More stories

  • in

    Muskrats as a bellwether of a drying delta

    Agent modelingThe agent model for muskrat in the delta was developed using HexSim, an agent-based ecological model that allows for spatially explicit simulation of wildlife population dynamics31,32. The HexSim agent model of muskrat incorporated the entire delta in a modeling grid containing 1717 rows of hexagons by 1760 hexagons per row, for a total of 3,021,920 hexagons. Operating on an annual time step, the model tracked up to 273,310 females annually through their life cycles from 1971 to 2017. Given the computational intensity of the model (a runtime of ~16 h per realization), the number of realizations was limited to thirty after examination of model output for the ensemble. Boxplots showed good agreement across model realizations in the timing and magnitude of population peaks, die-offs, and years of low abundance, as well as normally distributed total population size in the majority of years simulated, suggesting that the central tendencies for total population size, dispersal and productivity maps were adequately captured (Supplementary Fig. 1a).An initial population size for the delta was estimated using an observed muskrat “house” count at a well-studied site, Egg Lake. Records for 1971 show 179 houses, yielding an initial population size of ~448 females at that lake. This estimate was scaled up to a population estimate for the entire delta by accounting for the fraction of critical habitat in the delta occupied by Egg Lake in 1972 (4.88 km2 out of 651.77 km2) to yield an initial population of 59,701 females for the entire delta.Muskrat movement behaviorThe delta model was developed to account for three broad categories of spring movement behaviors for individual muskrat:(i) Local movements during spring dispersal
    To represent the spring shuffle within the home ranges of muskrat at their home lake, an “exploration event” allows every individual to search their local surroundings (up to 500 hexagons, or 1.6 km2), with the goal of establishing a home range. Individuals that succeed establish a home range and finish the movement event. Individuals that are unsuccessful at establishing a home range as a result of local movement engage in long-range dispersal, described in (ii) below. In the spring, muskrat home ranges typically shuffle within a given water body at the onset of breeding12,33. Home range adjustments are typically at the scale of several hundred meters away from previous territory13.

    (ii) Long-range spring dispersal
    For individuals that do not successfully establish a home range with local movements in (i), a long-range dispersal event occurs, and it is parametrized based on literature values for muskrat dispersal rates. Based on the highest values of muskrat emigration rates (not attributed to passive transport via flooding) of 60 km/year, we set a dispersal distance of 1000 hexagons, or about 60 km of travel34. In addition, such dispersal events are constrained by the fact that muskrat movement is more limited on land than on water. Muskrat are typically observed to move over land on the order of miles13,33,35. However, in water they have been observed to travel much further distances irrespective of current; for instance, a single muskrat was observed to travel 50 km “against the current” in 15 days34. We therefore infer that higher reported rates of emigration for muskrat are made up primarily of travel through surface water features, combined with an ability of individual muskrat to travel over land up to 3 km.
    To represent this in the model, we first used the annual water/shoreline/land maps of the delta to generate annual dispersal maps based on a dispersal metric for particular environment categories. For these maps, water and shoreline pixels received a score of 10, and land pixels received a score of zero. This yielded dispersal maps whose hexagons have values of zero when they entirely overlie land pixels, 10 when they entirely overlie water pixels, and values in the range (0,10) for shoreline regions. Then, at each step of muskrat travel along its dispersal path, the difference of the hexagon score from 10 is evaluated and added to that individual’s dispersal penalty. Land hexagons therefore have a resistance of 10, and water hexagons a resistance of 0, with shoreline regions incurring an intermediate resistance between 0 and 10. The resistance values of encountered hexagons are tracked cumulatively for each individual while it disperses. When an individual reaches a resistance threshold of 500, the individual must stop dispersing. This resistance threshold of 500 is equivalent to 3 km of overland travel. So, an individual dispersing with a path entirely over land can go 3 km per year from their prior home range, but if their dispersal is entirely through water, then there is a travel limit of 60 km in a year.
    During long-range spring dispersal, individuals follow a constrained random walk to find a suitable place to settle. When selecting the adjacent hexagon to explore, individuals prefer hexagons with values between 2 and 10 (shoreline and water hexagons) at the expense of hexagons with values between 0 and 1 (land or mostly land hexagons), and they are influenced by their prior direction of travel with autocorrelation of 50%. At the completion of their long-range dispersal, individuals repeat the local movement exploration event to search for a suitable location to settle within their newly discovered home range. Individuals that do not succeed are removed from the simulation, representing death because they did not successfully establish a home range after long-range dispersal and succumbed to predation or starvation, or representing that they have migrated out of the delta.

    (iii) Enhanced dispersal due to flooding
    In years of known, large-scale flooding in the delta (1972, 1974, 1996, 1997 and 2014), a flood dispersal event is applied to simulate the effects of flooding on muskrat dispersal. A dispersal map is applied in which all hexagons in the delta have a value of 10, such that there is no resistance penalty for movement (a resistance value of 0) and the resistance threshold described in (ii) is never reached. When determining the range of distances for dispersal of muskrat due to floodwaters, we drew on literature values. While some muskrat remain in the water and disperse during flooding, yielding emigration rates of up to 120 km/year, others find refuge in trees or on rafts that are swept into trees and move no further34,36,37. To represent this range of outcomes, the distribution of path lengths was assigned a log-normal distribution, with a mode of 10 hexagons (600 m) and a median of 100 hexagons (6 km). Due to the ability of muskrat to swim up-current over tens of kilometers, this log-normal distribution functions independently of current34. This yields a distribution in which half of affected muskrat remain within six kilometers of their home ranges, while others may move tens of kilometers away. After the flood-induced dispersal movement event is complete, individuals undertake an exploration event as defined in (i) using the habitat map for that year, which represents the habitat available for home range establishment after floodwaters have receded.
    Additional parameters for the Dispersal event are:. Repulsion from hexagons with values between 0 and 1 (land or mostly land hexagons); Attraction to hexagons with values between 2 and 10 (shoreline and water hexagons), with a Multiplier of 5; and Percent Auto-Correlation of 50% with a Trend Period of 3 hexagons.
    Source-sink mappingModel output was mapped to evaluate the spatial distribution of sources, areas of high quality habitat serving as net contributors to the total muskrat population in the delta, and sinks, areas of low quality habitat serving as net detractors from the total muskrat population in the delta38. Mapping population dynamics in this way allows us to visualize the population dynamic effects of a spatially heterogeneous landscape. The location and intensity of sources and sinks were mapped at selected years to test our hypothesis that the delta’s flood regime drives interannual changes in the spatial distribution of source-sink dynamics of the muskrat metapopulation.Productivity, defined as the total number of births minus deaths in each area, was used as a simple measure of source and sink quality on the landscape (Fig. 3)39. We mapped productivity across the delta for three pairs of years, each associated with a population increase following a flood and subsequent die-off: (1971–1972) and (1975–1976), (1996–1997) and (1998–1999), (2014–2015) and (2016–2017) (Fig. 3). The years were selected based on results of realizations from thirty model simulations (Fig. 1c). Maps show the source or sink ensemble average values over those thirty modeled realizations.Source-sink mapping was carried out in HexSim using a set of simulation processes: the patch map, individual locations updater function, and productivity report modeling framework tools, as well as the build hexmap hexagons, clip hexmap, renumber patches, and map productivity report utilities developed by Nathan Schumaker40. Once in each year of the simulation, the model’s muskrat population was sampled within areas of regular tessellations comprised of hexagonally shaped areas with radii of 5 hexagons each. This sampling was executed in the model by recording birth and death statistics within each area.Dispersal flux mappingDispersal flux, the number of individuals passing through a given location per year, was mapped as the difference in values for the two years in which genetics data were collected, 2015 and 2016 (Fig. 2b). This was done by first exporting hexagon-based dispersal flux tallies for all thirty realizations in the years 2015 and 2016. Then, the mean value of dispersal flux across all 30 realizations was calculated to produce a single average dispersal flux map for each year. Finally, the difference between these two maps was calculated to yield the difference map showing locations of increased, decreased, or unchanged dispersal flux shown in Fig. 2b.Genetic analysisSample collectionMuskrat tissue samples for this study consisted of More

  • in

    Contrasting responses of above- and belowground diversity to multiple components of land-use intensity

    1.Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. Lond. B Biol. Sci. 276, 903–909 (2009).2.Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Stanton, R. L., Morrissey, C. A. & Clark, R. G. Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric. Ecosyst. Environ. 254, 244–254 (2018).Article 

    Google Scholar 
    4.Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Change Biol. 25, 1941–1956 (2019).ADS 
    Article 

    Google Scholar 
    5.Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).7.Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS 
    Article 

    Google Scholar 
    9.Rajaniemi, T. K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J. Ecol. 90, 316–324 (2002).Article 

    Google Scholar 
    10.Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).CAS 
    Article 

    Google Scholar 
    11.Suding, K. N. et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Perović, D. et al. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 52, 505–513 (2015).Article 

    Google Scholar 
    13.Redlich, S., Martin, E. A., Wende, B. & Steffan-Dewenter, I. Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLoS ONE 13, e0200438 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    16.Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141358 (2014).
    Google Scholar 
    17.Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    18.Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2351–2363 (2011).PubMed 
    Article 

    Google Scholar 
    19.Thompson, P. L. et al. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23, 1314–1329 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9, 399–409 (2006).PubMed 
    Article 

    Google Scholar 
    21.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).PubMed 
    Article 

    Google Scholar 
    22.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    23.Blitzer, E. J. et al. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146, 34–43 (2012).Article 

    Google Scholar 
    24.Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 
    Article 

    Google Scholar 
    25.de Graaff, M.-A., Hornslein, N., Throop, H. L., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Adv. Agron. 155, 1–44 (2019).Article 

    Google Scholar 
    26.De Deyn, G. B. & Van der Putten, W. H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 20, 625–633 (2005).PubMed 
    Article 

    Google Scholar 
    27.Field, R. et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    28.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    29.Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).ADS 
    Article 

    Google Scholar 
    32.George, P. B. L. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun. 10, 1107 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Dauber, J. et al. Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob. Ecol. Biogeogr. 14, 213–221 (2005).Article 

    Google Scholar 
    36.Cadotte, M. W. & Fukami, T. Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecol. Lett. 8, 548–557 (2005).PubMed 
    Article 

    Google Scholar 
    37.Grilli, G. et al. Fungal diversity at fragmented landscapes: synthesis and future perspectives. Curr. Opin. Microbiol. 37, 161–165 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Fenchel, T. O. M. & Finlay, B. J. The ubiquity of small species: patterns of local and global diversity. Bioscience 54, 777–784 (2004).Article 

    Google Scholar 
    39.Postma-Blaauw, M. B., Goede, R. G. M., de, Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Boeraeve, M., Honnay, O. & Jacquemyn, H. Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia 190, 149–157 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    41.Meyer, A. et al. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8, e73536 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Thomson, B. C. et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol. Biochem. 88, 403–413 (2015).CAS 
    Article 

    Google Scholar 
    43.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    44.Chaudhary, V. B., Nolimal, S., Sosa-Hernández, M. A., Egan, C. & Kastens, J. Trait-based aerial dispersal of arbuscular mycorrhizal fungi. N. Phytol. 228, 238–252 (2020).CAS 
    Article 

    Google Scholar 
    45.Vannette, R. L., Leopold, D. R. & Fukami, T. Forest area and connectivity influence root-associated fungal communities in a fragmented landscape. Ecology 97, 2374–2383 (2016).PubMed 
    Article 

    Google Scholar 
    46.Purschke, O. et al. Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. J. Ecol. 102, 437–446 (2014).PubMed 
    Article 

    Google Scholar 
    47.Thiel, N. et al. Airborne bacterial emission fluxes from manure-fertilized agricultural soil. Microb. Biotechnol. 13, 1631–1647 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).Article 

    Google Scholar 
    49.Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    50.Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article 

    Google Scholar 
    52.Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed 
    Article 

    Google Scholar 
    53.Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Xue, P.-P., Carrillo, Y., Pino, V., Minasny, B. & McBratney, A. B. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 8, 11725 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Löbel, S., Dengler, J. & Hobohm, C. Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot. 41, 377–393 (2006).Article 

    Google Scholar 
    56.Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).Article 

    Google Scholar 
    57.Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).Article 

    Google Scholar 
    58.Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J. & Arp, P. A. Evaluating digital terrain indices for soil wetness mapping–a Swedish case study. Hydrol. Earth Syst. Sci. 18, 3623–3634 (2014).ADS 
    Article 

    Google Scholar 
    59.Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).PubMed 
    Article 

    Google Scholar 
    60.Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).Article 

    Google Scholar 
    61.Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Morris, M. G. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol. Conserv. 95, 129–142 (2000).Article 

    Google Scholar 
    63.Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).Article 

    Google Scholar 
    64.Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Pöyry, J. et al. Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator of the vertebrate grazing intensity and successional age. Oikos 115, 401–412 (2006).Article 

    Google Scholar 
    67.Uchida, K. & Ushimaru, A. Biodiversity declines due to abandonment and intensification of agricultural lands: patterns and mechanisms. Ecol. Monogr. 84, 637–658 (2014).Article 

    Google Scholar 
    68.Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R. & Dowd, S. E. Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS ONE 7, e40338 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Poulsen, P. H. B. et al. Effects of fertilization with urban and agricultural organic wastes in a field trial—Prokaryotic diversity investigated by pyrosequencing. Soil Biol. Biochem. 57, 784–793 (2013).CAS 
    Article 

    Google Scholar 
    70.Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).PubMed 
    Article 

    Google Scholar 
    71.Hooper, D. U. et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50, 1049–1061 (2000).Article 

    Google Scholar 
    72.López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird Conserv. Int. 21, 328–341 (2011).Article 

    Google Scholar 
    73.Boeraeve, M. et al. The impact of spatial isolation and local habitat conditions on colonization of recent forest stands by ectomycorrhizal fungi. Forest Ecol. Manag. 429, 84–92 (2018).Article 

    Google Scholar 
    74.Fiore-Donno, A. M., Richter-Heitmann, T. & Bonkowski, M. Contrasting responses of protistan plant parasites and phagotrophs to ecosystems, land management and soil properties. Front. Microbiol. 11, 1823 (2020).PubMed 
    Article 

    Google Scholar 
    75.Diekötter, T., Wamser, S., Wolters, V. & Birkhofer, K. Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agric. Ecosyst. Environ. 137, 108–112 (2010).Article 

    Google Scholar 
    76.Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    77.Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Thakur, M. P. et al. Towards an integrative understanding of soil biodiversity. Biol. Rev. 95, 350–364 (2020).PubMed 
    Article 

    Google Scholar 
    79.Peay, K., Garbelotto, M. & Bruns, T. Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91, 3631–3640 (2010).PubMed 
    Article 

    Google Scholar 
    80.van der Putten, W. H. Climate change, aboveground-belowground interactions, and species’ range shifts. Annu. Rev. Ecol. Evol. Syst. 43, 365–383 (2012).Article 

    Google Scholar 
    81.Wubs, E. R. J., Putten, W. H., van der, Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 1–5 (2016).Article 

    Google Scholar 
    82.Bünemann, E. K., Schwenke, G. D. & Van Zwieten, L. Impact of agricultural inputs on soil organisms—a review. Soil Res. 44, 379–406 (2006).Article 

    Google Scholar 
    83.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    84.Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    86.Kleijn, D. & Sutherland, W. J. How effective are European agri-environment schemes in conserving and promoting biodiversity? J. Appl. Ecol. 40, 947–969 (2003).Article 

    Google Scholar 
    87.Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    88.Gessler, P. E., Moore, I. D., McKenzie, N. J. & Ryan, P. J. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).Article 

    Google Scholar 
    89.Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).ADS 
    Article 

    Google Scholar 
    90.Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. (Zenodo, 2020).91.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    92.Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).PubMed 
    Article 

    Google Scholar 
    93.Ulrich, W. et al. Climate and soil attributes determine plant species turnover in global drylands. J. Biogeogr. 41, 2307–2319 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Shoffner, A., Wilson, A. M., Tang, W. & Gagné, S. A. The relative effects of forest amount, forest configuration, and urban matrix quality on forest breeding birds. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    95.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed 
    Article 

    Google Scholar 
    96.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).97.Ricci, B. et al. The influence of landscape on insect pest dynamics: a case study in southeastern France. Landsc. Ecol. 24, 337–349 (2009).Article 

    Google Scholar 
    98.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    99.Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).Article 

    Google Scholar 
    100.Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity

    1.Vos, J. M. D., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).Article 

    Google Scholar 
    4.Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.IUCN. The IUCN Red List of Threatened Species. Version 2017-3 . Available at https://www.iucnredlist.org/en (2018). Accessed 18 May 2018.6.Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Conserv. 210, 56–59 (2017).Article 

    Google Scholar 
    7.Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Change Biol. 17, 3503–3510 (2011).ADS 
    Article 

    Google Scholar 
    8.Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: A global review. Conserv. Biol. 22, 16–26 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. Bioscience 64, 291–299 (2014).Article 

    Google Scholar 
    10.Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).ADS 
    Article 

    Google Scholar 
    11.McClure, M. L., Burdett, C. L., Farnsworth, M. L., Sweeney, S. J. & Miller, R. S. A globally-distributed alien invasive species poses risks to United States imperiled species. Sci. Rep. 8, 5331 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Lowe, S. M., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). First published as special lift-out in Aliens, vol. 12 (2000).13.Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    14.Challies, C. N. Feral pigs (Sus scrofa) on Auckland Island: Status, and effects on vegetation and nesting sea birds. N. Zeal. J. Zool. 2, 479–490 (1975).Article 

    Google Scholar 
    15.Coblentz, B. E. & Baber, D. W. Biology and control of feral pigs on Isla Santiago, Galapagos, Ecuador. J. Appl. Ecol. 24, 403–418 (1987).Article 

    Google Scholar 
    16.Jolley, D. B. et al. Estimate of herpetofauna depredation by a population of wild pigs. J. Mammal. 91, 519–524 (2010).Article 

    Google Scholar 
    17.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125–140 (2014).Article 

    Google Scholar 
    18.MacFarland, C. G., Villa, J. & Toro, B. The Galápagos giant tortoises (Geochelone elephantopus) Part I: Status of the surviving populations. Biol. Conserv. 6, 118–133 (1974).Article 

    Google Scholar 
    19.Semiadi, G. & Meijaard, E. Declining populations of the Javan warty pig Sus verrucosus. Oryx 40, 50–56 (2006).Article 

    Google Scholar 
    20.Desbiez, A. L. J., Santos, S. A., Keuroghlian, A. & Bodmer, R. E. Niche partitioning among White-Lipped Peccaries (Tayassu pecari), Collared Peccaries (Pecari tajacu), and Feral Pigs (Sus scrofa). J. Mamm. 90, 119–128 (2009).Article 

    Google Scholar 
    21.Focardi, S., Capizzi, D. & Monetti, D. Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean woodland. J. Zool. 250, 329–334 (2000).Article 

    Google Scholar 
    22.Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241 (2007).Article 

    Google Scholar 
    23.Mitchell, J., Dorney, W., Mayer, R. & McIlroy, J. Ecological impacts of feral pig diggings in north Queensland rainforests. Wildl. Res. 34, 603–608 (2008).Article 

    Google Scholar 
    24.Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mamm. Rev. 44, 124–134 (2014).Article 

    Google Scholar 
    25.Massei, G. & Genov, P. The environmental impact of wild boar. Galemys: Boletín informativo de la Sociedad Española para la conservación y estudio de los mamíferos 16(1), 135–145 (2004) (ISSN 1137-8700).
    Google Scholar 
    26.Nuñez, M. A., Bailey, J. K. & Schweitzer, J. A. Population, community and ecosystem effects of exotic herbivores: A growing global concern. Biol. Invasions 12, 297–301 (2010).Article 

    Google Scholar 
    27.Spear, D. & Chown, S. L. Non-indigenous ungulates as a threat to biodiversity. J. Zool. 279, 1–17 (2009).Article 

    Google Scholar 
    28.Bracke, M. B. M. Review of wallowing in pigs: Description of the behaviour and its motivational basis. Appl. Anim. Behav. Sci. 132, 1–13 (2011).Article 

    Google Scholar 
    29.Campbell, T. A. & Long, D. B. Feral swine damage and damage management in forested ecosystems. For. Ecol. Manag. 257, 2319–2326 (2009).Article 

    Google Scholar 
    30.Tulloch, V. J. et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 13, 91–99 (2015).Article 

    Google Scholar 
    31.Nogales, M. et al. Feral cats and biodiversity conservation: The urgent prioritization of island management. Bioscience 63, 804–810 (2013).Article 

    Google Scholar 
    32.Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113, 4033–4038 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).34.Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).36.Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.5. https://CRAN.R-project.org/package=dplyr (2019).37.Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    38.Keith, D. A. et al. The IUCN red list of ecosystems: Motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article 

    Google Scholar 
    39.Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Anim. Conserv. Forum 4, 307–318 (2001).Article 

    Google Scholar 
    40.Brummitt, N. A. et al. Green plants in the red: A baseline global assessment for the IUCN sampled red list index for plants. PLoS One 10, e0135152 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Joppa, L. N., Roberts, D. L., Myers, N. & Pimm, S. L. Biodiversity hotspots house most undiscovered plant species. Proc. Natl. Acad. Sci. 108, 13171–13176 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Bland, L. M. & Böhm, M. Overcoming data deficiency in reptiles. Biol. Conserv. 204, 16–22 (2016).Article 

    Google Scholar 
    43.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Denslow, J. S. Weeds in paradise: Thoughts on the invasibility of tropical islands. Ann. Mo. Bot. Gard. 90, 119–127 (2003).Article 

    Google Scholar 
    45.Desurmont, G. A., Donoghue, M. J., Clement, W. L. & Agrawal, A. A. Evolutionary history predicts plant defense against an invasive pest. PNAS 108, 7070–7074 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Banks, P. B. & Dickman, C. R. Alien predation and the effects of multiple levels of prey naiveté. Trends Ecol. Evol. 22, 229–230 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Courchamp, F., Chapuis, J.-L. & Pascal, M. Mammal invaders on islands: Impact, control and control impact. Biol. Rev. 78, 347–383 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Richards, S. J., McDonald, K. R. & Alford, R. A. Declines in populations of Australia’s endemic tropical rainforest frogs. Pac. Conserv. Biol. 1, 66–77 (1994).Article 

    Google Scholar 
    51.Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    52.Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. 283, 20152454 (2016).Article 

    Google Scholar 
    53.de Brooke, M. L., Hilton, G. M. & Martins, T. L. F. Prioritizing the world’s islands for vertebrate-eradication programmes. Anim. Conserv. 10, 380–390 (2007).Article 

    Google Scholar 
    54.Cruz, F., Josh Donlan, C., Campbell, K. & Carrion, V. Conservation action in the Galàpagos: Feral pig (Sus scrofa) eradication from Santiago Island. Biol. Conserv. 121, 473–478 (2005).Article 

    Google Scholar 
    55.Ramsey, D. S. L., Parkes, J. & Morrison, S. A. Quantifying eradication success: The removal of feral pigs from Santa Cruz Island, California. Conserv. Biol. 23, 449–459 (2009).PubMed 
    Article 

    Google Scholar 
    56.Donlan, C. J. et al. Recovery of the Galápagos rail (Laterallus spilonotus) following the removal of invasive mammals. Biol. Conserv. 138, 520–524 (2007).Article 

    Google Scholar 
    57.Gürtler, R. E., Martín Izquierdo, V., Gil, G., Cavicchia, M. & Maranta, A. Coping with wild boar in a conservation area: Impacts of a 10-year management control program in north-eastern Argentina. Biol. Invasions 19, 11–24 (2017).Article 

    Google Scholar 
    58.Weeks, P. & Packard, J. Feral Hogs: Invasive species or nature’s bounty?. Hum. Organ. 68, 280–292 (2009).Article 

    Google Scholar 
    59.Lavelle, M. J. et al. Evaluation of fences for containing feral swine under simulated depopulation conditions. J. Wildl. Manag. 75, 1200–1208 (2011).Article 

    Google Scholar 
    60.McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS One 10, e0133771 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Amendolia, S., Lombardini, M., Pierucci, P. & Meriggi, A. Seasonal spatial ecology of the wild boar in a peri-urban area. Mamm. Res. https://doi.org/10.1007/s13364-019-00422-9 (2019).Article 

    Google Scholar 
    62.Risch, D. R., Ringma, J., Honarvar, S. & Price, M. R. A comparison of abundance and distribution model outputs using camera traps and sign surveys for feral pigs. Pac. Conserv. Biol. https://doi.org/10.1071/PC20032 (2020).Article 

    Google Scholar 
    63.Database of Island Invasive Species Eradications. http://diise.islandconservation.org/. (2018). Accessed 3 October 2018 More

  • in

    Alterations in gut microbiota linked to provenance, sex, and chronic wasting disease in white-tailed deer (Odocoileus virginianus)

    1.Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hannaoui, S., Schatzl, H. M. & Gilch, S. Chronic wasting disease: emerging prions and their potential risk. PLoS Pathog. 13, e1006619 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.United States Geological Survey. Expanding Distribution of Chronic Wasting Disease. https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (2021).4.Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 1–7 (2016).Article 

    Google Scholar 
    5.Gough, K. C. & Maddison, B. C. Prion transmission: prion excretion and occurrence in the environment. Prion 4, 275–282 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Donaldson, D. S., Sehgal, A., Rios, D., Williams, I. R. & Mabbott, N. A. Increased abundance of m cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 12, e1006075 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Press, C. M., Heggebø, R. & Espenes, A. Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv. Drug Deliv. Rev. 56, 885–899 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Corr, S. C., Gahan, C. C. G. M. & Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Maignien, T., Lasmézas, C. I., Beringue, V., Dormont, D. & Deslys, J. P. Pathogenesis of the oral route of infection of mice with scrapie and bovine spongiform encephalopathy agents. J. Gen. Virol. 80(Pt 11), 3035–3042 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Bennett, K. M. et al. Induction of colonic m cells during intestinal inflammation. Am. J. Pathol. 186, 1166–1179 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Donaldson, D. S. & Mabbott, N. A. The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. J. Gen. Virol. 97, 1725–1738 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Terahara, K. et al. Comprehensive gene expression profiling of peyer’s patch m cells, villous m-like cells, and intestinal epithelial cells. J. Immunol. 180, 7840–7846 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Sigurdson, C. J. et al. Bacterial colitis increases susceptibility to oral prion disease. J. Infect. Dis. 199, 243–252 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tahoun, A. et al. Salmonella transforms follicle-associated epithelial cells into m cells to promote intestinal invasion. Cell Host Microb. 12, 645–656 (2012).CAS 
    Article 

    Google Scholar 
    16.Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Ogbonnaya, E. S. et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatr. 78, e7-9 (2015).Article 

    Google Scholar 
    19.Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U. S. A. 108, 3047–3052 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Chu, Y. & Kordower, J. H. The prion hypothesis of Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 15, 28 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Goedert, M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Herva, M. E. & Spillantini, M. G. Parkinson’s disease as a member of prion-like disorders. Virus Res. 207, 38–46 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Tan, J. M. M., Wong, E. S. P. & Lim, K.-L. Protein misfolding and aggregation in Parkinson’s disease. Antioxid. Redox Signal. 11, 2119–2134 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Weickenmeier, J., Jucker, M., Goriely, A. & Kuhl, E. A physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J. Mech. Phys. Solids 124, 264–281 (2019).ADS 
    Article 

    Google Scholar 
    27.Olanow, C. W. & Brundin, P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder?. Mov. Disord. 28, 31–40 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.D’Argenio, V. & Sarnataro, D. Microbiome influence in the pathogenesis of prion and Alzheimer’s diseases. Int. J. Mol. Sci. 20, 4704 (2019).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Rowin, J., Xia, Y., Jung, B. & Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 5, e13443 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469-1480.e12 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Lev, M., Raine, C. S. & Levenson, S. M. Enhanced survival of germfree mice after infection with irradiated scrapie brain. Experientia 27, 1358–1359 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Wade, W. F., Dees, C., German, T. L. & Marsh, R. F. Effect of bacterial flora and mouse genotype (euthymic or athymic) on scrapie pathogenesis. J. Leukoc. Biol. 40, 525–532 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bradford, B. M., Tetlow, L. & Mabbott, N. A. Prion disease pathogenesis in the absence of the commensal microbiota. J. Gen. Virol. 98, 1943–1952 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Guan, Y. et al. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express 7, 212 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.USDA APHIS|Cervids: Chronic Wasting Disease. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervid-cwd (2020).38.Keane, D. P. et al. Chronic wasting disease in a Wisconsin white-tailed deer farm. J. Vet. Diagn. Invest. 20, 698–703 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Ethanol Precipitation Protocol—MRC Holland Technical Support. https://support.mrcholland.com/kb/articles/ethanol-precipitation-protocol.40.Apprill, A. & Parada, A. E. 16S Illumina amplicon protocol: Earth microbiome project. http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s/.41.Boylen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    42.Yilmaz, P. et al. The SILVA and ‘all-species living tree project (LTP)’ taxonomic frameworks. Nucl. Acids Res. https://doi.org/10.1093/nar/gkt1209 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Min, B. R., Gurung, N., Shange, R. & Solaiman, S. Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 97, 3523–3534 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 11159 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 9, 18781 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Delgado, M. L. et al. Intestinal microbial community dynamics of white-tailed deer (Odocoileus virginianus) in an agroecosystem. Microb. Ecol. 74, 496–506 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Rogers, L. L., Mooty, J. J. & Dawson, D. Foods of White-Tailed Deer in the Upper Great Lakes Region: A Review (North Central Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1981).Book 

    Google Scholar 
    55.Gibson, K. M. et al. Gut microbiome differences between wild and captive black rhinoceros—implications for rhino health. Sci. Rep. 9, 7570 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Guo, W. et al. Comparative study of gut microbiota in wild and captive giant pandas (Ailuropoda melanoleuca). Genes (Basel) 10, 827 (2019).CAS 
    Article 

    Google Scholar 
    57.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Prabhu, V. R., Wasimuddin, W., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: A comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Khafipour, E. et al. Effects of grain feeding on microbiota in the digestive tract of cattle. Anim. Front. 6, 13–19 (2016).Article 

    Google Scholar 
    62.Liu, C. et al. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front. Microbiol. 10, 1116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).Article 

    Google Scholar 
    65.Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yang, X. et al. Seasonal breeding leads to changes for gut microbiota diversity in the wild ground squirrel (Spermophilus dauricus). https://www.researchsquare.com/article/rs-96089/v1 (2020). https://doi.org/10.21203/rs.3.rs-96089/v1.67.Antwis, R. E., Edwards, K. L., Unwin, B., Walker, S. L. & Shultz, S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. Microbiome 7, 27 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Gordon, I. R. Controlled Reproduction in Horses, Deer, and Camelids (Cab International, 1997).
    Google Scholar 
    69.Samuel, M. D. & Storm, D. J. Chronic wasting disease in white-tailed deer: Infection, mortality, and implications for heterogeneous transmission. Ecology 97, 3195–3205 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Miller, M. W., Hobbs, N. T. & Tavener, S. J. Dynamics of prion disease transmission in mule deer. Ecol. Appl. 16, 2208–2214 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Gandy, K. A. O., Zhang, J., Nagarkatti, P. & Nagarkatti, M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci. Rep. 9, 1–17 (2019).CAS 
    Article 

    Google Scholar 
    72.Ebringer, A., Rashid, T., Wilson, C., Boden, R. & Thompson, E. A possible link between multiple sclerosis and Creutzfeldt-Jakob disease based on clinical, genetic, pathological and immunological evidence involving Acinetobacter bacteria. Med. Hypotheses 64, 487–494 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Ricci, S. et al. Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. wbio 2019, 1–11 (2019).Article 

    Google Scholar 
    74.Sun, C.-H., Liu, H.-Y., Liu, B., Yuan, B.-D. & Lu, C.-H. Analysis of the gut microbiome of wild and captive Père David’s deer. Front. Microbiol. 10, 2331 (2019).PubMed 
    Article 

    Google Scholar 
    75.Barichella, M. et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 34, 396–405 (2019).PubMed 
    Article 

    Google Scholar 
    76.Pietrucci, D. et al. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat. Disord. 65, 124–130 (2019).PubMed 
    Article 

    Google Scholar 
    77.Radisavljevic, N., Cirstea, M. & Brett Finlay, B. Bottoms up: The role of gut microbiota in brain health. Environ. Microbiol https://doi.org/10.1111/1462-2920.14506 (2018).Article 
    PubMed 

    Google Scholar 
    78.Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 11450 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    79.Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    80.Zeng, H., Ishaq, S. L., Zhao, F.-Q. & Wright, A.-D.G. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J. Nutr. Biochem. 35, 30–36 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Zhang, T., Li, Q., Cheng, L., Buch, H. & Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 12, 1109–1125 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 33, 194–201 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Ou, Z. et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    84.Cirstea, M., Radisavljevic, N. & Finlay, B. B. Good bug, bad bug: Breaking through microbial stereotypes. Cell Host Microb. 23, 10–13 (2018).CAS 
    Article 

    Google Scholar 
    85.Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. PNAS 114, 10719–10724 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. PNAS 114, 10713–10718 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Hill-Burns, E. M. et al. Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Belzer, C. & de Vos, W. M. Microbes inside—from diversity to function: The case of Akkermansia. ISME J. 6, 1449–1458 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Donaldson, D. S., Pollock, J., Vohra, P., Stevens, M. P. & Mabbott, N. A. Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23, 101147 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Ganesh, B. P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE 8, e74963 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Donaldson, D. S. et al. M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106, 171–181 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Nagalingam, N. A., Kao, J. Y. & Young, V. B. Microbial ecology of the murine gut associated with the development of DSS-colitis. Inflamm. Bowel Dis. 17, 917–926 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Haley, N. J. et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS ONE 14, e0224342 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    97.Wagner Mackenzie, B., Waite, D. W. & Taylor, M. W. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front. Microbiol. 6, 130 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Kawada, Y., Naito, Y., Andoh, A., Ozeki, M. & Inoue, R. Effect of storage and DNA extraction method on 16S rRNA-profiled fecal microbiota in Japanese adults. J. Clin. Biochem. Nutr. 64, 106–111 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Sinha, R. et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomark. Prev. 25, 407–416 (2016).Article 

    Google Scholar  More

  • in

    Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island)

    1.deMenocal, P. B. & Stringer, C. Climate and the peopling of the world. Nature 538, 49–50 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pisor, A. C. & Jones, J. H. Human adaptation to climate change: an introduction to the special issue. Am. J. Hum. Biol. n/a, e23530 (2020).3.Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the Age of Humans. PNAS 117, 8250–8253 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Shennan, S. & Sear, R. Archaeology, demography and life history theory together can help us explain past and present population patterns. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190711 (2021).CAS 
    Article 

    Google Scholar 
    5.Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evolution 5, 273–284 (2021).Article 

    Google Scholar 
    6.Bocquet‐Appel, J. Recent Advances in Paleodemography (Springer, Dordrecht, 2008).7.Chamberlain, A. T. Demography in Archaeology (Cambridge University Press, 2006).8.Drennan, R. D., Berrey, C. A. & Peterson, C. E. Regional Settlement Demography in Archaeology (Eliot Werner Publications, 2015).9.Kintigh, K. W. et al. Grand challenges for archaeology. PNAS 111, 879–880 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Bocquet‐Appel, J. Paleoanthropological traces of a neolithic demographic transition. Curr. Anthropol. 43, 637–650 (2002).Article 

    Google Scholar 
    11.Crema, E. R. & Kobayashi, K. A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. J. Archaeol. Sci. 117, 105136 (2020).Article 

    Google Scholar 
    12.Schmidt, I. et al. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190714 (2021).Article 

    Google Scholar 
    13.Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.White, A. J. et al. An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois. J. Archaeol. Sci. 93, 129–134 (2018).CAS 
    Article 

    Google Scholar 
    15.Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 1–8 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).Article 

    Google Scholar 
    17.Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14 C dates suggests regional divergences in the population dynamics of the jomon period in Eastern Japan. PLoS ONE 11, e0154809 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    19.Chaput, M. A. & Gajewski, K. Radiocarbon dates as estimates of ancient human population size. Anthropocene 15, 3–12 (2016).Article 

    Google Scholar 
    20.Carleton, W. C. Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes. Journal of Quaternary Science 36, 110–123 (2021).21.Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: Biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).Article 

    Google Scholar 
    22.Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 0959683620981700. https://doi.org/10.1177/0959683620981700 (2020).23.Crema, E. R. & Bevan, A. Inference from large sets of radiocarbon dates: software and methods. Radiocarbon 63, 23–39 (2021).Article 

    Google Scholar 
    24.Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).Article 

    Google Scholar 
    25.Ward, I. & Larcombe, P. Sedimentary unknowns constrain the current use of frequency analysis of radiocarbon data sets in forming regional models of demographic change. Geoarchaeology 36, 546–570 (2021).Article 

    Google Scholar 
    26.de Souza, J. G. & Riris, P. Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. J. Archaeol. Sci. 125, 105293 (2021).Article 

    Google Scholar 
    27.Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Lima, M. et al. Ecology of the collapse of Rapa Nui society. Proc. R. Soc. B: Biol. Sci. 287, 20200662 (2020).CAS 
    Article 

    Google Scholar 
    30.Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Riris, P. Dates as data revisited: a statistical examination of the Peruvian preceramic radiocarbon record. J. Archaeol. Sci. 97, 67–76 (2018).Article 

    Google Scholar 
    32.Riris, P. & Arroyo-Kalin, M. Widespread population decline in South America correlates with mid-Holocene climate change. Sci. Rep. 9, 6850 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Crema, E. R. & Shoda, S. A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). PLOS ONE 16, e0251695 (2021).34.Timpson, A., Barberena, R., Thomas, M. G., Méndez, C. & Manning, K. Directly modelling population dynamics in the South American Arid Diagonal using 14 C dates. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190723 (2021).CAS 
    Article 

    Google Scholar 
    35.Bernabeu Aubán, J., García Puchol, O., Barton, M., McClure, S. & Pardo Gordó, S. Radiocarbon dates, climatic events, and social dynamics during the Early Neolithic in Mediterranean Iberia. Quat. Int. 403, 201–210 (2016).Article 

    Google Scholar 
    36.Bevan, A. et al. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proc. Natl Acad. Sci. USA 114, E10524–E10531 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Bird, D. et al. A first empirical analysis of population stability in North America using radiocarbon records. Holocene 30, 1345–1359 (2020).ADS 
    Article 

    Google Scholar 
    38.Capuzzo, G., Zanon, M., Corso, M. D., Kirleis, W. & Barceló, J. A. Highly diverse Bronze Age population dynamics in Central-Southern Europe and their response to regional climatic patterns. PLoS ONE 13, e0200709 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).PubMed 
    Article 

    Google Scholar 
    40.Jørgensen, E. K. The palaeodemographic and environmental dynamics of prehistoric Arctic Norway: an overview of human-climate covariation. Quat. Int. 549, 36–51 (2020).Article 

    Google Scholar 
    41.Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. PNAS 110, 443–447 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Roberts, N. et al. Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean. Quat. Sci. Rev. 184, 47–67 (2018).ADS 
    Article 

    Google Scholar 
    43.Wang, C., Lu, H., Zhang, J., Gu, Z. & He, K. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years. Quat. Sci. Rev. 98, 45–59 (2014).ADS 
    Article 

    Google Scholar 
    44.Warden, L. et al. Climate induced human demographic and cultural change in northern Europe during the mid-Holocene. Sci. Rep. 7, 15251 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Weninger, B., Clare, L., Jöris, O., Jung, R. & Edinborough, K. Quantum theory of radiocarbon calibration. World Archaeol. 47, 543–566 (2015).Article 

    Google Scholar 
    47.Weninger, B. & Edinborough, K. Bayesian 14C-rationality, Heisenberg uncertainty, and Fourier Transform: the beauty of radiocarbon calibration. Doc. Praehist. 47, 536–559 (2020).Article 

    Google Scholar 
    48.Tavaré, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population. Genet. Genet. 162, 2025–2035 (2002).
    Google Scholar 
    50.Carrignon, S., Brughmans, T. & Romanowska, I. Tableware trade in the Roman East: exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation. PLoS ONE 15, e0240414 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Crema, E. R., Edinborough, K., Kerig, T. & Shennan, S. J. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. J. Archaeol. Sci. 50, 160–170 (2014).Article 

    Google Scholar 
    52.Crema, E. R., Kandler, A. & Shennan, S. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions. Sci. Rep. 6, 39122 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Rubio-Campillo, X. Model selection in historical research using approximate Bayesian computation. PLoS ONE 11, e0146491 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Tsutaya, T., Shimomi, A., Fujisawa, S., Katayama, K. & Yoneda, M. Isotopic evidence of breastfeeding and weaning practices in a hunter–gatherer population during the Late/Final Jomon period in eastern Japan. J. Archaeol. Sci. 76, 70–78 (2016).CAS 
    Article 

    Google Scholar 
    55.Porčić, M. & Nikolić, M. The Approximate Bayesian Computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. Archaeol. Anthropol. Sci. 1–18. https://doi.org/10.1007/s12520-014-0223-2 (2015).56.Porčić, M., Blagojević, T., Pendić, J. & Stefanović, S. The Neolithic Demographic Transition in the Central Balkans: population dynamics reconstruction based on new radiocarbon evidence. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190712 (2021).Article 
    CAS 

    Google Scholar 
    57.DiNapoli, R. J., Rieth, T. M., Lipo, C. P. & Hunt, T. L. A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). J. Archaeol. Sci. 116, 105094 (2020).Article 

    Google Scholar 
    58.Hunt, T. L. & Lipo, C. The Archaeology of Rapa Nui (Easter Island). in The Oxford Handbook of Prehistoric Oceania (eds. Cochrane, E. E. & Hunt, T. L.) 416–449 (Oxford University Press, 2018).59.Kirch, P. V. The Evolution of Polynesian Chiefdoms (Cambridge University Press, 1984).60.Ponting, C. A Green History of the World: The Environment and the Collapse of Great Civilizations. (St. Martin’s Press, 1991).61.Boersema, J. J. The Survival of Easter Island: Dwindling Resources and Cultural Resilience (Cambridge University Press, 2015).62.Boersema, J. J. An earthly paradise? Easter Island (Rapa Nui) as seen by the eighteenth-century European explorers. in Cultural and Environmental Change on Rapa Nui (eds. Haoa Cardinali, S. et al.) 157–178 (Routledge, 2018).63.Boersema, J. J. & Huele, R. Pondering the population numbers of Easter Island’s Past. in Easter Island and the Pacific: Cultural and Environmental Dynamics. In Proc 9th International Conference on Easter Island and the Pacific, Held in the Ethnological Museum, Berlin, Germany (eds. Vogt, B. et al.) 83–92 (Rapa Nui Press, 2019).64.Puleston, C. O. et al. Rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 5, 1–14 (2017).Article 

    Google Scholar 
    65.Lipo, C. P., DiNapoli, R. J. & Hunt, T. L. Commentary: rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 25, 1–3 (2018).66.Hunt, T. L. Rethinking Easter Island’s ecological catastrophe. J. Archaeol. Sci. 34, 485–502 (2007).Article 

    Google Scholar 
    67.Rull, V. The deforestation of Easter Island. Biol. Rev. 95, 124–141 (2020).Article 

    Google Scholar 
    68.Brandt, G. & Merico, A. The slow demise of Easter Island: insights from a modeling investigation. Front. Ecol. Evol. 13, 1–12 (2015).69.Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Viking, 2005).70.Bahn, P. & Flenley, J. Easter Island, Earth Island: the Enigmas of Rapa Nui (Rowman & Littlefield, 2017).71.Rull, V. Natural and anthropogenic drivers of cultural change on Easter Island: review and new insights. Quat. Sci. Rev. 150, 31–41 (2016).ADS 
    Article 

    Google Scholar 
    72.Cañellas-Boltà, N. et al. Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments. Quat. Sci. Rev. 72, 36–48 (2013).ADS 
    Article 

    Google Scholar 
    73.Rull, V. Drought, freshwater availability and cultural resilience on Easter Island (SE Pacific) during the Little Ice Age. Holocene. https://doi.org/10.1177/0959683619895587 (2020).74.Yan, H. et al. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat. Geosci. 4, 611–614 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    75.Mulrooney, M. A. An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. J. Archaeol. Sci. 40, 4377–4399 (2013).Article 

    Google Scholar 
    76.Stevenson, C. M. et al. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact. Proc. Natl Acad. Sci. USA 112, 1025–1030 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. Revisiting warfare, monument destruction, and the ‘Huri Moai’ phase in Rapa Nui (Easter Island) culture history. Journal of Pacific Archaeology 12, 1–24 (2021).78.Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).CAS 
    Article 

    Google Scholar 
    79.Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759–778 (2020).CAS 
    Article 

    Google Scholar 
    80.Bork, H.-R., Mieth, A. & Tschochner, B. Nothing but stones? A review of the extent and technical efforts of prehistoric stone mulching on Rapa Nui. Rapa Nui J. 18, 10–14 (2004).
    Google Scholar 
    81.Ladefoged, T. N. et al. Soil nutrient analysis of Rapa Nui gardening. Archaeol. Ocean. 45, 80–85 (2010).Article 

    Google Scholar 
    82.Ladefoged, T. N., Flaws, A. & Stevenson, C. M. The distribution of rock gardens on Rapa Nui (Easter Island) as determined from satellite imagery. J. Archaeol. Sci. 40, 1203–1212 (2013).Article 

    Google Scholar 
    83.Mieth, A. & Bork, H. R. History, origin and extent of soil erosion on Easter Island (Rapa Nui). Catena 63, 244–260 (2005).Article 

    Google Scholar 
    84.Stevenson, C. M., Jackson, T. L., Mieth, A., Bork, H.-R. & Ladefoged, T. N. Prehistoric and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui), Chile. Antiquity 80, 919–936 (2006).Article 

    Google Scholar 
    85.Wozniak, J. A. Subsistence strategies on Rapa Nui (Easter Island): prehistoric gardening practices on Rapa Nui and how they relate to current farming practices. in Cultural and Environmental Change on Rapa Nui (eds. Haoa-Cardinali, S. et al.) 87–112 (Routledge, 2018).86.Tromp, M. & Dudgeon, J. V. Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J. Archaeol. Sci. 54, 54–63 (2015).Article 

    Google Scholar 
    87.Brosnan, T., Becker, M. W. & Lipo, C. P. Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile. Hydrogeol. J. 27, 519–534 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    88.DiNapoli, R. J. et al. Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLoS ONE 14, e0210409 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Hixon, S., DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. The ethnohistory of freshwater use on Rapa Nui (Easter Island, Chile). J. Polynesian Soc. 128, 163–189 (2019).Article 

    Google Scholar 
    90.Brown, A. A. & Crema, E. R. Māori population growth in pre-contact New Zealand: regional population dynamics inferred from summed probability distributions of radiocarbon dates. J. Isl. Coast. Archaeol. 0, 1–19 (2019).
    Google Scholar 
    91.McFadden, C., Walter, R., Buckley, H. & Oxenham, M. F. Temporal trends in the Colonisation of the Pacific: Palaeodemographic Insights. J. World Prehist. https://doi.org/10.1007/s10963-021-09152-w (2021).Article 

    Google Scholar 
    92.Kirch, P. V. & Rallu, J.-L. The Growth and Collapse of Pacific Island Societies: Archaeological and Demographic Perspectives. (University of Hawai’i Press, 2007).93.Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Sherwood, S. C. et al. New excavations in Easter Island’s statue quarry: Soil fertility, site formation and chronology. J. Archaeological Sci. 111, 104994 (2019).Article 

    Google Scholar 
    95.Simpson, D. F. Jr. & Dussubieux, L. A collapsed narrative? Geochemistry and spatial distribution of basalt quarries and fine–grained artifacts reveal communal use of stone on Rapa Nui (Easter Island). J. Archaeol. Sci.: Rep. 18, 370–385 (2018).
    Google Scholar 
    96.Bevan, A. & Crema, E. R. Modifiable reporting unit problems and time series of long-term human activity. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190726 (2021).CAS 
    Article 

    Google Scholar 
    97.Davies, B., Holdaway, S. J. & Fanning, P. C. Modelling the palimpsest: an exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. Holocene 26, 450–463 (2016).ADS 
    Article 

    Google Scholar 
    98.Commendador, A. S., Dudgeon, J. V., Fuller, B. T. & Finney, B. P. Radiocarbon dating human skeletal material on Rapa Nui: evaluating the effect of uncertainty in marine-derived carbon. Radiocarbon 56, 277–294 (2014).CAS 
    Article 

    Google Scholar 
    99.Stevenson, C. M., Williams, C., Carpenter, E., Hunt, C. S. & Novak, S. W. Architecturally modified caves on Rapa Nui: post-European contact ritual spaces? Rapa Nui J. 32, 1–36 (2019).Article 

    Google Scholar 
    100.Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).CAS 
    Article 

    Google Scholar 
    101.Beck, J. W., Hewitt, L., Burr, G. S., Loret, J. & Hochstetter, F. T. Mata ki te rangi: eyes towards the heavens. in Easter Island: Scientific Exploration Into the World’s Environmental Problems in Microcosm (eds. Loret, J. & Tanacredi, J. T.) 93–112 (Kluwer Academic/Plenum Publishers, 2003).102.Burr, G. S. et al. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51, 319–335 (2009).CAS 
    Article 

    Google Scholar 
    103.DiNapoli, R. J. et al. Marine reservoir corrections for the Caribbean demonstrate high intra- and inter-island variability in local reservoir offsets. Quat. Geochronol. 61, 101126 (2021).Article 

    Google Scholar 
    104.Surovell, T. A., Byrd Finley, J., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).Article 

    Google Scholar 
    105.Sunnåker, M. et al. Approximate Bayesian computation. PLoS Comput. Biol. 9, e1002803 (2013).MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    106.Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).PubMed 
    Article 

    Google Scholar 
    107.Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiquity 52, 55–73 (1987).Article 

    Google Scholar 
    108.R Core Team. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). More

  • in

    Pairwise interact-and-imitate dynamics

    The modelConsider a unit-mass population of agents who repeatedly interact in pairs to play a symmetric stage game. The set of strategies available to each agent is finite and denoted by (S equiv {1, ldots , n}). A population state is a vector (x in X equiv {x in {mathbb{R}}^n_+: sum _{i in S} x_i = 1}), with (x_i) the fraction of the population playing strategy (i in S). Payoffs are described by a function (F: S times S rightarrow {mathbb{R}}), where F(i, j) is the payoff received by an agent playing strategy i when the opponent plays strategy j. As a shorthand, we refer to an undirected pair of individuals, one playing i and the other playing j, as an ij pair. The set of all possible undirected pairs is denoted by (mathscr {P}).The interaction structure is modeled as a function (p : X times mathscr {P} rightarrow left[ 0, 1/2 right] ) subject to (sum _{ij in mathscr {P}} p_{ij}(x)=1/2) (since the mass of pairs is half the mass of agents), with (p_{ij}(x)) indicating the mass of ij pairs formed in state x. Note that the mass of ij pairs can never exceed (min {x_i,x_j}), that is, (p_{ij}(x) le min {x_i,x_j}) for all x. We assume that p is continuous in X, and that (p_{ij}(x) > 0) if and only if (x_i > 0) and (x_j > 0 )—meaning that the probability of an ij pair being formed is strictly positive if and only if strategies i and j are played by someone. In the case of uniform random matching, (p_{ii} = x_i^2/2) and (p_{ij} = x_i x_j) for any i and (j ne i).The revision protocol is modeled as a function (phi : X times S times S rightarrow [-1,1]), where (phi _{ij}(x) in [-1,1]) is the probability that an ij pair will turn into an ii pair minus the probability that it will turn into a jj pair, conditional on the population state being x and an ij pair being formed. We assume that (phi ) is continuous in X. We note that by construction (phi _{ij}=-phi _{ji}) for all (i,j in S), and hence (phi _{ii}=0) for all (i in S). Our main assumption on the revision protocol is the following, which is met, among others, by pairwise proportional imitative and imitate-if-better rules22.
    Assumption 1

    For every (x in X), (phi _{ij}(x) > 0) if (F(i,j) > F(j,i)).
    In what follows we consider a dynamical system in continuous time with state space X, characterized by the following equation of motion.

    Definition 1

    (Pairwise interact-and-imitate dynamics—PIID) For every (x in X) and every (i in S):$$begin{aligned} dot{x}_i = sum _{j in S} p_{ij}(x) phi _{ij}(x). end{aligned}$$
    (1)

    Main findingsGlobal asymptotic convergenceIn any purely imitative dynamics, if (x_i(t)=0), then (x_i(t^{prime})=0) for every (t^{prime} > t). This implies that we cannot hope for global asymptotic convergence in a strict sense. Thus, to assess convergence towards a certain state x in a meaningful way, we restrict our attention to those states where all strategies that have positive frequency in x have positive frequency as well. We denote by (X_x) the set of states whose support contains the support of x.

    Definition 2

    (Supremacy) Strategy (iin S) is supreme if (F(i,j) >F(j,i)) for every (j in S setminus {i}).
    We note that under PIID, the concept of supremacy is closely related to that of asymmetry33,34, in that (F(i,j) > F(j,i)) implies that agents can only switch from strategy j to strategy i.

    Proposition 1

    If (i in S) is a supreme strategy, then state (x^* equiv left{ x in X : x_i = 1 right} ) is globally asymptotically stable for the dynamical system with state space (X_{x^*}) and PIID as equation of motion.
    Relation to replicator dynamicsTo further characterize the dynamics induced by the pairwise interact-and-imitate protocol, we make two additional assumptions. First, matching is uniformly random, meaning that everyone in the population has the same probability of interacting with everyone else; formally, (p_{ii} = x_i^2/2) and (p_{ij} = x_i x_j) for all i and (j ne i). Second, the probability that an agent has to imitate the opponent is proportional to the difference in their payoffs if the opponent’s payoff exceeds her own, and is zero otherwise. As a consequence, (phi _{ij} = F(i,j) – F(j,i)) up to a proportionality factor. Let

    (F left( i, x right) :=sum _j x_j F left( i, j right) ),

    (F left( x, i right) :=sum _j x_j F left( j, i right) ), and

    ( F left( x, x right) :=sum _i sum _j x_i x_j F left( i, j right) ).

    Under these assumptions, at any point in time, the motion of (x_i) is described by:$$begin{aligned} dot{x}_i&= sum _{j ne i} x_j x_i left[ F left( i, j right) – F left( j, i right) right] = x_i sum _{j} x_j left[ F left( i, j right) – F left( j, i right) right] nonumber \&= x_i left[ F left( i, x right) – F left( x, i right) right] , end{aligned}$$
    (2)
    which is a modified replicator equation. According to (2), for every strategy i chosen by one or more agents in the population, the rate of growth of the fraction of i-players, (dot{x}_i / x_i), equals the difference between the expected payoff from playing i in state x and the average payoff received by those who are matched against an agent playing i. In contrast, under standard replicator dynamics35, the fraction of agents playing i varies depending on the excess payoff of i with respect to the current average payoff in the whole population, i.e., (dot{x}_i = x_i left[ F left( i, x right) – F left( x, x right) right] ).A noteworthy feature of replicator dynamics is that they are always payoff monotone: for any (i,j in S), the proportions of agents playing i and j grow at rates that are ordered in the same way as the expected payoffs from the two strategies36. In the case of PIID, this result fails.

    Proposition 2

    Pairwise-Interact-and-Imitate dynamics need not satisfy payoff monotonicity.
    To verify this, it is sufficient to consider any symmetric (2 times 2) game where (F left( i, j right) > F left( j, i right) ) but (F left( j, x right) > F left( i, x right) ) for some (x in X), meaning that i is the supreme strategy but j yields a higher expected payoff in state x. See Fig. 1 for an example where, in the case of uniform random matching, the above inequalities hold for any x; if strategies are updated according to the interact-and-imitate protocol, then this game only admits switches from i to j, therefore violating payoff monotonicity. Proposition 2 can have important consequences, including the survival of pure strategies that are strictly dominated.Survival of strictly dominated strategiesAn recurring topic in evolutionary game theory is to what extent does support exist for the idea that strictly dominated strategies will not be played. It has been shown that if strategy i does not survive the iterated elimination of pure strategies strictly dominated by other pure strategies, then the fraction of the population playing i will converge to zero in all payoff monotone dynamics37,38. This result does not hold in our case, as PIID is not payoff monotone.More precisely, under PIID, a strictly dominated strategy may be supreme and, therefore, not only survive but even end up being adopted by the whole population. This suggests that from an evolutionary perspective, support for the elimination of dominated strategies may be weaker than is often thought. Our result contributes to the literature on the conditions under which evolutionary dynamics fail to eliminate strictly dominated strategies in some games, examining a case which has not yet been studied39.To see that a strictly dominated strategy may be supreme, consider the simple example shown in Fig. 1. Here each agent has a strictly dominant strategy to play A; however, since the payoff from playing B against A exceeds that from playing A against B, strategy B is supreme. Thus, by Proposition 1, the population state in which all agents choose B is globally asymptotically stable.Figure 1A game where the supreme strategy is strictly dominated.Full size imageFigure 1 can also be used to comment on the relation between a supreme strategy and an evolutionary stable strategy, which is a widely used concept in evolutionary game theory40,41. Indeed, while B is the supreme strategy, A is the unique evolutionary stable strategy because it is strictly dominant. However, if F(B, A) were reduced below 2, holding everything else constant, then B would become both supreme and evolutionary stable. We therefore conclude that no particular relation holds between evolutionary stability and supremacy: neither one property implies the other, nor are they incompatible.ApplicationsHaving obtained general results for the class of finite symmetric games, we now restrict the discussion to the evolution of behavior in social dilemmas. We show that if the conditions of Proposition 1 are met, then inefficient conventions emerge in the Prisoner’s Dilemma, Stag Hunt, Minimum Effort, and Hawk–Dove games. Furthermore, this result holds both without and with the assumption that agents interact assortatively.Ineffectiveness of assortmentConsider the (2 times 2) game represented in Fig. 2. If (c > a > d > b), then mutual cooperation is Pareto superior to mutual defection but agents have a dominant strategy to defect. The resulting stage game is the Prisoner’s Dilemma, whose unique Nash equilibrium is (B, B). Moreover, since (F (B,A) > F(A,B)), B is the supreme strategy and the population state in which all agents defect is globally asymptotically stable.We stress that defection emerges in the long run for every matching rule satisfying our assumptions, and therefore also in the case of assortative interactions. Assortment reflects the tendency of similar people to clump together, and can play an important role in the evolution of cooperation42,43,44,45. Intuitively, when agents meet assortatively, the risk of cooperating in a social dilemma may be offset by a higher probability of playing against other cooperators. However, under PIID, this is not the case: the decision whether to adopt a strategy or not is independent of expected payoffs, and like-with-like interactions have no effect except to reduce the frequency of switches from A to B.Figure 2A (2 times 2) stage game.Full size imageEmergence of the maximin conventionIf (a > c > b), (a > d) and (d > b), then the game in Fig. 2 becomes a Stag Hunt game, which contrasts risky cooperation and safe individualism. The payoffs are such that both (left( A, Aright) ) and (left( B, Bright) ) are strict Nash equilibria, that (left( A, Aright) ) is Pareto superior to (left( B, Bright) ), and that B is the maximin strategy, i.e., the strategy which maximizes the minimum payoff an agent could possibly receive. We also assume that (a + c ne c + d), so that one of A and B is risk dominant46. If (a + b > c + d), then A (Stag) is both payoff and risk dominant. When the opposite inequality holds, the risk dominant strategy is B (Hare).Since (F (B,A) > F(A,B)), B is supreme independently of whether or not it is risk dominant to cooperate. This can result in large inefficiencies because, in the long run, the process will converge to the state in which all agents play the riskless strategy regardless of how rewarding social coordination is. As in the case of the Prisoner’s Dilemma, this holds for all matching rules satisfying our assumptions.Evolution of effort exertionIn a minimum effort game, agents simultaneously choose a strategy i, usually interpreted as a costly effort level, from a finite subset S of ({mathbb{R}}). An agent’s payoff depends on her own effort and on the minimum effort in the pair:$$begin{aligned} F left( i, j right) = alpha min left{ i, j right} – beta i , end{aligned}$$where (beta > 0) and (alpha > beta ) are the cost and benefit of effort, respectively. From a strategic viewpoint, this game can be seen as an extension of the Stag Hunt to cases where there are more than two actions. The best response to a choice of j by the opponent is to choose j as well, and coordinating on any common effort level gives a Nash equilibrium. Nash outcomes can be Pareto-ranked, with the highest-effort equilibrium being the best possible outcome for all agents. Thus, choosing a high i is rationalizable and potentially rewarding but may also result in a waste of effort.Under PIID, any (i > j) implies (phi _{ij} < 0) by Assumption 1, meaning that agents will tend to imitate the opponent when the opponent’s effort is lower than their own. The supreme strategy is therefore to exert as little effort as possible, and the population state in which all agents choose the minimum effort level is the unique globally asymptotically stable state.Emergence of aggressive behaviorConsider again the payoff matrix shown in Fig. 2. If (c > a > b > d), then the stage game is a Hawk–Dove game, which is often used to model the evolution of aggressive and sharing behaviors. Interactions can be framed as disputes over a contested resource. When two Doves (who play A) meet, they share the resource equally, whereas two Hawks (who play B) engage in a fight and suffer a cost. Moreover, when a Dove meets a Hawk, the latter takes the entire prize. Again we have that (F (A,B) < F(B,A)), implying that B is the supreme strategy and that the state where all agents play Hawk is the sole asymptotically stable state.The inefficiency that characterizes the (B, B) equilibrium in the Hawk–Dove game arises from the cost that Hawks impose on one another. This can be viewed as stemming from the fact that neither agent owns the resource prior to the interaction or cares about property. A way to overcome this problem may be to introduce a strategy associated with respect for ownership rights, the Bourgeois, who behaves as a Dove or Hawk depending on whether or not the opponent owns the resource41. If we make the standard assumption that each member of a pair has a probability of 1/2 to be an owner, then in all interactions where a Bourgeois is involved there is a 50 percent chance that she will behave hawkishly (i.e., fight for control over the resource) and a 50 percent chance that she will act as a Dove.Let R and C denote the agent chosen as row and column player, respectively, and let (omega _R) and (omega _C) be the states of the world in which R and C owns the resource. The payoffs of the resulting Hawk–Dove–Bourgeois game are shown in Fig. 3. If agents behave as expected payoff maximizers, then All Bourgeois can be singled out as the unique asymptotically stable state. Under PIID, this is not so; depending on who owns the resource, an agent playing C against an opponent playing B may either fight or avoid conflict and let the opponent have the prize. It is easy to see that (F left( C, B mid omega _R right) = F left( B,C mid omega _C right) = d), meaning that the payoff from playing C against B, conditional on owning the resource, equals the payoff from playing B against C conditional on not being an owner. In contrast, the payoff from playing C against B, conditional on not owning the resource, is always worse than that of the opponent, i.e., (F left( C, B mid omega _C right) = b < c = F left( B, C mid omega _R right) ). Thus, in every state of the world, B (Hawk) yields a payoff that is greater or equal to that from C (Bourgeois). Moreover, since (F left( B,A right) > F left( A, B right) ) in both states of the world, strategy B is weakly supreme by Definition 4, and play unfolds as an escalation of hawkishness and fights.Figure 3The Hawk–Dove–Bourgeois game.Full size image More

  • in

    High-throughput 16S rRNA gene sequencing of the microbial community associated with palm oil mill effluents of two oil processing systems

    1.Igwe, J. C. & Onyegbado, C. C. A review of palm oil mill effluent (pome) water treatment. Glob. J. Environ. Res. 1, 54–62 (2007).
    Google Scholar 
    2.World Wild Fund (WWF). Overview WWF Statement on the 2020 Palm Oil Buyers Scorecard. https://www.worldwildlife.org/industries/palm-oil (2020). Accessed 22 Feb 2021.3.CNUCED. Huile de palme. New York. https://www.surunctad.org/commodities (2016). Accessed 10 Jan 2020.4.Hassan, M. A., Njeshu, G., Raji, A., Zhengwuvi, L. & Salisu, J. Small-Scale Palm Oil Processing in West and Central Africa: Development and Challenges. J. Appl. Sci. Environ. Sust. 2, 102–114 (2016).
    Google Scholar 
    5.Bala, J. D., Lalung, J., Al-Gheethi, A. A. S., Kaizar, H. & Ismail, N. Reduction of organic load and biodegradation of palm oil mill effluent by aerobic indigenous mixed microbial consortium isolated from palm oil mill effluent (POME). Water Conserv. Sci. Eng. 3, 139. https://doi.org/10.1007/s41101-018-0043-9 (2018).Article 

    Google Scholar 
    6.Nwoko, O. C., Ogunyemi, S. & Nkwocha, E. E. Effect of pre-treatment of palm oil mill effluent (POME) and cassava mill effluent (CME) on the growth of tomato (Lycopersicum esculentum). J. Appl. Sci. Environ. 14, 67. https://doi.org/10.4314/JASEM.V14I1.56493 (2010).Article 

    Google Scholar 
    7.Singh, G., Huan, L. K., Leng, T. & Kow D. L. Oil Palm and the Environment: A Malaysian Perspective. (Kuala Lumpur,
    Malaysia, Malaysian Oil Palm Growers’ Council, 1999).8.Poku, K. Small-Scale Palm Oil Processing in Africa. Fao Agricultural Services Bulletin 148. http://www.fao.org/3/Y4355E/y4355e00.htm (2002) (ISSN 1010-1365). Accessed 22 Feb 2021.9.Ibekwe, A. M., Grieve, C. M. & Lyon, S. R. Characterization of microbial communities and composition in constructed dairy wetland wastewater effluent. Appl. Environ. Microbiol. 69, 5060. https://doi.org/10.1128/AEM.69.9.5060-5069.2003 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Sharuddin, S. S. et al. Bacterial community shift revealed Chromatiaceae and Alcaligenaceae as potential bioindicators in the receiving river due to palm oil mill effluent final discharge. Ecol. Indic. 82, 526–529. https://doi.org/10.1016/j.ecolind.2017.07.038 (2017).CAS 
    Article 

    Google Scholar 
    11.CIAPOL. Arrêté N°011264/MINEEF/CIAPOL/SDIIC du 04 Nov.2008 portant réglementation des rejets et emissions des installations classées pour la protection de l’environnement, 11 (2008).
    12.Soleimaninanadegani, M. & Manshad, S. Enhancement of biodegradation of palm oil mill effluents by local isolated microorganisms. Int. Sch. Res. Notices. 2014, Article ID 727049. https://doi.org/10.1155/2014/727049 (2014).Article 

    Google Scholar 
    13.Nwachukwu, J. N., Njoku, U. O., Agu, C. V., Okonkwo, C. C. & Obidiegwu, C. J. Impact of palm oil mill effluent (POME) contamination on soil enzyme activities and physicochemical properties. Res. J. Environ. Toxicol. 12, 34–41. https://doi.org/10.3923/rjet.2018.34.41 (2018).CAS 
    Article 

    Google Scholar 
    14.Hii, K. L., Yeap, S. P. & Mashitah, M. D. Cellulase production from palm oil mill effluent in Malaysia: Economical and technical perspectives. Eng. Life Sci. 12, 7–28. https://doi.org/10.1002/elsc.201000228 (2012).CAS 
    Article 

    Google Scholar 
    15.Ma, Q. et al. Identification of the microbial community composition and structure of coal-mine wastewater treatment plants. Microbiol. Res. 175, 1–5. https://doi.org/10.1016/j.micres.2014.12.013 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Wang, X., Hu, M., Xia, Y., Wen, X. & Kun, D. K. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Bioresour. Technol. 78, 7042–7047. https://doi.org/10.1128/AEM.01617-12 (2012).CAS 
    Article 

    Google Scholar 
    17.Wang, Z. et al. Abundance and diversity of bacterial nitrifiers and denitrifiers and their functional genes in tannery wastewater treatment plants revealed by high-throughput sequencing. PLoS One 9, e113603. https://doi.org/10.1371/journal.pone.0113603 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Caporaso, J. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Rana, S., Singh, L., Wahid, Z. & Liu, H. A recent overview of palm oil mill effluent management via bioreactor configurations. Curr. Pollut. Rep. 3, 254–267. https://doi.org/10.1007/s40726-017-0068-2 (2017).CAS 
    Article 

    Google Scholar 
    20.Vuono, D. C. et al. Disturbance and temporal partitioning of the activated sludge metacommunity. ISME J. 9, 425–435. https://doi.org/10.1038/ismej.2014.139 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Jang, H. M., Kim, J. H., Ha, J. H. & Park, J. M. Bacterial and methanogenic archaeal communities during the single-stage anaerobic digestion of high-strength food wastewater. Bioresour. Technol. 165, 174–182. https://doi.org/10.1016/j.biortech.2014.02.028 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Mohd-Nor, D. et al. Dynamics of microbial populations responsible for biodegradation during the full-scale treatment of palm oil mill effluent. Microbes Environ. 34, 121. https://doi.org/10.1264/jsme2.ME18104 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Sun, Z. et al. Identification and characterization of the dominant lactic acid bacteria from kurut: The naturally fermented yak milk in Qinghai, China. J. Gen. Appl. Microbiol. 56, 1–10. https://doi.org/10.2323/jgam.56.1 (2010).Article 
    PubMed 

    Google Scholar 
    24.Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: Love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    Article 

    Google Scholar 
    25.Morrow, K. M., Fiore, C. L. & Lesser, M. P. Environmental drivers of microbial community shifts in the giant barrel sponge, Xestospongia muta, over a shallow to mesophotic depth gradient. Environ. Microbiol. 18, 2025–2038. https://doi.org/10.1111/1462-2920.13226 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    26.Parman, A., Isa, M. N. M., Farah, F. B., Noorbatcha, B. A. & Salleh, H. M. Comparative metagenomics analysis of palm oil mill effluent (pome) using three different bioinformatics pipelines. IIUM Eng. J. 20, 1–11. https://doi.org/10.31436/iiumej.v20i1.909 (2019).Article 

    Google Scholar 
    27.Mwaikono, K. S. et al. High-throughput sequencing of 16S rRNa gene reveals substantial bacterial diversity on the municipal dumpsite. BMC Microbiol. 16, 145. https://doi.org/10.1186/s12866-016-0758-8 (2016).Article 
    PubMed 

    Google Scholar 
    28.Silva-Bedoya, L. M., Sánchez-Pinzón, M. S., Cadavid-Restrepo, G. E. & Moreno-Herrera, C. X. Bacterial community analysis of an industrial wastewater treatment plant in Colombia with screening for lipid-degrading microorganisms. Microbiol. Res. 192, 313. https://doi.org/10.1016/j.micres.2016.08.006 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Lam, M. K. & Lee, K. T. Renewable and sustainable bioenergies production from palm oil mill effluent (POME): Win–win strategies toward better environmental protection. Biotechnol. Adv. 29, 124–141. https://doi.org/10.1016/j.biotechadv.2010.10.001 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Baharuddin, A. S., Wakisaka, M., Shirai, A.-A.Y.S., Abdul, R. & Hassan, M. A. Co-composting of empty fruit bunches and partially treated palm oil mill effluents in pilot scale. Int. J. Agric. Res. 4, 69–78. https://doi.org/10.3923/ijar.2009.69.78 (2009).CAS 
    Article 

    Google Scholar 
    31.Morikawa-Sakura, M. S. et al. Application of Lactobacillus plantarum ATCC 8014 for wastewater treatment in fisheries industry processing. Jpn. J. Water Treat. Biol. 49, 1–10. https://doi.org/10.2521/jswtb.49.1 (2013).Article 

    Google Scholar 
    32.Ren, Z., You, W., Wu, S., Poetsch, A. & Xu, C. Secretomic analyses of Ruminiclostridium papyrosolvens reveal its enzymatic basis for lignocellulose degradation. Biotechnol. Biofuels 12, 183. https://doi.org/10.1186/s13068-019-1522-8 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Lee, J. Z., Logan, A., Terry, S. & Spear, J. R. Microbial response to single-cell protein production and brewery wastewater treatment. Microb. Biotechnol. 8, 65. https://doi.org/10.1111/1751-7915.12128 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Ye, L. & Zhang, T. Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Appl. Microbiol. Biotechnol. 97, 2681–2690 (2013).CAS 
    Article 

    Google Scholar 
    35.Stubbs, S., Mao, L., Waddington, R. J. & Embery, G. Hydrolytic and depolymerising enzyme activity of Prevotella intermedia and Prevotella nigrescens. Oral Dis. 2, 272. https://doi.org/10.1111/j.1601-0825.1996.tb00237.x (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    36.Komagata, K., Iino, T. & Yamada, Y. The family Acetobacteraceae. In The Prokaryotes (eds Rosenberg, E. et al.) 3–78 (Springer, 2014).Chapter 

    Google Scholar 
    37.Pires, J. F., Cardoso, L. S., Schwan, R. F. & Silva, C. F. Diversity of microbiota found in coffee processing wastewater treatment plant. World J. Microbiol. Biotechnol. 33, 211. https://doi.org/10.1007/s11274-017-2372-9 (2017).Article 
    PubMed 

    Google Scholar 
    38.Song, Z. Q., Wang, F. P. & Zhi, X. Y. Bacterial and archaeal diversities in Yunnan and Tibetan hot springs, China. Environ. Microbiol. 15, 1160–1175 (2013).CAS 
    Article 

    Google Scholar 
    39.Li, J., Liu, R., Tao, Y. & Li, G. Archaea in wastewater treatment: Current research and emerging technology. Archaea 2018, 1. https://doi.org/10.1155/2018/6973294 (2018).CAS 
    Article 

    Google Scholar 
    40.Khan, M. A., Khan, S. T. & Sequeira, M. C. Comparative analysis of bacterial and archaeal population structure by illumina sequencing of 16S rRNA genes in three municipal anaerobic sludge digesters. Res. Sq. https://doi.org/10.21203/rs.3.rs-60183/v1 (2020).Article 

    Google Scholar 
    41.Mladenovska, Z., Dabrowski, S. & Ahring, B. K. Anaerobic digestion of manure and mixture of manure with lipids: Biogas reactor performance and microbial community analysis. Water Sci. Technol. 48, 271–278 (2013).Article 

    Google Scholar 
    42.Gerardi, M. H. Wastewater Bacteria (Wiley, 2006).Book 

    Google Scholar 
    43.Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414. https://doi.org/10.1111/1462-2920.13023 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Andrews, S. FastQC: a quality control tool for high throughput sequence data (Online). https://www.bioinformatics.babraham.ac.uk/projects/fastqc (2010). Accessed 15 Sept 2019.45.R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). Accessed 8 Jan 2020.46.Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods 13, 581. https://doi.org/10.1038/nmeth.3869 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590. https://doi.org/10.1093/nar/gks1219 (2012).CAS 
    Article 

    Google Scholar 
    48.Paradis, E., Julien, C. & Korbinian, S. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289. https://doi.org/10.1093/bioinformatics/btg412 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, 61217. https://doi.org/10.1371/journal.pone.0061217 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Oksanen, J. F. et al. vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-project.org/package=vegan (2018). Accessed 8 Jan 2020.51.Lahti, L. & Sudarshan, S. Tools for microbiome analysis in R. Version 1.10.0. https://www.microbiome.github.com/microbiome (2017). Accessed 8 Jan 2020.52.Kenkel, N. C. & Orloci, L. Applying metric and nonmetric multidimensional scaling to ecological studies: Some new results. Ecology 67, 919. https://doi.org/10.2307/1939814 (1986).Article 

    Google Scholar 
    53.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar  More

  • in

    Diversity increases yield but reduces harvest index in crop mixtures

    1.Weiner, J. Plant Reproductive Ecology: Patterns and Strategies (Oxford Univ. Press, 1988).2.Ashman, T. L. & Schoen, D. J. How long should flowers live? Nature 371, 788–791 (1994).CAS 
    Article 

    Google Scholar 
    3.Donald, C. M. The breeding of crop ideotypes. Euphytica 17, 385–403 (1968).Article 

    Google Scholar 
    4.Unkovich, M., Baldock, J. & Forbes, M. Variability in harvest index of grain crops and potential significance for carbon accounting: examples from Australian agriculture. Adv. Agron. 105, 173–219 (2010).Article 

    Google Scholar 
    5.Tamagno, S., Sadras, V. O., Ortez, O. A. & Ciampitti, I. A. Allometric analysis reveals enhanced reproductive allocation in historical set of soybean varieties. Field Crop Res. 248, 107717 (2020).Article 

    Google Scholar 
    6.Hector, A. et al. Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Grace, J. B. et al. Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature 529, 390–393 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Letourneau, D. K. et al. Does plant diversity benefit agroecosystems? A synthetic review. Ecol. Appl. 21, 9–21 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Li, C. et al. Syndromes of production in intercropping impact yield gains. Nat. Plants 6, 653–660 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.McConnaughay, K. D. M. & Coleman, J. S. Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology 80, 2581–2593 (1999).Article 

    Google Scholar 
    12.Bonser, S. P. & Aarssen, L. W. Allometry and plasticity of meristem allocation throughout development in Arabidopsis thaliana. J. Ecol. 89, 72–79 (2001).Article 

    Google Scholar 
    13.Reekie, E. G. & Bazzaz, F. A. Reproductive Allocation in Plants (Elsevier Academic Press, 2005).14.Wang, T. H., Zhou, D. W., Wang, P. & Zhang, H. X. Size-dependent reproductive effort in Amaranthus retroflexus: the influence of planting density and sowing date. Can. J. Bot. 84, 485–492 (2006).Article 

    Google Scholar 
    15.Gurr, G. M. et al. Multi-country evidence that crop diversification promotes ecological intensification of agriculture. Nat. Plants 2, 16014 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Li, C. et al. Yield gain, complementarity and competitive dominance in intercropping in China: a meta-analysis of drivers of yield gain using additive partitioning. Eur. J. Agron. 113, 125987 (2020).CAS 
    Article 

    Google Scholar 
    17.Tilman, D. et al. Diversity and productivity in a long-term grassland experiment. Science 294, 843–845 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Li, L., Tilman, D., Lambers, H. & Zhang, F. S. Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytol. 203, 63–69 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Brooker, R. W. et al. Improving intercropping: a synthesis of research in agronomy, plant physiology and ecology. New Phytol. 206, 107–117 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Martin-Guay, M. O., Paquette, A., Dupras, J. & Rivest, D. The new green revolution: sustainable intensification of agriculture by intercropping. Sci. Total Environ. 615, 767–772 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Bazzaz, F. A., Chiariello, N. R., Coley, P. D. & Pitelka, L. F. Allocating resources to reproduction and defense. Bioscience 37, 58–67 (1987).Article 

    Google Scholar 
    23.Hartnett, D. C. Size-dependent allocation to sexual and vegetative reproduction in 4 clonal composites. Oecologia 84, 254–259 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Vega, C. R. C., Sadras, V. O., Andrade, F. H. & Uhart, S. A. Reproductive allometry in soybean, maize and sunflower. Ann. Bot. 85, 461–468 (2000).Article 

    Google Scholar 
    25.Gifford, R. M., Thorne, J. H., Hitz, W. D. & Giaquinta, R. T. Crop productivity and photoassimilate partitioning. Science 225, 801–808 (1984).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Andrade, F. H. et al. Kernel number determination in maize. Crop Sci. 39, 453–459 (1999).Article 

    Google Scholar 
    27.Milla, R., Osborne, C. P., Turcotte, M. M. & Violle, C. Plant domestication through an ecological lens. Trends Ecol. Evol. 30, 463–469 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Niklas, K. J. Plant Allometry: The Scaling of Form and Process (Univ. of Chicago Press, 1994).29.Echarte, L. & Andrade, F. H. Harvest index stability of Argentinean maize hybrids released between 1965 and 1993. Field Crop Res. 82, 1–12 (2003).Article 

    Google Scholar 
    30.Weiner, J., Campbell, L. G., Pino, J. & Echarte, L. The allometry of reproduction within plant populations. J. Ecol. 97, 1220–1233 (2009).Article 

    Google Scholar 
    31.Sugiyama, S. & Bazzaz, F. A. Size dependence of reproductive allocation: the influence of resource availability, competition and genetic identity. Funct. Ecol. 12, 280–288 (1998).Article 

    Google Scholar 
    32.Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. 6, 207–215 (2004).Article 

    Google Scholar 
    33.Weiner, J. et al. Is reproductive allocation in Senecio vulgaris plastic? Botany 87, 475–481 (2009).Article 

    Google Scholar 
    34.Schmid, B. & Weiner, J. Plastic relationships between reproductive and vegetative mass in Solidago altissima. Evolution 47, 61–74 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Schmid, B. & Pfisterer, A. B. Species vs community perspectives in biodiversity experiments. Oikos 100, 620–621 (2003).Article 

    Google Scholar 
    36.Lipowsky, A. et al. Plasticity of functional traits of forb species in response to biodiversity. Perspect. Plant Ecol. Evol. Syst. 17, 66–77 (2015).Article 

    Google Scholar 
    37.Abakumova, M., Zobel, K., Lepik, A. & Semchenko, M. Plasticity in plant functional traits is shaped by variability in neighbourhood species composition. New Phytol. 211, 455–463 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Zhu, J. Q., van der Werf, W., Anten, N. P. R., Vos, J. & Evers, J. B. The contribution of phenotypic plasticity to complementary light capture in plant mixtures. New Phytol. 207, 1213–1222 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. P. & Schmid, B. Can niche plasticity promote biodiversity-productivity relationships through increased complementarity? Ecology 98, 1104–1116 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Eziz, A. et al. Drought effect on plant biomass allocation: a meta-analysis. Ecol. Evol. 7, 11002–11010.41.Joshi, J. et al. Local adaptation enhances performance of common plant species. Ecol. Lett. 4, 536–544 (2001).Article 

    Google Scholar 
    42.Li, J. et al. Variations in maize dry matter, harvest index, and grain yield with plant density. Agron. J. 107, 829–834 (2015).Article 

    Google Scholar 
    43.Gou, F., van Ittersum, M. K., Wang, G. Y., van der Putten, P. E. L. & van der Werf, W. Yield and yield components of wheat and maize in wheat-maize intercropping in the Netherlands. Eur. J. Agron. 76, 17–27.44.Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778.45.Roscher, C. & Schumacher, J. Positive diversity effects on productivity in mixtures of arable weed species as related to density–size relationships. J. Plant Ecol. 9, 792–804 (2016).Article 

    Google Scholar 
    46.Roscher, C. et al. Overyielding in experimental grassland communities – irrespective of species pool or spatial scale. Ecol. Lett. 8, 419–429.47.Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199–202 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Schmid, B., Baruffol, M., Wang, Z. & Niklaus, P. A. A guide to analyzing biodiversity experiments. J. Plant Ecol. 10, 91–110.49.Rosenthal, R. & Rosnow, R. L. Contrast Analysis: Focused Comparisons in the Analysis of Variance (Cambridge Univ. Press, 2010).50.Díaz-Sierra, R., Verwijmeren, M., Rietkerk, M., de Dios, V. R. & Baudena, M. A new family of standardized and symmetric indices for measuring the intensity and importance of plant neighbour effects. Methods Ecol. Evol. 8, 580–591 (2017).Article 

    Google Scholar 
    51.Poorter, H. & Garnier, E. in Handbook of Functional Plant Ecology (eds Pugnaire, F. I. & Valladares, F.) 81–120 (Marcel Dekker, 1999).52.Grime, J. P. Evidence for existence of 3 primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111, 1169–1194 (1977).Article 

    Google Scholar 
    53.Wilson, P. J., Thompson, K. & Hodgson, J. G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytol. 143, 155–162 (1999).Article 

    Google Scholar 
    54.Poorter, H., Niinemets, U., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lavorel, S. & Grigulis, K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J. Ecol. 100, 128–140 (2012).Article 

    Google Scholar 
    56.Conti, G. & Díaz, S. Plant functional diversity and carbon storage – an empirical test in semi‐arid forest ecosystems. J. Ecol. 101, 18–28 (2013).CAS 
    Article 

    Google Scholar 
    57.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019); https://www.r-project.org/58.Lüdecke, D. ggeffects: Tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).Article 

    Google Scholar 
    59.Lüdecke, D. sjPlot: data visualization for statistics in social science. Zenodo https://doi.org/10.5281/zenodo.1308157 (2018). More