More stories

  • in

    Random population fluctuations bias the Living Planet Index

    1.Mace, G. M. et al. Aiming higher to bend the curve of biodiversity loss. Nat. Sustain. 1, 448–451 (2018).Article 

    Google Scholar 
    2.Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 

    Google Scholar 
    3.Updated Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020); https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf4.Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    Article 

    Google Scholar 
    5.Loh, J. et al. The Living Planet Index: using species population time series to track trends in biodiversity. Philos. Trans. R. Soc. B 360, 289–295 (2005).Article 

    Google Scholar 
    6.Collen, B. et al. Monitoring change in vertebrate abundance: the Living Planet Index. Conserv. Biol. 23, 317–327 (2009).Article 

    Google Scholar 
    7.McRae, L., Deinet, S. & Freeman, R. The diversity-weighted Living Planet Index: controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156 (2017).Article 

    Google Scholar 
    8.Almond, R.E.A., Grooten M. & Petersen, T. (eds) Living Planet Report 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).9.Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).10.Global Biodiversity Outlook 5 (Convention on Biological Diversity, 2020).11.Jaspers, A. Can a single index track the state of global biodiversity? Biol. Conserv. 246, 108524 (2020).Article 

    Google Scholar 
    12.Leung, B. et al. Clustered versus catastrophic global vertebrate declines. Nature 588, 267–271 (2020).CAS 
    Article 

    Google Scholar 
    13.Buckland, S. T., Studeny, A. C., Magurran, A. E., Illian, J. & Newson, S. E. The geometric mean of relative abundance indices: a biodiversity measure with a difference. Ecosphere 2, 100 (2011).14.de Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76.15.Daskalova, G. N., Myers-Smith, I. H. & Godlee, J. L. Rare and common vertebrates span a wide spectrum of population trends. Nat. Commun. 11, 4394 (2020).CAS 
    Article 

    Google Scholar 
    16.Living Planet Report 2020. Technical Supplement: Living Planet Index (WWF, 2020); https://f.hubspotusercontent20.net/hubfs/4783129/LPR/PDFs/ENGLISH%20-%20TECH%20SUPPLIMENT.pdf17.Vellend, M. Conceptual synthesis in community ecology. Quart. Rev. Biol. 85, 183–206 (2010).Article 

    Google Scholar 
    18.Vellend, M. et al. Assessing the relative importance of neutral stochasticity in ecological communities. Oikos 123, 1420–1430 (2014).Article 

    Google Scholar 
    19.Lande, R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 142, 911–927 (1993).Article 

    Google Scholar 
    20.Gravel, D., Guichard, F. & Hochberg, M. E. Species coexistence in a variable world. Ecol. Lett. 14, 828–839 (2011).Article 

    Google Scholar 
    21.Kotze, D. J., O’Hara, R. B. & Lehvävirta, S. Dealing with varying detection probability, unequal sample sizes and clumped distributions in count data. PLoS ONE 7, e40923 (2012).CAS 
    Article 

    Google Scholar 
    22.Kellner, K. F. & Swihart, R. K. Accounting for imperfect detection in ecology: a quantitative review. PLoS ONE 9, e111436 (2014).Article 

    Google Scholar 
    23.Di Fonzo, M., Collen, B. & Mace, G. M. A new method for identifying rapid decline dynamics in wild vertebrate populations. Ecol. Evol. 3, 2378–2391 (2013).Article 

    Google Scholar 
    24.Maxwell, S. L. et al. Being smart about SMART environmental targets. Science 347, 1075–1076 (2015).CAS 
    Article 

    Google Scholar 
    25.Butchart, S. H. M., Di Marco, M. & Watson, J. E. M. Formulating SMART commitments on biodiversity: lessons from the Aichi Targets. Conserv Lett. 9, 457–468 (2016).Article 

    Google Scholar 
    26.Green, E. J. et al. Relating characteristics of global biodiversity targets to reported progress. Conserv. Biol. 33, 1360–1369 (2019).Article 

    Google Scholar 
    27.Dornelas, M. et al. A balance of winners and losers in the Anthropocene. Ecol. Lett. 22, 847–854 (2019).Article 

    Google Scholar 
    28.Fournier, A. M. V., White, E. R. & Heard, S. B. Site‐selection bias and apparent population declines in long‐term studies. Conserv. Biol. 33, 1370–1379 (2019).Article 

    Google Scholar 
    29.Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    Article 

    Google Scholar 
    30.Papworth, S. K., Rist, J., Coad, L. & Milner-Gulland, E. J. Evidence for shifting baseline syndrome in conservation. Conserv Lett. 2, 93–100 (2009).
    Google Scholar 
    31.Barnosky, A. D. et al. Approaching a state shift in Earth’s biosphere. Nature 486, 52–58 (2012).CAS 
    Article 

    Google Scholar 
    32.Nicholson, E. et al. Scenarios and models to support global conservation targets. Trends Ecol. Evol. 34, 57–68 (2019).Article 

    Google Scholar 
    33.Bull, J. W., Strange, N., Smith, R. J. & Gordon, A. Reconciling multiple counterfactuals when evaluating biodiversity conservation impact in social-ecological systems. Conserv. Biol. 35, 510–521 (2021).Article 

    Google Scholar 
    34.van Strien, A. J. et al. Modest recovery of biodiversity in a western European country: The Living Planet Index for the Netherlands. Biol. Conserv. 200, 44–50 (2016).Article 

    Google Scholar 
    35.Wauchope, H. S., Amano, T., Sutherland, W. J. & Johnston, A. When can we trust population trends? A method for quantifying the effects of sampling interval and duration. Methods Ecol. Evol. 10, 2067–2078 (2019).Article 

    Google Scholar 
    36.Wauchope, H. S. et al. Evaluating impact using time-series data. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.11.001 (2020).37.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).38.Buschke, F. T. Biodiversity trajectories and the time needed to achieve no net loss through averted-loss biodiversity offsets. Ecol. Model 352, 54–57 (2017).Article 

    Google Scholar  More

  • in

    Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen

    1.De’Ath G, Fabricius KE, Sweatman H, Puotinen M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci U.S.A. 2012;109:17995–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Randall CJ, van Woesik R. Contemporary white-band disease in Caribbean corals driven by climate change. Nat Clim Chang. 2015;5:375–9.Article 

    Google Scholar 
    3.Maynard J, van Hooidonk R, Eakin CM, Puotinen M, Garren M, Williams G, et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat Clim Chang. 2015;5:688–95.Article 

    Google Scholar 
    4.Cziesielski MJ, Schmidt-Roach S, Aranda M. The past, present, and future of coral heat stress studies. Ecol Evol. 2019;9:10055–66.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Bourne D, Iida Y, Uthicke S, Smith-Keune C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2008;2:350–63.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.van de Water JAJM, Chaib De Mares M, Dixon GB, Raina JB, Willis BL, Bourne DG, et al. Antimicrobial and stress responses to increased temperature and bacterial pathogen challenge in the holobiont of a reef-building coral. Mol Ecol. 2018;27:1065–80.PubMed 
    Article 
    CAS 

    Google Scholar 
    7.Sussman M, Mieog JC, Doyle J, Victor S, Willis BL, Bourne DG. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS ONE. 2009;4:1–14.8.Ben-Haim Y, Zicherman-Keren M, Rosenberg E. Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol. 2003;69:4236–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 2014;8:999–1007.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Garren M, Son K, Tout J, Seymour JR, Stocker R. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J. 2016;10:1363–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Barbara GM, Mitchell JG. Marine bacterial organisation around point-like sources of amino acids. FEMS Microbiol Ecol. 2003;43:99–109.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Seymour JR, Marcos, Stocker R. Resource patch formation and exploitation throughout the marine microbial food web. Am Nat. 2009;173:E15–29.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Son K, Menolascina F, Stocker R. Speed-dependent chemotactic precision in marine bacteria. Proc Natl Acad Sci U.S.A. 2016;113:8624–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Meron D, Efrony R, Johnson WR, Schaefer AL, Morris PJ, Rosenberg E, et al. Role of Flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl Environ Microbiol. 2009;75:5704–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Ushijima B, Häse CC. Influence of chemotaxis and swimming patterns on the virulence of the coral pathogen Vibrio coralliilyticus. J Bacteriol. 2018;200:1–16.Article 

    Google Scholar 
    16.Crossland CJ, Barnes DJ, Borowitzka MA. Diurnal lipid and mucus production in the staghorn coral Acropora acuminata. Mar Biol. 1980;60:81–90.17.Davies PS. The role of zooxanthellae in the nutritional energy requirements of Pocillopora eydouxi. Coral Reefs. 1984;2:181–6.18.Rix L, de Goeij JM, Mueller CE, Struck U, Middelburg JJ, van Duyl FC, et al. Coral mucus fuels the sponge loop in warm-and cold-water coral reef ecosystems. Sci Rep. 2016;6:1–11.Article 
    CAS 

    Google Scholar 
    19.Naumann MS, Haas A, Struck U, Mayr C, El-Zibdah M, Wild C. Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs. 2010;29:649–59.Article 

    Google Scholar 
    20.Wild C, Huettel M, Klueter A, Kremb SG, Rasheed MYM, Jørgensen BB. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature. 2004;428:66–70.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Bythell JC, Wild C. Biology and ecology of coral mucus release. J Exp Mar Bio Ecol. 2011;408:88–93.Article 

    Google Scholar 
    22.Bakshani CR, Morales-Garcia AL, Althaus M, Wilcox MD, Pearson JP, Bythell JC, et al. Evolutionary conservation of the antimicrobial function of mucus: a first defence against infection. NPJ Biofilms Microbiomes. 2018;14:1–12.
    Google Scholar 
    23.Gibbin E, Gavish A, Krueger T, Kramarsky-Winter E, Shapiro O, Guiet R, et al. Vibrio coralliilyticus infection triggers a behavioural response and perturbs nutritional exchange and tissue integrity in a symbiotic coral. ISME J. 2019;13:989–1003.24.Gavish AR, Shapiro OH, Kramarsky-Winter E, Vardi A. Microscale tracking of coral-vibrio interactions. ISME Communications. 2021;1:1–18.25.Shapiro OH, Fernandez VI, Garren M, Guasto JS, Debaillon-Vesque FP, Kramarsky-Winter E, et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc Natl Acad Sci U.S.A. 2014;111:13391–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Seymour JR, Ahmed T, Stocker R. A microfluidic chemotaxis assay to study microbial behavior in diffusing nutrient patches. Limnol Oceanogr Methods. 2008;6:477–88.CAS 
    Article 

    Google Scholar 
    27.Penn K, Wang J, Fernando SC, Thompson JR. Secondary metabolite gene expression and interplay of bacterial functions in a tropical freshwater cyanobacterial bloom. ISME J. 2014;8:1866–78.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21.Article 
    CAS 

    Google Scholar 
    29.Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11:1–12.30.Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U.S.A. 2005;102:15545–50.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Mootha VK, Lindgren CM, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Schneider WR, Doetsch RN. Effect of viscosity on bacterial motility. J Bacteriol. 1974;117:696–701.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Martinez VA, Schwarz-Linek J, Reufer M, Wilson LG, Morozov AN, Poon WCK. Flagellated bacterial motility in polymer solutions. Proc Natl Acad Sci U.S.A. 2014;111:17771–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Kimes NE, Grim CJ, Johnson WR, Hasan NA, Tall BD, Kothary MH, et al. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 2012;6:835–46.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Kojima S, Yamamoto K, Kawagishi I, Homma M. The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J Bacteriol. 1999;181:1927–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Sowa Y, Hotta H, Homma M, Ishijima A. Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J Mol Biol. 2003;327:1043–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Milo R, Phillips R. Cell biology by the numbers. 1st ed. New York, NY: Garland Science; 2016.38.Crossland CJ. In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs. 1987;6:35–42.CAS 
    Article 

    Google Scholar 
    39.Wild C, Woyt H, Huettel M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser. 2005;287:87–98.40.Ducklow HW, Mitchell R. Composition of mucus released by coral reef coelenterates. Limnol Oceanogr. 1979;24:706–14.CAS 
    Article 

    Google Scholar 
    41.Meikle P, Richards GN, Yellowlees D. Structural determination of the oligosaccharide side chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J Biol Chem. 1987;262:16941–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Coddeville B, Maes E, Ferrier-Pagès C, Guerardel Y. Glycan profiling of gel forming mucus layer from the scleractinian symbiotic coral Oculina arbuscula. Biomacromolecules. 2011;12:2064–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Hasegawa H, Häse CC. TetR-type transcriptional regulator VtpR functions as a global regulator in Vibrio tubiashii. Appl Environ Microbiol. 2009;75:7602–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Ball AS, Chaparian RR, van Kessel JC. Quorum sensing gene regulation by LuxR/HapR master regulators in Vibrios. J Bacteriol. 2017;199:1–13.45.Rutherford ST, Van Kessel JC, Shao Y, Bassler BL. AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev. 2011;25:397–408.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Hammer BK, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae. Mol Microbiol. 2003;50:101–4.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Waters CM, Lu W, Rabinowitz JD, Bassler BL. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic Di-GMP levels and repression of vpsT. J Bacteriol. 2008;190:2527–36.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Burger AH. Quorum Sensing in the Hawai’ian Coral Pathogen Vibrio coralliilyticus strain OCN008. University of Hawaii at Manoa; 2017.49.Yildiz FH, Schoolnik GK. Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U.S.A. 1999;96:4028–33.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Fong JCN, Syed KA, Klose KE, Yildiz FH. Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology. 2010;156:2757–69.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Fong JCN, Karplus K, Schoolnik GK, Yildiz FH. Identification and characterization of RbmA, a novel protein required for the development of rugose colony morphology and biofilm structure in Vibrio cholerae. J Bacteriol. 2006;188:1049–59.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Fong JCN, Yildiz FH. The rbmBCDEF gene cluster modulates development of rugose colony morphology and biofilm formation in Vibrio cholerae. J Bacteriol. 2007;189:2319–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.DiRita VJ, Mekalanos JJ. Periplasmic interaction between two membrane regulatory proteins, ToxR and ToxS, results in signal transduction and transcriptional activation. Cell. 1991;64:29–37.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Almagro-Moreno S, Root MZ, Taylor RK. Role of ToxS in the proteolytic cascade of virulence regulator ToxR in Vibrio cholerae. Mol Microbiol. 2015;98:963–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Lee SE, Ryu PY, Kim SY, Kim YR, Koh JT, Kim OJ, et al. Production of Vibrio vulnificus hemolysin in vivo and its pathogenic significance. Biochem Biophys Res Commun. 2004;324:86–91.56.Senoh M, Okita Y, Shinoda S, Miyoshi S. The crucial amino acid residue related to inactivation of Vibrio vulnificus hemolysin. Micro Pathog. 2008;44:78–83.CAS 
    Article 

    Google Scholar 
    57.Bröms JE, Ishikawa T, Wai SN, Sjöstedt A. A functional VipA-VipB interaction is required for the type VI secretion system activity of Vibrio cholerae O1 strain A1552. BMC Microbiol. 2013;13:1–12.Article 
    CAS 

    Google Scholar 
    58.Vizcaino MI, Johnson WR, Kimes NE, Williams K, Torralba M, Nelson KE, et al. Antimicrobial resistance of the coral pathogen Vibrio coralliilyticus and Caribbean sister phylotypes isolated from a diseased octocoral. Micro Ecol. 2010;59:646–57.Article 

    Google Scholar 
    59.Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser. 2006;322:1–14.CAS 
    Article 

    Google Scholar 
    60.Nissimov J, Rosenberg E, Munn CB. Antimicrobial properties of resident coral mucus bacteria of Oculina patagonica. FEMS Microbiol Lett. 2009;292:210–5.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol. 2009;67:371–80.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Rypien KL, Ward JR, Azam F. Antagonistic interactions among coral-associated bacteria. Environ Microbiol. 2010;12:28–39.CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Alagely A, Krediet CJ, Ritchie KB, Teplitski M. Signaling-mediated cross-talk modulates swarming and biofilm formation in a coral pathogen Serratia marcescens. ISME J. 2011;5:1609–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci U.S.A. 2008;105:4209–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Polz MF, Hunt DE, Preheim SP, Weinreich DM. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos Trans R Soc B Biol Sci. 2006;361:2009–21.Article 

    Google Scholar 
    66.Taylor JR, Stocker R. Trade-offs of chemotactic foraging in turbulent water. Science. 2012;338:675–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Krediet CJ, Ritchie KB, Cohen M, Lipp EK, Patterson Sutherland K, Teplitski M. Utilization of mucus from the coral Acropora palmata by the pathogen Serratia marcescens and by environmental and coral commensal bacteria. Appl Environ Microbiol. 2009;75:3851–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Krediet CJ, Ritchie KB, Alagely A, Teplitski M. Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME J. 2013;7:980–90.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Packer HL, Armitage JP. The chemokinetic and chemotactic behavior of Rhodobacter sphaeroides: two independent responses. J Bacteriol. 1994;176:206–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Deepika D, Karmakar R, Tirumkudulu MS, Venkatesh KV. Variation in swimming speed of Escherichia coli in response to attractant. Arch Microbiol. 2015;197:211–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Zhulin IB, Armitage JP. Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense. J Bacteriol. 1993;175:952–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Ramos HC, Rumbo M, Sirard J-C. Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 2004;12:509–17.CAS 
    PubMed 
    Article 

    Google Scholar 
    73.Reed KC, Muller EM, van Woesik R. Coral immunology and resistance to disease. Dis Aquat Organ. 2010;90:85–92.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Ushijima B, Videau P, Poscablo D, Stengel JW, Beurmann S, Burger AH, et al. Mutation of the toxR or mshA genes from Vibrio coralliilyticus strain OCN014 reduces infection of the coral Acropora cytherea. Environ Microbiol. 2016;18:4055–67.CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Ushijima B, Richards GP, Watson MA, Schubiger CB, Häse CC. Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus. PLoS ONE. 2018;13:e0199475.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Peterson KM, Mekalanos JJ. Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun. 1988;56:2822–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Provenzano D, Klose KE. Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci U.S.A. 2000;97:10220–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Waters CM, Bassler BL. The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes Dev. 2006;20:2754–67.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments. Nat Rev Microbiol. 2019;17:371–82.80.Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem. 2011;286:16555–66.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Korotkov KV, Sandkvist M, Hol WGJ. The type II secretion system: biogenesis, molecular architecture and mechanism. Nat Rev Microbiol. 2012;10:336–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Stathopoulos C, Hendrixson DR, Thanassi DG, Hultgren SJ, St. Geme III JW, Curtiss III R. Secretion of virulence determinants by the general secretory pathway in Gram-negative pathogens: an evolving story. Microbes Infect. 2000;2:1061–72.83.Hood RD, Singh P, Hsu FS, Güvener T, Carl MA, Trinidad RRS, et al. A Type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria. Cell Host Microbe. 2010;7:25–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Zheng J, Ho B, Mekalanos JJ. Genetic analysis of anti-amoebae and anti-bacterial activities of the Type VI secretion system in Vibrio cholerae. PLoS ONE. 2011;6:e23876.85.MacIntyre DL, Miyata ST, Kitaoka M, Pukatzki S. The Vibrio cholerae type VI secretion system displays antimicrobial properties. Proc Natl Acad Sci U.S.A. 2010;107:19520–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Lee SH, Hava DL, Waldor MK, Camilli A. Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell. 1999;99:625–34.87.Pennetzdorfer N, Lembke M, Pressler K, Matson JS, Reidl J, Schild S. Regulated proteolysis in Vibrio cholerae allowing rapid adaptation to stress conditions. Front Cell Infect Microbiol. 2019;9:1–9.Article 
    CAS 

    Google Scholar 
    88.Liu R, Chen H, Zhang R, Zhou Z, Hou Z, Gao D, et al. Comparative transcriptome analysis of Vibrio splendidus JZ6 reveals the mechanism of its pathogenicity at low temperatures. Appl Environ Microbiol. 2016;82:2050–61.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science. 2018;359:80–3.90.Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C, et al. Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol. 2010;12:2007–19.91.Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun. 2016;7:1–12.Article 
    CAS 

    Google Scholar  More

  • in

    The global distribution and environmental drivers of aboveground versus belowground plant biomass

    1.Erb, K. H. et al. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553, 73–76 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Luyssaert, S. et al. Old-growth forests as global carbon sinks. Nature 455, 213–215 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Drake, J. B. et al. Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships. Glob. Ecol. Biogeogr. 12, 147–159 (2003).Article 

    Google Scholar 
    4.Lefsky, M. A. et al. Lidar remote sensing of above-ground biomass in three biomes. Glob. Ecol. Biogeogr. 11, 393–399 (2002).Article 

    Google Scholar 
    5.Duncanson, L. et al. The importance of consistent global forest aboveground biomass product validation. Surv. Geophys. 40, 979–999 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data 7, 112 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Ottaviani, G. et al. The neglected belowground dimension of plant dominance. Trends Ecol. Evol. 35, 763–766 (2020).PubMed 
    Article 

    Google Scholar 
    8.Jackson, L. E., Burger, M. & Cavagnaro, T. R. Roots, nitrogen transformations, and ecosystem services. Annu. Rev. Plant Biol. 59, 341–363 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).Article 

    Google Scholar 
    10.Robinson, D. Implications of a large global root biomass for carbon sink estimates and for soil carbon dynamics. Proc. R. Soc. Lond. B 274, 2753–2759 (2007).CAS 

    Google Scholar 
    11.Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).PubMed 
    Article 

    Google Scholar 
    12.Ribeiro, S. C. et al. Above- and belowground biomass in a Brazilian Cerrado. For. Ecol. Manage. 262, 491–499 (2011).Article 

    Google Scholar 
    13.Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root:shoot ratios in terrestrial biomes. Glob. Chang. Biol. 12, 84–96 (2006).Article 

    Google Scholar 
    14.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    15.Ruesch, A. S. & Gibbs, H. H. K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, 2008).16.Chen, J. L. & Reynolds, J. F. A coordination model of whole-plant carbon allocation in relation to water stress. Ann. Bot. 80, 45–55 (1997).CAS 
    Article 

    Google Scholar 
    17.Franklin, O. et al. Modeling carbon allocation in trees: a search for principles. Tree Physiol. 32, 648–666 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Bloom, A. J., Chapin, F. S. & Mooney, H. A. Resource limitation in plants—an economic analogy. Annu. Rev. Ecol. Syst. 16, 363–392 (1985).Article 

    Google Scholar 
    19.Poorter, H. et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193, 30–50 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Reich, P. in Plant Roots: The Hidden Half (eds. Waisel, Y. et al.) 205–220 (Marcel Dekker, 2006).21.Ledo, A. et al. Tree size and climatic water deficit control root to shoot ratio in individual trees globally. New Phytol. 217, 8–11 (2018).PubMed 
    Article 

    Google Scholar 
    22.Qi, Y., Wei, W., Chen, C. & Chen, L. Plant root-shoot biomass allocation over diverse biomes: a global synthesis. Glob. Ecol. Conserv. 18, e00606 (2019).Article 

    Google Scholar 
    23.Reich, P. B. et al. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots. Proc. Natl Acad. Sci. USA 111, 13721–13726 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.De Frenne, P. et al. Latitudinal gradients as natural laboratories to infer species’ responses to temperature. J. Ecol. 101, 784–795 (2013).Article 

    Google Scholar 
    25.Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).Article 

    Google Scholar 
    26.Jackson, R. B. et al. A global analysis of root distributions for terrestrial biomes. Oecologia 108, 389–411 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Malhi, Y., Doughty, C. & Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. Lond. B 366, 3225–3245 (2011).CAS 
    Article 

    Google Scholar 
    28.Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).Article 

    Google Scholar 
    29.Cairns, M. A., Brown, S., Helmer, E. H. & Baumgardner, G. A. Root biomass allocation in the world’s upland forests. Oecologia 111, 1–11 (1997).PubMed 
    Article 

    Google Scholar 
    30.McCarthy, M. C. & Enquist, B. J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 21, 713–720 (2007).Article 

    Google Scholar 
    31.Barton, C. V. M. & Montagu, K. D. Effect of spacing and water availability on root:shoot ratio in Eucalyptus camaldulensis. For. Ecol. Manage. 221, 52–62 (2006).Article 

    Google Scholar 
    32.Enquist, B. J. & Niklas, K. J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295, 1517–1520 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Goward, S. N., Tucker, C. J. & Dye, D. G. North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64, 3–14 (1985).Article 

    Google Scholar 
    34.Manzoni, S., Jackson, R. B., Trofymow, J. A. & Porporato, A. The global stoichiometry of litter nitrogen mineralization. Science 321, 684–686 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Kaiser, C., Franklin, O., Dieckmann, U. & Richter, A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol. Lett. 17, 680–690 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Jiao, F., Shi, X. R., Han, F. P. & Yuan, Z. Y. Increasing aridity, temperature and soil pH induce soil C-N-P imbalance in grasslands. Sci. Rep. 6, 19601 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).Article 

    Google Scholar 
    38.De Deyn, G. B., Cornelissen, J. H. C. & Bardgett, R. D. Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol. Lett. 11, 516–531 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Tjoelker, M. G., Craine, J. M., Wedin, D., Reich, P. B. & Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 167, 493–508 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Personeni, E. & Loiseau, P. How does the nature of living and dead roots affect the residence time of carbon in the root litter continuum? Plant Soil 267, 129–141 (2004).CAS 
    Article 

    Google Scholar 
    41.Tuanmu, M. N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045 (2014).Article 

    Google Scholar 
    42.Pan, Y., Birdsey, R. A., Phillips, O. L. & Jackson, R. B. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 44, 593–622 (2013).Article 

    Google Scholar 
    43.Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl Acad. Sci. USA 94, 7362–7366 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Genet, H., Bréda, N. & Dufrêne, E. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol. 30, 177–192 (2009).PubMed 
    Article 

    Google Scholar 
    45.De Castro, E. A. & Kauffman, J. B. Ecosystem structure in the Brazilian Cerrado: a vegetation gradient of aboveground biomass, root mass and consumption by fire. J. Trop. Ecol. 14, 263–283 (1998).Article 

    Google Scholar 
    46.Ding, B. & Sun, J. Study on biomass of Korean pine plantation in east mountain areas of northeast China. Bull. Bot. Res. 9, 149–157 (1989).
    Google Scholar 
    47.Ding, B., Liu, S. & Cai, T. Studies on biological productivity of artificial forests of Dahurian larches. Chin. J. Plant Ecol. 14, 226–236 (1990).
    Google Scholar 
    48.Ding, B. & Sun, J. Accumulation and distribution of productivity and nutrient element in natural Manchurian ash. J. Northeast For. Univ. 4, 1–9 (1989).
    Google Scholar 
    49.Dossa, E. L., Fernandes, E. C. M., Reid, W. S. & Ezui, K. Above- and belowground biomass, nutrient and carbon stocks contrasting an open-grown and a shaded coffee plantation. Agrofor. Syst. 72, 103–115 (2008).Article 

    Google Scholar 
    50.Epron, D. et al. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations? Tree Physiol. 32, 667–679 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Fonseca, W., Rey Benayas, J. M. & Alice, F. E. Carbon accumulation in the biomass and soil of different aged secondary forests in the humid tropics of Costa Rica. For. Ecol. Manage. 262, 1400–1408 (2011).Article 

    Google Scholar 
    52.Goodman, R. C. et al. Amazon palm biomass and allometry. For. Ecol. Manage. 310, 994–1004 (2013).Article 

    Google Scholar 
    53.Greenland, D. J. & Kowal, J. M. L. Nutrient content of the moist tropical forest of Ghana. Plant Soil 12, 154–173 (1960).CAS 
    Article 

    Google Scholar 
    54.He, Y. et al. Carbon storage capacity of monoculture and mixed-species plantations in subtropical China. For. Ecol. Manage. 295, 193–198 (2013).Article 

    Google Scholar 
    55.Aiba, M. & Nakashizuka, T. Variation in juvenile survival and related physiological traits among dipterocarp species co‐existing in a Bornean forest. J. Veg. Sci. 18, 379–388 (2007).Article 

    Google Scholar 
    56.Jha, K. K. Carbon storage and sequestration rate assessment and allometric model development in young teak plantations of tropical moist deciduous forest, India. J. For. Res. 26, 589–604 (2015).CAS 
    Article 

    Google Scholar 
    57.Kalita, R. M., Das, A. K. & Nath, A. J. Allometric equations for estimating above- and belowground biomass in Tea (Camellia sinensis (L.) O. Kuntze) agroforestry system of Barak Valley, Assam, northeast India. Biomass Bioenergy 83, 42–49 (2015).Article 

    Google Scholar 
    58.Kenzo, T. et al. Development of allometric relationships for accurate estimation of above- and below-ground biomass in tropical secondary forests in Sarawak, Malaysia. J. Trop. Ecol. 25, 371–386 (2009).Article 

    Google Scholar 
    59.Kenzo, T. et al. Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. J. For. Res. 14, 365–372 (2009).CAS 
    Article 

    Google Scholar 
    60.Kraenzel, M., Castillo, A., Moore, T. & Potvin, C. Carbon storage of harvest-age teak (Tectona grandis) plantations, Panama. For. Ecol. Manage. 173, 213–225 (2003).Article 

    Google Scholar 
    61.Kuyah, S., Dietz, J., Muthuri, C., van Noordwijk, M. & Neufeldt, H. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes. Biomass Bioenergy 55, 276–284 (2013).Article 

    Google Scholar 
    62.Liu, S., Cai, Y. & Cai, T. in Long-term Research on Forest Ecosystems (ed. Zhou, X.) 419–427 (Northeast Forestry Univ. Press, 1991).63.Luo, T. et al. Root biomass along subtropical to alpine gradients: global implication from Tibetan transect studies. For. Ecol. Manage. 206, 349–363 (2005).Article 

    Google Scholar 
    64.Markesteijn, L. & Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 97, 311–325 (2009).Article 

    Google Scholar 
    65.McNicol, I. M. et al. Development of allometric models for above and belowground biomass in swidden cultivation fallows of northern Laos. For. Ecol. Manage. 357, 104–116 (2015).Article 

    Google Scholar 
    66.Aiba, M. & Nakashizuka, T. Sapling structure and regeneration strategy in 18 Shorea species co-occurring in a tropical rainforest. Ann. Bot. 96, 313–321 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Menaut, J. C. & Cesar, J. Structure and primary productivity of Lamto savannas, Ivory Coast. Ecology 60, 1197–1210 (1979).Article 

    Google Scholar 
    68.Morais, V. A. et al. Estoques de carbono e biomassa de um fragmento de cerradão em Minas Gerais, Brasil. Cerne 19, 237–245 (2013).Article 

    Google Scholar 
    69.Mugasha, W. A. et al. Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania. For. Ecol. Manage. 310, 87–101 (2013).Article 

    Google Scholar 
    70.Návar, J. Plasticity of biomass component allocation patterns in semiarid Tamaulipan thornscrub and dry temperate pine species of northeastern Mexico. Polibotánica 31, 121–141 (2011).
    Google Scholar 
    71.Njana, M. A., Eid, T., Zahabu, E. & Malimbwi, R. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manage. 23, 749–764 (2015).Article 

    Google Scholar 
    72.Nogueira Junior, L. R., Engel, V. L., Parrotta, J. A., de Melo, A. C. G. & Ré, D. S. Equações alométricas para estimativa da biomassa arbórea em plantios mistos com espécies nativas na restauração da Mata Atlântica. Biota Neotrop. 14, 1–9 (2014).Article 

    Google Scholar 
    73.Peichl, M. & Arain, M. A. Above- and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests. Agric. For. Meteorol. 140, e20130084 (2006).Article 

    Google Scholar 
    74.Battles, J. J. et al. Vegetation composition, structure, and biomass of two unpolluted watersheds in the Cordillera de Piuchué, Chiloé Island, Chile. Plant Ecol. 158, 5–19 (2002).Article 

    Google Scholar 
    75.Ryan, C. M., Williams, M. & Grace, J. Above- and belowground carbon stocks in a miombo woodland landscape of Mozambique. Biotropica 43, 423–432 (2011).Article 

    Google Scholar 
    76.Saint-André, L. et al. Age-related equations for above- and below-ground biomass of a Eucalyptus hybrid in Congo. For. Ecol. Manage. 205, 199–214 (2005).Article 

    Google Scholar 
    77.Aryal, D. R., De Jong, B. H. J., Ochoa-Gaona, S., Esparza-Olguin, L. & Mendoza-Vega, J. Carbon stocks and changes in tropical secondary forests of southern Mexico. Agric. Ecosyst. Environ. 195, 220–230 (2014).Article 

    Google Scholar 
    78.Schepaschenko, D. et al. A dataset of forest biomass structure for Eurasia. Sci. Data 4, 170070 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Schroth, G., D’Angelo, S. A., Teixeira, W. G., Haag, D. & Lieberei, R. Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after 7 years. For. Ecol. Manage. 163, 131–150 (2002).Article 

    Google Scholar 
    80.Schulze, E. D. et al. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia. Oecologia 108, 503–511 (1996).Article 

    Google Scholar 
    81.Stolbovoi, V. & McCallum, I. Land resources of Russia [CD] (International Institute for Applied Systems Analysis and the Russian Academy of Science, 2002); http://www.iiasa.ac.at/Research/FOR/russia_cd/guide.htm82.Wang, L. et al. Biomass allocation patterns across China’s terrestrial biomes. PLoS ONE 9, e93566 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    83.Wauters, J. B., Coudert, S., Grallien, E., Jonard, M. & Ponette, Q. Carbon stock in rubber tree plantations in Western Ghana and Mato Grosso (Brazil). For. Ecol. Manage. 255, 2347–2361 (2008).Article 

    Google Scholar 
    84.Williams-Linera, G. Biomass and nutrient content in two successional stages of tropical wet forest in Uxpanapa, Mexico. Biotropica 15, 275–284 (1983).Article 

    Google Scholar 
    85.Xu, Y. et al. Improving allometry models to estimate the above- and belowground biomass of subtropical forest, China. Ecosphere 6, 289 (2015).Article 

    Google Scholar 
    86.Youkhana, A. H. & Idol, T. W. Allometric models for predicting above- and belowground biomass of Leucaena-KX2 in a shaded coffee agroecosystem in Hawaii. Agrofor. Syst. 83, 331–345 (2011).Article 

    Google Scholar 
    87.Zhang, H. et al. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests. Sci. Rep. 5, 15997 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Castellanos, J., Maass, M. & Kummerow, J. Root biomass of a dry deciduous tropical forest in Mexico. Plant Soil 131, 225–228 (1991).Article 

    Google Scholar 
    89.Zheng, Z., Feng, Z., Cao, M., Li, Z. & Zhang, J. Forest structure and biomass of a tropical seasonal rain forest in Xishuangbanna, southwest China. Biotropica 38, 318–327 (2006).Article 

    Google Scholar 
    90.Návar, J. Root stock biomass and productivity assessments of reforested pine stands in northern Mexico. For. Ecol. Manage. 338, 139–147 (2015).Article 

    Google Scholar 
    91.Wang, X., Fang, J. & Zhu, B. Forest biomass and root–shoot allocation in northeast China. For. Ecol. Manage. 255, 4007–4020 (2008).Article 

    Google Scholar 
    92.Chen, D. K., Zhou, X. F., Zhao, H. X., Wang, Y. H. & Jing, Y. Y. Study on the structure, function and succession of the four types in natural secondary forest. J. Northeast For. Univ. 2, 1–20 (1982).
    Google Scholar 
    93.Chidumayo, E. N. Estimating tree biomass and changes in root biomass following clear-cutting of Brachystegia-Julbernardia (miombo) woodland in central Zambia. Environ. Conserv. 41, 54–63 (2014).Article 

    Google Scholar 
    94.Coll, L., Potvin, C., Messier, C. & Delagrange, S. Root architecture and allocation patterns of eight native tropical species with different successional status used in open-grown mixed plantations in Panama. Trees 22, 585–596 (2008).Article 

    Google Scholar 
    95.Das, D. K. & Chaturvedi, O. P. Structure and function of Populus deltoides agroforestry systems in eastern India: 1. dry matter dynamics. Agrofor. Syst. 65, 215–221 (2005).Article 

    Google Scholar 
    96.Ni, J. Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol. 174, 217–234 (2011).Article 

    Google Scholar 
    97.Olson, R. et al. NPP Multi-Biome: Summary Data from Intensive Studies at 125 Sites, 1936–2006 (ORNL DAAC, accessed 19 June 2019); https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=135298.Perez, C. A. & Frangi, J. L. Grassland biomass dynamics along an altitudinal gradient in the pampa. J. Range Manage. 53, 518–528 (2007).Article 

    Google Scholar 
    99.Perez-Quezada, J. F. F., Delpiano, C. A. A., Snyder, K. A. A., Johnson, D. A. A. & Franck, N. Carbon pools in an arid shrubland in Chile under natural and afforested conditions. J. Arid Environ. 75, 29–37 (2011).Article 

    Google Scholar 
    100.Pornon, A., Boutin, M. & Lamaze, T. Contribution of plant species to the high N retention capacity of a subalpine meadow undergoing elevated N deposition and warming. Environ. Pollut. 245, 235–242 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Ramakrishnan, P. S. & Ram, S. C. Vegetation, biomass and productivity of seral grasslands of Cherrapunji in north-east India. Vegetatio 74, 47–53 (1988).Article 

    Google Scholar 
    102.Shaver, G. R., Laundre, J. A., Giblin, A. E. & Nadelhoffer, K. J. Changes in live plant biomass, primary production, and species composition along a riverside toposequence in Arctic Alaska, USA. Arct. Alp. Res. 28, 363–379 (2006).Article 

    Google Scholar 
    103.Smith, J. M. B. & Klinger, L. F. Aboveground:belowground phytomass ratios in Venezuelan paramo vegetation and their significance. Arct. Alp. Res. 17, 189–198 (2006).Article 

    Google Scholar 
    104.Sun, J. et al. Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PLoS ONE 9, e108821 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    105.Wang, P. et al. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature. Environ. Res. Lett. 11, 055003 (2016).Article 
    CAS 

    Google Scholar 
    106.Yang, Y., Fang, J., Ji, C. & Han, W. Above- and belowground biomass allocation in Tibetan grasslands. J. Veg. Sci. 20, 177–184 (2009).Article 

    Google Scholar 
    107.Yang, Y., Fang, J., Ma, W., Guo, D. & Mohammat, A. Large-scale pattern of biomass partitioning across China’s grasslands. Glob. Ecol. Biogeogr. 19, 268–277 (2010).Article 

    Google Scholar 
    108.Geng, H. L., Wang, Y. H., Wang, F. Y. & Jia, B. R. The dynamics of root-shoot ratio and its environmental effective factors of recovering Leymus chinensis steppe vegetation in Inner Mongolia, China. Acta Ecol. Sin. 28, 4629–4634 (2008).Article 

    Google Scholar 
    109.Hui, D. & Jackson, R. B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data. New Phytol. 169, 85–93 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Jouquet, P., Tavernier, V., Abbadie, L. & Lepage, M. Nests of subterranean fungus-growing termites (Isoptera, Macrotermitinae) as nutrient patches for grasses in savannah ecosystems. Afr. J. Ecol. 43, 191–196 (2005).Article 

    Google Scholar 
    111.Leonid, U. et al. Impact of climate and grazing on biomass components of eastern Russia typical steppe. J. Integr. Agric. 13, 1183–1192 (2014).Article 

    Google Scholar 
    112.Lucash, M. S., Farnsworth, B. & Winner, W. E. Response of sagebrush steppe species to elevated CO2 and soil temperature. West. N. Am. Nat. 65, 80–86 (2005).
    Google Scholar 
    113.Luo, W. et al. Patterns of plant biomass allocation in temperate grasslands across a 2500-km transect in northern China. PLoS ONE 8, e71749 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Barbour, M. G. Desert dogma reexamined: root/shoot productivity and plant spacing. Am. Midl. Nat. 89, 41–57 (1973).Article 

    Google Scholar 
    115.Becker, P., Sharbini, N. & Yahya, R. Root architecture and root:shoot allocation of shrubs and saplings in two lowland tropical forests: implications for life-form composition. Biotropica 31, 93–101 (1999).
    Google Scholar 
    116.Becker, P. & Castillo, A. Root architecture of shrubs and saplings in the understory of a tropical moist forest in lowland Panama. Biotropica 22, 242–249 (1990).Article 

    Google Scholar 
    117.Beier, C. et al. Carbon and nitrogen balances for six shrublands across Europe. Glob. Biogeochem. Cycles 23, GB4008 (2009).Article 
    CAS 

    Google Scholar 
    118.Bhatt, Y. D., Rawat, Y. S. & Singh, S. P. Changes in ecosystem functioning after replacement of forest by Lantana shrubland in Kumaun Himalaya. J. Veg. Sci. 5, 67–70 (1994).Article 

    Google Scholar 
    119.Caldwell, M. M., White, R. S., Moore, R. T. & Camp, L. B. Carbon balance, productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia 29, 275–300 (1977).PubMed 
    Article 

    Google Scholar 
    120.De Viñas, I. C. R. et al. Biomass of root and shoot systems of Quercus coccifera shrublands in eastern Spain. Ann. For. Sci. 57, 803–810 (2000).Article 

    Google Scholar 
    121.Caravaca, F., Figueroa, D., Alguacil, M. M. & Roldán, A. Application of composted urban residue enhanced the performance of afforested shrub species in a degraded semiarid land. Bioresour. Technol. 90, 65–70 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    122.Caravaca, F., Figueroa, D., Azcón-Aguilar, C., Barea, J. M. & Roldán, A. Medium-term effects of mycorrhizal inoculation and composted municipal waste addition on the establishment of two Mediterranean shrub species under semiarid field conditions. Agric. Ecosyst. Environ. 97, 95–105 (2003).Article 

    Google Scholar 
    123.Carrasco, L., Azcón, R., Kohler, J., Roldán, A. & Caravaca, F. Comparative effects of native filamentous and arbuscular mycorrhizal fungi in the establishment of an autochthonous, leguminous shrub growing in a metal-contaminated soil. Sci. Total Environ. 409, 1205–1209 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Carrillo-Garcia, Á., Bashan, Y. & Bethlenfalvay, G. J. Resource-island soils and the survival of the giant cactus, cardon, of Baja California Sur. Plant Soil 218, 207–214 (2000).CAS 
    Article 

    Google Scholar 
    125.Carrión-Prieto, P. et al. Mediterranean shrublands as carbon sinks for climate change mitigation: new root-to-shoot ratios. Carbon Manage. 8, 67–77 (2017).Article 
    CAS 

    Google Scholar 
    126.Deng, L., Han, Q. S., Zhang, C., Tang, Z. S. & Shangguan, Z. P. Above-ground and below-ground ecosystem biomass accumulation and carbon sequestration with Caragana korshinskii Kom plantation development. Land Degrad. Dev. 28, 906–917 (2017).Article 

    Google Scholar 
    127.Perkins, S. R. & Owens, M. K. Growth and biomass allocation of shrub and grass seedlings in response to predicted changes in precipitation seasonality. Plant Ecol. 168, 107–120 (2003).Article 

    Google Scholar 
    128.Gargaglione, V., Peri, P. L. & Rubio, G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient. For. Ecol. Manage. 259, 1118–1126 (2010).Article 

    Google Scholar 
    129.Hao, H. M. et al. Effects of shrub patch size succession on plant diversity and soil water content in the water-wind erosion crisscross region on the Loess Plateau. Catena 144, 177–183 (2016).Article 

    Google Scholar 
    130.Herwitz, S. R. & Olsvig-Whittaker, L. Preferential upslope growth of Zygophyllum dumosum Boiss. (Zygophyllaceae) roots into bedrock fissures in the northern Negev desert. J. Biogeogr. 16, 457–460 (1989).Article 

    Google Scholar 
    131.Hoffmann, A. & Kummerow, J. Root studies in the Chilean matorral. Oecologia 32, 57–69 (1978).PubMed 
    Article 

    Google Scholar 
    132.Holl, K. D. Effects of above- and below-ground competition of shrubs and grass on Calophyllum brasiliense (Camb.) seedling growth in abandoned tropical pasture. For. Ecol. Manage. 109, 187–195 (1998).Article 

    Google Scholar 
    133.Hollister, R. D. & Flaherty, K. J. Above- and below-ground plant biomass response to experimental warming in northern Alaska. Appl. Veg. Sci. 13, 378–387 (2010).
    Google Scholar 
    134.Kizito, F. et al. Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with pearl millet in Senegal, West Africa. J. Arid Environ. 67, 436–455 (2006).Article 

    Google Scholar 
    135.Kummerow, J., Krause, D. & Jow, W. Root systems of chaparral shrubs. Oecologia 29, 163–177 (1977).PubMed 
    Article 

    Google Scholar 
    136.León, M. F., Squeo, F. A., Gutiérrez, J. R. & Holmgren, M. Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert. J. Veg. Sci. 22, 120–129 (2011).Article 

    Google Scholar 
    137.Li, C. P. & Xiao, C. W. Above- and belowground biomass of Artemisia ordosica communities in three contrasting habitats of the Mu Us Desert, northern China. J. Arid Environ. 70, 195–207 (2007).Article 

    Google Scholar 
    138.Liang, Y. M., Hazlett, D. L. & Lauenroth, W. K. Biomass dynamics and water use efficiencies of five plant communities in the shortgrass steppe. Oecologia 80, 148–153 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    139.Zan, Q., Wang, Y., Liao, B. & Zheng, D. Biomass and net productivity of Sonneratia apetala, S. caseolaris mangrove man-made forest. Wuhan Bot. Res. 19, 391–396 (2001).
    Google Scholar 
    140.Liao, B., Zheng, D. & Zheng, S. Studies on the biomass of Sonneratia caseolaris stand. For. Res. 3, 47–54 (1990).
    Google Scholar 
    141.Lufafa, A. et al. Allometric relationships and peak-season community biomass stocks of native shrubs in Senegal’s Peanut Basin. J. Arid Environ. 73, 260–266 (2009).Article 

    Google Scholar 
    142.Lusk, C. H. Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny. Funct. Ecol. 18, 820–828 (2004).Article 

    Google Scholar 
    143.Marsh, A. S., Arnone, J. A., Bormann, B. T. & Gordon, J. C. The role of Equisetum in nutrient cycling in an Alaskan shrub wetland. J. Ecol. 88, 999–1011 (2000).Article 

    Google Scholar 
    144.Martínez, F. et al. Belowground structure and production in a Mediterranean sand dune shrub community. Plant Soil 201, 209–216 (1998).Article 

    Google Scholar 
    145.Marziliano, P. A. et al. Estimating belowground biomass and root/shoot ratio of Phillyrea latifolia L. in the Mediterranean forest landscapes. Ann. For. Sci. 72, 585–593 (2015).Article 

    Google Scholar 
    146.Mauchamp, A., Montaña, C., Lepart, J., Rambal, S. & Montana, C. Ecotone dependent recruitment of a desert shrub, Flourensia cernua, in vegetation stripes. Oikos 68, 107–116 (1993).Article 

    Google Scholar 
    147.Mendoza-Ponce, A. & Galicia, L. Aboveground and belowground biomass and carbon pools in highland temperate forest landscape in central Mexico. Forestry 83, 497–506 (2010).Article 

    Google Scholar 
    148.Miller, P. C. & Ng, E. Root:shoot biomass ratios in shrubs in southern California and central Chile. Madrono 24, 215–223 (1977).
    Google Scholar 
    149.Mooney, H. A. & Rundel, P. W. Nutrient relations of the evergreen shrub, Adenostoma fasciculatum, in the California chaparral. Bot. Gaz. 140, 109–113 (1979).CAS 
    Article 

    Google Scholar 
    150.Moro, M. J., Pugnaire, F. I., Haase, P. & Puigdefábregas, J. Effect of the canopy of Retama sphaerocarpa on its understorey in a semiarid environment. Funct. Ecol. 11, 425–431 (1997).Article 

    Google Scholar 
    151.Negreiros, D., Fernandes, G. W., Silveira, F. A. O. & Chalub, C. Seedling growth and biomass allocation of endemic and threatened shrubs of rupestrian fields. Acta Oecol. 35, 301–310 (2009).Article 

    Google Scholar 
    152.Nie, X., Yang, Y., Yang, L. & Zhou, G. Above- and belowground biomass allocation in shrub biomes across the northeast Tibetan Plateau. PLoS ONE 11, e0154251 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    153.Nobel, P. S., Quero, E. & Linares, H. Root versus shoot biomass: responses to water, nitrogen, and phosphorus applications for Agave lechuguilla. Bot. Gaz. 150, 411–416 (1989).Article 

    Google Scholar 
    154.Pacaldo, R. S., Volk, T. A. & Briggs, R. D. Greenhouse gas potentials of shrub willow biomass crops based on below- and aboveground biomass inventory along a 19-year chronosequence. Bioenergy Res. 6, 252–262 (2013).CAS 
    Article 

    Google Scholar 
    155.Padilla, F. M., Miranda, J. D., Jorquera, M. J. & Pugnaire, F. I. Variability in amount and frequency of water supply affects roots but not growth of arid shrubs. Plant Ecol. 204, 261–270 (2009).Article 

    Google Scholar 
    156.Portsmuth, A., Niinemets, Ü., Truus, L. & Pensa, M. Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Can. J. For. Res. 35, 2346–2359 (2005).CAS 
    Article 

    Google Scholar 
    157.Roth, G. A., Whitford, W. G. & Steinberger, Y. Jackrabbit (Lepus californicus) herbivory changes dominance in desertified Chihuahuan Desert ecosystems. J. Arid Environ. 70, 418–426 (2007).Article 

    Google Scholar 
    158.Ruiz-Peinado, R., Moreno, G., Juarez, E., Montero, G. & Roig, S. The contribution of two common shrub species to aboveground and belowground carbon stock in Iberian dehesas. J. Arid Environ. 91, 22–30 (2013).Article 

    Google Scholar 
    159.Rundel, P. W. Biomass, productivity, and nutrient allocation in subalpine shrublands and meadows of the Emerald Lake Basin, Sequoia National Park, California. Arct. Antarct. Alp. Res. 47, 115–123 (2015).Article 

    Google Scholar 
    160.Millikin, C. S. & Bledsoe, C. S. Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in the northern Sierra Nevada foothills of California. Plant Soil 214, 27–38 (1999).CAS 
    Article 

    Google Scholar 
    161.Saura-Mas, S. & Lloret, F. Adult root structure of Mediterranean shrubs: relationship with post-fire regenerative syndrome. Plant Biol. 16, 147–154 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    162.Schenk, H. J. & Mahall, B. E. Positive and negative plant interactions contribute to a north-south-patterned association between two desert shrub species. Oecologia 132, 402–410 (2002).PubMed 
    Article 

    Google Scholar 
    163.Silva, J. S., Rego, F. C. & Martins-Loução, M. A. Belowground traits of Mediterranean woody plants in a Portuguese shrubland. Ecol. Mediterr. 28, 5–13 (2002).Article 

    Google Scholar 
    164.Simões, M. P., Madeira, M. & Gazarini, L. Biomass and nutrient dynamics in Mediterranean seasonal dimorphic shrubs: strategies to face environmental constraints. Plant Biosyst. 146, 500–510 (2012).
    Google Scholar 
    165.Tao, Y., Zhang, Y. M. & Downing, A. Similarity and difference in vegetation structure of three desert shrub communities under the same temperate climate but with different microhabitats. Bot. Stud. 54, 59 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    166.Toscano, S., Scuderi, D., Giuffrida, F. & Romano, D. Responses of Mediterranean ornamental shrubs to drought stress and recovery. Sci. Hortic. 178, 145–153 (2014).Article 

    Google Scholar 
    167.Trubat, R., Cortina, J. & Vilagrosa, A. Nutrient deprivation improves field performance of woody seedlings in a degraded semi-arid shrubland. Ecol. Eng. 37, 1164–1173 (2011).Article 

    Google Scholar 
    168.Van Wijk, M. T., Williams, M., Gough, L., Hobbie, S. E. & Shaver, G. R. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation? J. Ecol. 91, 664–676 (2003).Article 

    Google Scholar 
    169.Walker, L. R., Clarkson, B. D., Silvester, W. B. & Clarkson, B. R. Colonization dynamics and facilitative impacts of a nitrogen-fixing shrub in primary succession. J. Veg. Sci. 14, 277–290 (2003).Article 

    Google Scholar 
    170.Wang, B. & Yang, X. S. Comparison of biomass and species diversity of four typical zonal vegetations. J. Fujian Coll. For. 29, 345–350 (2009).
    Google Scholar 
    171.Wang, M. & Li, H. Quantitative study on the soil water dynamics of various forest plantations in the Loess Plateau region in northwestern Shanxi. Acta Ecol. Sin. 2, 178–184 (1995).
    Google Scholar 
    172.Wang, P. et al. Seasonal changes and vertical distribution of root standing biomass of graminoids and shrubs at a Siberian tundra site. Plant Soil 407, 55–65 (2016).CAS 
    Article 

    Google Scholar 
    173.Whittaker, R. H. & Woodwell, G. M. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. J. Ecol. 56, 1–25 (1968).Article 

    Google Scholar 
    174.Xu, H., Li, Y., Xu, G. & Zou, T. Ecophysiological response and morphological adjustment of two Central Asian desert shrubs towards variation in summer precipitation. Plant Cell Environ. 30, 399–409 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    175.Yan, Z. Biomass and its allocation in a 28-year-old Castanopsis kawakamii plantation. J. Fujian Coll. For. 2, 114–118 (1996).
    Google Scholar 
    176.Gong, Y. et al. Carbon storage and vertical distribution in three shrubland communities in Gurbantünggüt Desert, Uygur Autonomous Region of Xinjiang, northwest China. Chin. Geogr. Sci. 22, 541–549 (2012).Article 

    Google Scholar 
    177.Yu, Y., Shi, D., Qiuyi, J., He, L. & Cheng, G. On the biomass of secondary Schima superba forest in Hangzhou. J. Zhejiang For. Coll. 2, 157–161 (1993).
    Google Scholar 
    178.Kato, T. et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China. Agric. Meteorol. 124, 121–134 (2004).Article 

    Google Scholar 
    179.Li, Z., Zhu, Q. & Li, J. A comparison of photosynthetic carbon sequestration of four shrubs in Ningxia. Pratacultural Sci. 29, 352–357 (2012).CAS 

    Google Scholar 
    180.Zhu, X., Shi, Q. & Li, Y. A preliminary study on the Qinghai’s treasure house of the forest biomass and shrubs. Sci. Technol. Qinghai Agric. For. 1, 15–20 (1993).
    Google Scholar 
    181.Liao, B. & Zheng, D. Study on the forest biomass and productivity of olive wood. For. Res. 4, 22–29 (1991).
    Google Scholar 
    182.Liu, B., Liu, Z., Lü, X., Maestre, F. T. & Wang, L. Sand burial compensates for the negative effects of erosion on the dune-building shrub Artemisia wudanica. Plant Soil 374, 263–273 (2014).CAS 
    Article 

    Google Scholar 
    183.Alguacil, M. M., Hernández, J. A., Caravaca, F., Portillo, B. & Roldán, A. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol. Plant. 118, 562–570 (2003).CAS 
    Article 

    Google Scholar 
    184.Axe, M. S., Grange, I. D. & Conway, J. S. Carbon storage in hedge biomass—a case study of actively managed hedges in England. Agric. Ecosyst. Environ. 250, 81–88 (2017).Article 

    Google Scholar 
    185.van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    186.Erin, L. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package v.3.32.0.2 (2020); https://github.com/h2oai/h2o-3187.Sagi, O. & Rokach, L. Ensemble learning: a survey. WIREs Data Min. Knowl. Discov. 8, e1249 (2018).
    Google Scholar 
    188.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).189.Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 

    Google Scholar 
    190.Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland (2020).191.Hothorn, T. & Zeileis, A. partykit: A modular toolkit for recursive partytioning in R. J. Mach. Learn. Res. 16, 3905–3909 (2015).
    Google Scholar 
    192.Borkovec, M. & Madin, N. ggparty: ‘ggplot’ visualizations for the ‘partykit’ package (2019).193.Dormann, C. F. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Glob. Ecol. Biogeogr. 16, 129–138 (2007).Article 

    Google Scholar 
    194.Hutchinson, M., Xu, T., Houlder, D., Nix, H. & McMahon, J. ANUCLIM 6.0 User’s Guide (Australian National Univ., 2009).195.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    196.Global Aridity and PET database (CGIAR-CSI, accessed 15 May 2018); http://www.cgiarcsi.community/data/global-aridity-and-pet-database197.CIESIN Gridded Population of the World, version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals (NASA SEDAC, 2018); https://doi.org/10.7927/H4HX19NJ198.Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    199.SoilGrids (ISRIC, accessed 15 May 2018); https://www.soilgrids.org200.Entekhabi, D. et al. The soil moisture active passive (SMAP) mission. Proc. IEEE 98, 704–716 (2010).Article 

    Google Scholar 
    201.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    202.Batjes, N. H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269, 61–68 (2016).CAS 
    Article 

    Google Scholar 
    203.Schaaf, C. & Wang, Z. MCD43A1 MODIS/Terra+Aqua BRDF/Albedo Model Parameters Daily L3 Global – 500m V006 (NASA LP DAAC, 2015); https://doi.org/10.5067/MODIS/MCD43A1C.006204.Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 (NASA LP DAAC, 2015).205.Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Antibiotic treatment increases yellowness of carotenoid feather coloration in male greenfinches (Chloris chloris)

    1.Hill, G. E. Plumage coloration is a sexually selected indicator of male quality. Nature 350, 337 (1991).ADS 
    Article 

    Google Scholar 
    2.Cantarero, A., Pérez-Rodríguez, L., Romero-Haro, A. Á., Chastel, O. & Alonso-Alvarez, C. Carotenoid-based coloration predicts both longevity and lifetime fecundity in male birds, but testosterone disrupts signal reliability. PLoS ONE 14, e0221436. https://doi.org/10.1371/journal.pone.0221436 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Zahavi, A. Mate selection—A selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).CAS 
    Article 

    Google Scholar 
    4.Alonso-Alvarez, C. & Galván, I. Free radical exposure creates paler carotenoid-based ornaments: A possible interaction in the expression of black and red traits. PLoS ONE 6 (2011).5.Schantz, T. V., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition–dependent sexual signals. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 1–12 (1999).Article 

    Google Scholar 
    6.Tomášek, O. et al. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling. Sci. Rep. 6, 23546. https://doi.org/10.1038/srep23546 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Sild, E., Sepp, T., Männiste, M. & Hõrak, P. Carotenoid intake does not affect immune-stimulated oxidative burst in greenfinches. J. Exp. Biol. 214, 3467–3473 (2011).CAS 
    Article 

    Google Scholar 
    8.Mohr, A. E., Girard, M., Rowe, M., McGraw, K. J. & Sweazea, K. L. Varied effects of dietary carotenoid supplementation on oxidative damage in tissues of two waterfowl species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 231, 67–74. https://doi.org/10.1016/j.cbpb.2019.02.003 (2019).CAS 
    Article 

    Google Scholar 
    9.Costantini, D. & Møller, A. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2008).Article 

    Google Scholar 
    10.Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—A meta-analysis. PLoS ONE 7, e43088. https://doi.org/10.1371/journal.pone.0043088 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Hill, G. E. et al. Plumage redness signals mitochondrial function in the house finch. Proc. R. Soc. B 286, 20191354 (2019).CAS 
    Article 

    Google Scholar 
    12.Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14, 625–634 (2011).Article 

    Google Scholar 
    13.del Cerro, S. et al. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162, 825–835. https://doi.org/10.1007/s00442-009-1510-y (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    14.Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).Article 

    Google Scholar 
    15.Weaver, R. J., Santos, E. S., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).ADS 
    Article 

    Google Scholar 
    16.Tyczkowski, J. K., Hamilton, P. B. & Ruff, M. D. Altered metabolism of carotenoids during pale-bird syndrome in chickens infected with Eimeria acervulina. Poult. Sci. 70, 2074–2081. https://doi.org/10.3382/ps.0702074 (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Joyner, L. et al. Amino-acid malabsorption and intestinal leakage of plasma-proteins in young chicks infected with Eimeria acervulina. Avian Pathol. 4, 17–33 (1975).CAS 
    PubMed 

    Google Scholar 
    18.Sharma, V. & Fernando, M. Effect of Eimeria acervulina infection on nutrient retention with special reference to fat malabsorption in chickens. Can. J. Comp. Med. 39, 146 (1975).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Pout, D. D. Villous atrophy and coccidiosis. Nature 213, 306–307 (1967).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Sanches, A. W. D. et al. Basal and infectious enteritis in broilers under the I See inside methodology: A chronological evaluation. Front. Vet. Sci. 6, 512. https://doi.org/10.3389/fvets.2019.00512 (2020).Article 
    PubMed 

    Google Scholar 
    21.Russell, J. Jr. & Ruff, M. Eimeria spp.: Influence of coccidia on digestion (amylolytic activity) in broiler chickens. Exp. Parasitol. 45, 234–240 (1978).Article 

    Google Scholar 
    22.Kouwenhoven, B. & van der Horst, C. J. Disturbed intestinal absorption of vitamin A and carotenes and the effect of a low pH during Eimeria acervulina infection in the domestic fowl (Gallus domesticus). Z. Parasitenkd. 38, 152–161 (1972).CAS 
    Article 

    Google Scholar 
    23.Ruff, M. D. & Fuller, H. L. Some mechanisms of reduction of carotenoid levels in chickens infected with Eimeria acervulina or E. tenella. J. Nutr. 105, 1447–1456 (1975).CAS 
    Article 

    Google Scholar 
    24.Swayne, D. E., Getzy, D., Slemons, R. D., Bocetti, C. & Kramer, L. Coccidiosis as a cause of transmural lymphocytic enteritis and mortality in captive Nashville warblers (Vermivora ruficapilla). J. Wildl. Dis. 27, 615–620 (1991).CAS 
    Article 

    Google Scholar 
    25.Gosbell, M. C., Olaogun, O. M., Luk, K. & Noormohammadi, A. H. Investigation of systemic isosporosis outbreaks in an aviary of greenfinch (Carduelis chloris) and goldfinch (Carduelis carduelis) and a possible link with local wild sparrows (Passer domesticus). Aust. Vet. J. 98, 338–344 (2020).CAS 
    Article 

    Google Scholar 
    26.Baeta, R., Faivre, B., Motreuil, S., Gaillard, M. & Moreau, J. Carotenoid trade-off between parasitic resistance and sexual display: An experimental study in the blackbird (Turdus merula). Proc. R. Soc. B Biol. Sci. 275, 427–434 (2008).CAS 
    Article 

    Google Scholar 
    27.Amin, A., Bilic, I., Liebhart, D. & Hess, M. Trichomonads in birds—A review. Parasitology 141, 733–747 (2014).Article 

    Google Scholar 
    28.Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5 (2010).29.Chavatte, J.-M. et al. An outbreak of trichomonosis in European greenfinches Chloris chloris and European goldfinches Carduelis carduelis wintering in Northern France. Parasite 26, 21–21. https://doi.org/10.1051/parasite/2019022 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Huyghebaert, G., Ducatelle, R. & Immerseel, F. V. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187, 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Singer, R. S. & Hofacre, C. L. Potential impacts of antibiotic use in poultry production. Avian Dis. 50, 161–172, 112 (2006).Article 

    Google Scholar 
    32.Miles, R. D., Butcher, G. D., Henry, P. R. & Littell, R. C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology1. Poult. Sci. 85, 476–485. https://doi.org/10.1093/ps/85.3.476 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Oh, S., Lillehoj, H. S., Lee, Y., Bravo, D. & Lillehoj, E. P. Dietary antibiotic growth promoters down-regulate intestinal inflammatory cytokine expression in chickens challenged with LPS or co-infected with Eimeria maxima and Clostridium perfringens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.00420 (2019).Article 
    PubMed 

    Google Scholar 
    34.Meitern, R., Lind, M. A., Karu, U. & Hõrak, P. Simple and noninvasive method for assessment of digestive efficiency: Validation of fecal steatocrit in greenfinch coccidiosis model. Ecol. Evol. 6, 8756–8763 (2016).Article 

    Google Scholar 
    35.Surai, P., Speake, B. & Sparks, N. Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J. Poultry Sci. 38, 1–27 (2001).CAS 
    Article 

    Google Scholar 
    36.Madonia, C., Hutton, P., Giraudeau, M. & Sepp, T. Carotenoid coloration is related to fat digestion efficiency in a wild bird. Sci. Nat. 104, 96. https://doi.org/10.1007/s00114-017-1516-y (2017).CAS 
    Article 

    Google Scholar 
    37.Hõrak, P. & Männiste, M. Viability selection affects black but not yellow plumage colour in greenfinches. Oecologia 180, 23–32 (2016).ADS 
    Article 

    Google Scholar 
    38.Saks, L., McGraw, K. & Hõrak, P. How feather colour reflects its carotenoid content. Funct. Ecol. 17, 555–561 (2003).Article 

    Google Scholar 
    39.Sepp, T. et al. Coccidian infection causes oxidative damage in greenfinches. PLoS ONE 7 (2012).40.Männiste, M. & Hõrak, P. Emerging infectious disease selects for darker plumage coloration in greenfinches. Front. Ecol. Evol. 2, 4 (2014).Article 

    Google Scholar 
    41.Hackstein, J. H. et al. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. 81, 207–216 (1995).CAS 
    PubMed 

    Google Scholar 
    42.Krautwald-Junghanns, M.-E., Zebisch, R. & Schmidt, V. Relevance and treatment of coccidiosis in domestic pigeons (Columba livia forma domestica) with particular emphasis on toltrazuril. Journal of Avian Medicine and Surgery, 1–5 (2009).43.Löfmark, S., Edlund, C. & Nord, C. E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 50, S16–S23. https://doi.org/10.1086/647939 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Cramp, S. & Perrins, C. Handbook of the Birds of the Western Palearctic. Volume IV. Terns to Woodpeckers (ed. Cramp, S.), 353–363 (1994).45.Stradi, R., Celentano, G., Rossi, E., Rovati, G. & Pastore, M. Carotenoids in bird plumage—I. The carotenoid pattern in a series of Palearctic Carduelinae. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 110, 131–143 (1995).Article 

    Google Scholar 
    46.Stradi, R. The colour of flight: carotenoids in bird plumages. (Solei Gruppo Editoriale Informatico, 1998).47.McGraw, K., Hill, G., Stradi, R. & Parker, R. The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American goldfinch. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 131, 261–269 (2002).CAS 
    Article 

    Google Scholar 
    48.Sepp, T., Karu, U., Sild, E., Männiste, M. & Hõrak, P. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches. Exp. Parasitol. 127, 651–657. https://doi.org/10.1016/j.exppara.2010.12.004 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Hõrak, P. et al. Dexamethasone inhibits corticosterone deposition in feathers of greenfinches. Gen. Comp. Endocrinol. 191, 210–214 (2013).Article 

    Google Scholar 
    50.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Lin. Soc. 41, 315–352 (1990).Article 

    Google Scholar 
    51.Lessells, C. & Boag, P. T. Unrepeatable repeatabilities: A common mistake. Auk 104, 116–121 (1987).Article 

    Google Scholar 
    52.Hõrak, P., Saks, L., Karu, U. & Ots, I. Host resistance and parasite virulence in greenfinch coccidiosis. J. Evol. Biol. 19, 277–288 (2006).Article 

    Google Scholar 
    53.Jenni-Eiermann, S. & Jenni, L. Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. Auk 111, 888–899 (1994).Article 

    Google Scholar 
    54.Saint-Georges-Chaumet, Y. & Edeas, M. Microbiota–mitochondria inter-talk: Consequence for microbiota–host interaction. Pathogens Dis. https://doi.org/10.1093/femspd/ftv096 (2015).Article 

    Google Scholar 
    55.Franco-Obregón, A. & Gilbert, J. A. The microbiome-mitochondrion connection: Common ancestries, common mechanisms, common goals. mSystems https://doi.org/10.1128/mSystems.00018-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Paterson, S. The immunology and ecology of co-infection. Mol. Ecol. 22, 2603–2604 (2013).CAS 
    Article 

    Google Scholar 
    57.Quillfeldt, P. et al. Prevalence and genotyping of Trichomonas infections in wild birds in central Germany. PLoS ONE 13, e0200798–e0200798. https://doi.org/10.1371/journal.pone.0200798 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Kinnula, H., Mappes, J. & Sundberg, L.-R. Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions. BMC Evol. Biol. 17, 77. https://doi.org/10.1186/s12862-017-0922-2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Gill, H. & Paperna, I. Proliferative visceral Isospora (atoxoplasmosis) with morbid impact on the Israeli sparrow Passer domesticus biblicus Hartert, 1904. Parasitol. Res. 103, 493. https://doi.org/10.1007/s00436-008-0986-4 (2008).Article 
    PubMed 

    Google Scholar 
    60.Shojadoost, B., Vince, A. R. & Prescott, J. F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 43, 74. https://doi.org/10.1186/1297-9716-43-74 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Williams, R. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 34, 159–180 (2005).CAS 
    Article 

    Google Scholar 
    62.Freeman, C. D., Klutman, N. E. & Lamp, K. C. Metronidazole. Drugs 54, 679–708. https://doi.org/10.2165/00003495-199754050-00003 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Hill, G. E. Energetic constraints on expression of carotenoid-based plumage coloration. J. Avian Biol. 31, 559–566 (2000).Article 

    Google Scholar 
    64.Hill, G. E. Cellular respiration: The nexus of stress, condition, and ornamentation. Integr. Comp. Biol. 54, 645–657 (2014).Article 

    Google Scholar 
    65.Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 65, 1906. https://doi.org/10.1136/gutjnl-2016-312297 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Heiss, C. N. & Olofsson, L. E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun. 10, 163–171. https://doi.org/10.1159/000481519 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Lind, M.-A., Hõrak, P., Sepp, T. & Meitern, R. Corticosterone levels correlate in wild-grown and lab-grown feathers in greenfinches (Carduelis chloris) and predict behaviour and survival in captivity. Horm. Behav. 118, 104642 (2020).CAS 
    Article 

    Google Scholar 
    68.Sepp, T., Sild, E. & Horak, P. Hematological condition indexes in greenfinches: Effects of captivity and diurnal variation. Physiol. Biochem. Zool. 83, 276–282 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    Muskrats as a bellwether of a drying delta

    Agent modelingThe agent model for muskrat in the delta was developed using HexSim, an agent-based ecological model that allows for spatially explicit simulation of wildlife population dynamics31,32. The HexSim agent model of muskrat incorporated the entire delta in a modeling grid containing 1717 rows of hexagons by 1760 hexagons per row, for a total of 3,021,920 hexagons. Operating on an annual time step, the model tracked up to 273,310 females annually through their life cycles from 1971 to 2017. Given the computational intensity of the model (a runtime of ~16 h per realization), the number of realizations was limited to thirty after examination of model output for the ensemble. Boxplots showed good agreement across model realizations in the timing and magnitude of population peaks, die-offs, and years of low abundance, as well as normally distributed total population size in the majority of years simulated, suggesting that the central tendencies for total population size, dispersal and productivity maps were adequately captured (Supplementary Fig. 1a).An initial population size for the delta was estimated using an observed muskrat “house” count at a well-studied site, Egg Lake. Records for 1971 show 179 houses, yielding an initial population size of ~448 females at that lake. This estimate was scaled up to a population estimate for the entire delta by accounting for the fraction of critical habitat in the delta occupied by Egg Lake in 1972 (4.88 km2 out of 651.77 km2) to yield an initial population of 59,701 females for the entire delta.Muskrat movement behaviorThe delta model was developed to account for three broad categories of spring movement behaviors for individual muskrat:(i) Local movements during spring dispersal
    To represent the spring shuffle within the home ranges of muskrat at their home lake, an “exploration event” allows every individual to search their local surroundings (up to 500 hexagons, or 1.6 km2), with the goal of establishing a home range. Individuals that succeed establish a home range and finish the movement event. Individuals that are unsuccessful at establishing a home range as a result of local movement engage in long-range dispersal, described in (ii) below. In the spring, muskrat home ranges typically shuffle within a given water body at the onset of breeding12,33. Home range adjustments are typically at the scale of several hundred meters away from previous territory13.

    (ii) Long-range spring dispersal
    For individuals that do not successfully establish a home range with local movements in (i), a long-range dispersal event occurs, and it is parametrized based on literature values for muskrat dispersal rates. Based on the highest values of muskrat emigration rates (not attributed to passive transport via flooding) of 60 km/year, we set a dispersal distance of 1000 hexagons, or about 60 km of travel34. In addition, such dispersal events are constrained by the fact that muskrat movement is more limited on land than on water. Muskrat are typically observed to move over land on the order of miles13,33,35. However, in water they have been observed to travel much further distances irrespective of current; for instance, a single muskrat was observed to travel 50 km “against the current” in 15 days34. We therefore infer that higher reported rates of emigration for muskrat are made up primarily of travel through surface water features, combined with an ability of individual muskrat to travel over land up to 3 km.
    To represent this in the model, we first used the annual water/shoreline/land maps of the delta to generate annual dispersal maps based on a dispersal metric for particular environment categories. For these maps, water and shoreline pixels received a score of 10, and land pixels received a score of zero. This yielded dispersal maps whose hexagons have values of zero when they entirely overlie land pixels, 10 when they entirely overlie water pixels, and values in the range (0,10) for shoreline regions. Then, at each step of muskrat travel along its dispersal path, the difference of the hexagon score from 10 is evaluated and added to that individual’s dispersal penalty. Land hexagons therefore have a resistance of 10, and water hexagons a resistance of 0, with shoreline regions incurring an intermediate resistance between 0 and 10. The resistance values of encountered hexagons are tracked cumulatively for each individual while it disperses. When an individual reaches a resistance threshold of 500, the individual must stop dispersing. This resistance threshold of 500 is equivalent to 3 km of overland travel. So, an individual dispersing with a path entirely over land can go 3 km per year from their prior home range, but if their dispersal is entirely through water, then there is a travel limit of 60 km in a year.
    During long-range spring dispersal, individuals follow a constrained random walk to find a suitable place to settle. When selecting the adjacent hexagon to explore, individuals prefer hexagons with values between 2 and 10 (shoreline and water hexagons) at the expense of hexagons with values between 0 and 1 (land or mostly land hexagons), and they are influenced by their prior direction of travel with autocorrelation of 50%. At the completion of their long-range dispersal, individuals repeat the local movement exploration event to search for a suitable location to settle within their newly discovered home range. Individuals that do not succeed are removed from the simulation, representing death because they did not successfully establish a home range after long-range dispersal and succumbed to predation or starvation, or representing that they have migrated out of the delta.

    (iii) Enhanced dispersal due to flooding
    In years of known, large-scale flooding in the delta (1972, 1974, 1996, 1997 and 2014), a flood dispersal event is applied to simulate the effects of flooding on muskrat dispersal. A dispersal map is applied in which all hexagons in the delta have a value of 10, such that there is no resistance penalty for movement (a resistance value of 0) and the resistance threshold described in (ii) is never reached. When determining the range of distances for dispersal of muskrat due to floodwaters, we drew on literature values. While some muskrat remain in the water and disperse during flooding, yielding emigration rates of up to 120 km/year, others find refuge in trees or on rafts that are swept into trees and move no further34,36,37. To represent this range of outcomes, the distribution of path lengths was assigned a log-normal distribution, with a mode of 10 hexagons (600 m) and a median of 100 hexagons (6 km). Due to the ability of muskrat to swim up-current over tens of kilometers, this log-normal distribution functions independently of current34. This yields a distribution in which half of affected muskrat remain within six kilometers of their home ranges, while others may move tens of kilometers away. After the flood-induced dispersal movement event is complete, individuals undertake an exploration event as defined in (i) using the habitat map for that year, which represents the habitat available for home range establishment after floodwaters have receded.
    Additional parameters for the Dispersal event are:. Repulsion from hexagons with values between 0 and 1 (land or mostly land hexagons); Attraction to hexagons with values between 2 and 10 (shoreline and water hexagons), with a Multiplier of 5; and Percent Auto-Correlation of 50% with a Trend Period of 3 hexagons.
    Source-sink mappingModel output was mapped to evaluate the spatial distribution of sources, areas of high quality habitat serving as net contributors to the total muskrat population in the delta, and sinks, areas of low quality habitat serving as net detractors from the total muskrat population in the delta38. Mapping population dynamics in this way allows us to visualize the population dynamic effects of a spatially heterogeneous landscape. The location and intensity of sources and sinks were mapped at selected years to test our hypothesis that the delta’s flood regime drives interannual changes in the spatial distribution of source-sink dynamics of the muskrat metapopulation.Productivity, defined as the total number of births minus deaths in each area, was used as a simple measure of source and sink quality on the landscape (Fig. 3)39. We mapped productivity across the delta for three pairs of years, each associated with a population increase following a flood and subsequent die-off: (1971–1972) and (1975–1976), (1996–1997) and (1998–1999), (2014–2015) and (2016–2017) (Fig. 3). The years were selected based on results of realizations from thirty model simulations (Fig. 1c). Maps show the source or sink ensemble average values over those thirty modeled realizations.Source-sink mapping was carried out in HexSim using a set of simulation processes: the patch map, individual locations updater function, and productivity report modeling framework tools, as well as the build hexmap hexagons, clip hexmap, renumber patches, and map productivity report utilities developed by Nathan Schumaker40. Once in each year of the simulation, the model’s muskrat population was sampled within areas of regular tessellations comprised of hexagonally shaped areas with radii of 5 hexagons each. This sampling was executed in the model by recording birth and death statistics within each area.Dispersal flux mappingDispersal flux, the number of individuals passing through a given location per year, was mapped as the difference in values for the two years in which genetics data were collected, 2015 and 2016 (Fig. 2b). This was done by first exporting hexagon-based dispersal flux tallies for all thirty realizations in the years 2015 and 2016. Then, the mean value of dispersal flux across all 30 realizations was calculated to produce a single average dispersal flux map for each year. Finally, the difference between these two maps was calculated to yield the difference map showing locations of increased, decreased, or unchanged dispersal flux shown in Fig. 2b.Genetic analysisSample collectionMuskrat tissue samples for this study consisted of More

  • in

    Contrasting responses of above- and belowground diversity to multiple components of land-use intensity

    1.Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. Lond. B Biol. Sci. 276, 903–909 (2009).2.Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Stanton, R. L., Morrissey, C. A. & Clark, R. G. Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric. Ecosyst. Environ. 254, 244–254 (2018).Article 

    Google Scholar 
    4.Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Change Biol. 25, 1941–1956 (2019).ADS 
    Article 

    Google Scholar 
    5.Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).7.Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS 
    Article 

    Google Scholar 
    9.Rajaniemi, T. K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J. Ecol. 90, 316–324 (2002).Article 

    Google Scholar 
    10.Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).CAS 
    Article 

    Google Scholar 
    11.Suding, K. N. et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Perović, D. et al. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 52, 505–513 (2015).Article 

    Google Scholar 
    13.Redlich, S., Martin, E. A., Wende, B. & Steffan-Dewenter, I. Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLoS ONE 13, e0200438 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    16.Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141358 (2014).
    Google Scholar 
    17.Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    18.Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2351–2363 (2011).PubMed 
    Article 

    Google Scholar 
    19.Thompson, P. L. et al. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23, 1314–1329 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9, 399–409 (2006).PubMed 
    Article 

    Google Scholar 
    21.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).PubMed 
    Article 

    Google Scholar 
    22.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    23.Blitzer, E. J. et al. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146, 34–43 (2012).Article 

    Google Scholar 
    24.Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 
    Article 

    Google Scholar 
    25.de Graaff, M.-A., Hornslein, N., Throop, H. L., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Adv. Agron. 155, 1–44 (2019).Article 

    Google Scholar 
    26.De Deyn, G. B. & Van der Putten, W. H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 20, 625–633 (2005).PubMed 
    Article 

    Google Scholar 
    27.Field, R. et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    28.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    29.Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).ADS 
    Article 

    Google Scholar 
    32.George, P. B. L. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun. 10, 1107 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Dauber, J. et al. Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob. Ecol. Biogeogr. 14, 213–221 (2005).Article 

    Google Scholar 
    36.Cadotte, M. W. & Fukami, T. Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecol. Lett. 8, 548–557 (2005).PubMed 
    Article 

    Google Scholar 
    37.Grilli, G. et al. Fungal diversity at fragmented landscapes: synthesis and future perspectives. Curr. Opin. Microbiol. 37, 161–165 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Fenchel, T. O. M. & Finlay, B. J. The ubiquity of small species: patterns of local and global diversity. Bioscience 54, 777–784 (2004).Article 

    Google Scholar 
    39.Postma-Blaauw, M. B., Goede, R. G. M., de, Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Boeraeve, M., Honnay, O. & Jacquemyn, H. Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia 190, 149–157 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    41.Meyer, A. et al. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8, e73536 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Thomson, B. C. et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol. Biochem. 88, 403–413 (2015).CAS 
    Article 

    Google Scholar 
    43.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    44.Chaudhary, V. B., Nolimal, S., Sosa-Hernández, M. A., Egan, C. & Kastens, J. Trait-based aerial dispersal of arbuscular mycorrhizal fungi. N. Phytol. 228, 238–252 (2020).CAS 
    Article 

    Google Scholar 
    45.Vannette, R. L., Leopold, D. R. & Fukami, T. Forest area and connectivity influence root-associated fungal communities in a fragmented landscape. Ecology 97, 2374–2383 (2016).PubMed 
    Article 

    Google Scholar 
    46.Purschke, O. et al. Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. J. Ecol. 102, 437–446 (2014).PubMed 
    Article 

    Google Scholar 
    47.Thiel, N. et al. Airborne bacterial emission fluxes from manure-fertilized agricultural soil. Microb. Biotechnol. 13, 1631–1647 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).Article 

    Google Scholar 
    49.Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    50.Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article 

    Google Scholar 
    52.Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed 
    Article 

    Google Scholar 
    53.Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Xue, P.-P., Carrillo, Y., Pino, V., Minasny, B. & McBratney, A. B. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 8, 11725 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Löbel, S., Dengler, J. & Hobohm, C. Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot. 41, 377–393 (2006).Article 

    Google Scholar 
    56.Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).Article 

    Google Scholar 
    57.Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).Article 

    Google Scholar 
    58.Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J. & Arp, P. A. Evaluating digital terrain indices for soil wetness mapping–a Swedish case study. Hydrol. Earth Syst. Sci. 18, 3623–3634 (2014).ADS 
    Article 

    Google Scholar 
    59.Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).PubMed 
    Article 

    Google Scholar 
    60.Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).Article 

    Google Scholar 
    61.Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Morris, M. G. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol. Conserv. 95, 129–142 (2000).Article 

    Google Scholar 
    63.Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).Article 

    Google Scholar 
    64.Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Pöyry, J. et al. Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator of the vertebrate grazing intensity and successional age. Oikos 115, 401–412 (2006).Article 

    Google Scholar 
    67.Uchida, K. & Ushimaru, A. Biodiversity declines due to abandonment and intensification of agricultural lands: patterns and mechanisms. Ecol. Monogr. 84, 637–658 (2014).Article 

    Google Scholar 
    68.Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R. & Dowd, S. E. Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS ONE 7, e40338 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Poulsen, P. H. B. et al. Effects of fertilization with urban and agricultural organic wastes in a field trial—Prokaryotic diversity investigated by pyrosequencing. Soil Biol. Biochem. 57, 784–793 (2013).CAS 
    Article 

    Google Scholar 
    70.Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).PubMed 
    Article 

    Google Scholar 
    71.Hooper, D. U. et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50, 1049–1061 (2000).Article 

    Google Scholar 
    72.López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird Conserv. Int. 21, 328–341 (2011).Article 

    Google Scholar 
    73.Boeraeve, M. et al. The impact of spatial isolation and local habitat conditions on colonization of recent forest stands by ectomycorrhizal fungi. Forest Ecol. Manag. 429, 84–92 (2018).Article 

    Google Scholar 
    74.Fiore-Donno, A. M., Richter-Heitmann, T. & Bonkowski, M. Contrasting responses of protistan plant parasites and phagotrophs to ecosystems, land management and soil properties. Front. Microbiol. 11, 1823 (2020).PubMed 
    Article 

    Google Scholar 
    75.Diekötter, T., Wamser, S., Wolters, V. & Birkhofer, K. Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agric. Ecosyst. Environ. 137, 108–112 (2010).Article 

    Google Scholar 
    76.Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    77.Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Thakur, M. P. et al. Towards an integrative understanding of soil biodiversity. Biol. Rev. 95, 350–364 (2020).PubMed 
    Article 

    Google Scholar 
    79.Peay, K., Garbelotto, M. & Bruns, T. Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91, 3631–3640 (2010).PubMed 
    Article 

    Google Scholar 
    80.van der Putten, W. H. Climate change, aboveground-belowground interactions, and species’ range shifts. Annu. Rev. Ecol. Evol. Syst. 43, 365–383 (2012).Article 

    Google Scholar 
    81.Wubs, E. R. J., Putten, W. H., van der, Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 1–5 (2016).Article 

    Google Scholar 
    82.Bünemann, E. K., Schwenke, G. D. & Van Zwieten, L. Impact of agricultural inputs on soil organisms—a review. Soil Res. 44, 379–406 (2006).Article 

    Google Scholar 
    83.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    84.Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    86.Kleijn, D. & Sutherland, W. J. How effective are European agri-environment schemes in conserving and promoting biodiversity? J. Appl. Ecol. 40, 947–969 (2003).Article 

    Google Scholar 
    87.Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    88.Gessler, P. E., Moore, I. D., McKenzie, N. J. & Ryan, P. J. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).Article 

    Google Scholar 
    89.Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).ADS 
    Article 

    Google Scholar 
    90.Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. (Zenodo, 2020).91.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    92.Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).PubMed 
    Article 

    Google Scholar 
    93.Ulrich, W. et al. Climate and soil attributes determine plant species turnover in global drylands. J. Biogeogr. 41, 2307–2319 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Shoffner, A., Wilson, A. M., Tang, W. & Gagné, S. A. The relative effects of forest amount, forest configuration, and urban matrix quality on forest breeding birds. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    95.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed 
    Article 

    Google Scholar 
    96.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).97.Ricci, B. et al. The influence of landscape on insect pest dynamics: a case study in southeastern France. Landsc. Ecol. 24, 337–349 (2009).Article 

    Google Scholar 
    98.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    99.Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).Article 

    Google Scholar 
    100.Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity

    1.Vos, J. M. D., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).Article 

    Google Scholar 
    4.Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.IUCN. The IUCN Red List of Threatened Species. Version 2017-3 . Available at https://www.iucnredlist.org/en (2018). Accessed 18 May 2018.6.Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Conserv. 210, 56–59 (2017).Article 

    Google Scholar 
    7.Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Change Biol. 17, 3503–3510 (2011).ADS 
    Article 

    Google Scholar 
    8.Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: A global review. Conserv. Biol. 22, 16–26 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. Bioscience 64, 291–299 (2014).Article 

    Google Scholar 
    10.Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).ADS 
    Article 

    Google Scholar 
    11.McClure, M. L., Burdett, C. L., Farnsworth, M. L., Sweeney, S. J. & Miller, R. S. A globally-distributed alien invasive species poses risks to United States imperiled species. Sci. Rep. 8, 5331 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Lowe, S. M., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). First published as special lift-out in Aliens, vol. 12 (2000).13.Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    14.Challies, C. N. Feral pigs (Sus scrofa) on Auckland Island: Status, and effects on vegetation and nesting sea birds. N. Zeal. J. Zool. 2, 479–490 (1975).Article 

    Google Scholar 
    15.Coblentz, B. E. & Baber, D. W. Biology and control of feral pigs on Isla Santiago, Galapagos, Ecuador. J. Appl. Ecol. 24, 403–418 (1987).Article 

    Google Scholar 
    16.Jolley, D. B. et al. Estimate of herpetofauna depredation by a population of wild pigs. J. Mammal. 91, 519–524 (2010).Article 

    Google Scholar 
    17.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125–140 (2014).Article 

    Google Scholar 
    18.MacFarland, C. G., Villa, J. & Toro, B. The Galápagos giant tortoises (Geochelone elephantopus) Part I: Status of the surviving populations. Biol. Conserv. 6, 118–133 (1974).Article 

    Google Scholar 
    19.Semiadi, G. & Meijaard, E. Declining populations of the Javan warty pig Sus verrucosus. Oryx 40, 50–56 (2006).Article 

    Google Scholar 
    20.Desbiez, A. L. J., Santos, S. A., Keuroghlian, A. & Bodmer, R. E. Niche partitioning among White-Lipped Peccaries (Tayassu pecari), Collared Peccaries (Pecari tajacu), and Feral Pigs (Sus scrofa). J. Mamm. 90, 119–128 (2009).Article 

    Google Scholar 
    21.Focardi, S., Capizzi, D. & Monetti, D. Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean woodland. J. Zool. 250, 329–334 (2000).Article 

    Google Scholar 
    22.Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241 (2007).Article 

    Google Scholar 
    23.Mitchell, J., Dorney, W., Mayer, R. & McIlroy, J. Ecological impacts of feral pig diggings in north Queensland rainforests. Wildl. Res. 34, 603–608 (2008).Article 

    Google Scholar 
    24.Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mamm. Rev. 44, 124–134 (2014).Article 

    Google Scholar 
    25.Massei, G. & Genov, P. The environmental impact of wild boar. Galemys: Boletín informativo de la Sociedad Española para la conservación y estudio de los mamíferos 16(1), 135–145 (2004) (ISSN 1137-8700).
    Google Scholar 
    26.Nuñez, M. A., Bailey, J. K. & Schweitzer, J. A. Population, community and ecosystem effects of exotic herbivores: A growing global concern. Biol. Invasions 12, 297–301 (2010).Article 

    Google Scholar 
    27.Spear, D. & Chown, S. L. Non-indigenous ungulates as a threat to biodiversity. J. Zool. 279, 1–17 (2009).Article 

    Google Scholar 
    28.Bracke, M. B. M. Review of wallowing in pigs: Description of the behaviour and its motivational basis. Appl. Anim. Behav. Sci. 132, 1–13 (2011).Article 

    Google Scholar 
    29.Campbell, T. A. & Long, D. B. Feral swine damage and damage management in forested ecosystems. For. Ecol. Manag. 257, 2319–2326 (2009).Article 

    Google Scholar 
    30.Tulloch, V. J. et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 13, 91–99 (2015).Article 

    Google Scholar 
    31.Nogales, M. et al. Feral cats and biodiversity conservation: The urgent prioritization of island management. Bioscience 63, 804–810 (2013).Article 

    Google Scholar 
    32.Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113, 4033–4038 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).34.Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).36.Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.5. https://CRAN.R-project.org/package=dplyr (2019).37.Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    38.Keith, D. A. et al. The IUCN red list of ecosystems: Motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article 

    Google Scholar 
    39.Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Anim. Conserv. Forum 4, 307–318 (2001).Article 

    Google Scholar 
    40.Brummitt, N. A. et al. Green plants in the red: A baseline global assessment for the IUCN sampled red list index for plants. PLoS One 10, e0135152 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Joppa, L. N., Roberts, D. L., Myers, N. & Pimm, S. L. Biodiversity hotspots house most undiscovered plant species. Proc. Natl. Acad. Sci. 108, 13171–13176 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Bland, L. M. & Böhm, M. Overcoming data deficiency in reptiles. Biol. Conserv. 204, 16–22 (2016).Article 

    Google Scholar 
    43.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Denslow, J. S. Weeds in paradise: Thoughts on the invasibility of tropical islands. Ann. Mo. Bot. Gard. 90, 119–127 (2003).Article 

    Google Scholar 
    45.Desurmont, G. A., Donoghue, M. J., Clement, W. L. & Agrawal, A. A. Evolutionary history predicts plant defense against an invasive pest. PNAS 108, 7070–7074 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Banks, P. B. & Dickman, C. R. Alien predation and the effects of multiple levels of prey naiveté. Trends Ecol. Evol. 22, 229–230 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Courchamp, F., Chapuis, J.-L. & Pascal, M. Mammal invaders on islands: Impact, control and control impact. Biol. Rev. 78, 347–383 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Richards, S. J., McDonald, K. R. & Alford, R. A. Declines in populations of Australia’s endemic tropical rainforest frogs. Pac. Conserv. Biol. 1, 66–77 (1994).Article 

    Google Scholar 
    51.Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    52.Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. 283, 20152454 (2016).Article 

    Google Scholar 
    53.de Brooke, M. L., Hilton, G. M. & Martins, T. L. F. Prioritizing the world’s islands for vertebrate-eradication programmes. Anim. Conserv. 10, 380–390 (2007).Article 

    Google Scholar 
    54.Cruz, F., Josh Donlan, C., Campbell, K. & Carrion, V. Conservation action in the Galàpagos: Feral pig (Sus scrofa) eradication from Santiago Island. Biol. Conserv. 121, 473–478 (2005).Article 

    Google Scholar 
    55.Ramsey, D. S. L., Parkes, J. & Morrison, S. A. Quantifying eradication success: The removal of feral pigs from Santa Cruz Island, California. Conserv. Biol. 23, 449–459 (2009).PubMed 
    Article 

    Google Scholar 
    56.Donlan, C. J. et al. Recovery of the Galápagos rail (Laterallus spilonotus) following the removal of invasive mammals. Biol. Conserv. 138, 520–524 (2007).Article 

    Google Scholar 
    57.Gürtler, R. E., Martín Izquierdo, V., Gil, G., Cavicchia, M. & Maranta, A. Coping with wild boar in a conservation area: Impacts of a 10-year management control program in north-eastern Argentina. Biol. Invasions 19, 11–24 (2017).Article 

    Google Scholar 
    58.Weeks, P. & Packard, J. Feral Hogs: Invasive species or nature’s bounty?. Hum. Organ. 68, 280–292 (2009).Article 

    Google Scholar 
    59.Lavelle, M. J. et al. Evaluation of fences for containing feral swine under simulated depopulation conditions. J. Wildl. Manag. 75, 1200–1208 (2011).Article 

    Google Scholar 
    60.McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS One 10, e0133771 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Amendolia, S., Lombardini, M., Pierucci, P. & Meriggi, A. Seasonal spatial ecology of the wild boar in a peri-urban area. Mamm. Res. https://doi.org/10.1007/s13364-019-00422-9 (2019).Article 

    Google Scholar 
    62.Risch, D. R., Ringma, J., Honarvar, S. & Price, M. R. A comparison of abundance and distribution model outputs using camera traps and sign surveys for feral pigs. Pac. Conserv. Biol. https://doi.org/10.1071/PC20032 (2020).Article 

    Google Scholar 
    63.Database of Island Invasive Species Eradications. http://diise.islandconservation.org/. (2018). Accessed 3 October 2018 More

  • in

    Alterations in gut microbiota linked to provenance, sex, and chronic wasting disease in white-tailed deer (Odocoileus virginianus)

    1.Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hannaoui, S., Schatzl, H. M. & Gilch, S. Chronic wasting disease: emerging prions and their potential risk. PLoS Pathog. 13, e1006619 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.United States Geological Survey. Expanding Distribution of Chronic Wasting Disease. https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (2021).4.Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 1–7 (2016).Article 

    Google Scholar 
    5.Gough, K. C. & Maddison, B. C. Prion transmission: prion excretion and occurrence in the environment. Prion 4, 275–282 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Donaldson, D. S., Sehgal, A., Rios, D., Williams, I. R. & Mabbott, N. A. Increased abundance of m cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 12, e1006075 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Press, C. M., Heggebø, R. & Espenes, A. Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv. Drug Deliv. Rev. 56, 885–899 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Corr, S. C., Gahan, C. C. G. M. & Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Maignien, T., Lasmézas, C. I., Beringue, V., Dormont, D. & Deslys, J. P. Pathogenesis of the oral route of infection of mice with scrapie and bovine spongiform encephalopathy agents. J. Gen. Virol. 80(Pt 11), 3035–3042 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Bennett, K. M. et al. Induction of colonic m cells during intestinal inflammation. Am. J. Pathol. 186, 1166–1179 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Donaldson, D. S. & Mabbott, N. A. The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. J. Gen. Virol. 97, 1725–1738 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Terahara, K. et al. Comprehensive gene expression profiling of peyer’s patch m cells, villous m-like cells, and intestinal epithelial cells. J. Immunol. 180, 7840–7846 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Sigurdson, C. J. et al. Bacterial colitis increases susceptibility to oral prion disease. J. Infect. Dis. 199, 243–252 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tahoun, A. et al. Salmonella transforms follicle-associated epithelial cells into m cells to promote intestinal invasion. Cell Host Microb. 12, 645–656 (2012).CAS 
    Article 

    Google Scholar 
    16.Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Ogbonnaya, E. S. et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatr. 78, e7-9 (2015).Article 

    Google Scholar 
    19.Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U. S. A. 108, 3047–3052 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Chu, Y. & Kordower, J. H. The prion hypothesis of Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 15, 28 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Goedert, M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Herva, M. E. & Spillantini, M. G. Parkinson’s disease as a member of prion-like disorders. Virus Res. 207, 38–46 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Tan, J. M. M., Wong, E. S. P. & Lim, K.-L. Protein misfolding and aggregation in Parkinson’s disease. Antioxid. Redox Signal. 11, 2119–2134 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Weickenmeier, J., Jucker, M., Goriely, A. & Kuhl, E. A physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J. Mech. Phys. Solids 124, 264–281 (2019).ADS 
    Article 

    Google Scholar 
    27.Olanow, C. W. & Brundin, P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder?. Mov. Disord. 28, 31–40 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.D’Argenio, V. & Sarnataro, D. Microbiome influence in the pathogenesis of prion and Alzheimer’s diseases. Int. J. Mol. Sci. 20, 4704 (2019).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Rowin, J., Xia, Y., Jung, B. & Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 5, e13443 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469-1480.e12 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Lev, M., Raine, C. S. & Levenson, S. M. Enhanced survival of germfree mice after infection with irradiated scrapie brain. Experientia 27, 1358–1359 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Wade, W. F., Dees, C., German, T. L. & Marsh, R. F. Effect of bacterial flora and mouse genotype (euthymic or athymic) on scrapie pathogenesis. J. Leukoc. Biol. 40, 525–532 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bradford, B. M., Tetlow, L. & Mabbott, N. A. Prion disease pathogenesis in the absence of the commensal microbiota. J. Gen. Virol. 98, 1943–1952 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Guan, Y. et al. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express 7, 212 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.USDA APHIS|Cervids: Chronic Wasting Disease. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervid-cwd (2020).38.Keane, D. P. et al. Chronic wasting disease in a Wisconsin white-tailed deer farm. J. Vet. Diagn. Invest. 20, 698–703 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Ethanol Precipitation Protocol—MRC Holland Technical Support. https://support.mrcholland.com/kb/articles/ethanol-precipitation-protocol.40.Apprill, A. & Parada, A. E. 16S Illumina amplicon protocol: Earth microbiome project. http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s/.41.Boylen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    42.Yilmaz, P. et al. The SILVA and ‘all-species living tree project (LTP)’ taxonomic frameworks. Nucl. Acids Res. https://doi.org/10.1093/nar/gkt1209 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Min, B. R., Gurung, N., Shange, R. & Solaiman, S. Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 97, 3523–3534 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 11159 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 9, 18781 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Delgado, M. L. et al. Intestinal microbial community dynamics of white-tailed deer (Odocoileus virginianus) in an agroecosystem. Microb. Ecol. 74, 496–506 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Rogers, L. L., Mooty, J. J. & Dawson, D. Foods of White-Tailed Deer in the Upper Great Lakes Region: A Review (North Central Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1981).Book 

    Google Scholar 
    55.Gibson, K. M. et al. Gut microbiome differences between wild and captive black rhinoceros—implications for rhino health. Sci. Rep. 9, 7570 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Guo, W. et al. Comparative study of gut microbiota in wild and captive giant pandas (Ailuropoda melanoleuca). Genes (Basel) 10, 827 (2019).CAS 
    Article 

    Google Scholar 
    57.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Prabhu, V. R., Wasimuddin, W., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: A comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Khafipour, E. et al. Effects of grain feeding on microbiota in the digestive tract of cattle. Anim. Front. 6, 13–19 (2016).Article 

    Google Scholar 
    62.Liu, C. et al. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front. Microbiol. 10, 1116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).Article 

    Google Scholar 
    65.Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yang, X. et al. Seasonal breeding leads to changes for gut microbiota diversity in the wild ground squirrel (Spermophilus dauricus). https://www.researchsquare.com/article/rs-96089/v1 (2020). https://doi.org/10.21203/rs.3.rs-96089/v1.67.Antwis, R. E., Edwards, K. L., Unwin, B., Walker, S. L. & Shultz, S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. Microbiome 7, 27 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Gordon, I. R. Controlled Reproduction in Horses, Deer, and Camelids (Cab International, 1997).
    Google Scholar 
    69.Samuel, M. D. & Storm, D. J. Chronic wasting disease in white-tailed deer: Infection, mortality, and implications for heterogeneous transmission. Ecology 97, 3195–3205 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Miller, M. W., Hobbs, N. T. & Tavener, S. J. Dynamics of prion disease transmission in mule deer. Ecol. Appl. 16, 2208–2214 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Gandy, K. A. O., Zhang, J., Nagarkatti, P. & Nagarkatti, M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci. Rep. 9, 1–17 (2019).CAS 
    Article 

    Google Scholar 
    72.Ebringer, A., Rashid, T., Wilson, C., Boden, R. & Thompson, E. A possible link between multiple sclerosis and Creutzfeldt-Jakob disease based on clinical, genetic, pathological and immunological evidence involving Acinetobacter bacteria. Med. Hypotheses 64, 487–494 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Ricci, S. et al. Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. wbio 2019, 1–11 (2019).Article 

    Google Scholar 
    74.Sun, C.-H., Liu, H.-Y., Liu, B., Yuan, B.-D. & Lu, C.-H. Analysis of the gut microbiome of wild and captive Père David’s deer. Front. Microbiol. 10, 2331 (2019).PubMed 
    Article 

    Google Scholar 
    75.Barichella, M. et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 34, 396–405 (2019).PubMed 
    Article 

    Google Scholar 
    76.Pietrucci, D. et al. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat. Disord. 65, 124–130 (2019).PubMed 
    Article 

    Google Scholar 
    77.Radisavljevic, N., Cirstea, M. & Brett Finlay, B. Bottoms up: The role of gut microbiota in brain health. Environ. Microbiol https://doi.org/10.1111/1462-2920.14506 (2018).Article 
    PubMed 

    Google Scholar 
    78.Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 11450 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    79.Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    80.Zeng, H., Ishaq, S. L., Zhao, F.-Q. & Wright, A.-D.G. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J. Nutr. Biochem. 35, 30–36 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Zhang, T., Li, Q., Cheng, L., Buch, H. & Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 12, 1109–1125 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 33, 194–201 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Ou, Z. et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    84.Cirstea, M., Radisavljevic, N. & Finlay, B. B. Good bug, bad bug: Breaking through microbial stereotypes. Cell Host Microb. 23, 10–13 (2018).CAS 
    Article 

    Google Scholar 
    85.Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. PNAS 114, 10719–10724 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. PNAS 114, 10713–10718 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Hill-Burns, E. M. et al. Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Belzer, C. & de Vos, W. M. Microbes inside—from diversity to function: The case of Akkermansia. ISME J. 6, 1449–1458 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Donaldson, D. S., Pollock, J., Vohra, P., Stevens, M. P. & Mabbott, N. A. Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23, 101147 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Ganesh, B. P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE 8, e74963 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Donaldson, D. S. et al. M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106, 171–181 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Nagalingam, N. A., Kao, J. Y. & Young, V. B. Microbial ecology of the murine gut associated with the development of DSS-colitis. Inflamm. Bowel Dis. 17, 917–926 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Haley, N. J. et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS ONE 14, e0224342 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    97.Wagner Mackenzie, B., Waite, D. W. & Taylor, M. W. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front. Microbiol. 6, 130 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Kawada, Y., Naito, Y., Andoh, A., Ozeki, M. & Inoue, R. Effect of storage and DNA extraction method on 16S rRNA-profiled fecal microbiota in Japanese adults. J. Clin. Biochem. Nutr. 64, 106–111 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Sinha, R. et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomark. Prev. 25, 407–416 (2016).Article 

    Google Scholar  More