Upward expansion and acceleration of forest clearance in the mountains of Southeast Asia
1.Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).CAS
Article
Google Scholar
2.Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).CAS
Article
Google Scholar
3.Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Environ. 1, 590–605 (2020).Article
Google Scholar
4.Ceccherini, G. et al. Abrupt increase in harvested forest area over Europe after 2015. Nature 583, 72–77 (2020).CAS
Article
Google Scholar
5.Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).CAS
Article
Google Scholar
6.Curran, L. M. et al. Lowland forest loss in protected areas of Indonesian Borneo. Science 303, 1000–1003 (2004).CAS
Article
Google Scholar
7.Friedl, A. et al. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets, 2001–2012 Collection 5.1 (Boston University, 2010).8.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS
Article
Google Scholar
9.Margono, B. A., Potapov, P. V., Turubanova, S., Stolle, F. & Hansen, M. C. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Change 4, 730–735 (2014).Article
Google Scholar
10.Turubanova, S. et al. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).Article
Google Scholar
11.Searchinger, T. et al. Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050 (World Resources Institute, 2019).12.Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).CAS
Article
Google Scholar
13.Tyukavina, A. et al. Congo Basin forest loss dominated by increasing smallholder clearing. Sci. Adv. 4, eaat2993 (2018).Article
Google Scholar
14.Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Change Biol. 20, 2540–2554 (2014).Article
Google Scholar
15.Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).CAS
Article
Google Scholar
16.Aide, T. M. et al. Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: satellite image interpretation and expert validation. Glob. Change Biol. 25, 2112–2126 (2019).Article
Google Scholar
17.Song, X. P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).CAS
Article
Google Scholar
18.Körner, C. et al. A global inventory of mountains for bio-geographical applications. Alp. Bot. 127, 1–15 (2017).Article
Google Scholar
19.Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562 (2018).CAS
Article
Google Scholar
20.Zeng, Z., Gower, D. B. & Wood, E. F. Accelerating forest loss in Southeast Asian Massif in the 21st century: a case study in Nan Province, Thailand. Glob. Change Biol. 24, 4682–4695 (2018).Article
Google Scholar
21.Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Change Biol. 22, 1336–1347 (2016).Article
Google Scholar
22.Spracklen, D. & Righelato, R. Tropical montane forests are a larger than expected global carbon store. Biogeosciences 11, 2741–2754 (2014).CAS
Article
Google Scholar
23.Miettinen, J., Shi, C. & Liew, S. C. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol. 17, 2261–2270 (2011).Article
Google Scholar
24.Austin, K. G. et al. What causes deforestation in Indonesia? Environ. Res. Lett. 14, 024007 (2019).Article
Google Scholar
25.Hansen, M. et al. Response to comment on ‘high-resolution global maps of 21st-century forest cover change’. Science 344, 981–981 (2014).CAS
Article
Google Scholar
26.Chan, N., Xayvongsa, L. & Takeda, S. in Environmental Resources Use and Challenges in Contemporary Southeast Asia (eds Lopez, M. I. & Suryomenggolo, J.) 231–246 (Springer, 2018).27.Thompson, J. R., Carpenter, D. N., Cogbill, C. V. & Foster, D. R. Four centuries of change in northeastern United States forests. PLoS ONE 8, e72540 (2013).CAS
Article
Google Scholar
28.Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).Article
Google Scholar
29.Zeng, Z. et al. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 14, 23–29 (2021).CAS
Article
Google Scholar
30.Senior, R. A., Hill, J. K., Benedick, S. & Edwards, D. P. Tropical forests are thermally buffered despite intensive selective logging. Glob. Change Biol. 24, 1267–1278 (2018).Article
Google Scholar
31.Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).Article
Google Scholar
32.Sodhi, N. S. et al. The state and conservation of Southeast Asian biodiversity. Biodivers. Conserv. 19, 317–328 (2010).Article
Google Scholar
33.Ahrends, A. et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods. Glob. Environ. Change 34, 48–58 (2015).Article
Google Scholar
34.Edwards, D. P. et al. Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc. R. Soc. B 278, 82–90 (2011).Article
Google Scholar
35.Srinivasan, U., Elsen, P. R. & Wilcove, D. S. Annual temperature variation influences the vulnerability of montane bird communities to land-use change. Ecography 42, 2084–2094 (2019).Article
Google Scholar
36.Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).CAS
Article
Google Scholar
37.Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).Article
CAS
Google Scholar
38.Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).CAS
Article
Google Scholar
39.Spracklen, D. V., Arnold, S. R. & Taylor, C. M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 489, 282–285 (2012).CAS
Article
Google Scholar
40.Spracklen, D. V. & Garcia-Carreras, L. The impact of Amazonian deforestation on Amazon Basin rainfall. Geophys. Res. Lett. 42, 9546–9552 (2015).Article
Google Scholar
41.Cheng, L. et al. Quantifying the impacts of vegetation changes on catchment storage–discharge dynamics using paired-catchment data. Water Resour. Res. 53, 5963–5979 (2017).Article
Google Scholar
42.Chappell, A., Baldock, J. & Sanderman, J. The global significance of omitting soil erosion from soil organic carbon cycling schemes. Nat. Clim. Change 6, 187–191 (2015).Article
CAS
Google Scholar
43.Yue, Y. et al. Lateral transport of soil carbon and land–atmosphere CO2 flux induced by water erosion in China. Proc. Natl Acad. Sci. USA 113, 6617–6622 (2016).CAS
Article
Google Scholar
44.Ziegler, A. D. et al. Carbon outcomes of major land-cover transitions in SE Asia: great uncertainties and REDD+ policy implications. Glob. Change Biol. 18, 3087–3099 (2012).Article
Google Scholar
45.Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).CAS
Article
Google Scholar
46.Fox, J., Castella, J. C. & Ziegler, A. D. Swidden, rubber and carbon: can REDD+ work for people and the environment in montane mainland Southeast Asia? Glob. Environ. Change 29, 318–326 (2014).Article
Google Scholar
47.Harris, N. L. et al. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change https://doi.org/10.1038/s41558-020-00976-6 (2021).48.Tachikawa, T., Hato, M., Kaku, M. & Iwasaki, A. Characteristics of ASTER GDEM version 2. In Proc. IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 3657–3660 (IEEE, 2011).49.Burrough, P. A., McDonnell, R., McDonnell, R. A. & Lloyd, C. D. Principles of Geographical Information Systems (Oxford Univ. Press, 2015).50.Mokany, K., Raison, R. J. & Prokushkin, A. S. Critical analysis of root : shoot ratios in terrestrial biomes. Glob. Change Biol. 12, 84–96 (2006).Article
Google Scholar
51.Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).Article
CAS
Google Scholar
52.Ryan, S. E. & Porth, L. S. A Tutorial on the Piecewise Regression Approach Applied to Bedload Transport Data (CreateSpace, 2015).53.Toms, J. D. & Lesperance, M. L. Piecewise regression: a tool for identifying ecological thresholds. Ecology 84, 2034–2041 (2003).Article
Google Scholar
54.Zeng, Z. et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 9, 979–985 (2019).Article
Google Scholar
55.Zaiontz, C. Real Statistics Using Excel (accessed 16 June 2021); http://www.real-statistics.com/ More