Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature
1.Bálint M, Domisch S, Engelhardt CHM, Haase P, Lehrian S, Sauer J, et al. Cryptic biodiversity loss linked to global climate change. Nat Clim Chang. 2011;1:313–8.Article
Google Scholar
2.Parmesan C, Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 2003;421:37–42.CAS
PubMed
Article
PubMed Central
Google Scholar
3.Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S. Climate change and the past, present, and future of biotic interactions. Science. 2013;341:499–504.CAS
PubMed
Article
PubMed Central
Google Scholar
4.Haines A, Ebi K. The imperative for climate action to protect health. N. Engl J Med. 2019;380:263–73.PubMed
Article
PubMed Central
Google Scholar
5.Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, et al. Increase in crop losses to insect pests in a warming climate. Science. 2018;361:916–9.CAS
PubMed
Article
PubMed Central
Google Scholar
6.Kattwinkel M, Jan-Valentin K, Foit K, Liess M. Climate change, agricultural insecticide exposure, and risk for freshwater communities. Ecol Appl. 2011;21:2068–81.PubMed
Article
PubMed Central
Google Scholar
7.Moe SJ, De Schamphelaere K, Clements WH, Sorensen MT, Van den Brink PJ, Liess M. Combined and interactive effects of global climate change and toxicants on populations and communities. Environ Toxicol Chem. 2013;32:49–61.CAS
PubMed
PubMed Central
Article
Google Scholar
8.Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345–53.PubMed
Article
PubMed Central
Google Scholar
9.Moran EV, Alexander JM. Evolutionary responses to global change: Lessons from invasive species. Ecol Lett. 2014;17:637–49.PubMed
Article
PubMed Central
Google Scholar
10.Harwood AD, You J, Lydy MJ. Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem. 2009;28:1051–8.CAS
PubMed
Article
PubMed Central
Google Scholar
11.Guo L, Su M, Liang P, Li S, Chu D. Effects of high temperature on insecticide tolerance in whitefly Bemisia tabaci (Gennadius) Q biotype. Pestic Biochem Physiol. 2018;150:97–104.CAS
PubMed
Article
PubMed Central
Google Scholar
12.Mao K, Jin R, Li W, Ren Z, Qin X, He S, et al. The influence of temperature on the toxicity of insecticides to Nilaparvata lugens (Stål). Pestic Biochem Physiol. 2019;156:80–86.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Verheyen J, Delnat V, Stoks R. Increased daily temperature fluctuations overrule the ability of gradual thermal evolution to offset the increased pesticide toxicity under global warming. Environ Sci Technol. 2019;53:4600–8.CAS
PubMed
Article
PubMed Central
Google Scholar
14.Moran NA. Symbiosis as an adaptive process and source of phenotypic complexity. Proc Natl Acad Sci USA. 2007;104:8627–3863.CAS
PubMed
PubMed Central
Article
Google Scholar
15.Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA. 2012;109:8618–22.CAS
PubMed
PubMed Central
Article
Google Scholar
16.Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, et al. Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep. 2015;12:1217–25.CAS
PubMed
PubMed Central
Article
Google Scholar
17.Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome. 2017;5:13.PubMed
PubMed Central
Article
Google Scholar
18.Pang R, Chen M, Yue L, Xing K, Li T, Kang K, et al. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host. PLoS Genet. 2018;14:e1007725.PubMed
PubMed Central
Article
CAS
Google Scholar
19.Kikuchi Y, Tada A, Musolin DL, Hari N, Hosokawa T, Fujisaki K, et al. Collapse of insect gut symbiosis under simulated climate change. mBio. 2016;7:e01578–16.PubMed
PubMed Central
Article
Google Scholar
20.Corbin C, Heyworth ER, Ferrari J, Hurst GDD. Heritable symbionts in a world of varying temperature. Heredity. 2017;118:10–20.CAS
PubMed
Article
PubMed Central
Google Scholar
21.Jia FX, Yang MS, Yang WJ, Wang JJ. Influence of continuous high temperature conditions on Wolbachia infection frequency and the fitness of Liposcelis tricolor (Psocoptera: Liposcelididae). Environ Entomol. 2009;38:1365–72.PubMed
Article
PubMed Central
Google Scholar
22.Burke G, Fiehn O, Moran N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J. 2010;4:242–52.PubMed
Article
PubMed Central
Google Scholar
23.Fan Y, Wernegreen JJ. Can’t take the heat: high temperature depletes bacterial endosymbionts of ants. Micro Ecol. 2013;66:727–33.Article
Google Scholar
24.Hussain M, Akutse KS, Ravindran K, Lin Y, Bamisile BS, Qasim M, et al. Effects of different temperature regimes on survival of Diaphorina citri and its endosymbiotic bacterial communities. Environ Microbiol. 2017;19:3439–49.CAS
PubMed
Article
PubMed Central
Google Scholar
25.Engl T, Eberl N, Gorse C, Krüger T, Schmidt THP, Plarre R, et al. Ancient symbiosis confers desiccation resistance to stored grain pest beetles. Mol Ecol. 2018;27:2095–108.CAS
PubMed
Article
PubMed Central
Google Scholar
26.Zhang XJ, Yu XP, Chen JM. High Temperature effects on yeast-like endosymbiotes and pesticide resistance of the small brown planthopper, Laodelphax striatellus. Rice Sci. 2008;15:326–30.CAS
Article
Google Scholar
27.Zhang B, Zuo TQ, Li HG, Sun LJ, Wang SF, Zhang CY, et al. Effect of heat shock on the susceptibility of Frankliniella occidentalis (Thysanoptera: Thripidae) to insecticides. J Integr Agric. 2016;15:2309–18.CAS
Article
Google Scholar
28.Karimzadeh R, Javanshir M, Hejazi MJ. Individual and combined effects of insecticides, inert dusts and high temperatures on Callosobruchus maculatus (Coleoptera: Chrysomelidae). J Stored Prod Res. 2020;89:10693.Article
Google Scholar
29.Michigan State University. Arthropod Pesticide Resistance Database (APRD). East Lansing: Michigan State University; 2020. http://www.pesticideresistance.com/.30.Ju JF, Bing XL, Zhao DS, Guo Y, Xi Z, Hoffmann AA, et al. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers. ISME J. 2019;14:676–87.PubMed
PubMed Central
Article
CAS
Google Scholar
31.Zhang Y, Tang T, Li W, Cai T, Li J, Wan H. Functional profiling of the gut microbiomes in two different populations of the brown planthopper. Nilaparvata lugens J Asia Pac Entomol. 2018;21:1309–14.Article
Google Scholar
32.Ye YH, Seleznev A, Flores HA, Woolfit M, McGraw EA. Gut microbiota in Drosophila melanogaster interacts with Wolbachia but does not contribute to Wolbachia-mediated antiviral protection. J Invertebr Pathol. 2017;143:18–25.CAS
PubMed
Article
PubMed Central
Google Scholar
33.Yamada R, Floate KD, Riegler M, O’Neill SL. Male development time influences the strength of Wolbachia-induced cytoplasmic incompatibility expression in Drosophila melanogaster. Genetics. 2007;177:801–8.CAS
PubMed
PubMed Central
Article
Google Scholar
34.Wari D, Kabir MA, Mujiono K, Hojo Y, Shinya T, Tani A, et al. Honeydew-associated microbes elicit defense responses against brown planthopper in rice. J Exp Bot. 2019;70:1683–96.CAS
PubMed
PubMed Central
Article
Google Scholar
35.Miller ALE, Tindall K, Leonard BR. Bioassays for monitoring insecticide resistance. J Vis Exp. 2010;46:2129.
Google Scholar
36.Zhang J, Zhang Y, Wang Y, Yang Y, Cang X, Liu Z. Expression induction of P450 genes by imidacloprid in Nilaparvata lugens: a genome-scale analysis. Pestic Biochem Physiol. 2016;132:59–64.CAS
PubMed
Article
PubMed Central
Google Scholar
37.Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.CAS
PubMed
Article
PubMed Central
Google Scholar
38.Noda H, Koizumi Y, Zhang Q, Deng K. Infection density of Wolbachia and incompatibility level in two planthopper species, Laodelphax striatellus and Sogatella furcifera. Insect Biochem Mol Biol. 2001;31:727–37.CAS
PubMed
Article
PubMed Central
Google Scholar
39.Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011. https://doi.org/10.14806/ej.17.1.20040.Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from illumina amplicon data. Nat Methods. 2016;13:581–3.CAS
PubMed
PubMed Central
Article
Google Scholar
41.Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS
PubMed
PubMed Central
Article
Google Scholar
42.Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:90.PubMed
PubMed Central
Article
Google Scholar
43.Liu S, Ding Z, Zhang C, Yang B, Liu Z. Gene knockdown by intro-thoracic injection of double-stranded RNA in the brown planthopper, Nilaparvata lugens. Insect Biochem Mol Biol. 2010;40:666–71.CAS
PubMed
Article
PubMed Central
Google Scholar
44.Tai V, James ER, Nalep CA, Scheffrahn RH, Perlman SJ, Keelinga PJ. The role of host phylogeny varies in shaping microbial diversity in the hindguts of lower termites. Appl Environ Microbiol. 2015;81:1059–70.PubMed
PubMed Central
Article
CAS
Google Scholar
45.Bale JS, Hayward SAL. Insect overwintering in a changing climate. J Exp Biol. 2010;213:980–94.CAS
PubMed
Article
PubMed Central
Google Scholar
46.Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, et al. Recent climate observations compared to projections. Science. 2007;316:709.CAS
PubMed
Article
PubMed Central
Google Scholar
47.Radchuk V, Reed T, Teplitsky C, van de Pol M, Charmantier A, Hassall C, et al. Adaptive responses of animals to climate change are most likely insufficient. Nat Commun. 2019;10:3019.Article
CAS
Google Scholar
48.Iwamura T, Guzman-Holst A, Murray KA. Accelerating invasion potential of disease vector Aedes aegypti under climate change. Nat Commun. 2020;11:2130.CAS
PubMed
PubMed Central
Article
Google Scholar
49.Li J, Mao T, Wang H, Lu Z, Qu J, Fang Y, et al. The CncC/keap1 pathway is activated in high temperature-induced metamorphosis and mediates the expression of Cyp450 genes in silkworm, Bombyx mori. Biochem Biophys Res Commun. 2019;541:1045–50.Article
CAS
Google Scholar
50.Kalsi M, Palli SR. Transcription factor cap n collar C regulates multiple cytochrome P450 genes conferring adaptation to potato plant allelochemicals and resistance to imidacloprid in Leptinotarsa decemlineata (Say). Insect Biochem Mol Biol. 2017;83:1–12.CAS
PubMed
Article
PubMed Central
Google Scholar
51.Kalsi M, Palli SR. Transcription factors, CncC and Maf, regulate expression of CYP6BQ genes responsible for deltamethrin resistance in Tribolium castaneum. Insect Biochem Mol Biol. 2015;65:47–56.CAS
PubMed
Article
PubMed Central
Google Scholar
52.Misra JR, Lam G, Thummel CS. Constitutive activation of the Nrf2/Keap1 pathway in insecticide-resistant strains of Drosophila. Insect Biochem Mol Biol. 2013;43:1116–24.CAS
PubMed
Article
PubMed Central
Google Scholar
53.Tang B, Cheng Y, Li Y, Li W, Ma Y, Zhou Q, et al. Adipokinetic hormone regulates cytochrome P450-mediated imidacloprid resistance in the brown planthopper, Nilaparvata lugens. Chemosphere. 2020;259:127490.CAS
PubMed
Article
PubMed Central
Google Scholar
54.Cheng Y, Li Y, Li W, Song Y, Zeng R, Lu K. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes. Chemosphere. 2021;263:128269.CAS
PubMed
Article
PubMed Central
Google Scholar
55.Li Y, Liu X, Wang N, Zhang Y, Hoffmann AA, Guo H. Background-dependent Wolbachia-mediated insecticide resistance in Laodelphax striatellus. Environ Microbiol. 2020;22:2653–63.CAS
PubMed
Article
PubMed Central
Google Scholar
56.Berticat C, Rousset F, Raymond M, Berthomieu A, Weill M. High Wolbachia density in insecticide-resistant mosquitoes. Proc R Soc B Biol Sci. 2002;269:1413–6.Article
Google Scholar
57.Zhang G, Hussain M, O’Neill SL, Asgari S. Wolbachia uses a host microRNA to regulate transcripts of a methyltransferase, contributing to dengue virus inhibition in Aedes aegypti. Proc Natl Acad Sci USA. 2013;110:10276–81.CAS
PubMed
PubMed Central
Article
Google Scholar
58.Bi J, Sehgal A, Williams JA, Wang YF. Wolbachia affects sleep behavior in Drosophila melanogaster. J Insect Physiol. 2018;107:81–88.CAS
PubMed
Article
PubMed Central
Google Scholar
59.Roughgarden J, Gilbert SF, Rosenberg E, Zilber-Rosenberg I, Lloyd EA. Holobionts as units of selection and a model of their population dynamics and evolution. Biol Theory. 2018;13:44–65.Article
Google Scholar
60.Pan X, Zhou G, Wu J, Bian G, Lu P, Raikhel AS, et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc Natl Acad Sci USA. 2012;109:E23–31.PubMed
Article
PubMed Central
Google Scholar
61.Gong JT, Li Y, Li TP, Liang Y, Hu L, Zhang D, et al. Stable introduction of plant-virus-inhibiting Wolbachia into planthoppers for rice protection. Curr Biol. 2020;30:4837–45.CAS
PubMed
Article
PubMed Central
Google Scholar
62.Elzaki MEA, Li ZF, Wang J, Xu L, Liu N, Zeng RS, et al. Activiation of the nitric oxide cycle by citrulline and arginine restores susceptibility of resistant brown planthoppers to the insecticide imidacloprid. J Hazard Mater. 2020;396:122755.CAS
PubMed
Article
PubMed Central
Google Scholar
63.Werren JH. Biology of Wolbachia. Annu Rev Entomol. 1997;42:587–609.CAS
PubMed
Article
PubMed Central
Google Scholar
64.Kokou F, Sasson G, Nitzan T, Doron-Faigenboim A, Harpaz S, Cnaani A, et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. Elife. 2018;77:e36398.Article
Google Scholar More