Alkalinity cycling and carbonate chemistry decoupling in seagrass mystify processes of acidification mitigation
1.Waldbusser, G. G. & Salisbury, J. E. Ocean acidification in the coastal zone from an Organism’s perspective: Multiple system parameters, frequency domains, and habitats. Annu. Rev. Mar. Sci. 6, 221–247 (2014).ADS
Article
Google Scholar
2.Duarte, C. M. et al. Is ocean acidification an open-ocean syndrome? Understanding anthropogenic impacts on seawater pH. Estuaries Coasts 36, 221–236 (2013).CAS
Article
Google Scholar
3.Johnson, Z. I. et al. Dramatic variability of the carbonate system at a temperate coastal ocean site (Beaufort, North Carolina, USA) is regulated by physical and biogeochemical processes on multiple timescales. PLoS ONE 8, e85117 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
4.Baumann, H. & Smith, E. M. Quantifying metabolically driven ph and oxygen fluctuations in US nearshore habitats at diel to interannual time scales. Estuaries Coasts 41, 1102–1117 (2018).CAS
Article
Google Scholar
5.Carstensen, J. & Duarte, C. M. Drivers of pH variability in coastal ecosystems. Environ. Sci. Technol. 53, 4020–4029 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
6.Clark, H. R. & Gobler, C. J. Diurnal fluctuations in CO2 and dissolved oxygen concentrations do not provide a refuge from hypoxia and acidification for early-life-stage bivalves. Mar. Ecol. Prog. Ser. 558, 1–14 (2016).ADS
CAS
Article
Google Scholar
7.Mangan, S., Urbina, M. A., Findlay, H. S., Wilson, R. W. & Lewis, C. Fluctuating seawater pH/pCO2 regimes are more energetically expensive than static pH/pCO2 levels in the mussel Mytilus edulis. Proc. R. Soc. B Biol. Sci. 284, 20171642 (2017).Article
CAS
Google Scholar
8.Hauri, C., Gruber, N., McDonnell, A. M. P. & Vogt, M. The intensity, duration, and severity of low aragonite saturation state events on the California continental shelf. Geophys. Res. Lett. 40, 3424–3428 (2013).ADS
Article
Google Scholar
9.Pacella, S. R., Brown, C. A., Waldbusser, G. G., Labiosa, R. G. & Hales, B. Seagrass habitat metabolism increases short-term extremes and long-term offset of CO2 under future ocean acidification. Proc. Natl. Acad. Sci. U. S. A. 115, 3870–3875 (2018).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
10.Adelsman, H. & Whitely Binder, L. Ocean Acidification: From Knowledge to Action, Washington State’s Strategic Response. Washington State Blue Ribbon Panel on Ocean Acidification. (Washington Department of Ecology, Olympia, Washington, 2012).11.Nielsen, K. et al. Emerging Understanding of the Potential Role of Seagrass and Kelp as an Ocean Acidification Management Tool in California (California Ocean Science Trust, Oakland, CA, 2018).12.Ekstrom, J. A. et al. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nat. Clim. Change 5, 207–214 (2015).ADS
Article
Google Scholar
13.Koweek, D. A. et al. Expected limits on the ocean acidification buffering potential of a temperate seagrass meadow. Ecol. Appl. 28, 1694–1714 (2018).PubMed
Article
PubMed Central
Google Scholar
14.Miller, C. A., Yang, S. & Love, B. A. Moderate increase in TCO2 enhances photosynthesis of seagrass Zostera japonica, but not Zostera marina: Implications for acidification mitigation. Front. Mar. Sci. 4, 2 (2017).Article
Google Scholar
15.Cyronak, T. et al. Short-term spatial and temporal carbonate chemistry variability in two contrasting seagrass meadows: Implications for pH buffering capacities. Estuaries Coasts 41, 1282–1296 (2018).CAS
Article
Google Scholar
16.Unsworth, R. K. F., Collier, C. J., Henderson, G. M. & McKenzie, L. J. Tropical seagrass meadows modify seawater carbon chemistry: Implications for coral reefs impacted by ocean acidification. Environ. Res. Lett. 7, 024026 (2012).ADS
Article
CAS
Google Scholar
17.Hendriks, I. E. et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11, 333–346 (2014).ADS
Article
CAS
Google Scholar
18.Greiner, C. M., Klinger, T., Ruesink, J. L., Barber, J. S. & Horwith, M. Habitat effects of macrophytes and shell on carbonate chemistry and juvenile clam recruitment, survival, and growth. J. Exp. Mar. Biol. Ecol. 509, 8–15 (2018).CAS
Article
Google Scholar
19.Groner, M. L. et al. Oysters and eelgrass: Potential partners in a high pCO2 ocean. Ecology 99, 1802–1814 (2018).PubMed
Article
PubMed Central
Google Scholar
20.Waldbusser, G. G. et al. Ocean acidification has multiple modes of action on bivalve larvae. PLoS ONE 10, e0128376 (2015).PubMed
PubMed Central
Article
CAS
Google Scholar
21.Hurd, C. L. et al. Ocean acidification as a multiple driver: How interactions between changing seawater carbonate parameters affect marine life. Mar. Freshw. Res. 71, 263–274 (2020).CAS
Article
Google Scholar
22.Hales, B., Suhrbier, A., Waldbusser, G. G., Feely, R. A. & Newton, J. A. The carbonate chemistry of the “Fattening Line,” Willapa Bay, 2011–2014. Estuaries Coasts 1–14 (2016).23.Ricart, A. M. et al. Coast-wide evidence of low pH amelioration by seagrass ecosystems. Glob. Change Biol. 27, 2580–2591 (2021).ADS
Article
Google Scholar
24.Hoppe, C. J. M., Langer, G., Rokitta, S. D., Wolf-Gladrow, D. A. & Rost, B. Implications of observed inconsistencies in carbonate chemistry measurements for ocean acidification studies. Biogeosciences 9, 2401–2405 (2012).ADS
CAS
Article
Google Scholar
25.Buapet, P., Gullström, M. & Björk, M. Photosynthetic activity of seagrasses and macroalgae in temperate shallow waters can alter seawater pH and total inorganic carbon content at the scale of a coastal embayment. Mar. Freshw. Res. 2, 2 (2013).
Google Scholar
26.Waldbusser, G. G. et al. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Change 5, 273–280 (2015).ADS
CAS
Article
Google Scholar
27.Comeau, S., Carpenter, R. C. & Edmunds, P. J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proc. R. Soc. B-Biol. Sci. 280, 20122374 (2013).CAS
Article
Google Scholar
28.Kawahata, H. et al. Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house”. Prog. Earth Planet. Sci. 6, 5 (2019).Article
Google Scholar
29.Ries, J. B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochim. Cosmochim. Acta 75, 4053–4064 (2011).ADS
CAS
Article
Google Scholar
30.Raven, J. A., Giordano, M., Beardall, J. & Maberly, S. C. Algal evolution in relation to atmospheric CO2: Carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philos. Trans. R. Soc. B Biol. Sci. 367, 493–507 (2012).CAS
Article
Google Scholar
31.Vieira, S., Cartaxana, P., Máguas, C. & Marques da Silva, J. Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability. Photosynth. Res. 128, 85–92 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Revelle revisited: Buffer factors that quantify the response of ocean chemistry to changes in DIC and alkalinity. Glob. Biogeochem. Cycles 24, GB1002 (2010).ADS
Article
CAS
Google Scholar
33.Cyronak, T., Santos, I. R., McMahon, A. & Eyre, B. D. Carbon cycling hysteresis in permeable carbonate sands over a diel cycle: Implications for ocean acidification. Limnol. Oceanogr. 58, 131–143 (2013).ADS
CAS
Article
Google Scholar
34.Burdige, D. J. & Zimmerman, R. C. Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol. Oceanogr. 47, 1751–1763 (2002).ADS
CAS
Article
Google Scholar
35.Chou, W.-C. et al. A Unique Diel Pattern in Carbonate Chemistry in the Seagrass Meadows of Dongsha 1 Island: implications for ocean acidification buffering. ESSOAr. https://doi.org/10.1002/essoar.10504715.1 (2020).36.Su, J. et al. Chesapeake Bay acidification buffered by spatially decoupled carbonate mineral cycling. Nat. Geosci. 13, 441–447 (2020).ADS
CAS
Article
Google Scholar
37.Enríquez, S. & Schubert, N. Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nat. Commun. 5, 3835 (2014).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
38.Currin, C., Brewer, J. & Delano, P. Tide Flat Microphytobenthos: Biomass Distribution, Community Composition and Trophic Role in a Macrotidal Alaskan Estuary (National Centers for Coastal Ocean Science, Beaufort, NC, 2002).39.Martin, S. et al. Comparison of Zostera marina and maerl community metabolism. Aquat. Bot. 83, 161–174 (2005).ADS
CAS
Article
Google Scholar
40.Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA = 0.4–4.6) and temperature (10, 25 °C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Acta 192, 318–337 (2016).ADS
CAS
Article
Google Scholar
41.Brewer, P. G. & Goldman, J. C. Alkalinity changes generated by phytoplankton growth1. Limnol. Oceanogr. 21, 108–117 (1976).ADS
CAS
Article
Google Scholar
42.Gazeau, F., Urbini, L., Cox, T. E., Alliouane, S. & Gattuso, J.-P. Comparison of the alkalinity and calcium anomaly techniques to estimate rates of net calcification. Mar. Ecol. Prog. Ser. 527, 1–12 (2015).ADS
Article
CAS
Google Scholar
43.Wolf-Gladrow, D. A., Zeebe, R. E., Klaas, C., Körtzinger, A. & Dickson, A. G. Total alkalinity: The explicit conservative expression and its application to biogeochemical processes. Mar. Chem. 106, 287–300 (2007).CAS
Article
Google Scholar
44.Cai, W.-J., Wang, Y. & Hodson, R. E. Acid-base properties of dissolved organic matter in the estuarine waters of Georgia, USA. Geochim. Cosmochim. Acta 62, 473–483 (1998).ADS
CAS
Article
Google Scholar
45.Ko, Y. H., Lee, K., Eom, K. H. & Han, I.-S. Organic alkalinity produced by phytoplankton and its effect on the computation of ocean carbon parameters. Limnol. Oceanogr. 61, 1462–1471 (2016).ADS
Article
Google Scholar
46.Invers, O., Zimmerman, R. C., Alberte, R. S., Pérez, M. & Romero, J. Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. J. Exp. Mar. Biol. Ecol. 265, 203–217 (2001).CAS
Article
Google Scholar
47.Sand-Jensen, K. & Gordon, D. M. Differential ability of marine and freshwater macrophytes to utilize HCO3- and CO2. Mar. Biol. 80, 247–253 (1984).CAS
Article
Google Scholar
48.Larkum, A. W. D., Davey, P. A., Kuo, J., Ralph, P. J. & Raven, J. A. Carbon-concentrating mechanisms in seagrasses. J. Exp. Bot. 68, 3773–3784 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
49.Rubio, L. et al. Direct uptake of HCO3- in the marine angiosperm Posidonia oceanica (L.) Delile driven by a plasma membrane H+ economy. Plant Cell Environ. 40, 2820–2830 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
50.Fernández, J. A., García-Sánchez, M. J. & Felle, H. H. Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. J. Exp. Bot. 50, 1763–1768 (1999).
Google Scholar
51.Berg, P. et al. Dynamics of benthic metabolism, O2, and pCO2 in a temperate seagrass meadow. Limnol. Oceanogr. 64, 2586–2604 (2019).ADS
CAS
Article
Google Scholar
52.Buapet, P., Rasmusson, L. M., Gullstrom, M. & Bjork, M. Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 8, e83804 (2013).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
53.Garcı́a-Sánchez, M. J., Jaime, M. P., Ramos, A., Sanders, D. & Fernández, J. ,. Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L. Plant Physiol. 122, 879–886 (2000).Article
Google Scholar
54.Drechsler, Z. & Beer, S. Utilization of inorganic carbon by Ulva lactuca. Plant Physiol. 97, 1439–1444 (1991).CAS
PubMed
PubMed Central
Article
Google Scholar
55.Ribas-Ribas, M. et al. Effects of upwelling, tides and biological processes on the inorganic carbon system of a coastal lagoon in Baja California. Estuar. Coast. Shelf Sci. 95, 367–376 (2011).ADS
CAS
Article
Google Scholar
56.Omarjee, A., Taljaard, S., Weerts, S. P. & Adams, J. B. The influence of mouth status on pH variability in small temporarily closed estuaries. Estuar. Coast. Shelf Sci. 246, 107043 (2020).CAS
Article
Google Scholar
57.McCutcheon, M. R., Staryk, C. J. & Hu, X. Characteristics of the carbonate system in a semiarid estuary that experiences summertime hypoxia. Estuaries Coasts. 42, 1509–1523 (2019).CAS
Article
Google Scholar
58.Miller, C. A. & Kelley, A. L. Seasonality and biological forcing modify the diel frequency of nearshore pH extremes in a subarctic Alaskan estuary. Limnol. Oceanogr. 66, 1475–1491 (2021).ADS
CAS
Article
Google Scholar
59.Moxham, R. M. & Nelson, A. E. Trace Elements Reconnaissance in the Jakolof Bay Area, Southern Alaska (United States Department of Interior, Geological Survey, 1950).60.Hartwell, S. I., Dasher, D. & Lomax, T. Characterization of Benthic Habitats and Contaminant Assessment in Kenai Peninsula Fjords and Bays (NOAA Technical Memorandum NOS NCCOS, 2016).61.Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).CAS
Article
Google Scholar
62.Dickson, A. Thermodynamics of the Dissociation of Boric-Acid in Synthetic Seawater from 273.15-K to 318.15-K. Deep-Sea Res. Part Oceanogr. Res. Pap. 37, 755–766 (1990).ADS
CAS
Article
Google Scholar
63.Uppström, L. R. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).ADS
Article
Google Scholar More