Phylogeography of Prunus armeniaca L. revealed by chloroplast DNA and nuclear ribosomal sequences
1.Meng, H. H. & Zhang, M. L. Diversification of plant species in arid Northwest China: species-level phylogeographical history of Lagochilus Bunge ex Bentham (Lamiaceae). Mol. Phylogenet. Evol. 68, 398–409. https://doi.org/10.1111/jse.12088 (2015).Article
Google Scholar
2.Pennington, R. T. et al. Contrasting plant diversification histories within the Andean biodiversity hotspot. Proc. Natl. Acad. Sci. USA 107, 13783–13787. https://doi.org/10.1073/pnas.1001317107 (2010).ADS
Article
PubMed
PubMed Central
Google Scholar
3.Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 103, 10334–10339. https://doi.org/10.1073/pnas.0601928103 (2006).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
4.Johansson, U. S. et al. Build-up of the Himalayan avifauna through immigration: a biogeographical analysis of the Phylloscopus and Seicercus warblers. Evolution 61, 324–333. https://doi.org/10.1111/j.1558-5646.2007.00024.x (2007).Article
PubMed
Google Scholar
5.Hughes, C. E. & Atchison, G. W. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 207, 275–282. https://doi.org/10.1111/nph.13230 (2015).Article
PubMed
Google Scholar
6.Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 1430–1442. https://doi.org/10.1111/nph.13920 (2016).Article
PubMed
PubMed Central
Google Scholar
7.Ebersbach, J. et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J. Biogeogr. 44, 900–910. https://doi.org/10.1111/jbi.12899 (2017).Article
Google Scholar
8.Zhang, J. Y. & Zhang, Z. In Flora of Chinese Fruit Trees 61–62 (China Forestry Press, 2003).9.Su, Z., Zhang, M. & Sanderson, S. C. Chloroplast phylogeography of Helianthemum songaricum (Cistaceae) from northwestern China: implications for preservation of genetic diversity. Conserv. Genet. 12, 1525–1537. https://doi.org/10.1007/s10592-011-0250-9 (2011).Article
Google Scholar
10.Xie, K. Q. & Zhang, M. L. The effect of Quaternary climatic oscillations on Ribes meyeri (Saxifragaceae) in northwestern China. Biochem. Syst. Ecol. 50, 39–47. https://doi.org/10.1016/j.bse.2013.03.031 (2013).CAS
Article
Google Scholar
11.Salvi, D., Schembri, P., Sciberras, A. & Harris, D. Evolutionary history of the maltese wall lizard Podarcis filfolensis: insights on the ‘Expansion–Contraction’ model of Pleistocene biogeography. Mol. Ecol. 23, 1167–1187. https://doi.org/10.1111/mec.12668 (2014).Article
PubMed
Google Scholar
12.Liu, J. Q., Sun, Y. S., Ge, X. J., Gao, L. M. & Qiu, Y. X. Phylogeographic studies of plants in China: advances in the past and directions in the future. J. Syst. Evol. 50, 267–275. https://doi.org/10.1111/j.1759-6831.2012.00214.x (2012).Article
Google Scholar
13.Hewitt, G. The genetic legacy of the quaternary ice ages. Nature 405, 907–913. https://doi.org/10.1038/35016000 (2000).ADS
CAS
Article
PubMed
Google Scholar
14.Hewitt, G. M. The structure of biodiversity-insights from molecular phylogeography. Front. Zool. 1, 1–16. https://doi.org/10.1186/1742-9994-1-4 (2004).Article
Google Scholar
15.Willis, K. J. & Niklas, K. J. The role of quaternary environmental change in plant macroevolution: the exception or the rule?. Philos. Trans. R. Soc. Lond. B 359, 159–172. https://doi.org/10.1098/rstb.2003.1387 (2004).Article
Google Scholar
16.Schmitt, T. Molecular biogeography of Europe: pleistocene cycles and postglacial trends. Front. Zool. 4, 11. https://doi.org/10.1186/1742-9994-4-11 (2007).Article
PubMed
PubMed Central
Google Scholar
17.Shen, L., Chen, X. Y. & Li, Y. Y. Glacial refugia and postglacial recolonization patterns of organisms. Acta Ecol. Sin. 22, 1983–1990. https://doi.org/10.1088/1009-1963/11/5/313 (2002).Article
Google Scholar
18.Schonswetter, P., Popp, M. & Brochmann, C. Rare arctic-alpine plants of the European Alps have different immigration histories: the snow bed species Minuartia biflora and Ranunculus pygmaeus. Mol. Ecol. 15, 709–720. https://doi.org/10.1111/j.1365-294X.2006.02821.x (2006).CAS
Article
PubMed
Google Scholar
19.Guo, Y. P., Zhang, R., Chen, C. Y., Zhou, D. W. & Liu, J. Q. Allopatric divergence and regional range expansion of Juniperus sabina in China. J. Syst. Evol. 48, 153–160. https://doi.org/10.1111/j.1759-6831.2010.00073.x (2010).Article
Google Scholar
20.Jaramillo-Correa, J. P., Beaulieu, J. & Bousquet, J. Variation in mitochondrial DNA reveals multiple distant glacial refugia in black spruce (Picea mariana), a transcontinental North American conifer. Mol. Ecol. 13, 2735–2747. https://doi.org/10.1111/j.1365-294X.2004.02258.x (2004).CAS
Article
PubMed
Google Scholar
21.Afzal-Rafii, Z. & Dodd, R. S. Chloroplast DNA supports a hypothesis of glacial refugia over postglacial recolonization in disjunct populations of black pine (Pinus nigra) in western Europe. Mol. Ecol. 16, 723–736. https://doi.org/10.1111/j.1365-294X.2006.03183.x (2007).CAS
Article
PubMed
Google Scholar
22.Anderson, L., Hu, F., Nelson, D., Petit, R. & Paige, K. Ice-age endurance: DNA evidence of a white spruce refugium in Alaska. Proc. Natl. Acad. Sci. USA 103, 12447–12450. https://doi.org/10.1073/pnas.0605310103 (2006).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
23.Volkova, P. A., Burlakov, Y. A. & Schanzer, I. A. Genetic variability of Prunus padus (Rosaceae) elaborates “a new Eurasian phylogeographical paradigm”. Plant Syst. Evol. 306, 1–9. https://doi.org/10.1007/s00606-020-01644-0 (2020).CAS
Article
Google Scholar
24.Xu, Z. & Zhang, M. L. Phylogeography of the arid shrub Atraphaxis frutescens (Polygonaceae) in northwestern China: evidence from cpDNA sequences. J. Hered. 106, 184–195. https://doi.org/10.1093/jhered/esu078 (2015).CAS
Article
PubMed
Google Scholar
25.Rehder, A. Manual of Cultivated Trees and Shrubs Hardy in North America, Exclusive of the Subtropical and Warmer Temperate Regions 345–346 (Macmillan, 1927).26.Zhebentyayeva, T. N., Ledbetter, C., Burgos, L., & Llácer, G. Fruit Breeding 415–458 (Springer, 2012).27.Zhebentyayeva, T. N., Reighard, G. L., Gorina, V. M. & Abbott, A. G. Simple sequence repeat (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor. Appl. Genet. 106, 435–444. https://doi.org/10.1007/s00122-002-1069-z (2003).CAS
Article
PubMed
Google Scholar
28.Schaal, B. A., Hayworth, D. A., Olsen, K. M., Rauscher, J. T. & Smith, W. A. Phylogeographic studies in plants: problems and prospects. Mol. Ecol. 7, 465–474. https://doi.org/10.1046/j.1365-294x.1998.00318.x (1998).Article
Google Scholar
29.Avise, J. C. Phylogeography: retrospect and prospect. J. Biogeogr. 36, 3–15. https://doi.org/10.1111/j.1365-2699.2008.02032.x (2009).Article
Google Scholar
30.Poudel, R. C., Möller, M., Li, D. Z., Shah, A. & Gao, L. M. Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (syn. Taxus fuana) in Pakistan. Tree Genet. Genom. 10, 653–665. https://doi.org/10.1007/s11295-014-0711-7 (2014).Article
Google Scholar
31.Dutech, C., Maggia, L. & Joly, H. Chloroplast diversity in Vouacapoua americana (Caesalpiniaceae), a neotropical forest tree. Mol. Ecol. 9, 1427–1432. https://doi.org/10.1046/j.1365-294x.2000.01027.x (2000).CAS
Article
PubMed
Google Scholar
32.Li, Y. et al. Rapid intraspecific diversification of the Alpine species Saxifraga sinomontana (Saxifragaceae) in the Qinghai-Tibetan Plateau and Himalayas. Front. Genet. 9, 381. https://doi.org/10.3389/fgene.2018.00381 (2018).Article
PubMed
PubMed Central
Google Scholar
33.Zhang, Q. P. & Liu, W. S. Advances of the apricot resources collection, evaluation and germplasm enhancement. Acta Hortic. Sin. 45, 1642–1660. https://doi.org/10.16420/j.issn.0513-353x.2017-0654 (2018).Article
Google Scholar
34.Hu, Z. B. et al. Population genomics of pearl millet (Pennisetum glaucum (L). R. Br.): comparative analysis of global accessions and Senegalese landraces. BMC Genomics 16, 1048. https://doi.org/10.1186/s12864-015-2255-0 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
35.White, T. J., Bruns, T., Lee, S. & Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. Guide Methods Appl. 18, 315–322 (1990).
Google Scholar
36.Dong, W. et al. ycf1, the most promising plastid DNA barcode of land plants. Sci. Rep. 5, 8348. https://doi.org/10.1038/srep08348 (2015).CAS
Article
PubMed
PubMed Central
Google Scholar
37.Bortiri, E. et al. Phylogeny and systematics of Prunus (Rosaceae) as determined by sequence analysis of ITS and the chloroplast trnL-trnF spacer DNA. Syst. Bot. 26, 797–807. https://doi.org/10.1043/0363-6445-26.4.797 (2001).Article
Google Scholar
38.Zhang, Q. Y. et al. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front Plant Sci. 9, 1876. https://doi.org/10.3389/fpls.2018.01876 (2018).Article
PubMed
PubMed Central
Google Scholar
39.Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sumo. Ser. 41, 95–98. https://doi.org/10.1021/bk-1999-0734.ch008 (1999).CAS
Article
Google Scholar
40.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673 (1994).CAS
Article
PubMed
PubMed Central
Google Scholar
41.Simmons, M. P. & Ochoterena, H. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49, 369–381. https://doi.org/10.1080/10635159950173889 (2000).CAS
Article
PubMed
Google Scholar
42.Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
43.Clement, M., Posada, D. & Crandall, K. A. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x (2000).CAS
Article
PubMed
Google Scholar
44.Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452. https://doi.org/10.1093/bioinformatics/btp187 (2009).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Pons, O. & Petit, R. J. Measwring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144, 1237–1245. https://doi.org/10.1016/S1050-3862(96)00162-3 (1996).CAS
Article
PubMed
PubMed Central
Google Scholar
46.Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article
Google Scholar
47.Rogers, A. R. & Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552–569 (1992).CAS
PubMed
Google Scholar
48.Wolfe, K. H., Li, W. H. & Sharp, P. M. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc. Natl. Acad. Sci. USA 84, 9054–9058. https://doi.org/10.1073/pnas.84.24.9054 (1987).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
49.Wang, Z. et al. Phylogeography study of the Siberian apricot (Prunus sibirica L.) in Northern China assessed by chloroplast microsatellite and DNA makers. Front. Plant Sci. 8, 1989. https://doi.org/10.3389/fpls.2017.01989 (2017).Article
PubMed
PubMed Central
Google Scholar
50.Chin, S. W., Shaw, J., Haberle, R., Wen, J. & Potter, D. Diversification of almonds, peaches, plums and cherries-Molecular systematics and biogeographic history of Prunus (Rosaceae). Mol. Phylogenet. Evol. 76, 34–48. https://doi.org/10.1016/j.ympev.2014.02.024 (2014).Article
PubMed
Google Scholar
51.Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973. https://doi.org/10.1093/molbev/mss075 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
52.Yang, J., Vazquez, L., Feng, L., Liu, Z. & Zhao, G. Climatic and soil factors shape the demographical history and genetic diversity of a deciduous oak (Quercus liaotungensis) in Northern China. Front. Plant Sci. 9, 1534. https://doi.org/10.3389/fpls.2018.01534 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
53.Zhang, X., Shen, S., Wu, F. & Wang, Y. Inferring genetic variation and demographic history of Michelia yunnanensis Franch (Magnoliaceae) from chloroplast DNA sequences and microsatellite markers. Front. Plant Sci. 8, 583. https://doi.org/10.3389/fpls.2017.00583 (2017).Article
PubMed
PubMed Central
Google Scholar
54.Li, M., Zhao, Z. & Miao, X. J. Genetic variability of wild apricot (Prunus armeniaca L.) populations in the Ili Valley as revealed by ISSR markers. Genet. Resour. Crop Evol. 60, 2293–2302. https://doi.org/10.1007/s10722-013-9996-x (2013).CAS
Article
Google Scholar
55.Li, M., Hu, X., Miao, X. J., Xu, Z. & Zhao, Z. Genetic diversity analysis of wild apricot (Prunus armeniaca) populations in the lli Valley as revealed by SRAP markers. Acta Hortic. Sin. 43, 1980–1988. https://doi.org/10.16420/j.issn.0513-353x.2016-0156 (2016).Article
Google Scholar
56.Hu, X., Zheng, P., Ni, B., Miao, X. & Li, M. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by SSR markers in the Tien-Shan mountains of China. Pak. J. Bot. 50, 609–615 (2018).
Google Scholar
57.Decroocq, S. et al. New insights into the history of domesticated and wild apricots and its contribution to Plum pox virus resistance. Mol. Ecol. 25, 4712–4729. https://doi.org/10.1111/mec.13772 (2016).CAS
Article
PubMed
Google Scholar
58.Liu, S. et al. The complex evolutionary history of apricots: species divergence, gene flow and multiple domestication events. Mol. Ecol. Notes 28, 5299–5314. https://doi.org/10.1111/mec.15296 (2019).Article
Google Scholar
59.Posada, D. & Crandall, K. A. Intraspecific gene genealogies: trees grafting into networks. Trends Ecol. Evol. 16, 37–45. https://doi.org/10.1016/S0169-5347(00)02026-7 (2001).CAS
Article
PubMed
Google Scholar
60.Boulnois, L. Silk Road: Monks, Warriors & Merchants on the Silk Road 115–165 (WW Norton & Co Inc, 2004).61.Zhao, C., Wang, C. B., Ma, X. G., Liang, Q. L. & He, X. J. Phylogeographic analysis of a temperate-deciduous forest restricted plant (Bupleurum longiradiatum Turcz.) reveals two refuge areas in China with subsequent refugial isolation promoting speciation. Mol. Phylogen. Evol. 68, 628–643. https://doi.org/10.1016/j.ympev.2013.04.007 (2013).Article
Google Scholar
62.Ebersbach, J., Schnitzler, J., Favre, A. & Muellner-Riehl, A. N. Evolutionary radiations in the species-rich mountain genus Saxifraga L. BMC Evol. Biol. https://doi.org/10.1186/s12862-017-0967-2 (2017).Article
PubMed
PubMed Central
Google Scholar
63.Favre, A. et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol. Rev. 90, 236–253. https://doi.org/10.1111/brv.12107 (2015).Article
PubMed
Google Scholar More
