More stories

  • in

    Smell of green leaf volatiles attracts white storks to freshly cut meadows

    1.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).Article 

    Google Scholar 
    2.Bernays, E. A. & Wcislo, W. T. Sensory capabilities, information processing, and resource specialization. Q. Rev. Biol. 69, 187–204 (1994).Article 

    Google Scholar 
    3.Løkkeborg, S. Feeding behaviour of cod, Gadus morhua: Activity rhythm and chemically mediated food search. Anim. Behav. 56, 371–378 (1998).Article 

    Google Scholar 
    4.Niesterok, B., Krüger, Y., Wieskotten, S., Dehnhardt, G. & Hanke, W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J. Exp. Biol. 220, 174–185 (2017).Article 

    Google Scholar 
    5.Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & McGregor, I. S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).Article 

    Google Scholar 
    6.Nevo, O. & Heymann, E. W. Led by the nose: olfaction in primate feeding ecology. Evolutionary Anthropology: Issues, News, and Reviews 24, 137–148 (2015).Article 

    Google Scholar 
    7.Harel, R., Horvitz, N. & Nathan, R. Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    8.Amo, L., Galván, I., Tomás, G. & Sanz, J. J. Predator odour recognition and avoidance in a songbird. Funct. Ecol. 22, 289–293 (2008).Article 

    Google Scholar 
    9.Nevitt, G. A. Sensory ecology on the high seas: The odor world of the procellariiform seabirds. J. Exp. Biol. 211, 1706–1713 (2008).Article 

    Google Scholar 
    10.Wenzel, B. M. Olfaction 432–448 (Springer, 1971).Book 

    Google Scholar 
    11.Snyder, G. & Peterson, T. Olfactory sensitivity in the black-billed magpie and in the pigeon. Comp. Biochem. Physiol. A Physiol. 62, 921–925 (1979).Article 

    Google Scholar 
    12.Smith, S. A. & Paselk, R. A. Olfactory sensitivity of the turkey vulture (Cathartes aura) to three carrion-associated odorants. Auk 103, 586–592 (1986).Article 

    Google Scholar 
    13.Buitron, D. & Nuechterlein, G. L. Experiments on olfactory detection of food caches by black-billed magpies. Condor 87, 92–95 (1985).Article 

    Google Scholar 
    14.Rhoads, S. N. The power of scent in the turkey vulture. Am. Nat. 17, 829–833 (1883).Article 

    Google Scholar 
    15.Grigg, N. P. et al. Anatomical evidence for scent guided foraging in the turkey vulture. Sci. Rep. 7, 17408 (2017).ADS 
    Article 

    Google Scholar 
    16.Wetmore, A. The role of olfaction in food location by the turkey vulture (Cathartes aura). Oxford University Press (1965).17.Reynolds, A. M., Cecere, J. G., Paiva, V. H., Ramos, J. A. & Focardi, S. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proc. R. Soc. B. Biol. Sci. 282, 20150468 (2015).18.Wallraff, H. G. An amazing discovery: Bird navigation based on olfaction. J. Exp. Biol. 218, 1464–1466 (2015).Article 

    Google Scholar 
    19.Steiger, S. S., Fidler, A. E., Valcu, M. & Kempenaers, B. Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds?. Proc. R. Soc. Lond. B Biol. Sci. 275, 2309–2317 (2008).CAS 

    Google Scholar 
    20.Gwinner, H. & Berger, S. Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. 75, 971–976 (2008).Article 

    Google Scholar 
    21.Krause, E. T. et al. Advances in the Study of Behavior Vol. 50, 37–85 (Elsevier, 2018).
    Google Scholar 
    22.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    23.Halitschke, R., Stenberg, J. A., Kessler, D., Kessler, A. & Baldwin, I. T. Shared signals–‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol. Lett. 11, 24–34 (2008).PubMed 

    Google Scholar 
    24.Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C. & Preston, C. A. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311, 812–815 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Koski, T. M. et al. Do insectivorous birds use volatile organic compounds from plants as olfactory foraging cues? Three experimental tests. Ethology 121, 1131–1144 (2015).Article 

    Google Scholar 
    26.Mäntylä, E., Blande, J. D. & Klemola, T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature?. Arthropod-Plant Interact. 8, 143–153 (2014).Article 

    Google Scholar 
    27.Gagliardo, A., Ioale, P., Filannino, C. & Wikelski, M. Homing pigeons only navigate in air with intact environmental odours: A test of the olfactory activation Hypothesis with GPS data loggers. PLoS ONE https://doi.org/10.1371/journal.pone.0022385 (2011).28.Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: Evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805. https://doi.org/10.1242/jeb.085738 (2013).Article 
    PubMed 

    Google Scholar 
    29.Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071. https://doi.org/10.1242/jeb.034504 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. https://doi.org/10.1038/srep17061 (2015).31.Flack, A., Nagy, M., Fiedler, W., Couzin, I. D. & Wikelski, M. From local collective behavior to global migratory patterns in white storks. Science 360, 911–914. https://doi.org/10.1126/science.aap7781 (2018).ADS 
    Article 
    PubMed 

    Google Scholar 
    32.Klump, G. M., Kretzschmar, E. & Curio, E. The hearing of an avian predator and its avian prey. Behav. Ecol. Sociobiol. 18, 317–323. https://doi.org/10.1007/BF00299662 (1986).Article 

    Google Scholar 
    33.Wei, J. & Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal. Behav. 6, 369–371 (2011).CAS 
    Article 

    Google Scholar 
    34.Fall, R., Karl, T., Hansel, A., Jordan, A. & Lindinger, W. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. Atmos. 104, 15963–15974 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Hansson, B. S. From organism to molecule and back-insect olfaction during 40 years. J. Chem. Ecol. 40, 409 (2014).CAS 
    Article 

    Google Scholar 
    36.Roper, T. J. Olfaction in birds. Adv. Study Behav. 28, 247–247 (1999).Article 

    Google Scholar 
    37.Safi, K., Gagliardo, A., Wikelski, M. & Kranstauber, B. How displaced migratory birds could use volatile atmospheric compounds to find their migratory corridor: A test using a particle dispersion model. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2016.00175 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171 (2013).Article 

    Google Scholar 
    39.Papi, F. Olfactory navigation in birds. Experientia 46, 352–363 (1990).Article 

    Google Scholar 
    40.Hagelin, J. C. & Jones, I. L. Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication?. Auk 124, 741–761 (2007).Article 

    Google Scholar 
    41.Pollonara, E. et al. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: Displacements with shearwaters in the Mediterranean Sea. Sci. Rep. 5, 16486 (2015).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Environmental DNA signatures distinguish between tsunami and storm deposition in overwash sand

    1.Nicholls, R. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) Ch. 6 (Cambridge University Press, 2007).2.Gordon, M. et al. in Global Assessment Report on Disaster Risk Reduction Ch. 3 (UNDRR, 2019).3.Dominey-Howes, D. Documentary and geological records of tsunamis in the Aegean Sea region of Greece and their potential value to risk assessment and disaster management. Nat. Hazards 25, 195–224 (2002).Article 

    Google Scholar 
    4.Switzer, A. D., Yu, F., Gouramanis, C., Soria, J. & Pham, T. D. Integrated different records to assess coastal hazards at multi-century timescales. J. Coastal Res. 70, 723–728 (2014).Article 

    Google Scholar 
    5.Jankaew, K. et al. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455, 1228–1231 (2008).CAS 
    Article 

    Google Scholar 
    6.Liu, K. B. & Fearn, M. L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Res. 54, 238–245 (2000).Article 

    Google Scholar 
    7.Donnelly, J. P. & Woodruff, J. D. Intense hurricane activity over the past 5,000 years controlled by El Nino and the West African monsoon. Nature 447, 465–468 (2007).CAS 
    Article 

    Google Scholar 
    8.Nanayama, F. et al. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424, 660–663 (2003).CAS 
    Article 

    Google Scholar 
    9.Gouramanis, C. et al. High-frequency coastal overwash deposits from Phra Thong Island, Thailand. Sci. Rep. 7, 1–9 (2017).Article 

    Google Scholar 
    10.Nanayama, F. et al. differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sediment. Geol. 135, 255–264 (2000).Article 

    Google Scholar 
    11.Morton, R. A., Gelfenbaum, G. & Jaffe, B. E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 200, 184–207 (2007).Article 

    Google Scholar 
    12.Marriner, N. et al. Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Sci. Adv. 3, e1700485 (2017).Article 

    Google Scholar 
    13.Vött, A. et al. Returning to facts: response to the refusal of tsunami traces in the ancient harbour of Lechaion (Gulf of Corinth, Greece) by ‘non-catastrophists’ – Reaffirmed evidence of harbour destruction by historical earthquakes and tsunamis in AD 69–79 and the 6th cent. AD and a preceding pre-historical event in the early 8th cent. BC. Zeitschriff Geomorphologie 61, 275–302 (2018).14.Shanmugam, G. The tsunamite problem. J. Sediment. Res. 76, 718–730 (2006).Article 

    Google Scholar 
    15.Chagué-Goff, C., Chan, J. C. H., Goff, J. & Gadd, P. Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands. Isl. Arc 25, 333–349 (2016).Article 

    Google Scholar 
    16.Pham, D. T. et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits. Mar. Geol. 385, 274–292 (2017).CAS 
    Article 

    Google Scholar 
    17.Sawai, Y. et al. Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean Tsunami at Phra Thong Island, Thailand. Mar. Micropaleontol. 73, 70–79 (2009).Article 

    Google Scholar 
    18.Pilarczyk, J. E. et al. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogrogr. Palaeocl. 413, 144–157 (2017).Article 

    Google Scholar 
    19.Gouramanis C. in Geological Records of Tsunamis and other Extreme Waves (eds Engel, M., Pilarczyk, J., May, S. M., Brill, D. & Garrett, E.) Ch. 13 (Elsevier, 2020).20.Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B. & Dominey-Howes, D. Progress in palaeotsunami research. Sediment. Geol. 243, 70–88 (2012).Article 

    Google Scholar 
    21.Asano, R. et al. Changes in bacterial communities in seawater-flooded soil in the four years after the 2011 Tohoku tsunami in Japan. J. Mar. Sci. Eng. 8, 76 (2020).Article 

    Google Scholar 
    22.Atwater, B. F. et al. Extreme waves in the British Virgin Islands during the last centuries before 1500 CE. Geosphere 13, 301–368 (2017).Article 

    Google Scholar 
    23.Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).Article 

    Google Scholar 
    24.Ramesh, S., Jayaprakashvel, M. & Mathivanan, N. Microbial status in seawater and coastal sediment during pre- and post-tsunami periods in the Bay of Bengal, India. Mar. Ecol. 27, 198–203 (2006).Article 

    Google Scholar 
    25.Nayak, A. K. et al. Post tsunami changes in soil properties of Andaman Islands, India. Environ. Monit. Assess. 170, 185–193 (2010).CAS 
    Article 

    Google Scholar 
    26.Godson, P. S., Chandrasekar, N., Kumar, S. K. & Vimi, P. V. Microbial diversity in coastal sediments during pre- and post-tsunami periods in the south east coast of India. Front. Biol. 9, 161–167 (2014).Article 

    Google Scholar 
    27.Hiraoka, S. et al. Genomic and metagenomics analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics 17, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    28.Asano, R. et al. Seawater inundation from the 2011 Tohoku Tsunami continues to strongly affect soil bacterial communities 1 year later. Microb. Ecol. 66, 639–646 (2013).CAS 
    Article 

    Google Scholar 
    29.Somboonna, N. et al. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials. PLoS ONE 9, e94236 (2014).Article 
    CAS 

    Google Scholar 
    30.Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8, 1904–1919 (2014).CAS 
    Article 

    Google Scholar 
    31.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    32.Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9. 0 Tohoku Earthquake. Sci. Rep. 2, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    33.Morimura, S., Zeng, X., Noboru, N. & Hosono, T. Changes to the microbial communities within groundwater in response to a large crustal earthquake in Kumamoto, southern Japan. J. Hydrol. 581, 124341 (2020).Article 

    Google Scholar 
    34.Olsen, G. J., Lane, D. J., Giovannoni, S. J. & Pace, N. R. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).CAS 
    Article 

    Google Scholar 
    35.Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol. Biol. R 68, 669–685 (2004).CAS 
    Article 

    Google Scholar 
    36.Szczuciński, W. et al. Ancient sedimentary DNA reveals past tsunami deposits. Mar. Geol. 381, 29–33 (2016).Article 
    CAS 

    Google Scholar 
    37.Nealson, K. H. Sediment bacteria: who’s there, what are they doing, and what’s new? Annu. Rev. Earth Pl. Sc 25, 403–434 (1997).CAS 
    Article 

    Google Scholar 
    38.Srinivasalu, S., Karthikeyan, A., Switzer, A. D. & Gouramanis, C. Sedimentological characteristics of tsunami and storm deposits: a modern analogue from Southeast Indian Coast. In Paper Presented at the AOGS-AGU Join Assembly, Singapore, 13–17 September 2012 (2012)39.Switzer, A. D., Srinivasalu, S., Thangadurai, N. & Mohan, V. R. Bedding structures in Indian tsunami deposits provide clues to the dynamics of tsunami inundation. Geol. Soc. Spec. Publ. 361, 61–77 (2012).Article 

    Google Scholar 
    40.Gouramanis, C. et al. Same Same, but different: sedimentological comparison of recent storm and Tsunami deposits from the south-eastern coastline of India. In Paper presented in AGU Fall Meeting (NH21A-3811), San Francisco, California, 15 – 19 December 2014 (2014).41.Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of animal population. J. Anim. Ecol. 12, 42–58 (1943).Article 

    Google Scholar 
    42.Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).Article 

    Google Scholar 
    43.Xu, X. et al. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems. Sci. Rep. 5, 1–8 (2020).
    Google Scholar 
    44.Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).Article 

    Google Scholar 
    45.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    46.Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 63, 5–30 (2012).Article 

    Google Scholar 
    47.Szczuciński, W. et al. Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan – Insights from diatoms, nannoliths and grain size distribution. Sediment. Geol. 282, 40–56 (2012).Article 

    Google Scholar 
    48.Costa, P. J. M. et al. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits. Geol. Soc. Spec. Publ. 456, 167–190 (2018).Article 

    Google Scholar 
    49.Dominey-Howes, D., Dawson, A. & Smith, D. Late Holocene coastal tectonics at Falasarna, western Crete: a sedimentary study. Geol. Soc. Spec. Publ. 146, 343–352 (1999).Article 

    Google Scholar 
    50.Switzer, A. D. & Jones, B. G. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? Holocene 18, 787–803 (2008).Article 

    Google Scholar 
    51.Waring, B. & Hawkes, C. V. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiol. Ecol. 94, fiy001 (2018).52.Chénard, C. et al. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    53.Saxena, G. et al. Metagenomics reveals the influence of land use and rain on the benthic microbial communities in a tropical urban waterway. mSystems 3, e00136–17 (2018).54.Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PloS ONE 9, e87624 (2014).Article 
    CAS 

    Google Scholar 
    55.Mariadassou, M., Pichon, S. & Ebert, D. Microbial ecosystems are dominated by specialist taxa. Ecol. Lett. 18, 974–982 (2015).Article 

    Google Scholar 
    56.Sheth, A., Sanyal, S., Jaiswal, A. & Gandhi, P. Effects of the December 2004 India Ocean Tsunami on the Indian mainland. Earthq. Spectra 22, S435–S473 (2006).Article 

    Google Scholar 
    57.Blot, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26, 1237–1248 (2001).Article 

    Google Scholar 
    58.Folk, R. L. & Ward, W. C. Brazos river bar: a study in the significance of grain size parameter. J. Sediment. Res. 27, 3–26 (1957).Article 

    Google Scholar 
    59.Sambrook, J., Russell, D., & Sambrook, J. in The Condensed Protocols from Molecular Cloning: A Laboratory Manual (eds Sambrook, J. & Russell, D. W.) (Cold Spring Harbor Laboratory Press, 2006).60.Wilkins, D., Van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    61.Allen, M. A. & Cavicchioli, R. Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci. Rep. 7, 1–16 (2017).Article 
    CAS 

    Google Scholar 
    62.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).Article 

    Google Scholar 
    63.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    64.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).Article 

    Google Scholar 
    65.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    Article 

    Google Scholar 
    66.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).Article 
    CAS 

    Google Scholar 
    67.R Core Team. R: A language and environment for statistical computing. R https://www.R-project.org/ (2017).68.Oksanen, J. et al. vegan: Community Ecology Package. Vienna: R Foundation for Statistical Computing.[Google Scholar]. (2016).69.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    70.Anderson, M. & Ter Braa, C. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Sim. 73, 85–113 (2003).Article 

    Google Scholar 
    71.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    72.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B: Met. 57, 289–300 (1995).
    Google Scholar 
    73.Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295 (2014).Article 

    Google Scholar  More

  • in

    Bird-feeder cleaning lowers disease severity in rural but not urban birds

    1.Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 
    Article 

    Google Scholar 
    2.Galvani, A. P., Bauch, C. T., Anand, M., Singer, B. H. & Levin, S. A. Human-environment interactions in population and ecosystem health. Proc. Natl. Acad. Sci. U.S.A. 113, 14502–14506 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robb, G. N., McDonald, R. A., Chamberlain, D. E. & Bearhop, S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484 (2008).Article 

    Google Scholar 
    4.Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol. 3, 058 (2015).Article 
    CAS 

    Google Scholar 
    5.Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martinez-Abrain, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).PubMed 
    Article 

    Google Scholar 
    6.Jones, D. An appetite for connection: Why we need to understand the effect and value of feeding wild birds. Emu 111, 1–7 (2011).Article 

    Google Scholar 
    7.Hanmer, H. J., Thomas, R. L. & Fellowes, M. D. E. Provision of supplementary food for wild birds may increase the risk of local nest predation. Ibis 159, 158–167 (2017).Article 

    Google Scholar 
    8.Malpass, J. S., Rodewald, A. D. & Matthews, S. N. Species-dependent effects of bird feeders on nest predation and nest survival of urban American robins and northern cardinals. Condor 119, 1–16 (2017).Article 

    Google Scholar 
    9.Loss, S. R. & Marra, P. P. Population impacts of free-ranging domestic cats on mainland vertebrates. Front. Ecol. Environ. 15, 502–509 (2017).Article 

    Google Scholar 
    10.Jones, D. N. & Reynolds, S. J. Feeding birds in our towns: A global research opportunity. J. Avian Biol. 39, 265–271 (2008).Article 

    Google Scholar 
    11.Adelman, J. S., Moyers, S. C., Farine, D. R. & Hawley, D. M. Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird. Proc. R. Soc. B 282, 20151429 (2015).PubMed 
    Article 

    Google Scholar 
    12.Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host-parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    Article 

    Google Scholar 
    13.Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Dhondt, A. A., Dhondt, K. V., Hawley, D. M. & Jennelle, C. S. Experimental evidence for transmission of Mycoplasma gallisepticum in house finches by fomites. Avian Pathol. 36, 205–208 (2007).PubMed 
    Article 

    Google Scholar 
    15.Pierce II, R. A. & Denkler, S. Attracting hummingbirds to your property. In Agricultural Guides—University of Missouri-Columbia Extension, Vol. g9419 (2016). https://extensiondata.missouri.edu/pub/pdf/agguides/wildlife/g09419.pdf. Accessed 22 May 2020.16.Patterson, S., Janke, A., Bryan, G., Pease, J. & Jungbluth, K. Attracting Birds to Your Yard Vol. 219 (Iowa State Extension and Outreach Publications, 2017).
    Google Scholar 
    17.Feliciano, L. M., Underwood, T. J. & Aruscavage, D. F. The effectiveness of bird feeder cleaning methods with and without debris. Wilson J. Ornithol. 130, 313–320 (2018).Article 

    Google Scholar 
    18.Faustino, C. R. et al. Mycoplasma gallisepticum infection dynamics in a house finch population: Seasonal variation in survival, encounter and transmission rate. J. Anim. Ecol. 73, 651–669 (2004).Article 

    Google Scholar 
    19.Thompson, C. W., Hillgarth, N., Leu, M. & McClure, H. E. High parasite load in house finches (Carpodacus mexicanus) is correlated with expression of a sexually selected trait. Am. Nat. 149, 270–294 (1997).Article 

    Google Scholar 
    20.Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plann. 74, 46–69 (2006).Article 

    Google Scholar 
    21.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    22.Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. J. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    23.Hasegawa, M., Ligon, R. A., Giraudeau, M., Watanabe, M. & McGraw, K. J. Urban and colorful male house finches are less aggressive. Behav. Ecol. 25, 641–649 (2014).Article 

    Google Scholar 
    24.Giraudeau, M., Toomey, M. B., Hutton, P. & McGraw, K. J. Expression of and choice for condition-dependent carotenoid-based color in an urbanizing context. Behav. Ecol. 29, 1307–1315 (2018).
    Google Scholar 
    25.Hill, G. E. A Red Bird in a Brown Bag: The Function and Evolution of Colorful Plumage in the House Finch (Oxford University Press, 2002).Book 

    Google Scholar 
    26.Pyle, P. Identification Guide to North American Birds, Part I (Slate Creek Press, 1997).
    Google Scholar 
    27.Brawner, W. R., Hill, G. E. & Sundermann, C. A. Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. Auk 117, 952–963 (2000).Article 

    Google Scholar 
    28.Dolnik, O. V., Dolnik, V. R. & Bairlein, F. The effect of host foraging ecology on the prevalence and intensity of coccidian infection in wild passerine birds. Ardea 98, 97–103 (2010).Article 

    Google Scholar 
    29.Pierson, F. W., Larsen, C. T. & Gross, W. B. The effect of stress on the response of chickens to coccidiosis vaccination. Vet. Parasitol. 73, 177–180 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).Article 

    Google Scholar 
    31.Surmacki, A. & Hill, G. E. Coccidia infection does not influence preening behavior in American goldfinches. Acta Ethol. 17, 107–111 (2014).PubMed 
    Article 

    Google Scholar 
    32.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in house finches (Haemorhous mexicanus) from Arizona. Avian Dis. 62, 14–17 (2017).Article 

    Google Scholar 
    33.R Core Team. R: A language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016). https://www.R-project.org/. Accessed 22 May 2020.34.Nolan, P. M., Hill, G. E. & Stoehr, A. M. Sex, size, and plumage redness predict house finch survival in an epidemic. Proc. R. Soc. B 265, 961–965 (1998).Article 

    Google Scholar 
    35.Hutton, P., Wright, C. D., DeNardo, D. F. & McGraw, K. J. No effect of human presence at night on disease, body mass, or metabolism in rural and urban house finches (Haemorhous mexicanus). Integr. Comp. Biol. 58, 977–985 (2018).PubMed 

    Google Scholar 
    36.Giraudeau, M. & McGraw, K. J. Physiological correlates of urbanization in a desert songbird. Integr. Comp. Biol. 54, 622–632 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Cook, M. O., Weaver, M. J., Hutton, P. & McGraw, K. J. The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus). Behav. Ecol. Sociobiol. 71, 85 (2017).Article 

    Google Scholar 
    38.Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B 373, 20170090 (2018).Article 
    CAS 

    Google Scholar 
    39.Boyd, M. L., Underwood, T. J. & Aruscavage, D. F. The efficacy of cleaning bird feeders with 10% bleach wipes to reduce bacteria. J. Pennsyl. Acad. Sci. 88, 220–226 (2014).
    Google Scholar 
    40.Belthoff, J. R. & Gowaty, P. A. Male plumage coloration affects dominance and aggression in female house finches. Bird Behav. 11, 1–7 (1996).Article 

    Google Scholar 
    41.Zylberberg, M., Klasing, K. C. & Hahn, T. P. House finches (Carpodacus mexicanus) balance investment in behavioural and immunological defences against pathogens. Biol. Lett. 9, 20120856 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sykes, B. E., Hutton, P. & McGraw, K. J. Sex-specific relationships between urbanization, parasitism, and plumage coloration in house finches. Curr. Zool. https://doi.org/10.1093/cz/zoaa060 (2020).Article 

    Google Scholar 
    43.McGraw, K. J. & Ardia, D. R. Sex differences in carotenoid status and immune performance in zebra finches. Evol. Ecol. Res. 7, 251–262 (2005).
    Google Scholar 
    44.Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    45.Badyaev, A. V., Belloni, V. & Hill, G. E. House finch (Haemorhous mexicanus), version 1.0. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    46.Thompson, W. L. Agonistic behavior in the house finch. Part I: Annual cycle and display patterns. Condor 62, 245–271 (1960).Article 

    Google Scholar 
    47.Hotchkiss, E. R., Davis, A. K., Cherry, J. J. & Altizer, S. Mycoplasmal conjunctivitis and the behavior of wild house finches (Carpodacus mexicanus) at bird feeders. Bird Behav. 17, 1–8 (2005).
    Google Scholar  More

  • in

    Maintenance power requirements of anammox bacteria “Candidatus Brocadia sinica” and “Candidatus Scalindua sp.”

    1.Lackner S, Gilbert EM, Vlaeminck SE, Joss A, Horn H, van Loosdrecht MCM. Full-scale partial nitritation/anammox experience – an application survey. Water Res. 2014;55:292–303.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Ali M, Okabe S. Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues. Chemosphere. 2015;141:144–53.CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Ni S, Sung S, Yue Q, Gao B. Substrate removal evaluation of granular anammox process in a pilot-scale upflow anaerobic sludge blanket reactor. Ecol Eng 2012;38:30–36.Article 

    Google Scholar 
    4.Wang B, Peng Y, Guo Y, Yuan Y, Zhao M, Wang S. Impact of partial nitritation degree and C/N ratio on simultaneous sludge fermentation, denitrification and anammox process. Bioresour Technol. 2016;219:411–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Okabe S. Maximum specific growth rate of anammox bacteria revisited. Water Res. 2017;116:296–303.CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Zhang L, Okabe S. Ecological niche differentiation among anammox bacteria. Water Res. 2020;171:115468.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Sun W, Xu MY, Wu WM, Guo J, Xia CY, Sun GP, et al. Molecular diversity and distribution of anammox community in sediments of the Dongjiang River, a drinking water source of Hong Kong. J Appl Microbiol. 2014;116:464–76.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Zhu GB, Wang SY, Wang WD, Wang Y, Zhou LL, Jiang B, et al. Hotspots of anaerobic ammonium oxidation at land-freshwater interfaces. Nat Geosci. 2013;6:103–7.CAS 
    Article 

    Google Scholar 
    9.Kuypers MMM, Lavik G, Woebken D, Schmid M, Fuchs BM, Amann R, et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc Natl Acad Sci USA. 2005;102:6478–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Schmid M, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, et al. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol. 2007;9:1476–84.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Dalsgaard T, Canfield DE, Petersen J, Thamdrup B, Acuña-González J. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica. Nature. 2003;422:606–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kuypers MMM, Olav Sliekers A, Lavik G, Schmid M, Jørgensen BB, Gijs Kuenen J, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature. 2003;422:608–11.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Humbert S, Tarnawski S, Fromin N, Mallet MP, Aragno M, Zopfi J. Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity. ISME J. 2010;4:450–4.PubMed 
    Article 

    Google Scholar 
    14.Zhu GB, Wang SY, Wang Y, Wang CX, Risgaard-Petersen N, Jetten MSM, et al. Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J. 2011;5:1905–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Oshiki M, Satoh H, Okabe S. Ecology and physiology of anaerobic ammonium oxidizing bacteria. Environ Microbiol. 2016;18:2784–96.CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Sonthiphand P, Hall MW, Neufeld JD. Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria. Front Microbiol. 2014;5:1–14.Article 

    Google Scholar 
    17.van Bodegom P. Microbial maintenance: A critical review on its quantification. Microb Ecol. 2007;53:513–23.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Wang G, Post WM. A theoretical reassessment of microbial maintenance and implications for microbial ecology modeling. FEMS Microbiol Ecol. 2012;81:610–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Overkamp W, Ercan O, Herber M, van Maris AJA, Kleerebezem M, Kuipers OP. Physiological and cell morphology adaptation of Bacillus subtilis at near-zero specific growth rates: a transcriptome analysis. Environ Microbiol. 2015;17:346–63.PubMed 
    Article 

    Google Scholar 
    20.Ma X, Wang Y, Zhou S, Yan Y, Lin X, Wu M. Endogenous metabolism of anaerobic ammonium oxidizing bacteria in response to short-term anaerobic and anoxic starvation stress. Chem Eng J. 2017;313:1233–41.CAS 
    Article 

    Google Scholar 
    21.Ma X, Wang Y. Anammox bacteria exhibit capacity to withstand long-term starvation stress: a proteomic-based investigation of survival mechanisms. Chemosphere. 2018;211:952–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Xing B-S, Guo Q, Jiang X-Y, Chen Q-Q, He M-M, Wu L-M, et al. Long-term starvation and subsequent reactivation of anaerobic ammonium oxidation (anammox) granules. Chem Eng J. 2016;287:575–84.CAS 
    Article 

    Google Scholar 
    23.Wang Q, Song K, Hao X, Wei J, Pijuan M, van Loosdrecht MCM, et al. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation. Chemosphere. 2018;201:25–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Lopez C, Pons MN, Morgenroth E. Endogenous processes during long-term starvation in activated sludge performing enhanced biological phosphorous removal. Water Res. 2006;40:1519–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Tappe W, Laverman A, Bohland M, Braster M, Rittershaus S, Groeneweg J, et al. Maintenance energy demand and starvation recovery dynamics of Nitrosomonas europaea and Nitrobacter winogradskyi cultivated in a retentostat with complete biomass retention. Appl Environ Microbiol. 1999;65:2471–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Vos T, Hakkaart XDV, de Hulster EAF, van Maris AJA, Pronk JT, Daran-Lapujade P. Maintenance-energy requirements and robustness of Saccharomyces cerevisiae at aerobic near-zero specific growth rates. Micro Cell Fact. 2016;15:111.Article 
    CAS 

    Google Scholar 
    27.Ali M, Oshiki M, Awata T, Isobe K, Kimura Z, Yoshiaki H, et al. Physiological characterization of anaerobic ammonium oxidizing bacterium “Candidatus Jettenia caeni”. Environ Microbiol. 2015;17:2172–89.CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Narita Y, Zhang L, Kimura, Ali M, Fujii T, Okabe S. Enrichment and physiological characterization of an anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sapporoensis”. Syst Appl Microbiol. 2017;40:448–57.CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Oshiki M, Shimokawa M, Fujii N, Satoh H, Okabe S. Physiological characteristics of the anaerobic ammonium-oxidizing bacterium “Candidatus Brocadia sinica”. Microbiol. 2011;157:1706–13.CAS 
    Article 

    Google Scholar 
    30.Okabe, S, Shafdar, AA, Kobayashi, K, Zhang, L, and Oshiki, M. Glycogen metabolism of the anammox bacterium “Candidatus Brocadia sinica” ISME J. 2020; https://doi.org/10.1038/s41396-020-00850-5.31.van der Star WRL, Miclea AI, van Dongen UGJM, Muyzer G, Picioreanu C, van Loosdrecht MCM. The membrane bioreactor: a novel tool to grow anammox bacteria as free cells. Biotechnol Bioeng. 2008;101:286–94.PubMed 
    Article 
    CAS 

    Google Scholar 
    32.Zhang L, Okabe S. Rapid cultivation of free-living planktonic anammox cells. Water Res. 2017;127:204–10.CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Oshiki M, Awata T, Kindaichi T, Satoh H, Okabe S. Cultivation of planktonic anaerobic ammonium oxidation (Anammox) bacteria using membrane bioreactor. Microbes Environ. 2013;28:436–43.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Awata T, Oshiki M, Kindaichi T, Ozaki N, Ohashi A, Okabe S. Physiological characterization of an anaerobic ammonium-oxidizing bacterium belonging to the “Candidatus Scalindua” group. Appl Environ Microbiol. 2013;79:4145–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Zhang L, Narita Y, Gao L, Ali M, Oshiki M, Ishii S, et al. Microbial competition among anammox baxteria in nitrite-limited bioreactors. Water Res. 2017;125:249–58.CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Graaf AA, Van DE, Bruijn PDE, Robertson LA, Jetten MSM, Kuenen JG. Autotrophic growth of anaerobic in a fluidized bed reactor. Microbiol. 1996;142:2187–96.Article 

    Google Scholar 
    37.Kindaichi T, Awata T, Suzuki Y, Tanabe K, Hatamoto M, Ozaki N, et al. Enrichment using an up-flow column reactor and community structure of marine anammox bacteria from coastal sediment. Microbes Environ. 2011;26:67–73.PubMed 
    Article 

    Google Scholar 
    38.APHA. Standard Methods for the Examination of Water and Sewage, Washington DC,1998,39.Nagaraja P, Shivaswamy M, Kumar H. Highly sensitive N-(1-Naphthyl)ethylene diamine method for the spectrophotometric determination of trace amounts of nitrite in various water samples. Intern J Environ Anal Chem. 2001;80:39–48.CAS 
    Article 

    Google Scholar 
    40.Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors. Water Res. 2007;41:1623–34.CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Kindaichi T, Tsushima I, Ogasawara Y, Shimokawa M, Ozaki N, Satoh H, et al. In situ activity and spatial organization of anaerobic ammonium-oxidizing (anammox) bacteria in biofilms. Appl Environ Microbiol. 2007;73:4931–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Okabe S, Satoh H, Watanabe Y. In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes. Appl Environ Microbiol. 1999;65:3182–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Pirt SJ. Maintenance energy of bacteria in growing cultures. Proc R soc Lond B Biol Sci. 1965;163:224–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Pirt SJ. Maintenance energy: a general model for energy-limited and energy-sufficient growth. Arch Microbiol. 1982;133:300–2.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Herbert D, Elsworth R, Telling RC. The continuous culture of bacteria: a theoretical and experimental study. J Gen Microbiol. 1956;14:601–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.van Verseveld HW, De Hollander JA, Frankena J, Braster M, Leeuwerik FJ, Stouthamer AH. Modeling of microbial substrate conversion, growth and product formation in a recycling fermentor. Antonie Van Leeuwenhoek. 1986;52:325–42.PubMed 
    Article 

    Google Scholar 
    47.Lotti T, Kleerebezem R, Lubello C, van Loosdrecht MCM. Physiological and kinetic characterization of a suspended cell anammox culture. Water Res. 2014;60:1–14.CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Tijhuis L, Van Loosdrecht MCM, Heijnen JJ. A thermodynmically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Strous M, Heijnen JJ, Kuenen JG, Jetten MSM. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms. Appl Microbiol Biotechnol. 1998;50:589–96.CAS 
    Article 

    Google Scholar 
    50.Awata T, Kindaichi T, Ozaki N, Ohashi A. Biomass yield efficiency of the marine anammox bacterium, “Candidatus Scalindua sp.,” is affected by salinity. Microbes Environ. 2015;30:86–91.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Henze, M. Wastewater Treatment: Biological and chemical processes. New York, NY: Springer, 1997.52.Vandekerckhove, TGL, Bodé, S, De Mulder, C, Vlaeminck, SE, Boon, N. 13C Incorporation as a tool to estimate biomass yields in thermophilic and mesophilic nitrifying communities. Front Microbiol. 2019;10:192.53.Tappe W, Tomaschewski C, Rittershaus S, Groeneweg J. Cultivation of nitrifying bacteria in the retentostat, a simple fermentor with internal biomass retention. FEMS Microbiol Ecol. 1996;19:47–52.CAS 
    Article 

    Google Scholar 
    54.Rebnegger C, Vos T, Graf AB, Valli M, Pronk JT, Daran-Lapujade P, et al. Picha pastoris exhibits high viability and a low maintenance energy requirement at near-zero specific growth rates. Appl Environ Microbiol. 2016;82:4570–83.CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Bulthuis BA, Frankena J, Koningstein GM, van Verseveld HW, Stouthamer AH. Instability of protease production in a rel1/rel2 pair of Bacillus licheniformis and associated morphological and physiological characteristics. Antonie Leeuwenhoek. 1988;54:95–111.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Kempes, CP, van Bodegom PM, Wolpert, D, Libby, E, Amend, J, Hoehler, T. Drivers of bacterial maintenance and minimal energy requirements. Front Microbiol. 2017;8:31.58.Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 2001;25:175–243.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Amend JP, LaRowe DE. Minireview: demystifying microbial reaction energetics. Environ Microbiol. 2019;21:3539–47.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Kartal B, Keltjens JT. Anammox biochemistry: a tale of heme c proteins. Trends Biochem Sci. 2016;41:998–1011.CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Scholten JCM, Conrad R. Energetics of syntrophic propionate oxidation in defined batch and chemostat coculture. Appl Environ Microbiol. 2000;66:2934–42.CAS 
    PubMed 
    Article 

    Google Scholar 
    62.LaRowe DE, Amend JP. The energetics of anabolism in natural settings. ISME J. 2016;10:1285–95.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.CAS 
    Article 

    Google Scholar 
    64.Marschall E, Jogler M, Henssge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the Black Sea. Environ Microbiol. 2010;12:1348–62.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Bradley, JA, Arndt, S, Amend, JP, Burwicz, E, Dale, AW, Egger, M et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv. 2020;6:eaba0697.66.Hoehler TM, Jorgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    67.LaRowe, DE, Amend, JP. Power limits for microbial life. Front Microbiol 2015;6:718.68.Zhao R, Mogollon JM, Abby SS, Schleper C, Biddle JF, Roerdink DL. et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA. 2020;117:32617–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Pitcher A, Villanueva L, Hopmans EC, Schouten S, Reichart G-J, Sinninghe Damste JS. Niche segregation of ammonia-oxidizing archaea and anammox bacteria in the Arabian Sea oxygen minimum zone. ISME J. 2011;5:1896–904.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Füssel J, Lam P, Lavik G, Jensen MM, Holtappels M, Günter M, et al. Nitrite oxidation in the Namibian oxygen minimum zone. ISME J. 2012;6:1200–9.PubMed 
    Article 
    CAS 

    Google Scholar 
    71.Füchslin HP, Schneider C, Egli T. In glucose-limited continuous culture the minimum substrate concentration for growth, Smin, is crucial in the competition between the enterobacterium Escherichia coli and Chelatobacter heintzii, an environmentally abundant bacterium. ISME J. 2012;6:777–89.PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    Effects of climate variation on bird escape distances modulate community responses to global change

    1.Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).2.Pearson, R. G. & Dawson, T. E. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12, 361–371 (2003).Article 

    Google Scholar 
    3.Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    4.Dunn, P. O. Changes in timing of breeding and reproductive success in birds. in Effects of Climate Change on Birds, 2nd edn. (eds. Dunn, P. O. & Møller, A. P.). 108–119 (Oxford University Press, 2019).5.Peterson, A. T. et al. Ecological Niches and Geographic Distributions (Princeton University Press, 2011).6.Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed 
    Article 

    Google Scholar 
    7.Staniczenko, P. P. A., Sivasubramaniam, P., Suttle, K. B. & Pearson, R. G. Linking macroecology and community ecology: Refining predictions of species distributions using biotic interaction networks. Ecol. Lett. 20, 693–707 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Mendoza, M. & Araújo, M. B. Climate shapes mammal community trophic structures and humans simplify them. Nature Commun. 10, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    9.Bartley, T. J. et al. Food web rewiring in a changing world. Nat. Ecol. Evol. 3, 345–354 (2019).PubMed 
    Article 

    Google Scholar 
    10.Beever, E. A. et al. Behavioral flexibility as a mechanism for coping with climate change. Front. Ecol. Environ. 15, 299–308 (2017).Article 

    Google Scholar 
    11.Blois, J. L., Williams, J. W., Fitzpatrick, M. C., Jackson, S. T. & Ferrier, S. Space can substitute for time in predicting climate-change effects on biodiversity. Proc. Nat. Acad. Sci. USA 110, 9374–9379 (2013).CAS 
    PubMed 
    ADS 
    Article 

    Google Scholar 
    12.Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).Article 

    Google Scholar 
    13.Díaz M. et al. The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. PLoS One 8, e64634 (2013).14.Samia, D. S., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).CAS 
    PubMed 
    PubMed Central 
    ADS 
    Article 

    Google Scholar 
    15.Samia, D. S. M. et al. Rural-urban difference in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 55, 6 (2017).
    Google Scholar 
    16.Møller, A. P. Urban areas as refuges from predators and flight distance of prey. Behav. Ecol. 23, 1030–1035 (2012).Article 

    Google Scholar 
    17.Møller, A. P. The value of a mouthful: Flight initiation distance as an opportunity cost. Eur. J. Ecol. 1, 43–51 (2015).Article 

    Google Scholar 
    18.Møller, A. P. et al. Urban habitats and feeders both contribute to flight initiation distance reduction in birds. Behav. Ecol. 26, 861–865 (2015).Article 

    Google Scholar 
    19.Møller, A. P., Grim, T., Ibáñez-Álamo, J. D., Markó, G. & Tryjanowski, P. Change in flight distance between urban and rural habitats following a cold winter. Behav. Ecol. 24, 1211–1217 (2013).Article 

    Google Scholar 
    20.Møller, A. P. Life history, predation and flight initiation distance in a migratory bird. J. Evol. Biol. 27, 1105–1113 (2014).PubMed 
    Article 

    Google Scholar 
    21.Carrete, M. Heritability of fear of humans in urban and rural populations of a bird species. Sci. Rep. 6, 1–6 (2016).Article 

    Google Scholar 
    22.Díaz, M. et al. Interactive effects of fearfulness and geographical location on bird population trends. Behav. Ecol. 26, 716–721 (2015).Article 

    Google Scholar 
    23.Møller, A. P. & Díaz, M. Avian preference for close proximity to human habitation and its ecological consequences. Curr. Zool. 64, 623–630 (2018).PubMed 
    Article 

    Google Scholar 
    24.Møller, A. P. & Díaz, M. Niche segregation, competition and urbanization. Curr Zool. 64, 145–152 (2018).Article 

    Google Scholar 
    25.Cox, A. R., Robertson, R. J., Lendvai, Á. Z., Everitt, K. & Bonier, F. Rainy springs linked to poor nestling growth in a declining avian aerial insectivore (Tachycineta bicolor). Proc. R. Soc. B 286, 20190018 (2019).PubMed 
    Article 

    Google Scholar 
    26.Sergio, F. From individual behaviour to population pattern: weather-dependent foraging and breeding performance in black kites. Anim. Behav. 66, 1109–1117 (2003).Article 

    Google Scholar 
    27.Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions?. Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).Article 

    Google Scholar 
    28.Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).Article 

    Google Scholar 
    29.Møller, A. P. et al. Effects of urbanization on animal phenology: A continental study of paired urban and rural avian populations. Clim. Res. 66, 185–199 (2015).Article 

    Google Scholar 
    30.Winter, Y. & Von Helversen, O. The energy cost of flight: Do small bats fly more cheaply than birds?. J. Comp. Physiol. B 168, 105–111 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Møller, A. P., Erritzøe, J. & Nielsen, J. T. Causes of interspecific variation in susceptibility to cat predation on birds. Chin. Birds 1, 97–111 (2010).Article 

    Google Scholar 
    32.Møller, A. P. et al. Spatial consistency in susceptibility of prey species to predation by two Accipiter hawks. J. Avian Biol. 43, 390–396 (2012).Article 

    Google Scholar 
    33.Creel, S. & Christianson, D. Relationships between direct predation and risk effects. Trends Ecol. Evol. 23, 194–201 (2008).PubMed 
    Article 

    Google Scholar 
    34.Morelli, F. et al. Insurance for the future? Potential avian community resilience in cities across Europe. Clim. Change 159, 195–214 (2020).ADS 
    Article 

    Google Scholar 
    35.Storchová, L. & Hořák, D. Life-history characteristics of European birds. Glob. Ecol. Biogeogr. 27, 400–406 (2018).Article 

    Google Scholar 
    36.Garamszegi, L. Z. & Møller, A. P. Effects of sample size and intraspecific variation in phylogenetic comparative studies: a meta-analytic review. Biol. Rev. 85, 797–805 (2010).PubMed 

    Google Scholar 
    37.Bell, G. A comparative method. Am. Nat. 133, 553–571 (1989).Article 

    Google Scholar 
    38.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    39.Lipsey, M. W. & Wilson, D. B. Practical Meta-Analysis. https://www.campbellcollaboration.org/escalc/html/EffectSizeCalculator-Home.php (Sage, 2001).40.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988). More

  • in

    Novel metagenome-assembled genomes involved in the nitrogen cycle from a Pacific oxygen minimum zone

    Oxygen minimum zones (OMZs) are unique oceanic regions with strong redox gradients. Anoxic zones in OMZs are hotspots for fixed nitrogen loss and production of the greenhouse gas N2O [1, 2]. Microbes in OMZs make important contributions to biogeochemistry, which motivates us to reconstruct metagenome-assembled genomes (MAGs) from the Eastern Tropical South Pacific (ETSP) OMZ (Fig. 1a, b). Among 147 recovered MAGs, we present 39 high- and medium-quality MAGs with completeness >50% and contamination 100 nM d−1) at the same station [6], where MAGs were recovered. Consistently, Thaumarchaeota MAGs (AOAs) were nearly absent (only AOA-2 had a relative abundance higher than 0.01%) and NOB MAGs (NOB-1 and NOB-2) were much more abundant than AOA in the anoxic core (Fig. 1d). MAGs in this study will provide opportunities to discover novel processes and adaptation strategies.Most MAGs had their highest relative abundances in the anoxic zone (Fig. 1c). Many of them contribute to the loss of fixed nitrogen, which occurs by denitrification (the sequential reduction of nitrate to nitrite, NO, N2O, and finally N2) and anammox (anaerobic oxidation of ammonium to N2). Measured nitrate reduction rates at this [5, 8] and other [16, 17] nearby stations were much larger than rates of any subsequent denitrification steps (e.g., nitrite reduction to N2O or to N2). Consistently, preliminary prediction of metabolisms shows that more than half of the MAGs found here contained nar, which encodes nitrate reduction, and one-third of those contained only nar and none of the other denitrification genes (i.e., they are nitrate-reducing specialists) (Fig. 2). Consistently, a previous study found that nar dramatically outnumbered the other denitrification genes in contigs from the Eastern Tropical North Pacific (ETNP) OMZ [18]. Indeed, four of the five most abundant MAGs in the anoxic core were nitrate-reducing specialists (Fig. 2). The fifth was an anammox MAG, which was only assigned to the genus level (Candidatus Scalindua) in GTDB and was not represented at the species level in the Tara Oceans dataset (Table S1). However, this anammox MAG was highly related to 20 anammox single-cell amplified genomes (SAGs) from the ETNP OMZ [19]. The anammox MAG had at least 90% average nucleotide identity (ANI) to the SAGs, with the highest ANI (98.8%) to SAG K21. Consistent with the previous work [19], the anammox MAG also encoded cyanase, indicating its potential of using organic nitrogen substrates. The most abundant nitrate reducer MAG here is Marinimicrobia-1 (Fig. 1), which belongs to the newly proposed phylum Candidatus Marinimicrobia [20]. Notably, one nitrate reducer can only be assigned to phylum level (Candidatus Wallbacteria) and was not present in the Tara Oceans MAGs (Table S1).We also identified a novel archaeal MAG possessing multiple denitrification genes. MG-II MAG-2 encoded Nar alpha and beta subunits, nitrate/nitrite transporters, copper-containing nitrite reductase, and N2O reductase (Fig. 2). Two MAGs from the Tara Oceans metagenomes (Table S1) were identified as the same species as MG-II MAG-2. TOBG_NP-110 (ANI to MG-II MAG-2 = 99.8%) from the North Pacific encoded Nar and nitrate/nitrite transporters, and TOBG_SP-208 (ANI to MG-II MAG-2 = 99.6%) from the South Pacific also contained the same denitrification genes as MG-II MAG-2 (Table S2). In addition, two MG-II SAGs (AD-615-F09 and AD-613-O09) were found at a different station of the ETSP OMZ sampled on the same cruise as this study [21]. Partial 16S rRNA genes of both SAGs are 100% identical to that of MG-II MAG-2 (alignment length = 200 bp for AD-615-F09 and 183 bp for AD-613-O09), but only AD-615-F09 might be the same species as MG-II MAG-2 based on ANI analyses (MG-II MAG-2 had 99.5% ANI to AD-615-F09, and 80.9% to AD-613-O09). Both SAGs also encoded Nar and nitrate/nitrite transporters [21]. The absence of other denitrification genes may be due to the low completeness of the two SAGs (completeness = 5.61% for both SAGs) [21]. Nitrite reductase and N2O reductase genes were located on the same contig in both MG-II MAG-2 and TOBG_SP-208 (Table S2). MG-II MAG-2 and TOBG_SP-208 had low contamination (1.9% and 0.8%, respectively), and their contigs with nitrite reductase and N2O reductase genes contained single-copy marker genes present only once in each MAG (Supplementary Methods). Although these results suggest a nearly complete denitrification metabolism in MG-II archaea, especially N2O consumption metabolism, methods besides metagenomics (e.g. reconstructing SAGs with high completeness) are highly recommended to rule out possible artifacts introduced by metagenomic binning and confirm the presence of these genes and their denitrification activity. Nonetheless, MG-II MAG-2 was present (Fig. 1e) and transcriptionally active in both Pacific OMZs (Fig. S2), indicating its adaptation to low oxygen environments. The MG-III MAG did not have any denitrification genes but was abundant in the anoxic zone (Figs. 1e and 2). It had a GC value (43.2%) distinct from all other known MG-III MAGs [22] and is the most complete (86.0%) and the least contaminated (0%) (Table S1) among all reported MG-III MAGs, indicating that MG-III is a novel archaeon in this group. Bacterial and archaeal MAGs recovered here implied that nitrogen metabolisms were present in more microbial lineages than previously thought. Further analyses of these MAGs will shed light on adaptation strategies in the unique OMZ environment and novel functions related to important element cycles. More

  • in

    Scenario simulation of land use and land cover change in mining area

    Data source and preprocessingConsidering factors such as amount of cloud and time intervals of image, four remote sensing images with a spatial resolution of 30 m, including Landsat 5 Thematic Mapper (TM) images for 08-21-2000, 09-04-2005 and 09-18-2010, and Landsat 8 Operational Land Imager (OLI) for 09-02-2016,were obtained from the Geospatial Data Cloud Platform (http://www.gscloud.cn). LULC information was extracted from these remote sensing images. In addition, the digital elevation model (DEM) with a spatial resolution of 30 m was obtained from the website. Elevation and slope information were derived from DEM data and used as terrain driving factors for scenario simulation. Other supporting data, such as Weishan County land use data, mine distribution data, general land use planing (2006–2020) and mineral resources planning (2008–2015), Jining City coal mining subsidence land rearrangement planning (2016–2030), were obtained from Weishan Natural Resources and Planning Bureau. These data were used for better data analysis.Considering severe ground subsidence and seeper in the study area, and referring to national standards: Current Land Use Classification (GB/T 21010-2017), remote sensing images were interpreted into six LULC types: farmland, other agricultural land, urban and rural construction land, subsided seeper area, water area, and tidal wetland.In the process of image interpretation, firstly, the remote sensing image was divided into two regions: one region were the lake and the surrounding tidal wetland, and the other region included farmland, other agricultural land, urban and rural construction land, subsided seeper area, etc.In region 1, decision tree classification, combined with the Modified Normalized Difference Water Index (MNDWI), was used to extract lakes. Then we masked them in region 1. The Normalized Difference Vegetation Index (NDVI) was calculated for the remaining image of region 1. Tidal wetland was mainly distributed along rivers and lakes, and NDVI value was higher than that of farmland and other vegetation. By analyzing its geographical distribution and NDVI value, and referring to Weishan County land use data, the appropriate threshold was selected to extract tidal wetland.The spectral signature of rivers, ditches and aquaculture ponds in other agricultural land in region 2 could be easily distinguished from other surface features. They could be extracted step by step by manual visual interpretation and empirical knowledge, referring to Weishan County land use data and water system data. Then we masked them separately in region 2. After extracting rivers, ditches, aquaculture ponds with high water content, the remaining LULC type with high water content in region 2 was subsided seeper area. According to the relationship of spectral signature of different LULC types, it was concluded that among the remaining LULC types in region 2, only TM3 band value of subsided seeper area was higher than TM5 band value. Using this characteristic, subsided seeper area could be distinguished from other LULC types. After extracting subsided seeper area, the remaining LULC types in region 2 were farmland and urban and rural construction land. The spectral characteristics of them were very different. Therefore, they could be distinguished using support vector machine (SVM) classification method, and their respective binary images were generated using decision tree method.The extracted six LULC types were shown in single layer and binary form respectively. Six LULC types were coded and synthesized into one image. We obtained 2000, 2005, 2010, 2016 LULC type maps (Fig. 2). Finally classification post-processing and accuracy evaluation were operated.Figure 2The LULC types maps of 2000, 2005, 2010 and 2016. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageThe accuracy of the interpretation results was verified by confusion matrix and kappa coefficient. The kappa coefficients of the four interpretation maps were 0.84, 0.85, 0.82 and 0.86, respectively (Table 1). The accuracy could meet the needs of further research.Table 1 Accuracy evaluation of the interpretation results (%).Full size tableBy reading previous research results37,38,39,40,41, based on the entropy theory, in the same study area, high spatial resolution data contains more entropy than low spatial resolution data, and reflecting more detailed information, but it will increase the uncertainty of prediction results and reduce the prediction accuracy. Although the prediction accuracy of low spatial resolution data increases, it will lose lots of detailed information. In order to ensure the accuracy of the simulation, considering the area of the study area and data requirement of the CLUE-S model, the interpreted LULC maps with a resolution of 30 m exceed the upper limit of the CLUE-S model data requirement, so the LULC maps were resampled to multiple scales including 60 m, 90 m, 120 m, and 150 m to facilitate logistic regression analysis of LULC types and driving factors.Selection and processing of driving factorsTo interpret the relationship between the LULC and its driving factors in the mining area, we not only need to identify the driving factors that have greater explanatory power for LULC change, but also need to quantitatively describe the relationship between driving factors and LULC types.Considering the accessibility, usability of the data and the actual conditions in the study area, seven driving factors were selected based on the land use map of Weishan County in 2005 and the DEM data5,10,11,13,26,28,29,30. The driving factors included: (1) terrain factors, including elevation and slope factors; (2) five accessibility factors, including the nearest distance between each grid pixel and the main roads, the major rivers, the residential area, the major mines, and the ditches. The 30 m grid data of each driving factor were resampled to 60 m, 90 m, 120 m and 150 m respectively.In this study, BLRM was used to explore the relationship between LULC change and the related 7 driving factors. BLRM is sensitive to multicollinearity. In order to eliminate the influence of collinearity on the regression results, the multicollinearity between independent variables was diagnosed before the regression model was established.The receiver operating characteristic (ROC) curve was used to evaluate the accuracy of regression analysis results at different scales. The results showed that using 60 m resolution provided more accurate regression analysis results and suffered less loss of LULC and driving factor information during resampling. Therefore, we used 60 m × 60 m grid cell data to driving forces analysis.Raster maps of each driving factor at a resolution scale of 60 m are shown in Fig. 3.Figure 3Raster maps of driving factors at a resolution scale of 60 m. Maps were generated using ArcGIS 10.1 for Desktop (http://www.esri.com/software/arcgis/arcgis-for-desktop).Full size imageLogistic regression analysis of LULC types and driving factorsBLRM is often used for regression analysis of explanatory binary variables. The presence and absence of a certain type of LULC in a specific area is set as 1 and 0, respectively, which is characteristic for binary variable. Therefore, we used BLRM to calculate the probability (P) of various LULC types in a specific spatial location, and its mathematical expression is:$$begin{aligned} ln left( frac{P}{1-P}right) = beta _0 + beta _1 X end{aligned}$$
    (1)
    where (frac{P}{1-P}) is the ’odds ratio’ of an event, abbreviated as ( Omega ), which represents the odds that an outcome will occur given a particular condition compared to the odds of the outcome occurring in the absence of that condition; (beta _0) is a constant; (beta _1) is the correlation coefficient of an explaining variable and an explained variable. Making mathematical transformation of the above expression, we get: (Omega = (frac{P}{1-P}) = e^{beta _0 + beta _1 X}).Regression analysis using BLRM, we divided the study area into many grid cells. Taking each LULC type as the explained variable, and the driving factor causing LULC change as the explanatory variable, we calculated the odds ratio of each LULC type in a specific spatial location, and analyzed the relationship between each LULC type and the driving factors. The calculating equation is:$$begin{aligned} mathrm{Logit} P = ln left( frac{P_i}{1-P_i}right) = beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i} end{aligned}$$
    (2)
    Making mathematical transformation of the above equation, we get:$$begin{aligned} P_i = frac{e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}}{1+e^{(beta _0 + beta _1 X_{1,i} + beta _2 X_{2,i} + cdots + beta _n X_{n,i})}} end{aligned}$$
    (3)
    where: (P_i) is the probability of a certain LULC type i in a grid cell, (X_{1,i}sim X_{n,i}) are the driving factors of LULC type i, (beta _0) is the constant, (beta _1sim beta _n) are the correlation coefficients of each driving factor and LULC type i.The receiver operating characteristic (ROC) was used to evaluate the accuracy of regression analysis results. The accuracy can be measured by calculating the area under the ROC curve. The area value is between 0.5 and 1. The closer the value is to 1, the higher the accuracy is. In general, the area under the ROC curve is greater than 0.7, which indicates that the selected factor has good explanatory power27,42.CLUE-S simulation and accuracy validationBefore using the CLUE-S model for futural LULC scenario simulation in mining area, the prediction accuracy needs to be verified. Based on the data of LULC in 2005, the spatial distribution pattern of LULC in 2016 was predicted firstly.The modeling accuracy was evaluated based on the Kappa index by comparing the actual LULC map in 2016 with the simulated in 201627,43,44. Equation (4) gives one of the most popular Kappa index equations: i.e.,$$begin{aligned} mathrm{Kappa}=frac{P_o-P_c}{P_p-P_c} end{aligned}$$
    (4)
    where (P_o) is the observed proportion correct, (P_c) is the expected proportion correct due to chance, (P_c) =1/n, n is the number of LULC types, and (P_p) is the proportion correct when classification is perfect.In order to further verify the accuracy of the model simulation, we also calculated kappa for quantity (Kquantity).Scenario setting of futural LULC simulationDue to the continuous population growth and mineral exploitation in the study area, the land resources, especially farmland resources, have become increasingly scarce and the environment has been deteriorating. Based on the simulation and validated results during 2005-2016, we defined three scenarios—namely natural development scenario, ecological protection scenario, and farmland protection scenario—to predict LULC spatial patterns for 2025.Natural development scenarioIn this scenario, the land use demand of the study area was basically not restricted by policies in near future. We assumed that the change rate of each LULC type in near future was consistent with the change trend from 2005 to 2016. So it is defined as natural development scenario. Using Markov model to obtain the area transition probability matrix of each year from 2017 to 2025, and taking the proportion of each LULC type area in the total study area in 2005 as the initial state matrix, the area of each LULC type in 2025 under the natural development scenario was predicted.Based on the characteristics and trend of the LULC change from 2005 to 2016, after appropriately adjusting the transition probability matrix of different LULC types, we predicted the demands of each LULC type in 2025 under ecological protection scenario and farmland protection scenario using Markov model45,46.Ecological protection scenarioThis scenario emphasizes protecting the ecological environment, restricting the conversion of the LULC types that have more regulatory effects on the ecosystem, such as tidal wetland and water area, to other land use types. Garden land, woodland, grassland, and aquaculture land, belong to other agricultural land, which have regulatory effects on the local ecosystem, so their conversion to other LULC types should be restricted as well.Farmland protection scenarioAccording to the guidelines of “the general land use planning in Weishan County (2006-2020)”, we should maximize the potential use of current construction land, implement intensive and economical utilization of construction land, and use less or not use farmland to economical construction. So in order to ensure the dynamic balance of total farmland amount and the regional food supply security, in the farmland protection scenario, the conversion from farmland to other land use types should be restricted. The projected land use demands for 2025 under the three different scenarios are shown in Table 2.Table 2 Areas of LULC types in 2025 under different scenarios (ha).Full size table More