Hexactinellida). Front Microbiol. 2020;11:716.PubMed
PubMed Central
Article
Google Scholar
70.Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun. 2016;7:11870.CAS
PubMed
PubMed Central
Article
Google Scholar
71.Yap NV, Whelan FJ, Bowdish DM, Golding GB. The evolution of the scavenger receptor cysteine-rich domain of the class a scavenger receptors. Front Immunol. 2015;6:342.PubMed
PubMed Central
Google Scholar
72.Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18:374–89.CAS
PubMed
Article
PubMed Central
Google Scholar
73.von Moltke J, Ayres JS, Kofoed EM, Chavarria-Smith J, Vance RE. Recognition of bacteria by inflammasomes. Annu Rev Immunol. 2013;31:73–106.Article
CAS
Google Scholar
74.Robertson SJ, Rubino SJ, Geddes K, Philpott DJ. Examining host-microbial interactions through the lens of NOD: from plants to mammals. Semin Immunol. 2012;24:9–16.CAS
PubMed
Article
PubMed Central
Google Scholar
75.Ting JP, Lovering RC, Alnemri ES, Bertin J, Boss JM, Davis BK, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28:285–7.CAS
PubMed
PubMed Central
Article
Google Scholar
76.Messier-Solek C, Buckley KM, Rast JP. Highly diversified innate receptor systems and new forms of animal immunity. Semin Immunol. 2010;22:39–47.CAS
PubMed
Article
PubMed Central
Google Scholar
77.Bennett HM, Altenrath C, Woods L, Davy SK, Webster NS, Bell JJ. Interactive effects of temperature and pCO2 on sponges: from the cradle to the grave. Glob Chang Biol. 2017;23:2031–46.PubMed
Article
PubMed Central
Google Scholar
78.Luter HM, Andersen M, Versteegen E, Laffy P, Uthicke S, Bell JJ, et al. Cross-generational effects of climate change on the microbiome of a photosynthetic sponge. Environ Microbiol. 2020;22:4732–44.79.Girvan MS, Campbell CD, Killham K, Prosser JI, Glover LA. Bacterial diversity promotes community stability and functional resilience after perturbation. Environ Microbiol. 2005;7:301–13.CAS
PubMed
Article
PubMed Central
Google Scholar
80.Ziegler M, Grupstra CGB, Barreto MM, Eaton M, BaOmar J, Zubier K, et al. Coral bacterial community structure responds to environmental change in a host-specific manner. Nat Commun. 2019;10:3092.PubMed
PubMed Central
Article
CAS
Google Scholar
81.Ribes M, Calvo E, Movilla J, Logares R, Coma R, Pelejero C. Restructuring of the sponge microbiome favors tolerance to ocean acidification. Environ Microbiol Rep. 2016;8:536–44.CAS
PubMed
Article
PubMed Central
Google Scholar
82.Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F, et al. Metagenomic analysis of stressed coral holobionts. Environ Microbiol. 2009;11:2148–63.PubMed
Article
CAS
PubMed Central
Google Scholar
83.van de Water J, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, et al. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol. 2018;27:1065–80.PubMed
Article
CAS
PubMed Central
Google Scholar
84.Weisz JB, Lindquist N, Martens CS. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia. 2008;155:367–76.PubMed
Article
PubMed Central
Google Scholar
85.Ludeman DA, Reidenbach MA, Leys SP. The energetic cost of filtration by demosponges and their behavioural response to ambient currents. J Exp Biol. 2017;220:995–1007.PubMed
Article
Google Scholar
86.Perea-Blazquez A, Davy SK, Bell JJ. Estimates of particulate organic carbon flowing from the pelagic environment to the benthos through sponge assemblages. PLoS ONE. 2012;7:e29569.CAS
PubMed
PubMed Central
Article
Google Scholar
87.Morganti TM, Ribes M, Yahel G, Coma R. Size is the major determinant of pumping rates in marine sponges. Front Physiol. 2019;10:1474.PubMed
PubMed Central
Article
Google Scholar
88.Peck LS, Clark MS, Power D, Reis J, Batista FM, Harper EM. Acidification effects on biofouling communities: winners and losers. Glob Chang Biol. 2015;21:1907–13.PubMed
PubMed Central
Article
Google Scholar
89.Ribeiro B, Padua A, Barno A, Villela H, Duarte G, Rossi A, et al. Assessing skeleton and microbiome responses of a calcareous sponge under thermal and pH stresses. ICES J Mar Sci. 2020:fsaa231.90.Lanna E, Klautau M. Life history and reproductive dynamics of the cryptogenic calcareous sponge Sycettusa hastifera (Porifera, Calcarea) living in tropical rocky shores. J Mar Biol Assoc UK. 2018;98:505–14.Article
Google Scholar
91.Pörtner HO, Langenbuch M, Michaelidis B. Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res. 2005;110:C09S10.92.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed
PubMed Central
Article
Google Scholar More