More stories

  • in

    Adélie penguins north and east of the ‘Adélie gap’ continue to thrive in the face of dramatic declines elsewhere in the Antarctic Peninsula region

    Fraser, W., Trivelpiece, W., Ainley, D. & Trivelpiece, S. Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming?. Polar Biol. 11, 525–531 (1992).Article 

    Google Scholar 
    Trivelpiece, W. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108, 7625–7628 (2011).Article 
    CAS 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 

    Google Scholar 
    Hinke, J., Salwicka, K., Trivelpiece, S., Watters, G. & Trivelpiece, W. Divergent responses of Pygoscelis penguins reveal common environmental driver. Oecologia 153, 845–855 (2007).Article 

    Google Scholar 
    Poncet, S. & Poncet, J. Censuses of penguin populations of the Antarctic Peninsula, 1983–87. Br. Antarct. Surv. Bull. 77, 109–129 (1987).
    Google Scholar 
    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: Winter-summer heterogeneity in the distribution of Adélie penguin populations. Found. For. Ecol. Res. West Antarct. Penins. 70, 257–272 (1996).Article 

    Google Scholar 
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 53, 160–166 (2017).Article 

    Google Scholar 
    Lynch, H., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).Article 

    Google Scholar 
    Elliot, D. H., Watts, D. R., Alley, R. B. & Gracanin, T. M. Bird and seal observations at Joinville Island and offshore islands. Antarct. J. USA 13, 154–155 (1978).
    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. Patterns of tourism in the Antarctic Peninsula region: A twenty-year re-analysis. Antarct. Sci. 28, 194–203 (2016).Article 

    Google Scholar 
    Lynch, H. J. & Schwaller, M. R. Mapping the abundance and distribution of Adélie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie penguin. Auk 131, 457–466 (2014).Article 

    Google Scholar 
    Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).Article 

    Google Scholar 
    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).Article 

    Google Scholar 
    Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. NPJ Clim. Atmos. Sci. 5, 1–15 (2022).Article 

    Google Scholar 
    Kumar, A., Yadav, J. & Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 16, 024046 (2021).
    Google Scholar 
    Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M. & Boebel, O. Multidecadal warming and density loss in the deep Weddell Sea. Antarct. J. Clim. 33, 9863–9881 (2020).Article 

    Google Scholar 
    Morioka, Y. & Behera, S. K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Ocean 126, e2020JC017036 (2021).Article 

    Google Scholar 
    Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).Article 

    Google Scholar 
    Humphries, G. R. et al. Predicting the future is hard and other lessons from a population time series data science competition. Ecol. Inf. 48, 1–11 (2018).Article 

    Google Scholar 
    Borowicz, A. et al. A multi-modal survey of Adèlie penguin megacolonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 

    Google Scholar 
    Cimino, M., Lynch, H., Saba, V. & Oliver, M. Projected asymmetric response of Adèlie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).Article 
    CAS 

    Google Scholar 
    McClintock, J., Silva-Rodriguez, P. & Fraser, W. Southerly breeding in gentoo penguins for the eastern Antarctic Peninsula: Further evidence for unprecedented climate change. Antarct. Sci. 22, 285–286 (2010).Article 

    Google Scholar 
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001–2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 
    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).Article 

    Google Scholar 
    Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-1, Priority Areas for Conservation. SC-CAMLR- XXXVI/17. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-2, Priority Areas for Conservation. SC-CAMLR- XXXVI/18. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar 
    Herman, R. et al. Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biol. 43, 1947–1956 (2020).Article 

    Google Scholar 
    Korczak-Abshire, M., Hinke, J. T., Milinevsky, G., Juáres, M. A. & Watters, G. M. Coastal regions of the northern Antarctic Peninsula are key for gentoo populations. Biol. Lett. 17, 20200708 (2021).Article 

    Google Scholar 
    Miller, A. K., Karnovsky, N. J. & Trivelpiece, W. Z. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands. Antarct. Mar. Biol. 156, 2527–2537 (2009).Article 

    Google Scholar 
    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Cimino, M. A., Fraser, W. R., Irwin, A. J. & Oliver, M. J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 19, 136–148 (2013).Article 

    Google Scholar 
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).Article 

    Google Scholar 
    Croxall, J. P. & Kirkwood, E. The Distribution of Penguins on the Antarctic Peninsula and Islands of the Scotia Sea (British Antarctic Survey, Cambridge, UK, 1979).
    Google Scholar 
    Naveen, R. et al. Censuses of penguin, blue-eyed shag, and southern giant petrel populations in the Antarctic Peninsula region, 1994–2000. Polar Rec. 36, 323–334 (2000).Article 

    Google Scholar 
    Woehler,E. J. The Distribution and Abundance of Antarctic and Subantarctic Penguins. In SCAR Comm. on Antarctic Res. Bird Biol. Subcomm. (Cambridge University Press, 1993).Naveen, R., Lynch, H. J., Forrest, S., Mueller, T. & Polito, M. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol. 35, 1879–1888 (2012).
    Google Scholar 
    Hallermann, N., Morgenthal, G. & Rodehorst, V. Unmanned aerial systems (UAS)–case studies of vision based monitoring of ageing structures. In Int. Symp. Non-Destructive Test. Civ. Eng. (NDT-CE) 15–17 (2015).Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).Article 

    Google Scholar 
    Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).Article 

    Google Scholar 
    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. Updated daily Sea Ice Index, Version 3. In Boulder, Colo.USA. NSIDC: Natl. Snow Ice Data Cent (2017).Iles, D. T. et al. Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis. Glob. Change Biol. 26, 3788–3798 (2020).Article 

    Google Scholar 
    Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using mcmc. R package version 4. https://rdrr.io/cran/rjags/ (2016).Plummer, M. et al. Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 1–10 (Vienna, Austria., 2003).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Youngflesh, C. MCMCvis: Tools to visualize, manipulate, and summarize MCMC output. J. Open Sourc. Softw. 3, 640 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2. Wiley Interdiscipl. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Kellner,K. jagsUI: A wrapper around rjags to streamline JAGS analyses. R package version 1, 2015 (2015).Herman, R. & Lynch, H. Age-structured model reveals prolonged immigration is key for colony establishment in Gentoo Penguins. Ornithol. Appl. 124, duac04 (2022).
    Google Scholar 
    Polito, M. J., Lynch, H. J., Naveen, R. & Emslie, S. D. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 421, 265–277 (2011).Article 

    Google Scholar 
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).Article 

    Google Scholar 
    Wilson, P. et al. Adélie penguin population change in the pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213, 301–309 (2001).Article 

    Google Scholar 
    Wienecke, B. et al. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep. Sea Res. Part II Top. Stud. Oceanogr. 47, 2573–2587 (2000).Article 

    Google Scholar 
    Ainley, D. G. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).Book 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarct. Mar. Biol. 154, 813–821 (2008).Article 

    Google Scholar 
    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).Article 

    Google Scholar 
    Ashford, J., Zane, L., Torres, J. J., La Mesa, M. & Simms, A. R. Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem 193–234 (Springer, 2017).Pakhomov, E. & Perissinotto, R. Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep. Sea Res. Part I Oceanogr. Res. Pap. 43, 59–87 (1996).Article 

    Google Scholar 
    La Mesa, M. & Eastman, J. T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13, 241–266 (2012).Article 

    Google Scholar 
    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea. Antarct. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).Article 
    CAS 

    Google Scholar 
    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).Article 

    Google Scholar 
    La Mesa, M., Piñones, A., Catalano, B. & Ashford, J. Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish. Oceanogr. 24, 150–161 (2015).Article 

    Google Scholar 
    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).Article 

    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Front. Mar. Sci. 7, 256 (2021).Article 

    Google Scholar 
    Brooks, C. et al. Workshop on identifying key biodiversity areas for the Southern Ocean using tracking data. In Tech.Rep. SC-CAMLR-41/BG/22, CCAMLR (2022).Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013: Ecological Archives E094–243. Ecology 94, 2653–2653 (2013).Article 

    Google Scholar 
    Myrcha, A., Tatur, A. & Valle, R. D. V. Numbers of Adélie penguins breeding at Hope Bay and Seymour Island rookeries (West Antarctica) in 1985. Pol. Polar Res. 8, 411–422 (1987).
    Google Scholar 
    Montalti, D. & Soave, G. E. The birds of Seymour Island, Antarctica. Ornitol. Neotrop. 13, 267–271 (2002).
    Google Scholar 
    Perchivale, P. J. et al. Updated estimate of the Breeding Population of Adélie penguins (Pygoscelis adeliae) at Penguin Point, Marambio/Seymour Island within the proposed Weddell Sea Marine Protected Area (2022). https://www.researchsquare.com/article/rs-2117503/v1.Che-Castaldo, C. et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8, 832 (2017).Article 

    Google Scholar 
    Hinke, J. T., Trivelpiece, S. G. & Trivelpiece, W. Z. Variable vital rates and the risk of population declines in Adélie penguins from the Antarctic Peninsula region. Ecosphere 8, e01666 (2017).Article 

    Google Scholar  More

  • in

    A latitudinal gradient of deep-sea invasions for marine fishes

    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).
    Google Scholar 
    Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).
    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).
    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).ADS 
    CAS 

    Google Scholar 
    Alexander Pyron, R. & Wiens, J. J. Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proc. R. Soc. B Biol. Sci. 280, 1–10 (2013).
    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).
    Google Scholar 
    Wright, S., Keeling, J. & Gillman, L. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc. Natl Acad. Sci. USA 103, 7718–7722 (2006).ADS 
    CAS 

    Google Scholar 
    Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).
    Google Scholar 
    Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392–395 (2018).ADS 
    CAS 

    Google Scholar 
    Igea, J. & Tanentzap, A. J. Angiosperm speciation speeds up near the poles. Ecol. Lett. 23, 1–40 (2020).
    Google Scholar 
    Weir, J. T. & Schluter, D. The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315, 1574–1576 (2007).ADS 
    CAS 

    Google Scholar 
    Rabosky, D. L. & Huang, H. A robust semi-parametric test for detecting trait-dependent diversification. Syst. Biol. 65, 181–193 (2016).
    Google Scholar 
    Hansen, J. et al. Global temperature change. Proc. Natl Acad. Sci. USA 103, 14288–14293 (2006).ADS 
    CAS 

    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. 194, E140–E150 (2019).
    Google Scholar 
    Gerringer, M. E., Linley, T. D., Jamieson, A. J., Goetze, E. & Drazen, J. C. Pseudoliparis swirei sp. Nov.: A newly-discovered hadal snailfish (Scorpaeniformes: Liparidae) from the Mariana Trench. Zootaxa 4358, 161–177 (2017).
    Google Scholar 
    Childress, J. J. Are there physiological and biochemical adaptations of metabolism in deep-sea animals? Trends Ecol. Evol. 10, 30–36 (1995).CAS 

    Google Scholar 
    Seibel, B. A. & Drazen, J. C. The rate of metabolism in marine animals: environmental constraints, ecological demands and energetic opportunities. Philos. Trans. R. Soc. B Biol. Sci. 362, 2061–2078 (2007).CAS 

    Google Scholar 
    Eme, D., Anderson, M. J., Myers, E. M. V., Roberts, C. D. & Liggins, L. Phylogenetic measures reveal eco-evolutionary drivers of biodiversity along a depth gradient. Ecography 43, 689–702 (2020).
    Google Scholar 
    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527 (2017).CAS 

    Google Scholar 
    Brown, A. & Thatje, S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: Physiological contributions to adaptation of life at depth. Biol. Rev. 89, 406–426 (2014).
    Google Scholar 
    Zintzen, V., Anderson, M. J., Roberts, C. D., Harvey, E. S. & Stewart, A. L. Effects of latitude and depth on the beta diversity of New Zealand fish communities. Sci. Rep. 7, 1–10 (2017).CAS 

    Google Scholar 
    Coleman, R. R., Copus, J. M., Coffey, D. M., Whitton, R. K. & Bowen, B. W. Shifting reef fish assemblages along a depth gradient in Pohnpei, Micronesia. PeerJ 2018, 1–30 (2018).
    Google Scholar 
    Neat, F. C. & Campbell, N. Proliferation of elongate fishes in the deep sea. J. Fish. Biol. 83, 1576–1591 (2013).CAS 

    Google Scholar 
    Martinez, C. M. et al. The deep sea is a hot spot of fish body shape evolution. Ecol. Lett. 24, 1788–1799 (2021).
    Google Scholar 
    Webb, P. Introduction to Oceanography (Online OER textbook, 2017).Hanly, P. J., Mittelbach, G. G. & Schemske, D. W. Speciation and the latitudinal diversity gradient: Insights from the global distribution of endemic fish. Am. Nat. 189, 604–615 (2017).
    Google Scholar 
    Tedesco, P. A., Paradis, E., Lévêque, C. & Hugueny, B. Explaining global-scale diversification patterns in actinopterygian fishes. J. Biogeogr. 44, 773–783 (2017).
    Google Scholar 
    Cooney, C. R., Seddon, N. & Tobias, J. A. Widespread correlations between climatic niche evolution and species diversification in birds. J. Anim. Ecol. 85, 869–878 (2016).
    Google Scholar 
    Title, P. O. & Burns, K. J. Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecol. Lett. 18, 433–440 (2015).
    Google Scholar 
    Seeholzer, G. F., Claramunt, S. & Brumfield, R. T. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution 71, 702–715 (2017).
    Google Scholar 
    Kozak, K. H. & Wiens, J. J. Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol. Lett. 13, 1378–1389 (2010).
    Google Scholar 
    Schnitzler, J., Graham, C. H., Dormann, C. F., Schiffers, K. & Peter Linder, H. Climatic niche evolution and species diversification in the cape flora, South Africa. J. Biogeogr. 39, 2201–2211 (2012).
    Google Scholar 
    Ghezelayagh, A. et al. Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nat. Ecol. Evol. 1–10. https://doi.org/10.1038/s41559-022-01801-3 (2022).Polato, N. R. et al. Narrow thermal tolerance and low dispersal drive higher speciation in tropical mountains. Proc. Natl Acad. Sci. USA 115, 12471–12476 (2018).ADS 
    CAS 

    Google Scholar 
    Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514–527 (1992).
    Google Scholar 
    O’Hara, T. D., Hugall, A. F., Woolley, S. N. C., Bribiesca-Contreras, G. & Bax, N. J. Contrasting processes drive ophiuroid phylodiversity across shallow and deep seafloors. Nature 565, 636–639 (2019).ADS 

    Google Scholar 
    Losos, J. B. Adaptive radiation, ecological opportunity, and evolutionary determinism. Am. Nat. 175, 623–639 (2010).
    Google Scholar 
    Hulsey, C. D., Roberts, R. J., Loh, Y. H. E., Rupp, M. F. & Streelman, J. T. Lake Malawi cichlid evolution along a benthic/limnetic axis. Ecol. Evol. 3, 2262–2272 (2013).CAS 

    Google Scholar 
    Woolley, S. N. C. et al. Deep-sea diversity patterns are shaped by energy availability. Nature 533, 393–396 (2016).ADS 
    CAS 

    Google Scholar 
    Pigot, A. L., Owens, I. P. F. & Orme, C. D. L. The environmental limits to geographic range expansion in birds. Ecol. Lett. 13, 705–715 (2010).
    Google Scholar 
    Gerringer, M. E., Linley, T. D. & Nielsen, J. G. Revision of the depth record of bony fishes with notes on hadal snailfishes (Liparidae, Scorpaeniformes) and cusk eels (Ophidiidae, Ophidiiformes). Mar. Biol. 168, 1–9 (2021).
    Google Scholar 
    Kolora, S. R. R. et al. Origins and evolution of extreme life span in Pacific Ocean rockfishes. Science 374, 842–847 (2021).ADS 
    CAS 

    Google Scholar 
    Rutschmann, S. et al. Parallel ecological diversification in Antarctic notothenioid fishes as evidence for adaptive radiation. Mol. Ecol. 20, 4707–4721 (2011).
    Google Scholar 
    Wilson, L. A. B., Colombo, M., Hanel, R., Salzburger, W. & Sánchez-Villagra, M. R. Ecomorphological disparity in an adaptive radiation: opercular bone shape and stable isotopes in Antarctic icefishes. Ecol. Evol. 3, 3166–3182 (2013).
    Google Scholar 
    Ingram, T. Speciation along a depth gradient in a marine adaptive radiation. Proc. R. Soc. B. 278, 613–618 (2011).
    Google Scholar 
    Hyde, J. R., Kimbrell, C. A., Budrick, J. E., Lynn, E. A. & Vetter, R. D. Cryptic speciation in the vermilion rockfish (Sebastes miniatus) and the role of bathymetry in the speciation process. Mol. Ecol. 17, 1122–1136 (2008).CAS 

    Google Scholar 
    Kai, Y., Orr, J. W., Sakai, K. & Nakabo, T. Genetic and morphological evidence for cryptic diversity in the Careproctus rastrinus species complex (Liparidae) of the North Pacific. Ichthyol. Res. 58, 143–154 (2011).
    Google Scholar 
    Gerringer, M. E. et al. Habitat influences skeletal morphology and density in the snailfishes (family Liparidae). Front. Zool. 18, 1–22 (2021).
    Google Scholar 
    Saveliev, P. A. & Metelyov, E. A. Species composition and distribution of eelpouts (Zoarcidae, Perciformes, Actinopterygii) in the northwestern Sea of Okhotsk in summer. Prog. Oceanogr. 196, 102605 (2021).
    Google Scholar 
    Quattrini, A. M. et al. Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Mol. Ecol. 22, 4123–4140 (2013).
    Google Scholar 
    Zardus, J. D., Etter, R. J., Chase, M. R., Rex, M. A. & Boyle, E. E. Bathymetric and geographic population structure in the pan-Atlantic deep-sea bivalve Deminucula atacellana (Schenck, 1939). Mol. Ecol. 15, 639–651 (2006).CAS 

    Google Scholar 
    Schüller, M. Evidence for a role of bathymetry and emergence in speciation in the genus Glycera (Glyceridae, Polychaeta) from the deep Eastern Weddell Sea. Polar Biol. 34, 549–564 (2011).
    Google Scholar 
    Smith, W. L., Everman, E. & Richardson, C. Phylogeny and taxonomy of flatheads, scorpionfishes, sea robins, and stonefishes (Percomorpha: Scorpaeniformes) and the evolution of the lachrymal saber. Copeia 106, 94–119 (2018).
    Google Scholar 
    Jamon, M., Renous, S., Gasc, J. P., Bels, V. & Davenport, J. Evidence of force exchanges during the six-legged walking of the bottom-dwelling fish,Chelidonichthys lucerna. J. Exp. Zool. 307A, 542–547 (2007).
    Google Scholar 
    McCune, A. R. & Carlson, R. L. Twenty ways to lose your bladder: common natural mutants in zebrafish and widespread convergence of swim bladder loss among teleost fishes. Evol. Dev. 6, 246–259 (2004).
    Google Scholar 
    Rabosky, D. L. Speciation rate and the diversity of fishes in freshwaters and the oceans. J. Biogeogr. 47, 1207–1217 (2020).
    Google Scholar 
    Daane, J. M. et al. Historical contingency shapes adaptive radiation in Antarctic fishes. Nat. Ecol. Evol. 3, 1102–1109 (2019).
    Google Scholar 
    Mu, Y. et al. Whole genome sequencing of a snailfish from the Yap Trench (~7,000 m) clarifies the molecular mechanisms underlying adaptation to the deep sea. PLoS Genet. 17, e1009530 (2021).CAS 

    Google Scholar 
    Yancey, P. H., Gerringer, M. E., Drazen, J. C., Rowden, A. A. & Jamieson, A. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths. Proc. Natl Acad. Sci. USA 111, 4461–4465 (2014).ADS 
    CAS 

    Google Scholar 
    Janzen, D. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).
    Google Scholar 
    Kozak, K. H. & Wiens, J. J. Climatic zonation drives latitudinal variation in speciation mechanisms. Proc. R. Soc. B: Biol. Sci. 274, 2995–3003 (2007).
    Google Scholar 
    Sheldon, K. S., Huey, R. B., Kaspari, M. & Sanders, N. J. Fifty years of mountain passes: a perspective on Dan Janzen’s classic article. Am. Nat. 191, 553–565 (2018).
    Google Scholar 
    Muñoz, M. M. & Bodensteiner, B. L. Janzen’s hypothesis meets the bogert effect: connecting climate variation, thermoregulatory behavior, and rates of physiological evolution. Integr. Organ. Biol. 1, oby002 (2019).
    Google Scholar 
    Santidrián Tomillo, P., Fonseca, L., Paladino, F. V., Spotila, J. R. & Oro, D. Are thermal barriers ‘higher’ in deep sea turtle nests? PLoS ONE 12, 1–14 (2017).
    Google Scholar 
    Brown, J. H. Why marine islands are farther apart in the tropics. Am. Nat. 183, 842–846 (2014).
    Google Scholar 
    Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).ADS 
    CAS 

    Google Scholar 
    Hattermann, T. Antarctic thermocline dynamics along a narrow shelf with easterly winds. J. Phys. Oceanogr. 48, 2419–2443 (2018).ADS 

    Google Scholar 
    Robison, B. H. What drives the diel vertical migrations of Antarctic midwater fish? J. Mar. Biol. Ass. 83, 639–642 (2003).
    Google Scholar 
    Bourgeaud, L. et al. Climatic niche change of fish is faster at high latitude and in marine environments. Preprint at bioRxiv https://doi.org/10.1101/853374 (2019).Pie, M. R. et al. The evolution of latitudinal range limits in tropical reef fishes: heritability, limits, and inverse Rapoport’s rule. J. Biogeogr. 00, 1–12 (2021).
    Google Scholar 
    Powell, M. G. & Glazier, D. S. Asymmetric geographic range expansion explains the latitudinal diversity gradients of four major taxa of marine plankton. Paleobiology 43, 196–208 (2017).
    Google Scholar 
    Lawson, A. M. & Weir, J. T. Latitudinal gradients in climatic-niche evolution accelerate trait evolution at high latitudes. Ecol. Lett. 17, 1427–1436 (2014).
    Google Scholar 
    Boag, T. H., Gearty, W. & Stockey, R. G. Metabolic tradeoffs control biodiversity gradients through geological time. Curr. Biol. 31, 2906–2913.e3 (2021).CAS 

    Google Scholar 
    Near, T. J. et al. Ancient climate change, antifreeze, and the evolutionary diversification of Antarctic fishes. Proc. Natl Acad. Sci. USA 109, 3434–3439 (2012).ADS 
    CAS 

    Google Scholar 
    Hotaling, S., Borowiec, M. L., Lins, L. S. F., Desvignes, T. & Kelley, J. L. The biogeographic history of eelpouts and related fishes: Linking phylogeny, environmental change, and patterns of dispersal in a globally distributed fish group. Mol. Phylogenet. Evol. 162, 107211 (2021).
    Google Scholar 
    Thatje, S., Hillenbrand, C.-D., Mackensen, A. & Larter, R. Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 89, 682–692 (2008).
    Google Scholar 
    Keller, I. & Seehausen, O. Thermal adaptation and ecological speciation. Mol. Ecol. 21, 782–799 (2012).CAS 

    Google Scholar 
    Deutsch, C., Penn, J. L. & Seibel, B. Metabolic trait diversity shapes marine biogeography. Nature 585, 557–562 (2020).ADS 
    CAS 

    Google Scholar 
    Labeyrie, L. D., Duplessy, J. C. & Blanc, P. L. Variations in mode of formation and temperature of oceanic deep waters over the past 125,000 years. Nature 327, 477–482 (1987).ADS 
    CAS 

    Google Scholar 
    Boag, T. H., Stockey, R. G., Elder, L. E., Hull, P. M. & Sperling, E. A. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. Proc. R. Soc. B: Biol. Sci. 285, 2011724 (2018).
    Google Scholar 
    Koslow, J. A. Community structure in North Atlantic deep-sea fishes. Prog. Oceanogr. 31, 321–338 (1993).ADS 

    Google Scholar 
    Brunn, A. The abyssal fauna: its ecology, distribution, and origin. Nature 177, 1105–1108 (1956). Fr.ADS 

    Google Scholar 
    Gaither, M. R. et al. Depth as a driver of evolution in the deep sea: Insights from grenadiers (Gadiformes: Macrouridae) of the genus Coryphaenoides. Mol. Phylogenet. Evol. 104, 73–82 (2016).
    Google Scholar 
    Eastman, J. T. Evolution and diversification of Antarctic notothenioid fishes. Am. Zool. 31, 93–110 (1991).
    Google Scholar 
    Quattrini, A. M., Gómez, C. E. & Cordes, E. E. Environmental filtering and neutral processes shape octocoral community assembly in the deep sea. Oecologia 183, 221–236 (2017).ADS 

    Google Scholar 
    Stefanoudis, P. V. et al. Depth-dependent structuring of reef fish assemblages from the shallows to the rariphotic zone. Front. Mar. Sci. 6, 1–16 (2019).
    Google Scholar 
    Zintzen, V., Anderson, M. J., Roberts, C. D. & Diebel, C. E. Increasing variation in taxonomic distinctness reveals clusters of specialists in the deep sea. Ecography 34, 306–317 (2011).
    Google Scholar 
    Price, S. A., Claverie, T., Near, T. J. & Wainwright, P. C. Phylogenetic insights into the history and diversification of fishes on reefs. Coral Reefs 34, 997–1009 (2015).ADS 

    Google Scholar 
    Weber, M. G., Wagner, C. E., Best, R. J., Harmon, L. J. & Matthews, B. Evolution in a Community Context: On Integrating Ecological Interactions and Macroevolution. Trends Ecol. Evol. 32, 291–304 (2017).
    Google Scholar 
    Linley, T. D. et al. Fishes of the hadal zone including new species, in situ observations and depth records of Liparidae. Deep Sea Res. Part I Oceanogr. Res. Pap. 114, 99–110 (2016).ADS 

    Google Scholar 
    Jamieson, A. J., Linley, T. D., Eigler, S. & Macdonald, T. A global assessment of fishes at lower abyssal and upper hadal depths (5000 to 8000 m). Deep Sea Res. Part I Oceanogr. Res. Pap. 103642. https://doi.org/10.1016/j.dsr.2021.103642 (2021).Boers, N. Observation-based early-warning signals for a collapse of the Atlantic meridional overturning circulation. Nat. Clim. Chang. 11, 680–688 (2021).ADS 

    Google Scholar 
    Paulus, E. Shedding light on deep-sea biodiversity—a highly vulnerable habitat in the face of anthropogenic change. Front. Mar. Sci. 8, 667048 (2021).Froese, R. & Pauly, D. FishBase. FishBase www.fishbase.org (2019).Boettiger, C., Lang, D. T. & Wainwright, P. C. Rfishbase: exploring, manipulating and visualizing FishBase data from R. J. Fish. Biol. 81, 2030–2039 (2012).CAS 

    Google Scholar 
    Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 

    Google Scholar 
    Karstensen, J., Stramma, L. & Visbeck, M. Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans. Prog. Oceanogr. 77, 331–350 (2008).ADS 

    Google Scholar 
    Sutton, T. T. et al. A global biogeographic classification of the mesopelagic zone. Deep Sea Res. Part I: Oceanogr. Res. Pap. 126, 85–102 (2017).ADS 

    Google Scholar 
    Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous–Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).
    Google Scholar 
    Magnuson-Ford, K. & Otto, S. P. Linking the investigations of character evolution and species diversification. Am. Nat. 180, 225–245 (2012).
    Google Scholar 
    Goldberg, E. E. & Igić, B. Tempo and mode in plant breeding system evolution. Evolution 66, 3701–3709 (2012).
    Google Scholar 
    Rabosky, D. L. & Goldberg, E. E. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst. Biol. 64, 340–355 (2015).CAS 

    Google Scholar 
    Beaulieu, J. M. & O’Meara, B. C. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst. Biol. 65, 583–601 (2016).
    Google Scholar 
    Adams, D. C., Collyer, M. L. & Kaliontzopoulou, A. Geomorph: Software for geometric morphometric analyses. R package version 3.1.0. (2019).Collyer, M. L. & Adams, D. C. RRPP: An r package for fitting linear models to high-dimensional data using residual randomization. Methods Ecol. Evol. 9, 1772–1779 (2018).
    Google Scholar 
    Title, P. O. & Rabosky, D. L. Tip rates, phylogenies and diversification: What are we estimating, and how good are the estimates? Methods Ecol. Evol. 10, 821–834 (2019).
    Google Scholar 
    Freckleton, R. P., Phillimore, A. B. & Pagel, M. Relating traits to diversification: a simple test. Am. Nat. 172, 102–115 (2008).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 

    Google Scholar 
    May, M. R. & Moore, B. R. A Bayesian approach for inferring the impact of a discrete character on rates of continuous-character evolution in the presence of background-rate variation. Syst. Biol. 69, 530–544 (2020).
    Google Scholar 
    Höhna. et al. RevBayes: Bayesian phylogenetic inference using graphical models and an interactive model-specification language. Syst. Biol. 65, 726–736 (2016).
    Google Scholar 
    Burress, E. D. & Muñoz, M. M. Ecological opportunity from innovation, not islands, drove the anole lizard adaptive radiation. Syst. Biol. 0, 1–12 (2021).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 

    Google Scholar 
    Ives, A. R. & Helmus, M. R. Phylogenetic metrics of community similarity. Am. Nat. 176, E128–E142 (2010).
    Google Scholar 
    Costello, M. J. & Breyer, S. Ocean depths: the mesopelagic and implications for global warming. Curr. Biol. 27, R36–R38 (2017).CAS 

    Google Scholar  More

  • in

    User-focused evaluation of National Ecological Observatory Network streamflow estimates

    As part of the streamflow data release, NEON released four relevant data products: Gauge Height26, Elevation of Surface Water29, Stage-discharge Rating Curves30, and Continuous Discharge15. Data users are able to download this full suite of information and protocols to inform decisions on data usage and applicability. We evaluated the quality of the Continuous Discharge product using all four relevant NEON data products, considering the validity of model inputs as well as the goodness-of-fit of final streamflow estimates. We analyzed 1) the fit of the regression between manual stage height readings and continuous pressure transducer data used to estimate continuous stream surface elevation, 2) the fit of rating curves transforming stream surface elevation to streamflow, and 3) the proportion of streamflow estimates over the maximum manually-measured streamflow.Stage classificationThe rating curve models predicting streamflow required continuous stream stage estimates as model inputs. NEON predicted continuous gauge height with a two step approach. First, continuous in-stream transducer readings were converted to water height by applying an offset between the transducer elevation and the staff gauge (Eq. 1). This offset is derived from the NEON geolocation database as the difference between the location of the pressure transducer and the staff gauge27. The offset changes only when the location of either the staff gauge or transducer moves.$${h}_{wc}=frac{{P}_{sw}}{p,ast ,g},ast ,1000+{h}_{stage}$$
    (1)
    Conversion of pressure data to water height used by NEON27 where hwc is the estimated water column height (m), Psw is calibrated surface water pressure (kPa), p is the density of water (999 kg/m3), g is the acceleration due to gravity (9.81 m/s2), and hstage is the offset between the pressure transducer and the staff gauge (m).Then, NEON uses a linear regression between manually-measured reference stage height and the calculated gauge height from Eq. 1, yielding final predictions of continuous stream gauge height27. In an ideal setting, stage and gauge height should correlate perfectly28. In the field, sensor uncertainty, manual reference measurement error, and shifting conditions in the stream can convolute the relationship. We tested the goodness of fit between continuously estimated stream gauge height values and manual stage measurements using the Nash-Sutcliffe model efficiency coefficient (Eq. 2). Nash-Sutcliffe coefficient is a commonly used metric in hydrology used to evaluate how well a model performed relative to observed values (manually measured stage and calculated gauge height). For the purposes of this discussion, manual reference measurements will be referred to as ‘stage’ and automated, sensed readings as ‘gauge height’.$$NSE=1-frac{Sigma {left({Q}_{o}-{Q}_{m}right)}^{2}}{Sigma {left({Q}_{o}-{bar{Q}}_{o}right)}^{2}}$$
    (2)
    Equation 2 presents Nash-Sutcliffe model efficiency coefficient, where Qo is an observed value (streamflow or stage height), Qm is a modeled value, and ({bar{Q}}_{o}) is the mean of observed values.Stage, gauge height, and regression data were sourced from the NEON Continuous Discharge product, representing what was directly applied to streamflow estimation. Up to 26 stage measurements were available per year. We examined every regression between stage and gauge height (one per site year in which data was available) and classified each as either ‘good’, ‘fair’, or ‘poor’ quality based on their goodness of fit. Regressions with a NSE (Eq. 2) of 0.90 or greater were considered good, those with a NSE of less than 0.90 but greater than or equal to 0.75 were considered fair, and those with an NSE of less than 0.75 were considered poor (Fig. 2).Drift detectionBecause electronic instruments, such as pressure transducers, can have systematic directional drift, referred to as ‘drift’, during deployment, we developed an approach to detect periods of time when NEON’s Elevation of Surface Water product drifted. We used two methods to assess and flag the potential for instrument drift at monthly time steps. First, we flagged any period the manually measured stage fell outside NEON’s uncertainty bound for gauge height made at the same time. From this, we calculated the proportion of stage measurements outside of the gauge height uncertainty bounds per month. This proved to be a relatively lenient filter that missed periods of manually identified drift. We found adding a second filter that flagged any month where the difference between the manually measured stage and gauge height exceeded 6 cm, was effective in catching the majority of periods where drift was identified. Second, we calculated the average differences between stage and gauge height for each month (Fig. 3). To determine appropriate cut-off values to classify areas of potential drift, we manually audited and flagged periods of observable directional drift. Our goal was to set a maximum cut-off difference which retained as much usable data as possible while still capturing 70% of the manually flagged directional drift periods. Applying this method, we determined a cut-off value of 6 cm average monthly deviation between observed and predicted stage values.Using these two filters in combination, we again classified data into three groups: ‘likely no drift’, ‘potential drift’, and ‘not assessed’. Site-months with no more than 50% of stage measurements outside of the gauge height time series uncertainty and an average difference between stage and gauge height less than 6 cm were considered to have ‘likely no drift’. Site-months with either more than 50% of stage readings outside of the gauge height time series uncertainty or an average difference between stage and gauge height more than 6 cm were deemed to have ‘potential drift’. Site-months with no stage measurements could not be evaluated and were considered ‘not assessed’. Although this approach to identify drift is imperfect, in that slight drift could be missed and times without manual measurements are not possible to assess, we believe this is a helpful method given the data available from NEON and the fact drift has been observed when visually inspecting data (Fig. 3).Rating curve classificationTo evaluate how well rating curves predicted streamflow, we assessed each rating curve used to convert stage to discharge. NEON prepares a new rating curve for each site’s water year (beginning on October 1st)27. In cases where NEON reported multiple rating curves for a site’s water year each curve was assessed separately across the time series which it was used. We classified rating curves into three tiers based on two metrics: the Nash-Sutcliffe coefficient (Eq. 2) between observed and predicted streamflow, and the percentage of continuous discharge values above the maximum manually measured gauging used to construct the rating curve.First, we calculated the Nash-Sutcliffe coefficient for each rating curve to estimate how well rating curves captured the variation in the stage-streamflow relationship. We used the reported values for modeled and manually measured streamflow from the ‘Y1simulated’ and ‘Y1observed’ columns in the ‘sdrc_resultsResiduals’ table of the Stage-discharge rating curves product. NEON generally conducts between 12 and 24 manual gaugings per year to build and maintain the stage-discharge relationship.Second, we calculated the percentage of continuous streamflow values outside the range of manually measured estimates of streamflow. This was useful to assess if the stage-discharge relationship is representative of observed flow conditions. The relationship between discharge and stage is often nonlinear, with inflection points around changes in channel morphology making gauging the stream at high and low flow conditions critical to building a reliable rating curve16. A rating curve based on a large number of direct field measurements all taken during a narrow range of baseflows, for example, could generate a rating curve with a high Nash-Sutcliffe coefficient that is unreliable when extrapolated to high or low flow events. Using these two metrics, we were able to classify rating curves into categories of relative quality. To calculate the percentage of values in the continuous streamflow product that fall outside the range of manually gauged streamflow values, we extracted the maximum and minimum gauging values from the ‘sdrc_resultsResiduals’ table in the Stage-discharge Rating Curve product. We then compared the predicted values derived from each rating curve (as reported in the ‘csd_continuousDischarge’ table) to the extracted range and calculated the proportion of values which fell outside of it.We used the Nash-Sutcliffe coefficient and percentage of streamflow values over the maximum observed field measurements to classify rating curves into three categories outlined in Table 1.To integrate stage-gauge regressions, drift detections, and rating curve classification, we produced a summary table with classifications for all three tests and the corresponding metrics used in each classification (Fig. 5). The table is grouped by month and site so users can query sites and determine which months have the appropriate data for their needs. More

  • in

    Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants

    Myxococcota and Bdellovibrionota were active constituents of activated sludge microbiotaTo explore the predating activity and diversity of predatory bacteria in activated sludge, 13C-labeled Escherichia coli and Pseudomonas putida cells (determined as 97.09 and 97.30 atom% 13C, respectively) were added to the sludge microcosms for maximumly eight days of incubation, and 13C incorporation was examined using rRNA-SIP to identify prokaryotic and eukaryotic microorganisms involved in actively consuming the 13C-labeled prey cells. Bacterial 16S rRNA gene amplicon sequencing-based analysis indicated the relative contribution of 47.9% and 42.7% of the obtained sequences by the added biomass upon amendment in the 13C-E. coli (Fig. 1A) and 13C-P. putida (Fig. 1B) microcosms, which dropped below 1.0% after 16 h and eight days of incubation, respectively. The overall bacterial community structure at the steady state was highly comparable to that of the control microcosms (Fig. 1C), indicating that the prey cell amendments did not induce too strong fluctuation in the microbiota structure during the SIP experiment that prevented disentangling the indigenous community dynamics.Fig. 1: The dynamics of the prokaryotic communities and mineralization of the added 13C-biomass during the microcosm experiment.The overall prokaryotic communities were obtained by 16S rRNA gene amplicon sequencing of the total DNA from the activated sludge microcosms amended with 13C-E. coli (A) and 13C-P. putida (B) cells, and the control group (C) without amendment. The structure of the active prokaryotic communities was inferred based on amplicon sequencing of the light rRNA fractions from the microcosms amended with 13C-E. coli (D) and 13C-P. putida (E) cells. The temporal change in the proportion of produced 13CO2 in total CO2 indicated the mineralization of the 13C-labeled cells of E. coli and P. putida in duplicate microcosms (F). Relative sequence abundance of the ten most abundant prokaryotic phyla, together with the genera Escherichia-Shigella and Pseudomonas, was shown.Full size imageThe metabolically active bacterial communities, as inferred by 16S rRNA gene transcripts of the light rRNA fractions from the microcosms, were rather consistent throughout the experiment (Fig. 1D, E), but they showed clear compositional differences compared to the overall prokaryotic communities inferred by 16S rRNA gene amplicon sequences (Fig. 1A, B). Myxococcota and Bdellovibrionota species showed an average relative abundance of 17.5 (±0.7) % and 2.7 (±0.2) % in the 16S rRNA gene transcripts, respectively, which were significantly higher than 5.4 (±0.6) % and 1.3 (±0.1) % in the 16S rRNA genes of bacterial communities (p 1% in the 13C-heavy fractions, strong 13C-labeling was found for the as-yet-uncultivated myxobacterial mle1-27 clade (average EF 2.66 across time and treatments), which contributed to 10.3% to 38.9% of the 16S rRNA gene transcripts in the 13C-heavy fractions, indicating its high metabolic activity in consuming the 13C-labeled biomass of both E. coli and P. putida. Comparatively, Haliangium spp. and uncultured Polyangiaceae belonging to Myxococcota, as well as the as-yet-uncultivated OM27 clade belonging to Bdellovibrionota, also exhibited strong 13C-labeling (maximum EF across time: 2.4–39.5), but almost exclusively in the microcosms amended with 13C-E. coli cells (Fig. 2A). The as-yet-uncultivated myxobacterial VHS-B3-70 clade exhibited the strongest enrichment (average EF 16.67 across time and treatments) but made up only 0.2% to 2.3% of 16S rRNA gene transcripts of the 13C-heavy fraction (Fig. 2A). Overall, our microcosm experiment tracking added 13C-labeled prey bacterial cells with rRNA-SIP suggested prominent predatory activity of Myxococcota and Bdellovibrionota lineages including largely as-yet-uncultivated ones (e.g., the mle1-27, VHS-B3-70, and OM27 clades) in activated sludge.Fig. 2: The enrichment of incorporators of added 13C-biomass in heavy rRNA fractions and the temporal labeling patterns.13C-labeled prokaryotic (A) and micro-eukaryotic (B) genus-level taxa were identified by SIP in the microcosms added with E. coli and P. putida after one, two, and four days of incubation. Enrichment factor (EF) was calculated for microorganisms using heavy and light rRNA gradient fractions of the 13C- and 12C-microcosms to infer 13C-labeling. Taxa with an EF  > 0.1 in at least one of the treatment groups at one sampling time point was considered labeled. The area of circles indicates the relative sequence abundance of the labeled taxa in heavy 13C-rRNA. The negative EFs and positive EFs 1% in the heavy rRNA fractions of at least one of the 13C-E. coli and 13C-P. putida microcosms at a sampling point.Full size imageMyxococcota and Bdellovibrionota predated more selectively than protistsFor the micro-eukaryotes, several taxa belonging to Ciliophora, especially Cyrtophoria spp. and Telotrochidium spp., and also Peritrichia spp., Vaginicola spp., Aspidisca spp., and Epistylis spp., were highly enriched (maximum EF across time and treatments: 0.9–6.7) in the 13C-heavy rRNA fractions (Fig. 3B), in agreement with the dominance of Ciliophora in the micro-eukaryotic rRNA gene transcripts (Fig. 2B). The Candida-Lodderomyces clade and Cyberlindnera-Candida clade within Ascomycota, Magnoliophyta spp. within Phragmoplastophyta, and Poteriospumella spp. and unclassified Chromulinales within Ochrophyta were also strongly labeled (maximum EF: 13.5–242.5, Fig. 2B). Moreover, the 13C-biomass incorporation by micro-eukaryotes was independent of whichever prey bacteria (Fig. 2B, D), revealing no detectable prey preference in the metabolically active micro-eukaryotic predators. On the contrary, differential labeling by 13C-E. coli and 13C-P. putida cells was frequently observed for the predatory bacteria (Fig. 2A, C). The most obvious example was the OM27 clade ASVs belonging to Bdellovibrionota, which were found to incorporate 13C-labeled biomass exclusively of E. coli (Fig. 2C). Comparatively, Haliangium-affiliated ASV27 and ASV63 were labeled only by 13C-E. coli, ASV57 labeled by both 13C-E. coli and 13C-P. putida, while ASV72 and ASV76 were also labeled by 13C-P. putida, but only at a later sampling point (Fig. 2C). These results on the divergent labeling patterns with the tested prey bacteria together strongly implied population-specific predating behaviors of predatory bacteria in activated sludge.Fig. 3: In situ relative abundance of Myxococcota and Bdellovibrionota in aerobic and anaerobic sludge at a local WWTP (WWTP01) based on sampling over two years.The abundance of the abundant genera belonging to Myxococcota and Bdellovibrionota in aerobic and anaerobic sludge were compared according to amplicon sequencing-based analysis of bacterial 16S rRNA gene V3-V4 region. The top 10 abundant genus-level taxa across samples collected from eight samplings are shown, with the putative predators identified by SIP in the microcosm experiment highlighted. The asterisk denotes significant difference in relative abundance between aerobic and anaerobic sludges (p 0.1% in the activated sludge of WWTP01, including the putative predators identified in the microcosm experiment, i.e., Haliangium spp. (2.8 ± 0.7%) which represented the most abundant myxobacterial lineage in the activated sludge, uncultured Polyangiaceae (0.4 ± 0.1%), and the mle1-27 clade (0.2 ± 0.0%; Fig. 3). Moreover, Pajaroellobacter (1.2 ± 0.2%), Nannocystis (0.4 ± 0.1%), Phaselicystis (0.3 ± 0.1%), and several other myxobacterial clades, although not identified as putative predators in the microcosm experiment, were among the abundant myxobacteria in situ in the activated sludge. Although the myxobacterial genera showed comparable relative abundance in the anaerobic tanks, fed by returned activated sludge, to their counterparts in the aerobic tanks, the obligately aerobic myxobacteria were presumably metabolically inactive in the anerobic sludge. Unlike Myxococcota, members of Bdellovibrionota altogether showed significantly higher relative abundance in the aerobic sludge (1.0 ± 0.2%) than in the anaerobic sludge (0.6 ± 0.1%, paired samples Wilcoxon test p  More

  • in

    Soil, leaf and fruit nutrient data for pear orchards located in the Circum-Bohai Bay and Loess Plateau regions

    Orchard site selectionThe survey was conducted from 2018 to 2019 in the Circum-Bohai Bay region, which included Shandong, Hebei, and Liaoning provinces and Beijing, and the Loess Plateau region, which included Shanxi and Shaanxi provinces. Five typical production counties were selected in each province or city. Representative orchards were selected according to the production of the main varieties in each county (orchard area was greater than 1.0 ha; the pear trees were 15 to 25 years old; and the yield of orchards ranged from 40 to 60 t ha−1). A total of 225 orchards were investigated (Fig. 1), including 150 in the Circum-Bohai Bay region and 75 in the Loess Plateau region (Table 1).Fig. 1The locations of the 225 pear orchards.Full size imageTable 1 Numbers of pear orchard and main cultivated varieties investigated in Circum-Bohai Bay and Loess Plateau.Full size tableSample collection and pretreatmentSoil and leaf samples were collected at the stage in which the growth of new shoots ceased, from July 1 to July 1510. Eleven sampling sites were determined in each orchard according to an “S” shape sampling method (Fig. 2), and soil samples from the 0–20 cm, 20–40 cm and 40–60 cm layers were collected. The soil samples of the same soil layer at each sampling site were mixed into one sample. Then, the soil samples were air-dried, ground and sifted with a nylon sieve for determination of nutrient concentrations.Fig. 2The “S” shape sampling method. The red dots are the sampling locations.Full size imageTen to fifteen pear trees in each orchard of the same size and vigour and 5 to 10 mature leaves from the middle of a long shoot from the periphery of each tree were selected for leaf sampling11. Then, all the leaves from the same orchard were mixed into one leaf sample. The leaves were washed with tap water containing a detergent, with deionized water, with 0.01 M hydrochloric acid and then with deionized water again and then dried at 100 °C for 30 min and at 70 °C to a constant weight. Then, the leaf samples were crushed into a powder and sifted with a nylon sieve for nutrient determination.Fruit samples were collected at the ripening stage. Pear trees from which leaf samples were collected from each orchard were selected for fruit sample collection. Three to five peripheral fruits of the same size were collected from each tree, and fruit samples from the same orchard were mixed into one sample. The fruits were washed with tap water containing a detergent, with deionized water, with 0.01 M hydrochloric acid and then with deionized water again, cut into slices and then dried at 100 °C for 30 min and at 70 °C to a constant weight. Then, the fruit samples were crushed into a powder and sifted with a nylon sieve for nutrient determination.Sample determinationVarious indicators of soil and plant samples were determined according to the method of Cui et al.12 and Bao13.Soil pH determinationA potentiometric method was used to measure soil pH. Carbon dioxide-free water was added to soil that had been passed through a 2 mm sieve at a water-soil ratio of 2.5:1. The soil solution was stirred for 1 min and left undisturbed for 30 min. Each soil sample was measured more than three times with a pH meter (FE20K PLUS PH, Mettler-Toledo, Switzerland), and the difference in the parallel determination results was less than 0.2 pH units. The electrode was washed with deionized water and dried with filter paper after each sample measurement. A calibration solution was used to calibrate the electrode between measurements after every 10 soil samples.Soil organic matter determinationSoil organic matter was measured according to the Schollenberger method using chromic acid redox titration. Five millilitres of a 0.8 M 1/6 K2Cr2O7 solution was added to a test tube with approximately 0.5000 g of soil that had been passed through a 0.25 mm sieve. The mixture was then added to 5 mL concentrated sulfuric acid and shaken gently to disperse the soil. The tube was placed in a phosphoric acid bath, heated to 170 °C and boiled for 5 min. To condense the water vapour that escaped during the heating process, a small funnel was placed on the top of the test tube. The substances in the test tube and funnel were transferred to a conical flask after cooling. Then, the solution was added to 1,10-phenanthroline hydrate and titrated with 0.2 M FeSO4 until it turned maroon. A blank experiment was performed when each batch of samples was measured. The soil organic matter content was calculated according to the following formula:$${rm{omega }}left({rm{OM}}right)=frac{left({rm{V}}-{rm{V}}0right)times {rm{c}}times 3times 1.724times {rm{f}}}{{rm{m}}}$$
    (1)
    ω(OM): soil organic matter content; c: standard FeSO4 solution concentration; V: volume of the standard FeSO4 used in titration; V0: volume of standard FeSO4 used in titrating control sample; 3: molar mass of a quarter of carbon; 1.724: the conversion factor from organic carbon to organic matter; f: oxidation correction coefficient (the value was 1.1); m: mass of oven-dried soil sample.Soil total N determinationTotal N was determined by the semitrace Kjeldahl method. Approximately 1.0000 g of air-dried soil that had been passed through a 0.25 mm sieve was added to a digestion tube. Meanwhile, the soil moisture content was measured to calculate the mass of the oven-dried soil. Two grams of accelerator and 5 mL of concentrated sulfuric acid were added to the tube. The tube was then covered with a small funnel, and the sample was digested at 360 °C for 15–20 min. The mixture was digested for 1 h until the colour changed from brown to greyish green or greyish white. Two digested soilless samples were used as controls. After the digestion tube cooled, it was placed in a distiller, and a small amount of deionized water was added. Five millilitres of a 2% boric acid indicator was added to a 150 mL conical flask, and the flask was placed at the end of the condenser tube. Then, the digestion solution was distilled until the distillate volume was approximately 75 mL. The distillate was titrated with 0.01 M standard hydrochloric acid to a purplish red colour endpoint. The soil total N concentration was calculated according to the following formula:$${rm{omega }}({rm{N}})=frac{({rm{V}}-{rm{V}}0)times {rm{c}}times 14}{{rm{m}}}$$
    (2)
    ω(N): soil total N concentration; c: standard acid concentration; V: volume of the standard acid used in titration; V0: volume of standard acid used in titrating control sample; 14: molar mass of N; m: mass of oven-dried soil sample.Soil alkaline hydrolysable N determinationApproximately 2.00 g of air-dried soil that have been passed through a 2 mm sieve was placed in the outer chamber of a diffuser. The diffuser was gently rotated to evenly distribute the soil in the outer chamber. Two millilitres of H3BO3 indicator was placed in the inner chamber of the diffusion dish. The edge of the frosted glass surface of the diffuser was coated with alkaline glycerin and covered with frosted glass. The diffuser was covered tightly and secured with rubber bands after 10.00 mL of 1 M NaOH was injected into the diffuser through a hole in the frosted glass. The diffuser was placed in a 40 °C incubator for alkaline hydrolysis diffusion for 24 h. Then, the mixture was titrated with 0.01 M standard hydrochloric acid until it turned purplish red. A blank test was performed at the same time as the samples. The soil alkaline hydrolysable N concentration was calculated according to the following formula:$${rm{omega }}({rm{N}})=frac{({rm{V}}-{rm{V}}0)times {rm{c}}times 14}{{rm{m}}}$$
    (3)
    ω(N): soil alkaline hydrolysable N concentration; c: standard acid solution concentration; V: volume of the standard acid used in titration; V0: volume of standard acid used in titrating control sample; 14: molar mass of N; m: mass of air-dried soil sample.Soil available P determinationApproximately 2.50 g of air-dried soil that had been passed through a 2 mm sieve was placed in a plastic bottle and 50 mL of 0.5 M NaHCO3 was added. After the bottle was shaken for 30 min, the mixture was immediately filtered with phosphorus-free filter paper. Ten millilitres of the filtrate was accurately measured into a conical flask, and 5.00 mL of Mo-Sb-Vc colour developer and 10 mL of deionized water were added. The absorbance of the mixture was measured at approximately 700 nm after 30 min using a UV-Vis spectrophotometer (UV1900PC, AuCy Instrument, Shanghai, China). Finally, the P concentration was calculated according to a standard curve prepared with solutions of different P concentrations. A blank test was performed at the same time that the samples were determined.Soil available K determinationApproximately 5.00 g of air-dried soil that had been passed through a 2 mm sieve was placed in a plastic bottle, and 50 mL of 1.0 M NH4OAc was added. After the sample was shaken for 30 min, the mixture was immediately filtered with dry filter paper. The concentration of K in the filtrate was determined directly by a flame photometer (LM12-FP6430, Haifuda, China) according to a standard curve prepared with solutions of different K concentrations. A blank test was performed at the same time that the samples were determined.Leaf and fruit N determinationApproximately 0.3000 g of plant powder that had been passed through a 0.5 mm sieve was placed into a digestion tube and 5 mL concentrated sulfuric acid was added. Then, the digestion tube was placed onto a digestion stove at 360 °C after two doses of 2 mL H2O2, and the sample was digested until the mixture turned brown. After the tube cooled, 2 mL H2O2 was added, and the digestion was continued for 5 min. This process was repeated until the mixture turned clear. The mixture was diluted to 100 mL in a volumetric flask for testing after it cooled. Then, 5 to 10 mL of the liquid to be tested was accurately measured into a distiller for distillation. The distillation and titration processes were the same as those used for ammonium in the Soil total N determination section. A blank test was performed at the same time as sample measurement. The leaf or fruit N concentration was calculated according to the following formula:$${rm{omega }}({rm{N}})=frac{({rm{V}}-{rm{V}}0)times {rm{c}}times 14times {rm{V}}1}{{rm{m}}times {rm{V}}2}$$
    (4)
    ω(N): total N concentration; c: standard acid concentration; V: volume of the standard acid used in titration; V0: volume of standard acid used in titrating control sample; 14: molar mass of N; m: mass of oven-dried sample; V1: volume of the digestion solution after constant volume; V2: measured volume of digestion solution after constant volume.Leaf and fruit P, K, Ca, Fe, Mn, Cu, Zn, B determinationApproximately 0.5000 g of plant powder that had been passed through a 0.5 mm sieve was placed in a digestion tube and a 10 mL mixture of concentrated nitric acid and hypochlorous acid (4:1) was added. After the sample was left undisturbed for more than 4 h, it was placed onto a digestion stove and heated to 150 °C so that NO2 could volatilize slowly. Then, the temperature was appropriately increased to a temperature not higher than 250 °C until the digestive solution was transparent and approximately 2 mL remained. The solution was transferred into a volumetric flask after cooling and adjusted to a constant volume of 50 mL. The solution was then filtered, and the concentration of each element in the solution was determined by a plasma emission spectrometer (ICP-OES, OPTIMA 3300 DV, 75 Perkin-Elmer, USA). A blank test was performed at the same time as sample measurement. The leaf or fruit P, K, Ca, Fe, Mn, Cu, Zn, and B concentrations were calculated according to the following formula:$${rm{omega }}({rm{P}},{rm{K}},{rm{Ca}},{rm{Fe}},{rm{Mn}},{rm{Cu}},{rm{Zn}},{rm{B}})=frac{rho ({rm{P}},{rm{K}},{rm{Ca}},{rm{Fe}},{rm{Mn}},{rm{Cu}},{rm{Zn}},{rm{B}})times {rm{V}}times {rm{f}}}{{rm{m}}}$$
    (5)
    ω(P, K, Ca, Fe, Mn, Cu, Zn, B): P, K, Ca, Fe, Mn, Cu, Zn, B concentration in leaf or fruit; ρ(P, K, Ca, Fe, Mn, Cu, Zn, B): the concentration of P, K, Ca, Fe, Mn, Cu, Zn or B in the liquid to be measured; V: volume of the liquid to be measured after constant volume; f: dilution ratio of the liquid to be measured; m: mass of oven-dried sample. More

  • in

    Mangrove reforestation provides greater blue carbon benefit than afforestation for mitigating global climate change

    Literature search and screeningOur analysis included a systematic literature search and was conducted by following the PRISMA protocol55 (Supplementary Fig. 7). We searched through Web of Science and China National Knowledge Infrastructure (CNKI) platforms by using keywords listed in Supplementary Table 3. A total of 3299 potentially relevant articles were found (Mandarin and English). The availability of peer-reviewed datasets associated with these published articles11,15,56,57,58,59 and online databases (The Sustainable Wetlands Adaptation and Mitigation Program (SWAMP) database, https://www2.cifor.org/swamp) were also considered. We then removed a significant number of articles through title screening, leaving 551 articles for further inspection.For these remaining articles, we used a four-step critique process to screen their title, abstract, and full text. We determined that firstly, they must provide carbon density data for at least one of the four mangrove carbon pools (i.e., aboveground biomass, belowground biomass, sediment organic carbon, or total ecosystem carbon). Secondly, articles needed to state the forest age or the starting date of the restoration action. For those studies providing only age intervals (e.g., 10–25 years, >66 years), we excluded them from the analysis. Thirdly, a description of prior land use was required. From these, mangrove restoration could be divided into two categories—reforestation and afforestation—on whether mangroves previously existed in that location. For reforestation, the initial conditions for inclusion were: (1) abandoned agricultural/aquacultural sites built previously by excavating mangrove forests, (2) clear-felled mangrove lands after wars, timber harvest, and silvicultural management, and (3) mangrove forests with mortality due to spraying of defoliants and hydrological alteration caused by the construction of embankments. We compared the carbon densities of reforested mangroves among sites with different causes of degradation/deforestation, and no significant difference is found (Supplementary Fig. 9). For those reforested mangroves, we assumed they would be protected and conserved by local governments and non-government organizations, so that there will not be human-driven degradation or deforestation in the near future. However, we acknowledge that a fraction of mangrove reforestation is managed for wood production, which means logging would happen at a certain interval after reforestation at these sites. For these logging sites, we used their reported measurements after clear-cut, such as 0-, 5-, 10-, 15-, and 25-year post-harvest sites in Sundarbans, Bangladesh60. On the other hand, the future occurrence of natural-driven deforestation (e.g., cyclones) is difficult to predict, and thus not considered in our study. For afforestation, the initial condition for inclusion was the presence of non-mangrove habitat immediately before afforestation began, such as mudflats, seagrass, saltmarsh, coral reef, or denuded areas. In most cases, reforestation and afforestation were undertaken through active planting without much re-engineering4, but for reforestation, natural regeneration could have, and in many places likely did, augment recruitment61. Moreover, we only considered mangrove succession that started from near-barren land with an insignificant amount of biomass, and introductions of exotic species to degraded areas with sparse trees were not incorporated. Lastly, if the forest age or prior land use type was not given, the articles needed to specify the location of sampling plots (latitude, longitude). With the coordinates matching, prior land use type and establishment dates were sometimes identifiable through remote sensing (Supplementary Fig. 10). For those articles sharing the same restoration sites but showing different aspects of the data collection, we combined the results and considered the collective work as one source. Based on the space-for-time method, data in the control sites before mangrove restoration actions were also collected as a paired site of restoration (e.g., abandoned ponds before mangrove reforestation; mudflats before mangrove afforestation). In total, we obtained data from 379 mangrove restoration sites described by 106 articles.Data extractionWe extracted aboveground living biomass carbon (AGC), belowground living biomass carbon (BGC), sediment carbon (SCS), and total ecosystem carbon (TECS) density from the 106 original data sources. In most cases, numeric values were provided. For those data not provided numerically but graphed, we determined values from figures with the application of GetData Graph Digitizer (http://getdata-graph-digitizer.com/).Among the articles, aboveground and belowground biomass (Mg ha−1) data were obtained using either a harvesting method (empirical) or an allometric method (calculation). Aboveground biomass represented the sum of stem, leaf, and branch dry weight, and we included prop root biomass when Rhizophora spp. were present. For soil coring methods that determined belowground biomass or sediment carbon density, belowground biomass was considered the dry weight of living coarse and fine roots multiplied by the ratio of core area to land surface area62. For allometric methods, trunk diameter at breast height (DBH, ~1.3 m) and tree height were used to calculate aboveground and belowground biomass by species-specific or common allometric equations63. These equations were also used to calculate the belowground biomass when articles provided plot information (DBH, height) but not belowground biomass (Supplementary Table 4). Total biomass was calculated as the sum of aboveground and belowground biomass. Deadwood and pneumatophore biomass were not included in our analysis; these data are rarely provided and/or methods of determination are inconsistent among global studies64. Some articles provided total biomass and shoot/root biomass ratio (S/R), and in such cases, above- and belowground biomass data were obtained through calculation as follows:$${{{{{rm{Aboveground}}}}}},{{{{{rm{biomass}}}}}}={{{{{rm{Total}}}}}},{{{{{rm{biomass}}}}}}times frac{frac{S}{R}}{frac{S}{R}+1}$$
    (1)
    $${{{{{rm{Belowground}}}}}},{{{{{rm{biomass}}}}}}={{{{{rm{Total}}}}}},{{{{{rm{biomass}}}}}}times frac{1}{frac{S}{R}+1}$$
    (2)
    For those articles measuring carbon content, study-specific carbon conversion factors were used to transform biomass to biomass carbon density (Mg C ha−1). If carbon content data were not provided, we converted aboveground and belowground biomass to carbon density by applying a conversion of 0.47 and 0.39, respectively65. The aboveground biomass carbon density was divided by its corresponding age to get the average aboveground biomass carbon accumulation rate (Mg C ha−1 yr−1).For sediment carbon density (SCS, Mg C ha−1), we selected the top 1 m because this depth equated to the most commonly reported depth and could reflect the impact of root mass input in the deeper depth66, which is also consistent with recent blue carbon standing stock assessment guidance64,67. Sediment carbon stock was calculated by multiplying sediment organic carbon content (SOC, %) by bulk density (BD, g cm−3), integrated over depth (cm). For studies that reported sediment carbon stock to More

  • in

    Family before work: task reversion in workers of the red imported fire ant, Solenopsis invicta in the presence of brood

    Wilson, E. O. The Insect Societies (Oxford University Press, 1971).
    Google Scholar 
    Beshers, S. N. & Fewell, J. H. Models of division of labor in social insects. Annu. Rev. Entomol. 46, 413–440 (2001).CAS 

    Google Scholar 
    Seeley, T. D. Adaptive significance of the age polyethism schedule in honeybee colonies. Behav. Ecol. Sociobiol. 4, 287–293 (1982).
    Google Scholar 
    Tallamy, D. W. Insect parental care. Bioscience 34, 20–24. https://doi.org/10.2307/1309421 (1984).Article 

    Google Scholar 
    Queller, D. C. Extended parental care and the origin of eusociality. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 256, 105–111. https://doi.org/10.1098/rspb.1994.0056 (1994).Article 
    ADS 

    Google Scholar 
    Bigley, W. S. & Vinson, S. B. Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta 1,2. Ann. Entomol. Soc. Am. 68, 301–304 (1975).CAS 

    Google Scholar 
    Endler, A. et al. Surface hydrocarbons of queen eggs regulate worker reproduction in a social insect. Proc. Natl. Acad. Sci. USA 101, 2945–2950. https://doi.org/10.1073/pnas.0308447101 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Maisonnasse, A., Lenoir, J. C., Beslay, D., Crauser, D. & Le Conte, Y. E-beta-ocimene, a volatile brood pheromone involved in social regulation in the honey bee colony (Apis mellifera). PLoS ONE 5, e13531. https://doi.org/10.1371/journal.pone.0013531 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Schultner, E., Oettler, J. & Helantera, H. The role of brood in eusocial hymenoptera. Q. Rev. Biol. 92, 39–78. https://doi.org/10.1086/690840 (2017).Article 

    Google Scholar 
    Amdam, G. V., Hartfelder, K., Norberg, K., Hagen, A. & Omholt, S. W. Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): A factor in colony loss during overwintering? J. Econ. Entomol. 97, 741–747 (2004).
    Google Scholar 
    Calabi, P. & Traniello, J. F. Behavioral flexibility in age castes of the ant Pheidole dentata. J. Insect Behav. 2, 663–677 (1989).
    Google Scholar 
    Gordon, D. W. Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204 (1989).
    Google Scholar 
    Robinson, G. E. Regulation of division of labor in insect societies. Annu. Rev. Entomol. 37, 637–665. https://doi.org/10.1146/annurev.en.37.010192.003225 (1992).Article 
    CAS 

    Google Scholar 
    Robinson, E. J., Feinerman, O. & Franks, N. R. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B: Biol. Sci. 276, 4373–4380 (2009).
    Google Scholar 
    Nijhout, H. F. & Wheeler, D. E. Juvenile-hormone and the physiological-basis of Insect polymorphisms. Q. Rev. Biol. 57, 109–133. https://doi.org/10.1086/412671 (1982).Article 
    CAS 

    Google Scholar 
    Herb, B. R. et al. Reversible switching between epigenetic states in honeybee behavioral subcastes. Nat. Neurosci. 15, 1371–1373. https://doi.org/10.1038/nn.3218 (2012).Article 
    CAS 

    Google Scholar 
    Kensuke, N. Age polyethism, idiosyncrasy and behavioural flexibility in the queenless ponerine ant, Diacamma sp. J. Ethol. 13, 113–123 (1995).
    Google Scholar 
    Kensuke, N. Does behavioral flexibility compensate or constrain colony productivity? Relationship among age structure, labor allocation, and production of workers in ant colonies. J. Insect Behav. 9, 557–569 (1996).
    Google Scholar 
    Shimoji, H., Kasutani, N., Ogawa, S. & Hojo, M. K. Worker propensity affects flexible task reversion in an ant. Behav. Ecol. 74, 1–8 (2020).
    Google Scholar 
    Bernadou, A., Busch, J. & Heinze, J. Diversity in identity: Behavioral flexibility, dominance, and age polyethism in a clonal ant. Behav. Ecol. Sociobiol. 69, 1365–1375 (2015).
    Google Scholar 
    Kohlmeier, P., Feldmeyer, B. & Foitzik, S. Vitellogenin-like A—Associated shifts in social cue responsiveness regulate behavioral task specialization in an ant. PLoS Biol. 16, e2005747 (2018).
    Google Scholar 
    Tripet, F. & Nonacs, P. Foraging for work and age-based polyethism: The roles of age and previous experience on task choice in ants. Ethology 110, 863–877 (2004).
    Google Scholar 
    Kohlmeier, P., Alleman, A. R., Libbrecht, R., Foitzik, S. & Feldmeyer, B. Gene expression is more strongly associated with behavioural specialisation than with age or fertility in ant workers. Mol. Ecol. https://doi.org/10.1111/mec.14971 (2018).Article 

    Google Scholar 
    Levenbook, L. & Bauer, A. C. The fate of the larval storage protein calliphorin during adult development of Calliphora vicina. Insect Biochem. 14, 77–86 (1984).CAS 

    Google Scholar 
    Zhou, X., Oi, F. M. & Scharf, M. E. Social exploitation of hexamerin: RNAi reveals a major caste-regulatory factor in termites. Proc. Natl. Acad. Sci. 103, 4499–4504 (2006).ADS 
    CAS 

    Google Scholar 
    Zhou, X., Tarver, M. R., Bennett, G., Oi, F. & Scharf, M. Two hexamerin genes from the termite Reticulitermes flavipes: Sequence, expression, and proposed functions in caste regulation. Gene 376, 47–58 (2006).CAS 

    Google Scholar 
    Hawkings, C., Calkins, T. L., Pietrantonio, P. V. & Tamborindeguy, C. Caste-based differential transcriptional expression of hexamerins in response to a juvenile hormone analog in the red imported fire ant (Solenopsis invicta). PLoS ONE 14, e0216800 (2019).CAS 

    Google Scholar 
    Hoffman, E. A. & Goodisman, M. A. Gene expression and the evolution of phenotypic diversity in social wasps. BMC Biol. 5, 1–9 (2007).
    Google Scholar 
    Hunt, J. H., Buck, N. A. & Wheeler, D. E. Storage proteins in vespid wasps: Characterization, developmental pattern, and occurrence in adults. J. Insect Physiol. 49, 785–794 (2003).CAS 

    Google Scholar 
    Colgan, T. J. et al. Polyphenism in social insects: Insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris. BMC Genom. 12, 1–20 (2011).
    Google Scholar 
    Cremer, S., Armitage, S. A. & Schmid-Hempel, P. Social immunity. Curr. Biol. 17, R693–R702 (2007).CAS 

    Google Scholar 
    Cremer, S., Pull, C. D. & Fuerst, M. A. Social immunity: Emergence and evolution of colony-level disease protection. Annu. Rev. Entomol. 63, 105–123 (2018).CAS 

    Google Scholar 
    Danihlík, J., Aronstein, K. & Petřivalský, M. Antimicrobial peptides: A key component of honey bee innate immunity: Physiology, biochemistry, and chemical ecology. J. Apic. Res. 54, 123–136 (2015).
    Google Scholar 
    Koch, S. I. et al. Caste-specific expression patterns of immune response and chemosensory related genes in the leaf-cutting ant, Atta vollenweideri. PLoS ONE 8, e81518 (2013).ADS 

    Google Scholar 
    Chardonnet, F. et al. Food searching behaviour of a Lepidoptera pest species is modulated by the foraging gene polymorphism. J. Exp. Biol. 217, 3465–3473 (2014).
    Google Scholar 
    Scheiner, R., Page, R. E. Jr. & Erber, J. Responsiveness to sucrose affects tactile and olfactory learning in preforaging honey bees of two genetic strains. Behav. Brain Res. 120, 67–73 (2001).CAS 

    Google Scholar 
    Wang, Z. et al. Visual pattern memory requires foraging function in the central complex of Drosophila. Learn. Mem. 15, 133–142 (2008).
    Google Scholar 
    Zhou, Y., Lei, Y., Lu, L. & He, Y. Temperature-and food-dependent foraging gene expression in foragers of the red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae). Physiol. Entomol. 45, 1–6 (2020).
    Google Scholar 
    Ingram, K. K. et al. Context-dependent expression of the foraging gene in field colonies of ants: The interacting roles of age, environment and task. Proc. R. Soc. B: Biol. Sci. 283, 20160841 (2016).
    Google Scholar 
    Ingram, K. K., Oefner, P. & Gordon, D. M. Task-specific expression of the foraging gene in harvester ants. Mol. Ecol. 14, 813–818 (2005).CAS 

    Google Scholar 
    Lucas, C. & Sokolowski, M. B. Molecular basis for changes in behavioral state in ant social behaviors. Proc. Natl. Acad. Sci. 106, 6351–6356 (2009).ADS 
    CAS 

    Google Scholar 
    Ben-Shahar, Y. The foraging gene, behavioral plasticity, and honeybee division of labor. J. Comp. Physiol. A. 191, 987–994 (2005).CAS 

    Google Scholar 
    Daugherty, T., Toth, A. & Robinson, G. Nutrition and division of labor: Effects on foraging and brain gene expression in the paper wasp Polistes metricus. Mol. Ecol. 20, 5337–5347 (2011).CAS 

    Google Scholar 
    Morrison, L. W., Porter, S. D., Daniels, E. & Korzukhin, M. D. Potential global range expansion of the invasive fire ant, Solenopsis invicta. Biol. Invasions 6, 183–191 (2004).
    Google Scholar 
    Valles, S. M., Wetterer, J. K. & Porter, S. D. The red imported fire ant (Hymenoptera: Formicidae) in the West Indies: Distribution of natural enemies and a possible test bed for release of self-sustaining biocontrol agents. Fls. Entomol. 98, 1101–1105 (2015).
    Google Scholar 
    Greenberg, L., Vinson, S. & Ellison, S. Nine-year study of a field containing both monogyne and polygyne red imported fire ants (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 85, 686–695 (1992).
    Google Scholar 
    Keller, L. & Ross, K. G. Selfish genes: A green beard in the red fire ant. Nature 394, 573–575 (1998).ADS 
    CAS 

    Google Scholar 
    Vinson, S. B. Impact of the invasion of the imported fire ant. Insect Sci. 20, 439–455 (2013).
    Google Scholar 
    Tschinkel, W. R. The Fire Ants (Harvard University Press, 2006).
    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Task selection by workers of the fire ant Solenopsis invicta. Behav. Ecol. Sociobiol. 45, 301–310 (1999).
    Google Scholar 
    Mirenda, J. T. & Vinson, S. B. Division of labour and specification of castes in the red imported fire ant Solenopsis invicta Buren. Anim. Behav. 29, 410–420 (1981).
    Google Scholar 
    Wilson, E. O. Division of labor in fire ants based on physical castes (Hymenoptera: Formicidae: Solenopsis). J. Kansas Entomol. Soc. 51, 615–636 (1978).
    Google Scholar 
    Sorensen, A., Busch, T. M. & Vinson, S. B. Behavioral flexibility of temporal subcastes in the fire ant, Solenopsis invicta in response to food. Psyche 91, 319–331 (1984).
    Google Scholar 
    Bigley, W. S. & Vinson, S. B. Characterization of a brood pheromone isolated from the sexual brood of the imported fire ant, Solenopsis invicta. Ann. Entomol. Soc. Am. 2, 301–304 (1975).
    Google Scholar 
    Bajracharya, P., Lu, H. L. & Pietrantonio, P. V. The red imported fire ant (Solenopsis invicta Buren) kept Y not F: Predicted sNPY endogenous ligands deorphanize the short NPF (sNPF) receptor. PLoS ONE 9(10), e109590 (2014).ADS 

    Google Scholar 
    Castillo, P. Short neuropeptide F receptor in the worker brain of the red imported fire ant (Solenopsis invicta Buren) and methodology for RNA interference M.S. thesis, Texas A&M University (2015).Castillo, P. & Pietrantonio, P. V. Differences in sNPF receptor-expressing neurons in brains of fire ant (Solenopsis invicta Buren) worker subcastes: Indicators for division of labor and nutritional status? PLoS ONE 8, e83966 (2013).ADS 

    Google Scholar 
    Cassill, D. L. & Tschinkel, W. R. Allocation of liquid food to larvae via trophallaxis in colonies of the fire ant, Solenopsis invicta. Anim. Behav. 3, 801–813 (1995).
    Google Scholar 
    Cassill, D. L., Stuy, A. & Buck, R. G. Emergent properties of food distribution among fire ant larvae. J. Theor. Biol. 3, 371–381 (1998).ADS 

    Google Scholar 
    Dussutour, A. & Simpson, S. J. Communal nutrition in ants. Curr. Biol. 19, 740–744. https://doi.org/10.1016/j.cub.2009.03.015 (2009).Article 
    CAS 

    Google Scholar 
    Petralia, R. S. & Vinson, S. B. Feeding in the larvae of the imported fire ant, Solenopsis invicta: Behavior and morphological adaptations. Ann. Entomol. Soc. Am. 71, 643–648 (1978).
    Google Scholar 
    Petralia, R. S. & Vinson, S. B. Developmental morphology of larvae and eggs of the imported fire ant, Solenopsis invicta. Ann. Entomol. Soc. Am. 72, 472–484 (1979).
    Google Scholar 
    Chen, J. Advancement on techniques for the separation and maintenance of the red imported fire ant colonies. Insect Sci. 14, 1–4 (2007).
    Google Scholar 
    Banks, W. A. et al. (Agricultural Research (Southern Region), Science and Education…, 1981).Valles, S. M. & Porter, S. D. Identification of polygyne and monogyne fire ant colonies (Solenopsis invicta) by multiplex PCR of Gp-9 alleles. Insectes Soc. 2, 199–200 (2003).
    Google Scholar 
    Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101 (2008).CAS 

    Google Scholar 
    Cheng, D., Zhang, Z., He, X. & Liang, G. Validation of reference genes in Solenopsis invicta in different developmental stages, castes and tissues. PLoS ONE 8, e57718. https://doi.org/10.1371/journal.pone.0057718 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Qiu, H.-L., Zhao, C.-Y. & He, Y.-R. On the molecular basis of division of labor in Solenopsis invicta (Hymenoptera: Formicidae) workers: RNA-seq analysis. J. Insect Sci. 17, 48 (2017).
    Google Scholar 
    Chen, J. et al. Role of the foraging gene in worker behavioral transition in the red imported fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Pest Manag. Sci. https://doi.org/10.1002/ps.6921 (2022).Article 

    Google Scholar 
    Shorter, J. R. & Tibbetts, E. A. The effect of juvenile hormone on temporal polyethism in the paper wasp Polistes dominulus. Insectes Soc. 56, 7–13 (2009).
    Google Scholar 
    Pankiw, T., Page, R. E. Jr. & Kim Fondrk, M. Brood pheromone stimulates pollen foraging in honey bees (Apis mellifera). Behav. Ecol. Sociobiol. 44, 193–198. https://doi.org/10.1007/s002650050531 (1998).Article 

    Google Scholar 
    Smedal, B., Brynem, M., Kreibich, C. D. & Amdam, G. V. Brood pheromone suppresses physiology of extreme longevity in honeybees (Apis mellifera). J. Exp. Biol. 212, 3795–3801. https://doi.org/10.1242/jeb.035063 (2009).Article 
    CAS 

    Google Scholar 
    Solis, C. R. & Strassmann, J. E. Presence of brood affects caste differentiation in the social wasp, Polistes exclamans Viereck (Hymenoptera, Vespidae). Funct. Ecol. 4, 531–541. https://doi.org/10.2307/2389321 (1990).Article 

    Google Scholar 
    Traynor, K. S. Decoding Brood Pheromone: The Releaser and Primer Effects of Young and Old Larvae on Honey Bee (Apis mellifera) Workers (Arizona State University, 2014).
    Google Scholar 
    Wagoner, K. M., Spivak, M. & Rueppell, O. Brood affects hygienic behavior in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 111, 2520–2530. https://doi.org/10.1093/jee/toy266 (2018).Article 
    CAS 

    Google Scholar 
    Nijhout, H. F. & Wheeler, D. E. Juvenile hormone and the physiological basis of insect polymorphisms. Q. Rev. Biol. 57, 109–133 (1982).CAS 

    Google Scholar  More

  • in

    What it would take to bring back the dodo

    The flightless dodo went extinct in the seventeenth century. Biotech company Colossal Biosciences plans to resurrect it.Credit: Hart, F/Bridgeman Images

    A biotech company announced an audacious effort to ‘de-extinct’ the dodo last week. The flightless birds vanished from the island of Mauritius — in the Indian Ocean — in the late seventeenth century, and became emblematic of humanity’s negative impacts on the natural world. Could the plan actually work?Colossal Biosciences, based in Dallas, Texas, has landed US$225 million in investment (including funds from the celebrity Paris Hilton) — having previously announced plans to de-extinct thylacines, an Australian marsupial, and create elephants with woolly mammoth traits. But Colossal’s plans depend on huge advances in genome editing, stem-cell biology and animal husbandry, making success far from certain.“It’s incredibly exciting that there’s that kind of money available,” says Thomas Jensen, a cell and molecular reproductive physiologist at Wells College in Aurora, New York. “I’m not sure that the end goal they’re going for is something that’s super feasible in the near future.”Iridescent pigeonsColossal’s plan starts with the dodo’s closest living relative, the iridescent-feathered Nicobar pigeon (Caloenas nicobarica). The company plans to isolate and culture specialized primordial germ cells (PGCs) — which make sperm and egg-producing cells — from developing Nicobars. Colossal’s scientists would edit DNA sequences in the PGCs to match those of dodos using tools such as CRISPR. These gene-edited PGCs would then be inserted into embryos from a surrogate bird species to generate chimeric — those with DNA from both species — animals that make dodo-like egg and sperm. These could potentially produce something resembling a dodo (Raphus cucullatus).To gene-edit Nicobar pigeon PGCs, scientists first need to identify the conditions that allow these cells to flourish in the laboratory, says Jae Yong Han, an avian-reproduction scientist at Seoul National University. Researchers have done this with chickens, but it will take time to identify the appropriate culture conditions that suit other birds’ PGCs.A greater challenge will be determining the genetic changes that could transform Nicobar pigeons into Dodos. A team including Beth Shapiro, a palaeogeneticist at the University of California, Santa Cruz, who is advising Colossal on the dodo project, has sequenced the dodo genome but has not yet published the results. Dodos and Nicobar pigeons shared a common ancestor that lived around 30 million to 50 million years ago, Shapiro’s team reported in 20161. By comparing the nuclear genomes of the two birds, the researchers hope to identify most of the DNA changes that distinguish between them.Insights from ratsTom Gilbert, an evolutionary biologist at the University of Copenhagen, who also advises Colossal, expects the dodo genome to be of high quality — it comes from a museum sample he provided to Shapiro. But he says that finding all the DNA differences between the two birds is not possible. Ancient genomes are cobbled together from short sequences of degraded DNA, and so are filled with unavoidable gaps and errors. And research he published last year comparing the genome of the extinct Christmas Island rat (Rattus macleari) with that of the Norwegian brown rat (Rattus norvegicus)2 suggests that gaps in the dodo genome could lie in the very DNA regions that have changed the most since its lineage split from that of Nicobar pigeons.Even if researchers could identify every genetic difference, introducing the thousands of changes to PGCs would not be simple. “I’m not sure it’s feasible in the near future,” says Jensen, whose team is encountering difficulties making a single genetic change to the genomes of quail.Focusing on only a subset of DNA changes, such as those that alter protein sequences, could slash the number of edits needed. But it’s still not clear that this would yield anything resembling a wild dodo, says Gilbert. “My worry is that Paris Hilton thinks she’s going to get a dodo that looks like a dodo,” he says.A further problem will be the need to find a large bird, such as an emu (Dromaius novaehollandiae), that can act as the surrogate, says Jensen. “Dodo eggs are much, much larger than Nicobar pigeon eggs, you couldn’t grow a dodo inside of a Nicobar egg.”Chicken embryos are fairly receptive to PGCs from other birds, and Jensen’s team has created chimeric chickens that can produce quail sperm — efforts to generate eggs have failed so far. But he thinks it will be far more challenging to transfer PGCs — particularly heavily gene-edited ones — from one wild bird into another.Conservation boon?Colossal chief executive Ben Lamm acknowledges these hurdles, but argues they aren’t dealbreakers. Work towards dodo de-extinction will help with conservation efforts for other birds, he adds. “It will bring a lot of new technologies to the field of bird conservation,” agrees Jensen.Vikash Tatayah, conservation director at the Mauritian Wildlife Foundation in Vacoas-Phoenix, is also enthusiastic about the attention dodo de-extinction could bring to conservation. “It’s something we would like to embrace,” he says.But he points out that the predators that threatened the dodo in the seventeeth century haven’t gone away, whereas most of its habitat has. “You do have to ask,” he says, “if we could have such money, wouldn’t it be better spent on restoring habitat on Mauritius and preventing species from going extinct?” More