Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations
1.Wen, X. F. et al. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agric. For. Meteorol. 137, 166–175 (2006).ADS
Article
Google Scholar
2.Meißner, M., Köhler, M., Schwendenmann, L., Hölscher, D. & Dyckmans, J. Soil water uptake by trees using water stable isotopes (δ2H and δ18O)a method test regarding soil moisture, texture and carbonate. Plant Soil 376, 327–335 (2014).Article
CAS
Google Scholar
3.Sprenger, M. et al. Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water. Hydrol. Process. 32, 1720–1737 (2018).ADS
Article
Google Scholar
4.Zhang, B. B. et al. Higher soil capacity of intercepting heavy rainfall in mixed stands than in pure stands in riparian forests. Sci. Total Environ. 658, 1514–1522 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
5.Lee, K. S., Kim, J. M., Lee, D. R., Kim, Y. & Lee, D. Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. J. Hydrol. 345, 199–211 (2007).ADS
Article
Google Scholar
6.Lozano-Parra, J., Schnabel, S. & Ceballos-Barbancho, A. The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. J. Hydrol. 529, 951–961 (2015).ADS
Article
Google Scholar
7.Wan, H. & Liu, W. G. An isotope study (δ18O and δD) of water movements on the Loess Plateau of China in arid and semiarid climates. Ecol. Eng. 93, 226–233 (2016).Article
Google Scholar
8.Liu, Z. Q., Yu, X. X. & Jia, G. D. Water uptake by coniferous and broad-leaved forest in a rocky mountainous area of northern China. Agric. For. Meteorol. 265, 381–389 (2019).ADS
Article
Google Scholar
9.Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
10.Dai, E. F., Wang, X. L., Zhu, J. J. & Xi, W. M. Quantifying ecosystem service trade-offs for plantation forest management to benefit provisioning and regulating services. Ecol. Evol. 7, 7807–7821 (2017).PubMed
PubMed Central
Article
Google Scholar
11.Ontl, T. A. et al. Adaptation pathways: Ecoregion and land ownership influences on climate adaptation decision-making in forest management. Clim. Chang. 146, 75–88 (2017).ADS
Article
Google Scholar
12.Di Prima, S. et al. Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. J. Hydrol. Hydromech. 65, 276–286 (2017).Article
CAS
Google Scholar
13.Wang, Z., He, Q. H., Hu, B., Pang, X. Y. & Bao, W. K. Gap thinning improves soil water content, changes the vertical water distribution, and decreases the fluctuation. Can. J. For. Res. 48, 1042–1048 (2018).CAS
Article
Google Scholar
14.Del Campo, A. D. et al. Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff. For. Ecol. Manag. 438, 163–175 (2019).Article
Google Scholar
15.He, Z. B. et al. Responses of soil organic carbon, soil respiration, and associated soil properties to long-term thinning in a semiarid spruce plantation in northwestern China. Land Degrad. Dev. 29, 4387–4396 (2018).Article
Google Scholar
16.Giuggiola, A., Zweifel, R., Feichtinger, L., M., Vollenweider, P. & Bugmann, H. Competition for water in a xeric forest ecosystem—Effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. For. Ecol. Manag. 409, 241–249 (2018).17.Prévosto, B., Helluy, M., Gavinet, J., Fernandez, C. & Balandier, P. Microclimate in Mediterranean pine forests: What is the influence of the shrub layer? Agric. For. Meteorol. 282–283, 107856 (2020).18.Sohn, J. A., Saha, S. & Bauhus, J. Potential of forest thinning to mitigate drought stress: A meta-analysis. For. Ecol. Manag. 380, 261–273 (2016).Article
Google Scholar
19.Vilà-Cabrera, A., Coll, L., Martínez-Vilalta, J. & Retana, J. Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. For. Ecol. Manag. 407, 16–22 (2018).Article
Google Scholar
20.Bréda, N., Granier, A. & Aussenac, G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 15, 295–306 (1995).21.Martínez, G. G., Pachepsky, Y. A. & Vereecken, H. Effect of soil hydraulic properties on the relationship between the spatial mean and variability of soil moisture. J. Hydrol. 516, 154–160 (2014).ADS
Article
Google Scholar
22.Buchanan, B. P. et al. Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrol. Earth Syst. Sci. 18, 3279–3299 (2014).ADS
Article
Google Scholar
23.Gwak, Y. & Kim, S. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Process. 31, 431–445 (2016).ADS
Article
Google Scholar
24.Knighton, J. et al. Seasonal and topographic variations in ecohydrological separation within a small, temperate, snow-influenced catchment. Water Resour. Res. 55, 6417–6435 (2019).ADS
Article
Google Scholar
25.Metzger, J. C. et al. Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol. Process. 31, 3783–3795 (2017).ADS
Article
Google Scholar
26.Hasselquist, N. J., Benegas, L., Roupsard, O., Malmer, A. & Ilstedt, U. Canopy cover effects on local soil water dynamics in a tropical agroforestry system: Evaporation drives soil water isotopic enrichment. Hydrol. Process. 32, 994–1004 (2018).ADS
Article
Google Scholar
27.Heiskanen, J. & Mäkitalo, K. Soil water-retention characteristics of Scots pine and Norway spruce forest sites in Finnish Lapland. For. Ecol. Manag. 162, 137–152 (2002).Article
Google Scholar
28.Geris, J., Tetzlaff, D., Mcdonnell, J. & Soulsby, C. The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments. Hydrol. Process. 29, 1844–1860 (2015).ADS
Article
Google Scholar
29.Sun, L. et al. Tracing the soil water response to autumn rainfall in different land uses at multi-day timescale in a subtropical zone. CATENA 180, 355–364 (2019).CAS
Article
Google Scholar
30.Del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J. & García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 565, 74–86 (2018).Article
Google Scholar
31.Cabon, A. et al. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 409, 333–342 (2018).Article
Google Scholar
32.Xiong, Y. M., Xia, H. P., Li, Z. A., Cai, X. A. & Fu, S. L. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil 304, 179–188 (2008).CAS
Article
Google Scholar
33.Su, W. H., Zhu, X. W., Fan, S. H., Zeng, X. L. & Liu, G. L. Review of effects of harvesting on forest ecosystem. For. Resour. Manag. 3, 35–40 (2017).
Google Scholar
34.Nijzink, R. et al. The evolution of root-zone moisture capacities after deforestation: A step towards hydrological predictions under change?. Hydrol. Earth Syst. Sci. 20, 4775–4799 (2016).ADS
Article
Google Scholar
35.Xiao, W. F. et al. Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. PLoS One 9, e101890 (2014).36.Shen, Y. F. et al. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci. Rep. 8, 573 (2018).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
37.Lei, L. et al. Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands. Sci. Total Environ. 621, 1360–1369 (2017).ADS
PubMed
Article
CAS
Google Scholar
38.Wang, X. R. et al. Short-terms effects of tending thinnng on soil labile organic carbon in Pinus massoniana stands. Chin. J. Ecol. 40, 1049–1061 (2021).
Google Scholar
39.Zhao, P., Tang, X. Y., Zhao, P., Zhang, W. & Tang, J. L. Mixing of event and pre-event water in a shallow Entisol in sloping farmland based on isotopic and hydrometric measurements, SW China. Hydrol. Process. 30, 3478–3493 (2016).ADS
Article
Google Scholar
40.Lin, G. H., Phillips, S. L. & Ehleringer, J. R. Monsoonal precipitation responses of shrubs in a cold desert community on Colorado Plateau. Oecologia 106, 8–17 (1996).ADS
PubMed
Article
PubMed Central
Google Scholar
41.West, A. G., Patrickson, S. J. & Ehleringer, J. R. Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun. Mass Sp. 20, 1317–1321 (2006).CAS
Article
Google Scholar
42.Tetzlaff, D., Birkel, C., Dick, J., Geris, J. & Soulsby, C. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions. Water Resour. Res. 50, 969–985 (2014).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
43.Liu, Y. et al. Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China. CATENA 126, 201–208 (2015).Article
Google Scholar
44.Zhang, Z., Jin, G. Q., Zhou, Z. C. & Sun, L. S. Biomass allocation differences with Pinus massoniana in Guangdong and Hubei provenances. J. Zhejiang A&F Univ. 36, 271–278 (2019).
Google Scholar
45.Özcan, M., GÖkbulak, F. & Hizal, A. Exclosure effects on recovery of selected soil properties in a mixed broadleaf forest recreation site. Land Degrad. Dev. 24, 266–276 (2013).46.Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 5, 19–31 (2016).ADS
Article
Google Scholar
47.Xu, Q., Liu, S. R., Wan, X. C., Jiang, C. Q. & Wang, J. X. Effects of rainfall on soil moisture and water movement in a subalpine dark coniferous forest in southwestern China. Hydrol. Process. 26, 3800–3809 (2012).ADS
Article
Google Scholar
48.Sprenger, M., Leistert, H., Gimbel, K. & Weiler, M. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Rev. Geophys. 54, 674–704 (2016).ADS
Article
Google Scholar
49.Zheng, W. B., Wang, S. Q., Sprenger, M., Liu, B. X. & Cao, J. S. Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain. J. Hydrol. 576, 466–477 (2019).ADS
CAS
Article
Google Scholar
50.Hsueh, Y. H., Allen, S. T. & Keim, R. F. Fine-scale spatial variability of throughfall amount and isotopic composition under a hardwood forest canopy. Hydrol. Process. 30, 1796–1803 (2016).ADS
Article
Google Scholar
51.Allen, S. T., Keim, R. F., Barnard, H. R., Mcdonnell, J. J. & Renée Brooks, J. The role of stable isotopes in understanding rainfall interception processes: A review. Wires. Water 4, e1187 (2017).52.Shaw, S. B., McHardy, T. M. & Riha, S. J. Evaluating the influence of watershed moisture storage on variations in base flow recession rates during prolonged rain-free periods in medium-sized catchments in New York and Illinois, USA. Water Resour. Res. 49, 6022–6028 (2013).ADS
Article
Google Scholar
53.Zhao, J., Xu, Z. & Singh, V. P. Estimation of root zone storage capacity at the catchment scale using improved mass curve technique. J. Hydrol. 540, 959–972 (2016).ADS
Article
Google Scholar
54.Zhang, Y. K. & Schilling, K. E. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A field observation and analysis. J. Hydrol. 319, 328–338 (2006).ADS
Article
Google Scholar
55.Deng, L., Yan, W. M., Zhang, Y. W. & Shangguan, Z. P. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. For. Ecol. Manag. 366, 1–10 (2016).Article
Google Scholar
56.Imaizumi, F., Sidle, R. C. & Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf. Proc. Land 33, 827–840 (2010).ADS
Article
Google Scholar
57.Nyssen, J. et al. Impact of soil and water conservation measures on catchment hydrological response-a case in north Ethiopia. Hydrol. Process. 24, 1880–1895 (2010).ADS
Article
Google Scholar
58.Zheng, H., Gao, J., Teng, Y., Feng, C. & Tian, M. Temporal variations in soil moisture for three typical vegetation types in Inner Mongolia, Northern China. Plos One 10, e0118964 (2015).59.Oswald, C. J., Richardson, M. C. & Branfireun, B. A. Water storage dynamics and runoff response of a boreal Shield headwater catchment. Hydrol. Process. 25, 3042–3060 (2011).
Google Scholar
60.De Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C. & Savenije, H. H. Influence of soil and climate on root zone storage capacity. Water Resour. Res. 52, 2009–2024 (2016).ADS
Article
Google Scholar
61.Zhou, X. N. & Lin, H. M. Effect on soil physical and chemical properties by different harvesting methods. Sci. Silva. Sin. 34, 18–25 (1998).
Google Scholar
62.Meier, I. C., Knutzen, F., Eder, L. M., Müller-Haubold, H. & Leuschner, C. The deep root system of Fagus sylvatica on sandy soil: Structure and variation across a precipitation gradient. Ecosystems 21, 280–296 (2017).Article
CAS
Google Scholar
63.Liu, Y., Cui, Z., Huang, Z., López-Vicente, M. & Wu, G. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena 182, 104147 (2019).64.Beven, K. & Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 49, 3071–3092 (2013).ADS
Article
Google Scholar
65.Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS
CAS
Article
Google Scholar
66.Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).Article
Google Scholar
67.Kooch, Y., Samadzadeh, B. & Hosseini, S. M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA 150, 223–229 (2017).CAS
Article
Google Scholar
68.Mishra, S. et al. Understanding the relationship between soil properties and litter chemistry in three forest communities in tropical forest ecosystem. Environ. Monit. Assess. 191, 797 (2019).CAS
Article
Google Scholar
69.Yang, B., Wen, X. F. & Sun, X. M. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agric. For. Meteorol. 201, 218–228 (2015).ADS
Article
Google Scholar
70.Ungar, E. D. et al. Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. For. Ecol. Manag. 298, 39–51 (2013).Article
Google Scholar
71.Oerter, E. J. & Bowen, G. J. Spatio-temporal heterogeneity in soil water stable isotopic composition and its ecohydrologic implications in semiarid ecosystems. Hydrol. Process. 33, 1724–1738 (2019).ADS
Article
Google Scholar More