Electrical conductivity as a driver of biological and geological spatial heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile
1.Rothschild, L. & Mancinelli, R. Life in extreme environments. Nature 409, 1092â1101 (2001).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
2.Cavicchioli, R. Extremophiles and the search for extraterrestrial life. Astrobiology 2, 281â292 (2002).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
3.Parro, V. et al. A microbial oasis in the hypersaline atacama subsurface discovered by a life detector chip: Implications for the search for life on mars. Astrobiology 11, 969â996 (2011).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
4.Lee, C. J. D. et al. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672â693 (2018).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
5.Coleine, C. et al. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS ONE 15, 1â17 (2020).ArticleÂ
CASÂ
Google ScholarÂ
6.Rathour, R. et al. A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci. Total Environ. 731, 139074 (2020).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
7.Suosaari, E. P. et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6, 1â13 (2016).ArticleÂ
CASÂ
Google ScholarÂ
8.Suosaari, E. P. et al. Stromatolite provinces of Hamelin pool: Physiographic controls on stromatolites and associated lithofacies. J. Sediment. Res. 89, 207â226 (2019).ADSÂ
ArticleÂ
Google ScholarÂ
9.Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms 4, 6 (2016).PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
10.Grotzinger, J. R. & Knoll, A. H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27, 313â358 (1999).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
11.Grotzinger, J. P. & James, N. P. Precambrian carbonates: Evolution of understanding. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, J. P. & James, N. P.) 3â20 (Society for Sedimentary Geology, 2000).ChapterÂ
Google ScholarÂ
12.Demergasso, C. et al. Microbial mats from the Llamara salt flat, northern Chile. Rev. Chil. Hist. Nat. 76, 485â499 (2003).ArticleÂ
Google ScholarÂ
13.Demergasso, C. et al. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Mirobiol. Ecol. 48, 57â69 (2004).CASÂ
ArticleÂ
Google ScholarÂ
14.SaghaĂŻ, A. et al. Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ. Microbiol. 19, 2405â2421 (2017).PubMedÂ
PubMed CentralÂ
ArticleÂ
CASÂ
Google ScholarÂ
15.Shen, J., Zerkle, A. L., Stueeken, E. & Claire, M. W. Nitrates as a potential N supply for microbial ecosystems in a hyperarid mars analog system. Life 9, 79 (2019).PubMed CentralÂ
ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
16.AlbarracĂn, V. H., GalvĂĄn, F. S. & FarĂas, M. E. Extreme microbiology at Laguna Socompa: A high-altitude Andean lake (3570 m a.s.l.) in Salta, Argentina. In Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites (ed. FarĂas, M. E.) 205â220 (Springer, 2020).ChapterÂ
Google ScholarÂ
17.AszalĂłs, J. M. et al. Bacterial diversity of a high-altitude permafrost thaw pond located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 20, 754â765 (2020).ADSÂ
PubMedÂ
ArticleÂ
CASÂ
Google ScholarÂ
18.Boidi, F. J., Mlewski, E. C., Gomez, F. J. & GĂ©rard, E. Characterization of microbialites and microbial mats of the Laguna Negra hypersaline lake (Puna of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. FarĂas, M. E.) 183â203 (Springer, 2020).ChapterÂ
Google ScholarÂ
19.FarĂas, M. E. & Saona Acuña, L. A. Modern microbial mats and endoevaporite systems in Andean lakes: A general approach. In Microbial Ecosystems in Central Andes Extreme Environments (ed. FarĂas, M. E.) 21â33 (Springer, 2020).ChapterÂ
Google ScholarÂ
20.FarĂas, M. E., Villafañe, P. G. & Lencina, A. I. Integral propsection of andean microbial ecosystem project. In Microbial Ecosystems in Central Andes Extreme Environments (ed. FarĂas, M. E.) 245â260 (Springer, 2020).ChapterÂ
Google ScholarÂ
21.Gomez, F. J., Boidi, F. J., Mlewski, E. C. & GĂ©rard, E. The carbonate system in Hypersaline Lakes: The case of Laguna Negra (in the Puna Region of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. FarĂas, M. E.) 231â242 (Springer, 2020).ChapterÂ
Google ScholarÂ
22.OtĂĄlora, F. et al. Hydrochemical and mineralogical evolution through evaporitic processes in Salar de Llamara Brines (Atacama, Chile). ACS Earth Sp. Chem. 4, 882â896 (2020).ArticleÂ
CASÂ
Google ScholarÂ
23.Rasuk, M. C., Visscher, P. T., Leiva, M. C. & FarĂas, M. E. Mats and microbialites from Laguna La Brava. In Microbial Ecosystems in Central Andes Extreme Environments (ed. FarĂas, M. E.) 221â230 (Springer, 2020).ChapterÂ
Google ScholarÂ
24.Demergasso, C. et al. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12, 491â504 (2008).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
25.del RocĂo Mora-Ruiz, M. & DĂaz-Gil, C. Microbial diversity in athalassohaline Argentinean Salterns. In Microbial Ecosystems in Central Andes Extreme Environments (ed. FarĂas, M. E.) 165â179 (Springer, 2020).ChapterÂ
Google ScholarÂ
26.Vignale, F. A. et al. Lithifying and non-lithifying microbial ecosystems in the wetlands and salt flats of the central Andes. Microb. Ecol. https://doi.org/10.1007/s00248-021-01725-8 (2021).ArticleÂ
PubMedÂ
Google ScholarÂ
27.Stivaletta, N., Barbieri, R., Cevenini, F. & LĂłpez-GarcĂa, P. Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol. J. 28, 83â95 (2011).CASÂ
ArticleÂ
Google ScholarÂ
28.FarĂas, M. E. et al. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18, 311â329 (2014).PubMedÂ
ArticleÂ
CASÂ
Google ScholarÂ
29.Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1â18 (2016).ArticleÂ
Google ScholarÂ
30.Rasuk, M. C. et al. Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb. Ecol. 71, 44â56 (2016).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
31.Farias, M. E. et al. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 12, 1â25 (2017).ArticleÂ
CASÂ
Google ScholarÂ
32.GutiĂ©rrez-Preciado, A. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat. Ecol. Evol. 2, 1700â1708 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
33.Escudero, L. et al. A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie Van Leeuwenhoek 111, 1403â1419 (2018).PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
34.Chong-DĂaz, G. Die Salare in NordchileâGeologie, Struktur und Geochemie. Geotekton. Forsch. 67, 1â146 (1984).
Google ScholarÂ
35.Risacher, F. & Fritz, B. Geochemistry of Bolivian salars, Lipez, southern Altiplano: Origin of solutes and brine evolution. Geochim. Cosmochim. Acta 55, 687â705 (1991).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
36.Pueyo, J. J., Chong, G. & Jensen, A. Neogene evaporites in Desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48, 1411â1431 (2001).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
37.Simicic HernĂĄndez, Y. P. Thickness Distribution of the Oligo-Neogenous Sedimentary Cover of the Tamarugal Pampas, Northern Chile (20 ° 45 âto 21 ° 30âS) (Universidad de Chile, 2015).
Google ScholarÂ
38.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. B Biol. 28, 137â142 (1995).CASÂ
ArticleÂ
Google ScholarÂ
39.Cabrol, N. A. et al. Life in the Atacama: Searching for life with rovers (science overview). J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000298 (2007).ArticleÂ
Google ScholarÂ
40.Solari, M. The unexplored geobiological heritage of Chile: Key to understand the past and future. In XIV Congr. GeolĂłgico Chil. 1â5 (2015).41.Rasuk, M. C. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483â494 (2014).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
42.Surma, J., Assonov, S., Herwartz, D., Voigt, C. & Staubwasser, M. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci. Rep. 8, 4972 (2018).ADSÂ
CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
43.Rasuk, M. C., Leiva, M. C., Kurth, D. & FarĂas, M. E. Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). In Microbial Ecosystems in Central Andes Extreme Environments (ed. FarĂas, M. E.) 153â164 (Springer, 2020).ChapterÂ
Google ScholarÂ
44.Kiefer, E., Dorr, M., Ibbeken, H. & Gotze, H. Gravity-based mass balance of an alluvial fan giant: The Arcas Fan, Pampa del Tamarugal, Northern Chile. Rev. Geol. Chile 24, 165â185 (1997).
Google ScholarÂ
45.Houston, J. & Hartley, A. J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol. 23, 1453â1464 (2003).ArticleÂ
Google ScholarÂ
46.Dunai, T. J., LĂłpez, G. A. G. & Juez-LarrĂ©, J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321â324 (2005).ADSÂ
ArticleÂ
Google ScholarÂ
47.Hartley, A. J., Chong, G., Houston, J. & Mather, A. 150 million years of climatic stability: Evidence from the Atacama Desert, northern Chile. J. Geol. Soc. Lond. 162, 421â424 (2005).ArticleÂ
Google ScholarÂ
48.Clarke, J. D. A. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73, 101â114 (2006).ADSÂ
ArticleÂ
Google ScholarÂ
49.Houston, J. Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes. J. Hydrol. 330, 402â412 (2006).ADSÂ
ArticleÂ
Google ScholarÂ
50.Fuenzalida, H. & Rutllant, J. Estudio Sobre el Origen del Vapor de agua que Precipita en el Invierno AltiplĂĄnico (1986).51.Grosjean, M., Geyh, M. A., Messerli, B. & Schotterer, U. Late-glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano 22â24°S. J. Paleolimnol. 14, 241â252 (1995).ADSÂ
ArticleÂ
Google ScholarÂ
52.Garreaud, R. Multiscale analysis of the summertime precipitation over the central Andes. Mon. Weather Rev. 127, 901â921 (1999).ADSÂ
ArticleÂ
Google ScholarÂ
53.Houston, J. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: Mechanisms, magnitudes and causes. Hydrol. Process. 16, 3019â3035 (2002).ADSÂ
ArticleÂ
Google ScholarÂ
54.Marazuela, M. A., VĂĄzquez-Suñé, E., Ayora, C., GarcĂa-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: The Salar de Atacama example. Sci. Total Environ. 651, 668â683 (2019).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
55.Cereceda, P., Larrain, H., Osses, P., FarĂas, M. & Egaña, I. The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos. Res. 87, 312â323 (2008).ArticleÂ
Google ScholarÂ
56.del RĂo, C. et al. The role of topography in the spatial distribution of the low stratocumulus cloud and fog in the Peruvian coastal Desert. In AGU Fall Meeting Abstracts 2018, A31J-2979 (2018).57.Hasler, K., Jaque, I., Pucheu, A. & Ortiz, C. AnĂĄlisis de la InformaciĂłn HistĂłrica de la OperaciĂłn de la Medida de MitigaciĂłn. Estudio de Impacto Ambiental: Modification parcial del Sistema del Sistema de ReinyecciĂłn en los puquios de Llamara, Elaborado por Geobiota (2020).58.Ordoñez, R., Hasler, K., Pucheu, A. & Ortiz, C. Modelo NumĂ©rico HidrogeolĂłgico AcuĂfero Salar de Llamara. Estudio de Impacto Ambiental, ModificaciĂłn Parcial del Sistema de reinyecciĂłn en los Puquios de Llamara, elaborado por Geobiota (2020).59.Babel, M. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol. Pol. 54, 219-U6 (2004).
Google ScholarÂ
60.Rumrich, U., Lange-Bertalot, H. & Rumrich, M. Diatoms of the Andes. Annotated diatom monographs. Iconogr. Diatomol. 9, 671 (2000).
Google ScholarÂ
61.Lowe, R. L. Keeled and canalled raphid diatoms. In Freshwater Algae of North America (ed. Lowe, R. L.) 669â684 (Elsevier, 2003).ChapterÂ
Google ScholarÂ
62.Whitton, B. A. & Kelly, M. G. Use of algae and other plants for monitoring rivers. Aust. J. Ecol. 20, 45â56 (1995).ArticleÂ
Google ScholarÂ
63.Burow, L. C. et al. Identification of Desulfobacterales as primary hydrogenotrophs in a complex microbial mat community. Geobiology 12, 221â230 (2014).CASÂ
PubMedÂ
ArticleÂ
PubMed CentralÂ
Google ScholarÂ
64.GarcĂ©s, I. et al. CaracterĂsticas geoquĂmicas generales del sistema salino del Salar de Llamara (Chile). Estud. Geol. 52, 23â35 (1996).ArticleÂ
Google ScholarÂ
65.LĂłpez, P. L., AuquĂ©, L. F., GarcĂ©s, I. & Chong, G. CaracterĂsticas geoquĂmicas y pautas de evoluciĂłn de las salmueras superficiales del Salar de Llamara, Chile. Rev. Geol. de Chile 26, 89â108 (1999).ArticleÂ
Google ScholarÂ
66.Kampf, S. K. & Tyler, S. W. Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile. Adv. Water Resour. 29, 336â354 (2006).ADSÂ
ArticleÂ
Google ScholarÂ
67.Des-Marais, D. J. The Biogeochemistry of Hypersaline Microbial Mats. In Advances in Microbial Ecology (ed. Jones, J. G.) (Springer, 1995).
Google ScholarÂ
68.Vogel, M. B. et al. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiology 9, 875â893 (2009).ADSÂ
CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
69.Vogel, M. B. et al. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment. Geol. 223, 265â280 (2010).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
70.Ali-Bik, M. W., Metwally, H. I. M., Wali, A. M. A. & Kamel, M. G. Facies and geochemistry of non-marine gypsum, EMISAL, Egypt. Geol. Acta 11, 409â420 (2013).CASÂ
Google ScholarÂ
71.Taher, A. G. Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt. Facies 60, 721â735 (2014).ArticleÂ
Google ScholarÂ
72.Handford, C. Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basinâBristol Dry Lake, California. Sedimentology 29, 239â253 (1982).ADSÂ
ArticleÂ
Google ScholarÂ
73.Gerdes, G., Krumbein, W. E. & Holtkamp, E. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In Hypersaline Ecosystems. Ecological Studies (Analysis and Synthesis) (eds Friedman, G. M. & Krumbein, W. E.) 238â236 (Springer, 1985).ChapterÂ
Google ScholarÂ
74.Davie, A. W., Mitrovic, S. M. & Lim, R. P. Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inl. Waters 2, 89â100 (2012).ArticleÂ
Google ScholarÂ
75.Cohen, Y., JĂžrgensen, B. B., Padan, E. T. & Shilo, M. Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257, 489â492 (1975).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
76.Oren, A. & Shilo, M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Arch. Microbiol. 122, 77â84 (1979).CASÂ
ArticleÂ
Google ScholarÂ
77.Muñoz, J., Amat, F., Green, A. J., Figuerola, J. & GĂłmez, A. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. PeerJ 2013, 1â28 (2013).
Google ScholarÂ
78.Clegg, J. S. & Trotman, C. N. A. Physiological and biochemical aspects of Artemia ecology. In Artemia: Basic and Applied Biology (eds Abatzopoulos, T. J. et al.) 129â170 (Springer, 2002).ChapterÂ
Google ScholarÂ
79.Collado, G. A., Valladares, M. A. & MĂ©ndez, M. A. Hidden diversity in spring snails from the andean altiplano, the second highest plateau on earth, and the Atacama Desert, the driest place in the world. Zool. Stud. 52, 1â13 (2013).ArticleÂ
Google ScholarÂ
80.Herbst, D. B., Conte, F. P. & Brookes, V. J. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34, 903â909 (1988).CASÂ
ArticleÂ
Google ScholarÂ
81.Cycil, L. M. et al. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. 11, 1567 (2020).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
82.Dillon, J. G., Carlin, M., Gutierrez, A., Nguyen, V. & McLain, N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00399 (2013).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
83.Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349â360 (2002).PubMedÂ
ArticleÂ
Google ScholarÂ
84.Casamayor, E. O. et al. Changes in Archaeal, bacterial and Eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338â348 (2002).PubMedÂ
ArticleÂ
Google ScholarÂ
85.Gorrasi, S. et al. Spatio-temporal variation of the bacterial communities along a salinity gradient within a thalassohaline environment (Saline di Tarquinia Salterns, Italy). Molecules 26, 1338 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
86.Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210â220 (2013).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
87.Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613â1631 (2007).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
88.Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 1â17 (2015).ArticleÂ
Google ScholarÂ
89.Cody, R. D. & Cody, A. M. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sediment. Res. 58, 247â255 (1988).CASÂ
Google ScholarÂ
90.Arp, G., Thiel, V., Reimer, A., Michaelis, W. & Reitner, J. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 126, 159â176 (1999).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
91.Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96, 141â162 (2009).ADSÂ
CASÂ
ArticleÂ
Google ScholarÂ
92.Cabestrero, Ă. & Sanz-Montero, M. E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 59, 139â157 (2016).ArticleÂ
Google ScholarÂ
93.FarĂas, M. E. Microbial Ecosystems in Central Andes Extreme Environments (Springer, 2020).BookÂ
Google ScholarÂ
94.Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 13, 1908â1923 (2011).CASÂ
PubMedÂ
ArticleÂ
Google ScholarÂ
95.Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. (APHA American Public Health Association, 2012).96.DĂaz, C. & Maidana, N. I. Diatomeas de los Salares Atacama y Punta Negra II RegiĂłn-Chile (Centro de EcologĂa Aplicada Ltda. & Minera Escondida Ltda, 2005).
Google ScholarÂ
97.Patrick, R. Results of Research in the Antofagasta Ranges of Chile and Bolivia. II. Diatoms (Bacillariophyceae) from the Alimentary tract of Phoenicoparrus jamesi (1961).98.Frenguelli, J. Diatomeas del RĂo de la Plata. Rev. del Mus. la Plata SecciĂłn Bot. 3, 213â334 (1941).
Google ScholarÂ
99.Parra, O., GonzĂĄlez, M., Dellarossa, V., Rivera, P. & Orellana, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part III: Cryptophyceae, Dinophyceae, Euglenophyceae (1982).100.Parra, O. & GonzĂĄlez, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part I: Volvocales, Tetrasporales, Chlorococcales and Ulothricales (1983).101.Seeligmann, C. & Maidana, N. I. Diatomeas (Bacillariophyceae) en ambientes de altura de la provincia de Catamarca (Argentina). BoletĂn Soc. Argentina Bot. 38, 39â50 (2003).
Google ScholarÂ
102.Seeligmann, C., Maidana, N. I. & Morales, M. Diatoms (Bacillariophyceae) of high altitude wetlands in the Province of Jujuy-Argentina. BoletĂn Soc. Argentina Bot. 43, 1â17 (2008).
Google ScholarÂ
103.Maidana, N. I. & Seeligmann, C. Diatomeas (Bacillariophyceae) de ambientes acuĂĄticos de altura de la Provincia de Catamarca, Argentina II. BoletĂn la Soc. Argentina Bot. 41, 1â13 (2006).
Google ScholarÂ
104.Ălvarez Blanco, I., Cejudo Figueiras, C., Godos, I. F., MĂșñoz Torre, R. & White Lance, S. The diatoms of the salt flats of the Bolivian Altiplano: Floristic singularities. Bull. R. Span. Soc. Nat. Hist. 105, 67â82 (2011).
Google ScholarÂ
105.Maidana, N. I. & Seeligmann, C. T. Diatoms (Bacillariophyceae) in high-altitude wetlands of Catamarca Province (Argentina). III. Bol. LA Soc. Argentina Bot. 50, 447â466 (2015).ArticleÂ
Google ScholarÂ
106.Woelfl, S., Caputo, L., GarcĂa-Chicote, J. & de Los RĂos, P. Manuales Para la BioindicaciĂłn: Zooplancton Vol. 1 (Manuales Sociedad Chilena de LimnologĂa, 2008).
Google ScholarÂ
107.De los Rios-Escalante, P. & Salgado, I. Artemia (Crustacea, Anostraca) in Chile: A review of basic and applied biology. Lat. Am. J. Aquat. Res. 40, 487â496 (2017).ArticleÂ
Google ScholarÂ
108.Araya, J. M. & ZĂșñiga, L. R. Taxonomic manual of the lacustrine zooplankton of Chile. Limnol. Bull. Univ. Austral Chile 8, 1â69 (1985).
Google ScholarÂ
109.FernĂĄndez, H. R. & DomĂnguez, E. Guide for the Determination of South American Benthic Arthropods, Entomotropica16(3), 219 (2001).110.Crespo, J. E. & Baessolo, L. A. Biogeografia y taxonomia del gĂ©nero Artemis (Crustacea, Anostraca) en Chile: una revisiĂłn. Hist. Nat. I(1), 17â21 (2002).
Google ScholarÂ
111.Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinform. 7, 285 (2006).ArticleÂ
CASÂ
Google ScholarÂ
112.Palma, A. T., Schwarz, A. O. & Fariña, J. M. Experimental evidence of the tolerance to chlorate of the aquatic macrophyte Egeria densa in a Ramsar wetland in southern Chile. Wetlands 33, 129â140 (2013).ArticleÂ
Google ScholarÂ
113.EcheverrĂa-Vega, A. et al. Watershed-induced limnological and microbial status in two oligotrophic Andean Lakes exposed to the same climatic scenario. Front. Microbiol. 9, 357 (2018).PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
114.Lane, D. J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic (eds Stackebrandt, E. & Goodfellow, M.) 115â175 (Wiley, 1991).
Google ScholarÂ
115.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335â336 (2010).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
116.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194â2200 (2011).CASÂ
PubMedÂ
PubMed CentralÂ
ArticleÂ
Google ScholarÂ
117.Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 20 (Plymouth Marine Laboratory, 2015).
Google ScholarÂ
118.Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814â821 (2014).ArticleÂ
CASÂ
Google ScholarÂ
119.Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th Edition. (APHA American Public Health Association, 1998). More