More stories

  • in

    Harnessing soil biodiversity to promote human health in cities

    UNDESA. World urbanization prospects. Demographic Research 12, 1–103 (2018).Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 11 (2021).Article 

    Google Scholar 
    World Bank. A catalogue of nature-based solutions for urban resilience. www.worldbank.org (2021).Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).Article 

    Google Scholar 
    Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 127, 5–22 (2018).Article 

    Google Scholar 
    Reyes-Riveros, R. et al. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green 61, 127105 (2021).Article 

    Google Scholar 
    Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).Article 
    CAS 

    Google Scholar 
    Mehring, A. S. & Levin, L. A. Potential roles of soil fauna in improving the efficiency of rain gardens used as natural stormwater treatment systems. J. Appl. Ecol. 52, 1445–1454 (2015).Article 

    Google Scholar 
    Brevik, E. C. et al. Soil and human health: current status and future needs. Air, Soil Water Res. 13, 1–23 (2020).Article 

    Google Scholar 
    Silver, W. L., Perez, T., Mayer, A. & Jones, A. R. The role of soil in the contribution of food and feed. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200181 (2021).Article 
    CAS 

    Google Scholar 
    De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200170 (2021).Article 

    Google Scholar 
    Samaddar, S. et al. Role of soil in the regulation of human and plant pathogens: Soils’ contributions to people. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200179 (2021).Article 

    Google Scholar 
    Thiele-Bruhn, S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200183 (2021).Article 
    CAS 

    Google Scholar 
    O’Riordan, R., Davies, J., Stevens, C., Quinton, J. N. & Boyko, C. The ecosystem services of urban soils: A review. Geoderma 395, 115076 (2021).Article 

    Google Scholar 
    Banerjee, S. & Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00779-w (2022).Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).Article 

    Google Scholar 
    Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).Article 
    CAS 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).Article 

    Google Scholar 
    Guilland, C., Maron, P. A., Damas, O. & Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 16, 1267–1282 (2018).Article 
    CAS 

    Google Scholar 
    Milano, V. et al. The effect of urban park landscapes on soil Collembola diversity: A Mediterranean case study. Landsc. Urban Plan. 180, 135–147 (2018).Article 

    Google Scholar 
    Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).Article 
    CAS 

    Google Scholar 
    Zhu, Y. G. et al. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 131, 105059 (2019).Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy. Science 371, 239–241 (2021).Article 
    CAS 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B Biol. Sci. 281, 20141988 (2014).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).Article 
    CAS 

    Google Scholar 
    Braaker, S., Ghazoul, J., Obrist, M. K. & Moretti, M. Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95, 1010–1021 (2014).Article 
    CAS 

    Google Scholar 
    Lin, B. B., Philpott, S. M. & Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 16, 189–201 (2015).Article 

    Google Scholar 
    Baruch, Z. et al. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ. Res. 196, 110425 (2021).Article 
    CAS 

    Google Scholar 
    Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).Article 

    Google Scholar 
    Robinson, J. M. et al. Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Sci. Rep. 11, 9516 (2021).Article 
    CAS 

    Google Scholar 
    Nugent, A. & Allison, S. D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 13, 1–20 (2022).Article 

    Google Scholar 
    Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Chang. Biol. 22, 228–236 (2016).Article 

    Google Scholar 
    Li, X. et al. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. J. Anim. Ecol. 91, 1770–1780 (2022).Article 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26, 1196–1211 (2020).Article 

    Google Scholar 
    Joimel, S. et al. Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosyst. 22, 553–566 (2019).Article 

    Google Scholar 
    Ge, B., Mehring, A. S. & Levin, L. A. Urbanization alters belowground invertebrate community structure in semi-arid regions: A comparison of lawns, biofilters and sage scrub. Landsc. Urban Plan. 192, 103664 (2019).Article 

    Google Scholar 
    Tóth, Z. & Hornung, E. Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects 11, 25 (2020).Article 

    Google Scholar 
    Selhorst, A. & Lal, R. Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States. Environ. Manage. 51, 198–208 (2013).Article 

    Google Scholar 
    Cividini, S. & Montesanto, G. Aggregative behavior and intraspecific communication mediated by substrate-borne vibrations in terrestrial arthropods: An exploratory study in two species of woodlice. Behav. Process. 157, 422–430 (2018).Article 

    Google Scholar 
    Bray, N., Thompson, G. L., Fahey, T., Kao-Kniffin, J. & Wickings, K. Soil macroinvertebrates alter the fate of root and rhizosphere carbon and nitrogen in a turfgrass lawn. Soil Biol. Biochem. 148, 107903 (2020).Article 
    CAS 

    Google Scholar 
    Barthod, J., Dignac, M. F. & Rumpel, C. Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biol. Biochem. 160, 108308 (2021).Article 
    CAS 

    Google Scholar 
    Aquino, R. S. S. et al. Filamentous fungi vectored by ants (Hymenoptera: Formicidae) in a public hospital in north-eastern Brazil. J. Hosp. Infect. 83, 200–204 (2013).Article 
    CAS 

    Google Scholar 
    Hodges, M. N. & McKinney, M. L. Urbanization impacts on land snail community composition. Urban Ecosyst. 21, 721–735 (2018).Article 

    Google Scholar 
    Saeki, I., Niwa, S., Osada, N., Azuma, W. & Hiura, T. Contrasting effects of urbanization on arboreal and ground-dwelling land snails: role of trophic interactions and habitat fragmentation. Urban Ecosyst. 23, 603–614 (2020).Article 

    Google Scholar 
    Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: A global perspective. Ecol. Evol. 7, 974–985 (2017).Article 

    Google Scholar 
    Ford, A. E. S., Graham, H. & White, P. C. L. Integrating human and ecosystem health through ecosystem services frameworks. Ecohealth 12, 660–671 (2015).Article 

    Google Scholar 
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Article 
    CAS 

    Google Scholar 
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 1–12 (2019).Article 

    Google Scholar 
    Song, C., Jin, K. & Raaijmakers, J. M. Designing a home for beneficial plant microbiomes. Curr. Opin. Plant Biol. 62, 102025 (2021).Article 
    CAS 

    Google Scholar 
    Neiderud, C. J. How urbanization affects the epidemiology of emerging infectious diseases. African J. Disabil. 5, 27060 (2015).
    Google Scholar 
    Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health? Environ. Int. 129, 105–117 (2019).Article 

    Google Scholar 
    Baumgardner, D. J. Soil-related bacterial and fungal infections. J. Am. Board Fam. Med. 25, 734–744 (2012).Article 

    Google Scholar 
    Khan, N. A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 30, 564–595 (2006).Article 

    Google Scholar 
    Lindsay, R. G., Watters, G., Johnson, R., Ormonde, S. E. & Snibson, G. R. Acanthamoeba keratitis and contact lens wear. Clin. Exp. Optom. 90, 351–360 (2007).Article 

    Google Scholar 
    Fields, Barry, Robert, Benson & Besser, R. Legionella and Legionnaires’ Disease: 25 Years of Investigation – Comparative study of selective media for isolation of Legionella pneumophila from potable water. Clin. Microbiol. Rev. 15, 506 (2002).Article 

    Google Scholar 
    Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109, 1159–1164 (2012).Article 

    Google Scholar 
    Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2019).Article 

    Google Scholar 
    Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).Article 
    CAS 

    Google Scholar 
    Wang, F. H. et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 48, 9079–9085 (2014).Article 
    CAS 

    Google Scholar 
    Cave, R., Cole, J. & Mkrtchyan, H. V. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environ. Int. 157, 106836 (2021).Article 
    CAS 

    Google Scholar 
    Alharbi, J. S., Alawadhi, Q. & Leather, S. R. Monomorium ant is a carrier for pathogenic and potentially pathogenic bacteria. BMC Res. Notes 12, 230 (2019).Article 

    Google Scholar 
    Guimaraes, A. J., Gomes, K. X., Cortines, J. R., Peralta, J. M. & Peralta, R. H. S. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol. Res. 193, 30–38 (2016).Article 

    Google Scholar 
    Vieira, A., Ramesh, A., Seddon, A. M. & Karlyshev, A. V. CmeABC multidrug efflux pump promotes Campylobacter jejuni survival and multiplication in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 83, 1–13 (2017).Article 

    Google Scholar 
    Wyres, K. L. & Holt, K. E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 45, 131–139 (2018).Article 
    CAS 

    Google Scholar 
    Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 112, E3574–E3581 (2015).Article 
    CAS 

    Google Scholar 
    Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and disease burden of soil-transmitted helminth infections in 2010. Parasites and Vectors 7, 1–19 (2014).Article 

    Google Scholar 
    Kemp, S. F. et al. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immunol. 105, 683–691 (2000).Article 
    CAS 

    Google Scholar 
    Estrada-Peña, A. & Jongejan, F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission Climate, niche, ticks, and models: what they are and how we should interpret them. Exp. Appl. Acarol. 23, 685–715 (1999).Article 

    Google Scholar 
    Nasir, S., Akram, W., Khan, R. R., Arshad, M. & Nasir, I. Paederusbeetles: The agent of human dermatitis. J. Venom. Anim. Toxins Incl. Trop. Dis. 21, 1–6 (2015).Article 

    Google Scholar 
    Santos, M. N. Research on termites in urban areas: approaches and gaps. https://doi.org/10.1007/s11252-020-00944-0 (2020).National Academies of Sciences, Engineering, and M. Advancing urban sustainability in China and the United States. (The National Academies Press, https://doi.org/10.17226/25794 2020).Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).Article 
    CAS 

    Google Scholar 
    Velasco, E., Segovia, E., Choong, A. M. F., Lim, B. K. Y. & Vargas, R. Carbon dioxide dynamics in a residential lawn of a tropical city. J. Environ. Manage. 280, 111752 (2021).Article 
    CAS 

    Google Scholar 
    Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).Article 

    Google Scholar 
    Jiao, S., Lu, Y. & Wei, G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Chang. Biol. 28, 140–153 (2022).Article 
    CAS 

    Google Scholar 
    Hu, J. et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ. Microbiol. 22, 5005–5018 (2020).Article 

    Google Scholar 
    Jayaraman, S. et al. Disease-suppressive soils—beyond food production: a critical review. J. Soil Sci. Plant Nutr. 21, 1437–1465 (2021).Article 

    Google Scholar 
    Chen, Q. L. et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol. Lett. 1, 3–13 (2019).Article 

    Google Scholar 
    Innocenti, G. & Sabatini, M. A. Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: a review. Bull. Insectology 71, 71–76 (2018).
    Google Scholar 
    Jones, M. S. et al. Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens. Biol. Control 137, 104020 (2019).Huang, K. et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol. 297, 122451 (2020).Article 
    CAS 

    Google Scholar 
    Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).Article 

    Google Scholar 
    Cachada, A., Pato, P., Rocha-Santos, T., da Silva, E. F. & Duarte, A. C. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 430, 184–192 (2012).Article 
    CAS 

    Google Scholar 
    Chen, M. et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols, and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 33, 745–755 (2015).Article 
    CAS 

    Google Scholar 
    González Henao, S. & Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of bacteria associated With the plant microbiome. Front. Environ. Sci. 9, 1–17 (2021).Article 

    Google Scholar 
    Meynet, P. et al. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ. Sci. Technol. 46, 5057–5066 (2012).Article 
    CAS 

    Google Scholar 
    Xiong, W., Delgado-Baquerizo, M., Shen, Q. & Geisen, S. Pedogenesis shapes predator-prey relationships within soil microbiomes. Sci. Total Environ. 828, 154405 (2022).Article 
    CAS 

    Google Scholar 
    Duan, G. et al. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils. Shengwu Gongcheng Xuebao/Chinese J. Biotechnol. 36, 455–470 (2020).CAS 

    Google Scholar 
    Beesley, L. & Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following green waste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 43, 188–196 (2011).Article 
    CAS 

    Google Scholar 
    Zhu, D. et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ. Sci. Technol. 55, 7445–7455 (2021).Article 
    CAS 

    Google Scholar 
    Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612 (2011).Article 
    CAS 

    Google Scholar 
    Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).Article 

    Google Scholar 
    Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198–1206.e12 (2019).Article 
    CAS 

    Google Scholar 
    Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int. 157, 106811 (2021).Article 

    Google Scholar 
    Roslund, M. I. et al. A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol. Environ. Saf. 242, 113900 (2022).Rook, G., Bäckhed, F., Levin, B. R., McFall-Ngai, M. J. & McLean, A. R. Evolution, human-microbe interactions, and life history plasticity. Lancet 390, 521–530 (2017).Article 

    Google Scholar 
    Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).Article 
    CAS 

    Google Scholar 
    Reber, S. O. et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. USA 113, E3130–E3139 (2016).Article 
    CAS 

    Google Scholar 
    Ege, M. J. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–9 (2011).Article 
    CAS 

    Google Scholar 
    Stein, M. M. et al. Innate immunity and asthma risk in amish and hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).Article 
    CAS 

    Google Scholar 
    Roslund, M. I. et al. Environmental Studies biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, eaba2578 (2020).Article 
    CAS 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 109, 8334–8339 (2012).Article 
    CAS 

    Google Scholar 
    Franklin, P. J. Indoor air quality and respiratory health of children. Paediatr. Respir. Rev. 8, 281–286 (2007).Article 

    Google Scholar 
    Adams, R. I. et al. Microbial exposures in moisture-damaged schools and associations with respiratory symptoms in students: A multi-country environmental exposure study. Indoor Air 31, 1952–1966 (2021).Article 
    CAS 

    Google Scholar 
    Dunn, R. R., Reese, A. T. & Eisenhauer, N. Biodiversity–ecosystem function relationships on bodies and in buildings. Nat. Ecol. Evol. 3, 7–9 (2019).Article 

    Google Scholar 
    Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).Article 
    CAS 

    Google Scholar 
    Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urbanisation reduces the abundance and diversity of airborne microbes – but what does that mean for our health? A systematic review. Sci. Total Environ. 738, 140337 (2020).Article 
    CAS 

    Google Scholar 
    Berg, G., Mahnert, A. & Moissl-Eichinger, C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front. Microbiol. 5, 1–5 (2014).Article 

    Google Scholar 
    Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 1–13 (2018).Article 

    Google Scholar 
    Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).Article 
    CAS 

    Google Scholar 
    Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).Article 
    CAS 

    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).Article 
    CAS 

    Google Scholar 
    Blum, W. E. H., Zechmeister-Boltenstern, S. & Keiblinger, K. M. Does soil contribute to the human gut microbiome? Microorganisms 7, 287 (2019).Article 

    Google Scholar 
    Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).Article 
    CAS 

    Google Scholar 
    Tun, H. M. et al. Exposure to household furry pets influences the gut microbiota of infants at 3-4 months following various birth scenarios. Microbiome 5, 1–14 (2017).Article 

    Google Scholar 
    Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ. 777, 146063 (2021).Article 
    CAS 

    Google Scholar 
    Elmqvist, T. et al. Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. https://doi.org/10.1007/978-94-007-7088-1_23 (2013).Breed, M. F. et al. Ecosystem Restoration: A Public Health Intervention. Ecohealth 18, 269–271 (2021).Article 

    Google Scholar 
    Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).Article 

    Google Scholar 
    Contos, P., Wood, J. L., Murphy, N. P. & Gibb, H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol. Evol. 11, 7187–7200 (2021).Article 

    Google Scholar 
    Auclerc, A. et al. Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma 424, 116019 (2022).Article 

    Google Scholar 
    Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 28, S322–S334 (2020).Article 

    Google Scholar  More

  • in

    Geographical variability of bacterial communities of cryoconite holes of Andean glaciers

    In this study, we provide the first description of the bacterial communities of cryoconite holes from South American glaciers, in particular from both small high-elevation glaciers of the Central Andes in the Santiago Metropolitan Region (Chile), and from the tongues of two large glaciers in Patagonian Andes that reach low altitudes. These pieces of information fill a large geographical gap in our knowledge of glacier environments because this is the first description of the microbial communities of supraglacial environments in South America, a continent with about 30,000 km2 covered by ice29. Results showed that the large Patagonian glaciers (Exploradores and Perito Moreno) had the highest oxygen concentrations, while Iver and East Iver had the lowest ones and Morado an intermediate value. This pattern could be related to the different altitudes of the glaciers. Indeed, since water temperature in cryoconite holes is always quite low and stable at all altitudes, oxygen solubility in these environments is related to the atmospheric partial pressure of oxygen that decreases at increasing altitude30. This result is consistent with [O2] values we found in our samples. Indeed, Exploradores and Perito Moreno are located in Patagonia at low altitudes ( 40%), whereas mining is also an additional important black carbon source50. Their similarity can therefore derive also from being exposed to the same general ecological conditions, including high UV radiation, oxidative stress, anthropic pressures, and probably, also from similar sources of bacteria. These results therefore highlight that correlative studies like the present ones can hardly disentangle the effects of geographical positions and ecological conditions on the structure of cryoconite hole bacterial communities, and further studies should be designed to add insight into this still open question.Analyses of alpha diversity indices indicated that cryoconite holes on Exploradores glacier showed the highest richness and evenness. Samples on the Exploradores were collected close to the glacier terminus, surrounded by a rich evergreen broadleaf vegetation, and in an area with abundant supraglacial debris and frequented by tourists. The higher biodiversity of this large, low-altitude glacier, compared to that of the small, high-altitude Iver and East Iver glaciers is not surprising, as the rich evergreen broadleaf forest that surrounds the tongue of the first glacier can be the source of a richer and more diverse bacterial community than the bare ground surrounding the other ones. However, it is more surprising that the alpha biodiversity of the large, low-altitude Perito Moreno was intermediate and similar to that of the Morado glacier. Interestingly, Perito Moreno was the southernmost glacier among those we collected, and was surrounded by a less diverse forest, dominated by southern beeches, Nothofagus ssp. than that of Exploradores, while Morado was the glacier where samples were collected at the lowest altitude among the three glaciers near Santiago. We may therefore speculate that a broad gradient related to altitude and general climate conditions of the area surrounding the glacier may somehow affect its biodiversity. For instance, among the most abundant orders, Cytophagales were more abundant on high than on low-elevation glaciers (Fig. 5b). A similar pattern was observed for the Micrococcales and Chitinophagales (Fig. 5c–k) with the only exception of Iver.In summary, we provide the first-ever description of the bacterial communities of cryoconite holes of glaciers in South America, specifically in the Southern Andes. This study thus fills an important gap of knowledge as almost no information was previously available on the cryoconite holes of this continent, and opens the possibility of future biogeography analyses including samples from almost every important glacial area of the world. The five glaciers we investigated are still a too small sample for thoroughly assessing the ecological processes that control cryoconite hole bacterial communities, and a larger set of environmental variables should also be considered, but we hope this study can be the basis for further investigations aiming at a deeper understanding of these extreme environments. More

  • in

    Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon

    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. System. 2007, 1–25 (2007).Article 

    Google Scholar 
    Way, M., Hopkins, B. & Smith, P. Photoperiodism and diapause in insects. Nature 164, 615–615 (1949).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bromage, N., Porter, M. & Randall, C. Reproductive Biotechnology in Finfish Aquaculture 63–98 (Elsevier, 2001).Book 

    Google Scholar 
    Weil, Z. M. & Crews, D. Photoperiodism in Amphibians and Reptiles (ed. Nelson, R. J. et al.) 399–419 (Oxford University Press, 2010).Vera, L., Davie, A., Taylor, J. & Migaud, H. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen. Comp. Endocrinol. 165, 25–33 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, K. A., Schoen, M. W. & Czeisler, C. A. Adaptation of human pineal melatonin suppression by recent photic history. J. Clin. Endocrinol. Metabol. 89, 3610–3614 (2004).Article 
    CAS 

    Google Scholar 
    Refinetti, R. Enhanced circadian photoresponsiveness after prolonged dark adaptation in seven species of diurnal and nocturnal rodents. Physiol. Behav. 90, 431–437 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, A.-M., Scheer, F. A. & Czeisler, C. A. The human circadian system adapts to prior photic history. J. Physiol. 589, 1095–1102 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aschoff, J. & Daan, S. Human time perception in temporal isolation: Effects of illumination intensity. Chronobiol. Int. 14, 585–596 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tast, A. et al. The photophase light intensity does not affect the scotophase melatonin response in the domestic pig. Anim. Reprod. Sci. 65, 283–290 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Migaud, H. et al. A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm. J. Pineal Res. 41, 42–52 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nisembaum, L. G., Martin, P., Lecomte, F. & Falcón, J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J. Neuroendocrinol. 33, e12955 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M. et al. Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 154, 91–97 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M., Azuma, T. & Iwata, M. Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro. Zool. Sci. 24, 67–70 (2007).Article 
    CAS 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol. Int. 27, 1697–1714 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fjelldal, P. G., Hansen, T. & Huang, T. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 321, 93–100 (2011).Article 

    Google Scholar 
    Leclercq, E., Taylor, J., Sprague, M. & Migaud, H. The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacult. Eng. 44, 35–47 (2011).Article 

    Google Scholar 
    Fjelldal, P. G. et al. Development of supermale and all-male Atlantic salmon to research the vgll3 allele-puberty link. BMC Genet. 21, 1–13 (2020).Article 

    Google Scholar 
    Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fisher. Res. 191, 1–382 (1975).
    Google Scholar 
    Fjelldal, P. G. et al. Sexual maturation and smoltification in domesticated Atlantic salmon (Salmo salar L.)-is there a developmental conflict?. Physiol. Rep. 6, e13809 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1. 4. 3. 01 (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in Atlantic salmon postsmolts. Chronobiol. Int. 27, 1715–1734 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davie, A., Minghetti, M. & Migaud, H. Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int. 26, 379–395 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Max, M. & Menaker, M. Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J. Comp. Physiol. Part A 170, 479–489 (1992).CAS 

    Google Scholar 
    Randall, C. & Bromage, N. Photoperiodic history determines the reproductive response of rainbow trout to changes in daylength. J. Comp. Physiol. Part A 183, 651–660 (1998).Article 

    Google Scholar 
    Randall, C., Bromage, N., Duston, J. & Symes, J. Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: A circannual phase-response curve. Reproduction 112, 399–405 (1998).Article 
    CAS 

    Google Scholar 
    Duston, J. & Bromage, N. Photoperiodic mechanisms and rhythms of reproduction in the female rainbow trout. Fish Physiol. Biochem. 2, 35–51 (1986).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duston, J. & Bromage, N. Circannual rhythms of gonadal maturation in female rainbow trout (Oncorhynchus mykiss). J. Biol. Rhythms 6, 49–53 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taranger, G. L. et al. Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar. Aquaculture 162, 85–98 (1998).Article 

    Google Scholar 
    Melo, M. C. et al. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). J. Endocrinol. 220, 319–332 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, T. J., Fjelldal, P. G., Folkedal, O., Vågseth, T. & Oppedal, F. Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages. Aquac. Environ. Interact. 9, 193–204 (2017).Article 

    Google Scholar 
    Oppedal, F., Taranger, G. L., Juell, J.-E., Fosseidengen, J. E. & Hansen, T. Light intensity affects growth and sexual maturation of Atlantic salmon (Salmo salar) postsmolts in sea cages. Aquat. Living Resour. 10, 351–357 (1997).Article 

    Google Scholar 
    Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Model. 264, 83–97 (2013).Article 

    Google Scholar 
    Ljungstrӧm, G., Langbehn, T. J. & Jørgensen, C. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Chang. 11, 530–536 (2021).Article 
    ADS 

    Google Scholar 
    Naish, K. A. & Hard, J. J. Bridging the gap between the genotype and the phenotype: Linking genetic variation, selection and adaptation in fishes. Fish Fish. 9, 396–422 (2008).Article 

    Google Scholar 
    Lehnert, S. J. et al. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Above-ground tree carbon storage in response to nitrogen deposition in the U.S. is heterogeneous and may have weakened

    Forest Inventory dataTree growth, tree survival, and plot-level basal area data were compiled from the Forest Inventory and Analysis (FIA) program database (accessed on January 24, 2017, FIA phase 2 manual version 6.1; http://www.fia.fs.fed.us/). Aboveground tree biomass was estimated from tree diameter measurements44 and then multiplied by 0.5 to estimate aboveground C. Tree growth rates were calculated from the difference in estimated aboveground C between the latest and first live measurement of every tree and divided by the elapsed time between measurements to the day. Tree species that had at least 2000 individual trees after the data filters were applied were retained for further growth and survival evaluation. The probability of tree survival was calculated using the first measurement to the last measurement of a plot. Trees that were alive at both measurements were assigned a value of 1 (survived) and trees alive at the first and dead at the last measurement were assigned a value of 0 (dead). The duration between the first and last measurement was used to determine the annual probability of tree survival. Trees that were recorded as dead at both measurement inventories and trees that were harvested were excluded from the survival analysis.Predictor data: Climate, deposition, size, and competitionThere were six predictors that were related to the response rate of growth or survival for each individual tree: mean annual temperature, mean annual precipitation, mean annual total nitrogen deposition, mean annual total S deposition, tree size, and plot-level competition.To obtain total N and S deposition rates for each tree, we used spatially modeled N and S deposition data from the National Atmospheric Deposition Program’s Total Deposition Science Committee32. Annual N and S deposition rates were then averaged from the first year of measurement to the last year of measurement for every tree so that each tree had an individualized average N deposition based on the remeasurement years, and each species had an individualized range of average N deposition exposure based on its distribution. Monthly mean temperature and precipitation values were obtained in a gridded (4 x 4 km) format from the PRISM Climate Group at Oregon State45 for the contiguous US and averaged between measurement periods for each tree in a similar manner. Tree size was represented by estimated aboveground tree C (previously described). Because the climate and deposition predictors were tailored to each plot, the years assessed varied by plot, but spanned 2000–2016. Thus, the results from the earlier study6 used conditions from the 1980–1990s, whereas the results from this study used more recent environmental and stand conditions. Tree competition was represented by a combination two factors: (1) plot basal area and (2) the basal area of trees larger than the focal tree being modeled. How all six variables were statistically modeled is discussed below.Modeling tree growth and survivalWe developed in ref. 20 multiple models to predict tree growth (G; kg C year−1) and survival (P(s); annual probability of survival). Our growth model (Eq. 1 and 2) assumes that there is a potential maximum growth rate (a) that is modified by up to six predictors in our study (which are multipliers from 0 to 1): temperature (T), precipitation (P), N deposition (N), S deposition (S), tree size (m), and competition. The potential full growth model included all six terms (Eq. 1 for the general form and Eq. 2 for the specific form). The size effect was modeled as a power function (z) based on the aboveground biomass (m). N deposition may affect the allometric relationships between tree diameter and aboveground tree biomass46, but these relationships are not yet accounted for in U.S. inventories44. Competition between trees was modeled as a function of plot basal area (BA) and the basal area of trees larger than that of the tree of interest (BAL) similar to the methods of47. The environmental factors (N deposition, S deposition, temperature, precipitation) were modeled as two-term lognormal functions (e.g., t1 and t2 for temperature effects, n1 and n2 for nitrogen deposition effects). The two-term lognormal functions allowed for flexibility in both the location of the peak (determined by t1 for temperature, for example), and the steepness of the curve (determined by t2 for temperature, for example). Thus, the full growth model is presented in Eq. 2.$$G=potentialgrowthratetimes competitiontimes temperaturetimes precipitationtimes {S}_{dep}times {N}_{dep}$$
    (1)
    $$G=a* {m}^{z}* {e}^{({c}_{1}* BAL+{c}_{2}* {{{{mathrm{ln}}}}}(BA))}* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}$$
    (2)
    We examined a total of five different growth models: (1) a full model with the size, competition, climate, S deposition, and N deposition terms (Eq. 2); (2) a model with all terms except the N deposition term; (3) a model with all terms except the S deposition term; (4) a model with all terms but without S and N deposition terms; and (5) a null model that estimated a single parameter for the mean growth parameter (a in Eq. 2).The annual probability of survival (P(s)) was estimated similarly as for growth, except that the probability was a function of time and we explored two different representations for competition. The general form of the model is shown in Eq. 3, and the full survival model in Eqs. 4, 5 for the two competition forms.$$P(s)={[acdot {{{{{rm{size}}}}}}times competitiontimes temperaturetimes precipitationtimes {N}_{dep}times {S}_{dep}]}^{time}$$
    (3)
    $$P(s)= {left[a* [((1-z{c}_{1}{e}^{-z{c}_{2}* m})* {e}^{-z{c}_{3}* {m}^{z{c}_{4}}})({e}^{-b{r}_{1}* B{A}_{ratio}{,}^{br2}* B{A}^{b{r}_{3}}})]vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}}^{time}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (4)
    $$P(s)= {left[a* left({e}^{-0.5* {left(frac{ln(m/{m}_{1})}{{m}_{2}}right)}^{2}* -0.5* {left(frac{ln(BA/b{a}_{1})}{b{a}_{2}}right)}^{2}* -0.5* {left(frac{ln(BAL+1/b{l}_{1}+1)}{b{l}_{2}}right)}^{2}}right)vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (5)
    A total of nine survival models were examined: four using the formulation for size and competition in Eq. 4 (with the same combinations of predictors as above for growth), four using formulation for size and competition in Eq. 5, and a null survival model in which a mean annual estimate of survival (a) was raised to the exponent of the elapsed time.Parameters for each of the growth and survival models above were fit for a given species using maximum likelihood estimates through simulated annealing with 100,000 iterations via the likelihood package (v2.1.1) in Program R. Akaike’s Information Criteria (AIC) was estimated for all models. The best model was the model with the lowest AIC, and statistically indistinguishable models are those with a delta AIC  More

  • in

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery

    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).Article 

    Google Scholar 
    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Env. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Anderson, O. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).Article 

    Google Scholar 
    Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article 

    Google Scholar 
    Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183 (2016).Article 

    Google Scholar 
    Werner, T., Kraus, S., Read, A. & Zollett, E. Fishing techniques to reduce the bycatch of threatened marine animals. Mar. Technol. Soc. J. 40, 50–68 (2006).Article 

    Google Scholar 
    Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish Biol. Fish. 27, 881–908 (2017).Article 

    Google Scholar 
    Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49 (2005).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS ONE 9, e84499 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juan-Jorda, M., Murua, H., Arrizabalaga, H., Dulvy, N. & Restrepo, V. Report card on ecosystem-based fisheries management in tuna regional fisheries management organizations. Fish Fish. 19, 321–339 (2018).Article 

    Google Scholar 
    ACAP. Review and best practice advice for reducing the impact of pelagic longline fisheries on seabirds. Agreement on the Conservation of Albatrosses and Petrels, Hobart, Australia (2019).Crespo, P. & Crawford, R. Bycatch and the Marine Stewardship Council (MSC): A Review of the Efficacy of the MSC Certification Scheme in Tackling the Bycatch of Non-target Species (Birdlife International, 2019).
    Google Scholar 
    Nakano, H., Okazaki, M. & Okamoto, H. Analysis of catch depth by species for tuna longline fishery based on catch by branch lines. Bull. Nat. Res. Inst. Far Seas Fish. 34, 43–62 (1997).
    Google Scholar 
    Musyl, M. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).
    Google Scholar 
    Gabr, M. & El-Haweet, A. Pelagic longline fishery for albacore in the Mediterranean Sea off Egypt. Turk. J. Fish. Aquat. Sci. 12, 735–741 (2012).Article 

    Google Scholar 
    MEC. Marine Stewardship Council Public Certification Report. French Polynesia Albacore and Yellowfin Longline Fishery. ME Certification Ltd., Lymington, UK (2018).Gilman, E. et al. Robbing Peter to pay Paul: Replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    SCS. Tri Marine Atlantic albacore (Thunnus alalunga) Longline Fishery. MSC Fishery Assessment Report. SCS Global Services, Emeryville, USA (2022).Gilman, E. et al. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: A global meta-analytic synthesis. Sci. Rep. https://doi.org/10.1038/s41598-022-21976-w (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    WCPFC. Conservation and Management Measure to Mitigate the Impact of Fishing for Highly Migratory Fish Stocks on Seabirds. CMM 2018-03. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2018).IATTC. Resolution to Mitigate the Impact on Seabirds of Fishing for Species Covered by the IATTC. Resolution C-11-02. Inter-American Tropical Tuna Commission, La Jolla, USA (2011).Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).Article 

    Google Scholar 
    Huang, H. Incidental catch of seabirds and sea turtles by Taiwanese longline fleets in the Pacific Ocean. Fish. Res. 170, 179–189 (2015).Article 

    Google Scholar 
    Jimenez, S. et al. Towards mitigation of seabird bycatch: Large-scale effectiveness of night setting and tori lines across multiple pelagic longline fleets. Bio. Cons. 247, 108642 (2020).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2022–1. Online resource www.iucnredlist.org. ISSN 2307–8235. International Union for the Conservation of Nature, Gland, Switzerland (2022).Gilman, E., Castejon, V., Loganimoce, E. & Chaloupka, M. Capability of a pilot fisheries electronic monitoring system to meet scientific and compliance monitoring objectives. Mar. Policy 113, 103792 (2020).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M. & Sieben, C. Ecological risk assessment of a data-limited fishery using an ensemble of approaches. Mar. Policy 133, 104752 (2021).Article 

    Google Scholar 
    WPRFMC. Appendix 5. Fact Sheets on Seabird Bycatch Mitigation Methods for Pelagic Longline Fisheries. Report of the Workshop to Review Seabird Bycatch Mitigation Measures for Hawaii’s Pelagic Longline Fisheries. ISBN: 978–1–944827–37–3. Western Pacific Regional Fishery Management Council, Honolulu (2019).Melvin, E., Dietrich, K., Suryan, R. & Fitzgerald, S. Lessons from seabird conservation in Alaskan longline fisheries. Cons. Biol. 33, 842–852 (2019).Article 

    Google Scholar 
    Ward, P. & Myers, R. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat. Sci. 62, 1130–1142 (2005).Article 

    Google Scholar 
    Rice, P., Goodyear, C., Prince, E., Snodgrass, D. & Serafy, J. Use of catenary geometry to estimate hook depth during near-surface pelagic longline fishing: Theory versus practice. N. Am. J. Fish. Manag. 27, 1148–1161 (2007).Article 

    Google Scholar 
    Zhou, C. & Brothers, N. Interaction frequency of seabirds with longline fisheries: Risk factors and implications for management. ICES J. Mar. Sci. 78, 1278–1287 (2021).Article 

    Google Scholar 
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).Article 

    Google Scholar 
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behavior of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).Article 

    Google Scholar 
    Williams, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean. Deep -Sea Res. II 113, 154–169 (2015).Punt, A., Butterworth, D., de Moor, C., De Oliveira, J. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).Article 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).Fahrmeir, L. & Lang, S. Bayesian inference for generalised additive mixed models based on Markov random field priors. Appl. Stat. 50, 201–220 (2001).
    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Fávero, L., Hair, J., Souza, R., Albergaria, M. & Brugni, T. Zero-inflated generalized linear mixed models: a better way to understand data relationships. Mathematics 9, 1100 (2021).Article 

    Google Scholar 
    Gilman, E. et al. Tori lines mitigate seabird bycatch in a pelagic longline fishery. Rev. Fish Biol. Fish. 31, 653–666 (2021).Article 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 
    ADS 

    Google Scholar 
    Yau, K., Wang, K. & Lee, A. Zero-Inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Congdon, P. Applied Bayesian Modelling. Wiley and Sons Ltd, UK. (2003).Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).Article 
    PubMed 

    Google Scholar 
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: an improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).Article 
    PubMed 

    Google Scholar 
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Lenth R (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans More

  • in

    Environmental variables and machine learning models to predict cetacean abundance in the Central-eastern Mediterranean Sea

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. & Kent, J. M. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cuttelod, A., García, V., Abdul Malak, D., Temple, H. & Katariya, V. The Mediterranean: A biodiversity hotspot under threat. In Wildl. a Chang. World an Anal. 2008 IUCN Red List Threat. Species 89–101 (2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5, e11842–e11842 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).Article 

    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).Article 
    PubMed 

    Google Scholar 
    Tsirintanis, K. et al. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquatic Invasions, 17(3), 308–352 (2022).Article 

    Google Scholar 
    Sanderson, C. E. & Alexander, K. A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 26, 4284–4301 (2020).Article 
    PubMed 

    Google Scholar 
    EEC, 1992. European Commission. In EU Council Directive 92/43/EEC on the Conservationof Natural Habitats and of Wild Fauna and Flora. Orkesterjournalen L 7–50 206 (1992).Bearzi, G. Interactions between cetacean and fisheries in the Mediterranean Sea. In: G. Notarbartolo di Sciara (Ed.), Cetaceans of the Mediterranean and Black Seas: state of knowledge and conservation strategies. A report to the ACCOBAMS Secretariat, Monaco, 9, 20 (2002). Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, Whales and Porpoises : 2002–2010 Conservation Action Plan for the world’s Cetaceans (2003).Dolman, S., Evans, P., Ritter, F., Simmonds, M. & Swabe, J. Implications of new technical measures regulation for cetacean bycatch in European waters. Mar. Policy 124, 1043 (2020).
    Google Scholar 
    Carlucci, R. et al. Managing multiple pressures for cetaceans’ conservation with an Ecosystem-Based Marine Spatial Planning approach. J. Environ. Manage. 287, 112240 (2021).Article 
    PubMed 

    Google Scholar 
    Carlucci, R. et al. Assessment of cetacean–fishery interactions in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea). Rev. Fish Biol. Fish. 31, 135–156 (2020).Article 

    Google Scholar 
    Fossi, C. & Lauriano, G. Impacts of shipping on the biodiversity of large marine vertebrates: Persistent organic pollutants, sewage and debris. Marit. Traffic Eff. Biodivers. Mediterr. Sea Rev Impacts Prior. Areas Mitig. Meas. 3, 65–73 (2008).
    Google Scholar 
    Cardellicchio, N. Persistent contaminants in dolphins: An indication of chemical pollution in the mediterranean sea. Water Sci. Technol. 32, 331–340 (1995).Article 
    CAS 

    Google Scholar 
    Fossi, M. C., Panti, C., Baini, M. & Lavers, J. L. A review of plastic-associated pressures: Cetaceans of the Mediterranean Sea and Eastern Australian Shearwaters as case studies. Front. Mar. Sci. 5, 125 (2018).Article 

    Google Scholar 
    Marsili, L., Jiménez, B. & Borrell, A. Persistent Organic Pollutants in Cetaceans Living in a Hotspot Area (Elsevier, 2018).Book 

    Google Scholar 
    Dolman, S. J., Evans, P. G. H., Notarbartolo-di-Sciara, G. & Frisch, H. Active sonar, beaked whales and European regional policy. Mar. Pollut. Bull. 63, 27–34 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    di Sciara, G. N. et al. Place-based approaches to marine mammal conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 85–100 (2016).Article 

    Google Scholar 
    Holcer, D., Fortuna, C. M., Mackelworth, P., Cebrian, D. & Requena Moreno, S. Adriatic Sea: Important Areas for Conservation of Cetaceans, Sea Turtles and Giant Devil Rays (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Carlucci, R., Ricci, P., Cipriano, G. & Fanizza, C. Abundance, activity and critical habitat of the striped dolphin Stenella coeruleoalba in the Gulf of Taranto (northern Ionian Sea, central Mediterranean Sea). Aquat. Conserv. Freshw. Ecosyst. 28, 324–336 (2018).Article 

    Google Scholar 
    Carlucci, R. et al. Random Forest population modelling of striped and common-bottlenose dolphins in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Estuar. Coast. Shelf Sci. 204, 177–192 (2018).Article 

    Google Scholar 
    Arcangeli, A., Campana, I. & Bologna, M. A. Influence of seasonality on cetacean diversity, abundance, distribution and habitat use in the western Mediterranean Sea: Implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 995–1010 (2017).Article 

    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for Management. Deep. Res. Part II-Top. Stud. Oceanogr. 141, 41–58 (2017).Article 

    Google Scholar 
    Mannocci, L. et al. Assessing cetacean surveys throughout the Mediterranean Sea: A gap analysis in environmental space. Sci. Rep. 8, 1 (2018).Article 
    CAS 

    Google Scholar 
    Panigada, S. et al. Estimates of Abundance and Distribution of Cetaceans, Marine Mega-Fauna and Marine Litter in the Mediterranean Sea from 2018–2019 surveys. ACCOBAMS vol. ACCOBAMS S (2021).Paiu, R.-M. et al. Estimates of abundance and distribution of cetaceans in the Black Sea from 2019 surveys. ACCOBAMS 54, 45 (2021).
    Google Scholar 
    Azzolin, M. et al. Spatial distribution modelling of striped dolphin (Stenella coeruleoalba) at different geographical scales within the EU Adriatic and Ionian Sea Region, central-eastern Mediterranean Sea. Aquat. Conserv. Freshw. Ecosyst. 30, 1194–1207 (2020).Article 

    Google Scholar 
    Renò, V. et al. A SIFT-based software system for the photo-identification of the Risso’s dolphin. Ecol. Inform. 50, 95–101 (2019).Article 

    Google Scholar 
    Maglietta, R. et al. DolFin: an innovative digital platform for studying Risso’s dolphins in the Northern Ionian Sea (North-eastern Central Mediterranean). Sci. Rep. 8, 17185 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. 8, 96 (2021).Article 

    Google Scholar 
    Fontaine, M. C. et al. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data. Proc. Natl. Acad. Sci. 109, E2569–E2576 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alter, S. E., Rynes, E. & Palumbi, S. R. DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc. Natl. Acad. Sci. 104, 15162–15167 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chavez-Rosales, S., Palka, D. L., Garrison, L. P. & Josephson, E. A. Environmental predictors of habitat suitability and occurrence of cetaceans in the western North Atlantic Ocean. Sci. Rep. 9, 5833 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckland, S. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling: Estimating Abundance of Biological Populations (OUP Oxford, 2004).MATH 

    Google Scholar 
    Laake, J. S. T., Buckland, E. A., Rexstad, T. A., Marques, C. S. & Oedekoven, F. Distance sampling: Methods and applications. Biometrics 72, 1389–1390 (2016).Article 

    Google Scholar 
    Hammond, P. S., Mizroch, S. A. & Donovan, G. P. Individual recognition of cetaceans: Use of photo-identification and other techniques to estimate population parameters. In Incorporating the Proceedings of the Symposium and Workshop on Individual Recognition and the Estimation of Cetacean Population Parameters (1990).Sandercock, B. K. Handbook of capture-recapture analysis. Biometrics 62, 1276–1277 (2006).Article 

    Google Scholar 
    Hammond, P. S. Mark-Recapture. In Encyclopedia of Marine Mammals (Third Edition) (eds Würsig, B. et al.) 580–584 (Academic Press, 2018).Pless, E., Saarman, N. P., Powell, J. R., Caccone, A. & Amatulli, G. A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc. Natl. Acad. Sci. 118, 9 (2021).Article 

    Google Scholar 
    Belanger, C. L. et al. Global environmental predictors of benthic marine biogeographic structure. Proc. Natl. Acad. Sci. 109, 14046–14051 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. USA 114, 12202–12207 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010 (2013).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.) 43, 1261–1277 (2020).Article 

    Google Scholar 
    Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Taylor & Francis, 1990).MATH 

    Google Scholar 
    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).MATH 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Vapnik, N.V. Statistical Learning Theory (1998).Culley, C., Vijayakumar, S., Zampieri, G. & Angione, C. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. 117, 18869–18879 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, B. M. et al. Robust predictions of specialized metabolism genes through machine learning. Proc. Natl. Acad. Sci. 116, 2344–2353 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renò, V. et al. Combined color semantics and deep learning for the automatic detection of dolphin dorsal fins. Electronics 9, 75 (2020).Article 

    Google Scholar 
    Maglietta, R., Milella, A., Caccia, M. & Bruzzone, G. A vision-based system for robotic inspection of marine vessels. Signal Image Video Process. 12, 471–478 (2018).Article 

    Google Scholar 
    Maglietta, R. et al. Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Anal. Appl. 19, 579–591 (2016).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Ancona, N., Maglietta, R. & Stella, E. Data representations and generalization error in kernel based learning machines. Pattern Recognit. 39, 1588–1603 (2006).Article 
    MATH 

    Google Scholar 
    Martín, B., González-Arias, J. & Vicente-Virseda, J. A. Machine learning as a successful approach for predicting complex spatial temporal patterns in animal species abundance. Anim. Biodivers. Conserv. 2021, 25 (2021).
    Google Scholar 
    Dimauro, G. et al. A novel approach for biofilm detection based on a convolutional neural network. Electronics 9, 88 (2020).Article 

    Google Scholar 
    Inglese, P. et al. Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol. Phys. Med. 31(8), 1085–1091 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maglietta, R. et al. Convolutional neural networks for Risso’s Dolphins identification. IEEE Access 8, 80195–80206 (2020).Article 

    Google Scholar 
    Conference on Biological Diversity—Nagoya 2010 European Parliament resolution of 7 October 2010 on the EU strategic objectives for the 10th Meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD), to be held in Nagoya (2010).EU. In Commission Decision (EU) 2017/848 of 17 May 2017 Laying Down Criteria and Methodological Standards on Good Environmental Status of Marine Waters and Specifications and Standardised Methods for Monitoring and Assessment, and Repealing Decision 2 (2017).European Commission. Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. In Off. J. Eur. Union 2014, L 257, 135; MSFD (2008/56/EC) (2014).Muckenhirn, A., Baş, A. A. & Richard, F.-J. Assessing the influence of environmental and physiographic parameters on common bottlenose dolphin (Tusiops truncatus) distribution in the southern Adriatic Sea. In Proc. 1st Int. Electron. Conf. Biol. Divers. Ecol. Evol. (2021).Correia, A. et al. Predicting Cetacean Distributions in the Eastern North Atlantic to Support Marine Management. Front. Mar. Sci. 8, 256 (2021).Article 

    Google Scholar 
    Redfern, J. V., Barlow, J., Ballance, L. T., Gerrodette, T. & Becker, E. A. Absence of scale dependence in dolphin-habitat models for the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 363, 1–14 (2008).Article 

    Google Scholar 
    Kruse, S. L. Aspects of the Biology, Ecology, and Behavior of Risso’s dolphins (Grampus griseus) off the California Coast (University of California, Santa Cruz, 1989).Kruse, S., Caldwell, D. K., Caldwell, M. C., Ridgway, S. H. & Harrison, R. Risso’s dolphin Grampus griseus (G. Cuvier, 1812). Handb. Mar. Mamm. Sec. B Dolphins Porpoises 6, 12 (1999).
    Google Scholar 
    Gómez-de-Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. UK 88, 1185–1192 (2008).Article 

    Google Scholar 
    Pitchford, J. et al. Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus) distributions in the Mississippi Sound: Seasonal spatial distributions of bottlenose dolphins. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 289–306 (2015).Article 

    Google Scholar 
    La Manna, G., Ronchetti, F. & Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 130, 317–327 (2016).Article 

    Google Scholar 
    Becker, E. A. et al. Predicting cetacean abundance and distribution in a changing climate. Divers. Distrib. 25, 626–643 (2019).Article 

    Google Scholar 
    Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Spec. Res. 4, 309–331 (2008).Article 

    Google Scholar 
    Mannocci, L. et al. Predicting cetacean and seabird habitats across a productivity gradient in the South Pacific gyre. Prog. Oceanogr. 120, 383–398 (2014).Article 

    Google Scholar 
    Carretta, J. V. Estimates of Marine Mammal, Sea Turtle, and Seabird Bycatch in the California Large-Mesh Drift Gillnet Fishery: 1990–2019 U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-654.
    https://doi.org/10.25923/7emj-za90 (2021).Rustam, F. et al. A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE 16, e0245909 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Addabbo, A. & Maglietta, R. Parallel selective sampling method for imbalanced and large data classification. Pattern Recognit. Lett. 62, 61–67 (2015).Article 

    Google Scholar 
    Dimauro, G. et al. An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset. Artif. Intell. Med. 136, 102477 (2023).Article 
    PubMed 

    Google Scholar 
    Spooner, A. et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10, 20410 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becker, E. A. et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol. Evol. 10, 5759–5784 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kosicki, J. Z. Generalised additive models and random forest approach as effective methods for predictive species density and functional species richness. Environ. Ecol. Stat. 27, 273–292 (2020).Article 
    CAS 

    Google Scholar 
    Barreto, J. et al. Drone-monitoring: Improving the detectability of threatened marine megafauna. Drones 5, 14 (2021).Article 

    Google Scholar 
    Sarr, J.-M.A. et al. Complex data labeling with deep learning methods: Lessons from fisheries acoustics. ISA Trans. 109, 113–125 (2021).Article 
    PubMed 

    Google Scholar 
    Capezzuto, F. et al. The bathyal benthopelagic fauna in the north-western Ionian Sea: Structure, patterns and interactions. Chem. Ecol. 26, 199–217 (2010).Article 

    Google Scholar 
    Harris, P. & Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 285, 69–86 (2011).Article 

    Google Scholar 
    Pescatore, T. & Senatore, M. R. A comparison between a present.day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennine (Italy). Spec. Publ. 1986, 169–182 (1986).
    Google Scholar 
    Rossi, S. & Gabbianelli, G. Geomorfologia del Golfo di Taranto. Ital. J. Geosci. 97, 423–437 (1978).
    Google Scholar 
    Federico, I. et al. Observational evidence of the basin-wide gyre reversal in the Gulf of Taranto. Geophys. Res. Lett. 47, 1030 (2020).Article 

    Google Scholar 
    Carlucci, R., Battista-Capezzuto, F., Serena, F. & Sion, L. Occurrence of the basking shark Cetorhinus maximus (Gunnerus, 1765) (Lamniformes: Cetorhinidae) in the central-eastern Mediterranean Sea. Ital. J. Zool. 81, 280–286 (2014).Article 

    Google Scholar 
    Matarrese, R., Chiaradia, M. T., Tijani, K., Morea, A. & Carlucci, R. Chlorophyll A multi-temporal analysis in coastal waters with MODIS data. Eur. J. Remote Sens. 2011, 39–48 (2011).
    Google Scholar 
    Civitarese, G., Gačić, M., Lipizer, M. & Eusebi-Borzelli, G. L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 7, 3987–3997 (2010).Article 
    CAS 

    Google Scholar 
    Pinardi, N. et al. Marine rapid environmental assessment in the hack{newline} Gulf of Taranto: A multiscale approach. Nat. Hazards Earth Syst. Sci. 16, 2623–2639 (2016).Article 

    Google Scholar 
    Ciancia, E. et al. Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data. Cont. Shelf Res. 155, 34–44 (2018).Article 

    Google Scholar 
    Trotta, F., Pinardi, N., Fenu, E., Grandi, A. & Lyubartsev, V. Multi-nest high-resolution model of submesoscale circulation features in the Gulf of Taranto. Ocean Dyn. 67, 1609–1625 (2017).Article 

    Google Scholar 
    Federico, I. et al. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci. 17, 45–59 (2017).Article 

    Google Scholar 
    Trotta, F. et al. A relocatable ocean modeling platform for downscaling to shelf-coastal areas to support disaster risk reduction. Front. Mar. Sci. 8, 103 (2021).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).Article 

    Google Scholar 
    Cushman-Roisin, B., Gacić, M., Poulain, P. M. & Artegiani, A. Physical Oceanography of the Adriatic Sea (2001).Escudier, R. et al. Mediterranean sea production centre MEDSEA_MULTIYEAR_PHY_006_004 (2021).Clementi, E. et al. Mediterranean sea physical analysis and forecast (CMEMS MED-Currents, EAS6 system) (Version 1) set. In Copernicus Monitoring Environment Marine Service (CMEMS) (2021).Madec, G. NEMO Ocean Engine (2008).Dobricic, S. & Nadia, P. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22, 89–105 (2008).Article 

    Google Scholar 
    Roquet, F., Madec, G., McDougall, T. J. & Barker, P. M. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Model 90, 29–43 (2015).Article 

    Google Scholar 
    IOC, SCOR & IAPSO. In The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties 196 (2010).MEDSEA_MULTIYEAR_BGC_006_008 (2020).Mediterranean Sea Monthly and Daily Reprocessed Surface Chlorophyll Concentration from Multi Satellite observations + SeaWiFS daily climatology (2020).Volpe, G. et al. Mediterranean ocean colour Level 3 operational multi-sensor processing. Ocean Sci. 25, 1527–1532 (2019).
    Google Scholar 
    Berthon, J.-F. & Zibordi, G. Bio-optical relationships for the northern Adriatic Sea. Int. J. Remote Sens. 25, 1527–1532 (2004).Article 

    Google Scholar 
    De Dominicis, M. et al. A relocatable ocean model in support of environmental emergencies. Ocean Dyn. 64, 667–688 (2014).Article 

    Google Scholar 
    Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wu, J. et al. Hyperparameter optimization for machine learning models based on bayesian optimizationb. J. Electron. Sci. Technol. 17, 26–40 (2019).
    Google Scholar 
    Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316 (2020).Article 

    Google Scholar  More

  • in

    Life cycle of the cold-water coral Caryophyllia huinayensis

    The solitary cold-water scleractinian C. huinayensis is described here as a brooder. Although reproduction in scleractinian CWCs is still poorly known, no other temperate species has yet been described to brood larvae. The solitary temperate CWC D. dianthus12, as well as the temperate colonial CWC D. pertusum8,10,38, M. oculata8,10 and O. varicosa9 reproduce by broadcast spawning. Brooding has only been reported in subpolar and polar solitary CWCs from the Southern Ocean17,18.Although quantitative data on the number of larvae released in the four Southern Ocean brooders are lacking, a potential number of larvae released per polyp can be inferred from their maximum fecundity (Table 1). C. huinayensis appears to be in the lower range of larvae production (6.5 ± 11.4 month-1 larvae), when compared its larval size (750–1080 µm length) with Balanophyllia malouinensis larvae ( > 600 µm, Table 1).Table 1 Larval features of scleractinian CWC species.Full size tableThorson’s rule43,44 states that organisms at higher latitudes tend to produce larger and fewer offspring and are frequently brooders. However, the brooding C. huinayensis appears to defy this rule, as it occurs at mid-latitudes (36° and 48.5° S33,45). Though the phylogeography of C. huinayensis is not yet clear, six other solitary species of the genus Caryophyllia are endemic to Antarctica46, suggesting that the genus may have originated in the Southern Ocean, with the mid-latitude distribution of C. huinayensis making the downstream end dispersal via the cold Humboldt Current branching off the Southern Ocean. In our case, Thorson’s rule does not seem to be a good predictor of the macroevolutionary patterns and reproductive mode in Caryophyllia.A better explanation can be inferred from Kerr et al.47. Their phylogenetic study on scleractinians revealed that the change from spawning to brooding (or vice versa) is based on the sexuality of the corals (i.e., gonochoric or hermaphroditic) and not on latitudinal distribution. The main pathway is from gonochoric spawners to gonochoric brooders, then to hermaphroditic brooders, and finally hermaphroditic spawning, which is the dominant reproductive mode in shallow-water corals.The results of our study indicate that C. huinayensis reproduces throughout the year, albeit with large temporal variations in the number of larvae released. However, the fluctuations were not seasonal. This may be due to the fact that the aquarium for this experiment lacked external timing signals (zeitgebers) usually found in the field, i.e., there were no fluctuations e.g., in water temperature, food frequency, food quality, or salinity, which might otherwise have synchronized the corals’ internal clock. Although, it is not yet known if the local C. huinayensis population exhibits seasonality in their larval release, the lack of larvae in April 2021 could also be due to poor internal fertilisation success based on the quality and/or quantity of sperm released (which was never observed).If there is no seasonal release of larvae from the natural coral population, this may indicate that rapid recolonisation is possible throughout the year following a disturbance. Substrate alterations are usually observed in the Patagonian fjord region, where strong physical disturbances such as landslides occur48, due to precipitation and earthquakes49. Also, hypoxia events ( More

  • in

    Adélie penguins north and east of the ‘Adélie gap’ continue to thrive in the face of dramatic declines elsewhere in the Antarctic Peninsula region

    Fraser, W., Trivelpiece, W., Ainley, D. & Trivelpiece, S. Increases in Antarctic penguin populations: Reduced competition with whales or a loss of sea ice due to environmental warming?. Polar Biol. 11, 525–531 (1992).Article 

    Google Scholar 
    Trivelpiece, W. et al. Variability in krill biomass links harvesting and climate warming to penguin population changes in Antarctica. PNAS 108, 7625–7628 (2011).Article 
    CAS 

    Google Scholar 
    Fraser, W. & Hofmann, E. A predator’s perspective on causal links between climate change, physical forcing and ecosystem response. Mar. Ecol. Prog. Ser. 265, 1–15 (2003).Article 

    Google Scholar 
    Hinke, J., Salwicka, K., Trivelpiece, S., Watters, G. & Trivelpiece, W. Divergent responses of Pygoscelis penguins reveal common environmental driver. Oecologia 153, 845–855 (2007).Article 

    Google Scholar 
    Poncet, S. & Poncet, J. Censuses of penguin populations of the Antarctic Peninsula, 1983–87. Br. Antarct. Surv. Bull. 77, 109–129 (1987).
    Google Scholar 
    Fraser, W. R. & Trivelpiece, W. Z. Factors controlling the distribution of seabirds: Winter-summer heterogeneity in the distribution of Adélie penguin populations. Found. For. Ecol. Res. West Antarct. Penins. 70, 257–272 (1996).Article 

    Google Scholar 
    Humphries, G. R. W. et al. Mapping application for penguin populations and projected dynamics (MAPPPD): Data and tools for dynamic management and decision support. Polar Rec. 53, 160–166 (2017).Article 

    Google Scholar 
    Lynch, H., Naveen, R., Trathan, P. N. & Fagan, W. F. Spatially integrated assessment reveals widespread changes in penguin populations on the Antarctic Peninsula. Ecology 93, 1367–1377 (2012).Article 

    Google Scholar 
    Elliot, D. H., Watts, D. R., Alley, R. B. & Gracanin, T. M. Bird and seal observations at Joinville Island and offshore islands. Antarct. J. USA 13, 154–155 (1978).
    Google Scholar 
    Bender, N. A., Crosbie, K. & Lynch, H. Patterns of tourism in the Antarctic Peninsula region: A twenty-year re-analysis. Antarct. Sci. 28, 194–203 (2016).Article 

    Google Scholar 
    Lynch, H. J. & Schwaller, M. R. Mapping the abundance and distribution of Adélie penguins using Landsat-7: First steps towards an integrated multi-sensor pipeline for tracking populations at the continental scale. PLoS ONE 9, 1–8 (2014).Article 

    Google Scholar 
    Lynch, H. J. & LaRue, M. A. First global census of the Adélie penguin. Auk 131, 457–466 (2014).Article 

    Google Scholar 
    Parkinson, C. L. & Cavalieri, D. J. Antarctic sea ice variability and trends, 1979–2010. Cryosphere 6, 871–880 (2012).Article 

    Google Scholar 
    Parkinson, C. L. Trends in the length of the Southern Ocean sea-ice season, 1979–99. Ann. Glaciol. 34, 435–440 (2002).Article 

    Google Scholar 
    Jena, B. et al. Record low sea ice extent in the Weddell Sea, Antarctica in April/May 2019 driven by intense and explosive polar cyclones. NPJ Clim. Atmos. Sci. 5, 1–15 (2022).Article 

    Google Scholar 
    Kumar, A., Yadav, J. & Mohan, R. Seasonal sea-ice variability and its trend in the Weddell Sea sector of West Antarctica. Environ. Res. Lett. 16, 024046 (2021).
    Google Scholar 
    Strass, V. H., Rohardt, G., Kanzow, T., Hoppema, M. & Boebel, O. Multidecadal warming and density loss in the deep Weddell Sea. Antarct. J. Clim. 33, 9863–9881 (2020).Article 

    Google Scholar 
    Morioka, Y. & Behera, S. K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res. Ocean 126, e2020JC017036 (2021).Article 

    Google Scholar 
    Veytia, D. et al. Circumpolar projections of Antarctic krill growth potential. Nat. Clim. Chang. 10, 568–575 (2020).Article 

    Google Scholar 
    Humphries, G. R. et al. Predicting the future is hard and other lessons from a population time series data science competition. Ecol. Inf. 48, 1–11 (2018).Article 

    Google Scholar 
    Borowicz, A. et al. A multi-modal survey of Adèlie penguin megacolonies reveals the Danger Islands as a seabird hotspot. Sci. Rep. 8, 3926 (2018).Article 

    Google Scholar 
    Cimino, M., Lynch, H., Saba, V. & Oliver, M. Projected asymmetric response of Adèlie penguins to Antarctic climate change. Sci. Rep. 6, 28785 (2016).Article 
    CAS 

    Google Scholar 
    McClintock, J., Silva-Rodriguez, P. & Fraser, W. Southerly breeding in gentoo penguins for the eastern Antarctic Peninsula: Further evidence for unprecedented climate change. Antarct. Sci. 22, 285–286 (2010).Article 

    Google Scholar 
    Lynch, H. J., Naveen, R. & Fagan, W. F. Censuses of penguin, blue-eyed shag Phalacrocorax atriceps and southern giant petrel Macronectes giganteus populations on the Antarctic Peninsula, 2001–2007. Mar. Ornithol. 36, 83–97 (2008).
    Google Scholar 
    Dunn, M. J. et al. Population size and decadal trends of three penguin species nesting at Signy Island, South Orkney Islands. PLoS ONE 11, e0164025 (2016).Article 

    Google Scholar 
    Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-1, Priority Areas for Conservation. SC-CAMLR- XXXVI/17. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Delegations of Argentina and Chile. Domain 1 Marine Protected Area Preliminary Proposal Part A-2, Priority Areas for Conservation. SC-CAMLR- XXXVI/18. Retrieved from https://meetings.ccamlr.org/en/sc-camlr-xxxvi/18 (2018).Teschke, K. et al. Planning marine protected areas under the CCAMLR regime—the case of the Weddell Sea (Antarctica). Mar. Policy 124, 104370 (2021).Article 

    Google Scholar 
    Herman, R. et al. Update on the global abundance and distribution of breeding Gentoo Penguins (Pygoscelis papua). Polar Biol. 43, 1947–1956 (2020).Article 

    Google Scholar 
    Korczak-Abshire, M., Hinke, J. T., Milinevsky, G., Juáres, M. A. & Watters, G. M. Coastal regions of the northern Antarctic Peninsula are key for gentoo populations. Biol. Lett. 17, 20200708 (2021).Article 

    Google Scholar 
    Miller, A. K., Karnovsky, N. J. & Trivelpiece, W. Z. Flexible foraging strategies of gentoo penguins Pygoscelis papua over 5 years in the South Shetland Islands. Antarct. Mar. Biol. 156, 2527–2537 (2009).Article 

    Google Scholar 
    Herman, R. W. et al. Seasonal consistency and individual variation in foraging strategies differ among and within Pygoscelis penguin species in the Antarctic Peninsula region. Mar. Biol. 164, 1–13 (2017).Article 
    CAS 

    Google Scholar 
    Cimino, M. A., Fraser, W. R., Irwin, A. J. & Oliver, M. J. Satellite data identify decadal trends in the quality of Pygoscelis penguin chick-rearing habitat. Glob. Chang. Biol. 19, 136–148 (2013).Article 

    Google Scholar 
    Black, C. E. A comprehensive review of the phenology of Pygoscelis penguins. Polar Biol. 39, 405–432 (2016).Article 

    Google Scholar 
    Croxall, J. P. & Kirkwood, E. The Distribution of Penguins on the Antarctic Peninsula and Islands of the Scotia Sea (British Antarctic Survey, Cambridge, UK, 1979).
    Google Scholar 
    Naveen, R. et al. Censuses of penguin, blue-eyed shag, and southern giant petrel populations in the Antarctic Peninsula region, 1994–2000. Polar Rec. 36, 323–334 (2000).Article 

    Google Scholar 
    Woehler,E. J. The Distribution and Abundance of Antarctic and Subantarctic Penguins. In SCAR Comm. on Antarctic Res. Bird Biol. Subcomm. (Cambridge University Press, 1993).Naveen, R., Lynch, H. J., Forrest, S., Mueller, T. & Polito, M. First direct, site-wide penguin survey at Deception Island, Antarctica, suggests significant declines in breeding chinstrap penguins. Polar Biol. 35, 1879–1888 (2012).
    Google Scholar 
    Hallermann, N., Morgenthal, G. & Rodehorst, V. Unmanned aerial systems (UAS)–case studies of vision based monitoring of ageing structures. In Int. Symp. Non-Destructive Test. Civ. Eng. (NDT-CE) 15–17 (2015).Fonstad, M. A., Dietrich, J. T., Courville, B. C., Jensen, J. L. & Carbonneau, P. E. Topographic structure from motion: A new development in photogrammetric measurement. Earth Surf. Process. Landf. 38, 421–430 (2013).Article 

    Google Scholar 
    Cavalieri, D. J., Germain, K. M. S. & Swift, C. T. Reduction of weather effects in the calculation of sea-ice concentration with the DMSP SSM/I. J. Glaciol. 41, 455–464 (1995).Article 

    Google Scholar 
    Fetterer, F., Knowles, K., Meier, W., Savoie, M. & Windnagel, A. Updated daily Sea Ice Index, Version 3. In Boulder, Colo.USA. NSIDC: Natl. Snow Ice Data Cent (2017).Iles, D. T. et al. Sea ice predicts long-term trends in Adélie penguin population growth, but not annual fluctuations: Results from a range-wide multiscale analysis. Glob. Change Biol. 26, 3788–3798 (2020).Article 

    Google Scholar 
    Plummer, M., Stukalov, A. & Denwood, M. rjags: Bayesian graphical models using mcmc. R package version 4. https://rdrr.io/cran/rjags/ (2016).Plummer, M. et al. Jags: A program for analysis of bayesian graphical models using gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, vol. 124, 1–10 (Vienna, Austria., 2003).Brooks, S. P. & Gelman, A. General methods for monitoring convergence of iterative simulations. J. Comput. Graph. Stat. 7, 434–455 (1998).MathSciNet 

    Google Scholar 
    Youngflesh, C. MCMCvis: Tools to visualize, manipulate, and summarize MCMC output. J. Open Sourc. Softw. 3, 640 (2018).Article 

    Google Scholar 
    Wickham, H. ggplot2. Wiley Interdiscipl. Rev. Comput. Stat. 3, 180–185 (2011).Article 

    Google Scholar 
    Kellner,K. jagsUI: A wrapper around rjags to streamline JAGS analyses. R package version 1, 2015 (2015).Herman, R. & Lynch, H. Age-structured model reveals prolonged immigration is key for colony establishment in Gentoo Penguins. Ornithol. Appl. 124, duac04 (2022).
    Google Scholar 
    Polito, M. J., Lynch, H. J., Naveen, R. & Emslie, S. D. Stable isotopes reveal regional heterogeneity in the pre-breeding distribution and diets of sympatrically breeding Pygoscelis spp. penguins. Mar. Ecol. Prog. Ser. 421, 265–277 (2011).Article 

    Google Scholar 
    Ballerini, T., Tavecchia, G., Olmastroni, S., Pezzo, F. & Focardi, S. Nonlinear effects of winter sea ice on the survival probabilities of Adélie penguins. Oecologia 161, 253–265 (2009).Article 

    Google Scholar 
    Wilson, P. et al. Adélie penguin population change in the pacific sector of Antarctica: Relation to sea-ice extent and the Antarctic Circumpolar Current. Mar. Ecol. Prog. Ser. 213, 301–309 (2001).Article 

    Google Scholar 
    Wienecke, B. et al. Adélie penguin foraging behaviour and krill abundance along the Wilkes and Adélie land coasts, Antarctica. Deep. Sea Res. Part II Top. Stud. Oceanogr. 47, 2573–2587 (2000).Article 

    Google Scholar 
    Ainley, D. G. The Adélie Penguin: Bellwether of Climate Change (Columbia University Press, 2002).Book 

    Google Scholar 
    Cherel, Y. Isotopic niches of emperor and Adélie penguins in Adélie Land. Antarct. Mar. Biol. 154, 813–821 (2008).Article 

    Google Scholar 
    Ainley, D. G. et al. Post-fledging survival of Adélie penguins at multiple colonies: Chicks raised on fish do well. Mar. Ecol. Prog. Ser. 601, 239–251 (2018).Article 

    Google Scholar 
    Ashford, J., Zane, L., Torres, J. J., La Mesa, M. & Simms, A. R. Population structure and life history connectivity of Antarctic silverfish (Pleuragramma antarctica) in the Southern Ocean ecosystem. In The Antarctic Silverfish: A Keystone Species in a Changing Ecosystem 193–234 (Springer, 2017).Pakhomov, E. & Perissinotto, R. Antarctic neritic krill Euphausia crystallorophias: Spatio-temporal distribution, growth and grazing rates. Deep. Sea Res. Part I Oceanogr. Res. Pap. 43, 59–87 (1996).Article 

    Google Scholar 
    La Mesa, M. & Eastman, J. T. Antarctic silverfish: Life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13, 241–266 (2012).Article 

    Google Scholar 
    Davis, L. B., Hofmann, E. E., Klinck, J. M., Piñones, A. & Dinniman, M. S. Distributions of krill and Antarctic silverfish and correlations with environmental variables in the western Ross Sea. Antarct. Mar. Ecol. Prog. Ser. 584, 45–65 (2017).Article 
    CAS 

    Google Scholar 
    Chapman, E. W., Hofmann, E. E., Patterson, D. L., Ribic, C. A. & Fraser, W. R. Marine and terrestrial factors affecting Adélie penguin Pygoscelis adeliae chick growth and recruitment off the western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 436, 273–289 (2011).Article 

    Google Scholar 
    La Mesa, M., Piñones, A., Catalano, B. & Ashford, J. Predicting early life connectivity of Antarctic silverfish, an important forage species along the Antarctic Peninsula. Fish. Oceanogr. 24, 150–161 (2015).Article 

    Google Scholar 
    La Mesa, M., Riginella, E., Mazzoldi, C. & Ashford, J. Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the Western Antarctic Peninsula. Mar. Ecol. 36, 235–245 (2015).Article 

    Google Scholar 
    Handley, J. et al. Marine important bird and biodiversity areas for penguins in Antarctica, targets for conservation action. Front. Mar. Sci. 7, 256 (2021).Article 

    Google Scholar 
    Brooks, C. et al. Workshop on identifying key biodiversity areas for the Southern Ocean using tracking data. In Tech.Rep. SC-CAMLR-41/BG/22, CCAMLR (2022).Lynch, H. J., Naveen, R. & Casanovas, P. Antarctic site inventory breeding bird survey data, 1994–2013: Ecological Archives E094–243. Ecology 94, 2653–2653 (2013).Article 

    Google Scholar 
    Myrcha, A., Tatur, A. & Valle, R. D. V. Numbers of Adélie penguins breeding at Hope Bay and Seymour Island rookeries (West Antarctica) in 1985. Pol. Polar Res. 8, 411–422 (1987).
    Google Scholar 
    Montalti, D. & Soave, G. E. The birds of Seymour Island, Antarctica. Ornitol. Neotrop. 13, 267–271 (2002).
    Google Scholar 
    Perchivale, P. J. et al. Updated estimate of the Breeding Population of Adélie penguins (Pygoscelis adeliae) at Penguin Point, Marambio/Seymour Island within the proposed Weddell Sea Marine Protected Area (2022). https://www.researchsquare.com/article/rs-2117503/v1.Che-Castaldo, C. et al. Pan-Antarctic analysis aggregating spatial estimates of Adélie penguin abundance reveals robust dynamics despite stochastic noise. Nat. Commun. 8, 832 (2017).Article 

    Google Scholar 
    Hinke, J. T., Trivelpiece, S. G. & Trivelpiece, W. Z. Variable vital rates and the risk of population declines in Adélie penguins from the Antarctic Peninsula region. Ecosphere 8, e01666 (2017).Article 

    Google Scholar  More