More stories

  • in

    Novel metagenome-assembled genomes involved in the nitrogen cycle from a Pacific oxygen minimum zone

    Oxygen minimum zones (OMZs) are unique oceanic regions with strong redox gradients. Anoxic zones in OMZs are hotspots for fixed nitrogen loss and production of the greenhouse gas N2O [1, 2]. Microbes in OMZs make important contributions to biogeochemistry, which motivates us to reconstruct metagenome-assembled genomes (MAGs) from the Eastern Tropical South Pacific (ETSP) OMZ (Fig. 1a, b). Among 147 recovered MAGs, we present 39 high- and medium-quality MAGs with completeness >50% and contamination 100 nM d−1) at the same station [6], where MAGs were recovered. Consistently, Thaumarchaeota MAGs (AOAs) were nearly absent (only AOA-2 had a relative abundance higher than 0.01%) and NOB MAGs (NOB-1 and NOB-2) were much more abundant than AOA in the anoxic core (Fig. 1d). MAGs in this study will provide opportunities to discover novel processes and adaptation strategies.Most MAGs had their highest relative abundances in the anoxic zone (Fig. 1c). Many of them contribute to the loss of fixed nitrogen, which occurs by denitrification (the sequential reduction of nitrate to nitrite, NO, N2O, and finally N2) and anammox (anaerobic oxidation of ammonium to N2). Measured nitrate reduction rates at this [5, 8] and other [16, 17] nearby stations were much larger than rates of any subsequent denitrification steps (e.g., nitrite reduction to N2O or to N2). Consistently, preliminary prediction of metabolisms shows that more than half of the MAGs found here contained nar, which encodes nitrate reduction, and one-third of those contained only nar and none of the other denitrification genes (i.e., they are nitrate-reducing specialists) (Fig. 2). Consistently, a previous study found that nar dramatically outnumbered the other denitrification genes in contigs from the Eastern Tropical North Pacific (ETNP) OMZ [18]. Indeed, four of the five most abundant MAGs in the anoxic core were nitrate-reducing specialists (Fig. 2). The fifth was an anammox MAG, which was only assigned to the genus level (Candidatus Scalindua) in GTDB and was not represented at the species level in the Tara Oceans dataset (Table S1). However, this anammox MAG was highly related to 20 anammox single-cell amplified genomes (SAGs) from the ETNP OMZ [19]. The anammox MAG had at least 90% average nucleotide identity (ANI) to the SAGs, with the highest ANI (98.8%) to SAG K21. Consistent with the previous work [19], the anammox MAG also encoded cyanase, indicating its potential of using organic nitrogen substrates. The most abundant nitrate reducer MAG here is Marinimicrobia-1 (Fig. 1), which belongs to the newly proposed phylum Candidatus Marinimicrobia [20]. Notably, one nitrate reducer can only be assigned to phylum level (Candidatus Wallbacteria) and was not present in the Tara Oceans MAGs (Table S1).We also identified a novel archaeal MAG possessing multiple denitrification genes. MG-II MAG-2 encoded Nar alpha and beta subunits, nitrate/nitrite transporters, copper-containing nitrite reductase, and N2O reductase (Fig. 2). Two MAGs from the Tara Oceans metagenomes (Table S1) were identified as the same species as MG-II MAG-2. TOBG_NP-110 (ANI to MG-II MAG-2 = 99.8%) from the North Pacific encoded Nar and nitrate/nitrite transporters, and TOBG_SP-208 (ANI to MG-II MAG-2 = 99.6%) from the South Pacific also contained the same denitrification genes as MG-II MAG-2 (Table S2). In addition, two MG-II SAGs (AD-615-F09 and AD-613-O09) were found at a different station of the ETSP OMZ sampled on the same cruise as this study [21]. Partial 16S rRNA genes of both SAGs are 100% identical to that of MG-II MAG-2 (alignment length = 200 bp for AD-615-F09 and 183 bp for AD-613-O09), but only AD-615-F09 might be the same species as MG-II MAG-2 based on ANI analyses (MG-II MAG-2 had 99.5% ANI to AD-615-F09, and 80.9% to AD-613-O09). Both SAGs also encoded Nar and nitrate/nitrite transporters [21]. The absence of other denitrification genes may be due to the low completeness of the two SAGs (completeness = 5.61% for both SAGs) [21]. Nitrite reductase and N2O reductase genes were located on the same contig in both MG-II MAG-2 and TOBG_SP-208 (Table S2). MG-II MAG-2 and TOBG_SP-208 had low contamination (1.9% and 0.8%, respectively), and their contigs with nitrite reductase and N2O reductase genes contained single-copy marker genes present only once in each MAG (Supplementary Methods). Although these results suggest a nearly complete denitrification metabolism in MG-II archaea, especially N2O consumption metabolism, methods besides metagenomics (e.g. reconstructing SAGs with high completeness) are highly recommended to rule out possible artifacts introduced by metagenomic binning and confirm the presence of these genes and their denitrification activity. Nonetheless, MG-II MAG-2 was present (Fig. 1e) and transcriptionally active in both Pacific OMZs (Fig. S2), indicating its adaptation to low oxygen environments. The MG-III MAG did not have any denitrification genes but was abundant in the anoxic zone (Figs. 1e and 2). It had a GC value (43.2%) distinct from all other known MG-III MAGs [22] and is the most complete (86.0%) and the least contaminated (0%) (Table S1) among all reported MG-III MAGs, indicating that MG-III is a novel archaeon in this group. Bacterial and archaeal MAGs recovered here implied that nitrogen metabolisms were present in more microbial lineages than previously thought. Further analyses of these MAGs will shed light on adaptation strategies in the unique OMZ environment and novel functions related to important element cycles. More

  • in

    Scenario simulation of land use and land cover change in mining area

    Data source and preprocessingConsidering factors such as amount of cloud and time intervals of image, four remote sensing images with a spatial resolution of 30 m, including Landsat 5 Thematic Mapper (TM) images for 08-21-2000, 09-04-2005 and 09-18-2010, and Landsat 8 Operational Land Imager (OLI) for 09-02-2016,were obtained from the Geospatial Data Cloud Platform (http://www.gscloud.cn). LULC information was extracted from these remote sensing images. In addition, the digital elevation model (DEM) with a spatial resolution of 30 m was obtained from the website. Elevation and slope information were derived from DEM data and used as terrain driving factors for scenario simulation. Other supporting data, such as Weishan County land use data, mine distribution data, general land use planing (2006–2020) and mineral resources planning (2008–2015), Jining City coal mining subsidence land rearrangement planning (2016–2030), were obtained from Weishan Natural Resources and Planning Bureau. These data were used for better data analysis.Considering severe ground subsidence and seeper in the study area, and referring to national standards: Current Land Use Classification (GB/T 21010-2017), remote sensing images were interpreted into six LULC types: farmland, other agricultural land, urban and rural construction land, subsided seeper area, water area, and tidal wetland.In the process of image interpretation, firstly, the remote sensing image was divided into two regions: one region were the lake and the surrounding tidal wetland, and the other region included farmland, other agricultural land, urban and rural construction land, subsided seeper area, etc.In region 1, decision tree classification, combined with the Modified Normalized Difference Water Index (MNDWI), was used to extract lakes. Then we masked them in region 1. The Normalized Difference Vegetation Index (NDVI) was calculated for the remaining image of region 1. Tidal wetland was mainly distributed along rivers and lakes, and NDVI value was higher than that of farmland and other vegetation. By analyzing its geographical distribution and NDVI value, and referring to Weishan County land use data, the appropriate threshold was selected to extract tidal wetland.The spectral signature of rivers, ditches and aquaculture ponds in other agricultural land in region 2 could be easily distinguished from other surface features. They could be extracted step by step by manual visual interpretation and empirical knowledge, referring to Weishan County land use data and water system data. Then we masked them separately in region 2. After extracting rivers, ditches, aquaculture ponds with high water content, the remaining LULC type with high water content in region 2 was subsided seeper area. According to the relationship of spectral signature of different LULC types, it was concluded that among the remaining LULC types in region 2, only TM3 band value of subsided seeper area was higher than TM5 band value. Using this characteristic, subsided seeper area could be distinguished from other LULC types. After extracting subsided seeper area, the remaining LULC types in region 2 were farmland and urban and rural construction land. The spectral characteristics of them were very different. Therefore, they could be distinguished using support vector machine (SVM) classification method, and their respective binary images were generated using decision tree method.The extracted six LULC types were shown in single layer and binary form respectively. Six LULC types were coded and synthesized into one image. We obtained 2000, 2005, 2010, 2016 LULC type maps (Fig. 2). Finally classification post-processing and accuracy evaluation were operated.Figure 2The LULC types maps of 2000, 2005, 2010 and 2016. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageThe accuracy of the interpretation results was verified by confusion matrix and kappa coefficient. The kappa coefficients of the four interpretation maps were 0.84, 0.85, 0.82 and 0.86, respectively (Table 1). The accuracy could meet the needs of further research.Table 1 Accuracy evaluation of the interpretation results (%).Full size tableBy reading previous research results37,38,39,40,41, based on the entropy theory, in the same study area, high spatial resolution data contains more entropy than low spatial resolution data, and reflecting more detailed information, but it will increase the uncertainty of prediction results and reduce the prediction accuracy. Although the prediction accuracy of low spatial resolution data increases, it will lose lots of detailed information. In order to ensure the accuracy of the simulation, considering the area of the study area and data requirement of the CLUE-S model, the interpreted LULC maps with a resolution of 30 m exceed the upper limit of the CLUE-S model data requirement, so the LULC maps were resampled to multiple scales including 60 m, 90 m, 120 m, and 150 m to facilitate logistic regression analysis of LULC types and driving factors.Selection and processing of driving factorsTo interpret the relationship between the LULC and its driving factors in the mining area, we not only need to identify the driving factors that have greater explanatory power for LULC change, but also need to quantitatively describe the relationship between driving factors and LULC types.Considering the accessibility, usability of the data and the actual conditions in the study area, seven driving factors were selected based on the land use map of Weishan County in 2005 and the DEM data5,10,11,13,26,28,29,30. The driving factors included: (1) terrain factors, including elevation and slope factors; (2) five accessibility factors, including the nearest distance between each grid pixel and the main roads, the major rivers, the residential area, the major mines, and the ditches. The 30 m grid data of each driving factor were resampled to 60 m, 90 m, 120 m and 150 m respectively.In this study, BLRM was used to explore the relationship between LULC change and the related 7 driving factors. BLRM is sensitive to multicollinearity. In order to eliminate the influence of collinearity on the regression results, the multicollinearity between independent variables was diagnosed before the regression model was established.The receiver operating characteristic (ROC) curve was used to evaluate the accuracy of regression analysis results at different scales. The results showed that using 60 m resolution provided more accurate regression analysis results and suffered less loss of LULC and driving factor information during resampling. Therefore, we used 60 m × 60 m grid cell data to driving forces analysis.Raster maps of each driving factor at a resolution scale of 60 m are shown in Fig. 3.Figure 3Raster maps of driving factors at a resolution scale of 60 m. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageLogistic regression analysis of LULC types and driving factorsBLRM is often used for regression analysis of explanatory binary variables. The presence and absence of a certain type of LULC in a specific area is set as 1 and 0, respectively, which is characteristic for binary variable. Therefore, we used BLRM to calculate the probability (P) of various LULC types in a specific spatial location, and its mathematical expression is:$$begin{aligned} ln left( frac{P}{1-P}right) = beta _0 + beta _1 X end{aligned}$$
    (1)
    where (frac{P}{1-P}) is the ’odds ratio’ of an event, abbreviated as ( Omega ), which represents the odds that an outcome will occur given a particular condition compared to the odds of the outcome occurring in the absence of that condition; (beta _0) is a constant; (beta _1) is the correlation coefficient of an explaining variable and an explained variable. Making mathematical transformation of the above expression, we get: (Omega = (frac{P}{1-P}) = e^{beta _0 + beta _1 X}).Regression analysis using BLRM, we divided the study area into many grid cells. Taking each LULC type as the explained variable, and the driving factor causing LULC change as the explanatory variable, we calculated the odds ratio of each LULC type in a specific spatial location, and analyzed the relationship between each LULC type and the driving factors. The calculating equation is:$$begin{aligned} mathrm{Logit} P = ln left( frac{P_i}{1-P_i}right) = beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i} end{aligned}$$
    (2)
    Making mathematical transformation of the above equation, we get:$$begin{aligned} P_i = frac{e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}}{1+e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}} end{aligned}$$
    (3)
    where: (P_i) is the probability of a certain LULC type i in a grid cell, (X_{1,i}sim X_{n,i}) are the driving factors of LULC type i, (beta _0) is the constant, (beta _1sim beta _n) are the correlation coefficients of each driving factor and LULC type i.The receiver operating characteristic (ROC) was used to evaluate the accuracy of regression analysis results. The accuracy can be measured by calculating the area under the ROC curve. The area value is between 0.5 and 1. The closer the value is to 1, the higher the accuracy is. In general, the area under the ROC curve is greater than 0.7, which indicates that the selected factor has good explanatory power27,42.CLUE-S simulation and accuracy validationBefore using the CLUE-S model for futural LULC scenario simulation in mining area, the prediction accuracy needs to be verified. Based on the data of LULC in 2005, the spatial distribution pattern of LULC in 2016 was predicted firstly.The modeling accuracy was evaluated based on the Kappa index by comparing the actual LULC map in 2016 with the simulated in 201627,43,44. Equation (4) gives one of the most popular Kappa index equations: i.e.,$$begin{aligned} mathrm{Kappa}=frac{P_o-P_c}{P_p-P_c} end{aligned}$$
    (4)
    where (P_o) is the observed proportion correct, (P_c) is the expected proportion correct due to chance, (P_c) =1/n, n is the number of LULC types, and (P_p) is the proportion correct when classification is perfect.In order to further verify the accuracy of the model simulation, we also calculated kappa for quantity (Kquantity).Scenario setting of futural LULC simulationDue to the continuous population growth and mineral exploitation in the study area, the land resources, especially farmland resources, have become increasingly scarce and the environment has been deteriorating. Based on the simulation and validated results during 2005-2016, we defined three scenarios—namely natural development scenario, ecological protection scenario, and farmland protection scenario—to predict LULC spatial patterns for 2025.Natural development scenarioIn this scenario, the land use demand of the study area was basically not restricted by policies in near future. We assumed that the change rate of each LULC type in near future was consistent with the change trend from 2005 to 2016. So it is defined as natural development scenario. Using Markov model to obtain the area transition probability matrix of each year from 2017 to 2025, and taking the proportion of each LULC type area in the total study area in 2005 as the initial state matrix, the area of each LULC type in 2025 under the natural development scenario was predicted.Based on the characteristics and trend of the LULC change from 2005 to 2016, after appropriately adjusting the transition probability matrix of different LULC types, we predicted the demands of each LULC type in 2025 under ecological protection scenario and farmland protection scenario using Markov model45,46.Ecological protection scenarioThis scenario emphasizes protecting the ecological environment, restricting the conversion of the LULC types that have more regulatory effects on the ecosystem, such as tidal wetland and water area, to other land use types. Garden land, woodland, grassland, and aquaculture land, belong to other agricultural land, which have regulatory effects on the local ecosystem, so their conversion to other LULC types should be restricted as well.Farmland protection scenarioAccording to the guidelines of “the general land use planning in Weishan County (2006-2020)”, we should maximize the potential use of current construction land, implement intensive and economical utilization of construction land, and use less or not use farmland to economical construction. So in order to ensure the dynamic balance of total farmland amount and the regional food supply security, in the farmland protection scenario, the conversion from farmland to other land use types should be restricted. The projected land use demands for 2025 under the three different scenarios are shown in Table 2.Table 2 Areas of LULC types in 2025 under different scenarios (ha).Full size table More

  • in

    Exploring physicochemical and cytogenomic diversity of African cowpea and common bean

    1.Lewis, G. P. Legumes of the World (Royal Botanic Gardens, 2005).
    Google Scholar 
    2.The Legume Phylogeny Working Group (LPWG). A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 66, 44–77 (2017).Article 

    Google Scholar 
    3.Yahara, T. et al. Global legume diversity assessment: Concepts, key indicators, and strategies. Taxon 62, 249–266 (2013).Article 

    Google Scholar 
    4.Odendo, M., Bationo, A. & Kimani, S. Socio-economic contribution of legumes to livelihoods in Sub-Saharan Africa. In Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management (eds Bationo, A. et al.) 27–46 (Springer, 2011).Chapter 

    Google Scholar 
    5.Dakora, F. D. & Keya, S. O. Contribution of legume nitrogen fixation to sustainable agriculture in Sub-Saharan Africa. Soil Biol. Biochem. 29, 809–817 (1997).CAS 
    Article 

    Google Scholar 
    6.Ajeigde, H. A., Singh, B. B. & Osenj, T. O. Cowpea-cereal intercrop productivity in the Sudan savanna zone of Nigeria as affected by planting pattern, crop variety and pest management. Afr. Crop Sci. J. 13, 269–279 (2005).
    Google Scholar 
    7.Rahmanian, M., Batello, C. & Calles, T. Pulse Crops for Sustainable Farms in Sub-Saharan Africa (FAO, 2018).
    Google Scholar 
    8.Rawal, V. & Navarro, D. K. The Global Economy of Pulses (FAO, 2017).
    Google Scholar 
    9.Plants of the World Online. http://powo.science.kew.org (2020).10.Broughton, W. J. et al. Beans (Phaseolus spp.)—Model food legumes. Plant Soil 252, 55–128 (2003).CAS 
    Article 

    Google Scholar 
    11.Delgado-Salinas, A., Bibler, R. & Lavin, M. Phylogeny of the genus Phaseolus (Leguminosae): A recent diversification in an ancient landscape. Syst. Bot. 31, 779–791 (2006).Article 

    Google Scholar 
    12.Greenway, P. J. Origins of some East African food plants: Part V. East Afr. Agric. J. 11, 56–63 (1945).
    Google Scholar 
    13.Wortmann, C. S. & Allen, D. J. African Bean Production Environments: Their Definition, Characteristics and Constraints. Occasional Publication Series 11 (CIAT, 1994).
    Google Scholar 
    14.Maxted, N. et al. African Vigna: Systematic and Ecogeographic Studies (International Plant Genetic Resource Institute, 2004).
    Google Scholar 
    15.Singh, B. B. Cowpea: The Food Legume of the 21st Century (Crop Science Society of America Inc., 2014).Book 

    Google Scholar 
    16.Catarino, S. et al. Conservation priorities for African Vigna species: Unveiling Angola’s diversity hotspots. Glob. Ecol. Conserv. 25, e01415. https://doi.org/10.1016/j.gecco.2020.e01415 (2021).Article 

    Google Scholar 
    17.Vidigal, P., Romeiras, M. M. & Monteiro, F. Crops diversification and the role of orphan legumes to improve the Sub-Saharan Africa farming systems. In Sustainable Crop Production (ed. Hasanuzzaman, M.) (IntechOpen, 2019).
    Google Scholar 
    18.Maréchal, R. Etude taxonomique d’un groupe complexe d’espèces des genres Phaseolus et Vigna (Papilionaceae) sur la base de données morphologiques et polliniques, traitées par l’analyse informatique. Boissiera 28, 1–273 (1978).
    Google Scholar 
    19.Peksen, E., Peksen, A. & Gulumser, A. Leaf and stomata characteristics and tolerance of cowpea cultivars to drought stress based on drought tolerance indices under rainfed and irrigated conditions. Int. J. Curr. Microbiol. Appl. Sci. 3, 626–634 (2014).CAS 

    Google Scholar 
    20.Iqbal, A., Khalil, I. A., Ateeq, N. & Khan, M. S. Nutritional quality of important food legumes. Food Chem. 97, 331–335 (2006).CAS 
    Article 

    Google Scholar 
    21.African Orphan Crops Consortium. http://africanorphancrops.org/meet-the-crops/ (2021)22.Boukar, O. et al. Cowpea. In Grain Legumes (ed. de Ron, A. M.) 219–250 (Springer, 2015).Chapter 

    Google Scholar 
    23.Animasaun, D. A., Oyedeji, S., Azeez, Y. K., Mustapha, O. T. & Azeez, M. A. Genetic variability study among ten cultivars of cowpea (Vigna unguiculata L. Walp) using morpho-agronomic traits and nutritional composition. J. Agric. Sci. 10, 119–130 (2015).
    Google Scholar 
    24.Timko, M. P. & Singh, B. B. Cowpea, a multifunctional legume. In Plant Genetics and Genomics: Crops and Models Vol. 1 (eds Moore, P. H. & Ming, R.) 227–258 (Springer, 2008).
    Google Scholar 
    25.Wortmann, S. C., Kirkby, A. R., Eledu, A. C. & Allen, J. D. Atlas of Common Bean (Phaseolus vulgaris L.) Production in Africa (International Centre for Tropical Agriculture, 2004).
    Google Scholar 
    26.Guignard, M. S. et al. Genome size and ploidy influence angiosperm species’ biomass under nitrogen and phosphorus limitation. New Phytol. 210, 1195–1206 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Sheidai, M. et al. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem. Syst. Ecol. 57, 20–26 (2014).CAS 
    Article 

    Google Scholar 
    28.Kron, P., Suda, J. & Husband, B. C. Applications of flow cytometry to evolutionary and population biology. Annu. Rev. Ecol. Evol. Syst. 38, 847–876 (2007).Article 

    Google Scholar 
    29.Wu, Y. Q. et al. Genetic analyses of Chinese Cynodon accessions by flow cytometry and AFLP markers. Crop Sci. 46, 917–926 (2016).Article 

    Google Scholar 
    30.Parida, A., Raina, S. N. & Narayan, R. K. J. Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82, 125–133 (1990).CAS 
    Article 

    Google Scholar 
    31.Nagl, W. & Treviranus, A. A flow cytometric analysis of the nuclear 2C DNA content in 17 Phaseolus species (53 genotypes). Bot. Acta 108, 403–406 (1995).CAS 
    Article 

    Google Scholar 
    32.Barow, M. & Meister, A. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ. 26, 571–584 (2003).Article 

    Google Scholar 
    33.Lonardi, S. et al. The genome of cowpea (Vigna unguiculata [L.] Walp.). Plant J. 98, 767–782 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org/ (2020).35.Genesys. Plant Genetic Resources Accession. https://www.genesys-pgr.org/ (2021).36.Pope, G. V. & Polhill, R. M. Flora Zambesiaca, part 5 Vol. 3 (Royal Botanic Gardens, 2001).
    Google Scholar 
    37.Tomooka, N., Vaughan, D. A., Moss, H. & Maxted, N. The Asian Vigna: Genus Vigna Subgenus Ceratotropis Genetic Resources (Kluwer Academic Publishers, 2002).Book 

    Google Scholar 
    38.Debouck, D. G. Primary diversification of Phaseolus in the Americas: Three centers. Plant Genet. Resour. Newsl. 67, 2–8 (1986).
    Google Scholar 
    39.Plant Resources of Tropical Africa. https://www.prota4u.org/database/ (2021).40.Linder, H. P. The evolution of African plant diversity. Front. Ecol. Evol. 2, 38. https://doi.org/10.3389/fevo.2014.00038 (2014).Article 
    ADS 

    Google Scholar 
    41.Romeiras, M. M., Figueira, R., Duarte, M. C., Beja, P. & Darbyshire, I. Documenting biogeographical patterns of African timber species using herbarium records: A conservation perspective based on native trees from Angola. PLoS ONE 9, e103403. https://doi.org/10.1371/journal.pone.0103403 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    42.Catarino, S. et al. Spatial and temporal trends of burnt area in angola: Implications for natural vegetation and protected area management. Diversity 12, 307. https://doi.org/10.3390/d12080307 (2020).Article 

    Google Scholar 
    43.Catarino, S., Duarte, M. C., Costa, E., Carrero, P. G. & Romeiras, M. M. Conservation and sustainable use of the medicinal Leguminosae plants from Angola. PeerJ 7, e6736. https://doi.org/10.7717/peerj.6736 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Romeiras, M. M. et al. IUCN Red List assessment of the Cape Verde endemic flora: Towards a global strategy for plant conservation in Macaronesia. Bot. J. Linn. Soc. 180, 413–425 (2016).Article 

    Google Scholar 
    45.Gomes, A. M. et al. Drought response of cowpea (Vigna unguiculata (L.) Walp.) landraces at leaf physiological and metabolite profile levels. Environ. Exp. Bot. 175, 104060. https://doi.org/10.1016/j.envexpbot.2020.104060 (2020).CAS 
    Article 

    Google Scholar 
    46.The International Institute of Tropical Agriculture (IITA). https://www.iita.org/ (2021)47.Fatokun, C. et al. Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci. Rep. 8, 16035. https://doi.org/10.1038/s41598-018-34555-9 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    48.Rocha, V., Duarte, M. C., Catarino, S., Duarte, I. & Romeiras, M. M. Cabo Verde’s Poaceae flora: A reservoir of crop wild relatives diversity for crop improvement. Front. Plant Sci. 12, 630217. https://doi.org/10.3389/fpls.2021.630217 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Brilhante, M. et al. Tackling food insecurity in Cabo Verde Islands: The nutritional, agricultural and environmental values of the legume species. Foods 10, 206. https://doi.org/10.3390/foods10020206 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Pasquet, R. S. Wild cowpea (Vigna unguiculata) evolution. In Advances in Legume Systematics 8: Legumes of Economic Importance (eds Pickersgill, B. & Lock, J. M.) 95–100 (Royal Botanic Gardens, 1996).
    Google Scholar 
    51.Di Bella, G. et al. Mineral composition of some varieties of beans from Mediterranean and Tropical areas. Int. J. Food Sci. Nutr. 67, 239–248 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    52.Gelin, J. R., Forster, S., Grafton, K. F., McClean, P. E. & Rojas-Cifuentes, G. A. Analysis of seed zinc and other minerals in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci. 47, 1361–1366 (2007).CAS 
    Article 

    Google Scholar 
    53.Dakora, F. D. & Belane, A. K. Evaluation of protein and micronutrient levels in edible cowpea (Vigna unguiculata L. Walp) leaves and seeds. Front. Sustain. Food Syst. 3, 70. https://doi.org/10.3389/fsufs.2019.00070 (2019).Article 

    Google Scholar 
    54.Yeken, M. Z., Akpolat, H., Karaköy, T. & Çiftçi, V. Assessment of mineral content variations for biofortification of the bean seed. Int. J. Agric. Sci. 4, 261–269 (2018).
    Google Scholar 
    55.Gondwe, T. M., Alamu, E. O., Mdziniso, P. & Maziya-Dixon, B. Cowpea (Vigna unguiculata (L.) Walp) for food security: An evaluation of end-user traits of improved varieties in Swaziland. Sci. Rep. 9, 15991. https://doi.org/10.1038/s41598-019-52360-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    56.Sperotto, R. A., Ricachenevsky, F. K., Williams, L. E., Vasconcelos, M. W. & Menguer, P. K. From soil to seed: Micronutrient movement into and within the plant. Front. Plant Sci. 5, 438. https://doi.org/10.3389/fpls.2014.00438 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Maziya-Dixon, B., Kling, J. G., Menkir, A. & Dixon, A. Genetic variation in total carotene, iron, and zinc contents of maize and cassava genotypes. Food Nutr. Bull. 21, 419–422 (2000).Article 

    Google Scholar 
    58.Shewfelt, R. L. Sources of variation in the nutrient content of agricultural commodities from the farm to the consumer. J. Food Qual. 13, 37–54 (1990).Article 

    Google Scholar 
    59.World Health Organization. The World Health Report 2006: Working Together for Health. https://www.who.int/whr/2006/whr06_en.pdf?ua=1 (2006).60.Gödecke, T., Stein, A. J. & Qaim, M. The global burden of chronic and hidden hunger: Trends and determinants. Glob. Food Sec. 17, 21–29 (2018).Article 

    Google Scholar 
    61.Shankar, A. H. Mineral deficiencies. In Hunter’s Tropical Medicine and Emerging Infectious Diseases (eds Ryan, E. T. et al.) 1048–1054 (Elsevier, 2020).Chapter 

    Google Scholar 
    62.Muthayya, S. et al. The global hidden hunger indices and maps: An advocacy tool for action. PLoS ONE 8, e67860. https://doi.org/10.1371/journal.pone.0067860 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    63.Joy, E. J. et al. Dietary mineral supplies in Africa. Physiol. Plant. 151, 208–229 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.World Health Organization. World health statistics 2015. https://apps.who.int/iris/bitstream/handle/10665/170250/9789240694439_eng.pdf;jsessionid=9CFCB446F9217B60415DD216E70F6A49?sequence=1 (2015).65.Muriuki, J. M. et al. Estimating the burden of iron deficiency among African children. BMC Med. 18, 31. https://doi.org/10.1186/s12916-020-1502-7 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Official Journal of the European Union. Regulation (Eu) No 1169/2011 of the European Parliament and of the Council of 25 October 2011. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32011R1169&from=EN (2011).67.Nowicka, A. et al. Nuclear DNA content variation within the genus Daucus (Apiaceae) determined by flow cytometry. Sci. Hortic. 209, 132–138 (2016).CAS 
    Article 

    Google Scholar 
    68.Guilengue, N., Alves, S., Talhinhas, P. & Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 10, 21. https://doi.org/10.3390/agronomy10010021 (2020).Article 

    Google Scholar 
    69.Chable, V. et al. Embedding cultivated diversity in society for agro-ecological transition. Sustainability 12, 784. https://doi.org/10.3390/su12030784 (2020).Article 

    Google Scholar 
    70.Knight, C. A., Molinari, N. A. & Petrov, D. A. The large genome constraint hypothesis: Evolution, ecology and phenotype. Ann. Bot. 95, 177–190 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Pati, K., Zhang, F. & Batley, J. First report of genome size and ploidy of the underutilized leguminous tuber crop Yam Bean (Pachyrhizus erosus and P. tuberosus) by flow cytometry. Plant Genet. Resour. 17, 456–459 (2019).CAS 
    Article 

    Google Scholar 
    72.Sliwinska, E. Flow cytometry—A modern method for exploring genome size and nuclear DNA synthesis in horticultural and medicinal plant species. Folia Hortic. 30, 103–128 (2018).Article 

    Google Scholar 
    73.Veselý, P., Bureš, P. & Šmarda, P. Nutrient reserves may allow for genome size increase: Evidence from comparison of geophytes and their sister non-geophytic relatives. Ann. Bot. 112, 1193–1200 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.African Plant Database. http://www.ville-ge.ch/musinfo/bd/cjb/africa/index. (2021).75.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Botswana. https://www.botswanaflora.com (2021).76.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Malawi. http://www.malawiflora.com (2021).77.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Mozambique. http://www.mozambiqueflora.com (2021)78.Bingham, M. G., Willemen, A., Wursten, B. T., Ballings, P. & Hyde, M. A. Flora of Zambia http://www.zambiaflora.com (2021).79.Hyde, M. A., Wursten, B. T., Ballings, P. & Coates Palgrave, M. Flora of Zimbabwe. http://www.zimbabweflora.co.zw (2021).80.International Legume Database & Information Service. https://ildis.org/LegumeWeb (2020).81.Exell, A.W. & Fernandes, A. Conspectus florae angolensis. Vol. 3, No. 2. Leguminosae (Papilionoideae: Hedysareae-Sophoreae) (Junta de Investigações do Ultramar, 1966)82.Pasquet, R. S. Notes on the genus Vigna (Leguminosae-Papilionoideae). Kew Bull 56, 223–227 (2001).Article 

    Google Scholar 
    83.van Zonneveld, M. et al. Mapping patterns of abiotic and biotic stress resilience uncovers conservation gaps and breeding potential of Vigna wild relatives. Sci. Rep. 10, 2111. https://doi.org/10.1038/s41598-020-58646-8 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    84.Global Biodiversity Information Facility. https://www.gbif.org/ (2021).85.GBIF Occurrence Download—Vigna. https://doi.org/10.15468/dl.bsjsk5 (2021).86.GBIF Occurrence Download—Phaseolus. https://doi.org/10.15468/dl.kjw72 (2021).87.QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).88.Doležel, J., Sgorbati, S. & Lucretti, S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol. Plant. 85, 625–631 (1992).Article 

    Google Scholar 
    89.Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: A test with 37 species. Ann. Bot. 100, 875–888 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Doležel, J. & Bartoš, J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann. Bot. 95, 99–110 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Doležel, J., Bartoš, J., Voglmayr, H. & Greilhuber, J. Nuclear DNA content and genome size of trout and human. Cytometry 51, 127–128 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Jelihovschi, E. G., Faria, J. C. & Allaman, I. B. ScottKnott: A package for performing the Scott-Knott clustering algorithm in R. TEMA 15, 3–17 (2014).MathSciNet 
    Article 

    Google Scholar 
    93.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 
    Book 

    Google Scholar 
    94.R Core Team. R: A language and environment for statistical computing https://www.R-project.org/ (R Foundation for Statistical Computing, 2020). More

  • in

    Salmon going viral

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Oil palm cultivation can be expanded while sparing biodiversity in India

    1.Vijay, V., Pimm, S. L., Jenkins, C. N. & Smith, S. J. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11, pe0159668 (2016).Article 

    Google Scholar 
    2.Rulli, M. C. et al. Interdependencies and telecoupling of oil palm expansion at the expense of Indonesian rainforest. Renew. Sustain. Energy Rev. 105, 499–512 (2019).Article 

    Google Scholar 
    3.Davis, K. F. et al. Tropical forest loss enhanced by large-scale land acquisitions. Nat. Geosci. 13, 482–488 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Strona, G. et al. Small room for compromise between oil palm cultivation and primate conservation in Africa. Proc. Natl Acad. Sci. USA 115, 8811–8816 (2018).CAS 
    Article 

    Google Scholar 
    5.United States Department of Agriculture, Foreign Agricultural Service. Data retrieved from: https://apps.fas.usda.gov/psdonline/app/index.html#/app/advQuery (2020).6.Sagar, H. S. et al. India in the oil palm era: describing India’s dependence on palm oil, recommendations for sustainable production, and opportunities to become an influential consumer. Trop. Conserv. Sci. 12, 1940082919838918 (2019).Article 

    Google Scholar 
    7.Jadhav, R. Exclusive: India urges boycott of Malaysian palm oil after diplomatic row—sources. Reuters (13 January 2020).8.Srinivasan, U. Oil palm should not be expanded in Arunachal Pradesh. Arunachal Times (October 2016).9.Ministry of Agriculture and Farmers’ Welfare. National Mission on Oilseeds and Oil Palm; https://nmoop.gov.in (Government of India, 2020).10.Bose, P. Oil palm plantations vs shifting cultivation for indigenous peoples: analyzing Mizoram’s New Land Use Policy. Land Use Policy 81, 115–123 (2019).Article 

    Google Scholar 
    11.Dhar, A. Enter oil palm in northeast India: centre, Patanjali, Godrej bet big. The Citizen (16 September 2020).12.Raman, T. R. S. R. Is oil palm expansion good for Mizoram? The Frontier Despatch 3, 6–7 (2016).
    Google Scholar 
    13.Khandekar, N. Expanding oil palm plantations in the northeast could extract a long-term cost. The Wire (4 August 2020).14.Mandal, J. & Raman, T. R. S. R. Shifting agriculture supports more tropical forest birds than oil palm or teak plantations in Mizoram, northeast India. The Condor 118, 345–359 (2016).Article 

    Google Scholar 
    15.Nandi, J. Oil palm push on the northeast may impact biodiversity, water table, say experts. Hindustan Times 10, 51 (2020).
    Google Scholar 
    16.Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Global Agro-Ecological Zones, GAEZ v.3.0 (Food and Agriculture Organization, 2016); https://gaez.fao.org/pages/data-viewer18.Corley, R. H. V. How much palm oil do we need? Environ. Sci. Policy 12, 134–139 (2009).CAS 
    Article 

    Google Scholar 
    19.Meijaard, E. et al. The environmental impacts of palm oil in context. Nat. Plants 6, 1418–1426 (2020).Article 

    Google Scholar 
    20.West, P. C. et al. Leverage points for improving global food security and the environment. Science 18, 325–328 (2014).ADS 
    Article 

    Google Scholar 
    21.Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).22.Shaktivadivel, R. The Agricultural Groundwater Revolution: Opportunities and Threats to Development (CAB International, 2007).
    Google Scholar 
    23.Lee, J. S. H., Miteva, D. A., Carlson, K. M., Heilmayr, R. & Saif, O. Does oil palm certification create trade-offs between environment and development in Indonesia? Env. Res. Lett. 15, 124064 (2020).Article 

    Google Scholar 
    24.Sankar, K. N. M. Oil palm finds favour with East Godavari farmers. The Hindu (25 January 2017).25.Curry, G. N. & Koczberski, G. Finding common ground: relational concepts of land tenure and economy in the oil palm frontier of Papua New Guinea. Geogr. J. 175, 98–111 (2009).Article 

    Google Scholar 
    26.DeVos, R., Kohne, M. & Roth, D. We’ll turn your water in Coca Cola: the atomising practices of oil palm development in Indonesia. J. Agrar. Change 1, 385–405 (2018).Article 

    Google Scholar 
    27.IPCC. Climate Change: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (IPCC, 2014).28.IPCC. IPCC Special Reports on Emissions Scenarios: Summary for Policymakers (IPCC, 2000).29.Schwalm, C. R., Glendon, S. & Duffy, P. B. RCP8. 5 tracks cumulative CO2 emissions. Proc. Natl Acad. Sci. USA 18, 19656–19657 (2020).ADS 
    Article 

    Google Scholar 
    30.Copernicus Land Monitoring Service (European Environment Agency, 2020).31.Hoffman, M., Koenig, K., Bunting, G., Cosntanza, J. & Willams, K. J. Biodiversity Hotspots v.2016.1 (2016); https://doi.org/10.5281/zenodo.326180632.IUCN World Database on Protected Areas, online April 2017 (UNEP-WCMC, 2016); www.protectedplanet.net33.QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation, 2021); http://qgis.osgeo.org34.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021). More

  • in

    A rapid phenotype change in the pathogen Perkinsus marinus was associated with a historically significant marine disease emergence in the eastern oyster

    1.Lafferty, K. D., Porter, J. W. & Ford, S. E. Are diseases increasing in the ocean?. Annu. Rev. Ecol. Evol. Syst. 35, 31–54 (2004).Article 

    Google Scholar 
    2.Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7, 471–496 (2015).Article 
    ADS 

    Google Scholar 
    3.Burreson, E. M., Stokes, N. A. & Friedman, C. S. Increased virulence in an introduced pathogen: Haplosporidium nelsoni (MSX) in the eastern oyster Crassostrea virginica. J. Aquat. Anim. Health 12, 1–8 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Elston, R. A., Farley, C. A. & Kent, M. L. Occurrence and significance of bonamiasis in European flat oysters Ostrea edulis in North America. Dis. Aquat. Org. 2, 49–54 (1986).Article 

    Google Scholar 
    5.Enzmann, P.-J., Kurath, G., Fichtner, D. & Bergmann, S. M. Infectious hematopoietic necrosis virus: Monophyletic origin of European isolates from North American genogroup M. Dis. Aquat. Org. 66, 187–195 (2005).CAS 
    Article 

    Google Scholar 
    6.Lightner, D. V. The penaeid shrimp viral pandemics due to IHHNV, WSSV, TSV and YHV: History in the Americas and current status (Proceedings of the 32nd Joint UJNR Aquaculture Panel Symposium, Davis and Santa Barbara, California, USA, 2003).7.Sutherland, K. P., Shaban, S., Joyner, J. L., Porter, J. W. & Lipp, E. K. Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata. PLoS ONE 6, e23468 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Chang, P. et al. Herpes-like virus infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Dis. Aquat. Org. 65, 23–27 (2005).Article 

    Google Scholar 
    9.Hooper, C., Hardy-Smith, P. & Handlinger, J. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust. Vet. J. 85, 188–193 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Segarra, A. et al. Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Res. 153, 92–99 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Jenkins, C. et al. Identification and characterisation of an ostreid herpesvirus-1 microvariant (OsHV-1 μ-var) in Crassostrea gigas (Pacific oysters) in Australia. Dis. Aquat. Org. 105, 109–126 (2013).CAS 
    Article 

    Google Scholar 
    12.Mackin, J. G. Oyster disease caused by Dermocystidium marinum and other microorganisms in Louisiana. Pub. Inst. Mar. Sci. Univ. Texas 7, 132–229 (1962).
    Google Scholar 
    13.Andrews, J. D. Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effects on the oyster industry. Am. Fish. Soc. Spec. Pub. 18, 47–63 (1988).
    Google Scholar 
    14.Burreson, E. M. & Andrews, J. D. Unusual intensification of Chesapeake Bay oyster diseases during recent drought conditions. In Proceeding of the Oceans ’88 Conference, Baltimore, Maryland, USA, 1988) 799–802.15.Ford, S. E. Range extension by the oyster parasite Perkinsus marinus into the northeastern United States: Response to climate change?. J. Shellfish Res. 15, 45–56 (1996).
    Google Scholar 
    16.Harvell, C. D. et al. Emerging marine diseases: Climate links and anthropogenic factors. Science 285, 1505–1510 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).Article 
    ADS 

    Google Scholar 
    18.Cook, T., Folli, M., Klinck, J., Ford, S. & Miller, J. The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuar. Coast. Shelf Sci. 46, 587–597 (1998).Article 
    ADS 

    Google Scholar 
    19.Crosby, M. P. & Roberts, C. F. Seasonal infection intensity cycle of the parasite Perkinsus marinus (and an absence of Haplosporidium spp.) in oysters from a South Carolina salt marsh. Dis. Aquat. Org. 9, 149–155 (1990).Article 

    Google Scholar 
    20.Shearman, R. K. & Lentz, S. J. Long-term sea surface temperature variability along the U.S. East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).Article 
    ADS 

    Google Scholar 
    21.Ray, S. M. A culture technique for the diagnosis of infections with Dermocystidium marinus Mackin, Owen, and Collier in oysters. Science 116, 360–361 (1952).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    22.Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Phil. Trans. R. Soc. B 371, 20150215 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    23.OIE Infection with Perkinsus marinus. In Manual of Diagnostic Tests for Aquatic Animals 7th edn 526–538 (OIE, Paris, 2016).
    Google Scholar 
    24.Mackin, J. G., Owen, H. M. & Collier, A. Preliminary note on the occurrence of a new protistan parasite, Dermocystidium marinum n sp in Crassostrea virginica (Gmelin). Science 111, 328–329 (1950).25.Perkins, F. O. Ultrastructure of vegetative stages in Labyrinthomyxa marina (Dermocystidium marinum), a commercially significant oyster pathogen. J. Invertebr. Pathol. 13, 199–222 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Gates, D. E., Valletta, J. J., Bonneaud, C. & Recker, M. Quantitative host resistance drives the evolution of increased virulence in an emerging pathogen. J. Evol. Biol. 31, 1704–1714 (2018).PubMed 
    Article 

    Google Scholar 
    27.Moss, J. A., Burreson, E. M. & Reece, K. S. Advanced Perkinsus marinus infections in Crassostrea ariakensis maintained under laboratory conditions. J. Shellfish Res. 25, 65–72 (2006).Article 

    Google Scholar 
    28.Reece, K. S., Bushek, D., Hudson, K. L. & Graves, J. E. Geographic distribution of Perkinsus marinus genetic strains along the Atlantic and Gulf coasts of the USA. Mar. Biol. 139, 1047–1055 (2001).Article 

    Google Scholar 
    29.Thompson, P. C., Rosenthal, B. M. & Hare, M. P. Microsatellite genotypes reveal some long-distance gene flow in Perkinsus marinus, a major pathogen of the eastern oyster, Crassostrea virginica (Gmelin). J. Shellfish Res. 33, 195–206 (2014).Article 

    Google Scholar 
    30.Andrews, J. D. Epizootiology of diseases of oysters (Crassostrea virginica), and parasites of associated organisms in eastern North America. Helgoländer Meeresuntersuchungen 37, 149–166 (1984).Article 

    Google Scholar 
    31.Haven, D. S., Hargis, W. J., Jr. & Kendall, P. C. The oyster industry of Virginia: Its Status, Problems and Promise (VA Institute of Marine Science Special Papers in Marine Science No. 4, 1978).32.Andrews, J. D. Perkinsus marinus = Dermocystidium marinum (“Dermo”) in Virginia, 1950–1980 (VA Institute of Marine Science Data Report No. 16, 1980).33.Hite, J. L. & Cressler, C. E. Resource-driven changes to host population stability alter the evolution of virulence and transmission. Phil. Trans. R. Soc. B 373, 20170087 (2018).PubMed 
    Article 

    Google Scholar 
    34.Rick, T. C. et al. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery. Proc. Natl. Acad. Sci. USA 113, 6568–6573 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bushek, D., Ford, S. E. & Chintala, M. M. Comparison of in vitro-cultured and wild-type Perkinsus marinus. III. Fecal elimination and its role in transmission. Dis. Aquat. Org. 51, 217–225 (2002).Article 

    Google Scholar 
    36.Mann, R., Southworth, M., Harding, J. M. & Wesson, J. A. Population studies of the native eastern oyster, Crassostrea virginica (Gmelin, 1791) in the James River, Virginia, USA. J. Shellfish Res. 28, 193–220 (2009).Article 

    Google Scholar 
    37.Andrews, J. D. Oyster mortality studies in Virginia. IV. MSX in James River public seed beds. Proc. Natl. Shellfish. Assoc. 53, 65–84 (1964).
    Google Scholar 
    38.Carnegie, R. B. & Burreson, E. M. Declining impact of an introduced pathogen: Haplosporidium nelsoni in the oyster Crassostrea virginica in Chesapeake Bay. Mar. Ecol. Prog. Ser. 432, 1–15 (2011).Article 
    ADS 

    Google Scholar 
    39.Goedknegt, M. A. et al. Parasites and marine invasions: Ecological and evolutionary perspectives. J. Sea Res. 113, 11–27 (2016).Article 
    ADS 

    Google Scholar 
    40.Kemp, W. M. et al. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).Article 
    ADS 

    Google Scholar 
    41.Ford, S. E. & Bushek, D. Development of resistance to an introduced marine pathogen by a native host. J. Mar. Res. 70, 205–223 (2012).Article 

    Google Scholar 
    42.Bobo, M. Y., Richardson, D. L., Coen, L. D. & Burrell, V. G. A Report on the Protozoan Pathogens Perkinsus marinus (dermo) and Haplosporidium nelsoni (MSX) in South Carolina shellfish populations (Tech. Rep. No. 86, SC Dept. of Natural Resources, 1997).43.Hill, K. M. et al. Observation of a Bonamia sp. infecting the oyster Ostrea stentina in Tunisia, and a consideration of its phylogenetic affinities. J. Invertebr. Pathol. 103, 179–185 (2010).PubMed 
    Article 

    Google Scholar 
    44.Carnegie, R. B. et al. Molecular detection of the oyster parasite Mikrocytos mackini, and a preliminary phylogenetic analysis. Dis. Aquat. Org. 54, 219–227 (2003).CAS 
    Article 

    Google Scholar 
    45.Stokes, N. A. & Burreson, E. M. A sensitive and specific DNA probe for the oyster pathogen Haplosporidium nelsoni. J. Eukaryot. Microbiol. 42, 350–357 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Reece, K. S., Dungan, C. F. & Burreson, E. M. Molecular epizootiology of Perkinsus marinus and P. chesapeaki infections among wild oysters and clams in Chesapeake Bay, USA. Dis. Aquat. Org. 82, 237–248 (2008).CAS 
    Article 

    Google Scholar 
    47.Carnegie, R. B. Status of the Major Oyster Diseases in Virginia, 2009–2012: A Summary of the Annual Oyster Disease Monitoring Program (Virginia Institute of Marine Science, 2013).
    Google Scholar 
    48.Andrews, J. D. & Hewatt, W. G. Oyster mortality studies in Virginia II The fungus disease caused by Dermocystidium marinum in Chesapeake Bay. Ecol. Monogr. 27, 1–26 (1957).Article 

    Google Scholar 
    49.Perkins, F. O. The structure of Perkinsus marinus (Mackin, Owen and Collier, 1950) Levine, 1978 with comments on taxonomy and phylogeny of Perkinsus spp. J. Shellfish Res. 15, 67–87 (1996).
    Google Scholar 
    50.RStudio Team. RStudio: Integrated Development for R. (RStudio, Inc., 2019). http://www.rstudio.com/.51.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.52.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    53.Wickham, H. forcats: Tools for Working with Categorical Variables (Factors). R Package Version 0.5.1. https://CRAN.R-project.org/package=forcats (2021).54.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
    Google Scholar 
    55.Zar, J. H. Biostatistical Analysis 3rd edn. (Prentice Hall, 1996).
    Google Scholar 
    56.Ragone, L. M. & Burreson, E. M. Effect of salinity on infection progression and pathogenicity of Perkinsus marinus in the eastern oyster, Crassostrea virginica (Gmelin). J. Shellfish Res. 12, 1–7 (1993).
    Google Scholar 
    57.Chu, F.-L.E., Volety, A. K. & Constantin, G. A comparison of Crassostrea gigas and Crassostrea virginica: Effects of temperature and salinity on susceptibility to the protozoan parasite, Perkinsus marinus. J. Shellfish Res. 15, 375–380 (1996).
    Google Scholar  More

  • in

    Observed increasing water constraint on vegetation growth over the last three decades

    1.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    2.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    3.Porporato, A., D’odorico, P., Laio, F., Ridolfi, L. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25, 1335–1348 (2002).Article 
    ADS 

    Google Scholar 
    4.Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evolution 2, 1897 (2018).Article 

    Google Scholar 
    5.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).Article 
    ADS 

    Google Scholar 
    6.Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    8.Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    9.Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).Article 
    ADS 

    Google Scholar 
    12.Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. change 9, 73 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    13.Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    15.Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    16.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    17.Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    19.Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    20.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    21.Jiao, W., Wang, L. & McCabe, M. F. Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ. 256, 112313 (2021).Article 
    ADS 

    Google Scholar 
    22.Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    23.Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612–612 (2007).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    24.Chen, T., Werf, G., Jeu, R., Wang, G. & Dolman, A. A global analysis of the impact of drought on net primary productivity. Hydrol. Earth Syst. Sci. 17, 3885 (2013).Article 
    ADS 

    Google Scholar 
    25.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    26.Kreuzwieser, J. & Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell Environ. 37, 2245–2259 (2014).CAS 

    Google Scholar 
    27.Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    28.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    29.Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    30.Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2012).31.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52 (2013).Article 
    ADS 

    Google Scholar 
    32.Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17 (2013).Article 
    ADS 

    Google Scholar 
    33.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).Article 
    ADS 

    Google Scholar 
    35.Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    36.Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    37.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evolution 1, 1438–1445 (2017).Article 

    Google Scholar 
    38.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    39.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    40.Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    41.Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202 (2017).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    42.Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    44.Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth-Sci. Rev. 196, 102870 (2019).CAS 
    Article 

    Google Scholar 
    45.Cronk, J. K. & Fennessy, M. S. Wetland Plants: Biology and Ecology. (CRC press, 2016).46.Zohaib, M. & Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total Environ. 714, 136719 (2020).47.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    48.Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2020).49.Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    50.Oliveira, P. J., Davin, E. L., Levis, S. & Seneviratne, S. I. Vegetation‐mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Glob. Change Biol. 17, 3453–3467 (2011).Article 
    ADS 

    Google Scholar 
    51.Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    52.Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Article 
    ADS 

    Google Scholar 
    53.Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).Article 
    ADS 

    Google Scholar 
    54.Palmer, W. C. Meteorological Drought. Vol. 30 (Citeseer, 1965).55.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).57.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    58.Gruber, A., Scanlon, T., Schalie, R. V. D., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).Article 
    ADS 

    Google Scholar 
    59.Dorigo, W. et al. ESA CCI Soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 
    ADS 

    Google Scholar 
    60.Wagner, W. et al. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals) 7, 315–321 (2012).61.Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    62.Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 
    ADS 

    Google Scholar 
    63.Tian, F. et al. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).Article 
    ADS 

    Google Scholar 
    64.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    65.Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 
    ADS 

    Google Scholar 
    66.Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    67.Wu, D. et al. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 21, 3520–3531 (2015).Article 
    ADS 

    Google Scholar 
    68.Tei, S. & Sugimoto, A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob. Change Biol. 24, 4225–4237 (2018).Article 
    ADS 

    Google Scholar 
    69.Wen, Y. et al. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res.: Biogeosciences 124, 789–806 (2019).Article 
    ADS 

    Google Scholar 
    70.McKee, T. B., Doesken, N. J. & Kleist, J. in Proceedings of the 8th Conference on Applied Climatology. 179-183 (American Meteorological Society Boston, MA).71.Jiao, W., Tian, C., Chang, Q., Novick, K. A. & Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 268, 74–85 (2019).Article 
    ADS 

    Google Scholar  More

  • in

    A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress

    Fitting tolerance time versus temperature to build a thermal death time curveThe high coefficients of determination found in the D. melanogaster TDT curves (Fig. 3A) are not uncommon and the exponential relation has consistently been found to provide a good fit of tolerance time vs. temperature in ectotherms3,15,20,22,23,24. Tolerance time vs. temperature data are also well fitted to Arrhenius plots which are based on thermodynamic principles (see for example15,36) and the absence of breakpoints in such plots provides a strong indication (but not direct proof) that the cause of coma/heat failure under the different intensities of acute heat stress is related to the same physiological process regardless whether failure occurs after 10 min or 10 h2,3 (but see “Discussion” section below). Despite the superior theoretical basis of Arrhenius analysis, we proceed with simple linear regressions of log10-transformed tcoma (TDT curve) as this analysis likewise provides a high R2 and is mathematically more straightforward. The physiological cause(s) of ectotherm heat failure are poorly understood37,38 but we argue that they are founded in a common process where heat injury accumulates at a temperature-dependent rate until a species-specific critical dose is attained (area below the curve and above Tc in Fig. 2). Thus, the organism has a fixed amount (dose) of thermally induced stress that it can tolerate before evoking the chosen endpoint. The experienced temperature of the animals then dictates the rate of which this stress is acquired, and accordingly when the endpoint is reached (Fig. 2) It is this reasoning that leads to TDT curves and explains why heat stress can be additive and thus also determines the boundaries of TDT curve modelling.Injury is additive across different stressful assay temperaturesIf heat stress acquired at intense and moderate stress within the span of the TDT curve acts through the same physiological mechanisms or converges to result in the same form of injury, then it is expected that injury is additive at different heat stress intensities. This hypothesis was tested by exposing flies sequentially to two static temperatures (different injury accumulation rates) and observe whether coma occurred as predicted from the summed injury (Fig. 2C). The accumulated heat injury at the two temperatures was found to be additive regardless of the order of temperature exposure (Fig. 3B,C). This finding is consistent with a conceptually similar study using speckled trout which also found strong support for additivity of heat stress at different stressful temperatures13. The exact physiological mechanism of heat injury accumulation is interesting to understand in this perspective, but it is not critical as long as the relation between temperature and injury accumulation rate is known.If injury accumulation is additive irrespective of the order of the heat exposure, we can extend the model to fluctuating temperature conditions. We have previously done this by accurately predicting dynamic CTmax from TDT parameters obtained from static assays for 11 Drosophila species (Fig. 6A, see “Discussion” section below and15). Here we extend this to temperature fluctuations that cannot be described by a simple mathematical ramp function. Specifically, groups of flies were subjected to randomly fluctuating temperatures and the observed tcoma was then compared to tcoma predicted using integration of heat injury based on TDT parameters (Fig. 4). The injury accumulation (Fig. 4C) was calculated by introducing the fluctuating temperature profiles in the associated R-script and the observed and predicted tcoma was found to correlate well (R2  > 0.94) across the 13 groups tested for each sex. These results further support the idea that injury is additive across a range of fluctuating and stressful temperatures and hence that similar physiological perturbations are in play during moderate and intense heat stress. It is important to note that in these experiments, temperatures fluctuated between 34.5 and 42.5 °C and accordingly the flies were never exposed to benign temperatures that could allow repair or hardening (see below).Figure 6adapted from Fig. 4b in15. (B) TDT parameters based on dCTmax from three dynamic tests were used to predict tcoma in static assays. Each point represents an observed vs. predicted value of species- and temperature-specific log10(tcoma). (Inset) Species values of the thermal sensitivity parameter z parameterized from TDT curves based on static assays (x-axis) or dynamic assays (y-axis). The dashed line represents the line of unity in all three panels.Conversion of heat tolerance measures between static and dynamic assays in Drosophila. Data from43. (A) Heat tolerance (dCTmax, d for dynamic assays) plotted against predicted dCTmax derived from species-specific TDT curves created from multiple (9–17) static assays. Data are presented for three different ramping rates (0.05, 0.1 and 0.25 °C min-1). Note that this graph is Full size imageIn conclusion, empirical data (present study;6,13,14,22) support the application of TDT curves to assess heat injury accumulation under fluctuating temperature conditions both in the lab and field for vertebrate and invertebrate ectotherms. Potential applications could be assessment of injury during foraging in extreme and fluctuating environments (e.g. ants in the desert39 or lizards in exposed habitat40) or for other animals experiencing extreme conditions41,42. The associated R-scripts allow assessment of percent lethal damage under such conditions if the model is provided with TDT parameters and information of temperature fluctuations (but see “Discussion” section of model limitations below).Model application for comparison of static versus dynamic dataThere is little consensus on the optimal protocol to assess ectotherm thermal tolerance and many different types of static or dynamic tests have been used to assess heat tolerance. TDT curves represent a mathematical and theoretical approach to reconcile different estimates of tolerance as the derived parameters can subsequently be used to assess heat injury accumulation at different rates (temperatures) and durations13,15,16. Here we provide R-scripts that enable such reconciliation and to demonstrate the ability of the TDT curves to reconcile data from static vs. dynamic assays we used published measurements of heat tolerance for 11 Drosophila species using three dynamic and 9–17 static measurements for each species43. Introducing data from only static assays we derived TDT parameters and subsequently used these to predict dynamic CTmax that were compared to empirically observed CTmax for three ramp rates (Fig. 6A). In a similar analysis, TDT parameters were derived from the three dynamic (ramp) experiments to predict tcoma at different static temperatures which were compared to empirical measures from static assays (Fig. 6B). Both analyses found good correlation between the predicted and observed values regardless whether the TDT curve was parameterized from static or dynamic experiments (Fig. 6). However, predictions from TDT curves based on three dynamic assays were characterised by more variation, particularly when used to assess tolerance time at very short or long durations. Furthermore, D. melanogaster and D. virilis which had the poorest correlation between predicted and observed tcoma in Fig. 6B had values of z from the TDT curves based on dynamic input data that were considerably different from values of z derived from TDT curves based on static assays (Fig. 6B inset). In conclusion TDT curves (and the associated R-scripts) are useful for conversion between static and dynamic assessment of tolerance. The quality of model output depends on the quality and quantity of data used as model input, and in this example the poorer model was parameterized from only three dynamic assays while the stronger model was based on 9–17 static assays (see also “Discussion” section below).Model application for comparison of published dataThermal tolerance is important for defining the fundamental niche of animals1,2,4 and the current anthropogenic changes in climate has reinvigorated the interest in comparative physiology and ecology of thermal limits in ectotherms. Meta-analyses of ectotherm heat tolerance data have provided important physiological, ecological and evolutionary insights5,44,45,46, but such studies are often challenged with comparison of tolerance estimates obtained through very different methodologies.Species tolerance is likely influenced by acclimation, age, sex, diet, etc.47 and also by the endpoint used (onset of spasms, coma, death, etc.27). Nevertheless, we expected heat tolerance of a species to be somewhat constrained45, so here we tested the model by converting literature data for nine species to a single and species-specific estimate of tolerance, sCTmax (1 h), the temperature that causes heat failure in 1 h (Fig. 5). The overwhelming result of this analysis is that TDT parameters are useful to convert static and dynamic heat tolerance measures to a single metric, and accordingly, the TDT model and R-scripts presented here have promising applications for large-scale comparative meta-analyses of ectotherm heat tolerance where a single metric allows for qualified direct comparison of results from different publications and experimental backgrounds. While this is an intriguing and powerful application, we caution that careful consideration should be put into the limitations of this model (see “Discussion” section below).Practical considerations and pitfalls for model interpretationAs shown above it is possible to convert and reconcile different types of heat tolerance measures using TDT parameters and these parameters can also be used to model heat stress under fluctuating field conditions. Modelling and discussion of TDT predictions beyond the boundaries of the input data has recently gained traction (see examples in48,49) but we caution that the potent exponential nature of the TDT curve requires careful consideration as it is both easy and enticing to misuse this model.Input dataThe quality of the model output is dictated by the input used for parameterization. Accordingly, we recommend TDT parameterization using several ( > 5) static experiments that should cover the time and temperature interval of interest, e.g. temperatures resulting in tcoma spanning 10 min to 10 h, thus covering both moderate and intense heat exposure. Such an experimental series can verify TDT curve linearity and allows modelling of temperature impacts across a broad range of temperatures and stress durations13,15,22. It is tempting to use only brief static experiments (high temperatures) for TDT parameterization, but in such cases, we recommend that the resulting TDT curve is only used to describe heat injury accumulation under severe heat stress intensities. Thus, the thermal sensitivity factor z represents a very powerful exponential factor (equivalent to Q10 = 100 to 100,000;15) which should ideally be parametrized over a broad temperature range (see below). We also include a script that allows TDT parametrization from multiple ramping experiments and again we recommend a broad span of ramping rates to cover the time/temperature interval of interest. A drawback of ramping experiments is the relatively large proportion of time spent at benign temperatures where there is no appreciable heat injury accumulation. Thus, dynamic experiments can conveniently use starting temperatures that are close to the temperature where injury accumulation rate surpasses injury repair rate (see “Discussion” section of “true” Tc below, in Supplemental Information and19 for other considerations regarding ramp experiments).A final methodological consideration relates to body-temperature in brief static experiments where the animal will spend a considerable proportion of the experiment in a state of thermal disequilibrium (i.e. it takes time to heat the animal). To avoid this, we recommend direct measurement of body temperature (large animals) or container temperature (small animals), and advise against excessive reliance on data from test temperatures that results in coma in less than 10 min.ExtrapolationMost studies of ectotherm heat tolerance include only a single measure of heat tolerance which is inadequate to parameterize a TDT curve. However, a TDT curve can still be generated from a single measure of tolerance (static or dynamic) if a value of z is assumed (see Supplemental Information). As z differs within species and between phylogenetic groups (Table S115,20), choosing the appropriate value may be difficult and discrepancies between the ‘true’ and assumed z represent a problem that should be approached with care. In Fig. 7A we illustrate this point in a constructed example where a single heat tolerance measurement is sampled from a ‘true’ TDT curve (full line; tcoma = 40 min at 37 °C). Along with this ‘true’ TDT curve we depict the consequences for model predictions if the assumed value of z is misestimated by ± 50%. Extrapolation from the original data point is necessary if an estimate of the temperature that causes coma after 1 h is desired, however due to limited extrapolation (from 40 to 60 min), estimation of sCTmax (1 h) values based on the ‘true’ and z ± 50% are not very different ( 6 h) between heat exposure disrupted additivity, suggesting that injury is repaired at benign temperature50. Injury repair rate is largely understudied but repair rate is generally increasing with temperature51,52,53. It is therefore an intriguing and promising idea to include a temperature-dependent repair function in more advanced modelling of heat injury. Until such repair processes are introduced in the model, we recommend that additivity of heat injury is evaluated critically if it involves periods at temperatures both above and below Tc (i.e. over consecutive days, see also13). An alternative, but not mutually excluding, explanation of increased heat resilience in split-dose experiments relates to the contribution of heat hardening as it is likely that the first heat exposure in a series can induce hardening responses that increase resilience (and thus change the TDT parameters) when a second heat exposure occurs. Such issues of repeated thermal stress have been discussed previously54 but for the purpose of the present study the main conclusion is that simple TDT curve modelling is not applicable to fluctuations bracketing Tc unless this is empirically validated. Future studies could address this issue as inclusion of repair functions would add further promise to the use of TDT curves in modelling of the impacts of temperature fluctuations. More