More stories

  • in

    Limited potential for bird migration to disperse plants to cooler latitudes

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    2.Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Viana, D. S., Santamaría, L. & Figuerola, J. Migratory birds as global dispersal vectors. Trends Ecol. Evol. 31, 763–775 (2016).PubMed 
    Article 

    Google Scholar 
    4.Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).PubMed 
    Article 

    Google Scholar 
    6.Lenoir, J. & Svenning, J. C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article 

    Google Scholar 
    7.Lenoir, J. et al. Species better track climate warming in the oceans than on land. Nat. Ecol. Evol. 4, 1044–1059 (2020).PubMed 
    Article 

    Google Scholar 
    8.Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    10.González-Varo, J. P., López-Bao, J. V. & Guitián, J. Seed dispersers help plants to escape global warming. Oikos 126, 1600–1606 (2017).Article 

    Google Scholar 
    11.Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    12.Thuiller, W. et al. Predicting global change impacts on plant species’ distributions: future challenges. Perspect. Plant Ecol. Evol. Syst. 9, 137–152 (2008).Article 

    Google Scholar 
    13.Nadeau, C. P. & Urban, M. C. Eco-evolution on the edge during climate change. Ecography 42, 1280–1297 (2019).
    Google Scholar 
    14.Bacles, C. F. E., Lowe, A. J. & Ennos, R. A. Effective seed dispersal across a fragmented landscape. Science 311, 628 (2006).PubMed 
    Article 

    Google Scholar 
    15.Jordano, P., García, C., Godoy, J. A. & García-Castaño, J. L. Differential contribution of frugivores to complex seed dispersal patterns. Proc. Natl Acad. Sci. USA 104, 3278–3282 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Breitbach, N., Böhning-Gaese, K., Laube, I. & Schleuning, M. Short seed-dispersal distances and low seedling recruitment in farmland populations of bird-dispersed cherry trees. J. Ecol. 100, 1349–1358 (2012).Article 

    Google Scholar 
    17.Cain, M. L., Damman, H. & Muir, A. Seed dispersal and the Holocene migration of woodland herbs. Ecol. Monogr. 68, 325–347 (1998).Article 

    Google Scholar 
    18.Nathan, R. et al. Spread of North American wind-dispersed trees in future environments. Ecol. Lett. 14, 211–219 (2011).PubMed 
    Article 

    Google Scholar 
    19.Nathan, R. et al. Mechanisms of long-distance seed dispersal. Trends Ecol. Evol. 23, 638–647 (2008).PubMed 
    Article 

    Google Scholar 
    20.Viana, D. S., Gangoso, L., Bouten, W. & Figuerola, J. Overseas seed dispersal by migratory birds. Proc. R. Soc. Lond. B 283, 20152406 (2016).
    Google Scholar 
    21.Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Migratory strategies of waterbirds shape the continental-scale dispersal of aquatic organisms. Ecography 36, 430–438 (2013).Article 

    Google Scholar 
    22.Carlquist, S. The biota of long-distance dispersal. V. Plant dispersal to Pacific islands. Bull. Torrey Bot. Club 94, 129–162 (1967).Article 

    Google Scholar 
    23.Esteves, C. F., Costa, J. M., Vargas, P., Freitas, H. & Heleno, R. H. On the limited potential of Azorean fleshy fruits for oceanic dispersal. PLoS ONE 10, e0138882 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Viana, D. S., Santamaría, L., Michot, T. C. & Figuerola, J. Allometric scaling of long-distance seed dispersal by migratory birds. Am. Nat. 181, 649–662 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Martínez-López, V., García, C., Zapata, V., Robledano, F. & De la Rúa, P. Intercontinental long-distance seed dispersal across the Mediterranean basin explains population genetic structure of a bird-dispersed shrub. Mol. Ecol. 29, 1408–1420 (2020).PubMed 
    Article 

    Google Scholar 
    26.Newton, I. The Migration Ecology of Birds (Elsevier, 2010).27.Sorensen, A. E. Interactions between birds and fruit in a temperate woodland. Oecologia 50, 242–249 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    28.González-Varo, J. P., Arroyo, J. M. & Jordano, P. The timing of frugivore-mediated seed dispersal effectiveness. Mol. Ecol. 28, 219–231 (2019).PubMed 
    Article 

    Google Scholar 
    29.Jordano, P. in Seeds: The Ecology of Regeneration of Plant Communities (ed. Gallagher, R. S.) 18–61 (CABI, 2014).30.Bascompte, J. & Jordano, P. Mutualistic Networks (Princeton Univ. Press, 2013).31.Gallinat, A. S. et al. Patterns and predictors of fleshy fruit phenology at five international botanical gardens. Am. J. Bot. 105, 1824–1834 (2018).PubMed 
    Article 

    Google Scholar 
    32.Cadotte, M. W. Experimental evidence that evolutionarily diverse assemblages result in higher productivity. Proc. Natl Acad. Sci. USA 110, 8996–9000 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Mitter, C., Farrell, B. & Futuyma, D. J. Phylogenetic studies of insect–plant interactions: insights into the genesis of diversity. Trends Ecol. Evol. 6, 290–293 (1991).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Siemann, E., Tilman, D., Haarstad, J. & Ritchie, M. Experimental tests of the dependence of arthropod diversity on plant diversity. Am. Nat. 152, 738–750 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J. & van Bommel, F. P. J. Long-term population declines in Afro-Palearctic migrant birds. Biol. Conserv. 131, 93–105 (2006).Article 

    Google Scholar 
    36.Beresford, A. E. et al. Phenology and climate change in Africa and the decline of Afro-Palearctic migratory bird populations. Remote Sens. Ecol. Conserv. 5, 55–69 (2019).Article 

    Google Scholar 
    37.Nilsson, C., Bäckman, J. & Alerstam, T. Seasonal modulation of flight speed among nocturnal passerine migrants: differences between short- and long-distance migrants. Behav. Ecol. Sociobiol. 68, 1799–1807 (2014).Article 

    Google Scholar 
    38.Gaston, K. J. Valuing common species. Science 327, 154–155 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Change 10, 63–68 (2020).ADS 
    Article 

    Google Scholar 
    40.Miller-Rushing, A. J., Lloyd-Evans, T. L., Primack, R. B. & Satzinger, P. Bird migration times, climate change, and changing population sizes. Glob. Change Biol. 14, 1959–1972 (2008).ADS 
    Article 

    Google Scholar 
    41.Brochet, A.-L. et al. Preliminary assessment of the scope and scale of illegal killing and taking of birds in the Mediterranean. Bird Conserv. Int. 26, 1–28 (2016).Article 

    Google Scholar 
    42.Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    43.Stiles, E. W. Patterns of fruit presentation and seed dispersal in bird-disseminated woody plants in the eastern deciduous forest. Am. Nat. 116, 670–688 (1980).Article 

    Google Scholar 
    44.Noma, N. & Yumoto, T. Fruiting phenology of animal-dispersed plants in response to winter migration of frugivores in a warm temperate forest on Yakushima Island, Japan. Ecol. Res. 12, 119–129 (1997).Article 

    Google Scholar 
    45.Lovas-Kiss, Á. et al. Shorebirds as important vectors for plant dispersal in Europe. Ecography 42, 956–967 (2019).Article 

    Google Scholar 
    46.Coughlan, N. E., Kelly, T. C., Davenport, J. & Jansen, M. A. K. Up, up and away: bird-mediated ectozoochorous dispersal between aquatic environments. Freshw. Biol. 62, 631–648 (2017).Article 

    Google Scholar 
    47.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    48.Rivas-Martínez, S., Penas, A. & Díaz, T. Bioclimatic Map of Europe, Thermoclimatic Belts (Cartographic Service, Univ. León, 2004).49.Olesen, J. M. et al. Missing and forbidden links in mutualistic networks. Proc. R. Soc. Lond. B 278, 725–732 (2011).
    Google Scholar 
    50.Snow, B. & Snow, D. Birds and Berries (T. and A. D. Poyser, 1988).51.Stiebel, H. & Bairlein, F. Frugivory in central European birds I: diet selection and foraging. Vogelwarte 46, 1–23 (2008).
    Google Scholar 
    52.González-Varo, J. P., Arroyo, J. M. & Jordano, P. Who dispersed the seeds? The use of DNA barcoding in frugivory and seed dispersal studies. Methods Ecol. Evol. 5, 806–814 (2014).Article 

    Google Scholar 
    53.Simmons, B. I. et al. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. J. Anim. Ecol. 87, 995–1007 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Plein, M. et al. Constant properties of plant–frugivore networks despite fluctuations in fruit and bird communities in space and time. Ecology 94, 1296–1306 (2013).PubMed 
    Article 

    Google Scholar 
    55.Albrecht, J. et al. Variation in neighbourhood context shapes frugivore-mediated facilitation and competition among co-dispersed plant species. J. Ecol. 103, 526–536 (2015).Article 

    Google Scholar 
    56.García, D. Birds in ecological networks: insights from bird–plant mutualistic interactions. Ardeola 63, 151–180 (2016).Article 

    Google Scholar 
    57.Farwig, N., Schabo, D. G. & Albrecht, J. Trait-associated loss of frugivores in fragmented forest does not affect seed removal rates. J. Ecol. 105, 20–28 (2017).Article 

    Google Scholar 
    58.Torroba Balmori, P., Zaldívar García, P. & Hernández Lázaro, Á. Semillas de Frutos Carnosos del Norte Ibérico: Guía de Identificación (Ediciones Univ. Valladolid, 2013).59.Stiebel, H. Frugivorie bei Mitteleuropäischen Vögeln. PhD thesis, Univ. Oldenburg (2003).60.Jordano, P. Data from: Angiosperm fleshy fruits and seed dispersers: a comparative analysis of adaptation and constraints in plant-animal interactions. Dryad https://doi.org/10.5061/dryad.9tb73 (2013).61.González-Varo, J. P., Carvalho, C. S., Arroyo, J. M. & Jordano, P. Unravelling seed dispersal through fragmented landscapes: frugivore species operate unevenly as mobile links. Mol. Ecol. 26, 4309–4321 (2017).PubMed 
    Article 

    Google Scholar 
    62.Ratnasingham, S. & Hebert, P. D. N. bold: the Barcode of Life data system (http://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.CBOL Plant Working Group et al. A DNA barcode for land plants. Proc. Natl Acad. Sci. USA 106, 12794–12797 (2009).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    64.Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.González-Varo, J. P., Díaz-García, S., Arroyo, J. M. & Jordano, P. Seed dispersal by dispersing juvenile animals: a source of functional connectivity in fragmented landscapes. Biol. Lett. 15, 20190264 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Fuentes, M. Latitudinal and elevational variation in fruiting phenology among western European bird-dispersed plants. Ecography 15, 177–183 (1992).Article 

    Google Scholar 
    67.Herrera, C. M. A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol. Monogr. 54, 1–23 (1984).Article 

    Google Scholar 
    68.Hampe, A. & Bairlein, F. Modified dispersal-related traits in disjunct populations of bird-dispersed Frangula alnus (Rhamnaceae): a result of its Quaternary distribution shifts? Ecography 23, 603–613 (2000).Article 

    Google Scholar 
    69.Thomas, P. A. & Mukassabi, T. A. Biological flora of the British Isles: Ruscus aculeatus. J. Ecol. 102, 1083–1100 (2014).Article 

    Google Scholar 
    70.Jordano, P. Biología de la reproducción de tres especies del género Lonicera (Caprifoliaceae) en la Sierra de Cazorla. An. Jardin Botanico Madr. 1979 48, 31–52 (1990).
    Google Scholar 
    71.Debussche, M. & Isenmann, P. A Mediterranean bird disperser assemblage: composition and phenology in relation to fruit availability. Rev. Ecol. 47, 411–432 (1992).
    Google Scholar 
    72.Jordano, P. Diet, fruit choice and variation in body condition of frugivorous warblers in Mediterranean scrubland. Ardea 76, 193–209 (1988).
    Google Scholar 
    73.Barroso, Á., Amor, F., Cerdá, X. & Boulay, R. Dispersal of non-myrmecochorous plants by a “keystone disperser” ant in a Mediterranean habitat reveals asymmetric interdependence. Insectes Soc. 60, 75–86 (2013).Article 

    Google Scholar 
    74.González-Varo, J. P. Fragmentation, habitat composition and the dispersal/predation balance in interactions between the Mediterranean myrtle and avian frugivores. Ecography 33, 185–197 (2010).Article 

    Google Scholar 
    75.Sánchez-Salcedo, E. M., Martínez-Nicolás, J. J. & Hernández, F. Phenological growth stages of mulberry tree (Morus sp.) codification and description according to the BBCH scale. Ann. Appl. Biol. 171, 441–450 (2017).Article 

    Google Scholar 
    76.García-Castaño, J. L. Consecuencias Demográficas de la Dispersión de Semillas por Aves y Mamíferos Frugívoros en la Vegetación Mediterránea de Montaña. PhD thesis, Univ. Sevilla (2001).77.Gilbert, O. L. Symphoricarpos albus (L.) S. F. Blake (S. rivularis Suksd., S. racemosus Michaux). J. Ecol. 83, 159–166 (1995).Article 

    Google Scholar 
    78.Billerman, S. M. et al. (eds) Birds of the World (Cornell Laboratory of Ornithology, 2020).79.Tellería, J., Asensio, B. & Díaz, M. Aves Ibéricas: II. Paseriformes (J. M. Reyero Editor, 1999).80.Díaz, M., Asensio, B. & Tellería, J. L. Aves Ibéricas: I. No paseriformes (J. M. Reyero Editor, 1996).81.SEO/Birdlife. La Enciclopedia de las Aves de España (SEO/Birdlife-Fundación BBVA, 2019).82.Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 2. Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia SCR-Roma, 2008).83.Spina, F. & Volponi, S. Atlante della Migrazione degli Uccelli in Italia. 1. Non-Passeriformi (Ministero dell’Ambiente e della Tutela del Territorio e del Mare, Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Tipografia CSR-Roma, 2008).84.Wernham, C. et al. The Migration Atlas: Movements of the Birds of Britain and Ireland (T. & A. D. Poyser, 2002).85.Cramp, S. The Complete Birds of the Western Paleartic (CD-ROM) (Oxford Univ. Press, 1998).86.Bairlein, F. et al. Atlas des Vogelzugs – Ringfunde deutscher Brut- und Gastvögel (Aula, 2014).87.Tomiałojć, L. & Stawarczyk, T. Awifauna Polski: Rozmieszczenie, Liczebność i Zmiany (PTPP pro. Natura, 2003).88.Busse, P., Gromadzki, M. & Szulc, B. Obserwacje przelotu jesiennego ptaków w roku 1960 w Górkach Wschodnich koło Gdańska (Observations on bird migration at Górki Wschodnie near Gdańsk Autumn 1960). Acta Ornithologica 7, 305–336 (1963).
    Google Scholar 
    89.Bobrek, R. et al. Międzysezonowa powtarzalność dynamiki jesiennej migracji wróblowych Passeriformes nad Jeziorem Rakutowskim. Ornis Polonica 57, 39–57 (2016).
    Google Scholar 
    90.Keller, M. et al. Ptaki Środkowej Wisły (M-ŚTO, 2017).91.Bocheński, M. et al. Awifauna przelotna i zimująca środkowego odcinka doliny Odry. Ptaki Śląska 16, 123–161 (2006).
    Google Scholar 
    92.BTO. BirdTrack. http://www.birdtrack.net (accessed October 2018).93.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    94.Fox, J. & Weisberg, S. An R Companion to Applied Regression 2nd edn (SAGE, 2011).95.Douma, J. C. & Weedon, J. T. Analysing continuous proportions in ecology and evolution: a practical introduction to beta and Dirichlet regression. Methods Ecol. Evol. 10, 1412–1430 (2019).Article 

    Google Scholar 
    96.Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).PubMed 
    Article 

    Google Scholar 
    97.Magallón, S., Gómez-Acevedo, S., Sánchez-Reyes, L. L. & Hernández-Hernández, T. A metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. New Phytol. 207, 437–453 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    101.Molina-Venegas, R. & Rodríguez, M. Á. Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evol. Biol. 17, 53 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    103.Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Open Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    104.Bascompte, J., Jordano, P. & Olesen, J. M. Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312, 431–433 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Bates, D., Maechler, M. & Bolker, B. lme4: linear mixed-effects models using ‘Eigen’ and S4. R package version 1.1-19 https://CRAN.R-project.org/package=lme4 (2013). More

  • in

    Coordinated gas release among the physostomous fish sprat (Sprattus sprattus)

    Study areaThe study was carried out in Bunnefjorden, Norway. The fjord froze over from January to April and we here analyze data from ice-free conditions in early winter (12 Nov to 2 Dec 2009). Bunnefjorden is a 150 m deep inner branch of the Oslofjord, and a 57 m deep sill at the entrance restricts water exchange with the outer part of the fjord. Klevjer and Kaartvedt24 provide a map of the study area. The fjord branch normally becomes hypoxic in the lower part of the water column. During the current study, oxygen contents were 2–3 ml l−1 between 15 and 60 m, while waters below 70–80 m were severely hypoxic and devoid of fishes9.Studies of overwintering sprat have been undertaken in Bunnefjorden during several winters, and the biology of sprat as well as the identity of the main acoustic targets in the fjord are well established9,18,24. In the winter of the current study, catches from 33 trawl samples were dominated by sprat; with ~ 40 times higher catches than the next most abundant species, herring (Clupea harengus)9.Study designSolberg and Kaartvedt9 and Solberg et al.18 provide details on methods, and we here only give a summary of the acoustic setup. In short, upward-looking Simrad EK 60 echosounders kept in pressure-proof casings were deployed at the bottom (150 m) and in buoys (80 and 30 m) for enhanced resolution in shallower part of the water column. Cables for electricity and transfer of data to a PC on shore enabled continuous operation of the systems. We here use the data from the shallowest echosounder (200 kHz) that provided superior resolution in near-surface water, though did not cover the full depth range of the population distribution. Echograms from the deeper located echosounders covering the whole (inhabited) water column and showing the full diel population behavior are given in Solberg and Kaartvedt9 and Solberg et al.18.Records of gas releaseReleased gas appeared as ascending lines in the echogram (Fig. 4). We quantified the release as explained by Solberg and Kaartvedt9. We only included ascending traces connected to the acoustic record of a fish, but without enumerating the release per individual fish. Since the same fish may release several bursts of bubbles within a short time interval, we here pooled any sequences of gas release within a 10-s period as one event. This procedure will also exclude cases with several different individuals releasing bubbles in the course of this short time interval, yet we chose this conservative approach not to generate an artificial high connection of gas releases between the fishes.Figure 4Echogram showing sprat releasing gas, with every oblique line representing one release event and lines with a different angle to the release events representing swimming sprat. Colors represent the volume-backscatter coefficient (Sv).Full size imageAnalyses of dataThe frequency of gas releases varied with time, both within a day and between the weeks. Such patterns compare to service systems like call centres and hospital emergency rooms25 that can be modelled as a Poisson process26,27. We therefore started our analysis with the statistical procedure suggested by Brown et al.28 in their influential analysis of the call dynamics in a banking call centre. The first step is to subdivide the day into time intervals, which are short enough to consider event rates as approximately constant. Here we chose to investigate alternative periods of respectively 1, 5, and 30 min, as well as 1, 2, 4, and 6 h. At the longest interval, the peaks in the gas release intensity are expected to be the result of a non-constant Poisson parameter, and therefore more likely to induce rejection of the null-hypothesis of a homogenous random process. In contrast, we expect to find higher concordance with a random process for the short intervals of 5 min. In assessing connectivity among gas bubble releases, we formulate a new model allowing for a formal test of non-randomness (summarized in Fig. 5). We name this approach the simulated connectivity test (S-CON test), which we implemented in R29, with the code being available in the Supplementary appendix.Figure 5Illustration of the steps related to the simulated connectivity test (S-CON test). Bubbles occurring within 10 s are pooled into single release events. We then determine the connectivity of each release event—aka the number of release events within the following 30 s time window. From these, we calculate the average connectivity for a specified period (1, 5, 30 min, 1-, 2-, 4- and 6-h intervals). In a final step, we compare the observed average connectivity to the critical value which is defined as the 95th percentile of 1000 simulations of random placements of the same number of releases. If the observed connectivity is larger than the critical value, we reject the null hypothesis of random gas releases for the specified time interval.Full size imageIf there is a common physiological reason or some form of communication among sprat, a burst of gas release is likely followed by subsequent releases. Thus, it is reasonable to assume that the total number of releases within a short time interval like 30 s would be effective in detecting dependencies between the releases. We therefore define the concept of connectivity as follows:Let the gas be released at times T1, T2, …, Tn and define the connectivity at each event as the numbers of records within the following 30 s. The average connectivity in any considered window of the investigated time-period (for example a window of 1 h) is defined as the average connectivity of all cases of connectivity within the considered window (see also Fig. 5).In order to test the null hypothesis of no dependency between gas bubble releases, we compare the measured average connectivity in the data set with the simulation of 1000 random placements of the total number of observations in a given time window. For example, if we consider a window of 30 min with 15 release events having an average connectivity of 2.1, we performed 1000 random placements of 15 points between 1 and 1800. In this way, we get 1000 simulated values of the average connectivity, from which we pick out the critical 95th percentile, following the common significance level of 0.05 in biology. If the observed average connectivity is larger than this critical value, we reject the null-hypothesis and conclude that the releases of gas bubbles are dependent random variables. Thus, if our example obtains a critical value of 1.7, the null-hypothesis of random arrival times of bubbles is rejected (because the observed value of 2.1 is larger than the critical value of 1.7).Since a dependency between the fish will induce a higher concentration of release events than produced by random releases, we expect the average connectivity to be quite sensitive to the alternative hypothesis of dependent arrival times. Also, note that the concept of connectivity has a combinatory nature, so we need only require that the considered window contains at least two releases of gas bubbles. In contrast, alternative approaches using Kolmogorov–Smirnov tests28 are based on the cumulative distribution function and therefore require at least five observed bubble releases.To test the dependency of the results on the chosen time interval, we also ran the analysis using connectivity intervals of 25 and 35 s, which revealed some variability to the estimates of non-random bubble release (Fig. 3) but did not influence the general pattern. We also tested whether the interval within which we consider subsequent bubbles to be part of one single release event influences our results. The more we consider sequential bubbles to be independent of each other, i.e. their own release event, the higher the proportion of non-random gas release and vice versa.Fish abundanceTo exclude the possibility that apparent connectivity would be a mere result of fluctuating fish abundance, we tested whether the number of released bubbles is a function of fish biomass. For this, we first calculated the total number of gas release events within 30-min periods. We then compared these values to the summed surface integrated acoustic scattering coefficient (SA) for the same periods and for the same depth interval (upper 30 m), assuming that the integrated scattering coefficient (SA) serves as a proxy for the total fish biomass9. We filtered the scattering data to remove noise from non-biological sources prior to use. Both variables were log-transformed prior to analysis. We then fitted a linear model of the two variables using generalized least squares. To account for temporal autocorrelation in the data, we also included a correlation structure of type 1 (corAR1). The analysis was done in R29 using the nlme package30.Ethics declarationsLive animals (fish) were not used in this study. More

  • in

    Asymmetric physiological response of a reef-building coral to pulsed versus continuous addition of inorganic nutrients

    1.Schaffelke, B., Carleton, J., Skuza, M., Zagorskis, I. & Furnas, M. J. Water quality in the inshore Great Barrier Reef lagoon: implications for long-term monitoring and management. Mar. Pollut. Bull. 65, 249–260 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Kleypas, J. A., McManus, J. W. & Meñez, L. A. B. Environmental limits to coral reef development: Where do we draw the line?. Am. Zool. 39, 146–159 (1999).Article 

    Google Scholar 
    3.Barnes, D. J. & Devereux, M. J. Productivity and calcification on a coral reef: A survey using pH and oxygen electrode techniques. J. Exp. Mar. Biol. Ecol. 79, 213–231 (1984).Article 

    Google Scholar 
    4.Hoegh-Guldberg, O. & Williamson, J. Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornis and its symbiotic zooxanthellae. Mar. Biol. 133, 561–570 (1999).CAS 
    Article 

    Google Scholar 
    5.Koop, K. et al. ENCORE: The effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42, 91–120 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Grover, R., Maguer, J.-F., Reynaud-Vaganay, S. & Ferrier-Pagès, C. Uptake of ammonium by the scleractinian coral Stylophora pistillata : effect of feeding, light, and ammonium concentrations. Limnol. Oceanogr. 47, 782–790 (2002).ADS 
    Article 

    Google Scholar 
    7.Grover, R., Maguer, J.-F., Allemand, D. & Ferrier-Pagès, C. Uptake of dissolved free amino acids by the scleractinian coral Stylophora pistillata. J. Exp. Biol. 211, 860–865 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Godinot, C., Ferrier-Pagés, C. & Grover, R. Control of phosphate uptake by zooxanthellae and host cells in the scleractinian coral Stylophora pistillata. Limnol. Oceanogr. 54, 1627–1633 (2009).ADS 
    Article 

    Google Scholar 
    9.Wang, J. & Douglas, A. Nitrogen recycling or nitrogen conservation in an alga-invertebrate symbiosis?. J. Exp. Biol. 201, 2445–2453 (1998).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Davy, S. K., Allemand, D. & Weis, V. M. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76, 229–261 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Tanaka, Y., Suzuki, A. & Sakai, K. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J. https://doi.org/10.1038/s41396-017-0019-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Lesser, M. P. et al. Nitrogen fixation by symbiotic cyanobacteria provides a source of nitrogen for the scleractinian coral Montastraea cavernosa. Mar. Ecol. Prog. Ser. 346, 143–152 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Miller, D. J. & Yellowlees, D. Inorganic nitrogen uptake by symbiotic marine cnidarians: a critical review. Proc. R. Soc. B Biol. Sci. 237, 109–125 (1989).ADS 

    Google Scholar 
    14.Pernice, M. et al. A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J. 6, 1314–1324 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Yellowlees, D., Rees, T. A. V. & Leggat, W. Metabolic interactions between algal symbionts and invertebrate hosts. Plant, Cell Environ. 31, 679–694 (2008).CAS 
    Article 

    Google Scholar 
    16.Krueger, T. et al. Intracellular competition for nitrogen controls dinoflagellate population density in corals. Proc. R. Soc. B Biol. Sci. 287, 20200049 (2020).CAS 
    Article 

    Google Scholar 
    17.Godinot, C., Houlbrèque, F., Grover, R., Ferrier-Pagès, C. & Larsen, A. Coral uptake of inorganic phosphorus and nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS ONE 6, e25024 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Ferrier-Pagès, C., Godinot, C., D’Angelo, C., Wiedenmann, J. & Grover, R. Phosphorus metabolism of reef organisms with algal symbionts. Ecol. Monogr. 86, 262–277 (2016).Article 

    Google Scholar 
    19.Snidvongs, A. & Kinzie, R. A. Effects of nitrogen and phosphorus enrichement on in vivo symbiotic zooxanthellae of Pocillopora damicornis. Mar. Biol. 118, 705–711 (1994).CAS 
    Article 

    Google Scholar 
    20.Ferrier-Pagès, C., Gattuso, J. P., Dallot, S. & Jaubert, J. Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19, 103–113 (2000).Article 

    Google Scholar 
    21.Roberty, S., Béraud, E., Grover, R. & Ferrier-Pagès, C. Coral productivity is co-limited by bicarbonate and ammonium availability. Microorganisms 8, 640 (2020).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    22.Muller-Parker, G., Cook, C. B. & D’elia, C. F. Elemental composition of the coral Pocillopora damicornis exposed to elevated seawater ammonium. Pac. Sci. 48, 234–246 (1994).CAS 

    Google Scholar 
    23.Muller-Parker, G., McCloskey, L., Hoegh-Guldberg, O. & McAuley, P. Effect of ammonium enrichment on animal and algal biomass of the coral Pocillopora damicornis. Pac. Sci. 48, 273–283 (1994).CAS 

    Google Scholar 
    24.Dubinsky, Z. et al. The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. B Biol. Sci. 239, 231–246 (1990).ADS 

    Google Scholar 
    25.Marubini, F. & Davies, P. S. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127, 319–328 (1996).CAS 
    Article 

    Google Scholar 
    26.Silbiger, N. J. et al. Nutrient pollution disrupts key ecosystem functions on coral reefs. Proc. R. Soc. B Biol. Sci. 285, 20172718 (2018).Article 
    CAS 

    Google Scholar 
    27.Morris, L. A., Voolstra, C. R., Quigley, K. M., Bourne, D. G. & Bay, L. K. Nutrient availability and metabolism affect the stability of coral-symbiodiniaceae symbioses. Trends Microbiol. 27, 678–689 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Baker, D. M., Freeman, C. J., Wong, J. C. Y., Fogel, M. L. & Knowlton, N. Climate change promotes parasitism in a coral symbiosis. ISME J. 12, 921–930 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Stambler, N., Popper, N., Dubinsky, Z. & Stimson, J. Effects of nutrient enrichment and water motion on the coral Pocillopora damicornis. Pac. Sci. 45, 299–307 (1991).
    Google Scholar 
    30.Rädecker, N. et al. Heat stress destabilizes symbiotic nutrient cycling in corals. Proc. Natl. Acad. Sci. U. S. A. 118, e2022653118 (2021).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    31.Bassim, K. & Sammarco, P. Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar. Biol. 142, 241–252 (2003).CAS 
    Article 

    Google Scholar 
    32.Langdon, C. & Atkinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, C09S07 (2005).ADS 

    Google Scholar 
    33.Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Mar. Pollut. Bull. 118, 180–187 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108 (2019).Article 
    CAS 

    Google Scholar 
    35.Wiedenmann, J. et al. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang. 3, 160–164 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Meyer, J. L. & Schultz, E. T. Migrating haemulid fishes as a source of nutrients and organic matter on coral reefs1. Limnol. Oceanogr. 30, 146–156 (1985).ADS 
    Article 

    Google Scholar 
    37.Holbrook, S. J., Brooks, A. J., Schmitt, R. J. & Stewart, H. L. Effects of sheltering fish on growth of their host corals. Mar. Biol. 155, 521–530 (2008).Article 

    Google Scholar 
    38.Shantz, A. A., Ladd, M. C., Schrack, E. & Burkepile, D. E. Fish-derived nutrient hotspots shape coral reef benthic communities. Ecol. Appl. 25, 2142–2152 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Schmidt, S., Dennison, W. C., Moss, G. J. & Stewart, G. R. Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct. Plant Biol. 31, 517–528 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Staunton Smith, J. & Johnson, C. R. Nutrient inputs from seabirds and humans on a populated coral cay. Mar. Ecol. Prog. Ser. 124, 189–200 (1995).ADS 
    Article 

    Google Scholar 
    41.Ezzat, L. et al. Nutrient starvation impairs the trophic plasticity of reef-building corals under ocean warming. Funct. Ecol. 33, 643–653 (2019).Article 

    Google Scholar 
    42.Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagès, C. Limited phosphorus availability is the Achilles heel of tropical reef corals in a warming ocean. Sci. Rep. 6, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    43.Meyer, J. L. & Schultz, E. T. Tissue condition and growth rate of corals associated with schooling fish1. Limnol. Oceanogr. 30, 157–166 (1985).ADS 
    Article 

    Google Scholar 
    44.Liberman, T., Genin, A. & Loya, Y. Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Mar. Biol. 121, 741–746 (1995).Article 

    Google Scholar 
    45.Burkepile, D. E. et al. Nutrient supply from fishes facilitates macroalgae and suppresses corals in a Caribbean coral reef ecosystem. Sci. Rep. 3, 1493 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Burkepile, D. E. et al. Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems https://doi.org/10.1007/s10021-019-00433-2 (2019).Article 

    Google Scholar 
    47.Ezzat, L., Maguer, J. F., Grover, R. & Ferrier-Pagés, C. New insights into carbon acquisition and exchanges within the coral–dinoflagellate symbiosis under NH4+ and NO3− supply. Proc. R. Soc. B Biol. Sci. 282, 20150610 (2015).Article 
    CAS 

    Google Scholar 
    48.Shantz, A. A. & Burkepile, D. E. Context-dependent effects of nutrient loading on the coral–algal mutualism. Ecology 95, 1995–2005 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Devlin, M. J. & Brodie, J. Terrestrial discharge into the Great Barrier Reef Lagoon: nutrient behavior in coastal waters. Mar. Pollut. Bull. 51, 9–22 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Bender, D., Diaz-Pulido, G. & Dove, S. The impact of CO 2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects. J. Phycol. 50, 203–215 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Wild, C., Woyt, H. & Huettel, M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar. Ecol. Prog. Ser. 287, 87–98 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Bender, E. A., Case, T. J. & Gilpin, M. E. Perturbation experiments in community ecology: theory and practice. Ecology 65, 1–13 (1984).Article 

    Google Scholar 
    53.Parsons, T. R., Maita, Y. & Lalli, C. M. A Manual of Chemical and Biological Methods for Seawater Analysis (Pergamon Press, 1984).
    Google Scholar 
    54.Chisholm, J. R. M. & Gattuso, J.-P. Validation of the alkalinity anomaly technique for investigating calcification of photosynthesis in coral reef communities. Limnol. Oceanogr. 36, 1232–1239 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Dickson, A. G., Afghan, J. D. & Anderson, G. C. Reference materials for oceanic CO2 analysis: a method for the certification of total alkalinity. Mar. Chem. 80, 185–197 (2003).CAS 
    Article 

    Google Scholar 
    56.Maier, C., Watremez, P., Taviani, M., Weinbauer, M. G. & Gattuso, J. P. Calcification rates and the effect of ocean acidification on Mediterranean cold-water corals. Proc. R. Soc. B Biol. Sci. 279, 1716–1723 (2012).CAS 
    Article 

    Google Scholar 
    57.Whitaker, J. R. & Granum, P. E. An absolute method for protein determination based on difference in absorbance at 235 and 280 nm. Anal. Biochem. 109, 156–159 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Dunn, S. R., Thomas, M. C., Nette, G. W., Dove, S. G. & Blackburn, S. A lipidomic approach to understanding free fatty acid lipogenesis derived from dissolved inorganic carbon within Cnidarian-Dinoflagellate symbiosis. PLoS ONE 7, e46801 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.van der Zande, R. M. et al. Paradise lost: end-of-century warming and acidification under business-as-usual emissions have severe consequences for symbiotic corals. Glob. Change Biol. 26, 2203–2219 (2020).ADS 
    Article 

    Google Scholar 
    60.Gaffey, S. J. & Bronnimann, C. E. Effects of bleaching on organic and mineral phases in biogenic carbonates. J. Sediment. Res. 63, 752–754 (1993).ADS 
    Article 

    Google Scholar 
    61.Veal, C. J., Carmi, M., Fine, M. & Hoegh-Guldberg, O. Increasing the accuracy of surface area estimation using single wax dipping of coral fragments. Coral Reefs 29, 893–897 (2010).ADS 
    Article 

    Google Scholar 
    62.Underwood, A. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance (Cambridge University Press, 1997). .63.Wooldridge, S., Brodie, J. & Furnas, M. Exposure of inner-shelf reefs to nutrient enriched runoff entering the Great Barrier Reef Lagoon: post-European changes and the design of water quality targets. Mar. Pollut. Bull. 52, 1467–1479 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Ferrier-Pagès, C., Schoelzke, V., Jaubert, J., Muscatine, L. & Hoegh-Guldberg, O. Response of a scleractinian coral, Stylophora pistillata, to iron and nitrate enrichment. J. Exp. Mar. Bio. Ecol. 259, 249–261 (2001).Article 

    Google Scholar 
    65.Atkinson, M. J., Carlson, B. & Crow, G. L. Coral growth in high-nutrient, low-pH seawater: a case study of corals cultured at the Waikiki Aquarium, Honolulu, Hawaii. Coral Reefs 14, 215–223 (1995).ADS 
    Article 

    Google Scholar 
    66.Godinot, C., Ferrier-Pagès, C., Montagna, P. & Grover, R. Tissue and skeletal changes in the scleractinian coral Stylophora pistillata Esper 1797 under phosphate enrichment. J. Exp. Mar. Biol. Ecol. 409, 200–207 (2011).Article 

    Google Scholar 
    67.Dunn, J. G., Sammarco, P. W. & LaFleur, G. Effects of phosphate on growth and skeletal density in the scleractinian coral Acropora muricata: a controlled experimental approach. J. Exp. Mar. Biol. Ecol. 411, 34–44 (2012).CAS 
    Article 

    Google Scholar 
    68.Marshall, P. A. Skeletal damage in reef corals: relating resistance to colony morphology. Mar. Ecol. Prog. Ser. 200, 177–189 (2000).ADS 
    Article 

    Google Scholar 
    69.Andrews, J. C. & Gentien, P. Upwelling as a source of nutrients for the Great Barrier Reef ecosystems: A solution to Darwin’s question?. Mar. Ecol. Prog. Ser. 8, 257–269 (1982).ADS 
    Article 

    Google Scholar 
    70.Marubini, F. & Thake, B. Bicarbonate addition promotes coral growth. Limnol. Oceanogr. 44, 716–720 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Bio. Ecol. 129, 279–303 (1989).Article 

    Google Scholar 
    72.Quinlan, Z. A. et al. Fluorescent organic exudates of corals and algae in tropical reefs are compositionally distinct and increase with nutrient enrichment. Limnol. Oceanogr. Lett. 3, 331–340 (2018).CAS 
    Article 

    Google Scholar 
    73.Tanaka, Y., Grottoli, A., Matsui, Y., Suzuki, A. & Sakai, K. Effects of nitrate and phosphate availability on the tissues and carbonate skeleton of scleractinian corals. Mar. Ecol. Prog. Ser. 570, 101–112 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    74.Siboni, N., Ben-Dov, E., Sivan, A. & Kushmaro, A. Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ. Microbiol. 10, 2979–2990 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Rädecker, N., Pogoreutz, C., Voolstra, C. R., Wiedenmann, J. & Wild, C. Nitrogen cycling in corals: the key to understanding holobiont functioning?. Trends Microbiol. 23, 490–497 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    76.Kopp, C. et al. Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. MBio 4, e00052-e113 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Meyer, J. L., Schultz, E. T. & Helfman, G. S. Fish schools: an asset to corals. Science 220, 1047–1049 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Fong, C. R. & Fong, P. Nutrient fluctuations in marine systems: press versus pulse nutrient subsidies affect producer competition and diversity in estuaries and coral reefs. Estuaries Coasts 41, 421–429 (2018).CAS 
    Article 

    Google Scholar 
    79.Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Animal pee in the sea: consumer-mediated nutrient dynamics in the world’s changing oceans. Glob. Change Biol. 23, 2166–2178 (2017).ADS 
    Article 

    Google Scholar 
    80.Gil, M. A. Unity through nonlinearity: a unimodal coral–nutrient interaction. Ecology 94, 1871–1877 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.McAuley, P. J. & Smith, V. J. Effect of diel photoperiod on nitrogen metabolism of cultured and symbiotic zooxanthellae. Mar. Biol. 123, 145–152 (1995).CAS 
    Article 

    Google Scholar 
    82.Bruggeman, F. J., Boogerd, F. C. & Westerhoff, H. V. The multifarious short-term regulation of ammonium assimilation of Escherichia coli: dissection using an in silico replica. FEBS J. 272, 1965–1985 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.D’Angelo, C. & Wiedenmann, J. Impacts of nutrient enrichment on coral reefs: new perspectives and implications for coastal management and reef survival. Curr. Opin. Environ. Sustain. 7, 82–93 (2014).Article 

    Google Scholar 
    84.Vega Thurber, R. L. et al. Chronic nutrient enrichment increases prevalence and severity of coral disease and bleaching. Glob. Change Biol. 20, 544–554 (2014).ADS 
    Article 

    Google Scholar  More

  • in

    Rapid evolution of bacterial mutualism in the plant rhizosphere

    Bacterial strain and growth conditionsWe used Pseudomonas protegens (formerly Pseudomonas fluorescens)55 CHA0 as a model strain, which was initially isolated from tobacco roots56. The strain was chromosomally tagged with GFP and a kanamycin resistance cassette to enable specific tracking of the strain and detection of contaminations19. This bacterium has the genetic potential to produce various bioactive metabolites, including the plant hormone indole-3-acetic acid (IAA), antimicrobial compounds and lytic enzymes25. Prior to the experiment, bacteria were grown for 48 h on a King′s medium B57 (KB) agar plate supplemented with 50 µg ml−1 kanamycin, a single colony was randomly picked and grown for 12 h in KB at 28 °C with agitation. The cell culture was then washed for three times in 10 mM MgSO4 and adjusted to 107 cells ml−1 and used as inoculant for all plants. This inoculant was also stored at −80 °C as frozen ancestral stock, from which ʻAncestorʼ isolates were picked in later experiments.Host plant and growth conditionsWe used Arabidopsis thaliana ecotype Col-0 as a model host plant. Surface-sterilized seeds were first sown in Petri dishes with agar-solidified (1.5% agar (w/v)) modified Hoagland′s medium: (KNO3 (3 mM), MgSO4 (0.5 mM), CaCl2 (1.5 mM), K2SO4 (1.5 mM), NaH2PO4 (1.5 mM), H3BO3 (25 μM), MnSO4 (1 μM), ZnSO4 (0.5 μM), (NH4)6Mo7O24 (0.05 μM), CuSO4 (0.3 μM), MES (2.5 mM) and 50 μM Fe(III)EDTA, pH = 5.8) and stratified for 2 days at 4 °C after Petri dishes were positioned vertically and transferred to a growth chamber (20 °C, 10 h light/14 h dark, light intensity 100 μmol m−2 s−1). After 2 weeks of incubation, two seedlings were transferred to closed and sterile ECO2 boxes (http://www.eco2box.com/ov80xxl_nl.htm) for selection experiment. The ECO2 boxes were filled with 260 g of dry, carbon-free silver sand that was previously washed with MilliQ water to remove dissolvable chemical elements and heated to 550 °C for 24 h to remove remaining organic material. Prior to transplantation the sand was amended with 13 ml of modified Hoagland medium.Design of the selection experimentThe selection experiment was conducted in a gnotobiotic system to remove confounding effects that may emerge as a result of competitive interactions with other microorganisms, and to place the focus on plant-mediated selective pressures. Moreover, we allowed only the bacteria to evolve during the experiment and used new clonal plants at every bacterial transfer. We set up five independent plant–bacterium replicate lines, which were grown for six independent plant growth cycles (see Fig. S1 for an overview of the experimental design). The experiment was started by inoculating 106 cells of the stock P. protegens CHA0 culture (from here on abbreviated as ʻancestorʼ) into the rhizosphere of 2-week-old A. thaliana seedlings growing in sterile silver sand within ECO2 boxes (two plants per replicate selection line). Inoculated plants were then grown for 4 weeks (20 °C, 10 h light/14 h dark, light intensity 100 μmol m−2 s−1) after which the plant growth cycle was terminated and root-associated bacteria were harvested by placing the roots of both plants into a 1.5 ml Eppendorf tubes filled with 1 ml 10 mM MgSO4 and two glass beads. Rhizosphere bacteria were suspended into the liquid using a TissueLyser II at a frequency of 20 s−1 for 1 min after which bacterial cell densities were determined using flow cytometry (BD Accuri™ C6 Plus, thresholds for FSC: 2000, SSC: 8000). After this, 106 cells were inoculated to the rhizosphere of new A. thaliana plants to initiate the next plant growth cycle. Possible contaminations were checked by plating the suspension on 3 g l−1 tryptic soy agar (TSA) plates and it was verified that all colonies carried the GFP marker gene, as observed under UV light.Bacterial life-history traits measurementsIndividual bacterial colonies were isolated from all replicate plant selection lines for life-history measurements at the end of the second, fourth and sixth plant growth cycle by dilution plating the rhizosphere suspension on 3 g l−1 TSA plates. After incubation at 28 °C for 24 h, 16 colonies were randomly picked from each replicate selection lines resulting in a total of 240 evolved and 16 ancestral colonies. All these colonies were characterized for a set of key bacterial life-history traits representative of growth, stress resistance and traits linked with plant–microbe interactions.

    a.

    Bacterial growth yield in KB medium
    All the bacterial isolates were grown in 96-well plates with 160 µl 1/3 strength liquid KB, at 20 °C without shaking. Bacterial yield was determined as the maximum optical density at 600 nm after 3 days of growth using a spectrophotometer (SPECTROstar Nano).

    b.

    Bacterial stress resistance
    We measured bacterial resistance to a range of different stresses using various 96-well microplate assays. Abiotic stress resistance was determined by growing bacteria in 160 µl of 1 g l−1 TSB containing 0.0025% H2O2 (oxidative stress), 15% polyethylene glycol (PEG)−6000 (water potential stress) or 2% NaCl (salt stress). We used resistance to antibiotics commonly produced by rhizosphere microorganisms as indicator of biotic stress resistance. Antibiotic resistance was tested in 160 µl of 1 g l−1 TSB supplemented with 1 µg ml−1 streptomycin, 1 µg ml−1 tetracycline, or 5 µg ml−1 penicillin, respectively. Bacterial growth were determined after 3 days of growth at 20 °C without shaking as optical density at 600 nm.

    c.

    Traits linked with plant–microbe interactions
    P. protegens CHA0 harbours several traits that are linked to plant growth including production of antibiotics and plant hormones. To assess these traits, we grew each bacterial colony in 96-well plates containing 160 µl of 1/3 strength liquid KB per well at 20 °C without shaking for 72 h. Cell-free supernatants were obtained by filter sterilization (0.22 µm) using Multiscreen HTS 96-well filtration plates (1000 × g, 30 min), which were used to measure the production of the plant hormone auxin (Indole-3-acetic acid (IAA)), iron-chelating siderophores and proteolytic activity. Furthermore, we also measured antifungal and antibacterial activity of all colonies.

    IAA detectionThe production of the plant hormone auxin was determined with a colorimetric test58. Briefly, 30 µl P. protegens CHA0 cell-free filtrate was incubated with 30 µl R1 reagent (12 g l−1 FeCl3, 7.9 M H2SO4) for 12 h in the dark and optical density read at 530 nm of the colorimetric complex was used as a measurement of IAA concentration.Siderophore activityIron-chelating ability was measured as a proxy for siderophore production59. To this end, 100 µl of P. protegens CHA0 cell-free filtrate was mixed with 100 µl of modified CAS solution (with 0.15 mM FeCl3) and optical density read at 630 nm after 3 h of incubation was used as a proxy of siderophore production. The iron-chelating ability was calculated based on the standard curve based on modified CAS assay solution with a range of iron concentration (0, 0.0015, 0.003, 0.006, 0.009, 0.012, 0.015 mM FeCl3).Proteolytic activityThe proteolytic activity assay we used was adapted from Smeltzer et al.60. Briefly, 15 µl of P. protegens CHA0 cell-free filtrate was incubated with 25 µl of azocasein (2% w/v in 50 mM Tris-HCl pH 8.0) at 40 °C for 24 h. One hundred and twenty-five of 10% w/v cold trichloroacetic acid (TCA) was added to precipitate superfluous azocasein, and then 100 µl supernatant was neutralized with 100 µl of 1 M NaOH after centrifugation at 5000g for 30 min. Optical density read at 440 nm was used as a proxy of exoprotease activity.Tryptophan side chain oxidase (TSO) activityTSO activity, an indicator of quorum sensing activity in P. protegens CHA0, was measured based on an modified established colorimetric assay61: Three-day-old bacterial cultures grown in 1/3 strength liquid KB were mixed at a 1:1 ratio with a reagent solution (5 g l−1 SDS, 37.6 g l−1 glycine 2.04 l−1 g tryptophan, pH 3.0) and TSO activity was measured as optical density at 600 nm after overnight incubation.Biofilm formationWe quantified bacterial biofilm formation using a standard protocol62. Briefly, bacteria were grown at 20 °C for 72 h in 160 µl 1 g l−1 TSB in a 96-well microtiter plate with TSP lid (TSP, NUNC, Roskilde, Denmark). Planktonic cells were removed by immersing the lid with pegs three times in phosphate-buffered saline solution (PBS). Subsequently, the biofilm on the pegs was stained for 20 min in 160 µl 1% crystal violet solution. Pegs were washed five times in PBS after which the crystal violet was extracted for 20 min from the biofilm in a new 96-well microtiter plate containing 200 µl 96% ethanol per well. Biofilm formation was defined as the optical density at 590 nm of the ethanol extracted crystal violet63.Inhibition of other microorganismsAntimicrobial activity was defined as the relative growth of the target organism in P. protegens supernatant compared to the control treatment. Antifungal activity of the cell-free supernatant was assessed against the ascomycete Verticillium dahliae. The fungus was grown on potato dextrose agar at 28 °C for 4 days, after which plugs of fungal mycelium were incubated in potato dextrose broth medium at 28 °C and gentle shaking for 5 days. Fungal spores were collected by filtering out the mycelium from this culture over glass wool. Subsequently, spores were washed and resuspended in water and the OD595 of the suspension was adjusted to 1. Five microlitres of this spore suspension was then inoculated with 15 µl P. protegens CHA0 cell-free filtrate and incubated in 160 µl of 1 g l−1 PDB medium for 2 days at 20 °C in 96-well plates. Fungal growth was measured as optical density at 595 nm after 2 days of growth and contrasted with the growth in the control treatment (PDB medium without P. protegens supernatant). Antibacterial activity was determined using the plant pathogen Ralstonia solanacearum as a target organism. R. solanacearum was grown in 160 µl of 1 g l−1 TSB medium supplemented with 15 μl of P. protegens CHA0 cell-free filtrate or 15 µl of 1/3 strength liquid KB as a control for 2 days at 20 °C. R. solanacearum growth was measured as optical density at 600 nm.Determining changes in P. protegens CHA0 interactions with A. thaliana after the selection experimentBased on the life-history trait measurements, five distinct bacterial phenotypes were identified using K-means clustering analysis (Fig. S2). In order to assess whether phenotypic changes reflected shifts in the strength and type of plant–bacterium interaction, we chose five isolates from each bacterial phenotype group representing each replicate selection line and five ancestral isolates for further measurements (a total of 30 isolates, Table S2).Effects of ancestor and evolved bacteria on plant performanceFor each isolate we measured root colonizing ability and impact on plant performance. All 30 bacterial isolates were incubated overnight in 1/3 KB strength liquid at 20 °C. The culture was centrifuged twice for 5 min at 5000 × g and the pellet was washed and finally resuspended in 10 mM MgSO4. The resulting suspension was adjusted to an OD600 of 0.01 for each strain64. Ten microlitres of the bacterial suspension (or 10 mM MgSO4 as a control) was applied to the roots of three 10-day old sterile Arabidopsis thaliana Col-0 seedlings (excluding 2 days of stratification at 4 °C) grown on vertically positioned Petri dishes with agar-solidified (1.5% agar (w/v)) modified Hoagland′s medium (n = 3 biological plant replicates, each containing 3 seedlings). Plants were grown for 14 days before harvesting. Plants were photographed before and 14 days after bacterial inoculation.Bacterial effects on plant health were quantified as leaf ʻgreennessʼ as the presence of ancestral strain was observed to lead to bleaching and loss of chlorophyll in A. thaliana leaves. The ʻgreennessʼ was quantified from photographs by measuring the number of green pixels. To this end, photographs were first transformed in batch using Adobe Photoshop 2021 by sequentially selecting only green areas followed by thresholding balancing green tissue over background noise (Level 80). This resulted in black-and-white images for further analysis, and the mean number of white pixels per fixed-sized region-of-interest of the aboveground tissue was subsequently determined as ʻgreennessʼ using ImageJ (version 1.50i). The numbers of lateral roots and the primary root length were also measured using ImageJ. The root morphology data measured at the end of the experiment was normalized with the data collected at the time of inoculation for each individual seedling.To determine shoot biomass, the rosette of each plant was separated from the root system with a razor blade and weighted. The roots were placed into a pre-weighted 1.5 ml Eppendorf tubes to quantify the root biomass. To determine the bacterial abundance per plant, these tubes were subsequently filled with 1 ml 10 mM MgSO4 buffer solution and two glass beads. The rhizosphere bacteria were suspended into the buffer solution using a TissueLyser II at a frequency of 20 s−1 for 1 min after which bacterial densities were determined using flow cytometry (BD Accuri™ C6 Plus, thresholds for FSC: 2000, SSC: 8000). Shoot biomass, root biomass, root length and number of lateral roots were used in a principal component analysis (PCA) to calculate an overall impact of the bacteria on plant performance (Fig. 2e). The first principal component (PC1) explained 79.9% of the variation and was normalized against the control treatment to be used as a proxy of ʻPlant performanceʼ in which positive values reflect plant growth promotion and negative values plant growth inhibition.Root derived carbon source utilizationTo measure changes in bacterial growth on potential root derived carbon sources, we measured the growth of all 256 isolates using modified Ornston and Stanier (OS) minimal medium65 supplemented with single carbon sources at a final concentration of 0.5 g l−1 in 96-well plates containing 160 µl carbon supplemented OS medium per well. The following carbon sources were selected based on their relatively high abundance in Arabidopsis root exudates21: alanine, arabinose, butyrolactam, fructose, galactose, glucose, glycerol, glycine, lactic acid, putrescine, serine, succinic acid, threonine and valine. Bacterial growth was determined by measuring optical density at 600 nm after 3 days incubation at 20 °C.GUS histochemical staining assay and bacterial growth under scopoletin stressTo investigate effects of the ancestor and evolved strains of P. protegens CHA0 on expression of MYB72, we applied a GUS histochemical staining assay to the 30 selected isolates (Table S2). MYB72 is a transcription factor involved in production of the coumarin scopoletin in Arabidopsis roots and specific rhizobacteria can upregulate expression of MYB72 in the roots66. Scopoletin is an iron-mobilizing phenolic compound with selective antimicrobial activity22. Seedlings of the A. thaliana MYB72pro:GFP-GUS24 reporter line were prepared as described above. Seven-day-old seedlings were inoculated directly below the hypocotyls with 10 μl of a bacterial suspension (OD660 = 0.1)24. At 2 days after inoculation, the roots were separated from the shoots and washed in MilliQ water (Milliport Corp., Bedford, MA) to remove all the adhered bacteria. GUS staining of the roots was performed in 12-well microtiter plates where each well contained roots of 5–6 seedlings and 1 ml of freshly prepared GUS substrate solution (50 mM sodium phosphate with a pH at 7, 10 mM EDTA, 0.5 mM K4[Fe(CN)6], 0.5 mM K3[Fe(CN)6], 0.5 mM X-Gluc, and 0.01% Silwet L-77)67. Plates were incubated in the dark at room temperature for 16 h. The roots were fixed overnight in 1 ml ethanol:acetic acid (3:1 v/v) solution at 4 °C and transferred to 75% ethanol. Then the pictures of each microtiter plates were taken, and GUS activity was quantified by counting the number of blue pixels in each well of the microtiter plates using image analysis in ImageJ (version 1.52t). To assess the effects of scopoletin on ancestral and evolved P. protegens CHA0 isolates, we applied a sensitivity assay to the 30 selected isolates (Table S2). In brief, growth of bacterial isolates was measured in 1 g l−1 TSB medium (160 µl) supplemented with scopoletin at final concentrations of 0 µM (control), 500 µM, 1000 µM, and 2 mM using optical density at 600 nm after 72 h incubation at 20 °C without shaking in 96-well microtiter plates. Maximal effect (Emax) of scopoletin was calculated via R package ʻGRmetricsʼ68 as an indication of scopoletin tolerance.Whole-genome sequencingAll 30 isolated phenotypes were whole genome sequenced to identify possible mutations and affected genes. To this end, isolates were cultured overnight at 28 °C in 1/3 strength liquid KB. Chromosomal DNA was isolated from each culture using the GenElute™ Bacterial Genomic DNA Kit Protocol (NA2100). DNA samples were sheared on a Covaris E-220 Focused-ultrasonicator and sheared DNA was then used to prepare Illumina sequencing libraries with the NEBNext® Ultra™ DNA Library Prep Kit (New England Biolabs. France) and the NEBNext® Multiplex Oligos for Illumina® (96 Index Primers). The final libraries were sequenced in multiplex on the NextSeq 500 platform (2 × 75 bp paired-end) by the Utrecht Sequencing Facility (http://www.useq.nl) yielding between 1.0 and 6.4 million reads per sample equivalent to ~10–70-fold coverage (based on comparison with the original 6.8 Mbp reference genome NCBI GenBank: CP003190.1).Variant calling analysisWe first constructed an updated reference genome of P. protegens CHA0, carrying the GFP marker gene on its chromosome, from the ancestral strain using the A5 pipeline with default parameters69. The input dataset for this sample consisted of 3,1M reads and totals an approximate 34-fold coverage. The size of the updated reference genome is 6.8 Mbp, with a G + C content of 63.4%, and it comprises 80 scaffolds, with a N50 value of 343 kbp. We subsequently used PROKKA70 (version 1.12; https://github.com/tseemann/prokka) for full annotation of the updated reference genome, and this resulted in the identification of 6147 genes. The updated genome is deposited in NCBI GenBank with following reference: RCSR00000000.1.Having established the ancestral genome sequence, we subsequently used Snippy (version 3.2-dev; https://github.com/tseemann/snippy) to identify and functionally annotate single-nucleotide polymorphisms and small insertions and deletions (indels) for each individual strain. In addition, we investigated the breadth of coverage for each gene per sample with BedTools71 to identify genes with large insertions or deletions. An overview of the polymorphisms is shown in Supplementary Table S3. Raw sequencing data for this study are deposited at the NCBI database under BioProject PRJNA473919.Relative competitive fitness of gac mutants measured in vivo and in vitroThe relative competitive fitness of selected gac mutants was measured in direct competition with their direct ancestors both in vivo in the rhizosphere of A. thaliana and in vitro in different standard culture media. Relative fitness was measured as deviation from initial 1:1 ratio of bacterial clone pairs based on PCR-based high-resolution melting profile (RQ-HRM) analysis. Three pairs of isolates were selected: (A) evolved gacA ID 242 (genotype oafAY335X ∙ RS17350A77A.fsX14 ∙ gacAD49Y) and its direct ancestral genotype 133 (genotype oafAY335X ∙ RS17350A77A.fsX14) from evolutionary line 1; (B) evolved gacA ID 220 (genotype galEV32M ∙ accCE413K ∙ gacAD54Y) and its direct ancestral genotype 28 (genotype galEV32M ∙ accCE413K) from line 2; (c) evolved gacS ID 222 (genotype oafAK338S.fsX18 ∙ gacSG27D) and its direct ancestral genotype 66 (genotype oafAK338S.fsX18) from line 3. Bacterial isolates were first grown overnight in KB medium at 28 °C, centrifuged at 5000g for 10 min and the pellet resuspended in 10 mM MgSO4. This washing procedure was repeated twice. The resulting bacterial suspensions were diluted to OD600 = 0.05. The initial inoculum for the competition assays was then generated by mixing equal volumes of evolved and ancestral competitors in a ratio of 1:1.Measuring competitive fitness in A. thaliana rhizosphereThis assay was performed on the roots of 10-day old A. thaliana seedlings grown on full strength Hoagland agar plates, which were prepared as described earlier. Twenty microlitres of the initial inoculum, containing a total of 106 bacterial cells, was inoculated on to the root–shoot junction of each seedling. After 14 days of growth, bacterial populations were isolated from the roots and stored at −80 °C in 42.5% glycerol for relative abundance measurements.Measuring competitive fitness in culture mediaCompetition assays were also performed in three commonly used nutrient-rich growth media: KB, LB and TSB. KB contained 20 g proteose peptone, 1.5 g MgSO4.7H2O, 1.2 g KH2PO4 and 10 g glycerol per litre and the pH was adjusted to 7.3 ± 0.2. TSB contained 30 g tryptic soy broth per litre and pH was adjusted to 7.3 ± 0.2. LB contained 10 g peptone, 5 g yeast extract and 5 g NaCl per litre. Twenty microlitres inoculum of competing strains, containing about 106 bacterial cells, were added into wells containing 140 μl fresh medium in a 96-well plate. The microplates were incubated at 28 °C without shaking for 48 after 80 μl sample was harvested and stored at −80 °C in 42.5% glycerol from each well for relative abundance measurements.RQ-HRM assay for quantifying changes in genotype frequencies after competitionWe used a high-resolution melting (HRM) curve profile assay with integrated LunaProbes to quantify the ratio of mutant to wild-type genotypes72,73,74. The probes and primers used in this study are listed in Table S4. Primers were designed using Primer3. Probes were designed with the single-nucleotide polymorphism (SNP) located in the middle of the sequence, and the 3′ end was blocked by carbon spacer C3. The primer asymmetry was set to 2:1 (excess primer: limiting primer) in all cases. Pre-PCR was performed in a 10-μl reaction system, with 0.25 μM excess primer, 0.125 μM limiting primer, 0.25 μM probe, 0.5 μl bacterial sample culture (100-fold diluted saved sample, OD600 is about 0.01), 1× LightScanner Master Mix (BioFire Defense). DMSO with the final concentration 5% was supplemented in all reactions to ensure the targeted melting domains are within the detection limit of the LightScanner (Idaho Technology Inc.). Finally, MQ water was used to supplement up to 10 μl. A 96-well black microtiter plate with white wells was used to minimize background fluorescence. Before amplification, 25 μl mineral oil was loaded in each well to prevent evaporation, and the plate was covered with a foil seal to prevent the degradation of fluorescent molecules. Amplification was initiated by a holding at 95 °C for 3 min, followed by 55 cycles of denaturation at 95 °C for 30 s, annealing at 60 °C for 30 s and extension at 72 °C for 30 s and then kept at 72 °C for 10 min. After amplification, samples were heated in a ThermalCycler (Bio-Rad) shortly to 95 °C for 30 s to denature all double-stranded structures followed by a rapid cooling to 25 °C for 30 s to facilitate successful hybridization between probes and the target strands. The plate was then transferred to a LightScanner (Idaho Technology Inc.). Melting profiles of each well were collected by monitoring the continuous loss of fluorescence with a steady increase of the temperature from 35 to 97 °C with a ramp rate of 0.1 °C/s. The relative quantification was based on the negative first derivative plots using software MATLAB. The areas of probe-target duplexes melting peaks were auto-calculated by ʻAutoFit Peaks I Residualsʼ function in software PeakFit (SeaSolve Software Inc.). The mutant frequency X was calculated using the formula shown below:$$X=frac{{rm{Area}}_{{mathrm{mutant}}}}{{{{mathrm{{Area}}}}}_{{mathrm{{mutant}}}}+{{rm{Area}}}_{{mathrm{{WT}}}}}$$
    (1)
    To validate the RQ-HRM method, standard curves were generated by measuring mixed samples with known proportions of mutant templates: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100%. Measurements for each sample were done in triplicate. Linear regression formula of each mutant between actual frequencies and measured frequencies are shown in Fig. S7. The high R2 values, and nearly equal to 1 slope values of these equations, confirmed that the RQ-HRM method can accurately detect mutantsʼ frequency in a mixed population.The relative fitness of the evolved strains was calculated according to previous studies using the following equation75,76:$${mathrm{{relative}}; {mathrm{{fitness}}}}(r)=frac{{{{X}}}_{1}(1-{{{X}}}_{0})}{{{{X}}}_{0}(1-{{{X}}}_{1})}$$
    (2)
    where X0 is the initial mutant frequency; (1−X0) the initial ancestor frequency; X1 the final mutant frequency; and (1−X1) is the final ancestor frequency.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Effects of thinning and understory removal on the soil water-holding capacity in Pinus massoniana plantations

    1.Wen, X. F. et al. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agric. For. Meteorol. 137, 166–175 (2006).ADS 
    Article 

    Google Scholar 
    2.Meißner, M., Köhler, M., Schwendenmann, L., Hölscher, D. & Dyckmans, J. Soil water uptake by trees using water stable isotopes (δ2H and δ18O)a method test regarding soil moisture, texture and carbonate. Plant Soil 376, 327–335 (2014).Article 
    CAS 

    Google Scholar 
    3.Sprenger, M. et al. Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water. Hydrol. Process. 32, 1720–1737 (2018).ADS 
    Article 

    Google Scholar 
    4.Zhang, B. B. et al. Higher soil capacity of intercepting heavy rainfall in mixed stands than in pure stands in riparian forests. Sci. Total Environ. 658, 1514–1522 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Lee, K. S., Kim, J. M., Lee, D. R., Kim, Y. & Lee, D. Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes. J. Hydrol. 345, 199–211 (2007).ADS 
    Article 

    Google Scholar 
    6.Lozano-Parra, J., Schnabel, S. & Ceballos-Barbancho, A. The role of vegetation covers on soil wetting processes at rainfall event scale in scattered tree woodland of Mediterranean climate. J. Hydrol. 529, 951–961 (2015).ADS 
    Article 

    Google Scholar 
    7.Wan, H. & Liu, W. G. An isotope study (δ18O and δD) of water movements on the Loess Plateau of China in arid and semiarid climates. Ecol. Eng. 93, 226–233 (2016).Article 

    Google Scholar 
    8.Liu, Z. Q., Yu, X. X. & Jia, G. D. Water uptake by coniferous and broad-leaved forest in a rocky mountainous area of northern China. Agric. For. Meteorol. 265, 381–389 (2019).ADS 
    Article 

    Google Scholar 
    9.Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Dai, E. F., Wang, X. L., Zhu, J. J. & Xi, W. M. Quantifying ecosystem service trade-offs for plantation forest management to benefit provisioning and regulating services. Ecol. Evol. 7, 7807–7821 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Ontl, T. A. et al. Adaptation pathways: Ecoregion and land ownership influences on climate adaptation decision-making in forest management. Clim. Chang. 146, 75–88 (2017).ADS 
    Article 

    Google Scholar 
    12.Di Prima, S. et al. Impacts of thinning of a Mediterranean oak forest on soil properties influencing water infiltration. J. Hydrol. Hydromech. 65, 276–286 (2017).Article 
    CAS 

    Google Scholar 
    13.Wang, Z., He, Q. H., Hu, B., Pang, X. Y. & Bao, W. K. Gap thinning improves soil water content, changes the vertical water distribution, and decreases the fluctuation. Can. J. For. Res. 48, 1042–1048 (2018).CAS 
    Article 

    Google Scholar 
    14.Del Campo, A. D. et al. Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff. For. Ecol. Manag. 438, 163–175 (2019).Article 

    Google Scholar 
    15.He, Z. B. et al. Responses of soil organic carbon, soil respiration, and associated soil properties to long-term thinning in a semiarid spruce plantation in northwestern China. Land Degrad. Dev. 29, 4387–4396 (2018).Article 

    Google Scholar 
    16.Giuggiola, A., Zweifel, R., Feichtinger, L., M., Vollenweider, P. & Bugmann, H. Competition for water in a xeric forest ecosystem—Effects of understory removal on soil micro-climate, growth and physiology of dominant Scots pine trees. For. Ecol. Manag. 409, 241–249 (2018).17.Prévosto, B., Helluy, M., Gavinet, J., Fernandez, C. & Balandier, P. Microclimate in Mediterranean pine forests: What is the influence of the shrub layer? Agric. For. Meteorol. 282–283, 107856 (2020).18.Sohn, J. A., Saha, S. & Bauhus, J. Potential of forest thinning to mitigate drought stress: A meta-analysis. For. Ecol. Manag. 380, 261–273 (2016).Article 

    Google Scholar 
    19.Vilà-Cabrera, A., Coll, L., Martínez-Vilalta, J. & Retana, J. Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. For. Ecol. Manag. 407, 16–22 (2018).Article 

    Google Scholar 
    20.Bréda, N., Granier, A. & Aussenac, G. Effects of thinning on soil and tree water relations, transpiration and growth in an oak forest (Quercus petraea (Matt.) Liebl.). Tree Physiol. 15, 295–306 (1995).21.Martínez, G. G., Pachepsky, Y. A. & Vereecken, H. Effect of soil hydraulic properties on the relationship between the spatial mean and variability of soil moisture. J. Hydrol. 516, 154–160 (2014).ADS 
    Article 

    Google Scholar 
    22.Buchanan, B. P. et al. Evaluating topographic wetness indices across central New York agricultural landscapes. Hydrol. Earth Syst. Sci. 18, 3279–3299 (2014).ADS 
    Article 

    Google Scholar 
    23.Gwak, Y. & Kim, S. Factors affecting soil moisture spatial variability for a humid forest hillslope. Hydrol. Process. 31, 431–445 (2016).ADS 
    Article 

    Google Scholar 
    24.Knighton, J. et al. Seasonal and topographic variations in ecohydrological separation within a small, temperate, snow-influenced catchment. Water Resour. Res. 55, 6417–6435 (2019).ADS 
    Article 

    Google Scholar 
    25.Metzger, J. C. et al. Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrol. Process. 31, 3783–3795 (2017).ADS 
    Article 

    Google Scholar 
    26.Hasselquist, N. J., Benegas, L., Roupsard, O., Malmer, A. & Ilstedt, U. Canopy cover effects on local soil water dynamics in a tropical agroforestry system: Evaporation drives soil water isotopic enrichment. Hydrol. Process. 32, 994–1004 (2018).ADS 
    Article 

    Google Scholar 
    27.Heiskanen, J. & Mäkitalo, K. Soil water-retention characteristics of Scots pine and Norway spruce forest sites in Finnish Lapland. For. Ecol. Manag. 162, 137–152 (2002).Article 

    Google Scholar 
    28.Geris, J., Tetzlaff, D., Mcdonnell, J. & Soulsby, C. The relative role of soil type and tree cover on water storage and transmission in northern headwater catchments. Hydrol. Process. 29, 1844–1860 (2015).ADS 
    Article 

    Google Scholar 
    29.Sun, L. et al. Tracing the soil water response to autumn rainfall in different land uses at multi-day timescale in a subtropical zone. CATENA 180, 355–364 (2019).CAS 
    Article 

    Google Scholar 
    30.Del Campo, A. D., González-Sanchis, M., Lidón, A., Ceacero, C. J. & García-Prats, A. Rainfall partitioning after thinning in two low-biomass semiarid forests: Impact of meteorological variables and forest structure on the effectiveness of water-oriented treatments. J. Hydrol. 565, 74–86 (2018).Article 

    Google Scholar 
    31.Cabon, A. et al. Thinning increases tree growth by delaying drought-induced growth cessation in a Mediterranean evergreen oak coppice. For. Ecol. Manag. 409, 333–342 (2018).Article 

    Google Scholar 
    32.Xiong, Y. M., Xia, H. P., Li, Z. A., Cai, X. A. & Fu, S. L. Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant Soil 304, 179–188 (2008).CAS 
    Article 

    Google Scholar 
    33.Su, W. H., Zhu, X. W., Fan, S. H., Zeng, X. L. & Liu, G. L. Review of effects of harvesting on forest ecosystem. For. Resour. Manag. 3, 35–40 (2017).
    Google Scholar 
    34.Nijzink, R. et al. The evolution of root-zone moisture capacities after deforestation: A step towards hydrological predictions under change?. Hydrol. Earth Syst. Sci. 20, 4775–4799 (2016).ADS 
    Article 

    Google Scholar 
    35.Xiao, W. F. et al. Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the Three Gorges Reservoir Area, China. PLoS One 9, e101890 (2014).36.Shen, Y. F. et al. Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning. Sci. Rep. 8, 573 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Lei, L. et al. Thinning but not understory removal increased heterotrophic respiration and total soil respiration in Pinus massoniana stands. Sci. Total Environ. 621, 1360–1369 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    38.Wang, X. R. et al. Short-terms effects of tending thinnng on soil labile organic carbon in Pinus massoniana stands. Chin. J. Ecol. 40, 1049–1061 (2021).
    Google Scholar 
    39.Zhao, P., Tang, X. Y., Zhao, P., Zhang, W. & Tang, J. L. Mixing of event and pre-event water in a shallow Entisol in sloping farmland based on isotopic and hydrometric measurements, SW China. Hydrol. Process. 30, 3478–3493 (2016).ADS 
    Article 

    Google Scholar 
    40.Lin, G. H., Phillips, S. L. & Ehleringer, J. R. Monsoonal precipitation responses of shrubs in a cold desert community on Colorado Plateau. Oecologia 106, 8–17 (1996).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.West, A. G., Patrickson, S. J. & Ehleringer, J. R. Water extraction times for plant and soil materials used in stable isotope analysis. Rapid Commun. Mass Sp. 20, 1317–1321 (2006).CAS 
    Article 

    Google Scholar 
    42.Tetzlaff, D., Birkel, C., Dick, J., Geris, J. & Soulsby, C. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions. Water Resour. Res. 50, 969–985 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Liu, Y. et al. Variations of soil water isotopes and effective contribution times of precipitation and throughfall to alpine soil water, in Wolong Nature Reserve, China. CATENA 126, 201–208 (2015).Article 

    Google Scholar 
    44.Zhang, Z., Jin, G. Q., Zhou, Z. C. & Sun, L. S. Biomass allocation differences with Pinus massoniana in Guangdong and Hubei provenances. J. Zhejiang A&F Univ. 36, 271–278 (2019).
    Google Scholar 
    45.Özcan, M., GÖkbulak, F. & Hizal, A. Exclosure effects on recovery of selected soil properties in a mixed broadleaf forest recreation site. Land Degrad. Dev. 24, 266–276 (2013).46.Fan, Y. et al. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 5, 19–31 (2016).ADS 
    Article 

    Google Scholar 
    47.Xu, Q., Liu, S. R., Wan, X. C., Jiang, C. Q. & Wang, J. X. Effects of rainfall on soil moisture and water movement in a subalpine dark coniferous forest in southwestern China. Hydrol. Process. 26, 3800–3809 (2012).ADS 
    Article 

    Google Scholar 
    48.Sprenger, M., Leistert, H., Gimbel, K. & Weiler, M. Illuminating hydrological processes at the soil-vegetation-atmosphere interface with water stable isotopes. Rev. Geophys. 54, 674–704 (2016).ADS 
    Article 

    Google Scholar 
    49.Zheng, W. B., Wang, S. Q., Sprenger, M., Liu, B. X. & Cao, J. S. Response of soil water movement and groundwater recharge to extreme precipitation in a headwater catchment in the North China Plain. J. Hydrol. 576, 466–477 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Hsueh, Y. H., Allen, S. T. & Keim, R. F. Fine-scale spatial variability of throughfall amount and isotopic composition under a hardwood forest canopy. Hydrol. Process. 30, 1796–1803 (2016).ADS 
    Article 

    Google Scholar 
    51.Allen, S. T., Keim, R. F., Barnard, H. R., Mcdonnell, J. J. & Renée Brooks, J. The role of stable isotopes in understanding rainfall interception processes: A review. Wires. Water 4, e1187 (2017).52.Shaw, S. B., McHardy, T. M. & Riha, S. J. Evaluating the influence of watershed moisture storage on variations in base flow recession rates during prolonged rain-free periods in medium-sized catchments in New York and Illinois, USA. Water Resour. Res. 49, 6022–6028 (2013).ADS 
    Article 

    Google Scholar 
    53.Zhao, J., Xu, Z. & Singh, V. P. Estimation of root zone storage capacity at the catchment scale using improved mass curve technique. J. Hydrol. 540, 959–972 (2016).ADS 
    Article 

    Google Scholar 
    54.Zhang, Y. K. & Schilling, K. E. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater recharge: A field observation and analysis. J. Hydrol. 319, 328–338 (2006).ADS 
    Article 

    Google Scholar 
    55.Deng, L., Yan, W. M., Zhang, Y. W. & Shangguan, Z. P. Severe depletion of soil moisture following land-use changes for ecological restoration: Evidence from northern China. For. Ecol. Manag. 366, 1–10 (2016).Article 

    Google Scholar 
    56.Imaizumi, F., Sidle, R. C. & Kamei, R. Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surf. Proc. Land 33, 827–840 (2010).ADS 
    Article 

    Google Scholar 
    57.Nyssen, J. et al. Impact of soil and water conservation measures on catchment hydrological response-a case in north Ethiopia. Hydrol. Process. 24, 1880–1895 (2010).ADS 
    Article 

    Google Scholar 
    58.Zheng, H., Gao, J., Teng, Y., Feng, C. & Tian, M. Temporal variations in soil moisture for three typical vegetation types in Inner Mongolia, Northern China. Plos One 10, e0118964 (2015).59.Oswald, C. J., Richardson, M. C. & Branfireun, B. A. Water storage dynamics and runoff response of a boreal Shield headwater catchment. Hydrol. Process. 25, 3042–3060 (2011).
    Google Scholar 
    60.De Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C. & Savenije, H. H. Influence of soil and climate on root zone storage capacity. Water Resour. Res. 52, 2009–2024 (2016).ADS 
    Article 

    Google Scholar 
    61.Zhou, X. N. & Lin, H. M. Effect on soil physical and chemical properties by different harvesting methods. Sci. Silva. Sin. 34, 18–25 (1998).
    Google Scholar 
    62.Meier, I. C., Knutzen, F., Eder, L. M., Müller-Haubold, H. & Leuschner, C. The deep root system of Fagus sylvatica on sandy soil: Structure and variation across a precipitation gradient. Ecosystems 21, 280–296 (2017).Article 
    CAS 

    Google Scholar 
    63.Liu, Y., Cui, Z., Huang, Z., López-Vicente, M. & Wu, G. Influence of soil moisture and plant roots on the soil infiltration capacity at different stages in arid grasslands of China. Catena 182, 104147 (2019).64.Beven, K. & Germann, P. Macropores and water flow in soils revisited. Water Resour. Res. 49, 3071–3092 (2013).ADS 
    Article 

    Google Scholar 
    65.Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).Article 

    Google Scholar 
    67.Kooch, Y., Samadzadeh, B. & Hosseini, S. M. The effects of broad-leaved tree species on litter quality and soil properties in a plain forest stand. CATENA 150, 223–229 (2017).CAS 
    Article 

    Google Scholar 
    68.Mishra, S. et al. Understanding the relationship between soil properties and litter chemistry in three forest communities in tropical forest ecosystem. Environ. Monit. Assess. 191, 797 (2019).CAS 
    Article 

    Google Scholar 
    69.Yang, B., Wen, X. F. & Sun, X. M. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agric. For. Meteorol. 201, 218–228 (2015).ADS 
    Article 

    Google Scholar 
    70.Ungar, E. D. et al. Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. For. Ecol. Manag. 298, 39–51 (2013).Article 

    Google Scholar 
    71.Oerter, E. J. & Bowen, G. J. Spatio-temporal heterogeneity in soil water stable isotopic composition and its ecohydrologic implications in semiarid ecosystems. Hydrol. Process. 33, 1724–1738 (2019).ADS 
    Article 

    Google Scholar  More

  • in

    Ancient oaks of Europe are archives — protect them

    CORRESPONDENCE
    22 June 2021

    Ancient oaks of Europe are archives — protect them

    Christian Sonne

    0
    ,

    Changlei Xia

    1
    &

    Su Shiung Lam

    2

    Christian Sonne

    Aarhus University, Roskilde, Denmark.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Changlei Xia

    Nanjing Forestry University, Nanjing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Su Shiung Lam

    University Malaysia Terengganu, Terengganu, Malaysia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Kongeegen, the King Oak, in Denmark could be up to 2,000 years old.Credit: Andreas Altenburger/Alamy

    Some of the oldest trees in Europe are in danger because they are not being given the necessary level of protection. Oak trees (Quercus robur) that are more than 1,000 years old are found in the United Kingdom and in Fennoscandia, which includes Denmark, Sweden and Norway.For example, Denmark’s King Oak (pictured) is one of the world’s oldest living trees, dating to around 1,900 years of age. The United Kingdom has the largest collection of ancient oaks, reflecting 1,500 years of ship-building.The trees contain rings that represent archives of historical climate fluctuations and levels of atmospheric gases, so they can help to answer pressing questions about climate change and ecosystem dynamics (P. M. Kelly et al. Nature 340, 57–60; 1989).Fennoscandia and the United Kingdom could better safeguard their oaks using mechanisms such as those offered by the European Union’s Natura 2000 network of protected areas, or the protections conferred by UNESCO World Heritage sites in the United Kingdom. Otherwise, unsustainable management practices, deforestation, air pollution and climate change could leave these ancient species vulnerable to disease and extinction, with the loss of irreplaceable scientific information and cultural heritage.

    Nature 594, 495 (2021)
    doi: https://doi.org/10.1038/d41586-021-01699-0

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Environmental sciences

    Forestry

    Latest on:

    Environmental sciences

    Canada is right to classify single-use plastics as toxic
    Correspondence 22 JUN 21

    Most rivers and streams run dry every year
    News & Views 16 JUN 21

    Regulate waste recycling internationally
    Correspondence 15 JUN 21

    Forestry

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Concerns about reported harvests in European forests
    Matters Arising 28 APR 21

    The Arctic is burning like never before — and that’s bad news for climate change
    News 10 SEP 20

    Jobs from Nature Careers

    All jobs

    Career Development Fellow/ Postdoctoral Scientist
    UK Research and Innovation (UKRI)
    Cambridge, United Kingdom

    JOB POST

    3 Postdoctoral fellowships (2 years) in bacteria cell wall systems biology, soil pore architecture, and image analysis of wood formation
    Umeå University (UmU)
    Umeå, Sweden

    JOB POST

    Postdoctoral Fellow and Research Scientist Positions
    Boston Children’s Hospital (BCH)
    Boston, MA, United States

    JOB POST

    Assistant Professor of physics with tenure track
    Chalmers University of Technology
    Gothenburg, Sweden

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation

    Field location and soil samplingThe soil used in this experiment was collected from an agricultural field cultivated with maize at the “Instituto Tecnológico Superior del Oriente del Estado de Hidalgo” (ITESA) located in Apan, State of Hidalgo, Mexico (19° 73′ N, 98° 46′ W). The 0–20 cm top soil layer of three 400 m2 plots was sampled 20 times. The soil from each plot was pooled separately so that three soil samples (n = 3) were obtained. This field based replication was maintained in the greenhouse experiment so as to avoid pseudo-replication. The soil samples were passed separately through a 5 mm sieve and characterized.The soil is classified as a Phaeozem according to “World Reference Soil (WRS) system”, with pH 6.6, electrolytic conductivity (EC) 0.22 dS m−1 and water holding capacity (WHC) 515 g kg−1. The sandy clay loam soil with clay content 240 g kg−1, sand content 530 g kg−1 and silt content 230 g kg−1, had an ammonium content 8.16 mg kg−1 dry soil, nitrate 1.91 mg kg−1 dry soil and nitrite 0.01 mg kg−1 dry soil. The maize seeds were the hybrid variety 215 W obtained from Eagle® Sinaloa (Mexico).Characteristics of the biofertilizerAlthough a biofertilizer can be described in different ways we use the definition as given by38. Vessey defined (2003) a biofertilizer as “a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant”. As the consortium used in this study fits the definition of a biofertilizer as given by Vessey38 we will refer to the consortium as the biofertilizer or when sterilized to the sterilized biofertilizer throughout the manuscript.The “biofertilizer” used in this study was a mixture of bacteria and leachate from compost of cow manure and was obtained from a local farmer in Hidalgo (Mexico) and characterized chemically and microbiologically. The cow manure was composted on a cement floor with a small inclination so that leachate could be collected easily. The farmer adds the leachate to the mixture of the bacteria to guarantee their survival and as an additional plant nutrient source. The farmer applies this solution regularly to fertilize his fields cultivated with maize. A same application protocol and procedure was used in this study to mimic the field experiment. Half of the biofertilizer obtained from the local farmer was sterilized by autoclaving at 121 °C for 20 min on three consecutive days so as to determine the effect of the microorganisms in the biofertilizer on the maize plants and the bacterial community structure, and the effect of the nutrients added with the biofertilizer.Experimental design and a greenhouse experimentThe research was done in a greenhouse at Cinvestav-Zacatenco situated to the north of Mexico City (Mexico). The experiment used a completely randomized block design with six treatments. The treatments combined as a first factor soil cultivated with maize or left uncultivated. A second factor included soil amended with the biofertilizer, sterilized biofertilizer or not fertilized. The daily temperature in the greenhouse ranged from 15 °C as minimum and reached a maximum 35 °C from April to August of 2017.As the experimental protocol was complex, a diagram of the different treatments and sampling is given in Supplementary Fig. S11 online. A total of 162 PVC columns with diameter 17 cm and height 60 cm were used in the experiment. Each pot was filled at the bottom with 0.5 kg tezontle, a highly porous volcanic rock, and 10 kg soil was added on top. The 162 columns included 6 treatments (uncultivated unamended soil, uncultivated soil amended with biofertilizer, uncultivated soil amended with sterile biofertilizer, maize cultivated unamended soil, maize cultivated soil amended with biofertilizer, maize cultivated soil amended with sterile biofertilizer; n = 6), 3 sampling times (day 44, day 89 and day 130; n = 3), three different soil samples (n = 3), with three columns planted with a maize plant per soil sample (n = 3). Three columns of each soil sample were planted with a maize plant to account for plants that might die so that at least one mature plant was obtained per treatment, sampling time and soil sample. The soil in the 162 PVC columns was adjusted to 40% WHC with distilled water and conditioned in the greenhouse for a week. Additionally, three PVC columns were filled with soil from each soil sample (n = 3), adjusted to 40% WHC with distilled water and conditioned for a week. These three soil samples were used to extract DNA as described below and defined the bacterial community at the onset of the experiment, i.e. time 0.Maize seeds variety 215 W Eagle hybrid seeds® were obtained from the farmer that provided us with the biofertilizer. Three washed maize seeds were planted at 3 cm depth in 81 columns, while the remaining columns were left uncultivated. Seven days after emergence, the most vigorous plantlet was kept and the other two discarded. After 44 days, the biofertilizer or the sterilized biofertilizer was diluted with water and applied with an atomizer (10 ml m−2 or similar to 100 l applied ha−1 by the farmer) so that it was added as fine spray evenly on soil of each pot when the seeds were planted. A similar volume of water was applied in the same way to the unfertilized treatment. Five more applications of the biofertilizer, sterilized biofertilizer or water by aspersion were done during the cultivation of the maize plants. As such, the uncultivated or maize plant cultivated soil was applied with the biofertilizer, sterile biofertilizer or water on 13th April, 28th May, 5th June, 13th July, 2nd August and 12th August 2017.Soil and plant samplingAfter 44 (27th May 2017), 89 (11th July 2017) and 130 days (21st August 2017), three columns from each treatment (n = 6) and soil sample (n = 3) were selected at random. Soil was removed from each column. The cultivated and uncultivated soil was sampled, characterized, and extracted for DNA as described below. The non-rhizosphere soil was separated from the rhizosphere soil by shaken the plants gently. The soil adhered to the roots was considered the rhizosphere soil. A 20 g sub-sample of the uncultivated, non-rhizosphere and rhizosphere soil was stored at − 20 °C pending extraction of DNA, while the pH and mineral N was determined in the remaining soil. Roots and shoots were separated, weighted and their length measured. The roots and shoots were dried in an oven at 60 °C for 24 h and weighed.Soil physicochemical characterizationThe moisture content of the soil was determined by weight loss after samples were dried at 60 °C in an oven for 24 h. The WHC was determined by saturating 50 g dry soil with distilled water, left to drain overnight and measuring the amount of water retained. The EC was measured in a soil paste (200 g soil/110 ml distilled H2O) with an HI 2300 microprocessor (HANNA Instruments, Woonsocket, RI, USA), while the particle size distribution was determined with the hydrometer method as described by Gee and Bauder39. The pH was determined in a 10 g soil–25 ml distilled water mixture with a calibrated pH meter (Denver Instrument, Bohemia, NY, USA) fitted with a glass electrode (3007281 pH/ATC Termofisher Scientific, Waltham, MA, USA).Mineral nitrogen (NO3−, NO2− and NH4+) was measured in the soil and biofertilizer. A 20 g soil sub-sample was extracted with 100 ml 0.5 M K2SO4 and filtered through Whatman filter paper® while mineral N was measured with a SKALAR automatic analyser system (Breda, the Netherlands)40. A 20 g biofertilizer sub-sample was mixed with 80 ml 0.5 M K2SO4, filtered through Whatman filter paper® and mineral N measured as described previously.DNA extraction and PCR amplificationA 5 ml sub-sample of the sterilized and unsterilized biofertilizer was centrifuged at 3500 rpm for 15 min and the supernatant removed. A 0.5 g sub-sample of soil was washed with 10 ml 0.15 mol l−1 sodium pyrophosphate to eliminate the humic and fulvic acids, centrifuged at 3500 rpm for 15 min and this process was repeated until the supernatant was clear41. The excess pyrophosphate was eliminated with 10 ml 0.15 mol l−1 phosphate buffer pH 8. Three different methods were used to extract DNA from the soil and the sterilized and unsterilized biofertilizer samples. The first technique was based on the method described by Green and Sambrook42. In the second method, cells were lysed with two lysis solutions and a thermal shock as described by Valenzuela-Encinas et al.43. The third method consisted of a mechanical disruption and detergent solution for cell lysis44. Each method was used to extract three times 0.5 g soil or 5 ml sterilized and unsterilized biofertilizer (a total of 1.5 g soil or 15 ml sterilized and unsterilized biofertilizer). The extracts from the soil and sterile or unsterilized biofertilizer were pooled separately.The 16S rRNA gene (V3–V4 region of bacteria) was amplified using the primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-ACHVGGGTATCTAATCC-3′45. The PCR conditions were 94 °C for 5 min, followed by 25 cycles of 60 s at 94 °C, 45 s at 53 °C, and 60 s at 72 °C, with a final extension of 10 min at 72 °C. The PCR was repeated three times for each sample. After PCR amplification, the obtained products were cleaned using the FastGen Gel/PCR extraction Kit (Nippon Genetics Duren, Germany) and quantified using a Nanodrop 3300 fluorospectrometer (TermoFisher, Wilmington, DE, USA) with PicoGreen dsDNA. The samples were mixed in equimolar amounts and sequenced using MiSeq 300-pb paired-end runs (Illumina, CA, USA) at Macrogen Inc. (Seoul, Korea).16S rDNA sequences analysisThe raw sequences were analysed with “Quantitative insights into microbial ecology pipeline” (QIIME) software (version 1.9.1)46. The barcode reads were demultiplexing removed from the sequences using the script extract_barcodes.py. The chimeric sequences were identified using “identify_chimeric_seqs.py” with the usearch61 method and removed47. The taxonomic assignment was done using the Ribosomal Data Project (rdp)48, against the Greengenes 16S rRNA database with a 0.8 confidence49. The sequences were clustered as operational taxonomic units (OTU) at 97% similarity level with the UCLUST algorithm47. Sequences were aligned against the Greengenes reference database using PyNAST version 1.2.250. The obtained 16S dataset was filtered, all OTUs assigned to Archaea were discarded and the dataset normalized. Alpha diversity indices (Chao1, Shannon and Simpson) were calculated from 478000 rarefied sequences with QIIME.Statistical analysisAll statistical analyses were done in R (R 4.0.2 GUI 1.72 Catalina build51). The characteristics of the maize plants (n = 3) obtained per plot (n = 3) were averaged and the sequences obtained from the replicate rhizosphere or non-rhizosphere soil were summed (n = 3) per plot before the statistical analysis. A non-parametric test was used to determine the effect of biofertilizer application and time on the plant and soil characteristics with the non-parametric t1way test of the WRS2 package (A collection of robust statistical methods)52. A non-parametric test was used to determine the effect of biofertilizer application or cultivation of maize on the bacterial alpha diversity with the non-parametric t1way test of the WRS2 package52. Heatmaps of the relative abundances of the bacterial groups were constructed with the pheatmap package53. Ordination [principal component analysis (PCA)], multivariate comparison (perMANOVA) and differential abundance (ALDEx2) was done with converted sequence data using the centred log-ratio transform test returned by the aldex.clr argument (ALDEx2 package54). The PCA was done with the vegan package55. Effect of biofertilizer application and cultivation of maize on the bacterial groups was determined using a compositional approach, i.e. analysis of differential abundance taking sample variation into account (aldex.kw argument, ALDEx2 package). A permutational multivariate analysis of variance (perMANOVA) analysis was also done with sequence counts converted using the centred log-ratio transform, i.e. aldex.clr argument (ALDEx2 package (aldex.clr(counts, mc.samples = 128, denom = ”all”, verbose = FALSE, useMC = FALSE)). The adonis2 argument (Vegan package) was used for the perMANOVA analysis to test the effect of cultivation of maize, time and its interaction, biofertilizer application, time and their interaction, and cultivation of maize, biofertilizer application and their interaction on the bacterial community structure (#adonis2(clrcounts ~ maize*biofertilizer, data = code, permutations = 999, method = ”euclidean”). Raw counts were used as input and Monte Carlo Dirichlet instances of the clr transformation values were generated with the function ‘aldex.clr’ of ALDEx2 (v.1.23.2) R package54. Distance pairwise matrices were calculated using the Aitchison distance and the principal coordinate analysis (PCoA) was calculated on the distance matrices with vegan R package55.Informed consentPermission was obtained from the farmer to use the maize seeds he provided.Ethical approvalThe experiment in the greenhouse complied with and was conducted as stipulated by national regulations. More

  • in

    Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host

    The Mara Hyena ProjectThis study uses data and samples from the Mara Hyena Project (approved by MSU IACUC and KWS), a long-term field study of individually known spotted hyenas that have been observed since May 1979. Study hyenas are monitored daily and behavioral, demographic, and ecological data are systematically collected and entered into a database. Here, we used data from four different hyena groups, called clans, as well as historic information about ecological conditions in the Masai Mara National Reserve. We maintained detailed records on the demographics of our study population, including sex, age, and the dates of key life-history milestones such as birth, weaning, dispersal and death. In the ensuing sections, we describe data collection and data processing procedures for assessment of T. gondii infection diagnosis, quantification of demographic and ecological determinants of infection status, and assessment of behavioral (boldness) and fitness (cause of mortality) characteristics hypothesized to be a consequence of positive T. gondii infection. The present analysis includes 168 hyenas, but specific subsamples vary depending on the particular hypothesis being tested.Biospecimen collection and assessment of Toxoplasma gondii exposureAs part of our long-term data collection, we routinely darted study animals in order to collect biological samples and morphological measurements. Of special relevance to this study is our blood collection procedure. We immobilized hyenas using 6.5 mg/kg of tiletamine-zolazepam (Telazol ®) in a pressurized dart fired from a CO2 powered rifle. We then drew blood from the jugular vein into sodium heparin-coated vacuum tubes. After the hyena was secured in a safe place to recover from the anesthesia, we took the samples back to camp where a portion of the collected blood was spun in a centrifuge at 1000 × g for 10 min to separate red and white blood cells from plasma. Plasma was aliquoted into multiple cryogenic vials. Immediately, the blood derivatives, including plasma, were flash frozen in liquid nitrogen where they remained until they were transported on dry ice to a −80 °C freezer in the U.S. All samples remained frozen until time of laboratory analysis for the T. gondii assays.Using archived plasma, we diagnosed individual hyenas using the multi-species ID Screen® Toxoplasmosis Indirect kit (IDVET, Montpellier). This ELISA-based assay tests for serological (IgG) reactivity to T. gondii’s P-30 antigen and has been used in many prior studies of T. gondii in diverse mammals22. The output of the assay is an SP ratio, which is calculated as colorimetric signal of immunoreactivity for a tested blood sample (S) divided by that of a positive control (P), after subtracting the background signal for the ELISA plate (i.e., a negative control) from both S and P. We tested 168 plasma samples from 168 individual spotted hyenas and determined infection status based on the kit manufacturer’s criteria for interpreting S/P: ≤ 40% = negative result, 40%  More