1.deMenocal, P. B. & Stringer, C. Climate and the peopling of the world. Nature 538, 49–50 (2016).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
2.Pisor, A. C. & Jones, J. H. Human adaptation to climate change: an introduction to the special issue. Am. J. Hum. Biol. n/a, e23530 (2020).3.Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the Age of Humans. PNAS 117, 8250–8253 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
4.Shennan, S. & Sear, R. Archaeology, demography and life history theory together can help us explain past and present population patterns. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190711 (2021).CAS
Article
Google Scholar
5.Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evolution 5, 273–284 (2021).Article
Google Scholar
6.Bocquet‐Appel, J. Recent Advances in Paleodemography (Springer, Dordrecht, 2008).7.Chamberlain, A. T. Demography in Archaeology (Cambridge University Press, 2006).8.Drennan, R. D., Berrey, C. A. & Peterson, C. E. Regional Settlement Demography in Archaeology (Eliot Werner Publications, 2015).9.Kintigh, K. W. et al. Grand challenges for archaeology. PNAS 111, 879–880 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Bocquet‐Appel, J. Paleoanthropological traces of a neolithic demographic transition. Curr. Anthropol. 43, 637–650 (2002).Article
Google Scholar
11.Crema, E. R. & Kobayashi, K. A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. J. Archaeol. Sci. 117, 105136 (2020).Article
Google Scholar
12.Schmidt, I. et al. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190714 (2021).Article
Google Scholar
13.Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
14.White, A. J. et al. An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois. J. Archaeol. Sci. 93, 129–134 (2018).CAS
Article
Google Scholar
15.Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 1–8 (2013).ADS
Article
CAS
Google Scholar
16.Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).Article
Google Scholar
17.Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14 C dates suggests regional divergences in the population dynamics of the jomon period in Eastern Japan. PLoS ONE 11, e0154809 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
18.Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).CAS
Article
Google Scholar
19.Chaput, M. A. & Gajewski, K. Radiocarbon dates as estimates of ancient human population size. Anthropocene 15, 3–12 (2016).Article
Google Scholar
20.Carleton, W. C. Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes. Journal of Quaternary Science 36, 110–123 (2021).21.Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: Biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).Article
Google Scholar
22.Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 0959683620981700. https://doi.org/10.1177/0959683620981700 (2020).23.Crema, E. R. & Bevan, A. Inference from large sets of radiocarbon dates: software and methods. Radiocarbon 63, 23–39 (2021).Article
Google Scholar
24.Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).Article
Google Scholar
25.Ward, I. & Larcombe, P. Sedimentary unknowns constrain the current use of frequency analysis of radiocarbon data sets in forming regional models of demographic change. Geoarchaeology 36, 546–570 (2021).Article
Google Scholar
26.de Souza, J. G. & Riris, P. Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. J. Archaeol. Sci. 125, 105293 (2021).Article
Google Scholar
27.Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
28.Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016).ADS
CAS
PubMed
Article
Google Scholar
29.Lima, M. et al. Ecology of the collapse of Rapa Nui society. Proc. R. Soc. B: Biol. Sci. 287, 20200662 (2020).CAS
Article
Google Scholar
30.Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
31.Riris, P. Dates as data revisited: a statistical examination of the Peruvian preceramic radiocarbon record. J. Archaeol. Sci. 97, 67–76 (2018).Article
Google Scholar
32.Riris, P. & Arroyo-Kalin, M. Widespread population decline in South America correlates with mid-Holocene climate change. Sci. Rep. 9, 6850 (2019).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
33.Crema, E. R. & Shoda, S. A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). PLOS ONE 16, e0251695 (2021).34.Timpson, A., Barberena, R., Thomas, M. G., Méndez, C. & Manning, K. Directly modelling population dynamics in the South American Arid Diagonal using 14 C dates. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190723 (2021).CAS
Article
Google Scholar
35.Bernabeu Aubán, J., García Puchol, O., Barton, M., McClure, S. & Pardo Gordó, S. Radiocarbon dates, climatic events, and social dynamics during the Early Neolithic in Mediterranean Iberia. Quat. Int. 403, 201–210 (2016).Article
Google Scholar
36.Bevan, A. et al. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proc. Natl Acad. Sci. USA 114, E10524–E10531 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Bird, D. et al. A first empirical analysis of population stability in North America using radiocarbon records. Holocene 30, 1345–1359 (2020).ADS
Article
Google Scholar
38.Capuzzo, G., Zanon, M., Corso, M. D., Kirleis, W. & Barceló, J. A. Highly diverse Bronze Age population dynamics in Central-Southern Europe and their response to regional climatic patterns. PLoS ONE 13, e0200709 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
39.de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).PubMed
Article
Google Scholar
40.Jørgensen, E. K. The palaeodemographic and environmental dynamics of prehistoric Arctic Norway: an overview of human-climate covariation. Quat. Int. 549, 36–51 (2020).Article
Google Scholar
41.Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. PNAS 110, 443–447 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
42.Roberts, N. et al. Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean. Quat. Sci. Rev. 184, 47–67 (2018).ADS
Article
Google Scholar
43.Wang, C., Lu, H., Zhang, J., Gu, Z. & He, K. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years. Quat. Sci. Rev. 98, 45–59 (2014).ADS
Article
Google Scholar
44.Warden, L. et al. Climate induced human demographic and cultural change in northern Europe during the mid-Holocene. Sci. Rep. 7, 15251 (2017).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
45.Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
46.Weninger, B., Clare, L., Jöris, O., Jung, R. & Edinborough, K. Quantum theory of radiocarbon calibration. World Archaeol. 47, 543–566 (2015).Article
Google Scholar
47.Weninger, B. & Edinborough, K. Bayesian 14C-rationality, Heisenberg uncertainty, and Fourier Transform: the beauty of radiocarbon calibration. Doc. Praehist. 47, 536–559 (2020).Article
Google Scholar
48.Tavaré, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997).PubMed
PubMed Central
Article
Google Scholar
49.Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population. Genet. Genet. 162, 2025–2035 (2002).
Google Scholar
50.Carrignon, S., Brughmans, T. & Romanowska, I. Tableware trade in the Roman East: exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation. PLoS ONE 15, e0240414 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
51.Crema, E. R., Edinborough, K., Kerig, T. & Shennan, S. J. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. J. Archaeol. Sci. 50, 160–170 (2014).Article
Google Scholar
52.Crema, E. R., Kandler, A. & Shennan, S. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions. Sci. Rep. 6, 39122 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
53.Rubio-Campillo, X. Model selection in historical research using approximate Bayesian computation. PLoS ONE 11, e0146491 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
54.Tsutaya, T., Shimomi, A., Fujisawa, S., Katayama, K. & Yoneda, M. Isotopic evidence of breastfeeding and weaning practices in a hunter–gatherer population during the Late/Final Jomon period in eastern Japan. J. Archaeol. Sci. 76, 70–78 (2016).CAS
Article
Google Scholar
55.Porčić, M. & Nikolić, M. The Approximate Bayesian Computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. Archaeol. Anthropol. Sci. 1–18. https://doi.org/10.1007/s12520-014-0223-2 (2015).56.Porčić, M., Blagojević, T., Pendić, J. & Stefanović, S. The Neolithic Demographic Transition in the Central Balkans: population dynamics reconstruction based on new radiocarbon evidence. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190712 (2021).Article
CAS
Google Scholar
57.DiNapoli, R. J., Rieth, T. M., Lipo, C. P. & Hunt, T. L. A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). J. Archaeol. Sci. 116, 105094 (2020).Article
Google Scholar
58.Hunt, T. L. & Lipo, C. The Archaeology of Rapa Nui (Easter Island). in The Oxford Handbook of Prehistoric Oceania (eds. Cochrane, E. E. & Hunt, T. L.) 416–449 (Oxford University Press, 2018).59.Kirch, P. V. The Evolution of Polynesian Chiefdoms (Cambridge University Press, 1984).60.Ponting, C. A Green History of the World: The Environment and the Collapse of Great Civilizations. (St. Martin’s Press, 1991).61.Boersema, J. J. The Survival of Easter Island: Dwindling Resources and Cultural Resilience (Cambridge University Press, 2015).62.Boersema, J. J. An earthly paradise? Easter Island (Rapa Nui) as seen by the eighteenth-century European explorers. in Cultural and Environmental Change on Rapa Nui (eds. Haoa Cardinali, S. et al.) 157–178 (Routledge, 2018).63.Boersema, J. J. & Huele, R. Pondering the population numbers of Easter Island’s Past. in Easter Island and the Pacific: Cultural and Environmental Dynamics. In Proc 9th International Conference on Easter Island and the Pacific, Held in the Ethnological Museum, Berlin, Germany (eds. Vogt, B. et al.) 83–92 (Rapa Nui Press, 2019).64.Puleston, C. O. et al. Rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 5, 1–14 (2017).Article
Google Scholar
65.Lipo, C. P., DiNapoli, R. J. & Hunt, T. L. Commentary: rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 25, 1–3 (2018).66.Hunt, T. L. Rethinking Easter Island’s ecological catastrophe. J. Archaeol. Sci. 34, 485–502 (2007).Article
Google Scholar
67.Rull, V. The deforestation of Easter Island. Biol. Rev. 95, 124–141 (2020).Article
Google Scholar
68.Brandt, G. & Merico, A. The slow demise of Easter Island: insights from a modeling investigation. Front. Ecol. Evol. 13, 1–12 (2015).69.Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Viking, 2005).70.Bahn, P. & Flenley, J. Easter Island, Earth Island: the Enigmas of Rapa Nui (Rowman & Littlefield, 2017).71.Rull, V. Natural and anthropogenic drivers of cultural change on Easter Island: review and new insights. Quat. Sci. Rev. 150, 31–41 (2016).ADS
Article
Google Scholar
72.Cañellas-Boltà, N. et al. Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments. Quat. Sci. Rev. 72, 36–48 (2013).ADS
Article
Google Scholar
73.Rull, V. Drought, freshwater availability and cultural resilience on Easter Island (SE Pacific) during the Little Ice Age. Holocene. https://doi.org/10.1177/0959683619895587 (2020).74.Yan, H. et al. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat. Geosci. 4, 611–614 (2011).ADS
CAS
Article
Google Scholar
75.Mulrooney, M. A. An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. J. Archaeol. Sci. 40, 4377–4399 (2013).Article
Google Scholar
76.Stevenson, C. M. et al. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact. Proc. Natl Acad. Sci. USA 112, 1025–1030 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
77.DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. Revisiting warfare, monument destruction, and the ‘Huri Moai’ phase in Rapa Nui (Easter Island) culture history. Journal of Pacific Archaeology 12, 1–24 (2021).78.Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).CAS
Article
Google Scholar
79.Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759–778 (2020).CAS
Article
Google Scholar
80.Bork, H.-R., Mieth, A. & Tschochner, B. Nothing but stones? A review of the extent and technical efforts of prehistoric stone mulching on Rapa Nui. Rapa Nui J. 18, 10–14 (2004).
Google Scholar
81.Ladefoged, T. N. et al. Soil nutrient analysis of Rapa Nui gardening. Archaeol. Ocean. 45, 80–85 (2010).Article
Google Scholar
82.Ladefoged, T. N., Flaws, A. & Stevenson, C. M. The distribution of rock gardens on Rapa Nui (Easter Island) as determined from satellite imagery. J. Archaeol. Sci. 40, 1203–1212 (2013).Article
Google Scholar
83.Mieth, A. & Bork, H. R. History, origin and extent of soil erosion on Easter Island (Rapa Nui). Catena 63, 244–260 (2005).Article
Google Scholar
84.Stevenson, C. M., Jackson, T. L., Mieth, A., Bork, H.-R. & Ladefoged, T. N. Prehistoric and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui), Chile. Antiquity 80, 919–936 (2006).Article
Google Scholar
85.Wozniak, J. A. Subsistence strategies on Rapa Nui (Easter Island): prehistoric gardening practices on Rapa Nui and how they relate to current farming practices. in Cultural and Environmental Change on Rapa Nui (eds. Haoa-Cardinali, S. et al.) 87–112 (Routledge, 2018).86.Tromp, M. & Dudgeon, J. V. Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J. Archaeol. Sci. 54, 54–63 (2015).Article
Google Scholar
87.Brosnan, T., Becker, M. W. & Lipo, C. P. Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile. Hydrogeol. J. 27, 519–534 (2019).ADS
CAS
Article
Google Scholar
88.DiNapoli, R. J. et al. Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLoS ONE 14, e0210409 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
89.Hixon, S., DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. The ethnohistory of freshwater use on Rapa Nui (Easter Island, Chile). J. Polynesian Soc. 128, 163–189 (2019).Article
Google Scholar
90.Brown, A. A. & Crema, E. R. Māori population growth in pre-contact New Zealand: regional population dynamics inferred from summed probability distributions of radiocarbon dates. J. Isl. Coast. Archaeol. 0, 1–19 (2019).
Google Scholar
91.McFadden, C., Walter, R., Buckley, H. & Oxenham, M. F. Temporal trends in the Colonisation of the Pacific: Palaeodemographic Insights. J. World Prehist. https://doi.org/10.1007/s10963-021-09152-w (2021).Article
Google Scholar
92.Kirch, P. V. & Rallu, J.-L. The Growth and Collapse of Pacific Island Societies: Archaeological and Demographic Perspectives. (University of Hawai’i Press, 2007).93.Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).PubMed
PubMed Central
Article
Google Scholar
94.Sherwood, S. C. et al. New excavations in Easter Island’s statue quarry: Soil fertility, site formation and chronology. J. Archaeological Sci. 111, 104994 (2019).Article
Google Scholar
95.Simpson, D. F. Jr. & Dussubieux, L. A collapsed narrative? Geochemistry and spatial distribution of basalt quarries and fine–grained artifacts reveal communal use of stone on Rapa Nui (Easter Island). J. Archaeol. Sci.: Rep. 18, 370–385 (2018).
Google Scholar
96.Bevan, A. & Crema, E. R. Modifiable reporting unit problems and time series of long-term human activity. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190726 (2021).CAS
Article
Google Scholar
97.Davies, B., Holdaway, S. J. & Fanning, P. C. Modelling the palimpsest: an exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. Holocene 26, 450–463 (2016).ADS
Article
Google Scholar
98.Commendador, A. S., Dudgeon, J. V., Fuller, B. T. & Finney, B. P. Radiocarbon dating human skeletal material on Rapa Nui: evaluating the effect of uncertainty in marine-derived carbon. Radiocarbon 56, 277–294 (2014).CAS
Article
Google Scholar
99.Stevenson, C. M., Williams, C., Carpenter, E., Hunt, C. S. & Novak, S. W. Architecturally modified caves on Rapa Nui: post-European contact ritual spaces? Rapa Nui J. 32, 1–36 (2019).Article
Google Scholar
100.Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).CAS
Article
Google Scholar
101.Beck, J. W., Hewitt, L., Burr, G. S., Loret, J. & Hochstetter, F. T. Mata ki te rangi: eyes towards the heavens. in Easter Island: Scientific Exploration Into the World’s Environmental Problems in Microcosm (eds. Loret, J. & Tanacredi, J. T.) 93–112 (Kluwer Academic/Plenum Publishers, 2003).102.Burr, G. S. et al. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51, 319–335 (2009).CAS
Article
Google Scholar
103.DiNapoli, R. J. et al. Marine reservoir corrections for the Caribbean demonstrate high intra- and inter-island variability in local reservoir offsets. Quat. Geochronol. 61, 101126 (2021).Article
Google Scholar
104.Surovell, T. A., Byrd Finley, J., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).Article
Google Scholar
105.Sunnåker, M. et al. Approximate Bayesian computation. PLoS Comput. Biol. 9, e1002803 (2013).MathSciNet
PubMed
PubMed Central
Article
CAS
Google Scholar
106.Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).PubMed
Article
Google Scholar
107.Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiquity 52, 55–73 (1987).Article
Google Scholar
108.R Core Team. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). More