More stories

  • in

    Beyond coronavirus: the virus discoveries transforming biology

    Download PDF

    Mya Breitbart has hunted novel viruses in African termite mounds, Antarctic seals and water from the Red Sea. But to hit pay dirt, she has only to step into her back garden in Florida. Hanging around her swimming pool are spiny-backed orbweavers (Gasteracantha cancriformis) — striking spiders with bulbous white bodies, black speckles and six scarlet spikes that make them look like a piece of medieval weaponry. Even more striking for Breitbart, a viral ecologist at the University of South Florida in St Petersburg, was what was inside. When she and her colleagues collected a few spiders and ground them up, they found two viruses previously unknown to science1.Although we humans have been focused on one particularly nasty virus since early 2020, there are legions of other viruses out there waiting to be discovered. Scientists estimate that there are about 1031 individual viral particles inhabiting the oceans alone at any given time — 10 billion times the estimated number of stars in the known Universe.It’s becoming clear that ecosystems and organisms rely on viruses. Tiny but mighty, they have fuelled evolution for millions of years by shuttling genes between hosts. In the oceans, they slice open microorganisms, spilling their contents into the sea and flooding the food web with nutrients. “Without viruses,” says Curtis Suttle, a virologist at the University of British Columbia in Vancouver, Canada, “we would not be alive.”There are just 9,110 named species listed by the International Committee on Taxonomy of Viruses (ICTV), but that’s obviously a pitiful fraction of the total. In part, that’s because officially classifying a virus used to require scientists to culture a virus in its host or host cells — a time-consuming if not impossible process. It’s also because the search has been biased towards viruses that cause diseases in humans or organisms we care about, such as farm animals and crop plants. Yet, as the COVID-19 pandemic has reminded us, it’s important to understand viruses that might jump from one host to another, threatening us, our animals or our crops.
    The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks
    Over the past ten years, the number of known and named viruses has exploded, owing to advances in the technology for finding them, plus a recent change to the rules for identifying new species, to allow naming without having to culture virus and host. One of the most influential techniques is metagenomics, which allows researchers to sample the genomes in an environment without having to culture individual viruses. Newer technologies, such as single-virus sequencing, are adding even more viruses to the list, including some that are surprisingly common yet remained hidden until now. It’s an exciting time to be doing this kind of research, says Breitbart. “I think, in many ways, now is the time of the virome.”In 2020 alone, the ICTV added 1,044 species to its official list, and thousands more await description and naming. This proliferation of genomes prompted virologists to rethink the way they classify viruses and helped to clarify their evolution. There is strong evidence that viruses emerged multiple times, rather than sprouting from a single origin.Even so, the true range of the viral world remains mostly uncharted, says Jens Kuhn, a virologist at the US National Institute of Allergy and Infectious Diseases facility at Fort Detrick, Maryland. “We really have absolutely no idea what’s out there.”Here, there and everywhereAll viruses have two things in common: each encases its genome in a protein-based shell, and each relies on its host — be it a person, spider or plant — to reproduce itself. But beyond that general pattern lie endless variations.There are minuscule circoviruses with only two or three genes, and massive mimiviruses that are bigger than some bacteria and carry hundreds of genes. There are lunar-lander-looking phage that infect bacteria and, of course, the killer spiky balls the world is now painfully familiar with. There are viruses that store their genes as DNA, and others that use RNA; there’s even a phage that uses an alternative genetic alphabet, replacing the chemical base A in the standard ACGT system with a different molecule, designated Z.

    Studies of the spiny-backed orbweaver found two viruses previously unknown to science.Credit: Scott Leslie/Minden Pictures/Alamy

    Viruses are so ubiquitous that they can turn up even when scientists aren’t looking for them. Frederik Schulz did not intend to study viruses as he pored over genome sequences from waste water. As a graduate student at the University of Vienna, in 2015 he was using metagenomics to hunt for bacteria. This involves isolating DNA from a whole mix of organisms, chopping it into bits and sequencing all of them. A computer program then assembles the bits into individual genomes; it’s like solving hundreds of jigsaw puzzles whose pieces have been jumbled up.Among the bacterial genomes, Schulz couldn’t help but notice a whopper of a virus genome — obvious because it carried genes for a viral shell — with a remarkable 1.57 million base pairs2. It turned out to be a giant virus, part of a group whose members are large in terms of both genome size and absolute size (typically, 200 nanometres or more across). These viruses infect amoebae, algae and other protists, putting them in a position to influence ecosystems both aquatic and terrestrial.
    Profile of a killer: the complex biology powering the coronavirus pandemic
    Schulz, now a microbiologist at the US Department of Energy Joint Genome Institute in Berkeley, California, decided to search for related viruses in metagenome data sets. In 2020, in a single paper3, he and his colleagues described more than 2,000 genomes from the group that contains giant viruses; before that, just 205 such genomes had been deposited in public databases.Virologists have also looked inwards to find new species. Viral bioinformatician Luis Camarillo-Guerrero worked with colleagues at the Wellcome Sanger Institute in Hinxton, UK, to analyse metagenomes from the human gut, and built a database containing more than 140,000 kinds of phage. More than half of these were new to science. Their study4, published in February, matched others’ findings that one of the most common viruses to infect the bacteria in our guts is a group known as crAssphage (named after the cross-assembly software that picked it up in 2014). Despite its abundance, not much is known about how it contributes to our microbiome, says Camarillo-Guerrero, who now works at DNA-sequencing company Illumina in Cambridge, UK.Metagenomics has turned up a wealth of viruses, but it ignores many, too. RNA viruses aren’t sequenced in typical metagenomes, so microbiologist Colin Hill at University College Cork, Ireland, and his colleagues looked for them in databases of RNAs, called metatranscriptomes. Scientists normally use these data to understand the genes in a population that are actively being turned into messenger RNA in to make proteins, but RNA virus genomes can show up, too. Using computational techniques to pull sequences out of the data, the team found 1,015 viral genomes in metatrancriptomes from sludge and water samples5. Again, they’d massively increased the number of known viruses with a single paper.

    The giant tupanvirus,found in amoebae, is more than 1,000 nanometres long and has the largest set of protein-coding genes of any known virus.Credit: J. Abrahão et al./Nature Commun.

    Although it’s possible for these techniques to accidentally assemble genomes that aren’t real, researchers have quality-control techniques to guard against this. But there are other blind spots. For instance, viral species whose members are very diverse are fiendishly difficult to find because it’s hard for computer programs to piece together the disparate sequences.The alternative is to sequence viral genomes one at a time, as microbiologist Manuel Martinez-Garcia does at the University of Alicante, Spain. He decided to try trickling seawater through a sorting machine to isolate single viruses, amplified their DNA, and got down to sequencing.On his first attempt, he found 44 genomes. One turned out to represent some of the most abundant viruses in the ocean6. This virus is so diverse — its genetic jigsaw pieces so varied from one virus particle to the next — that its genome had never popped up in metagenomics studies. The team calls it 37-F6, for its location on the original laboratory dish, but Martinez-Garcia jokes that, given its ability to hide in plain sight, it should have been named 007, after fictional superspy James Bond.Virus family treesThe James Bond of ocean viruses lacks an official Latin species name, and so do most of the thousands of viral genomes discovered by metagenomics over the past decade. Those sequences presented the ICTV with a dilemma: is a genome enough to name a virus? Until 2016, proposing a new virus or taxonomic group to the ICTV required scientists to have that virus and its host in culture, with rare exceptions. But that year, after a contentious but cordial debate, virologists agreed that a genome was sufficient7.Proposals for new viruses and groups poured in (see ‘Adding to the family’). But the evolutionary relationships between these viruses were often unclear. Virologists usually categorize viruses on the basis of their shapes (long and thin, say, or a head with a tail) or their genomes (DNA or RNA, single- or double-stranded), but this says surprisingly little about shared ancestry. For example, viruses with double-stranded DNA genomes seem to have arisen on at least four separate occasions.

    Source: ICTV

    The original ICTV viral classification, which is entirely separate from the tree of cellular life, included only the lower rungs of the evolutionary hierarchy, from species and genus up to the order level — a tier equivalent to primates or trees with cones in the classification of multicellular life. There were no higher levels. And many viral families floated alone, with no links to other kinds of virus. So in 2018, the ICTV added higher-order levels: classes, phyla and kingdoms8.At the very top, it invented ‘realms’, intended as counterparts to the ‘domains’ of cellular life — Bacteria, Archaea and Eukaryota — but using a different word to differentiate between the two trees. (Several years ago, some scientists suggested that certain viruses might fit into the cell-based evolutionary tree, but that idea has not gained widespread favour.)The ICTV outlined the branches of the tree, and grouped RNA-based viruses into a realm called Riboviria. SARS-CoV-2 and other coronaviruses, which have single-stranded RNA genomes, are part of this realm. But then it was up to the broader community of virologists to propose further taxonomic groups. As it happened, Eugene Koonin, an evolutionary biologist at the National Center for Biotechnology Information in Bethesda, Maryland, had assembled a team to analyse all the viral genomes, as well as the latest research on viral proteins, to create a first-draft taxonomy9.They reorganized Riboviria and proposed three more realms (see ‘Virus realms’). There was some quibbling over the details, Koonin says, but the taxonomy was ratified without much trouble by ICTV members in 2020. Two further realms got the green light in 2021, but the original four realms will probably remain the largest, he says. Eventually, Koonin speculates, the realms might number up to 25.

    Source: ICTV (talk.ictvonline.org/taxonomy); ICTV Coronaviridae Study Group. Nature Microbiol. 5, 536–544 (2020)

    That number supports many scientists’ suspicion that there’s no one common ancestor for virus-kind. “There is no single root for all viruses,” says Koonin. “It simply does not exist.” That means that viruses probably arose several times in the history of life on Earth — and there’s no reason to think such emergence can’t happen again. “The de novo origin of new viruses, it’s still ongoing,” says Mart Krupovic, a virologist at the Pasteur Institute in Paris who was involved in both the ICTV decisions and Koonin’s taxonomy team.As to how the realms arose, virologists have several ideas. Perhaps they descended from independent genetic elements at the dawn of life on Earth, before cells even took shape. Maybe they escaped or ‘devolved’ from whole cells, ditching most of the cellular machinery for a minimal lifestyle. Koonin and Krupovic favour a hybrid hypothesis in which those primordial genetic elements stole genes from cellular life to build their virus particles. Because there are multiple origins for viruses, it’s possible there are multiple ways they’ve originated, says Kuhn, who also served on the ICTV committee and worked on the new taxonomy proposal.Thus, although the viral and cellular trees of life are distinct, the branches touch, and genes pass between the two. Whether viruses count as being ‘alive’ depends on your personal definition of life. Many researchers do not consider them to be living things, but others disagree. “I tend to believe that they are living,” says Hiroyuki Ogata, a bioinformatician working on viruses at Kyoto University in Japan. “They are evolving, they have genetic material composed of DNA and RNA, and they are very important in the evolution of all life.”The current classification is widely recognized as just the first attempt, and some virologists say it’s a bit of a mess. A score of families still lack links to any realm. “The good point is, we are trying to put some order in that mess,” says Martinez-Garcia.World changers With the total mass of viruses on Earth equivalent to that of 75 million blue whales, scientists are certain they make a difference to food webs, ecosystems and even the planet’s atmosphere. The accelerating discovery of new viruses “has revealed a watershed of new ways viruses directly impact ecosystems”, says Matthew Sullivan, an environmental virologist at Ohio State University in Columbus. But scientists are still struggling to quantify how much of an impact they have.“We don’t have a very simple story around here at the moment,” says Ogata. In the ocean, viruses can burst out of their microbial hosts, releasing carbon to be recycled by others that eat the host’s innards and then produce carbon dioxide. But, more recently, scientists have also come to appreciate that popped cells often clump together and sink to the bottom of the ocean, sequestering carbon away from the atmosphere.

    Viral genomes collected from thawing permafrost at Stordalen Mire in Sweden have genes that could help break down and release carbon.Credit: Bob Gibbons/Alamy

    On land, thawing permafrost is a major source of carbon, says Sullivan, and viruses seem to be instrumental in carbon release from microbes in that environment. In 2018, he and his colleagues described 1,907 viral genomes and fragments collected from thawing permafrost in Sweden, including genes for proteins that might influence how carbon compounds break down and, potentially, become greenhouse gases10.Viruses can also influence other organisms by stirring up their genomes. For example, when viruses transfer antibiotic-resistance genes from one bacterium to another, drug-resistant strains can take over. Over time, this kind of transfer can create major evolutionary shifts in a population, says Camarillo-Guerrero. And not just in bacteria — an estimated 8% of human DNA is of viral origin. For example, our mammalian ancestors acquired a gene essential for placental development from a virus.For many questions about viral lifestyles, scientists will need more than just genomes. They will need to find the virus’s hosts. A virus itself might carry clues: it could be toting a recognizable bit of host genetic material in its own genome, for example.Martinez-Garcia and his colleagues used single-cell genomics to identify the microbes that contained the newly discovered 37-F6 virus. The host, too, is one of the most abundant and diverse organisms in the sea, a bacterium known as Pelagibacter11. In some waters, Pelagibacter makes up half the cells present. If just this one type of virus were to suddenly disappear, says Martinez-Garcia, ocean life would be thrown wildly off balance.To understand a virus’s full impact, scientists need to work out how it changes its host, says Alexandra Worden, an evolutionary ecologist at the GEOMAR Helmholtz Centre for Ocean Research in Kiel, Germany. She’s studying giant viruses that carry genes for light-harvesting proteins called rhodopsins. Theoretically, these genes could be useful to the hosts — for purposes such as energy transfer or signalling — but the sequences can’t confirm that. To find out what’s going on with these rhodopsin genes, Worden plans to culture the host and virus together, and study how the pair function in the combined, ‘virocell’ state. “Cell biology is the only way you can say what that true role is, how does this really affect the carbon cycle,” she says.Back in Florida, Breitbart hasn’t cultured her spider viruses, but she’s learnt some more about them. The pair of viruses belong to a category Breitbart calls mind-boggling for their tiny, circular genomes, encoding just one gene for their protein coat and one for their replication protein. One of the viruses is found only in the spider’s body, never its legs, so she thinks it’s actually infecting some creature the spider eats. The other virus is found throughout the spider’s body, and in its eggs and spiderlings, so she thinks it’s transmitted from parent to offspring12. It doesn’t seem to be doing them any harm, as far as Breitbart can tell.With viruses, “finding them’s actually the easy part”, she says. Picking apart how viruses influence host life cycles and ecology is much trickier. But first, virologists must answer one of the toughest questions of all, Breitbart says: “How do you pick which one to study?”

    Nature 595, 22-25 (2021)
    doi: https://doi.org/10.1038/d41586-021-01749-7

    References1.Rosario, K. et al. PeerJ 6, e5761 (2018).PubMed 
    Article 

    Google Scholar 
    2.Schulz, F. et al. Science 356, 85–85 (2017).PubMed 
    Article 

    Google Scholar 
    3.Schulz, F. et al. Nature 578, 432–436 (2020).PubMed 
    Article 

    Google Scholar 
    4.Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Cell 184, 1098–1109.e9 (2021).PubMed 
    Article 

    Google Scholar 
    5.Callanan, J. et al. Sci. Adv. 6, eaay591 (2020).Article 

    Google Scholar 
    6.Martinez-Hernandez, F. et al. Nature Commun. 8, 15892 (2017).PubMed 
    Article 

    Google Scholar 
    7.Simmonds, P. et al. Nature Rev. Microbiol. 15, 161–168 (2017).PubMed 
    Article 

    Google Scholar 
    8.International Committee on Taxonomy of Viruses Executive Committee. Nature Microbiol. 5, 668–674 (2020).PubMed 
    Article 

    Google Scholar 
    9.Koonin, E. V. et al. Microbiol. Mol. Biol. Rev. 84, e00061-19 (2020).PubMed 
    Article 

    Google Scholar 
    10.Emerson, J. B. et al. Nature Microbiol. 3, 870–770 (2018).PubMed 
    Article 

    Google Scholar 
    11.Martinez-Hernandez, F. et al. ISME J. 13, 232–236 (2019).PubMed 
    Article 

    Google Scholar 
    12.Rosario, K., Mettel, K. A., Greco, A. M. & Breitbart, M. J. Gen. Virol. 100, 1253–1265 (2019).PubMed 
    Article 

    Google Scholar 
    Download references

    Related Articles

    Profile of a killer: the complex biology powering the coronavirus pandemic

    Should virus-naming rules change during a pandemic? The question divides virologists

    The new scope of virus taxonomy: partitioning the virosphere into 15 hierarchical ranks

    Subjects

    Virology

    Evolution

    Ecology

    Latest on:

    Virology

    Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2
    Article 30 JUN 21

    Untangling introductions and persistence in COVID-19 resurgence in Europe
    Article 30 JUN 21

    SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses
    Article 28 JUN 21

    Evolution

    Untangling introductions and persistence in COVID-19 resurgence in Europe
    Article 30 JUN 21

    From the archive
    News & Views 29 JUN 21

    Mysterious skull fossils expand human family tree — but questions remain
    News 25 JUN 21

    Ecology

    China’s economic approach to protecting its ecology
    Spotlight 29 JUN 21

    Red light, green light: both signal ‘go’ to deadly algae
    Research Highlight 24 JUN 21

    Limited potential for bird migration to disperse plants to cooler latitudes
    Article 23 JUN 21

    Jobs from Nature Careers

    All jobs

    Advanced Research Assistant
    Wellcome Trust Sanger Institute
    Cambridge, United Kingdom

    JOB POST

    Assistant or Associate Professor of Molecular Pharmacology and Therapeutics
    Columbia University Medical Center (CUMC), CU
    New York, United States

    JOB POST

    154308 Tenure Track Assistant Professor or Associate Professor at the Department of Biomedical Sciences
    University of Copenhagen (UCPH)
    Copenhagen, Denmark

    JOB POST

    Research Associate in Synthetic Genomics
    The University of Manchester
    Manchester, United Kingdom

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Parental selection for growth and early-life low stocking density increase the female-to-male ratio in European sea bass

    1.Baroiller, J. F., Cotta, H. & Saillant, E. Environmental effects on fish sex determination and differentiation. Sex. Develop. 3, 118–135 (2009).CAS 
    Article 

    Google Scholar 
    2.Conover, D. O. & Kynard, B. E. Environmental sex determination: interaction of temperature and genotype in a fish. Science 213, 577–579 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Ospina-Álvarez, N. & Piferrer, F. Temperature-dependent sex determination in fish revisited: prevalence, a single sex ratio response pattern, and possible effects of climate change. PLoS ONE 3, e2837 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Geffroy, B. & Wedekind, C. Effects of global warming on sex ratios in fishes. J. Fish Biol. 97, 596–606 (2020).PubMed 
    Article 

    Google Scholar 
    5.Römer, U. & Beisenherz, W. Environmental determination of sex in Apistogrammai (Cichlidae) and two other freshwater fishes (Teleostei). J. Fish Biol. 48, 714–725 (1996).
    Google Scholar 
    6.Geffroy, B. & Bardonnet, A. Sex differentiation and sex determination in eels: consequences for management. Fish Fish 17, 375–398 (2016).Article 

    Google Scholar 
    7.Ribas, L., Valdivieso, A., Díaz, N. & Piferrer, F. Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. J. Exp. Biol. 220, 1056–1064 (2017).PubMed 
    Article 

    Google Scholar 
    8.Hattori, R. S., Castañeda-Cortés, D. C., Arias Padilla, L. F., Strobl-Mazzulla, P. H. & Fernandino, J. I. Activation of stress response axis as a key process in environment-induced sex plasticity in fish. Cell. Mol. Life Sci. https://doi.org/10.1007/s00018-020-03532-9 (2020).Article 
    PubMed 

    Google Scholar 
    9.Mommsen, T. P., Vijayan, M. M. & Moon, T. W. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisheries 9, 211–268 (1999).Article 

    Google Scholar 
    10.Prunet, P., Sturm, A. & Milla, S. Multiple corticosteroid receptors in fish: From old ideas to new concepts. Gen. Comp. Endocrinol. 147, 17–23 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Manna, P. R., Dyson, M. T. & Stocco, D. M. Regulation of the steroidogenic acute regulatory protein gene expression: present and future perspectives. Mol. Hum. Reprod. 15, 321–333 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Nematollahi, M. A., van Pelt-Heerschap, H. & Komen, J. Transcript levels of five enzymes involved in cortisol synthesis and regulation during the stress response in common carp: relationship with cortisol. Gen. Comp. Endocrinol. 164, 85–90 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Wu, X. et al. Integration of ATAC-seq and RNA-seq unravels chromatin accessibility during sex reversal in orange-spotted grouper (Epinephelus coioides). Int. J. Mol. Sci. 21, 2800 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    14.Blasco, M. et al. Molecular characterization of cyp11a1 and cyp11b1 and their gene expression profile in pejerrey (Odontesthes bonariensis) during early gonadal development. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 156, 110–118 (2010).Article 
    CAS 

    Google Scholar 
    15.Todd, E. V. et al. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. Sci. Adv. 5, eaaw7006 (2019).16.Fernandino, J. I., Hattori, R. S., Moreno Acosta, O. D., Strüssmann, C. A. & Somoza, G. M. Environmental stress-induced testis differentiation: androgen as a by-product of cortisol inactivation. Gen. Comparat. Endocrinol. 192, 36–44 (2013).CAS 
    Article 

    Google Scholar 
    17.Geffroy, B. & Douhard, M. The adaptive sex in stressful environments. Trends Ecol. Evol. 34, 628–640 (2019).PubMed 
    Article 

    Google Scholar 
    18.Chiba, H., Iwata, M., Yakoh, K., Satoh, R.-I. & Yamada, H. Possible influence of social stress on sex differentiation in Japanese eel. Fish. Sci. 68, 413–414 (2002).Article 

    Google Scholar 
    19.Hoseini, S. M., Pérez-Jiménez, A., Costas, B., Azeredo, R. & Gesto, M. Physiological roles of tryptophan in teleosts: current knowledge and perspectives for future studies. Rev. Aquac. 11, 3–24 (2019).Article 

    Google Scholar 
    20.Vandeputte, M., Gagnaire, P.-A. & Allal, F. The European sea bass: a key marine fish model in the wild and in aquaculture. Anim. Genet. https://doi.org/10.1111/age.12779 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Vandeputte, M., Dupont-Nivet, M., Chavanne, H. & Chatain, B. B. A polygenic hypothesis for sex determination in the European Sea Bass Dicentrarchus labrax. Genetics 176, 1049–1057 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Piferrer, F., Blazquez, M., Navarro, L. & Gonzalez, A. Genetic, endocrine, and environmental components of sex determination and differentiation in the European sea bass (Dicentrarchus labrax L.). Gen. Comparat. Endocrinol. 142, 102–110 (2005).CAS 
    Article 

    Google Scholar 
    23.Vandeputte, M. & Piferrer, F. Genetic and environmental components of sex determination in the European sea bass (Dicentrarchus labrax). In Sex Control in Aquaculture Vol. I (eds. Wang, H. P., Piferrer, F. & Chen, S. L.) 307–325 (John Wiley and Sons, 2019).24.Bláquez, M., Zanuy, S., Carillo, M. & Piferrer, F. Effects of rearing temperature on sex differentiation in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 281, 207–216 (1998).Article 

    Google Scholar 
    25.Saillant, E. et al. Temperature effects and genotype-temperature interactions on sex determination in the European sea bass (Dicentrarchus labrax L.). J. Exp. Zool. 292, 494–505 (2002).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Vandeputte, M. et al. Low temperature has opposite effects on sex determination in a marine fish at the larval/postlarval and juvenile stages. Ecol. Evol. 10, 13825 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Saillant, E. et al. Effects of rearing density, size grading and parental factors on sex ratios of the sea bass (Dicentrarchus labrax L) in intensive aquaculture. Aquaculture 221, 183–206 (2003).Article 

    Google Scholar 
    28.Faggion, S. et al. Sex dimorphism in European sea bass (Dicentrarchus labrax L.): new insights into sex-related growth patterns during very early life stages. PLoS ONE 16, e0239791 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Ferrari, S. et al. Early individual electronic identification of sea bass using RFID microtags: a first example of early phenotyping of sex-related growth. Aquaculture 426–427, 165–171 (2014).Article 

    Google Scholar 
    30.Besson, M. et al. Influence of water temperature on the economic value of growth rate in fish farming: the case of sea bass (Dicentrarchus labrax) cage farming in the Mediterranean. Aquaculture 462, 47–55 (2016).Article 

    Google Scholar 
    31.Blázquez, M., González, A., Papadaki, M., Mylonas, C. & Piferrer, F. Sex-related changes in estrogen receptors and aromatase gene expression and enzymatic activity during early development and sex differentiation in the European sea bass (Dicentrarchus labrax). Gen. Comp. Endocrinol. 158, 95–101 (2008).PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Ribas, L. et al. Characterization of the European Sea Bass (Dicentrarchus labrax) gonadal transcriptome during sexual development. Mar Biotechnol 21, 359–373 (2019).CAS 
    Article 

    Google Scholar 
    33.Pavlidis, M. et al. Onset of the primary stress in European sea bass Dicentrarhus labrax, as indicated by whole body cortisol in relation to glucocorticoid receptor during early development. Aquaculture 315, 125–130 (2011).CAS 
    Article 

    Google Scholar 
    34.Tsalafouta, A. et al. Ontogenesis of the HPI axis and molecular regulation of the cortisol stress response during early development in Dicentrarchus labrax. Sci. Rep. 4, (2014).35.Alfonso, S., Gesto, M. & Sadoul, B. Temperature increase and its effects on fish stress physiology in the context of global warming. J. Fish Biol. https://doi.org/10.1111/jfb.14599 (2020).Article 
    PubMed 

    Google Scholar 
    36.Goikoetxea, A. et al. Genetic pathways underpinning hormonal stress responses in fish exposed to short- and long-term warm ocean temperatures. Ecol. Indic. 120, 106937 (2021).Article 

    Google Scholar 
    37.Bertotto, D. et al. Alternative matrices for cortisol measurement in fish. Aquac. Res. 41, 1261–1267 (2010).CAS 

    Google Scholar 
    38.Sadoul, B., Leguen, I., Colson, V., Friggens, N. C. & Prunet, P. A multivariate analysis using physiology and behavior to characterize robustness in two isogenic lines of rainbow trout exposed to a confinement stress. Physiol. Behav. 140, 139–147 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Simontacchi, C. et al. Alternative stress indicators in sea bass Dicentrarchus labrax L. J. Fish Biol. 72, 747–752 (2008).Article 

    Google Scholar 
    40.Zuberi, A., Brown, C. & Ali, S. Effect of confinement on water-borne and whole body cortisol in wild and captive-reared rainbowfish (Melanoteania duboulayi). Int. J. Agric. Biol. 16, 183–188 (2014).41.Cortés, D. C. C., Padilla, L. F. A., Langlois, V. S., Somoza, G. M. & Fernandino, J. I. The central nervous system acts as a transducer of stress-induced masculinization through corticotropin-releasing hormone B. Development 146, (2019).42.Faught, E. & Vijayan, M. M. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae. Sci. Rep. 8, 18081 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Kiilerich, P., Geffroy, B., Valotaire, C. & Prunet, P. Endogenous regulation of 11-deoxycorticosterone (DOC) and corticosteroid receptors (CRs) during rainbow trout early development and the effects of corticosteroids on hatching. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2018.05.031 (2018).Article 
    PubMed 

    Google Scholar 
    44.Rosengren, M., Thörnqvist, P.-O., Winberg, S. & Sundell, K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen. Comp. Endocrinol. 257, 235–245 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Kiilerich, P. et al. Regulation of the corticosteroid signalling system in rainbow trout HPI axis during confinement stress. Gen. Comp. Endocrinol. 258, 184–193 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Stolte, E. H. et al. Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio. J. Endocrinol. 198, 403–417 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Madaro, A. et al. Stress in Atlantic salmon: response to unpredictable chronic stress. J. Exp. Biol. 218, 2538–2550 (2015).PubMed 

    Google Scholar 
    48.Aerts, J. et al. Scales tell a story on the stress history of fish. PLOS ONE 10, e0123411 (2015).49.Moltesen, M. et al. Effects of acute and chronic stress on telencephalic neurochemistry and gene expression in rainbow trout (Oncorhynchus mykiss). J. Exp. Biol. 219, 3907–3914 (2016).PubMed 

    Google Scholar 
    50.Smith, B. R. Sea lampreys in the Great Lakes of North America. 207–247 (1971).51.García-Cruz, E. L. et al. Crowding stress during the period of sex determination causes masculinization in pejerrey Odontesthes bonariensis, a fish with temperature-dependent sex determination. Comparat. Biochem. Physiol. A: Mol. Integrat. Physiol. 245, 110701 (2020).Article 
    CAS 

    Google Scholar 
    52.Vandeputte, M. & Piferrer, F. Genetic and Environmental Components of Sex Determination in the European Sea Bass. In Sex Control in Aquaculture 305–325 (John Wiley & Sons, Ltd, 2018). https://doi.org/10.1002/9781119127291.ch14.53.Díaz, N., Ribas, L. & Piferrer, F. The relationship between growth and sex differentiation in the European sea bass (Dicentrarchus labrax). Aquaculture 408–409, 191–202 (2013).Article 

    Google Scholar 
    54.Papadaki, M. et al. Growth, sex differentiation and gonad and plasma levels of sex steroids in male- and female-dominant populations of Dicentrarchus labrax obtained through repeated size grading. J. Fish Biol. 66, 938–956 (2005).CAS 
    Article 

    Google Scholar 
    55.Sadoul, B. & Vijayan, M. M. 5 – Stress and Growth. In Fish Physiology Vol. 35 (eds. Schreck, C. B., Tort, L., Farrell, A. P. & Brauner, C. J.) 167–205 (Academic Press, 2016).56.Sakae, Y. et al. Starvation causes female-to-male sex reversal through lipid metabolism in the teleost fish, medaka (Olyzias latipes). Biology Open 9, (2020).57.Höglund, E., Øverli, Ø. & Winberg, S. Tryptophan metabolic pathways and brain serotonergic activity: a comparative review. Front. Endocrinol. 10, (2019).58.Amri, A. et al. Effect of melatonin and folic acid supplementation on the growth performance, antioxidant status, and liver histology of the farmed gilthead sea bream (Sparus aurata L.) under standard rearing conditions. Fish Physiol. Biochem. 46, 2265–2280 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.de Pedro, N., Pinillos, M. L., Valenciano, A. I., Alonso-Bedate, M. & Delgado, M. J. Inhibitory effect of serotonin on feeding behavior in goldfish: involvement of CRF. Peptides 19, 505–511 (1998).PubMed 
    Article 

    Google Scholar 
    60.Papoutsoglou, S. E., Karakatsouli, N. & Chiras, G. Dietary l-tryptophan and tank colour effects on growth performance of rainbow trout (Oncorhynchus mykiss) juveniles reared in a recirculating water system. Aquacult. Eng. 32, 277–284 (2005).Article 

    Google Scholar 
    61.Lam, D. D., Garfield, A. S., Marston, O. J., Shaw, J. & Heisler, L. K. Brain serotonin system in the coordination of food intake and body weight. Pharmacol. Biochem. Behav. 97, 84–91 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Tsai, C.-L., Wang, L.-H., Chang, C.-F. & Kao, C.-C. Effects of gonadal steroids on brain serotonergic and aromatase activity during the critical period of sexual differentiation in Tilapia, Oreochromis mossambicus. J. Neuroendocrinol. 12, 894–898 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Raghuveer, K. et al. Gender differences in tryptophan hydroxylase-2 mRNA, serotonin, and 5-hydroxytryptophan levels in the brain of catfish, Clarias gariepinus, during sex differentiation. Gen. Comp. Endocrinol. 171, 94–104 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Sudhakumari, C. C. et al. Dimorphic expression of tryptophan hydroxylase in the brain of XX and XY Nile tilapia during early development. Gen. Comp. Endocrinol. 166, 320–329 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Senthilkumaran, B. et al. “Brain sex differentiation” in teleosts: emerging concepts with potential biomarkers. Gen. Comp. Endocrinol. 220, 33–40 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Carpenter, R. E. et al. Corticotropin releasing factor induces anxiogenic locomotion in trout and alters serotonergic and dopaminergic activity. Horm. Behav. 52, 600–611 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Clements, S. haun, Moore, F. L. & Schreck, C. B. Evidence that acute serotonergic activation potentiates the locomotor-stimulating effects of corticotropin-releasing hormone in juvenile chinook salmon (Oncorhynchus tshawytscha). Horm. Behav. 43, 214–221 (2003).68.Grima, L. et al. In search for indirect criteria to improve feed utilization efficiency in sea bass (Dicentrarchus labrax). Aquaculture 302, 169–174 (2010).Article 

    Google Scholar 
    69.Geffroy, B. et al. Nature-based tourism elicits a phenotypic shift in the coping abilities of fish. Front. Physiol. 9, (2018).70.Sadoul, B. & Geffroy, B. Measuring cortisol, the major stress hormone in fishes. J. Fish Biol. 94, 540–555 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Sadoul, B. et al. Enhanced brain expression of genes related to cell proliferation and neural differentiation is associated with cortisol receptor expression in fishes. Gen. Comp. Endocrinol. 267, 76–81 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Alfonso, S. et al. Coping styles in European sea bass: the link between boldness, stress response and neurogenesis. Physiol. Behav. 207, 76–85 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Samaras, A. & Pavlidis, M. Regulation of divergent cortisol responsiveness in European sea bass, Dicentrarchus labrax L. PLoS ONE 13, e0202195 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Tine, M. et al. European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation. Nat. Commun. 5, 5770 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Gesto, M., Skov, P. V. & Jokumsen, A. Emergence time and skin melanin spot patterns do not correlate with growth performance, social competitive ability or stress response in farmed rainbow trout. Front. Neurosci. 11, (2017).76.Menu, B., Peruzzi, S., Vergnet, A., Vidal, M.-O.O. & Chatain, B. A shortcut method for sexing juvenile European sea bass, Dicentrarchus labrax L. Aquacult. Res. 36, 41–44 (2005).Article 

    Google Scholar 
    77.Griot, R. et al. Genome-wide association studies for resistance to viral nervous necrosis in three populations of European sea bass (Dicentrarchus labrax) using a novel 57k SNP array DlabChip. Aquaculture 530, 735930 (2021).78.Griot, R. et al. APIS: An auto-adaptive parentage inference software that tolerates missing parents. Mol. Ecol. Resour. 20, 579–590 (2020).PubMed 
    Article 

    Google Scholar  More

  • in

    Contrasting alien effects on native diversity along biotic and abiotic gradients in an arid protected area

    1.Vilà, M. et al. Ecological impacts of invasive alien plants: A meta-analysis of their effects on species, communities and ecosystems: Ecological impacts of invasive alien plants. Ecol. Lett. 14, 702–708 (2011).PubMed 
    Article 

    Google Scholar 
    2.Pyšek, P. et al. A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18, 1725–1737 (2012).ADS 
    Article 

    Google Scholar 
    3.Pyšek, P. et al. Scientists’ warning on invasive alien species. Biol. Rev. 95, 1511–1534 (2020).PubMed 
    Article 

    Google Scholar 
    4.Gordon, D. R. Effects of invasive, non-indigenous plant species on ecosystem processes: Lessons from Florida. Ecol. Appl. 8, 975–989 (1998).Article 

    Google Scholar 
    5.Vieites-Blanco, C. & González-Prieto, S. J. Effects of Carpobrotus edulis invasion on soil gross N fluxes in rocky coastal habitats. Sci. Total Environ. 619–620, 966–976 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Loiola, P. P. et al. Invaders among locals: Alien species decrease phylogenetic and functional diversity while increasing dissimilarity among native community members. J. Ecol. 106, 2230–2241 (2018).Article 

    Google Scholar 
    7.de la Riva, E. G., Godoy, O., Castro-Díez, P., Gutiérrez-Cánovas, C. & Vilà, M. Functional and phylogenetic consequences of plant invasion for coastal native communities. J. Veg. Sci. 30, 510–520 (2019).Article 

    Google Scholar 
    8.Ordonez, A. Functional and phylogenetic similarity of alien plants to co-occurring natives. Ecology 95, 1191–1202 (2014).PubMed 
    Article 

    Google Scholar 
    9.Bezeng, S. B., Davies, J. T., Yessoufou, K., Maurin, O. & der Bank, M. V. Revisiting Darwin’s naturalization conundrum: Explaining invasion success of non-native trees and shrubs in southern Africa. J. Ecol. 103, 871–879 (2015).Article 

    Google Scholar 
    10.Li, S. et al. The effects of phylogenetic relatedness on invasion success and impact: Deconstructing Darwin’s naturalisation conundrum. Ecol. Lett. 18, 1285–1292 (2015).PubMed 
    Article 

    Google Scholar 
    11.Carboni, M. et al. What it takes to invade grassland ecosystems: Traits, introduction history and filtering processes. Ecol. Lett. 19, 219–229 (2016).PubMed 
    Article 

    Google Scholar 
    12.Cadotte, M. W., Campbell, S. E., Li, S., Sodhi, D. S. & Mandrak, N. E. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 69, 661–684 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Diez, J. M., Sullivan, J. J., Hulme, P. E., Edwards, G. & Duncan, R. P. Darwin’s naturalization conundrum: Dissecting taxonomic patterns of species invasions. Ecol. Lett. 11, 674–681 (2008).PubMed 
    Article 

    Google Scholar 
    14.Ma, C. et al. Different effects of invader–native phylogenetic relatedness on invasion success and impact: A meta-analysis of Darwin’s naturalization hypothesis. Proc. R. Society B: Biological Sciences 283, 20160663 (2016).Article 

    Google Scholar 
    15.Bennett, J. A. Similarities between invaders and native species: Moving past Darwin’s naturalization conundrum. J. Veg. Sci. 30, 1027–1034 (2019).Article 

    Google Scholar 
    16.Funk, J. L., Standish, R. J., Stock, W. D. & Valladares, F. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems. Ecology 97, 75–83 (2016).PubMed 
    Article 

    Google Scholar 
    17.Daehler, C. C. Darwin’s naturalization hypothesis revisited. Am. Nat. 158, 324–330 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Duncan, R. P. & Williams, P. A. Ecology: Darwin’s naturalization hypothesis challenged. Nature 417, 608 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ferreira, R. B., Beard, K. H., Peterson, S. L., Poessel, S. A. & Callahan, C. M. Establishment of introduced reptiles increases with the presence and richness of native congeners. Amphibia-Reptilia 33, 387–392 (2012).Article 

    Google Scholar 
    20.Allen, C. R. et al. Predictors of regional establishment success and spread of introduced non-indigenous vertebrates. Glob. Ecol. Biogeogr. 22, 889–899 (2013).Article 

    Google Scholar 
    21.Maitner, B. S., Rudgers, J. A., Dunham, A. E. & Whitney, K. D. Patterns of bird invasion are consistent with environmental filtering. Ecography 35, 614–623 (2012).Article 

    Google Scholar 
    22.Park, D. S. & Potter, D. Why close relatives make bad neighbours: Phylogenetic conservatism in niche preferences and dispersal disproves Darwin’s naturalization hypothesis in the thistle tribe. Mol. Ecol. 24, 3181–3193 (2015).PubMed 
    Article 

    Google Scholar 
    23.Park, D. S. & Potter, D. A reciprocal test of Darwin’s naturalization hypothesis in two mediterranean-climate regions. Glob. Ecol. Biogeogr. 24, 1049–1058 (2015).Article 

    Google Scholar 
    24.Kembel, S. W. & Hubbell, S. P. The phylogenetic structure of a neotropical forest tree community. Ecology 87, S86–S99 (2006).PubMed 
    Article 

    Google Scholar 
    25.Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article 

    Google Scholar 
    26.Thuiller, W. et al. Resolving Darwin’s naturalization conundrum: a quest for evidence. Divers. Distrib. 16, 461–475 (2010).Article 

    Google Scholar 
    27.Funk, J. L., Cleland, E. E., Suding, K. N. & Zavaleta, E. S. Restoration through reassembly: Plant traits and invasion resistance. Trends Ecol. Evol. 23, 695–703 (2008).PubMed 
    Article 

    Google Scholar 
    28.Lapiedra, O., Sol, D., Traveset, A. & Vilà, M. Random processes and phylogenetic loss caused by plant invasions. Glob. Ecol. Biogeogr. 24, 774–785 (2015).Article 

    Google Scholar 
    29.Castro-Díez, P., Pauchard, A., Traveset, A. & Vilà, M. Linking the impacts of plant invasion on community functional structure and ecosystem properties. J. Veg. Sci. 27, 1233–1242 (2016).Article 

    Google Scholar 
    30.Hulme, P. E. & Bernard-Verdier, M. Evaluating differences in the shape of native and alien plant trait distributions will bring new insights into invasions of plant communities. J. Veg. Sci. 29, 348–355 (2018).Article 

    Google Scholar 
    31.Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities: Phylogeny and coexistence. Ecol. Lett. 13, 1085–1093 (2010).PubMed 
    Article 

    Google Scholar 
    32.de Bello, F. et al. Functional species pool framework to test for biotic effects on community assembly. Ecology 93, 2263–2273 (2012).PubMed 
    Article 

    Google Scholar 
    33.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    34.Kunstler, G. et al. Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: Implications for forest community assembly. Ecol. Lett. 15, 831–840 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Gallien, L. et al. Contrasting the effects of environment, dispersal and biotic interactions to explain the distribution of invasive plants in alpine communities. Biol. Invasions 17, 1407–1423 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Gallien, L. & Carboni, M. The community ecology of invasive species: Where are we and what’s next?. Ecography 40, 335–352 (2017).Article 

    Google Scholar 
    37.Parker, I. M. et al. Impact: Toward a framework for understanding the ecological effects of invaders. Biol. Invasions 1, 3–19 (1999).Article 

    Google Scholar 
    38.Byers, J. E. et al. Directing research to reduce the impacts of nonindigenous species. Conserv. Biol. 16, 630–640 (2002).Article 

    Google Scholar 
    39.Hejda, M., Pyšek, P. & Jarošík, V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 97, 393–403 (2009).Article 

    Google Scholar 
    40.Pyšek, P. & Pyšek, A. Invasion by Heracleum mantegazzianum in different habitats in the Czech Republic. J. Veg. Sci. 6, 711–718 (1995).Article 

    Google Scholar 
    41.Hejda, M. & Pyšek, P. What is the impact of Impatiens glandulifera on species diversity of invaded riparian vegetation?. Biol. Conserv. 132, 143–152 (2006).Article 

    Google Scholar 
    42.Chmura, D. et al. The influence of invasive Fallopia taxa on resident plant species in two river valleys (southern Poland). Acta Soc. Bot. Pol. 84, 23–33 (2015).Article 

    Google Scholar 
    43.MacDougall, A. S., Gilbert, B. & Levine, J. M. Plant invasions and the niche. J. Ecol. 97, 609–615 (2009).Article 

    Google Scholar 
    44.Li, S. et al. Contrasting effects of phylogenetic relatedness on plant invader success in experimental grassland communities. J. Appl. Ecol. 52, 89–99 (2015).CAS 
    Article 

    Google Scholar 
    45.Macarthur, R. & Levins, R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 101, 377–385 (1967).Article 

    Google Scholar 
    46.Abrams, P. The theory of limiting similarity. Annu. Rev. Ecol. Syst. 14, 359–376 (1983).Article 

    Google Scholar 
    47.Davies, T. J. Evolutionary ecology: When relatives cannot live together. Evol. Ecol. 16, R645–R647 (2006).ADS 
    CAS 

    Google Scholar 
    48.Omar Kariem, A. Eco-geographical analysis on mountain plants—Kariem Omar—Livres spécialisés. Africa Vivre. https://www.laboutiqueafricavivre.com/livres-specialises/156599-eco-geographical-analysis-on-mountain-plants-9783847331537.html (2012).49.Omar Karim A. Extinction—Towards Plant Conservation. (Lap Lambert Academic Publ, 2014).50.Klute, A. Water retention: Laboratory methods. In: (ed. Klute, A.) Methods of Soil Analysis, Part 1, Physical and Mineralogical Methods, ASA and SSSA, Madison, 635–662. https://doi.org/10.2136/sssabookser5.1.2ed. (1986)Chapter 

    Google Scholar 
    51.Allen, S. E., Grimshaw, H. M., Parkinson, J. A. & Quarmby, C. Chemical Analysis of Ecological Materials. (Blackwell Scientific Publications, 1974).52.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Pérez-Harguindeguy, N. et al. New handbook for stand-ardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    54.Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 33, D34-38 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Kück, P. & Meusemann, K. FASconCAT: Convenient handling of data matrices. Mol. Phylogenet. Evol. 56, 1115–1118 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    56.Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Anisimova, M. & Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 55, 539–552 (2006).PubMed 
    Article 

    Google Scholar 
    58.Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).PubMed 
    Article 

    Google Scholar 
    59.Sanderson, M. J. Estimating absolute rates of molecular evolution and divergence times: A penalized likelihood approach. Mol. Biol. Evol. 19, 101–109 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Villéger, S., Mason, N. W. H. & Mouillot, D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89, 2290–2301 (2008).Article 

    Google Scholar 
    62.Veron, S., Davies, T. J., Cadotte, M. W., Clergeau, P. & Pavoine, S. Predicting loss of evolutionary history: Where are we?. Biol. Rev. 92, 271–291 (2017).PubMed 
    Article 

    Google Scholar 
    63.Swenson, N. Functional and Phylogenetic Ecology in R. (Springer, 2014). https://doi.org/10.1007/978-1-4614-9542-0.64.Webb, C. O., Ackerly, D. D., McPeek, M. A. & Donoghue, M. J. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475–505 (2002).Article 

    Google Scholar 
    65.Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 

    Google Scholar 
    67.Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar 
    68.Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012).Article 

    Google Scholar 
    69.Carboni, M. et al. Functional traits modulate the response of alien plants along abiotic and biotic gradients. Glob. Ecol. Biogeogr. 27, 1173–1185 (2018).Article 

    Google Scholar 
    70.Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    71.Oksanen, J. et al. Vegan: community ecology package. R Package version 2.4-1. https://cran.r-project.org (2016).72.Vila, M. et al. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. J. Biogeogr. 33, 853–861 (2006).Article 

    Google Scholar 
    73.Dong, L.-J., Yu, H.-W. & He, W.-M. What determines positive, neutral, and negative impacts of Solidago canadensis invasion on native plant species richness? Sci Rep. 5(1), 1–9 (2015).CAS 

    Google Scholar 
    74.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    Article 

    Google Scholar 
    75.Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality (complete samples). Biometrika 52, 591–611 (1965).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    76.Jucker, T., Carboni, M. & Acosta, A. T. R. Going beyond taxonomic diversity: deconstructing biodiversity patterns reveals the true cost of iceplant invasion. Divers. Distrib. 19, 1566–1577 (2013).Article 

    Google Scholar 
    77.Prinzing, A. et al. Less lineages—More trait variation: Phylogenetically clustered plant communities are functionally more diverse. Ecol. Lett. 11, 809–819 (2008).PubMed 
    Article 

    Google Scholar 
    78.Blonder, B. Do hypervolumes have holes?. Am. Nat. 187, E93–E105 (2016).PubMed 
    Article 

    Google Scholar 
    79.Levine, J. M. & D’Antonio, C. M. Elton revisited: A review of evidence linking diversity and invasibility. Oikos 87, 15–26 (1999).Article 

    Google Scholar 
    80.Fargione, J., Brown, C. S. & Tilman, D. Community assembly and invasion: An experimental test of neutral versus niche processes. PNAS 100, 8916–8920 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Zavaleta, E. S. & Hulvey, K. B. Realistic variation in species composition affects grassland production, resource use and invasion resistance. Plant Ecol 188, 39–51 (2007).Article 

    Google Scholar 
    82.Case, T. J. Invasion resistance arises in strongly interacting species-rich model competition communities. Proc. Natl. Acad. Sci. 87, 9610–9614 (1990).ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar 
    83.Kennedy, T. A. et al. Biodiversity as a barrier to ecological invasion. Nature 417, 636 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    84.Gerhold, P. et al. Phylogenetically poor plant communities receive more alien species, which more easily coexist with natives. Am. Nat. 177, 668–680 (2011).PubMed 
    Article 

    Google Scholar 
    85.de Bello, F. et al. Decoupling phylogenetic and functional diversity to reveal hidden signals in community assembly. Methods Ecol. Evol. 8, 1200–1211 (2017).ADS 
    Article 

    Google Scholar 
    86.Cadotte, M. W., Carboni, M., Si, X. & Tatsumi, S. Do traits and phylogeny support congruent community diversity patterns and assembly inferences?. J. Ecol. 107, 2065–2077 (2019).Article 

    Google Scholar 
    87.Lososová, Z. et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 24, 786–794 (2015).Article 

    Google Scholar 
    88.Hulme, P. E. & Bernard-Verdier, M. Comparing traits of native and alien plants: Can we do better?. Funct. Ecol. 32, 117–125 (2018).Article 

    Google Scholar 
    89.Luo, Y.-H. et al. Trait-based community assembly along an elevational gradient in subalpine forests: Quantifying the roles of environmental factors in inter- and intraspecific variability. PLoS One 11, e0155749 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    90.Luo, Y.-H. et al. Forest community assembly is driven by different strata-dependent mechanisms along an elevational gradient. J. Biogeogr. 46, 2174–2187 (2019).Article 

    Google Scholar 
    91.Jakobs, G., Weber, E. & Edwards, P. J. Introduced plants of the invasive Solidago gigantea (Asteraceae) are larger and grow denser than conspecifics in the native range. Divers. Distrib. 10, 11–19 (2004).Article 

    Google Scholar 
    92.Chmura, D. & Sierka, E. The invasibility of deciduous forest communities after disturbance: A case study of Carex brizoides and Impatiens parviflora invasion. For. Ecol. Manag. 242, 487–495 (2007).Article 

    Google Scholar 
    93.Szymura, M. & Szymura, T. H. The dynamics of growth and flowering of invasive Solidago species. Steciana 19, 143–152 (2015).MATH 
    Article 

    Google Scholar 
    94.Divíšek, J. et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 9, 4631 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    95.Czarniecka-Wiera, M., Kącki, Z., Chytrý, M. & Palpurina, S. Diversity loss in grasslands due to the increasing dominance of alien and native competitive herbs. Biodivers. Conserv. https://doi.org/10.1007/s10531-019-01794-9 (2019).Article 

    Google Scholar 
    96.Tilman, D. Species richness of experimental productivity gradients: How important is colonization limitation?. Ecology 74, 2179–2191 (1993).Article 

    Google Scholar 
    97.Burke, M. J. W. & Grime, J. P. An experimental study of plant community invasibility. Ecology 77, 776–790 (1996).Article 

    Google Scholar 
    98.Naeem, S. et al. Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91, 97–108 (2000).Article 

    Google Scholar 
    99.Berger, S., Söhlke, G., Walther, G.-R. & Pott, R. Bioclimatic limits and range shifts of cold-hardy evergreen broad-leaved species at their northern distributional limit in Europe. Phytocoenologia 37, 523–539 (2007).Article 

    Google Scholar 
    100.El-Barougy, R. F. et al. Functional similarity and dissimilarity facilitate alien plant invasiveness along biotic and abiotic gradients in an arid protected area. Biol. Invasions 22, 1997–2016 (2020).Article 

    Google Scholar 
    101.Ordonez, A., Wright, I. J. & Olff, H. Functional differences between native and alien species: A global-scale comparison: Functional differences of native and alien plants. Funct. Ecol. 24, 1353–1361 (2010).Article 

    Google Scholar 
    102.Godoy, O. & Levine, J. M. Phenology effects on invasion success: Insights from coupling field experiments to coexistence theory. Ecology 95, 726–736 (2014).PubMed 
    Article 

    Google Scholar 
    103.Cavender-Bares, J., Ackerly, D. D., Baum, D. A. & Bazzaz, F. A. Phylogenetic overdispersion in Floridian Oak Communities. Am. Nat. 163, 823–843 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Richardson, D. M. & Pyšek, P. Plant invasions: Merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 30, 409–431 (2006).Article 

    Google Scholar 
    105.Pyšek, P., Prach, K. & Smilauer, P. Relating invasion success to plant traits: An analysis of the Czech alien flora. Plant Invasions Gen. Aspects Spec. Probl. 39–60 (1995).
    106.Pyšek, P. et al. Alien plants in temperate weed communities: Prehistoric and recent invaders occupy different habitats. Ecology 86, 772–785 (2005).Article 

    Google Scholar 
    107.Prinzing, A., Durka, W., Klotz, S. & Brandl, R. Which species become aliens?. Evol. Ecol. Res. 4, 385–405 (2002).
    Google Scholar 
    108.van Kleunen, M., Weber, E. & Fischer, M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 13, 235–245 (2010).PubMed 
    Article 

    Google Scholar 
    109.Jauni, M. & Hyvönen, T. Interactions between alien plant species traits and habitat characteristics in agricultural landscapes in Finland. Biol. Invasions 14, 47–63 (2012).Article 

    Google Scholar 
    110.Nentwig, W., Kühnel, E. & Bacher, S. A generic impact-scoring system applied to alien mammals in Europe. Conserv. Biol. 24, 302–311 (2010).PubMed 
    Article 

    Google Scholar 
    111.Liu, P. et al. Urbanization increases biotic homogenization of zooplankton communities in tropical reservoirs. Ecol. Indic. 110, 105899 (2020).Article 

    Google Scholar  More

  • in

    The effects of water control on the survival and growth of Alternanthera philoxeroides in the vegetative reproduction and seedling stages

    1.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    Article 

    Google Scholar 
    2.Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Evol. Syst. 32, 305–312 (2001).Article 

    Google Scholar 
    3.Buckingham, G. R. Biological control of alligator weed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea 61, 232–243 (1996).
    Google Scholar 
    4.Bassett, I., Paynter, Q., Hankin, R. & Beggs, J. R. Characterising alligator weed (Alternanthera philoxeroides; Amaranthaceae) invasion at a northern New Zealand lake. New Zeal. J. Ecol. 36, 216–222 (2012).
    Google Scholar 
    5.Chatterjee, A. & Dewanji, A. Effect of varying Alternanthera philoxeroides (alligator weed) cover on the macrophyte species diversity of pond ecosystems: A quadrat-based study. Aquat. Invasions 9, 343–355 (2014).Article 

    Google Scholar 
    6.Xu, C. Y., Zhang, W. J., Fu, C. Z. & Lu, B. R. Genetic diversity of alligator weed in China by RAPD analysis. Biodivers. Conserv. 12, 637–645 (2003).Article 

    Google Scholar 
    7.Wang, B. R., Li, W. G. & Wang, J. B. Genetic diversity of Alternanthera philoxeroides in China. Aquat. Bot. 81, 277–283 (2005).Article 

    Google Scholar 
    8.Geng, Y. P. et al. Phenotypic plasticity of invasive Alternanthera philoxeroides in relation to different water availability, compared to its native congener. Acta. Oecol. 30, 380–385 (2006).ADS 
    Article 

    Google Scholar 
    9.Pan, X. Y., Geng, Y. P., Zhang, W. J., Li, B. & Chen, J. K. The influence of abiotic stress and phenotypic plasticity on the distribution of invasive Alternanthera philoxeroides along a riparian zone. Acta. Oecol. 30, 333–341 (2006).ADS 
    Article 

    Google Scholar 
    10.Peng, X. M. et al. Vegetative propagation capacity of invasive alligator weed through small stolon fragments under different treatments. Sci. Rep. 7, 43826. https://doi.org/10.1038/srep43826 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Dugdale, T., Clements, D., Hunt, T. & Butler, K. Alligator weed produces viable stem fragments in response to herbicide treatment. J. Aquat. Plant Manag. 48, 84–91 (2010).
    Google Scholar 
    12.Chen, Y., Zhou, Y., Yin, T. F., Liu, C. X. & Lou, F. L. The invasive wetland plant Alternanthera philoxeroides shows a higher tolerance to waterlogging than its native congener Alternanthera sessilis. PloS One 8, e81456. https://doi.org/10.1371/journal.pone.0081456 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Tao, Y., Chen, F., Wan, K. Y., Li, X. W. & Li, J. Q. The structural adaptation of aerial parts of invasive Alternanthera philoxeroides to water regime. J. Plant Biol. 52, 403–410 (2009).Article 

    Google Scholar 
    14.Wang, N. et al. Clonal integration supports the expansion from terrestrial to aquatic environments of the amphibious stoloniferous herb Alternanthera philoxeroides. Plant Biol. 11, 483–489 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Fan, S. F. et al. The effects of complete submergence on the morphological and biomass allocation response of the invasive plant Alternanthera philoxeroides. Hydrobiologia 746, 159–169 (2015).CAS 
    Article 

    Google Scholar 
    16.Wang, H. F. et al. Effects of submergence on growth, survival and recovery growth of Alternanthera philoxeroides. J. Wuhan Bot. Res. 26, 147–152 (2008).
    Google Scholar 
    17.Zhang, H. J. et al. Effects of submergence and eutrophication on the morphological traits and biomass allocation of the invasive plant Alternanthera philoxeroides. J. Freshw. Ecol. 31, 341–349 (2016).CAS 
    Article 

    Google Scholar 
    18.Sun, J. F. et al. Addition of Phosphorus and nitrogen support the invasiveness of Alternanthera philoxeroides under water stress. Clean Soil Air Water 48, 2000059. https://doi.org/10.1002/clen.202000059 (2020).CAS 
    Article 

    Google Scholar 
    19.Zhou, J., Li, H. L., Alpert, P., Zhang, M. X. & Yu, F. H. Fragmentation of the invasive, clonal plant Alternanthera philoxeroides decreases its growth but not its competitive effect. Flora 228, 17–23 (2017).Article 

    Google Scholar 
    20.Danckwerts, J. E. & Gordon, A. J. Long-term partitioning, storage and remobilization of 14C assimilated by Trifolium repens (cv. Blanc). Ann. Bot. 64, 533–544 (1989).Article 

    Google Scholar 
    21.Corre, N., Bouchart, V., Ourry, A. & Boucaud, J. Mobilization of nitrogen reserves during regrowth of defoliated Trifolium repens L. and identification of potential vegetative storage proteins. J. Exp. Bot. 47, 1111–1118 (1996).CAS 
    Article 

    Google Scholar 
    22.Granstedt, R. C. & Huffaker, R. C. Identification of the leaf vacuole as a major nitrate storage pool. Plant Physiol. 70, 410–413 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Dong, B. C. et al. How internode length, position and presence of leaves affect survival and growth of Alternanthera philoxeroides after fragmentation?. Evol. Ecol. 24, 1447–1461 (2010).Article 

    Google Scholar 
    24.Wu, Y. J., Du, T. S. & Wang, L. X. Isotope signature of maize stem and leaf and investigation of transpiration and water transport. Agric. Water Manag. 247, 106727. https://doi.org/10.1016/j.agwat.2020.106727 (2021).Article 

    Google Scholar 
    25.Khaitov, B. et al. Licorice (Glycyrrhiza glabra)—Growth and phytochemical compound secretion in degraded lands under drought stress. Sustainability 13, 2923. https://doi.org/10.3390/su13052923 (2021).Article 

    Google Scholar 
    26.Poorter, H., Remkes, C. & Lambers, H. Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol. 94, 621–627 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Mommer, L. & Visser, E. J. W. Underwater photosynthesis in flooded terrestrial plants: A matter of leaf plasticity. Ann. Bot. Lond. 96, 581–589 (2005).CAS 
    Article 

    Google Scholar 
    28.Gibbs, J. & Greenway, H. Review: Mechanisms of anoxia tolerance in plants I. Growth, survival and anaerobic catabolism. Funct. Plant Biol. 30, 353 (2003).PubMed 
    Article 

    Google Scholar 
    29.Wang, H. F. et al. Survival and growth response of Vetiveria zizanioides, Acorus calamus and Alternanthera philoxeroides to long-term submergence. Acta Ecol. Sinica 28, 2571–2580 (2008).Article 

    Google Scholar 
    30.Singh, H. B., Singh, B. B. & Ram, P. C. Submergence tolerance of rain fed lowland rice: Search for physiological marker traits. J. Plant Physiol. 158, 883–889 (2001).CAS 
    Article 

    Google Scholar 
    31.Das, K. K., Sarkar, R. K. & Ismail, A. M. Elongation ability and nonstructural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci. 168, 131–136 (2005).CAS 
    Article 

    Google Scholar 
    32.Laan, P. & Blom, C. W. P. M. Growth and survival responses of Rumex species to flooded and submerged conditions: The importance of shoot elongation, underwater photosynthesis and reserve carbohydrates. J. Exp. Bot. 228, 775–783 (1990).Article 

    Google Scholar 
    33.Lynn, D. E. & Waldren, S. Survival of Ranunculus repens L. (Creeping Buttercup) in an amphibious habitat. Ann. Bot. Lond. 91, 75–84 (2003).CAS 
    Article 

    Google Scholar 
    34.Kende, H., van deer Knaap, E. & Cho, H. T. Deep water rice: A model plant to study stem elongation. Plant Physiol. 118, 1105–1110 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Voesenek, L. A. C. J. et al. Plant hormones regulate fast shoot elongation under water: From genes to communities. Ecology 85, 16–27 (2003).Article 

    Google Scholar 
    36.Voesenek, L. A. C. J. et al. How plants cope with complete submergence. New Phytol. 170, 213–226 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Groeneveld, H. W. & Voesenek, L. A. C. J. Submergence-induced petiole elongation in Rumex palustris is controlled by developmental stage and storage compounds. Plant Soil. 253, 115–123 (2003).CAS 
    Article 

    Google Scholar 
    38.Jackson, M. B. & Colmer, T. D. Response and adaptation by plants to flooding stress. Ann. Bot. Lond. 96, 501–505 (2005).CAS 
    Article 

    Google Scholar 
    39.Banach, K. et al. Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: Implications for vegetation development in future floodwater retention areas. Ann. Bot Lond. 103, 341–351 (2009).Article 

    Google Scholar 
    40.Bailey-Serres, J. & Voesenek, L. A. C. J. Flooding stress: Acclimations and genetic diversity. Annu. Rev. Plant Biol. 59, 313–339 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Kawano, N., Ito, O. & Sakagami, J. I. Morphological and physiological responses of rice seedlings to complete submergence (flash flooding). Ann. Bot. Lond. 103, 161–169 (2009).Article 

    Google Scholar 
    42.Luo, F. L. et al. Recovery dynamics of growth, photosynthesis and carbohydrate accumulation after de-submergence: A comparison between two wetland plants showing escape and quiescence strategies. Ann. Bot. Lond. 107, 49–63 (2011).CAS 
    Article 

    Google Scholar 
    43.Akman, M. et al. Wait or escape? Contrasting submergence tolerance strategies of Rorippa amphibia, Rorippa sylvestris and their hybrid. Ann. Bot. Lond. 109, 1263–1275 (2012).CAS 
    Article 

    Google Scholar 
    44.He, J. B. et al. Survival tactics of Ranunculus species in river floodplains. Oecologia 118, 1–8 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Julien, M. H., Bourne, A. S. & Low, V. H. K. Growth of the weed Alternanthera philoxeroides (Martius) Grisebach, (alligator weed) in aquatic and terrestrial habitats in Australia. Plant Prot. Q. 7, 102–108 (1992).
    Google Scholar 
    46.Mauchamp, A., Blanch, S. & Grillas, P. Effects of submergence on the growth of Phragmites australis seedlings. Aquat. Bot. 69, 147–164 (2001).Article 

    Google Scholar 
    47.Chen, H. J., Qualls, R. G. & Miller, G. C. Adaptive responses of Lepidium latifolium to soil flooding: Biomass allocation, adventitious rooting, aerenchyma formation and ethylene production. Environ. Exp. Bot. 48, 119–128 (2002).Article 

    Google Scholar 
    48.Shen, J. Y., Shen, M. Q., Wang, X. H. & Lu, Y. T. Effect of environmental factors on shoot emergence and vegetative growth of alligatrorweed (Alternanthera philoxeroides). Weed Sci. 53, 471–478 (2005).CAS 
    Article 

    Google Scholar 
    49.Schooler, S. S. Alternanthera philoxeroides (Martius) Grisebach. A Handbook of Global Freshwater Invasive Species (ed. Francis, R. A.) 25–35 (Earthscan, 2012).50.Blom, C. W. P. M. & Voesenek, L. A. C. J. Flooding: The survival strategies of plants. Trends Ecol. Evol. 11, 290–295 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Vartapetian, B. B. & Jackson, M. B. Plant adaptations to anaerobic stress. Ann. Bot-London 79, 3–20 (1997).CAS 
    Article 

    Google Scholar 
    52.Visser, E. J. W., Bögemann, G. M., Van De Steeg, H. M., Pierik, R. & Blom, C. W. P. M. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation. New Phytol. 148, 93–103 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Ruprecht, E., Fenesi, A. & Nijs, I. Are plasticity in functional traits and constancy in performance traits linked with invasiveness? An experimental test comparing invasive and naturalized plant species. Biol. Invasions 16, 1359–1372 (2014).Article 

    Google Scholar 
    54.Poorter, H. et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Fu, H. et al. An alternative mechanism for shade adaptation: Implication of allometric responses of three submersed macrophytes to water depth. Ecol. Res. 27, 1087–1094 (2012).Article 

    Google Scholar 
    56.The weather network. https://www.tianqi.com/ More

  • in

    Annual climatic fluctuations and short-term genetic variation in the eastern spadefoot toad

    1.Hoffman, E. A., Schueler, F. W. & Blouin, M. S. Effective population sizes and temporal stability of genetic structure in Rana pipiens, the northern leopard frog. Evolution 58, 2536–2545. https://doi.org/10.1111/j.0014-3820.2004.tb00882.x (2004).Article 
    PubMed 

    Google Scholar 
    2.Hoeck, P. E. A., Bollmer, J. L., Parker, P. G. & Keller, L. F. Differentiation with drift: A spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.). Philos. Trans. R. Soc. B 365, 1127–1138. https://doi.org/10.1098/rstb.2009.0311 (2010).Article 

    Google Scholar 
    3.Maebe, K. et al. A century of temporal stability of genetic diversity in wild bumblebees. Sci. Rep. 6, 38289. https://doi.org/10.1038/srep38289 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Schmid, S. et al. Spatial and temporal genetic dynamics of the grasshopper Oedaleus decorus revealed by museum genomics. Ecol. Evol. 8, 1480–1495. https://doi.org/10.1002/ece3.3699 (2018).Article 
    PubMed 

    Google Scholar 
    5.Garant, D., Dodson, J. J. & Bernatchez, L. Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar). Mol. Ecol. 9, 615–628. https://doi.org/10.1046/j.1365-294X.2000.00909.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    6.Jonsdottir, O. D. B., Danielsdottir, A. K. & Naevdal, G. Genetic differentiation among Atlantic cod (Gadus morhua) in Icelandic waters: Temporal stability. ICES J. Mar. Sci. 58, 114–122. https://doi.org/10.1006/jmsc.2000.0995 (2001).Article 

    Google Scholar 
    7.Rojas-Hernandez, N., Veliz, D., Riveros, M. P., Fuentes, J. P. & Pardo, L. M. Highly connected populations and temporal stability in allelic frequencies of a harvested crab from the Southern Pacific coast. PLoS ONE 11, 1–18. https://doi.org/10.1371/journal.pone.0166029 (2016).CAS 
    Article 

    Google Scholar 
    8.Vera, M. et al. Current genetic status, temporal stability and structure of the remnant wild European flat oyster populations: Conservation and restoring implications. Mar. Biol. 163, 1–17. https://doi.org/10.1007/s00227-016-3012-x (2016).Article 

    Google Scholar 
    9.Richards, C. M., Emery, S. N. & McCauley, D. E. Genetic and demographic dynamics of small populations of Silene latifolia. Heredity 90, 181–186. https://doi.org/10.1038/sj.hdy.6800214 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    10.Mhemmed, G., Kamel, H. & Chedly, A. Does habitat fragmentation reduce genetic diversity and subpopulation connectivity?. Ecography 31, 751–756. https://doi.org/10.1111/j.1600-0587.2008.05622.x (2008).Article 

    Google Scholar 
    11.Gomaa, N. H., Montesinos-Navarro, A., Alonso-Blanco, C. & Picó, F. X. Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol. Ecol. 20, 3540–3554. https://doi.org/10.1111/j.1365-294X.2011.05193.x (2011).Article 
    PubMed 

    Google Scholar 
    12.Hinkson, K. M. & Richter, S. C. Temporal trends in genetic data and effective population size support efficacy of management practices in critically endangered dusky gopher frogs (Lithobates sevosus). Ecol. Evol. 6, 2667–2678. https://doi.org/10.1002/ece3.2084 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Savage, W. K., Fremier, A. K. & Shaffer, H. B. Landscape genetics of alpine Sierra Nevada salamanders reveal extreme population subdivision in space and time. Mol. Ecol. 19, 3301–3314. https://doi.org/10.1111/j.1365-294X.2010.04718.x (2010).Article 
    PubMed 

    Google Scholar 
    14.Ficetola, G. F., Garner, T. W. J., Wang, J. & De Bernardi, F. Rapid selection against inbreeding in a wild population of a rare frog. Evol. Appl. 4, 30–38. https://doi.org/10.1111/j.1752-4571.2010.00130.x (2011).Article 
    PubMed 

    Google Scholar 
    15.Richter, S. C. & Nunziata, S. O. Survival to metamorphosis is positively related to genetic variability in a critically endangered amphibian species. Anim. Conserv. 17, 265–274. https://doi.org/10.1111/acv.12088 (2014).Article 

    Google Scholar 
    16.Holmes, I. & Crawford, A. Temporal population genetic instability in range-edge western toads, anaxyrus boreas. J. Hered. 106, 45–56. https://doi.org/10.1093/jhered/esu068 (2015).Article 
    PubMed 

    Google Scholar 
    17.Munwes, I. et al. The change in genetic diversity down the core-edge gradient in the eastern spadefoot toad (Pelobates syriacus). Mol. Ecol. 19, 2675–2689. https://doi.org/10.1111/j.1365-294X.2010.04712.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Agasyan, A., Tuniyev, B., Isailovic, J. C., Lymberakis, P., Andrén, C., Cogalniceanu, D. et al. Pelobates syriacus. The IUCN Red List of Threatened Species. www.iucnredlist.org (2009).19.Gafny, S. The biology and ecology of the Syrian spadefoot toad Pelobates syriacus in Israel (MSc thesis). Tel Aviv University (1986).20.Hollar, A. R., Choi, J., Grimm, A. T. & Buchholz, D. R. Higher thyroid hormone receptor expression correlates with short larval periods in spadefoot toads and increases metamorphic rate. Gen. Comp. Endocrinol. 173, 190–198. https://doi.org/10.1016/j.ygcen.2011.05.013 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    21.Székely, P., Tudor, M. & Cogalniceanu, D. Effect of habitat drying on the development of the Eastern spadefoot toad (Pelobates syriacus) tadpoles. Amphib. Reptil. 31, 425–434. https://doi.org/10.1163/156853810791769536 (2010).Article 

    Google Scholar 
    22.Storz, B. L. & Travis, J. Temporally dissociated, trait-specific modifications underlie phenotypic polyphenism in Spea multiplicata tadpoles, which suggests modularity. Sci. World J. 7, 715–726. https://doi.org/10.1100/tsw.2007.159 (2007).Article 

    Google Scholar 
    23.Mahlstein, I., Portmann, R. W., Daniel, J. S., Solomon, S. & Knutti, R. Perceptible changes in regional precipitation in a future climate. Geophys. Res. Lett. 39, 1–5. https://doi.org/10.1029/2011GL050738 (2012).Article 

    Google Scholar 
    24.Fisher, R. The Genetical Theory of Natural Selection (Oxford University Press, 1930).Book 

    Google Scholar 
    25.Bürger, R. The maintenance of genetic variation: A functional analytic approach to quantitative genetic models. In Population Genetics and Evolution (ed. de Jong, G.) 63–72 (Springer, 1988).Chapter 

    Google Scholar 
    26.Parsons, P. A. Evolutionary rates: Stress and species boundaries. Ann. Rev. Ecol. Syst. 22, 1–18. https://doi.org/10.1146/annurev.es.22.110191.000245 (1991).Article 

    Google Scholar 
    27.Safriel, U. N., Volis, S. & Kark, S. Core and peripheral populations and global climate change. Isr. J. Plant Sci. 42, 331–345. https://doi.org/10.1080/07929978.1994.10676584 (1994).Article 

    Google Scholar 
    28.Wan, Q. H., Wu, H., Fujihara, T. & Fang, S. G. Which genetic marker for which conservation genetics issue?. Electrophoresis 25, 2165–2176. https://doi.org/10.1002/elps.200305922 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Faircloth, B. C. MSATCOMMANDER: Detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol. Ecol. Resour. 8, 92–94. https://doi.org/10.1111/j.1471-8286.2007.01884.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Gafny, S. & Gasith, A. Rainpools in Israel. Internal report, the Nature and Parks Authority of Israel (2005).31.Pielou, E. C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131–144. https://doi.org/10.1016/0022-5193(67)90048-3 (1966).Article 

    Google Scholar 
    32.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28, 2537–2539. https://doi.org/10.1093/bioinformatics/bts460 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x (2004).CAS 
    Article 

    Google Scholar 
    34.Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    35.Nei, M. & Li, W. H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Nat. Acad. Sci. U.S.A. 76, 5269–5273. https://doi.org/10.1073/pnas.76.10.5269 (1979).ADS 
    CAS 
    Article 
    MATH 

    Google Scholar 
    36.Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–656. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    37.Saltelli, A. Making best use of model valuations to compute sensitivity indices. Comput. Phys. Commun. 145, 280–297. https://doi.org/10.1016/S0010-4655(02)00280-1 (2002).ADS 
    CAS 
    Article 
    MATH 

    Google Scholar 
    38.Robinson, M. R. et al. The Impact of environmental heterogeneity on genetic architecture in a wild population of soay sheep. Genetics 181, 1639–1648. https://doi.org/10.1534/genetics.108.086801 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Charmantier, A. & Garant, D. Environmental quality and evolutionary potential: lessons from wild populations. Proc. R. Soc. B 272, 1415–1425. https://doi.org/10.1098/rspb.2005.3117 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Stanescu, F., Iosif, R., Szkely, P., Szkely, D. & Cogalniceanu, D. Mass migration of Pelobates syriacus (Boettger, 1889) metamorphs. Herpetozoa 29, 87–89 (2016).
    Google Scholar 
    41.Levin, N., Elron, E. & Gasith, A. Decline of wetland ecosystems in the coastal plain of Israel during the 20th century: Implications for wetland conservation and management. Landsc. Urban Plan. 92, 220–232. https://doi.org/10.1016/j.landurbplan.2009.05.009 (2009).Article 

    Google Scholar 
    42.Waples, R. S. & Teel, D. J. Conservation genetics of pacific salmon I. Temporal changes in allele frequency. Conser. Biol. 4, 144–156. https://doi.org/10.1111/j.1523-1739.1990.tb00103.x (1990).Article 

    Google Scholar 
    43.Chen, N. et al. Allele frequency dynamics in a pedigreed natural population. Proc. Nat. Acad. Sci. U.S.A. 116, 2158–2164. https://doi.org/10.1073/pnas.1813852116 (2019).CAS 
    Article 

    Google Scholar 
    44.Ballon, Y. The effects of different light regimes on activity rhythms of the eastern spadefoot toad (Pelobates syriacus). M.Sc. thesis. Department of Zoology. Tel-Aviv University (2015).45.Cogalniceanu, D. et al. Age and body size in populations of two syntopic spadefoot toads (genus Pelobates) at the limit of their ranges. J. Herpetol. 48, 537–545. https://doi.org/10.1670/13-101 (2014).Article 

    Google Scholar 
    46.Dimmitt, M. Environmental correlates of emergence in spadefoot toads (Scaphiopus). J. Herpetol. 14, 21–29. https://doi.org/10.2307/1563871 (1980).Article 

    Google Scholar 
    47.Crispo, E. & Chapman, L. J. Population genetic structure across dissolved oxygen regimes in an African cichlid fish. Mol. Ecol. 17, 2134–2148. https://doi.org/10.1111/j.1365-294X.2008.03729.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Crispo, E. & Chapman, L. J. Temporal variation in population genetic structure of a riverine African cichlid fish. J. Hered. 101, 97–106. https://doi.org/10.1093/jhered/esp078 (2010).Article 
    PubMed 

    Google Scholar 
    49.Kitanishi, S., Ikeda, T. & Yamamoto, T. Short-term temporal instability in fine-scale genetic structure of masu salmon. Freshw. Biol. 62, 1655–1664. https://doi.org/10.1111/fwb.12978 (2017).Article 

    Google Scholar  More

  • in

    Determining future aflatoxin contamination risk scenarios for corn in Southern Georgia, USA using spatio-temporal modelling and future climate simulations

    1.Reynolds, M. P. & Ortiz, R. Climate change and crop production, Chap. Adapting Crops to Climate Change: A Summary. 1–8 (CABI, 2010).2.Lal, R. et al. Management to mitigate and adapt to climate change. J. Soil Water Conserv. 66, 276–285 (2011).Article 

    Google Scholar 
    3.FAO. A Framework for Land Evaluation. Food and Agriculture Organization of the United Nations, Soils Bulletin No.32. (FAO, Rome, 1976).4.FAO. Land Evaluation. Towards a Revised Framework, Food and Agriculture Organization of the United Nations, Land and Water Discussion Paper No.6. (FAO, Rome, 2007).5.Abbas, H., Shier, W. & Cartwright, R. Effect of temperature, rainfall and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas. Phytoprotection 88, 41–50 (2007).CAS 
    Article 

    Google Scholar 
    6.Brenneman, T. B., Wilson, D. M. & Beaver, R. W. Effects of diniconazole on Aspergillus populations and aflatoxin formation in peanut under irrigated and nonirrigated conditions. Plant Dis. 77, 608–612 (1993).CAS 
    Article 

    Google Scholar 
    7.Wang, T., Zhang, E., Chen, X., Li, L. & Liang, X. Identification of seed proteins associated with resistance to preharvested aflatoxin contamination in peanut (Arachis hypogaea). BMC Plant Biol. 10, 267 (2010).CAS 
    Article 

    Google Scholar 
    8.Gasperini, A. M. et al. Resilience of biocontrol for aflatoxin minimization strategies: Climate change abiotic factors may affect control in non-GM and GM-maize cultivars. Front. Microbiol. 10, 2525 (2019).Article 

    Google Scholar 
    9.Barrett, J. R. Liver cancer and aflatoxin. Environ. Heal. Perspect. 113, 837–838 (2005).
    Google Scholar 
    10.US Food and Drug Administration. Bad Bug Book, Foodborne Pathogenic Microorganisms and Natural Toxins, 2nd edn. (Center for Food Safety Applied Nutrition, 2004).11.Marchese, S. et al. Aflatoxin B1 and M1: Biological properties and their involvement in cancer development. Toxins 10, 214 (2018).Article 

    Google Scholar 
    12.Guo, B., Chen, Z.-Y., Lee, R. D. & Scully, B. T. Drought stress and preharvest aflatoxin contamination in agricultural commodity: Genetics, genomics and proteomics. J. Integr. Plant Biol. 50, 1281–1291 (2008).CAS 
    Article 

    Google Scholar 
    13.Horn, B. W. et al. Sexual reproduction in Aspergillus flavus sclerotia naturally produced in corn. Phytopathology 104, 75–85 (2014).Article 

    Google Scholar 
    14.Payne, G. A. & Widstrom, N. W. Aflatoxin in maize. Critical Rev. Plant Sci. 10, 423–440 (1992).CAS 
    Article 

    Google Scholar 
    15.Kerry, R., Ortiz, B. V., Ingram, B. R. & Scully, B. T. A spatio-temporal investigation of risk factors for aflatoxin contamination of corn in southern Georgia, USA using geostatistical methods. Crop. Prot. 94, 144–158 (2017).CAS 
    Article 

    Google Scholar 
    16.Yoo, E., Kerry, R., Ingram, B., Ortiz, B. & Scully, B. Defining and characterizing Aflatoxin contamination risk areas for corn in Georgia, USA: Adjusting for collinearity and spatial correlation. Spatial Stat. 28, 84–104 (2018).MathSciNet 
    Article 

    Google Scholar 
    17.FAO (Food and Agriculture Organization). Worldwide regulations for mycotoxins in food and feed in 2003. in FAO Food and Nutrition Paper 81 (2004).18.Mazumder, P. M. & Sasmal, D. Mycotoxins—Limits and regulations. Anc. Sci. Life 20, 1 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.US Food and Drug Administration. CPG Sec. 683.100 Action Levels for Aflatoxins in Animal Feeds. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-683100-action-levels-aflatoxinsanimal-feeds (2019).20.European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 364 (2006).21.Commission, E. Commission Regulation (EC) No 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Off. J. Eur. Union 50, 8–12 (2010).
    Google Scholar 
    22.Medina, A., Rodriguez, A. & Magan, N. Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front. Microbiol. 5, 348 (2014).Article 

    Google Scholar 
    23.Medina, A., Rodríguez, A., Sultan, Y. & Magan, N. Climate change factors and Aspergillus flavus: Effects on gene expression, growth and aflatoxin production. World Mycotoxin J. 8, 171–179 (2015).Article 

    Google Scholar 
    24.Garcia-Cela, E. et al. Unveiling the effect of interacting forecasted abiotic factors on growth and Aflatoxin B1 production kinetics by Aspergillus flavus. Fungal Biol. (2020).25.Widstrom, N. W., Forster, M. J., Martin, W. K. & Wilson, D. M. Agronomic performance in the southeastern United States of maize hybrids containing tropical germplasm. Maydica 41, 59–63 (1996).
    Google Scholar 
    26.Damianidis, D. et al. Evaluating a generic drought index as a predictive tool for aflatoxin contamination of corn: From plot to regional level. Crop Prot. 113, 64–74 (2018).CAS 
    Article 

    Google Scholar 
    27.Salvacion, A. et al. Effect of rainfall and maximum temperature on corn aflatoxin in the southeastern U. S coastal plain. in Proceedings of the Climate Information for Managing Risks. Orlando, Florida (2011).28.Damianidis, D. et al. Minimum temperature, rainfall, and agronomic management impacts on corn grain aflatoxin contamination. Agron. J 110(5), 1697–1708 (2018).Article 

    Google Scholar 
    29.Navarro, F., Ingram, B., Kerry, R., Ortiz, B. V. & Scully, B. T. A web-based GIS decision support tool for determining corn aflatoxin risk: A case study data from Southern Georgia, USA. Adv. Anim. Biosci. 8, 718 (2017).Article 

    Google Scholar 
    30.Battilani, P. et al. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Nat. Sci. Rep. 6, 24328 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Thomson, A. M. et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Change 109(1), 77–94 (2011).32.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8.5 tracks cumulative CO2 emissions. PNAS USA 117(33), 19656–19657 (2012).33.Stocker, T. F. et al. Climate change 2013: The physical science basis. in Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change (2014).34.Wacoo, A. P., Wendiro, D., Vuzi, P. C. & Hawumba, J. F. Methods for detection of aflatoxins in agricultural food crops. J. Appl. Chem. 2014, 706291 (2014).35.Kerry, R. & Oliver, M. A. Determining the effect of asymmetric data on the variogram. I. Underlying asymmetry. Comput. Geosci. 33, 1212–1232 (2007).ADS 
    Article 

    Google Scholar 
    36.Webster, R. & Oliver, M. A. Sample adequately to estimate variograms of soil properties. J. Soil Sci. 43(1), 177–192 (1992).Article 

    Google Scholar 
    37.Monestiez, P., Dubroca, L., Bonnin, E., Durbec, J. P. & Guinet, C. Geostatistical modelling of spatial distribution of Balaenoptera physalus in the Northwestern Mediterranean Sea from sparse count data and heterogeneous observation efforts. Ecol. Model. 193, 615–628 (2006).Article 

    Google Scholar 
    38.Hegewisch, K. C. & Abatzoglou, J. T. ‘Future Time Series’ Web Tool. NW Climate Toolbox. https://climatetoolbox.org/. Accessed June 2019.39.Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).ADS 
    Article 

    Google Scholar  More

  • in

    Variability, heritability and condition-dependence of the multidimensional male colour phenotype in a passerine bird

    Andersson M (2006) Condition-dependent indicators in sexual selection: development of theory and tests. In: Lucas JR, Simmons LW (eds) Essays in Animal Behaviour: Celebrating 50 Years of Animal Behaviour. Elsevier Academic Press, p 255–269.Badyaev AV, Hill GE (2000) Evolution of sexual dichromatism: contribution of carotenoid- versus melanin-based colouration. Biol J Linn Soc 69:153–172Article 

    Google Scholar 
    Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Article 

    Google Scholar 
    Bednekoff PA, Houston AI (1994) Avian daily foraging patterns: effects of digestive constraints and variability. Evol Ecol 8:36–52Article 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol 57:289–300.Bonduriansky R, Rowe L (2005) Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Evolution 59:138–151PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Brooks R, Kemp DJ (2001) Can older males deliver the good genes? TREE 16:308–313CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Butler D (2009) ASReml R package version 3.0. VSN International Ltd, Hemel Hempstead, UK
    Google Scholar 
    Cassey P, Ewen J, Blackburn T, Hauber M, Vorobyev M, Marshall N (2008) Eggshell colour does not predict measures of maternal investment in eggs of Turdus thrushes. Naturwissenschaften 95:713–721CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Charmantier A, Wolak ME, Grégoire A, Fargevieille A, Doutrelant C (2017) Colour ornamentation in the blue tit: quantitative genetic (co) variances across sexes. Heredity 118:125CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Class B, Kluen E, Brommer JE (2019) Tail colour signals performance in blue tit nestlings. J Evol Biol 32:913–920PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Cotton S, Fowler K, Pomiankowski A (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? Proc R Soc Lond B Biol Sci 271:771–783Article 

    Google Scholar 
    Cuthill IC (2006) Color perception. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press, p 3–40.D’Alba L, Van Hemert C, Spencer KA, Heidinger BJ, Gill L, Evans NP et al. (2014) Melanin-based color of plumage: role of condition and of feathers’ microstructure. Integr Comp Biol 54:633–644PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Dale J, Dey CJ, Delhey K, Kempenaers B, Valcu M (2015) The effects of life history and sexual selection on male and female plumage colouration. Nature 527:367–370CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Darwin C (1871) The Descent of Man and Selection in Relation to Sex. Princeton University Press.Delhey K, Burger C, Fiedler W, Peters A (2010) Seasonal changes in colour: a comparison of structural, melanin-and carotenoid-based plumage colours. PLoS ONE 5:e11582PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Delhey K, Delhey V, Kempenaers B, Peters A (2015) A practical framework to analyze variation in animal colors using visual models. Behav Ecol 26:367–375Article 

    Google Scholar 
    Delhey K, Hall ML, Kingma SA, Peters A (2013) Increased conspicuousness can explain the match between visual sensitivities and blue plumage colours in fairy-wrens. Proc R Soc Lond B Biol Sci 284:20121771
    Google Scholar 
    Delhey K, Peters A (2008) Quantifying variability of avian colours: Are signalling traits more variable? PLoS ONE 3:e1689.Delhey K, Szecsenyi B, Nakagawa S, Peters A (2017) Conspicuous plumage colours are highly variable. Proc R Soc Lond B Biol Sci 284:20162593
    Google Scholar 
    Dobson AE, Schmidt DJ, Hughes JM (2019) Heritability of plumage colour morph variation in a wild population of promiscuous, long-lived Australian magpies. Heredity 123:349–358PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dunn PO, Whittingham LA, Pitcher TE (2001) Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. Evolution 55:161–175CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Endler JA, Mielke PW (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405–431Article 

    Google Scholar 
    Endler JA, Westcott DA, Madden JR, Robson T (2005) Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59:1795–1818PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Evans MR, Barnard P (1995) Variable sexual ornaments in scarlet-tufted malachite sunbirds (Nectarinia johnstoni) on Mount Kenya. Biol J Linn Soc 54:371–381Article 

    Google Scholar 
    Evans SR, Sheldon BC (2012) Quantitative genetics of a carotenoid-based color: heritability and persistent natal environmental effects in the great tit. Am Nat 179:79–94PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fan M, D’Alba L, Shawkey MD, Peters A, Delhey K (2019) Multiple components of feather microstructure contribute to structural plumage colour diversity in fairy-wrens. Biol J Linn Soc 128:550–568Article 

    Google Scholar 
    Fan M, Hall ML, Kingma SA, Mandeltort LM, Hidalgo Aranzamendi N, Delhey K et al. (2017) No fitness benefits of early molt in a fairy-wren: relaxed sexual selection under genetic monogamy? Behav Ecol 28:1055–1067Article 

    Google Scholar 
    Fan M, Teunissen N, Hall ML, Hidalgo Aranzamendi N, Kingma SA, Roast M et al. (2018) From ornament to armament or loss of function? Breeding plumage acquisition in a genetically monogamous bird. J Anim Ecol 87:1274–1285PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Garant D, Sheldon BC, Gustafsson L (2004) Climatic and temporal effects on the expression of secondary sexual characters: genetic and environmental components. Evolution 58:634–644PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gosden TP, Chenoweth SF (2011) On the evolution of heightened condition dependence of male sexual displays. J Evol Biol 24:685–692CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1–14Article 

    Google Scholar 
    Guindre‐Parker S, Love OP (2014) Revisiting the condition‐dependence of melanin‐based plumage. J Avian Biol 45:29–33Article 

    Google Scholar 
    Hadfield JD (2010) MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J Stat Softw 33:1–22Article 

    Google Scholar 
    Hadfield JD, Burgess MD, Lord A, Phillimore AB, Clegg SM, Owens IP (2006) Direct versus indirect sexual selection: genetic basis of colour, size and recruitment in a wild bird. Proc R Soc Lond B Biol Sci 273:1347–1353
    Google Scholar 
    Hadfield JD, Nutall A, Osorio D, Owens IPF (2007) Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour. J Evol Biol 20:549–557CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hall ML, Kingma SA, Peters A (2013) Male songbird indicates body size with low-pitched advertising songs. PLoS ONE 8:e56717CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall ML, Peters A (2009) Do male paternity guards ensure female fidelity in a duetting fairy-wren? Behav Ecol 20:222–228Article 

    Google Scholar 
    Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hart NS (2001) Variations in cone photoreceptor abundance and the visual ecology of birds. J Comp Physiol A 187:685–697CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hart NS, Hunt DM (2007) Avian visual pigments: characteristics, spectral tuning, and evolution. Am Nat 169(S1):S7–S26PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hawkins GL, Hill GE, Mercadante A (2012) Delayed plumage maturation and delayed reproductive investment in birds. Biol Rev 87:257–274PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hegyi G, Szigeti B, Török J, Eens M (2007) Melanin, carotenoid and structural plumage ornaments: information content and role in great tits Parus major. J Avian Biol 38:698–708Article 

    Google Scholar 
    Hidalgo Aranzamendi N (2017) Life-history variation in a tropical cooperative bird: ecological and social effects on productivity. PhD Thesis, Monash University.Hidalgo Aranzamendi N, Hall ML, Kingma SA, Sunnucks P, Peters A (2016) Incest avoidance, extrapair paternity, and territory quality drive divorce in a year-round territorial bird. Behav Ecol 27:1808–1819.Hidalgo Aranzamendi N, Hall ML, Kingma SA, van de Pol M, Peters A (2019) Rapid plastic breeding response to rain matches peak prey abundance in a tropical savanna bird. J Anim Ecol 88:1799–1811PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Hill GE (2006) Environmental regulation of ornamental coloration. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press. p 507–560.Hill GE, Brawner WR (1998) Melanin-based plumage colouration in the house finch is unaffected by coccidial infection. Proc R Soc Lond B Biol Sci 265:1105–1109Article 

    Google Scholar 
    Johnstone RA, Rands SA, Evans MR (2009) Sexual selection and condition‐dependence. J Evol Biol 22:2387–2394CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kappers EF, de Vries C, Alberda A, Forstmeier W, Both C, Kempenaers B (2018) Inheritance patterns of plumage coloration in common buzzards Buteo buteo do not support a one-locus two-allele model. Biol Lett 14:20180007PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kemp DJ, Rutowski RL (2007) Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution 61:168–183PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kendeigh SC, Kontogiannis JE, Mazac A, Roth RR (1969) Environmental regulation of food intake by birds. Comp Biochem Physiol 31:941–957Article 

    Google Scholar 
    Keyser AJ, Hill GE (2000) Structurally based plumage coloration is an honest signal of quality in male blue grosbeaks. Behav Ecol 11:202–209Article 

    Google Scholar 
    Kingma SA, Hall ML, Arriero E, Peters A (2010) Multiple benefits of cooperative breeding in purple-crowned fairy-wrens: a consequence of fidelity? J Anim Ecol 79:757–768PubMed 
    PubMed Central 

    Google Scholar 
    Kingma SA, Hall ML, Peters A (2011) No evidence for offspring sex-ratio adjustment to social or environmental conditions in cooperatively breeding purple-crowned fairy-wrens. Behav Ecol Sociobiol 65:1203–1213Article 

    Google Scholar 
    Kingma SA, Hall ML, Segelbacher G, Peters A (2009) Radical loss of an extreme extra-pair mating system. BMC Ecol 9:15PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kokko H (1997) Evolutionarily stable strategies of age-dependent sexual advertisement. Behav Ecol Sociobiol 41:99–107Article 

    Google Scholar 
    Kuznetsova A, Brockhoff PB, Christensen RHB (2015) Package ‘lmerTest’ R version 20–33.Lantz SM, Karubian J (2016) Male Red-backed Fairywrens appear to enhance a plumage-based signal via adventitious molt. The Auk 133:338–346Article 

    Google Scholar 
    Lind O, Chavez J, Kelber A (2014) The contribution of single and double cones to spectral sensitivity in budgerigars during changing light conditions. J Comp Physiol A 200:197–207Article 

    Google Scholar 
    Lind O, Henze MJ, Kelber A, Osorio D (2017) Coevolution of coloration and colour vision? Philos Trans R Soc Lond B Biol Sci 372:20160338PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lindström Å, Visser GH, Daan S (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol Zool 66:490–510Article 

    Google Scholar 
    Manning JT (1985) Choosy females and correlates of male age. J Theor Biol 116:349–354Article 

    Google Scholar 
    Masello JF, Lubjuhn T, Quillfeldt P (2008) Is the structural and psittacofulvin-based coloration of wild burrowing parrots Cyanoliseus patagonus condition dependent? J Avian Biol 39:653–662Article 

    Google Scholar 
    McGraw KJ (2006) Mechanics of melanin coloration in birds. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press. p 243–294.McGraw KJ, Mackillop EA, Dale J, Hauber ME (2002) Different colors reveal different information: how nutritional stress affects the expression of melanin- and structurally based ornamental plumage. J Exp Biol 205:3747–3755PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    McGraw KJ, Safran RJ, Wakamatsu K (2005) How feather colour reflects its melanin content. Funct Ecol 19:816–821Article 

    Google Scholar 
    McQueen A, Delhey K, Barzan FR, Naimo AC, Peters A (2021) Male fairy-wrens produce and maintain vibrant breeding colors irrespective of individual quality. Behav Ecol 32:178–187Article 

    Google Scholar 
    Merilä J, Sheldon BC (1999) Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity 83:103–109PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Meunier J, Pinto SF, Burri R, Roulin A (2011) Eumelanin-based coloration and fitness parameters in birds: a meta-analysis. Behav Ecol Sociobiol 65:559–567Article 

    Google Scholar 
    Ödeen A, Pruett-Jones S, Driskell AC, Armenta JK, Håstad O (2012) Multiple shifts between violet and ultraviolet vision in a family of passerine birds with associated changes in plumage coloration. Proc R Soc Lond B Biol Sci 279:1269–1276
    Google Scholar 
    Olsson P, Lind O, Kelber A (2017) Chromatic and achromatic vision: parameter choice and limitations for reliable model predictions. Behav Ecol 29:273–282Article 

    Google Scholar 
    Owens IPF, Hartley IR (1998) Sexual dimorphism in birds: why are there so many different forms of dimorphism? Proc R Soc Lond B Biol Sci 265:397–407Article 

    Google Scholar 
    Peters A, Delhey K, Andersson S, Van Noordwijk H, Förschler MI (2008) Condition‐dependence of multiple carotenoid‐based plumage traits: an experimental study. Funct Ecol 22:831–839Article 

    Google Scholar 
    Peters A, Kingma SA, Delhey K (2013) Seasonal male plumage as a multi-component sexual signal: Insights and opportunities. Emu 113:232–247Article 

    Google Scholar 
    Peters A, Kurvers RHJM, Roberts ML, Delhey K (2011) No evidence for general condition-dependence of structural plumage colour in blue tits: an experiment. J Evol Biol 24:976–987CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Pomiankowski A, Møller AP (1995) A resolution of the lek paradox. Proc R Soc Lond B Biol Sci 260:21–29Article 

    Google Scholar 
    Price T, Schluter D (1991) On the low heritability of life‐history traits. Evolution 45:853–861PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Proulx SR, Day T, Rowe L (2002) Older males signal more reliably. Proc R Soc Lond B Biol Sci 269:2291–2299Article 

    Google Scholar 
    Prum RO (2006) Anatomy, physics, and evolution of structural colours. In: Hill GE, McGraw KJ (eds) Bird coloration, Vol. 1. Harvard University Press. p 295–353.Prum RO (2010) The Lande–Kirkpatrick mechanism is the null model of evolution by intersexual selection: implications for meaning, honesty, and design in intersexual signals. Evolution 64:3085–3100PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/.Reinhold K (2011) Variation in acoustic signalling traits exhibits footprints of sexual selection. Evolution 65:738–745PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Renoult JP, Kelber A, Schaefer HM (2017) Colour spaces in ecology and evolutionary biology. Biol Rev 92:292–315PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Roast MJ, Aranzamendi NH, Fan M, Teunissen N, Hall MD, Peters A (2020) Fitness outcomes in relation to individual variation in constitutive innate immune function. Proc R Soc Lond B Biol Sci 287:20201997
    Google Scholar 
    Roulin A (2016) Condition‐dependence, pleiotropy and the handicap principle of sexual selection in melanin‐based colouration. Biol Rev 91:328–348PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Roulin A, Ducrest AL (2013) Seminars in cell and developmental biology, Vol 24, no 6–7. Academic Press. p 594–608.Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc Lond B Biol Sci 263:1415–1421Article 

    Google Scholar 
    Rowley I, Russell E (1997) Fairy-wrens and Grasswrens: Maluridae. Oxford University Press.Taylor PD, Williams GC (1982) The lek paradox is not resolved. Theor Popul Biol 22:392–409Article 

    Google Scholar 
    Schodde R (1982) The Fairy-wrens: a monograph of the Maluridae. Lansdowne Editions.Shawkey MD, D’Alba L (2017) Interactions between colour-producing mechanisms and their effects on the integumentary colour palette. Philos Trans R Soc Lond B Biol Sci 372:20160536PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tibbetts EA (2010) The condition dependence and heritability of signaling and nonsignaling color traits in paper wasps. Am Nat 175:495–503PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Trivers RL (1972) Parental investment and sexual selection. In: Campbell B (ed) Sexual Selection and the Descent of Man 1871–1971. Heinemann. p 136–179.Vorobyev M, Osorio D, Bennett AT, Marshall NJ, Cuthill IC (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A 183:621–633CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    White TE (2020) Structural colours reflect individual quality: a meta-analysis. Biol Lett 16:20200001PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wilson AJ, Reale D, Clements MN, Morrissey MM, Postma E, Walling CA et al. (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Identifying aphid resistance in the ancestral wheat Triticum monococcum under field conditions

    1.Shewry, P. R. Wheat. J. Exp. Bot. 60, 1537–1553 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Shewry, P. R. & Hey, S. J. The contribution of wheat to human diet and health. Food Energy Secur. 4, 178–202 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Shiferaw, B. et al. Crops that feed the world 10: Past successes and future challenges to the role played by wheat in global food security. Food Secur. 5, 291–317 (2013).Article 

    Google Scholar 
    4.Pickett, J. A. et al. Delivering sustainable crop protection systems via the seed: Exploiting natural constitutive and inducible defence pathways. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20120281 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Dinant, S., Bonnemain, J. L., Girousse, C. & Kehr, J. Phloem sap intricacy and interplay with aphid feeding. C. R. Biol. 333, 504–515 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Rabbinge, R., Drees, E. M., van der Graaf, M., Verberne, F. C. M. & Wesselo, A. Damage effects of cereal aphids in wheat. Netherlands J. Plant Pathol. 87, 217–232 (1981).Article 

    Google Scholar 
    7.Leather, S. R., Walters, K. F. A. & Dixon, A. F. G. Factors determining the pest status of the bird cherry-oat aphid, Rhopalosiphum padi (L.) (Hemiptera: Aphididae), in Europe: A study and review. Bull. Entomol. Res. 79, 345–360 (1989).Article 

    Google Scholar 
    8.Halbert, S. E., Connelly, J. B., Bishop, G. W. & Blackmer, J. L. Transmission of barley yellow dwarf virus by field collected aphids (Homoptera: Aphididae) and their relative importance in barley yellow dwarf epidemiology in southwestern Idaho. Ann. Appl. Biol. 121, 105–121 (1992).Article 

    Google Scholar 
    9.Chapin, J. W., Thomas, J. S., Gray, S. M., Smith, D. M. & Halbert, S. E. Seasonal abundance of aphids (Homoptera: Aphididae) in wheat and their role as barley yellow dwarf virus vectors in the South Carolina coastal plain. J. Econ. Entomol. 94, 410–421 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Tanguy, S. & Dedryver, C. Reduced BYDV–PAV transmission by the grain aphid in a Triticum monococcum line. Eur. J. Plant Pathol. 123, 281–289 (2009).Article 

    Google Scholar 
    11.Yu, W. et al. Variation in the transmission of barley yellow dwarf virus-PAV by different Sitobion avenae clones in China. J. Virol. Methods 194, 1–6 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Voss, T. S., Kieckhefer, R. W., Fuller, B. W., Mcleod, M. J. & Beck, D. A. Yield losses in maturing spring wheat caused by cereal aphids (Homoptera: Aphididae) under laboratory conditions. J. Econ. Entomol. 90, 1346–1350 (1997).Article 

    Google Scholar 
    13.Aradottir, G. I. & Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: A review. Curr. Opin. Insect Sci. 45, 59–68 (2021).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Foster, S. P. et al. A mutation (L1014F) in the voltage-gated sodium channel of the grain aphid, Sitobion avenae, is associated with resistance to pyrethroid insecticides. Pest Manag. Sci. 70, 1249–1253 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Carvalho, F. P. Agriculture, pesticides, food security and food safety. Environ. Sci. Policy 9, 685–692 (2006).Article 

    Google Scholar 
    16.Pickett, J. A. Food security: Intensification of agriculture is essential, for which current tools must be defended and new sustainable technologies invented. Food Energy Secur. 2, 167–173 (2013).Article 

    Google Scholar 
    17.Bezemer, T. M., Jones, T. H. & Knight, K. J. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid aphidius matricariae. Oecologia 116, 128–135 (1998).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Van Der Putten, W. H., Macel, M. & Visser, M. E. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. B. 365, 2025–2034 (2010).Article 

    Google Scholar 
    19.Thaler, J. S. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399, 686–688 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Agrawal, A. A. Macroevolution of plant defense strategies. Trends Ecol. Evol. 22, 103–109 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Rasmann, S., Chassin, E., Bilat, J., Glauser, G. & Reymond, P. Trade-off between constitutive and inducible resistance against herbivores is only partially explained by gene expression and glucosinolate production. J. Exp. Bot. 66, 2527–2534 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Turley, N. E. & Johnson, M. T. J. Ecological effects of aphid abundance, genotypic variation, and contemporary evolution on plants. Oecologia 178, 747–759 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Züst, T. & Agrawal, A. A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    24.Kogan, M. & Ortman, E. F. Antixenosis: A new term proposed to define painter’s ‘nonpreference’ modality of resistance. Bull. Entomol. Soc. Am. 24, 175–176 (1978).
    Google Scholar 
    25.Mumm, R. & Dicke, M. Variation in natural plant products and the attraction of bodyguards involved in indirect plant defense. Can. J. Zool. 88, 628–667 (2010).CAS 
    Article 

    Google Scholar 
    26.Stout, M. J. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Sci. 20, 263–272 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Aradottir, G. I., Martin, J. L., Clark, S. J., Pickett, J. A. & Smart, L. E. Searching for wheat resistance to aphids and wheat bulb fly in the historical Watkins and Gediflux wheat collections. Ann. Appl. Biol. 170, 179–188 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Singh, B. et al. Characterization of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Ann. Appl. Biol. https://doi.org/10.1111/aab.12616 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Radchenko, E. E. Resistance of Triticum species to cereal aphids. Czech J. Genet. Plant Breed. 47, 67–70 (2011).Article 

    Google Scholar 
    30.Sotherton, N. W. & Lee, G. Field assessments of resistance to the aphids Sitobion avenae and Metopolophium dirhodum in old and modern spring-sown wheats. Ann. Appl. Biol. 112, 239–248 (1988).Article 

    Google Scholar 
    31.Hu, X. S. et al. Resistance of wheat accessions to the English grain aphid Sitobion avenae. PLoS ONE 11, 1–17 (2016).
    Google Scholar 
    32.Salamini, F., Ozkan, H., Brandolini, A., Schäfer-Pregl, R. & Martin, W. Genetics and geography of wild cereal domestication in the near east. Nat. Rev. Genet. 3, 429–441 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Greenslade, A. F. C. et al. Triticum monococcum lines with distinct metabolic phenotypes and phloem-based partial resistance to the bird cherry-oat aphid Rhopalosiphum padi. Ann. Appl. Biol. 168, 435–449 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Spiller, N. J. & Llewellyn, M. A comparison of the level of resistance in diploid Triticum monococcum and hexaploid Triticum aestivum wheat seedlings to the aphids Metopolophium dirhodum and Rhopalosiphum padi. Ann. Appl. Biol. 109, 173–177 (1986).Article 

    Google Scholar 
    35.Migui, S. M. & Lamb, R. J. Patterns of resistance to three cereal aphids among wheats in the genus Triticum (Poaceae). Bull. Entomol. Res. 93, 323–333 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Migui, S. M. & Lamb, R. J. Seedling and adult plant resistance to Sitobion avenae (Hemiptera: Aphididae) in Triticum monococcum (Poaceae), an ancestor of wheat. Bull. Entomol. Res. 94, 35–46 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.di Pietro, J. P., Caillaud, C. M., Chaubet, B., Pierre, J. S. & Trottet, M. Variation in resistance to the grain aphid, Sitobion avenae (Sternorhynca: Aphididae), among diploid wheat genotypes: Multivariate analysis of agronomic data. Plant Breed. 117, 407–413 (1998).Article 

    Google Scholar 
    38.Simon, A. L., Wellham, P. A. D., Aradottir, G. I. & Gange, A. C. Unravelling mycorrhiza-induced wheat susceptibility to the English grain aphid Sitobion avenae. Sci. Rep. 7, 1–11 (2017).CAS 
    Article 

    Google Scholar 
    39.Rosenheim, J. A. Source-sink dynamics for a generalist insect predator in habitats with strong higher-order predation. Ecol. Monogr. 71, 93–116 (2001).
    Google Scholar 
    40.Pålsson, J. et al. Recruiting on the spot: A biodegradable formulation for lacewings to trigger biological control of aphids. Insects 10, 1–15 (2019).Article 

    Google Scholar 
    41.Mohamed, A. H., Lester, P. J. & Holtzer, T. O. Abundance and effects of predators and parasitoids on the Russian wheat aphid (Homoptera: Aphididae) under organic farming conditions in Colorado. Environ. Entomol. 29, 360–368 (2000).Article 

    Google Scholar 
    42.Schröder, M. L., Glinwood, R., Ingell, R. & Krüger, K. Visual cues and host-plant preference of the bird cherry-oat aphid, Rhopalosiphum padi (Hemiptera: Aphididae). Afr. Entomol. 22, 428–436 (2014).Article 

    Google Scholar 
    43.Weaver, D. K. et al. Cultivar preferences of ovipositing wheat stem sawflies as influenced by the amount of volatile attractant. J. Econ. Entomol. 102, 1009–1017 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Dong, L. et al. Characterization of volatile aroma compounds in different brewing barley cultivars. J. Sci. Food Agric. 95, 915–921 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Mattiolo, E., Licciardello, F., Lombardo, G. M., Muratore, G. & Anastasi, U. Volatile profiling of durum wheat kernels by HS–SPME/GC–MS. Eur. Food Res. Technol. 243, 147–155 (2017).CAS 
    Article 

    Google Scholar 
    46.Schröder, M. L., Glinwood, R., Webster, B., Ignell, R. & Krüger, K. Olfactory responses of Rhopalosiphum padi to three maize, potato, and wheat cultivars and the selection of prospective crop border plants. Entomol. Exp. Appl. 157, 241–253 (2015).Article 
    CAS 

    Google Scholar 
    47.Evans, E. W. & Youssef, N. N. Numerical responses of aphid predators to varying prey density among utah alfalfa fields. J. Kansas Entomol. Soc. 65, 30–38 (1992).
    Google Scholar 
    48.Garratt, M. P. D., Wright, D. J. & Leather, S. R. The effects of organic and conventional fertilizers on cereal aphids and their natural enemies. Agric. For. Entomol. 12, 307–318 (2010).
    Google Scholar 
    49.Messina, F. J. & Sorenson, S. M. Effectiveness of lacewing larvae in reducing Russian wheat aphid populations on susceptible and resistant wheat. Biol. Control 21, 19–26 (2001).Article 

    Google Scholar 
    50.Farid, A., Johnson, J. B., Shafii, B. & Quisenberry, S. S. Tritrophic studies of Russian wheat aphid, a parasitoid, and resistant and susceptible wheat over three parasitoid generations. Biol. Control 12, 1–6 (1998).Article 

    Google Scholar 
    51.Ponder, K. L., Pritchard, J., Bale, J. S. & Harrington, R. Feeding behaviour of the aphid Rhopalosiphum padi (Hemiptera: Aphididae) on nitrogen and water-stressed barley (Hordeum vulgare) seedlings. Bull. Entomol. Res. 91, 125–130 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Cabrera, H. M., Argandoña, V. H., Zúñiga, G. E. & Corcuera, L. J. Effect of infestation by aphids on the water status of barley and insect development. Phytochemistry 40, 1083–1088 (1995).CAS 
    Article 

    Google Scholar 
    53.Pons, X. & Tatchell, G. M. Drought stress and cereal aphid performance. Ann. Appl. Biol. 126, 19–31 (1995).Article 

    Google Scholar 
    54.Silva, P. S., Albuquerque, G. S., Tauber, C. A. & Tauber, M. J. Life history of a widespread Neotropical predator, Chrysopodes (Chrysopodes) lineafrons (Neuroptera: Chrysopidae). Biol. Control 41, 33–41 (2007).Article 

    Google Scholar 
    55.Malina, R., Praslička, J. & Schlarmannová, J. Developmental rates of the aphid Aphis pomi (Aphidoidea: Aphididae) and its parasitoid Aphidius ervi (Hymenoptera: Aphidiidae). Biologia 65, 899–902 (2010).Article 

    Google Scholar 
    56.Bensadia, F., Boudreault, S., Guay, J. F., Michaud, D. & Cloutier, C. Aphid clonal resistance to a parasitoid fails under heat stress. J. Insect Physiol. 52, 146–157 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Vorburger, C., Ganesanandamoorthy, P. & Kwiatkowski, M. Comparing constitutive and induced costs of symbiont-conferred resistance to parasitoids in aphids. Ecol. Evol. 3, 706–713 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 3, 52–58 (2013).ADS 
    Article 

    Google Scholar  More