More stories

  • in

    Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean

    1.Behrenfeld MJ, Boss ES. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob Chang Biol. 2018;24:55–77.PubMed 
    Article 

    Google Scholar 
    2.Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    Article 

    Google Scholar 
    3.Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–7.CAS 
    Article 

    Google Scholar 
    4.Baudoux A-C, Noordeloos AAM, Veldhuis MJW, Brussaard CPD. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat Micro Ecol. 2006;44:207–17.Article 

    Google Scholar 
    5.Vardi A, Haramaty L, Van Mooy BAS, Fredricks HF, Kimmance SA, Larsen A, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci. 2012;109:19327–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Mojica KDA, Huisman J, Wilhelm SW, Brussaard CPD. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 2016;10:500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Safi KA, Brian Griffiths F, Hall JA. Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep Sea Res Part I Oceanogr Res Pap. 2007;54:1025–41.Article 

    Google Scholar 
    8.Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74.Article 

    Google Scholar 
    9.Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser. 1993;93:39–48.Article 

    Google Scholar 
    10.Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae. 2005;4:875–93.Article 

    Google Scholar 
    11.Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea. Bioscience. 1999;49:781–8.Article 

    Google Scholar 
    12.Brussaard CPD, Timmermans KR, Uitz J, Veldhuis MJW. Virioplankton dynamics and virally induced phytoplankton lysis versus microzooplankton grazing southeast of the Kerguelen (Southern Ocean). Deep Sea Res Part II Top Stud Oceanogr. 2008;55:752–65.Article 

    Google Scholar 
    13.Weitz JS, Wilhelm SW. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep. 2012;4:2–9.Article 

    Google Scholar 
    14.Brussaard CPD, Martínez J. Algal bloom viruses. Plant Viruses. 2008;2:1–13.
    Google Scholar 
    15.Nagasaki K. Dinoflagellates, diatoms, and their viruses. J Microbiol. 2008;46:235–43.PubMed 
    Article 

    Google Scholar 
    16.Coy SR, Gann ER, Pound HL, Short SM, Wilhelm SW. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses. 2018;10:487.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    17.Muhling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: Evidence for viral control of phytoplankton. Environ Microbiol. 2005;7:499–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Haaber J, Middelboe M. Viral lysis of Phaeocystis pouchetii: Implications for algal population dynamics and heterotrophic C, N and P cycling. ISME J. 2009;3:430–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Brussaard CPD. Viral control of phytoplankton populations—a review. J Eukaryot Microbiol. 2004;51:125–38.PubMed 
    Article 

    Google Scholar 
    20.Evans C, Brussaard CPD. Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean. Limnol Oceanogr. 2012;57:1826–37.Article 

    Google Scholar 
    21.Brussaard CPD, Noordeloos AAM, Witte H, Collenteur MCJ, Schulz K, Ludwig A, et al. Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences. 2013;10:719–31.Article 

    Google Scholar 
    22.Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC, Graven HD, et al. Global ocean storage of anthropogenic carbon. Biogeosciences. 2013;10:2169–91.CAS 
    Article 

    Google Scholar 
    23.Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.Article 

    Google Scholar 
    24.Bakker DCE, De Baar HJW, Bathmann UV. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 1997;44:91–127.Article 

    Google Scholar 
    25.Moreau S, Schloss IR, Mostajir B, Demers S, Almandoz GO, Ferrario ME, et al. Influence of microbial community composition and metabolism on air–sea ΔpCO2 variation off the western Antarctic Peninsula. Mar Ecol Prog Ser. 2012;446:45–59.CAS 
    Article 

    Google Scholar 
    26.Ducklow H, Clarke A, Dickhut R, Doney SC, Geisz H, Huang K, et al. The marine system of the Western Antarctic Peninsula. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A, editors. Antarctic ecosystems: an extreme environment in a changing world. Blackwell Publishing Ltd.; 2012. pp. 121–59.27.Shreeve RS, Ward P, Whitehouse MJ. Copepod growth and development around South Georgia: Relationships with temperature, food and krill. Mar Ecol Prog Ser. 2002;233:169–83.Article 

    Google Scholar 
    28.Barrera-Oro E. The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci. 2002;14:293–309.Article 

    Google Scholar 
    29.Belton B, Thilsted SH. Fisheries in transition: Food and nutrition security implications for the global South. Glob Food Sec. 2014;3:59–66.Article 

    Google Scholar 
    30.Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 2015;130:205–48.Article 

    Google Scholar 
    31.Gordon AL. Bottom water formation. In: Steele JH, Turekian KK, Thorpe SA, editors. Encyclopedia of ocean sciences, 1st ed. Elsevier; 2001. pp. 334–40.32.Jacobs SS. Bottom water production and its links with the thermohaline circulation. Antarct Sci. 2004;16:427–37.Article 

    Google Scholar 
    33.Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Chang. 2019;9:781–6.CAS 
    Article 

    Google Scholar 
    34.Sommer U, Lengfellner K. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol. 2008;14:1199–208.Article 

    Google Scholar 
    35.Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Chang Biol. 2004;10:1973–80.Article 

    Google Scholar 
    36.Biggs TEG, Alvarez-Fernandez S, Evans C, Mojica KDA, Rozema PD, Venables HJ, et al. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol. 2019;42:1997–2015.Article 

    Google Scholar 
    37.Clarke A, Meredith MP, Wallace MI, Brandon MA, Thomas DN. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Res Part II Top Stud Oceanogr. 2008;55:1988–2006.Article 

    Google Scholar 
    38.Marie D, Partensky F, Vaulot D, Brussaard CPD. Enumeration of phytoplankton, bacteria, and viruses in marine samples. Curr Protoc Cytom. 1999;10:11.11.1–5.
    Google Scholar 
    39.Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Vaulot D. CYTOPC: processing software for flow cytometric data. Signal Noise. 1989;2:8.
    Google Scholar 
    41.Biggs TEG, Brussaard CPD, Evans C, Venables HJ, Pond DW. Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters. ICES J Mar Sci. 2020;77:1738–51.Article 

    Google Scholar 
    42.Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Mojica KDA, Evans C, Brussaard CPD. Flow cytometric enumeration of marine viral populations at low abundances. Aquat Microb Ecol. 2014;71:203–9.Article 

    Google Scholar 
    44.Brussaard CPD, Payet JP, Winter C, Weinbauer MG. Quantification of aquatic viruses by flow cytometry. Man Aquat viral Ecol. 2010;11:102–9.Article 

    Google Scholar 
    45.Lawrence JE, Brussaard CPD, Suttle CA. Virus-specific responses of Heterosigma akashiwo to infection. Appl Environ Microbiol. 2006;72:7829–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Tomaru Y, Nagasaki K. Flow cytometric detection and enumeration of DNA and RNA viruses infecting marine eukaryotic microalgae. J Oceanogr. 2007;63:215–21.CAS 
    Article 

    Google Scholar 
    47.Jacquet S, Heldal M, Iglesias-Rodriguez D, Larsen A, Wilson W, Bratbak G. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat Micro Ecol. 2002;27:111–24.Article 

    Google Scholar 
    48.Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Brussaard CPD, Thyrhaug R, Marie D, Bratbak G. Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae) and Phaeocystis pouchetii (Prymnesiophyceae). J Phycol. 1999;35:941–8.Article 

    Google Scholar 
    50.Kimmance SA, Wilson WH, Archer SD. Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: Limitations associated with method sensitivity in natural waters. Aquat Microb Ecol. 2007;49:207–22.Article 

    Google Scholar 
    51.Garrison DL, Gowing MM, Hughes MP, Campbell L, Caron DA, Dennett MR, et al. Microbial food web structure in the Arabian Sea: A US JGOFS study. Deep Sea Res Part II Top Stud Oceanogr. 2000;47:1387–422.Article 

    Google Scholar 
    52.Worden AZ, Nolan JK, Palenik B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr. 2004;49:168–79.CAS 
    Article 

    Google Scholar 
    53.van Leeuwe MA, Webb AL, Venables HJ, Visser RJW, Meredith MP, Elzenga JTM, et al. Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnol Oceanogr. 2020;65:1651–68.Article 

    Google Scholar 
    54.Baudoux A-C, Veldhuis MJW, Witte HJ, Brussaard CPD. Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III. Limnol Oceanogr. 2007;52:2519–29.CAS 
    Article 

    Google Scholar 
    55.Baudoux A-C, Veldhuis MJW, Noordeloos AAM, van Noort G, Brussaard CPD. Estimates of virus- vs. grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat Micro Ecol. 2008;52:69–82.Article 

    Google Scholar 
    56.Kranzler CF, Krause JW, Brzezinski MA, Edwards BR, Biggs WP, Maniscalco M, et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat Microbiol. 2019;4:1790–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Tomaru Y, Takao Y, Suzuki H, Nagumo T, Nagasaki K. Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis. Appl Environ Microbiol. 2009;75:2375–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Kattner G, Hagen W. Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In: Kainz M, Brett M, Arts M, editors. Lipids in aquatic ecosystems. Springer New York; 2009. pp. 257–80.59.Ploug H, Iversen MH, Fischer G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol Oceanogr. 2008;53:1878–86.Article 

    Google Scholar 
    60.Voss M. Content of copepod faecal pellets in relation to food supply in Kiel Bight and its effect on sedimentation rate. Mar Ecol Prog Ser. 1991;75:217–25.Article 

    Google Scholar 
    61.Lønborg C, Middelboe M, Brussaard CPD. Viral lysis of Micromonas pusilla: Impacts on dissolved organic matter production and composition. Biogeochemistry. 2013;116:231–40.Article 
    CAS 

    Google Scholar 
    62.Yamada Y, Tomaru Y, Fukuda H, Nagata T. Aggregate formation during the viral lysis of a marine diatom. Front Mar Sci. 2018;5:167.63.Maat DS, Crawfurd KJ, Timmermans KR, Brussaard CPD. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Appl Environ Microbiol. 2014;80:3119–27.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Maat DS, Brussaard CPD. Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat Micro Ecol. 2016;77:87–97.Article 

    Google Scholar 
    65.Maat DS, de Blok R, Brussaard CPD. Combined phosphorus limitation and light stress prevent viral proliferation in the phytoplankton species Phaeocystis globosa, but Not in Micromonas pusilla. Front Mar Sci. 2016;3:160.66.Maat DS, Biggs TEG, Evans C, van Bleijswijk JDL, van Der Wel NN, Dutilh BE, et al. Characterization and temperature dependence of arctic Micromonas polaris viruses. Viruses. 2017;9:6–9.Article 
    CAS 

    Google Scholar 
    67.Piedade GJ, Wesdorp EM, Montenegro-Borbolla E, Maat DS, Brussaard CPD. Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses. 2018;10:676.68.Gann ER, Gainer PJ, Reynolds TB, Wilhelm SW. Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a “giant virus”. PLoS ONE. 2020;15:e0226758.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Evans C, Wilson WH. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi. Limnol Oceanogr. 2008;53:2035–40.Article 

    Google Scholar 
    70.Vermont AI, Martínez Martínez J, Waller JD, Gilg IC, Leavitt AH, Floge SA, et al. Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa. J Plankton Res. 2016;38:1194–205.Article 

    Google Scholar 
    71.González JM, Suttle CA. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser. 1993;94:1–10.Article 

    Google Scholar 
    72.Rose JM, Caron DA. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 2007;52:886–95.Article 

    Google Scholar 
    73.Helenius LK, Saiz E. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey. PLoS ONE. 2017;12:e0172902.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Djeghri N, Atkinson A, Fileman ES, Harmer RA, Widdicombe CE, McEvoy AJ, et al. High prey-predator size ratios and unselective feeding in copepods: a seasonal comparison of five species with contrasting feeding modes. Prog Oceanogr. 2018;165:63–74.Article 

    Google Scholar 
    75.Gonçalves RJ, Gréve H, van S, Couespel D, Kiørboe T. Mechanisms of prey size selection in a suspension-feeding copepod, Temora longicornis. Mar Ecol Prog Ser. 2014;517:61–74.Article 

    Google Scholar 
    76.Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 2019;13:2551–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: Projections, commitments, and irreversibility. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and NY, USA: Cambridge University Press; 2013.78.Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science. 2009;323:1470–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Arrigo KR, van Dijken GL. Continued increases in Arctic Ocean primary production. Prog Oceanogr. 2015;136:60–70.Article 

    Google Scholar 
    80.Vernet M, Martinson D, Iannuzzi R, Stammerjohn S, Kozlowski W, Sines K, et al. Primary production within the sea-ice zone west of the Antarctic Peninsula: I—Sea ice, summer mixed layer, and irradiance. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:2068–85.Article 

    Google Scholar 
    81.Deppeler SL, Davidson AT. Southern Ocean phytoplankton in a changing climate. Front Mar Sci. 2017;4:40.82.Van de Poll WH, Kulk G, Rozema PD, Brussaard CPD, Visser RJW, Buma AGJ. Contrasting glacial meltwater effects on post-bloom phytoplankton on temporal and spatial scales in Kongsfjorden. Spitsbergen Elem Sci Anth. 2018;6:50.Article 

    Google Scholar 
    83.Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J-É. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett. 2014;41:6207–12.Article 

    Google Scholar 
    84.Venables HJ, Clarke A, Meredith MP. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol Oceanogr. 2013;58:1035–47.Article 

    Google Scholar 
    85.Mendes CRB, Tavano VM, Dotto TS, Kerr R, de Souza MS, Garcia CAE, et al. New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep Sea Res Part II Top Stud Oceanogr. 2017;149:161–70.Article 
    CAS 

    Google Scholar 
    86.Rozema PD, Venables HJ, van de Poll WH, Clarke A, Meredith MP, Buma AGJ. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol Oceanogr. 2017;62:235–52.Article 

    Google Scholar  More

  • in

    “Candidatus Dechloromonas phosphoritropha” and “Ca. D. phosphorivorans”, novel polyphosphate accumulating organisms abundant in wastewater treatment systems

    1.Nielsen PH, Mcilroy SJ, Albertsen M, Nierychlo M. Re-evaluating the microbiology of the enhanced biological phosphorus removal process. Curr Opin Biotechnol. 2019;57:111–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Marques R, Santos J, Nguyen H, Carvalho G, Noronha JP, Nielsen PH, et al. Metabolism and ecological niche of Tetrasphaera and Ca. Accumulibacter in enhanced biological phosphorus removal. Water Res. 2017;122:159–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Camejo PY, Oyserman BO, Mcmahon KD, Noguera DR. Integrated omic analyses provide evidence that a “Candidatus Accumulibacter phosphatis” strain performs denitrification under microaerobic conditions. mSystems. 2019;4:1–23.Article 

    Google Scholar 
    4.Oyserman BO, Noguera DR, Del Rio TG, Tringe SG, McMahon KD. Metatranscriptomic insights on gene expression and regulatory controls in Candidatus Accumulibacter phosphatis. ISME J. 2016;10:810–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Tu Y, Schuler AJ. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater. Environ Sci Technol. 2013;47:3816–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Marques R, Ribera-guardia A, Santos J, Carvalho G, Reis MAM, Pijuan M, et al. Denitrifying capabilities of Tetrasphaera and their contribution towards nitrous oxide production in enhanced biological phosphorus removal processes. Water Res. 2018;137:262–72.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Fernando EY, McIlroy SJ, Nierychlo M, Herbst F-A, Petriglieri F, Schmid MC, et al. Resolving the individual contribution of key microbial populations to enhanced biological phosphorus removal with Raman–FISH. ISME J. 2019;13:1933–46.8.Kawaharasaki M, Tanaka H, Kanagawa T, Nakamura K. In situ identification of polyphosphate-accumulating bacteria in activated sludge by dual staining with rRNA-targeted oligonucleotide probes and 4’,6-diaimidino-2-phenylindol (DAPI) at a polyphosphate-probing concentration. Water Res. 1999;33:257–65.CAS 
    Article 

    Google Scholar 
    9.Crocetti GR, Hugenholtz P, Bond PL, Schuler AJ, Keller J, Jenkins D, et al. Identification of polyphosphate-accumulating organisms and design of 16SrRNA-directed probes for their detection and quantitation. Appl Environ Microbiol. 2000;66:1175–82.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Kong Y, Nielsen JL, Nielsen PH. Identity and ecophysiology of uncultured Actinobacterial polyphosphate-accumulating organisms in full-scale enhanced biological phosphorus removal plants. Appl Environ Microbiol. 2005;71:4076–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Kong Y, Xia Y, Nielsen JL, Nielsen PH. Structure and function of the microbial community in a full-scale enhanced biological phosphorus removal plant. Microbiology. 2007;153:4061–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Göel R, Sanhueza P, Noguera D. Evidence of Dechloromonas sp. participating in enhanced biological phosphorous removal (EBPR) in a bench-scale aerated-anoxic reactor. Proc Water Environ Fed. 2005;41:3864–71.Article 

    Google Scholar 
    13.Terashima M, Yama A, Sato M, Yumoto I, Kamagata Y, Kato S. Culture-dependent and -independent identification of polyphosphate-accumulating Dechloromonas spp. predominating in a full-scale oxidation ditch wastewater treatment plant. Microbes Environ Environ. 2016;31:449–55.Article 

    Google Scholar 
    14.Wang B, Jiao E, Guo Y, Zhang L, Meng Q, Zeng W, et al. Investigation of the polyphosphate-accumulating organism population in the full-scale simultaneous chemical phosphorus removal system. Environ Sci Pollut Res. 2020;27:37877–86.CAS 
    Article 

    Google Scholar 
    15.Stokholm-Bjerregaard M, McIlroy SJ, Nierychlo M, Karst SM, Albertsen M, Nielsen PH. A critical assessment of the microorganisms proposed to be important to enhanced biological phosphorus removal in full-scale wastewater treatment systems. Front Microbiol. 2017;8:718.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Achenbach LA, Michaelidou U, Bruce RA, Fryman J, Coates JD. Dechloromonas agitata gen. nov., sp. nov. and Dechlorosoma suillum gen. nov., sp. nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position. Int J Syst Evol Microbiol. 2001;51:527–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Horn MA, Ihssen J, Matthies C, Schramm A, Acker G, Drake HL, et al. Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol. 2005;55:1255–65.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Günther S, Trutnau M, Kleinsteuber S, Hause G, Bley T, Röske I, et al. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4’,6’-Diamidino-2-Phenylindole) and Tetracycline Labeling. Appl Environ Microbiol. 2009;75:2111–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Acevedo B, Murgui M, Borrás L, Barat R. New insights in the metabolic behaviour of PAO under negligible poly-P reserves. Chem Eng J. 2017;311:82–90.CAS 
    Article 

    Google Scholar 
    20.Yuan Y, Liu J, Ma B, Liu Y, Wang B, Peng Y. Improving municipal wastewater nitrogen and phosphorous removal by feeding sludge fermentation products to sequencing batch reactor (SBR). Bioresour Technol. 2016;222:326–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Lv X, Shao M, Li C, Li J, Gao X, Sun F. A comparative study of the bacterial community in denitrifying and traditional enhanced biological phosphorus removal processes. Microbes Environ. 2014;29:261–8.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Salinero KK, Keller K, Feil WS, Feil H, Trong S, Bartolo Di G, et al. Metabolic analysis of the soil microbe Dechloromonas aromatica str. RCB anaerobic pathways for aromatic degradation. BMC Genom. 2009;23:1–23.
    Google Scholar 
    23.McIlroy SJ, Starnawska A, Starnawski P, Saunders AM, Nierychlo M, Nielsen PH, et al. Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol. 2016;18:50–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Hesselsoe M, Fu S, Schloter M, Bodrossy L, Iversen N, Roslev P, et al. Isotope array analysis of Rhodocyclales uncovers functional redundancy and versatility in an activated sludge. ISME J. 2009;3:1349–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Ahn J, Schroeder S, Beer M, McIlroy S, Bayly RC, May JW, et al. Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl Environ Microbiol. 2007;73:2257–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Dueholm MS, Andersen KS, McIlroy SJ, Kristensen JM, Yashiro E, Karst SM, et al. Generation of comprehensive ecosystems-specific reference databases with species-level resolution by high-throughput full-length 16S rRNA gene sequencing and automated taxonomy assignment (AutoTax). mBio. 2020;11:e01557–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Singleton CM, Petriglieri F, Kristensen JM, Kirkegaard RH, Michaelsen TY, Andersen MH, et al. Connecting structure to function with the recovery of over 1000 high-quality activated sludge metagenome-assembled genomes encoding full-length rRNA genes using long-read sequencing. Nat Commun. 2021;12:2009.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Albertsen M, Hugenholtz P, Skarshewski A, Nielsen KL, Tyson GW, Nielsen PH. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol. 2013;31:533–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Parks DH, Rinke C, Chuvochina M, Chaumeil P, Woodcroft BJ, Evans PN, et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.GJF Smolders, Meij Van Der J, Loosdrecht Van MCM, Heijnen JJ. Model of the anaerobic metabolism of the biological phosphorus removal process: stoichiometry and pH influence. Biotechnol Bioeng. 1994;43:461–70.Article 

    Google Scholar 
    31.Jørgensen MK, Nierychlo M, Nielsen AH, Larsen P, Christensen ML, Nielsen PH. Unified understanding of physico-chemical properties of activated sludge and fouling propensity. Water Res. 2017;120:117–32.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    32.Nielsen JL. Protocol for fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotides. FISH handbook for biological wastewater treatment. 2009. pp 73–84.33.McIlroy SJ, Kirkegaard RH, McIlroy B, Nierychlo M, Kristensen JM, Karst SM, et al. MiDAS 2.0: an ecosystem-specific taxonomy and online database for the organisms of wastewater treatment systems expanded for anaerobic digester groups. Database. 2017;2017:1–9.Article 

    Google Scholar 
    34.Nierychlo M, Andersen KS, Xu Y, Green N, Jiang C, Albertsen M, et al. MiDAS 3: an ecosystem-specific reference database, taxonomy and knowledge platform for activated sludge and anaerobic digesters reveals species-level microbiome composition of activated sludge. Water Res. 2020;182:115955.35.R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria.36.RStudio Team. RStudio: Integrated Development Environment for R. 2015. Boston, MA.37.Albertsen M, Karst SM, Ziegler AS, Kirkegaard RH, Nielsen PH. Back to basics—the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLoS One. 2015;10:1–15.Article 
    CAS 

    Google Scholar 
    38.Wickham H. ggplot2—elegant graphics for data analysis. Springer. 2009. Springer Science & Business Media.39.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:590–6.Article 
    CAS 

    Google Scholar 
    41.Sayers EW, Agarwala R, Bolton EE, Brister JR, Canese K, Clark K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2019;47:D23–D28.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Yilmaz LS, Parnerkar S, Noguera DR. MathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol. 2011;77:1118–22.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Daims H, Stoecker K, Wagner M. Fluorescence in situ hybridization for the detection of prokaryotes. In: Osborn AM, Smith CJ (eds). Molecular Microbial Ecology. 2005. Taylor & Francis, New York, pp 213–39.44.Daims H, Lücker S, Wagner M. Daime, a novel image analysis program for microbial ecology and biofilm research. Environ Microbiol. 2006;8:200–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Chaumeil P, Mussig AJ, Parks DH, Hugenholtz P. Genome analysis GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2019;36:1925–7.PubMed Central 

    Google Scholar 
    46.Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.Article 

    Google Scholar 
    48.Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:457–62.Article 
    CAS 

    Google Scholar 
    49.Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    Article 

    Google Scholar 
    50.Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009; 25:1335–7.51.Nguyen L, Schmidt HA, Haeseler Von A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. 2014; 32:268–74.52.Wolterink A, Kim S, Muusse M, Kim IS, Roholl PJM, Ginkel Van GC. et al. Dechloromonas hortensis sp nov strain ASK-1, two Nov (per)chlorate-reducing Bact, taxonomic description strain GR-1. Int J Syst Evolut Microbiol. 2005;1:2063–8.Article 
    CAS 

    Google Scholar 
    53.Zilles JL, Peccia J, Noguera DR. Microbiology of enhanced biological phosphorus removal in aerated-anoxic orbal processes. Water Environ Res. 2002;74:428–36.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Dueholm MS, Nierychlo M, Andersen KS, Rudkjøbing V, Knudsen S, the MiDAS Global Consortium, et al. MiDAS 4—a global WWTP ecosystem-specific full-length 16S rRNA gene catalogue and taxonomy for studies of bacterial communities. bioRxiv 2021.55.Oehmen A, Lemos PC, Carvalho G, Yuan Z, Blackall LL, Reis MAM. Advances in enhanced biological phosphorus removal: from micro to macro scale. Water Res. 2007;41:2271–2300.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Qiu G, Zuniga-montanez R, Law Y, Swa S. Polyphosphate-accumulating organisms in full-scale tropical wastewater treatment plants use diverse carbon sources. Water Res. 2019;149:469–510.Article 
    CAS 

    Google Scholar 
    57.Petriglieri F, Petersen JF, Peces M, Nierychlo M, Hansen K, Baastrand CE, et al. Quantification of biologically and chemically bound phosphorus in activated sludge from full-scale plants with biological P-removal. biorxiv 2020. https://doi.org/10.1101/2021.01.04.425262.58.Hesselmann RPX, Von Rummel R, Resnick SM, Hany R, Zehnder AJB. Anaerobic metabolism of bacteria performing enhanced biological phosphate removal. Water Res. 2000;34:3487–94.CAS 
    Article 

    Google Scholar 
    59.Acevedo B, Oehmen A, Carvalho G, Seco A, Borrás L, Barat R. Metabolic shift of polyphosphate-accumulating organisms with different levels of polyphosphate storage. Water Res. 2012;6:1889–1900.Article 
    CAS 

    Google Scholar 
    60.Flowers JJ, He S, Malfatti S, Glavina T, Tringe SG, Hugenholtz P, et al. Comparative genomics of two ‘Candidatus Accumulibacter’ clades performing biological phosphorus removal. ISME J. 2013;7:2301–14.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Qiu G, Liu X, Saw NMMT, Law Y, Zuniga-Montanez R, Thi SS, et al. Metabolic traits of Candidatus Accumulibacter clade IIF Strain SCELSE-1 using amino acids as carbon sources for enhanced biological phosphorus removal. Environ Sci Technol. 2019;54:2448–58.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    62.Kristiansen R, Thi H, Nguyen T, Saunders AM, Nielsen JL, Wimmer R, et al. A metabolic model for members of the genus Tetrasphaera involved in enhanced biological phosphorus removal. ISME J. 2013;7:543–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.McIlroy SJ, Albertsen M, Andresen EK, Saunders AM. ‘Candidatus Competibacter’-lineage genomes retrieved from metagenomes reveal functional metabolic diversity. ISME J. 2014;8:613–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Saunders AM, Mabbett AN, Mcewan AG, Blackall LL. Proton motive force generation from stored polymers for the uptake of acetate under anaerobic conditions. FEMS Microbiol Lett. 2007;274:245–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Erdal UG, Erdal ZK, Daigger GT, Randall CW. Is it PAO-GAO competition or metabolic shift in EBPR system? Evidence from an experimental study. Water Sci Technol. 2008;58:1329–34.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zhou Y, Pijuan M, Zeng RJ, Lu H, Could ÃZY. polyphosphate-accumulating organisms (PAOs) be glycogen-accumulating organisms (GAOs)? Water Res. 2008;42:2361–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Weissbrodt DG, Lopez-vazquez CM, Welles L. “Candidatus Accumulibacter delftensis”: a clade IC novel polyphosphate-accumulating organism without denitrifying activity on nitrate. Water Res. 2019;161:136–51.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    69.Camejo PY, Owen BR, Martirano J, Ma J, Kapoor V, Santo J, et al. Candidatus Accumulibacter phosphatis clades enriched under cyclic anaerobic and microaerobic conditions simultaneously use different electron acceptors. Water Res. 2016;102:125–37.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Skennerton CT, Barr JJ, Slater FR, Bond PL, Tyson GW. Expanding our view of genomic diversity in Candidatus Accumulibacter clades. Environ Microbiol. 2015;17:1574–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Hendriks J, Oubrie A, Castresana J, Urbani A, Gemeinhardt S, Saraste M. Nitric oxide reductases in bacteria. Biochim Biophys Acta—Bioenerg. 2000;1459:266–73.CAS 
    Article 

    Google Scholar 
    72.Murray RGE, Stackebrandt E. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Evol Microbiol. 1995;45:186–7.CAS 

    Google Scholar  More

  • in

    Emergent “core communities” of microbes, meiofauna and macrofauna at hydrothermal vents

    1.Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, et al. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc. 2013;88:15–30.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Thompson LR, Sanders JG, McDonald D, Amir A, Ladau J, Locey KJ, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the oceans interior. Nature. 1988;332:441–3.CAS 
    Article 

    Google Scholar 
    4.Rousk J, Bengtson P. Microbial regulation of global biogeochemical cycles. Front Microbiol. 2014;5:103.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Guilhon M, Montserrat F, Turra A. Recognition of ecosystem-based management principles in key documents of the seabed mining regime: implications and further recommendations. ICES J Marine Sci. 2020:fsaa229.6.Sherman K, Sissenwine M, Christensen V, Duda A, Hempel G, Ibe C, et al. A global movement toward an ecosystem approach to management of marine resources. Mar Ecol Prog Ser. 2005;300:275–9.Article 

    Google Scholar 
    7.Passarelli C, Olivier F, Paterson DM, Hubas C. Impacts of biogenic structures on benthic assemblages: microbes, meiofauna, macrofauna and related ecosystem functions. Mar Ecol Prog Ser. 2012;465:85–97.Article 

    Google Scholar 
    8.Baldrighi E, Aliani S, Conversi A, Lavaleye M, Borghini M, Manini E. From microbes to macrofauna: an integrated study of deep benthic communities and their response to environmental variables along the Malta Escarpment (Ionian Sea). Sci Mar. 2013;77:625–39.Article 

    Google Scholar 
    9.Foshtomi MY, Braeckman U, Derycke S, Sapp M, Van Gansbeke D, Sabbe K, et al. The link between microbial diversity and nitrogen cycling in marine sediments is modulated by macrofaunal bioturbation. PLoS ONE. 2015;10:e0130116.10.Hope JA, Paterson DM, Thrush SF. The role of microphytobenthos in soft-sediment ecological networks and their contribution to the delivery of multiple ecosystem services. J Ecology. 2020;108:815–30.Article 

    Google Scholar 
    11.Lima-Mendez G, Faust K, Henry N, Decelle J, Colin S, Carcillo F, et al. Ocean plankton. Determinants of community structure in the global plankton interactome. Science. 2015;348:1262073.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    12.Blanchet FG, Cazelles K, Gravel D. Co-occurrence is not evidence of ecological interactions. Ecol Lett. 2020;23:1050–63.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Pearson K. Mathematical contributions to the theory of evolution—on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc R Soc Lond. 1897;60:489–98.Article 

    Google Scholar 
    14.Jackson DA. Compositional data in community ecology: the paradigm or peril of proportions? Ecology. 1997;78:929–40.Article 

    Google Scholar 
    15.Gloor GB, Reid G. Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can J Microbiol. 2016;62:692–703.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bahler J. Proportionality: a valid alternative to correlation for relative data. PLoS Comput Biol. 2015;11:e1004075.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Sievert SM, Vetriani C. Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography. 2012;25:218–33.Article 

    Google Scholar 
    18.Huber JA, Butterfield DA, Baross JA. Temporal changes in archaeal diversity and chemistry in a mid-ocean ridge subseafloor habitat. Appl Environ Microbiol. 2002;68:1585–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Karl DM, Wirsen CO, Jannasch HW. Deep-sea primary production at the Galapagos hydrothermal vents. Science. 1980;207:1345–7.CAS 
    Article 

    Google Scholar 
    20.Meyer JL, Akerman NH, Proskurowski G, Huber JA Microbiological characterization of post-eruption “snowblower” vents at Axial Seamount Juan de Fuca Ridge. Front Microbiol. 2013;4:153.21.Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev. 2011;75:361–422.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Dubilier N, Bergin C, Lott C. Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol. 2008;6:725–40.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Yamanaka T et al. A Compilation of the Stable Isotopic Compositions of Carbon, Nitrogen, and Sulfur in Soft Body Parts of Animals Collected from Deep-Sea Hydrothermal Vent and Methane Seep Fields: Variations in Energy Source and Importance of Subsurface Microbial Processes in the Sediment-Hosted Systems. In: Ishibashi J, Okino K, Sunamura M, editors. Subseafloor Biosphere Linked to Hydrothermal Systems. Tokyo, Japan: Springer Open; 2015. p. 105–29.24.Bergquist D, Eckner J, Urcuyo I, Cordes E, Hourdez S, Macko S, Fisher C. Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser. 2007;330:49–65.Article 

    Google Scholar 
    25.Colaço A, Dehairs F, Desbruyères D. Nutritional relations of deep-sea hydrothermal fields at the Mid-Atlantic Ridge: a stable isotope approach. Deep-Sea Res Part I-Oceanogr Res Pap. 2002;49:395–412.Article 

    Google Scholar 
    26.Van Dover C, Fry B. Stable isotopic compositions of hydrothermal vent organisms. Mar Biol. 1989;102:257–63.Article 

    Google Scholar 
    27.Colaço A, Desbruyères D, Guezennec J. Polar lipid fatty acids as indicators of trophic associations in a deep-sea vent system community. Marine Ecology-an Evolut Perspect. 2007;28:15–24.Article 
    CAS 

    Google Scholar 
    28.Limen H, Stevens CJ, Bourass Z, Juniper SK. Trophic ecology of siphonostomatoid copepods at deep-sea hydrothermal vents in the northeast Pacific. Mar Ecol Prog Ser. 2008;359:161–70.Article 

    Google Scholar 
    29.Van Dover CL. Trophic relationships among invertebrates at the Kairei hydrothermal vent field (Central Indian Ridge). Mar Biol. 2002;141:761–72.Article 

    Google Scholar 
    30.Lamy T, Koenigs C, Holbrook SJ, Miller RJ, Stier AC, Reed DC. Foundation species promote community stability by increasing diversity in a giant kelp forest. Ecology. 2020;101:e02987.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Bruno JF, Bertness MD Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME, editors. Marine Community Ecology. Sunderland, MA: Sinauer Associates; 2001. p. 201–18.32.Dayton PK Toward an Understanding of Community Resilience and the Potential Effects of Enrichments to the Benthos at McMurdo Sound, Antarctica. Pages 81-95. In: Parker BC, editor. Proceedings of the Colloquium on Conservation Problems. Lawrence, Kansas, USA.: Allen Press; 1972.33.Tunnicliffe V, Cordes EE The tubeworm forests of hydrothermal vents and cold seeps. In: Rossi S, Bramanti L, editors. Perspectives on the Marine Animal Forests of the World Springer; 2020. p. 147–92.34.López-García P, Gaill F, Moreira D. Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol. 2002;4:204–15.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Rincon-Tomas B, Francisco Javier González, Luis Somoza, Kathrin Sauter, Pedro Madureira, Teresa Medialdea et al. Siboglinidae Tubes as an Additional Niche for Microbial Communities in the Gulf of Cadiz-A Microscopical Appraisal. Microorganisms. 2020;8:367.36.Page A, Juniper SK, Olagnon M, Alain K, Desrosiers G, Querellou J, et al. Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney. Geobiology. 2004;2:225–38.Article 

    Google Scholar 
    37.Govenar B Shaping Vent and Seep Communities: Habitat Provision and Modification by Foundation Species. In: Kiel S, editor. The vent and seep biota: aspects from microbes to ecosystems. Dordrecht: Springer; 2010. p. 403–32.38.Tunnicliffe V, Germain CS, Hilario A Phenotypic Variation and Fitness in a Metapopulation of Tubeworms (Ridgeia piscesae Jones) at Hydrothermal Vents. PLoS ONE. 2014;9:e110578.39.Sarrazin J, Juniper SK. Biological characteristics of a hydrothermal edifice mosaic community. Mar Ecol Prog Ser. 1999;185:1–19.Article 

    Google Scholar 
    40.Sarrazin J, Juniper SK, Massoth G, Legendre P. Physical and chemical factors influencing species distributions on hydrothermal sulfide edifices of the Juan de Fuca Ridge, northeast Pacific. Mar Ecol Prog Ser. 1999;190:89–112.CAS 
    Article 

    Google Scholar 
    41.Govenar BW, Bergquist DC, Urcuyo IA, Eckner JT, Fisher CR. Three Ridgeia piscesae assemblages from a single Juan de Fuca Ridge sulphide edifice: structurally different and functionally similar. Cah Biol Mar. 2002;43:247–52.
    Google Scholar 
    42.Forget NL, Juniper SK. Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. MicrobiologyOpen. 2013;2:259–75.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Fraschetti S, Vanreusel A, et al. Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol. 2008;18:1–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nature Rev Microbiol. 2019;17:271–83.CAS 

    Google Scholar 
    45.Lee W-K, Juniper SK, Perez M, Ju S-J, Kim S-J Diversity and characterization of bacterial communities of five co-occurring species at a hydrothermal vent on the Tonga Arc. Ecol Evol. 2021;11:4481–93.46.Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci USA. 2006;103:12115–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Eren AM, Vineis JH, Morrison HG, Sogin ML. A filtering method to generate high quality short reads using illumina paired-end technology. PLoS One. 2013;8:e66643.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Caron DA, Countway PD, Savai P, Gast RJ, Schnetzer A, Moorthi SD, et al. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl Environ Microbiol. 2009;75:5797–808.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 2013;41:D597–604.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Quinn TP, Ionas Erb, Greg Gloor, Cedric Notredame, Mark F Richardson, Tamsyn M Crowley et al. A field guide for the compositional analysis of any-omics data. Gigascience. 2019;8:giz107.53.Martín-Fernández JA, Palarea-Albaladejo J, Olea RA Dealing with Zeros. In: Pawlowsky‐Glahn V, Buccianti A, editors. Compositional Data Analysis2011. p. 43-58.54.Palarea-Albaladejo J, Martin-Fernandez JA. zCompositions – R Package for multivariate imputation of left-censored data under a compositional approach. Chemometr Intell Lab. 2015;143:85–96.CAS 
    Article 

    Google Scholar 
    55.Aitchison J The statistical analysis of compositional data. London: Chapman & Hall; 1986. p. 416.56.Aitchison J, Barcelo-Vidal C, Martin-Fernandez JA, Pawlowsky-Glahn V. Logratio analysis and compositional distance. Math Geol. 2000;32:271–5.Article 

    Google Scholar 
    57.Comas-Cufí M coda.base: A Basic Set of Functions for Compositional Data Analysis. R package version 0.2.1 2019 [Available from: https://CRAN.R-project.org/package=coda.base.58.Oksanen J et al. vegan: Community Ecology Package. R package version 2.2-1. 2015 [Available from: http://CRAN.R-project.org/package=vegan.59.Fernandes AD, Macklaim JM, Linn TG, Reid G, Gloor GB. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLoS One. 2013;8:e67019.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Quinn TP, Richardson MF, Lovell D, Crowley TM. propr: an R-package for identifying proportionally abundant features using compositional data analysis. Sci Rep. 2017;7:16252.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research. 2003;13:2498–504.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol. 2003;43:393–409.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Akerman NH, Butterfield DA, Huber JA Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol. 2013;4:185.64.Tsurumi M, Tunnicliffe V. Tubeworm-associated communities at hydrothermal vents on the Juan de Fuca Ridge, northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap. 2003;50:611–29.Article 

    Google Scholar 
    65.Butterfield DA, Massoth GJ, McDuff RE, Lupton JE, Lilley MD. Geochemistry of hydrothermal fluids from Axial Seamount Hydrothermal Emissions Study vent field, Juan de Fuca Ridge: subseafloor boiling and subsequent fluid-rock interaction. J Geophys Res. 1990;95:12895–921.Article 

    Google Scholar 
    66.Johnson KS, Beehler CL, Sakamotoarnold CM, Childress JJ. insitu measurements of chemical-distributions in a deep-sea hydrothermal vent field. Science. 1986;231:1139–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Du Preez C, Fisher CP Long-Term Stability of back-Arc basin hydrothermal vents. Front Mar Sci. 2018;5:54.68.Urcuyo IA, Bergquist DC, MacDonald IR, VanHorn M, Fisher CR. Growth and longevity of the tubeworm Ridgeia piscesae in the variable diffuse flow habitats of the Juan de Fuca Ridge. Mar Ecol Prog Ser. 2007;344:143–57.Article 

    Google Scholar 
    69.Perner M, Bach W, Hentscher M, Koschinsky A, Garbe-Schönberg D, Streit WR, et al. Short-term microbial and physico-chemical variability in low-temperature hydrothermal fluids near 5 degrees S on the Mid-Atlantic Ridge. Environ Microbiol. 2009;11:2526–41.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Orcutt BN, Bradley JA, Brazelton WJ, Estes ER, Goordial JM, Huber JA, et al. Impacts of deep-sea mining on microbial ecosystem services. Limnology Oceanogr. 2020;65:1489–510.CAS 
    Article 

    Google Scholar 
    71.Gollner S, Ivanenko VN, Arbizu PM, Bright M. Advances in taxonomy, ecology, and biogeography of Dirivultidae (copepoda) associated with chemosynthetic environments in the deep sea. PLoS One. 2010;5:e9801.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Kalanetra KM, Nelson DC. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. Mar Biol. 2010;157:791–800.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Girguis PR, Lee RW. Thermal preference and tolerance of alvinellids. Science. 2006;312:231.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents. Environ Microbiol. 2009;11:1588–600.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Murdock SA, Juniper SK. Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel. Environ Microbiol. 2019;21:3796–815.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Meier DV, Bach W, Girguis PR, Gruber-Vodicka HR, Reeves EP, Richter M, et al. Heterotrophic Proteobacteria in the vicinity of diffuse hydrothermal venting. Environ Microbiol. 2016;18:4348–68.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Stokke R, Dahle H, Roalkvam I, Wissuwa J, Daae FL, Tooming-Klunderud A, et al. Functional interactions among filamentous Epsilonproteobacteria and Bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ Microbiol. 2015;17:4063–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Adl SM, Bass D, Lane CE, Lukeš J, Schoch CL, Smirnov A, et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J Eukaryot Microbiol. 2019;66:4–119.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AG, et al. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci. 2013;280:20131755.PubMed 
    PubMed Central 

    Google Scholar 
    80.Hamann E, Gruber-Vodicka H, Kleiner M, Tegetmeyer HE, Riedel D, Littmann S, et al. Environmental Breviatea harbour mutualistic Arcobacter epibionts. Nature. 2016;534:254–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Gollner S, Riemer B, Arbizu PM, Le Bris N, Bright M. Diversity of meiofauna from the 9 degrees 50’ N East Pacific rise across a gradient of hydrothermal fluid emissions. PLoS ONE. 2010;5:e12321.82.Sarrazin J, Legendre P, de Busserolles F, Fabri MC, Guilini K, Ivanenko VN, et al. Biodiversity patterns, environmental drivers and indicator species on a high-temperature hydrothermal edifice, Mid-Atlantic Ridge. Deep-Sea Res Part Ii-Topical Stud Oceanogr. 2015;121:177–92.CAS 
    Article 

    Google Scholar 
    83.Bates AE, Harmer TL, Roeselers G, Cavanaugh CM. Phylogenetic characterization of episymbiotic bacteria hosted by a hydrothermal vent limpet (lepetodrilidae, vetigastropoda). Biol Bull-US. 2011;220:118–27.Article 

    Google Scholar 
    84.Schratzberger M, Ingels J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J Exp Mar Biol Ecol. 2018;502:12–25.Article 

    Google Scholar 
    85.Cronin-O’Reilly S, Joe D Taylor, Ian Jermyn, A Louise Allcock, Michael Cunliffe, Mark P Johnson et al. Limited congruence exhibited across microbial, meiofaunal and macrofaunal benthic assemblages in a heterogeneous coastal environment. Sci Rep-UK. 2018;8:15500.86.Reimann F, Schrage M. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia. 1978;34:75–88.Article 

    Google Scholar 
    87.Léveillé RJ, Levesque C, Juniper SK Biotic interactions and feedback processes in deep-sea hydrothermal vent ecosystems. In: Kristensen E, Haese RR, Kostka JE, editors. Interactions between macro- and microorganisms in marine sediments. Washington, DC: American Geophysical Union; 2005. p. 299–321.88.Ingels J, Ann Vanreusel, Ellen Pape, Francesca Pasotti, Lara Macheriotou, Pedro Martínez Arbizu et al. Ecological variables for deep-ocean monitoring must include microbiota and meiofauna for effective conservation. Nat Ecology Evolut. 2020: https://doi.org/10.1038/s41559-020-01335-6.89.Thompson KF, Miller KA, Currie D, Johnston P, Santillo D. Seabed mining and approaches to governance of the deep seabed. Front Mar Sci. 2018;5:480. More

  • in

    Escaping the choosiness trap

    1.Courtiol, A., Etienne, L., Feron, R., Godelle, B. & Rousset, F. Am. Nat. 188, 521–538 (2016).Article 

    Google Scholar 
    2.Jennions, M. D. & Petrie, M. Biol. Rev. 75, 21–64 (2000).CAS 
    Article 

    Google Scholar 
    3.Kokko, H. & Mappes, J. Evolution 59, 1876–1885 (2005).Article 

    Google Scholar 
    4.Hare, R. M. & Simmons, L. W. Biol. Rev. 94, 929–956 (2019).Article 

    Google Scholar 
    5.Kohlmeier, P., Zhang, Y., Gorter, J. A., Su, C.-Y. & Billeter, J.-C. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-021-01482-4 (2021).Article 

    Google Scholar 
    6.Halliday, T. R. in Mate Choice (ed. Bateson, P.) 3–32 (Cambridge Univ. Press, 1983).7.Avila, F. W., Sirot, L. K., LaFlamme, B. A., Rubinstein, C. D. & Wolfner, M. F. Annu. Rev. Entomol. 56, 21–40 (2011).CAS 
    Article 

    Google Scholar 
    8.Perry, J. C. & Rowe, L. Cold Spring Harb. Perspect. Biol. 7, a017558 (2015).Article 

    Google Scholar 
    9.Hopkins, B. R., Avila, F. W. & Wolfner, M. F. in Encyclopedia of Reproduction (ed. Skinner, M. K.) 137–144 (Elsevier, 2018).10.de Boer, R. A., Vega-Trejo, R., Kotrschal, A. & Fitzpatrick, J. L. Nat. Ecol. Evol. https://doi.org/ggbb (2021). More

  • in

    Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments

    1.D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science. 2004;306:2216–21.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 1979;43:1075–90.CAS 
    Article 

    Google Scholar 
    3.Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.CAS 
    Article 

    Google Scholar 
    4.Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Annu Rev Mar Sci. 2011;3:401–25.Article 

    Google Scholar 
    5.Thamdrup B, Rosselló-Mora R, Amann R. Microbial manganese and sulfate reduction in Black Sea shelf sediments. Appl Environ Microbiol. 2000;66:2888–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments. In: Schink B, editor. Advances in microbial ecology. Boston, MA, US: Springer; 2000. p. 41–84.7.Jørgensen BB, Kasten S. Sulfur cycling and methane oxidation. In: Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006. p. 271–309.8.Bowles MW, Mogollón JM, Kasten S, Zabel M, Hinrichs K-U. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science. 2014;344:889–91.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Jickells TD, An ZS, Andersen KK, Baker AR, Bergametti G, Brooks N, et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005;308:67–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Raiswell R, Hawkings JR, Benning LG, Baker AR, Death R, Albani S, et al. Potentially bioavailable iron delivery by iceberg-hosted sediments and atmospheric dust to the polar oceans. Biogeosciences. 2016;13:3887–900.CAS 
    Article 

    Google Scholar 
    11.Hawkings JR, Wadham JL, Tranter M, Raiswell R, Benning LG, Statham PJ, et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat Commun. 2014;5:3929.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Death R, Wadham JL, Monteiro F, Le Brocq AM, Tranter M, Ridgwell A, et al. Antarctic ice sheet fertilises the Southern Ocean. Biogeosciences. 2014;11:2635–43.Article 

    Google Scholar 
    13.Monien D, Monien P, Brünjes R, Widmer T, Kappenberg A, Silva Busso AA, et al. Meltwater as a source of potentially bioavailable iron to Antarctica waters. Antarct Sci. 2017;29:277–91.Article 

    Google Scholar 
    14.Henkel S, Kasten S, Hartmann JF, Silva-Busso A, Staubwasser M. Iron cycling and stable Fe isotope fractionation in Antarctic shelf sediments, King George Island. Geochim Cosmochim Acta. 2018;237:320–38.CAS 
    Article 

    Google Scholar 
    15.Hodson A, Nowak A, Sabacka M, Jungblut A, Navarro F, Pearce D, et al. Climatically sensitive transfer of iron to maritime Antarctic ecosystems by surface runoff. Nat Commun. 2017;8:14499.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Wang S, Bailey D, Lindsay K, Moore JK, Holland M. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences. 2014;11:4713–31.CAS 
    Article 

    Google Scholar 
    17.Jørgensen BB, Findlay AJ, Pellerin A. The biogeochemical sulfur cycle of marine sediments. Front Microbiol. 2019;10:849.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Findlay AJ, Kamyshny A. Turnover rates of intermediate sulfur species (Sx2−, S0, S2O32−, S4O62−, SO32−) in anoxic freshwater and sediments. Front Microbiol. 2017;8:2551.19.Findlay AJ, Pellerin A, Laufer K, Jørgensen BB. Quantification of sulphide oxidation rates in marine sediment. Geochim Cosmochim Acta. 2020;280:441–52.CAS 
    Article 

    Google Scholar 
    20.Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, et al. Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol. 1993;113:27–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Michaud AB, Laufer K, Findlay A, Pellerin A, Antler G, Turchyn AV, et al. Glacial influence on the iron and sulfur cycles in Arctic fjord sediments (Svalbard). Geochim Cosmochim Acta. 2020;280:423–40.CAS 
    Article 

    Google Scholar 
    22.Jensen MM, Thamdrup B, Rysgaard S, Holmer M, Fossing H. Rates and regulation of microbial iron reduction in sediments of the Baltic-North Sea transition. Biogeochemistry. 2003;65:295–317.Article 

    Google Scholar 
    23.Beckler JS, Kiriazis N, Rabouille C, Stewart FJ, Taillefert M. Importance of microbial iron reduction in deep sediments of river-dominated continental-margins. Mar Chem. 2016;178:22–34.CAS 
    Article 

    Google Scholar 
    24.Riedinger N, Brunner B, Krastel S, Arnold GL, Wehrmann LM, Formolo MJ, et al. Sulfur cycling in an iron oxide-dominated, dynamic marine depositional system: the Argentine Continental Margin. Front Earth Sci. 2017;5:33.Article 

    Google Scholar 
    25.Thamdrup B, Fossing H, Jørgensen BB. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay, Denmark. Geochim Cosmochim Acta. 1994;58:5115–29.CAS 
    Article 

    Google Scholar 
    26.Arndt S, Jørgensen BB, LaRowe DE, Middelburg J, Pancost R, Regnier P. Quantifying the degradation of organic matter in marine sediments: a review and synthesis. Earth-Sci Rev. 2013;123:53–86.CAS 
    Article 

    Google Scholar 
    27.Algora C, Vasileiadis S, Wasmund K, Trevisan M, Krüger M, Puglisi E, et al. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol. 2015;91:fiv056.PubMed 
    Article 
    CAS 

    Google Scholar 
    28.Franco M, De Mesel I, Diallo MD, Van Der Gucht K, Van Gansbeke D, Van, et al. Effect of phytoplankton bloom deposition on benthic bacterial communities in two contrasting sediments in the southern North Sea. Aquat Micro Ecol. 2007;48:241–54.Article 

    Google Scholar 
    29.Zonneveld KAF, Versteegh GJM, Kasten S, Eglinton TI, Emeis K-C, Huguet C, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences. 2010;7:483–511.CAS 
    Article 

    Google Scholar 
    30.Jorgensen SL, Hannisdal B, Lanzén A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci U S A. 2012;109:E2846–55.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Zinke LA, Glombitza C, Bird JT, Røy H, Jørgensen BB, Lloyd KG, et al. Microbial organic matter degradation potential in Baltic Sea sediments is influenced by depositional conditions and in situ geochemistry. Appl Environ Microbiol. 2019;85:e02164-18.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Yang J, Jiang H, Wu G, Dong H. Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep. 2016;6:25078.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Hicks N, Liu X, Gregory R, Kenny J, Lucaci A, Lenzi L, et al. Temperature driven changes in benthic bacterial diversity influences biogeochemical cycling in coastal sediments. Front Microbiol. 2018;9:1730.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Hamdan LJ, Coffin RB, Sikaroodi M, Greinert J, Treude T, Gillevet PM. Ocean currents shape the microbiome of Arctic marine sediments. ISME J. 2013;7:685–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Schulz HD, Zabel M, editors. Marine geochemistry. 2nd ed. Berlin, Heidelberg, Germany: Springer-Verlag; 2006.36.Geprägs P, Torres ME, Mau S, Kasten S, Römer M, Bohrmann G. Carbon cycling fed by methane seepage at the shallow Cumberland Bay, South Georgia, sub-Antarctic. Geochem, Geophys Geosystems. 2016;17:1401–18.Article 
    CAS 

    Google Scholar 
    37.Atkinson A, Whitehouse MJ, Priddle J, Cripps GC, Ward P, Brandon MA. South Georgia, Antarctica: a productive, cold water, pelagic ecosystem. Mar Ecol Prog Ser. 2001;216:279–308.CAS 
    Article 

    Google Scholar 
    38.Löffler B. Geochemische Prozesse und Stoffkreisläufe in Sedimenten innerhalb und außerhalb des Cumberland-Bay Fjordes, Süd Georgien. Bachelor Thesis. Bremen, Germany: University of Bremen; 2013.39.Köster M. (Bio-)geochemische Prozesse in den eisenreichen Seep-Sedimenten der Cumberland-Bucht Südgeorgiens, Subantarktis. Bachelor Thesis. Bremen, Germany: University of Bremen; 2014.40.Römer M, Torres M, Kasten S, Kuhn G, Graham AG, Mau S, et al. First evidence of widespread active methane seepage in the Southern Ocean, off the sub-Antarctic island of South Georgia. Earth Planet Sci Lett. 2014;403:166–77.Article 
    CAS 

    Google Scholar 
    41.Bohrmann G, Aromokeye AD, Bihler V, Dehning K, Dohrmann I, Gentz T, et al. R/V METEOR Cruise Report M134, emissions of free gas from cross-shelf troughs of South Georgia: distribution, quantification, and sources for methane ebullition sites in sub-Antarctic waters, Port Stanley (Falkland Islands)—Punta Arenas (Chile), 16 January–18 February 2017. 2017.42.Schnakenberg A, Aromokeye DA, Kulkarni A, Maier L, Wunder LC, Richter-Heitmann T, et al. Electron acceptor availability shapes Anaerobically Methane Oxidizing Archaea (ANME) communities in South Georgia sediments. Front Microbiol. 2021;12:726.Article 

    Google Scholar 
    43.Rückamp M, Braun M, Suckro S, Blindow N. Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global Planet Change. 2011;79:99–109.44.Seeberg-Elverfeldt J, Schlüter M, Feseker T, Kölling M. Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnol Oceanogr Methods. 2005;3:361–71.Article 

    Google Scholar 
    45.Oni OE, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, et al. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol. 2015;6:365.PubMed 
    PubMed Central 

    Google Scholar 
    46.Aromokeye DA, Richter-Heitmann T, Oni OE, Kulkarni A, Yin X, Kasten S, et al. Temperature controls crystalline iron oxide utilization by microbial communities in methanic ferruginous marine sediment incubations. Front Microbiol. 2018;9:2574.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Ovreås L, Forney L, Daae FL, Torsvik V. Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol. 1997;63:3367–73.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Takai K, Horikoshi K. Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol. 2000;66:5066–72.51.Viollier E, Inglett P, Hunter K, Roychoudhury A, Van Cappellen P. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Appl Geochem. 2000;15:785–90.CAS 
    Article 

    Google Scholar 
    52.Yin X, Kulkarni AC, Friedrich MW. DNA and RNA stable isotope probing of methylotrophic methanogenic Archaea. In: Dumont MG, Hernández García M, editors. Stable isotope probing: methods and protocols. New York, NY: Springer; 2019. p. 189–206.53.Aromokeye DA, Kulkarni AC, Elvert M, Wegener G, Henkel S, Coffinet S, et al. Rates and microbial players of iron-driven anaerobic oxidation of methane in methanic marine sediments. Front Microbiol. 2020;10:3041.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Eden PA, Schmidt TM, Blakemore RP, Pace NR. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase chain reaction-amplified 16S rRNA-specific DNA. Int J Syst Evol Microbiol. 1991;41:324–5.CAS 

    Google Scholar 
    55.Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng. 2005;89:670–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Lueders T, Friedrich MW. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl Environ Microbiol. 2002;68:2484–94.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Lane DJ. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: John Wiley and Sons; 1991. p. 115–75.58.Großkopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol. 1998;64:960–9.59.Reyes C, Schneider D, Thürmer A, Kulkarni A, Lipka M, Sztejrenszus SY, et al. Potentially active iron, sulfur, and sulfate reducing bacteria in Skagerrak and Bothnian Bay sediments. Geomicrobiol J. 2017;34:840–50.CAS 
    Article 

    Google Scholar 
    60.Kondo R, Nedwell DB, Purdy KJ, Silva SQ. Detection and enumeration of sulphate-reducing Bacteria in estuarine sediments by competitive PCR. Geomicrobiol J. 2004;21:145–57.CAS 
    Article 

    Google Scholar 
    61.Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Ann Stat. 2001;29:1165–88.Article 

    Google Scholar 
    62.R Core Team. R: a language and environment for statistical computing, 3.6.1. Vienna, Austria: R Foundation for Statistical Computing; 2019. Available from: https://www.R-project.org.63.Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package, 2.5-6. 2019. Available from: https://CRAN.R-project.org/package=vegan.64.Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:D590–6.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    65.Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:W256–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Inkscape Team. Inkscape, 1.0.1. 2020. Available from: https://inkscape.org.68.Sun H, Spring S, Lapidus A, Davenport K, Glavina Del Rio T, Tice H, et al. Complete genome sequence of Desulfarculus baarsii type strain (2st14T). Stand Genom Sci. 2010;3:276–84.Article 

    Google Scholar 
    69.Kümmel S, Herbst F-A, Bahr A, Duarte M, Pieper DH, Jehmlich N, et al. Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol. 2015;91:fiv006.70.Belyakova EV, Rozanova EP, Borzenkov IA, Tourova TP, Pusheva MA, Lysenko AM, et al. The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field. Microbiology. 2006;75:161–71.71.Rezadehbashi M, Baldwin SA. Core sulphate-reducing microorganisms in metal-removing semi-passive biochemical reactors and the co-occurrence of methanogens. Microorganisms. 2018;6:16.PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Sorokin DY, Chernyh NA. ‘Candidatus Desulfonatronobulbus propionicus’: a first haloalkaliphilic member of the order Syntrophobacterales from soda lakes. Extremophiles. 2016;20:895–901.CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips E, Gorby YA, et al. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159:336–44.75.Roden EE, Lovley DR. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol. 1993;59:734–42.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Lovley DR, Coates JD, Saffarini DA, Lonergan DJ. Dissimilatory iron reduction. In: Winkelmann G, Carrano CJ, editors. Transition metals in microbial metabolism. Amsterdam: Harwood Academic Publishers; 1997. p. 187–215.77.Vandieken V, Finke N, Jørgensen BB. Pathways of carbon oxidation in an Arctic fjord sediment (Svalbard) and isolation of psychrophilic and psychrotolerant Fe(III)-reducing bacteria. Mar Ecol Prog Ser. 2006;322:29–41.CAS 
    Article 

    Google Scholar 
    78.Vandieken V, Thamdrup B. Identification of acetate-oxidizing bacteria in a coastal marine surface sediment by RNA-stable isotope probing in anoxic slurries and intact cores. FEMS Microbiol Ecol. 2013;84:373–86.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Hori T, Aoyagi T, Itoh H, Narihiro T, Oikawa A, Suzuki K, et al. Isolation of microorganisms involved in reduction of crystalline iron(III) oxides in natural environments. Front Microbiol. 2015;6:386.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Vandieken V, Mußmann M, Niemann H, Jørgensen BB. Desulfuromonas svalbardensis sp. nov. and Desulfuromusa ferrireducens sp. nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard. Int J Syst Evol Microbiol. 2006;56:1133–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    81.Slobodkina GB, Reysenbach A-L, Panteleeva AN, Kostrikina NA, Wagner ID, Bonch-Osmolovskaya EA, et al. Deferrisoma camini gen. nov., sp. nov., a moderately thermophilic, dissimilatory iron(III)-reducing bacterium from a deep-sea hydrothermal vent that forms a distinct phylogenetic branch in the Deltaproteobacteria. Int J Syst Evol Microbiol. 2012;62:2463–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Tu T-H, Wu L-W, Lin Y-S, Imachi H, Lin L-H, Wang P-L. Microbial community composition and functional capacity in a terrestrial ferruginous, sulfate-depleted mud volcano. Front Microbiol. 2017;8:2137.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Lovley DR, Roden EE, Phillips EJP, Woodward JC. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Mar Geol. 1993;113:41–53.CAS 
    Article 

    Google Scholar 
    84.Bale SJ, Goodman K, Rochelle PA, Marchesi JR, Fry JC, Weightman AJ, et al. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing Bacterium from deep sediment layers in the Japan Sea. Int J Syst Evol Microbiol. 1997;47:515–21.85.Treude N, Rosencrantz D, Liesack W, Schnell S. Strain FAc12, a dissimilatory iron-reducing member of the Anaeromyxobacter subgroup of Myxococcales. FEMS Microbiol Ecol. 2003;44:261–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Hori T, Müller A, Igarashi Y, Conrad R, Friedrich MW. Identification of iron-reducing microorganisms in anoxic rice paddy soil by 13C-acetate probing. ISME J. 2010;4:267–78.87.Han Y, Perner M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front Microbiol. 2015;6:989.PubMed 
    PubMed Central 

    Google Scholar 
    88.Roalkvam I, Drønen K, Stokke R, Daae FL, Dahle H, Steen IH. Physiological and genomic characterization of Arcobacter anaerophilus IR-1 reveals new metabolic features in Epsilonproteobacteria. Front Microbiol. 2015;6:987.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Schlosser C, Schmidt K, Aquilina A, Homoky WB, Castrillejo M, Mills RA, et al. Mechanisms of dissolved and labile particulate iron supply to shelf waters and phytoplankton blooms off South Georgia, Southern Ocean. Biogeosciences. 2018;15:4973–93.CAS 
    Article 

    Google Scholar 
    90.Sahade R, Lagger C, Torre L, Momo F, Monien P, Schloss I, et al. Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Sci Adv. 2015;1:e1500050.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Petro C, Starnawski P, Schramm A, Kjeldsen KU. Microbial community assembly in marine sediments. Aquat Micro Ecol. 2017;79:177–95.Article 

    Google Scholar 
    92.Petro C, Zäncker B, Starnawski P, Jochum LM, Ferdelman TG, Jørgensen BB, et al. Marine deep biosphere microbial communities assemble in near-surface sediments in Aarhus Bay. Front Microbiol. 2019;10:758.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Starnawski P, Bataillon T, Ettema TJ, Jochum LM, Schreiber L, Chen X, et al. Microbial community assembly and evolution in subseafloor sediment. Proc Natl Acad Sci USA. 2017;114:2940–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Marshall IPG, Ren G, Jaussi M, Lomstein BA, Jørgensen BB, Røy H, et al. Environmental filtering determines family-level structure of sulfate-reducing microbial communities in subsurface marine sediments. ISME J. 2019;13:1920–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Berner RA. Early diagenesis: a theoretical approach. Princeton, New Jersey: Princeton University Press; 1980.96.Cottrell MT, Kirchman DL. Natural assemblages of marine Proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Appl Environ Microbiol. 2000;66:1692–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Bissett A, Bowman JP, Burke CM. Flavobacterial response to organic pollution. Aquat Micro Ecol. 2008;51:31–43.Article 

    Google Scholar 
    98.Martinez-Garcia M, Brazel DM, Swan BK, Arnosti C, Chain PSG, Reitenga KG, et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE. 2012;7:e35314.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    99.Sabree ZL, Kambhampati S, Moran NA. Nitrogen recycling and nutritional provisioning by Blattabacterium, the cockroach endosymbiont. Proc Natl Acad Sci U S A. 2009;106:19521–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Bowman JP, McCuaig RD. Biodiversity, community structural shifts, and biogeography of Prokaryotes within Antarctic continental shelf sediment. Appl Environ Microbiol. 2003;69:2463–83.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Blazejak A, Schippers A. High abundance of JS-1- and Chloroflexi-related Bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol. 2010;72:198–207.CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, et al. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. Int J Syst Evol Microbiol. 2006;56:1331–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Storesund JE, Øvreås L. Diversity of Planctomycetes in iron-hydroxide deposits from the Arctic Mid Ocean Ridge (AMOR) and description of Bythopirellula goksoyri gen. nov., sp. nov., a novel Planctomycete from deep sea iron-hydroxide deposits. Antonie Van Leeuwenhoek. 2013;104:569–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    104.Kovaleva OL, Merkel AY, Novikov AA, Baslerov RV, Toshchakov SV, Bonch-Osmolovskaya EA. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microbiol. 2015;65:549–55.CAS 
    PubMed 
    Article 

    Google Scholar 
    105.Borrione I, Schlitzer R. Distribution and recurrence of phytoplankton blooms around South Georgia, Southern Ocean. Biogeosciences. 2013;10:217–31.Article 

    Google Scholar 
    106.Pfennig N, Biebl H. Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol. 1976;110:3–12.CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Finster K, Bak F, Pfennig N. Desulfuromonas acetexigens sp. nov., a dissimilatory sulfur-reducing eubacterium from anoxic freshwater sediments. Arch Microbiol. 1994;161:328–32.CAS 
    Article 

    Google Scholar 
    108.Lovley DR, Phillips EJP, Lonergan DJ, Widman PK. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol. 1995;61:2132–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    109.An TT, Picardal FW. Desulfuromonas carbonis sp. nov., an Fe(III)-, S0- and Mn(IV)-reducing bacterium isolated from an active coalbed methane gas well. Int J Syst Evol Microbiol. 2015;65:1686–93.CAS 
    PubMed 
    Article 

    Google Scholar 
    110.Pjevac P, Kamyshny A Jr, Dyksma S, Mußmann M. Microbial consumption of zero-valence sulfur in marine benthic habitats. Environ Microbiol. 2014;16:3416–30.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Miao Z-Y, He H, Tan T, Zhang T, Tang J-L, Yang Y-C, et al. Biotreatment of Mn2+ and Pb2+ with sulfate-reducing bacterium Desulfuromonas alkenivorans S-7. J Environ Eng. 2018;144:04017116.Article 

    Google Scholar 
    112.Buongiorno J, Herbert L, Wehrmann L, Michaud A, Laufer K, Røy H, et al. Complex microbial communities drive iron and sulfur cycling in Arctic fjord sediments. Appl Environ Microbiol. 2019;85:e00949-19.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Zhang H, Liu F, Zheng S, Chen L, Zhang X, Gong J. The differentiation of iron-reducing bacterial community and iron-reduction activity between riverine and marine sediments in the Yellow River estuary. Mar Life Sci Technol. 2020;2:87–96.Article 

    Google Scholar 
    114.Ravenschlag K, Sahm K, Pernthaler J, Amann R. High bacterial diversity in permanently cold marine sediments. Appl Environ Microbiol. 1999;65:3982–9.115.Kashefi K, Holmes DE, Baross JA, Lovley DR. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl Environ Microbiol. 2003;69:2985–93.116.Holmes DE, Nicoll JS, Bond DR, Lovley DR. Potential role of a novel psychrotolerant member of the family Geobacteraceae, Geopsychrobacter electrodiphilus gen. nov., sp. nov., in electricity production by a marine sediment fuel cell. Appl Environ Microbiol. 2004;70:6023–30.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Jørgensen BB. Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature. 1982;296:643–5.Article 

    Google Scholar 
    118.Bryant M, Campbell LL, Reddy C, Crabill M. Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol. 1977;33:1162–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Muyzer G, Stams AJ. The ecology and biotechnology of sulphate-reducing bacteria. Nat Rev Microbiol. 2008;6:441–54.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    120.Dalsgaard T, Bak F. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics, and regulation. Appl Environ Microbiol. 1994;60:291–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    121.Holmes DE, Bond DR, Lovley DR. Electron transfer by Desulfobulbus propionicus to Fe (III) and graphite electrodes. Appl Environ Microbiol. 2004;70:1234–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Lovley DR, Phillips EJP. Competitive mechanisms for inhibition of sulfate reduction and methane production in the zone of ferric iron reduction in sediments. Appl Environ Microbiol. 1987;53:2636–41.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Finke N, Vandieken V, Jørgensen BB. Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard. FEMS Microbiol Ecol. 2007;59:10–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    124.Canfield DE, Thamdrup B, Hansen JW. The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction. Geochim Cosmochim Acta. 1993;57:3867–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    125.Jørgensen BB. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol Oceanogr. 1977;22:814–32.Article 

    Google Scholar 
    126.Jørgensen BB, Laufer K, Michaud AB, Wehrmann LM. Biogeochemistry and microbiology of high Arctic marine sediment ecosystems—case study of Svalbard fjords. Limnol Oceanogr. 2021;66:S273–92.Article 
    CAS 

    Google Scholar 
    127.Laufer K, Michaud AB, Røy H, Jørgensen BB. Reactivity of iron minerals in the seabed toward microbial reduction—a comparison of different extraction techniques. Geomicrobiol J. 2020;37:170–89.Article 

    Google Scholar 
    128.Holmkvist L, Ferdelman TG, Jørgensen BB. A cryptic sulfur cycle driven by iron in the methane zone of marine sediment (Aarhus Bay, Denmark). Geochim Cosmochim Acta. 2011;75:3581–99.CAS 
    Article 

    Google Scholar 
    129.Riedinger N, Brunner B, Formolo MJ, Solomon E, Kasten S, Strasser M, et al. Oxidative sulfur cycling in the deep biosphere of the Nankai Trough, Japan. Geology. 2010;38:851–4.CAS 
    Article 

    Google Scholar  More

  • in

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies

    1.Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-) 328, 894–899 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Benton, M. J. The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Revisiting water loss in insects: a large scale view. J. Insect Physiol. 47, 1377–1388 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Abram, P., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol. Rev. Camb. Philos. Soc. 92, 1859–1876 (2016).PubMed 
    Article 

    Google Scholar 
    5.Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).PubMed 
    Article 

    Google Scholar 
    6.Duffy, G. A., Coetzee, B. W., Janion-Scheepers, C. & Chown, S. L. Microclimate-based macrophysiology: implications for insects in a warming world. Curr. Opin. Insect Sci. 11, 84–89 (2015).PubMed 
    Article 

    Google Scholar 
    7.Pincebourde, S., Sinoquet, H., Combes, D. & Casas, J. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. J. Anim. Ecol. 76, 424–438 (2007).PubMed 
    Article 

    Google Scholar 
    8.Sinoquet, H. et al. 3-D maps of tree canopy geometries at leaf scale. Ecology 90, 283 (2009).Article 

    Google Scholar 
    9.Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).Article 

    Google Scholar 
    10.Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl. Acad. Sci. 116, 5588–5596 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S. & Koch, G. W. Insect infestations linked to shifts in microclimate: important climate change implications. Soil Sci. Soc. Am. J. 69, 2049–2057 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Beetge, L. & Krüger, K. Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Sci. Rep. 9, 3645 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Dale, A. G. & Frank, S. D. Warming and drought combine to increase pest insect fitness on urban trees. PLoS One 12, e0173844 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Sørensen, J. G., Addison, M. F. & Terblanche, J. S. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).Article 

    Google Scholar 
    15.Klassen, W. & Curtis, C. F. History of the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer, 2005).16.Orozco-Dávila, D. et al. Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico-a review. Entomol. Exp. Appl. 164, 176–187 (2017).Article 

    Google Scholar 
    17.Vreysen, M. J. B., Hendrichs, J. & Enkerlin, W. R. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 14, 107–130 (2006).
    Google Scholar 
    18.Enkerlin, W. R. Impact of fruit fly control programmes using the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 652–676 (Springer, 2005).19.Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT)-an introduction. Entomol. Exp. Appl. 164, 151–154 (2017).Article 

    Google Scholar 
    20.Vargas, R. I. Mass production of tephritid fruit flies. in Fruit Flies: Their Biology, Natural Enemies, and Control (eds. Robinson, A. S. & Hooper, G.) 141–152 (Elsevier, 1989).21.Perez-Staples, D., Shelly, T. E. & Yuval, B. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomol. Exp. Appl. 146, 66–78 (2013).Article 

    Google Scholar 
    22.Koyama, J., Kakinohana, H. & Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 49, 331–349 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Cayol, J. P. Changes in sexual behavior and life history traits of tephritid species caused by mass-rearing processes. in Fruit flies (Tephritidae): Phylogeny and Evolution of Behavior (eds. Aluja, M. & Norrbom, A. L.) 843–860 (CRC Press, 2000).24.Meza-Hernández, J. S. & Díaz-Fleischer, F. Comparison of sexual compatibility between laboratory and wild Mexican fruit flies under laboratory and field conditions. J. Econ. Entomol. 99, 1979–1986 (2006).PubMed 
    Article 

    Google Scholar 
    25.Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).Article 

    Google Scholar 
    26.Orozco-Dávila, D., Hernández, R., Meza, S. & Domínguez, J. Sexual competitiveness and compatibility between mass-reared sterile flies and wild populations of Anastrepha ludens (Diptera: Tephritidae) from different regions in Mexico. Florida Entomol. 90, 19–26 (2007).Article 

    Google Scholar 
    27.Weldon, C. W., Schutze, M. K. & Karsten, M. Trapping to monitor tephritid movement: results, best practice, and assessment of alternatives. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 175–217 (Springer, 2014).28.Dominiak, B. C., Worsley, P. M. & Nicol, H. Release from a point source and dispersal of sterile Queensland fruit fly (Bactrocera tryoni (froggatt)) (Diptera: Tephritidae) at Wagga Wagga. Plant Prot. Q. 28, 120–125 (2013).
    Google Scholar 
    29.Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. The distribution of olive fruit fly captures with McPhail traps within an olive orchard. Phytoparasitica 31, 124–131 (2003).Article 

    Google Scholar 
    30.Raghu, S., Drew, R. A. I. & Clarke, A. R. Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly. J. Insect. Behav. 17, 179–190 (2004).Article 

    Google Scholar 
    31.Kaspi, R. & Yuval, B. Mediterranean Fruit Fly leks: factors affecting male location. Funct. Ecol. 13, 539–545 (1999).Article 

    Google Scholar 
    32.Baker, P. S. & van der Valk, H. Distribution and behaviour of sterile Mediterranean fruit flies in a host tree. J. Appl. Entomol. 114, 67–76 (1992).Article 

    Google Scholar 
    33.Aluja, M. & Birke, A. Habitat use by adults of Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Ann. Entomol. Soc. Am. 86, 799–812 (1993).Article 

    Google Scholar 
    34.Aluja, M., Jácome, I., Birke, A., Lozada, N. & Quintero, G. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Ann. Entomol. Soc. Am. 86, 776–793 (1993).Article 

    Google Scholar 
    35.Huettel, M. D. Monitoring the quality of laboratory-reared insects: A biological and behavioral perspective. Environ. Entomol. 5, 807–814 (1976).Article 

    Google Scholar 
    36.Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).Article 

    Google Scholar 
    37.MacLellan, R. & King, K. National fruit fly surveillance programme 2017–2018. Surveillance 45, 68–71 (2018).
    Google Scholar 
    38.Aguilar, G., Blanchon, D., Foot, H., Pollonais, C. & Mosee, A. Queensland fruit fly invasion of New Zealand: Predicting area suitability under future climate change scenarios. Unitec ePress Perspectives in Biosecurity Research Series (2015).39.Vargas, R. I., Leblanc, L., Piñero, J. C. & Hoffman, K. Male annihilation, past, present, and future. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 493–511 (Springer, 2014).40.Vargas, R., Piñero, J. & Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6, 297–318 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).Article 

    Google Scholar 
    42.Dominiak, B. C. Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann. Entomol. Soc. Am. 105, 434–446 (2012).Article 

    Google Scholar 
    43.Hancock, D. L., Hamacek, E. L., Lloyd, A. C. & Elson-Harris, M. M. The distribution and host plants of fruit flies (Diptera: Tephritidae) in Australia. Queensland Department of Primary Industries (2000).44.PHA. The National Plant Health Status Report (08/09). Plant Health Australia, Canberra, ACT (2009).45.Ha, A., Larson, K., Harvey, S., Fisher, W. & Malcolm, L. Benefit-cost analysis of options for managing Queensland fruit fly in Victoria. Victoria Department of Primary Industries (2010).46.Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop Prot. 116, 56–67 (2019).Article 

    Google Scholar 
    47.Stringer, L. D., Kean, J. M., Beggs, J. R. & Suckling, D. M. Management and eradication options for Queensland fruit fly. Popul. Ecol. 59, 259–273 (2017).Article 

    Google Scholar 
    48.Lynch, K. E., White, T. E. & Kemp, D. J. The effect of captive breeding upon adult thermal preference in the Queensland fruit fly (Bactrocera tryoni). J. Therm. Biol. 78, 290–297 (2018).PubMed 
    Article 

    Google Scholar 
    49.Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).Article 

    Google Scholar 
    51.Moadeli, T., Taylor, P. W. & Ponton, F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J. Pest Sci. 2004(90), 507–520 (2017).Article 

    Google Scholar 
    52.Pérez-Staples, D., Weldon, C. W. & Taylor, P. W. Sex differences in developmental response to yeast hydrolysate supplements in adult Queensland fruit fly. Entomol. Exp. Appl. 141, 103–113 (2011).Article 

    Google Scholar 
    53.Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).Article 

    Google Scholar 
    54.McInnis, D. O., Rendon, P. & Komatsu, J. Mating and remating of medflies (Diptera: Tephritidae) in Guatemala: Individual fly marking in field cages. Florida Entomol. 85, 126–137 (2002).Article 

    Google Scholar 
    55.R Core Team. R: a language and environment for statistical computing version 1.1.419. R Foundation for Statistical Computing (2019).56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    57.Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6 (2019).58.Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    60.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    61.Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package version 1.3.3 (2019).62.Prokopy, R. J., Bennett, E. W. & Bush, G. L. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae) II. Temportal organization. Can. Entomol. 104, 97–104 (1972).Article 

    Google Scholar 
    63.McQuate, G. T. & Vargas, R. I. Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and the oriental fruit fly, B. dorsalis. J. Insect Sci. 7, 13 (2007).Article 

    Google Scholar 
    64.Casas, J. & Aluja, M. The geometry of search movements of insects in plant canopies. Behav. Ecol. 8, 37–45 (1997).Article 

    Google Scholar 
    65.Shelly, T. E. & Kennelly, S. S. Settlement patterns of Mediterranean fruit flies in the tree canopy: an experimental analysis. J. Insect Behav. 20, 453–472 (2007).Article 

    Google Scholar 
    66.Warburg, M. S. & Yuval, B. Circadian patterns of feeding and reproductive activities of Mediterranean fruit flies (Diptera: Tephritidae) on various hosts in Israel. Ann. Entomol. Soc. Am. 90, 487–495 (1997).Article 

    Google Scholar 
    67.Hendrichs, J. & Hendrichs, M. A. Mediterranean fruit fly (Diptera: Tephritidae) in nature: Location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Ann. Entomol. Soc. Am. 83, 632–641 (1990).Article 

    Google Scholar 
    68.Morgan, K. R., Shelly, T. E. & Kimsey, L. S. Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 155, 561–570 (1985).69.Whitman, D. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57, 369–383 (1988).Article 

    Google Scholar 
    70.Tychsen, P. H. & Fletcher, B. S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 17, 2139–2156 (1971).Article 

    Google Scholar 
    71.Cheng, D., Chen, L., Yi, C., Liang, G. & Xu, Y. Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel). Sci. Rep. 4, 7489 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Warburg, M. S. & Yuval, B. Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314–319 (1997).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Arita, L. & Kaneshiro, K. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. 43, 135–143 (1989).
    Google Scholar 
    74.Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86, 250–264 (1993).Article 

    Google Scholar 
    75.Urbaneja-Bernat, P., Tena, A., González-Cabrera, J. & Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects. Proc. R. Soc. B Biol. Sci. 287, 20201080 (2020).CAS 
    Article 

    Google Scholar 
    76.Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Prokopy, R. J., Drew, R. A. I., Sabine, B. N. E., Lloyd, A. C. & Hamacek, E. Effects of physiological and experiential state of Bactrocera tryoni flies on intra-tree foraging behavior for food (Bacteria) and host fruit. Oecologia 87, 394–400 (1991).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Scarpati, M. L., Scalzo, R. L., Vita, G. & Gambacorta, A. Chemiotropic behavior of female olive fly (Bactrocera oleae GMEL.) on Olea Europeae L. J. Chem. Ecol. 22, 1027–1036 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Truu, M. et al. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front. Microbiol. 8, 557 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Hockberger, P. E. The discovery of the damaging effect of sunlight on bacteria. J. Photochem. Photobiol. B Biol. 58, 185–191 (2000).CAS 
    Article 

    Google Scholar 
    81.Jones, J., Raju, B. & Engelhard, A. Effects of temperature and leaf wetness on development of bacterial spot of geraniums and chrysanthemums incited by Pseudomonas cichorii. Plant Dis. 68, 248–251 (1984).Article 

    Google Scholar 
    82.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    83.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-generation sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 14292 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Morrow, J., Frommer, M., Shearman, D. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    88.Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 151–161 (1981).ADS 

    Google Scholar 
    89.Fletcher, B. The ecology of a natural population of the Queensland Fruit Fly, Dacus tryoni. IV. The immigration and emigration of adults. Aust. J. Zool. 21, 541 (1973).Article 

    Google Scholar 
    90.Bateman, M. A. The ecology of fruit flies. Annu. Rev. Entomol. 17, 493–518 (1972).Article 

    Google Scholar 
    91.O’Loughlin, G. T., East, R. A. & Meats, A. Survival, development rates and generation times of the Queensland fruit fly, Dacus tryoni, in a marginally favourable climate: experiments in Victoria. Aust. J. Zool. 32, 353–361 (1984).Article 

    Google Scholar 
    92.Dominiak, B. C., Mavi, H. S. & Nicol, H. I. Effect of town microclimate on the Queensland fruit fly Bactrocera tryoni. Aust. J. Exp. Agric. 46, 1239–1249 (2006).Article 

    Google Scholar 
    93.Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).Article 

    Google Scholar 
    94.Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Meats, A. Rapid acclimatization to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19, 1903–1911 (1973).Article 

    Google Scholar 
    96.Meats, A. Developmental and long-term acclimation to cold by the Queensland fruit-fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 22, 1013–1019 (1976).ADS 
    Article 

    Google Scholar 
    97.Fay, H. A. C. & Meats, A. Survival rates of the queensland fruit fly, dacus tryoni, in early spring: Field-cage studies with cold-acclimated wild flies and irradiated, warm- or cold-acclimated, laboratory flies. Aust. J. Zool. 35, 187–195 (1987).Article 

    Google Scholar 
    98.Fay, H. A. C. & Meats, A. The sterile insect release method and the importance of thermal conditioning before release: field-cage experiments with dacus tryoni in spring weather. Aust. J. Zool. 35, 197–204 (1987).Article 

    Google Scholar 
    99.Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Weldon, C., Diaz-Fleischer, F. & Perez-Staples, D. Desiccation resistance of tephritid flies: Recent research results and future directions. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D., Díaz-Fleischer, F., Montoya, P. & Vera, T.) 3–36 (CRC Press, 2019).101.Nishida, T. Food system of tephritid fruit flies in Hawaii. Proc. Hawaiian Entomol. Soc. 23, 245–254 (1980).
    Google Scholar 
    102.Nishida, T. & Bess, H. A. Studies on the ecology and control of the melon fly Dacus (Strumeta) Cucurbitae Coquillett (Diptera: Tephritidae). Hawaii Agric. Exp. Stn. Tech. Bull. 1–44 (1957). More

  • in

    A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant

    1.Redfern, M. Plant Galls. The New Naturalist Library (Harper Collins, 2011).
    Google Scholar 
    2.Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 18, 512–522 (2003).Article 

    Google Scholar 
    3.Dawkins, R. The Extended Phenotype (Oxford University Press, 1982).
    Google Scholar 
    4.Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora 206, 517–533 (2011).Article 

    Google Scholar 
    5.Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. Rev. Biol. Trop. 67, 1359–1382 (2019).Article 

    Google Scholar 
    6.Gonçalves-Alvim, S. J. & Fernandes, G. W. Biodiversity of galling insects: Historical, community and habitat effects in four neotropical savannas. Biodivers. Conserv. 10, 79–98 (2001).Article 

    Google Scholar 
    7.Veldtman, R. & McGeoch, M. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: The importance of plant community composition. Austral. Ecol. 28, 1–13 (2003).Article 

    Google Scholar 
    8.Stuart, J., Chen, M.-S., Shukle, R. & Harris, M. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopath. 50, 339–357 (2012).CAS 
    Article 

    Google Scholar 
    9.Kono, H. Langrüssler aus japanischen Reich. Insecta Matsumurana 4, 145–162 (1930).
    Google Scholar 
    10.Morimoto, K. & Kojima, H. Weevils of the genus Smicronyx in Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 62, 1–9 (2007).
    Google Scholar 
    11.Hayakawa, H., Fujii, S. & Yoshitake, H. Reexamination of the host plant of Smicronyx madaranus (Coleoptera, Curculionidae, Smicronycinae). SAYABANE 30, 51–55 (2018) (in Japanese).
    Google Scholar 
    12.Yukawa, J. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105–113 (2000).Article 

    Google Scholar 
    13.Vitou, J., Skuhravá, M., SkuhravÝ, V., Scott, J. & Sheppard, A. The role of plant phenology in the host specificity of Gephyraulus raphanistri (Diptera: Cecidomyiidae) associated with Raphanus spp. (Brassicaceae). Eur. J. Entomol. 105, 113–119 (2008).
    Article 

    Google Scholar 
    14.Yamaguchi, H. et al. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196, 586–595 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tanaka, Y., Okada, K., Asami, T. & Suzuki, Y. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci. Biotechnol. Biochem. 77, 1942–1948 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Liu, P., Yang, Z. X., Chen, X. M. & Foottit, R. G. The effect of the gall-forming aphid Schlechtendalia chinensis (Hemiptera: Aphididae) on leaf wing ontogenesis in Rhus chinensis (Sapindales: Anacardiaceae). Ann. Entomol. Soc. Am. 107, 242–250 (2014).Article 

    Google Scholar 
    17.Hirano, T. et al. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front. Plant Sci. 11, 471 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Kaiser, B., Vogg, G., Fürst, U. B. & Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6, 45 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Pattee, H. E., Allred, K. R. & Wiebe, H. H. Photosynthesis in dodder. Weeds 13, 193–195 (1965).CAS 
    Article 

    Google Scholar 
    20.van der Kooij, T. A. W., Krause, K., Dörr, I. & Krupinska, K. Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210, 701–707 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sherman, T. D., Pettigrew, W. T. & Vaughn, K. C. Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol. 40, 592–603 (1999).CAS 
    Article 

    Google Scholar 
    22.Machado, M. A. & Zetsche, K. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181, 91–96 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Hibberd, J. M. et al. Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205, 506–513 (1998).CAS 
    Article 

    Google Scholar 
    24.Taiz, L., Zieiger, E., Max Moller, I. & Angus, M. Plant Physiology and Development 6th edn. (Sinauer Associates, 2015).
    Google Scholar 
    25.Bartlett, L. & Connor, E. F. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 8, 339–348 (2014).
    Google Scholar 
    26.Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 40, 742–753 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Tokuda, M. et al. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8, e62350 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Suzuki, H. et al. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem. Mol. Biol. 53, 66–72 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Yokoyama, C., Takei, M., Kouzuma, Y., Nagata, S. & Suzuki, Y. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. J. Insect Physiol. 101, 91–96 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kaiser, W., Huguet, E., Casas, J., Commin, C. & Giron, D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. Biol. Sci. 277, 2311–2319 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Body, M., Kaiser, W., Dubreuil, G., Casas, J. & Giron, D. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J. Chem. Ecol. 39, 969–977 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Giron, D. & Glevarec, G. Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. J. Chem. Ecol. 40, 826–835 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 84, 70–89 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Zhao, C. et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25, 613–620 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lemus, L. P. et al. Salivary proteins of a gall-inducing aphid and their impact on early gene responses of susceptible and resistant poplar genotypes. bioRxiv https://doi.org/10.1101/504613 (2018).Article 

    Google Scholar 
    37.Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc. 9, 1549–1562 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Norkunas, K., Harding, R., Dale, J. & Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14, 71 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Christiaens, O. et al. RNA interference: A promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci. Rep. 6, 38836 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome. 6, 6 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Barnewall, E. C. & De Clerck-Floate, R. A. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact. 6, 449–459 (2012).Article 

    Google Scholar 
    43.Aistova, E. V. & Bezborodov, V. G. Weevils belonging to the genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ. J. Biol. Invasions. 8, 184–188 (2017).Article 

    Google Scholar 
    44.Dinelli, G., Bonetti, A. & Tibiletti, E. Photosynthetic and accessory pigments in Cuscuta-Campestris Yuncker and some host species. Weed Res. 33, 253–260 (1993).CAS 
    Article 

    Google Scholar 
    45.Anikin, V. V., Nikelshparg, M. I., Nikelshparg, E. I. & Konyukhov, I. V. Photosynthetic activity of the dodder Cuscuta campestris (Convolvulaceae) in case of plant inhabitation by the gallformed weevil Smicronyx smreczynskii (Coleoptera, Curculionidae). Chem. Biol. Ecol. 17, 42–47 (2017) (in Russian).
    Google Scholar 
    46.Zagorchev, L. I., Albanova, I. A., Tosheva, A. G., Li, J. & Teofanova, D. R. Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris. Planta 248, 591–599 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Carneiro, R. G. D. S. & Isaias, R. M. D. S. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants. 7, plv086 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).CAS 
    Article 

    Google Scholar 
    50.Kawase, M., Hanba, Y. T. & Katsuhara, M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J. Plant Res. 126, 517–527 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph Stat. 5, 299–314 (1996).
    Google Scholar  More

  • in

    Shell shock: a biologist’s quest to save the endangered painted snail

    Download PDF

    In my laboratory at the University of Oriente, in Santiago de Cuba, we study the six species of Polymita, known as painted snails, which are endemic to eastern Cuba and are in danger of extinction. The shells’ vibrant swirls and stripes look as if they’ve been painted by hand. Unfortunately, you can find their shells for sale on eBay, and many are exported to places such as the United States, China and Spain for use in art and jewellery — despite laws banning such trade.Painted snails live in mangrove forests, in sandy and rocky coastal areas and in rainforests. Some species are important parts of agro-ecosystems, such as coffee and coconut plantations. In 1995, my team began a breeding laboratory. We needed a way to isolate individual snails in containers, and to provide them with food, such as a fig-tree branch covered with moss, lichens and sooty mould fungus. But getting enough of the right containers was a problem because the nation was in an economic depression then.My students realized that when tourists visited Cuba, they left behind plastic one-litre water bottles. Since then we’ve been using them as living spaces for the snails.We study the breeding behaviour, nesting, hatching and growth of these hermaphrodites. If we want to save Polymita, we need to know more about their reproduction patterns — why one species hatches only between July and December, for instance.When mating, Polymita use a protrusion called a dart to transfer hormones, but we know very little about it. We are studying how these hormones affect the reproductive tract and influence fertilization success.In Cuba, there is more support for medical research than for biodiversity research. So we look for collaborations around the world. My motto is a Cuban saying: “We have the ‘no’, and therefore always have to look for the ‘yes’.” In other words, there is always another way, if you keep looking.

    Nature 594, 606 (2021)
    doi: https://doi.org/10.1038/d41586-021-01683-8

    Related Articles

    My race against time to capture the sounds of ancient rainforests

    Fighting fires to save a natural reserve in Brazil

    Catching a wave to study coral

    Subjects

    Careers

    Conservation biology

    Developing world

    Latest on:

    Careers

    Six reasons to launch a Young Academy
    Career Column 21 JUN 21

    Better together: collaborative spaces can inspire scientists of all ages
    Career Column 18 JUN 21

    Webcast: How to learn to code
    Career News 16 JUN 21

    Developing world

    Regulate waste recycling internationally
    Correspondence 15 JUN 21

    Count the cost of disability caused by COVID-19
    Comment 26 MAY 21

    How waste water is helping South Africa fight COVID-19
    Technology Feature 24 MAY 21

    Jobs from Nature Careers

    All jobs

    Deputy Director, Division of Lung Diseases
    National Institutes of Health (NIH)
    Bethesda, MD, United States

    JOB POST

    Associate Senior Lecturer/Assistant Professor in Analytical chemistry
    Stockholm University
    Stockholm, Sweden

    JOB POST

    Senior Project Manager – COSMIC
    Wellcome Trust Sanger Institute
    Cambridge, United Kingdom

    JOB POST

    METAL-ORGANIC FRAMEWORK SYNTHESIS AND ADSORPTION STUDIES
    KU Leuven
    Leuven, Belgium

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More