More stories

  • in

    Ancient oaks of Europe are archives — protect them

    CORRESPONDENCE
    22 June 2021

    Ancient oaks of Europe are archives — protect them

    Christian Sonne

    0
    ,

    Changlei Xia

    1
    &

    Su Shiung Lam

    2

    Christian Sonne

    Aarhus University, Roskilde, Denmark.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Changlei Xia

    Nanjing Forestry University, Nanjing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Su Shiung Lam

    University Malaysia Terengganu, Terengganu, Malaysia.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Download PDF

    Kongeegen, the King Oak, in Denmark could be up to 2,000 years old.Credit: Andreas Altenburger/Alamy

    Some of the oldest trees in Europe are in danger because they are not being given the necessary level of protection. Oak trees (Quercus robur) that are more than 1,000 years old are found in the United Kingdom and in Fennoscandia, which includes Denmark, Sweden and Norway.For example, Denmark’s King Oak (pictured) is one of the world’s oldest living trees, dating to around 1,900 years of age. The United Kingdom has the largest collection of ancient oaks, reflecting 1,500 years of ship-building.The trees contain rings that represent archives of historical climate fluctuations and levels of atmospheric gases, so they can help to answer pressing questions about climate change and ecosystem dynamics (P. M. Kelly et al. Nature 340, 57–60; 1989).Fennoscandia and the United Kingdom could better safeguard their oaks using mechanisms such as those offered by the European Union’s Natura 2000 network of protected areas, or the protections conferred by UNESCO World Heritage sites in the United Kingdom. Otherwise, unsustainable management practices, deforestation, air pollution and climate change could leave these ancient species vulnerable to disease and extinction, with the loss of irreplaceable scientific information and cultural heritage.

    Nature 594, 495 (2021)
    doi: https://doi.org/10.1038/d41586-021-01699-0

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Conservation biology

    Environmental sciences

    Forestry

    Latest on:

    Environmental sciences

    Canada is right to classify single-use plastics as toxic
    Correspondence 22 JUN 21

    Most rivers and streams run dry every year
    News & Views 16 JUN 21

    Regulate waste recycling internationally
    Correspondence 15 JUN 21

    Forestry

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Concerns about reported harvests in European forests
    Matters Arising 28 APR 21

    The Arctic is burning like never before — and that’s bad news for climate change
    News 10 SEP 20

    Jobs from Nature Careers

    All jobs

    Career Development Fellow/ Postdoctoral Scientist
    UK Research and Innovation (UKRI)
    Cambridge, United Kingdom

    JOB POST

    3 Postdoctoral fellowships (2 years) in bacteria cell wall systems biology, soil pore architecture, and image analysis of wood formation
    Umeå University (UmU)
    Umeå, Sweden

    JOB POST

    Postdoctoral Fellow and Research Scientist Positions
    Boston Children’s Hospital (BCH)
    Boston, MA, United States

    JOB POST

    Assistant Professor of physics with tenure track
    Chalmers University of Technology
    Gothenburg, Sweden

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation

    Field location and soil samplingThe soil used in this experiment was collected from an agricultural field cultivated with maize at the “Instituto Tecnológico Superior del Oriente del Estado de Hidalgo” (ITESA) located in Apan, State of Hidalgo, Mexico (19° 73′ N, 98° 46′ W). The 0–20 cm top soil layer of three 400 m2 plots was sampled 20 times. The soil from each plot was pooled separately so that three soil samples (n = 3) were obtained. This field based replication was maintained in the greenhouse experiment so as to avoid pseudo-replication. The soil samples were passed separately through a 5 mm sieve and characterized.The soil is classified as a Phaeozem according to “World Reference Soil (WRS) system”, with pH 6.6, electrolytic conductivity (EC) 0.22 dS m−1 and water holding capacity (WHC) 515 g kg−1. The sandy clay loam soil with clay content 240 g kg−1, sand content 530 g kg−1 and silt content 230 g kg−1, had an ammonium content 8.16 mg kg−1 dry soil, nitrate 1.91 mg kg−1 dry soil and nitrite 0.01 mg kg−1 dry soil. The maize seeds were the hybrid variety 215 W obtained from Eagle® Sinaloa (Mexico).Characteristics of the biofertilizerAlthough a biofertilizer can be described in different ways we use the definition as given by38. Vessey defined (2003) a biofertilizer as “a substance which contains living micro-organisms which, when applied to seeds, plant surfaces, or soil, colonize the rhizosphere or the interior of the plant and promotes growth by increasing the supply or availability of primary nutrients to the host plant”. As the consortium used in this study fits the definition of a biofertilizer as given by Vessey38 we will refer to the consortium as the biofertilizer or when sterilized to the sterilized biofertilizer throughout the manuscript.The “biofertilizer” used in this study was a mixture of bacteria and leachate from compost of cow manure and was obtained from a local farmer in Hidalgo (Mexico) and characterized chemically and microbiologically. The cow manure was composted on a cement floor with a small inclination so that leachate could be collected easily. The farmer adds the leachate to the mixture of the bacteria to guarantee their survival and as an additional plant nutrient source. The farmer applies this solution regularly to fertilize his fields cultivated with maize. A same application protocol and procedure was used in this study to mimic the field experiment. Half of the biofertilizer obtained from the local farmer was sterilized by autoclaving at 121 °C for 20 min on three consecutive days so as to determine the effect of the microorganisms in the biofertilizer on the maize plants and the bacterial community structure, and the effect of the nutrients added with the biofertilizer.Experimental design and a greenhouse experimentThe research was done in a greenhouse at Cinvestav-Zacatenco situated to the north of Mexico City (Mexico). The experiment used a completely randomized block design with six treatments. The treatments combined as a first factor soil cultivated with maize or left uncultivated. A second factor included soil amended with the biofertilizer, sterilized biofertilizer or not fertilized. The daily temperature in the greenhouse ranged from 15 °C as minimum and reached a maximum 35 °C from April to August of 2017.As the experimental protocol was complex, a diagram of the different treatments and sampling is given in Supplementary Fig. S11 online. A total of 162 PVC columns with diameter 17 cm and height 60 cm were used in the experiment. Each pot was filled at the bottom with 0.5 kg tezontle, a highly porous volcanic rock, and 10 kg soil was added on top. The 162 columns included 6 treatments (uncultivated unamended soil, uncultivated soil amended with biofertilizer, uncultivated soil amended with sterile biofertilizer, maize cultivated unamended soil, maize cultivated soil amended with biofertilizer, maize cultivated soil amended with sterile biofertilizer; n = 6), 3 sampling times (day 44, day 89 and day 130; n = 3), three different soil samples (n = 3), with three columns planted with a maize plant per soil sample (n = 3). Three columns of each soil sample were planted with a maize plant to account for plants that might die so that at least one mature plant was obtained per treatment, sampling time and soil sample. The soil in the 162 PVC columns was adjusted to 40% WHC with distilled water and conditioned in the greenhouse for a week. Additionally, three PVC columns were filled with soil from each soil sample (n = 3), adjusted to 40% WHC with distilled water and conditioned for a week. These three soil samples were used to extract DNA as described below and defined the bacterial community at the onset of the experiment, i.e. time 0.Maize seeds variety 215 W Eagle hybrid seeds® were obtained from the farmer that provided us with the biofertilizer. Three washed maize seeds were planted at 3 cm depth in 81 columns, while the remaining columns were left uncultivated. Seven days after emergence, the most vigorous plantlet was kept and the other two discarded. After 44 days, the biofertilizer or the sterilized biofertilizer was diluted with water and applied with an atomizer (10 ml m−2 or similar to 100 l applied ha−1 by the farmer) so that it was added as fine spray evenly on soil of each pot when the seeds were planted. A similar volume of water was applied in the same way to the unfertilized treatment. Five more applications of the biofertilizer, sterilized biofertilizer or water by aspersion were done during the cultivation of the maize plants. As such, the uncultivated or maize plant cultivated soil was applied with the biofertilizer, sterile biofertilizer or water on 13th April, 28th May, 5th June, 13th July, 2nd August and 12th August 2017.Soil and plant samplingAfter 44 (27th May 2017), 89 (11th July 2017) and 130 days (21st August 2017), three columns from each treatment (n = 6) and soil sample (n = 3) were selected at random. Soil was removed from each column. The cultivated and uncultivated soil was sampled, characterized, and extracted for DNA as described below. The non-rhizosphere soil was separated from the rhizosphere soil by shaken the plants gently. The soil adhered to the roots was considered the rhizosphere soil. A 20 g sub-sample of the uncultivated, non-rhizosphere and rhizosphere soil was stored at − 20 °C pending extraction of DNA, while the pH and mineral N was determined in the remaining soil. Roots and shoots were separated, weighted and their length measured. The roots and shoots were dried in an oven at 60 °C for 24 h and weighed.Soil physicochemical characterizationThe moisture content of the soil was determined by weight loss after samples were dried at 60 °C in an oven for 24 h. The WHC was determined by saturating 50 g dry soil with distilled water, left to drain overnight and measuring the amount of water retained. The EC was measured in a soil paste (200 g soil/110 ml distilled H2O) with an HI 2300 microprocessor (HANNA Instruments, Woonsocket, RI, USA), while the particle size distribution was determined with the hydrometer method as described by Gee and Bauder39. The pH was determined in a 10 g soil–25 ml distilled water mixture with a calibrated pH meter (Denver Instrument, Bohemia, NY, USA) fitted with a glass electrode (3007281 pH/ATC Termofisher Scientific, Waltham, MA, USA).Mineral nitrogen (NO3−, NO2− and NH4+) was measured in the soil and biofertilizer. A 20 g soil sub-sample was extracted with 100 ml 0.5 M K2SO4 and filtered through Whatman filter paper® while mineral N was measured with a SKALAR automatic analyser system (Breda, the Netherlands)40. A 20 g biofertilizer sub-sample was mixed with 80 ml 0.5 M K2SO4, filtered through Whatman filter paper® and mineral N measured as described previously.DNA extraction and PCR amplificationA 5 ml sub-sample of the sterilized and unsterilized biofertilizer was centrifuged at 3500 rpm for 15 min and the supernatant removed. A 0.5 g sub-sample of soil was washed with 10 ml 0.15 mol l−1 sodium pyrophosphate to eliminate the humic and fulvic acids, centrifuged at 3500 rpm for 15 min and this process was repeated until the supernatant was clear41. The excess pyrophosphate was eliminated with 10 ml 0.15 mol l−1 phosphate buffer pH 8. Three different methods were used to extract DNA from the soil and the sterilized and unsterilized biofertilizer samples. The first technique was based on the method described by Green and Sambrook42. In the second method, cells were lysed with two lysis solutions and a thermal shock as described by Valenzuela-Encinas et al.43. The third method consisted of a mechanical disruption and detergent solution for cell lysis44. Each method was used to extract three times 0.5 g soil or 5 ml sterilized and unsterilized biofertilizer (a total of 1.5 g soil or 15 ml sterilized and unsterilized biofertilizer). The extracts from the soil and sterile or unsterilized biofertilizer were pooled separately.The 16S rRNA gene (V3–V4 region of bacteria) was amplified using the primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-ACHVGGGTATCTAATCC-3′45. The PCR conditions were 94 °C for 5 min, followed by 25 cycles of 60 s at 94 °C, 45 s at 53 °C, and 60 s at 72 °C, with a final extension of 10 min at 72 °C. The PCR was repeated three times for each sample. After PCR amplification, the obtained products were cleaned using the FastGen Gel/PCR extraction Kit (Nippon Genetics Duren, Germany) and quantified using a Nanodrop 3300 fluorospectrometer (TermoFisher, Wilmington, DE, USA) with PicoGreen dsDNA. The samples were mixed in equimolar amounts and sequenced using MiSeq 300-pb paired-end runs (Illumina, CA, USA) at Macrogen Inc. (Seoul, Korea).16S rDNA sequences analysisThe raw sequences were analysed with “Quantitative insights into microbial ecology pipeline” (QIIME) software (version 1.9.1)46. The barcode reads were demultiplexing removed from the sequences using the script extract_barcodes.py. The chimeric sequences were identified using “identify_chimeric_seqs.py” with the usearch61 method and removed47. The taxonomic assignment was done using the Ribosomal Data Project (rdp)48, against the Greengenes 16S rRNA database with a 0.8 confidence49. The sequences were clustered as operational taxonomic units (OTU) at 97% similarity level with the UCLUST algorithm47. Sequences were aligned against the Greengenes reference database using PyNAST version 1.2.250. The obtained 16S dataset was filtered, all OTUs assigned to Archaea were discarded and the dataset normalized. Alpha diversity indices (Chao1, Shannon and Simpson) were calculated from 478000 rarefied sequences with QIIME.Statistical analysisAll statistical analyses were done in R (R 4.0.2 GUI 1.72 Catalina build51). The characteristics of the maize plants (n = 3) obtained per plot (n = 3) were averaged and the sequences obtained from the replicate rhizosphere or non-rhizosphere soil were summed (n = 3) per plot before the statistical analysis. A non-parametric test was used to determine the effect of biofertilizer application and time on the plant and soil characteristics with the non-parametric t1way test of the WRS2 package (A collection of robust statistical methods)52. A non-parametric test was used to determine the effect of biofertilizer application or cultivation of maize on the bacterial alpha diversity with the non-parametric t1way test of the WRS2 package52. Heatmaps of the relative abundances of the bacterial groups were constructed with the pheatmap package53. Ordination [principal component analysis (PCA)], multivariate comparison (perMANOVA) and differential abundance (ALDEx2) was done with converted sequence data using the centred log-ratio transform test returned by the aldex.clr argument (ALDEx2 package54). The PCA was done with the vegan package55. Effect of biofertilizer application and cultivation of maize on the bacterial groups was determined using a compositional approach, i.e. analysis of differential abundance taking sample variation into account (aldex.kw argument, ALDEx2 package). A permutational multivariate analysis of variance (perMANOVA) analysis was also done with sequence counts converted using the centred log-ratio transform, i.e. aldex.clr argument (ALDEx2 package (aldex.clr(counts, mc.samples = 128, denom = ”all”, verbose = FALSE, useMC = FALSE)). The adonis2 argument (Vegan package) was used for the perMANOVA analysis to test the effect of cultivation of maize, time and its interaction, biofertilizer application, time and their interaction, and cultivation of maize, biofertilizer application and their interaction on the bacterial community structure (#adonis2(clrcounts ~ maize*biofertilizer, data = code, permutations = 999, method = ”euclidean”). Raw counts were used as input and Monte Carlo Dirichlet instances of the clr transformation values were generated with the function ‘aldex.clr’ of ALDEx2 (v.1.23.2) R package54. Distance pairwise matrices were calculated using the Aitchison distance and the principal coordinate analysis (PCoA) was calculated on the distance matrices with vegan R package55.Informed consentPermission was obtained from the farmer to use the maize seeds he provided.Ethical approvalThe experiment in the greenhouse complied with and was conducted as stipulated by national regulations. More

  • in

    Toxoplasma gondii infections are associated with costly boldness toward felids in a wild host

    The Mara Hyena ProjectThis study uses data and samples from the Mara Hyena Project (approved by MSU IACUC and KWS), a long-term field study of individually known spotted hyenas that have been observed since May 1979. Study hyenas are monitored daily and behavioral, demographic, and ecological data are systematically collected and entered into a database. Here, we used data from four different hyena groups, called clans, as well as historic information about ecological conditions in the Masai Mara National Reserve. We maintained detailed records on the demographics of our study population, including sex, age, and the dates of key life-history milestones such as birth, weaning, dispersal and death. In the ensuing sections, we describe data collection and data processing procedures for assessment of T. gondii infection diagnosis, quantification of demographic and ecological determinants of infection status, and assessment of behavioral (boldness) and fitness (cause of mortality) characteristics hypothesized to be a consequence of positive T. gondii infection. The present analysis includes 168 hyenas, but specific subsamples vary depending on the particular hypothesis being tested.Biospecimen collection and assessment of Toxoplasma gondii exposureAs part of our long-term data collection, we routinely darted study animals in order to collect biological samples and morphological measurements. Of special relevance to this study is our blood collection procedure. We immobilized hyenas using 6.5 mg/kg of tiletamine-zolazepam (Telazol ®) in a pressurized dart fired from a CO2 powered rifle. We then drew blood from the jugular vein into sodium heparin-coated vacuum tubes. After the hyena was secured in a safe place to recover from the anesthesia, we took the samples back to camp where a portion of the collected blood was spun in a centrifuge at 1000 × g for 10 min to separate red and white blood cells from plasma. Plasma was aliquoted into multiple cryogenic vials. Immediately, the blood derivatives, including plasma, were flash frozen in liquid nitrogen where they remained until they were transported on dry ice to a −80 °C freezer in the U.S. All samples remained frozen until time of laboratory analysis for the T. gondii assays.Using archived plasma, we diagnosed individual hyenas using the multi-species ID Screen® Toxoplasmosis Indirect kit (IDVET, Montpellier). This ELISA-based assay tests for serological (IgG) reactivity to T. gondii’s P-30 antigen and has been used in many prior studies of T. gondii in diverse mammals22. The output of the assay is an SP ratio, which is calculated as colorimetric signal of immunoreactivity for a tested blood sample (S) divided by that of a positive control (P), after subtracting the background signal for the ELISA plate (i.e., a negative control) from both S and P. We tested 168 plasma samples from 168 individual spotted hyenas and determined infection status based on the kit manufacturer’s criteria for interpreting S/P: ≤ 40% = negative result, 40%  More

  • in

    Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone

    1.Etiope G, Ciccioli P. Earth’s degassing: a missing ethane and propane source. Science. 2009;323:478.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Etiope G, Drobniak A, Schimmelmann A. Natural seepage of shale gas and the origin of “eternal flames” in the Northern Appalachian Basin, USA. Mar Pet Geol. 2013;43:178–86.CAS 
    Article 

    Google Scholar 
    3.Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. Microbiome. 2019;7:134.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Shennan JL. Utilisation of C2–C4 gaseous hydrocarbons and isoprene by microorganisms. J Chem Technol Biotechnol. 2006;81:237–56.CAS 
    Article 

    Google Scholar 
    5.Rojo F. Degradation of alkanes by bacteria. Environ Microbiol. 2009;11:2477–90.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Jaekel U, Musat N, Adam B, Kuypers M, Grundmann O, Musat F. Anaerobic degradation of propane and butane by sulfate-reducing bacteria enriched from marine hydrocarbon cold seeps. ISME J. 2013;7:885–95.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Laso-Pérez R, Wegener G, Knittel K, Widdel F, Harding KJ, Krukenberg V, et al. Thermophilic Archaea activate butane via alkyl-coenzyme M formation. Nature. 2016;539:396–401.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Picone N, Mohammadi SS, Waajen AC, van Alen TA, Jetten MSM, Pol A, et al. More than a methanotroph: a broader substrate spectrum for Methylacidiphilum fumariolicum SolV. Front Microbiol. 2020;11:3193.Article 

    Google Scholar 
    9.Dunfield PF, Yuryev A, Senin P, Smirnova AV, Stott MB, Hou S, et al. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature. 2007;450:879–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Sharp CE, Smirnova AV, Graham JM, Stott MB, Khadka R, Moore TR, et al. Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol. 2014;16:1867–78.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.van Teeseling MCF, Pol A, Harhangi HR, van der Zwart S, Jetten MSM, Op den Camp HJM, et al. Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol. 2014;80:6782–91.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Islam T, Jensen S, Reigstad LJ, Larsen O, Birkeland NK. Methane oxidation at 55 oC and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA. 2008;105:300–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Pol A, Heijmans K, Harhangi HR, Tedesco D, Jetten MS, Op den Camp HJ. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature. 2007;450:874–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Coleman NV, Le NB, Ly MA, Ogawa HE, McCarl V, Wilson NL, et al. Hydrocarbon monooxygenase in Mycobacterium: recombinant expression of a member of the ammonia monooxygenase superfamily. ISME J. 2012;6:171–82.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Rochman FF, Kwon M, Khadka R, Tamas I, Lopez-Jauregui AA, Sheremet A, et al. Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria. ISME J. 2020;14:714–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Tavormina PL, Orphan VJ, Kalyuzhnaya MG, Jetten MS, Klotz MG. A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep. 2011;3:91–100.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Khadka R, Clothier L, Wang L, Lim CK, Klotz MG, Dunfield PF. Evolutionary history of copper membrane monooxygenases. Front Microbiol. 2018;9:2493.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Lehtovirta-Morley LE. Ammonia oxidation: ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett. 2018;365:fny058.Article 
    CAS 

    Google Scholar 
    19.Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Sayavedra-Soto LA, Hamamura N, Liu CW, Kimbrel JA, Chang JH, Arp DJ. The membrane-associated monooxygenase in the butane-oxidizing Gram-positive bacterium Nocardioides sp. strain CF8 is a novel member of the AMO/PMO family. Environ Microbiol Rep. 2011;3:390–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Semrau JD, DiSpirito AA, Yoon S. Methanotrophs and copper. FEMS Microbiol Rev. 2010;34:496–531.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Nyerges G, Stein LY. Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett. 2009;297:131–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Sayavedra-Soto LA, Gvakharia B, Bottomley PJ, Arp DJ, Dolan ME. Nitrification and degradation of halogenated hydrocarbons—a tenuous balance for ammonia-oxidizing bacteria. Appl Microbiol Biotechnol. 2010;86:435–44.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Bédard C, Knowles RPhysiology. biochemistry, and specific inhibitors of CH4, NH4+, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev. 1989;53:68–84.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Semrau JD. Bioremediation via methanotrophy: overview of recent findings and suggestions for future research. Front Microbiol. 2011;2:209.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Chen Y, Crombie A, Rahman MT, Dedysh SN, Liesack W, Stott MB, et al. Complete genome sequence of the aerobic facultative methanotroph Methylocella silvestris BL2. J Bacteriol. 2010;192:3840–1.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bordel S, Crombie AT, Muñoz R, Murrell JC. Genome scale metabolic model of the versatile methanotroph Methylocella silvestris. Micro Cell Fact. 2020;19:144.CAS 
    Article 

    Google Scholar 
    28.Dunfield PF, Yimga MT, Dedysh SN, Berger U, Liesack W, Heyer J. Isolation of a Methylocystis strain containing a novel pmoA-like gene. FEMS Microbiol Ecol. 2002;41:17–26.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Kits KD, Klotz MG, Stein LY. Methane oxidation coupled to nitrate reduction under hypoxia by the Gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ Microbiol. 2015;17:3219–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, et al. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep. 2009;1:293–306.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci USA 2008;105:10203–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Kits KD, Campbell DJ, Rosana AR, Stein LY. Diverse electron sources support denitrification under hypoxia in the obligate methanotroph Methylomicrobium album strain BG8. Front Microbiol. 2015;6:1072.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Anvar SY, Frank J, Pol A, Schmitz A, Kraaijeveld K, den Dunnen JT, et al. The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genom. 2014;15:914.Article 

    Google Scholar 
    34.Kruse T, Ratnadevi CM, Erikstad H-A, Birkeland N-K. Complete genome sequence analysis of the thermoacidophilic verrucomicrobial methanotroph “Candidatus Methylacidiphilum kamchatkense” strain Kam1 and comparison with its closest relatives. BMC Genom. 2019;20:642.Article 
    CAS 

    Google Scholar 
    35.Hou S, Makarova KS, Saw JHW, Senin P, Ly BV, Zhou Z, et al. Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct. 2008;3:26.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Erikstad HA, Ceballos RM, Smestad NB, Birkeland NK. Global biogeographic distribution patterns of thermoacidophilic Verrucomicrobia methanotrophs suggest allopatric evolution. Front Microbiol. 2019;10:1129.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Schmitz RA, Peeters SH, Versantvoort W, Picone N, Pol A, Jetten MSM, et al. Verrucomicrobial methanotrophs: ecophysiology of metabolically versatile acidophiles. FEMS Microbiol Rev. 2021. https://doi.org/10.1093/femsre/fuab007.38.Carere CR, McDonald B, Peach HA, Greening C, Gapes DJ, Collet C, et al. Hydrogen oxidation influences glycogen accumulation in a verrucomicrobial methanotroph. Front Microbiol. 2019;10:1873.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Erikstad HA, Jensen S, Keen TJ, Birkeland NK. Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles. 2012;16:405–9.CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Khadem AF, Pol A, Wieczorek AS, Jetten MSM, Op Den Camp H. Metabolic regulation of “Ca. Methylacidiphilum fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol. 2012;3:266.PubMed 
    PubMed Central 

    Google Scholar 
    41.Carere CR, Hards K, Wigley K, Carman L, Houghton KM, Cook GM, et al. Growth on formic acid is dependent on intracellular pH homeostasis for the thermoacidophilic methanotroph Methylacidiphilum sp. RTK17.1. Front Microbiol. 2021;12:536.Article 

    Google Scholar 
    42.Singleton CM, McCalley CK, Woodcroft BJ, Boyd JA, Evans PN, Hodgkins SB, et al. Methanotrophy across a natural permafrost thaw environment. ISME J. 2018;12:2544–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Adachi K, Katsuta A, Matsuda S, Peng X, Misawa N, Shizuri Y, et al. Smaragdicoccus niigatensis gen. nov., sp. nov., a novel member of the suborder Corynebacterineae. Int J Syst Evol Microbiol. 2007;57:297–301.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Whitman WB, Woyke T, Klenk H-P, Zhou Y, Lilburn TG, Beck BJ, et al. Genomic encyclopedia of bacterial and archaeal type strains, phase III: the genomes of soil and plant-associated and newly described type strains. Stand Genom Sci. 2015;10:26.Article 
    CAS 

    Google Scholar 
    45.Capaccioni B, Mangani F. Monitoring of active but quiescent volcanoes using light hydrocarbon distribution in volcanic gases: the results of 4 years of discontinuous monitoring in the Campi Flegrei (Italy). Earth Planet Sci Lett. 2001;188:543–55.CAS 
    Article 

    Google Scholar 
    46.Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, et al. The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta. 2007;71:3040–55.CAS 
    Article 

    Google Scholar 
    47.Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, et al. Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res Solid Earth. 2010;115:B03205.Article 
    CAS 

    Google Scholar 
    48.Tamburello G, Caliro S, Chiodini G, De Martino P, Avino R, Minopoli C, et al. Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. J Volcano Geotherm Res. 2019;384:151–7.CAS 
    Article 

    Google Scholar 
    49.de Bruyn JC, Boogerd FC, Bos P, Kuenen JG. Floating filters, a novel technique for isolation and enumeration of fastidious, acidophilic, iron-oxidizing, autotrophic bacteria. Appl Environ Microbiol. 1990;56:2891–4.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Hurt RA, Qiu X, Wu L, Roh Y, Palumbo AV, Tiedje JM, et al. Simultaneous recovery of RNA and DNA from soils and sediments. Appl Environ Microbiol. 2001;67:4495–503.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    54.Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011;27:2957–63.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    55.Li W, Fu L, Niu B, Wu S, Wooley J. Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform. 2012;13:656–68.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 2016;44:6614–24.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Vallenet D, Calteau A, Dubois M, Amours P, Bazin A, Beuvin M, et al. MicroScope: an integrated platform for the annotation and exploration of microbial gene functions through genomic, pangenomic and metabolic comparative analysis. Nucleic Acids Res. 2020;48:D579–D89.CAS 

    Google Scholar 
    59.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Thompson JD, Higgins DG, Gibson TJ, CLUSTAL W. improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Hall TA. BioEdit : a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999;41:95–8.CAS 

    Google Scholar 
    62.Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Yoon SH, Ha S, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Salamov VSA, Solovyevand A. Automatic annotation of microbial genomes and metagenomic sequences. Li RW, editor. Hauppauge, N.Y.: Nova Science Publishers; 2011. 61–78.65.Umarov RK, Solovyev VV. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks. PLOS One. 2017;12:e0171410.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    66.Naville M, Ghuillot-Gaudeffroy A, Marchais A, Gautheret D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 2011;8:11–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Shen T, Stieglmeier M, Dai J, Urich T, Schleper C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett. 2013;344:121–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Mackay D, Shiu WY. A critical review of Henry’s law constants for chemicals of environmental interest. J Phys Chem Ref Data. 1981;10:1175–99.CAS 
    Article 

    Google Scholar 
    69.Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 2009;461:976–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Carere CR, Hards K, Houghton KM, Power JF, McDonald B, Collet C, et al. Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J. 2017;11:2599–610.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Mohammadi S, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM. Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J. 2017;11:945–58.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Khadem AF, Pol A, Wieczorek A, Mohammadi SS, Francoijs KJ, Stunnenberg HG, et al. Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol. 2011;193:4438–46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Hogendoorn C, Pol A, Nuijten GHL, Op den Camp HJM. Methanol production by “Methylacidiphilum fumariolicum” SolV under different growth conditions. Appl Environ Microbiol. 2020;86:e01188–20.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Crombie AT, Murrell JC. Trace-gas metabolic versatility of the facultative methanotroph Methylocella silvestris. Nature. 2014;510:148–51.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ashraf W, Mihdhir A, Colin Murrell J. Bacterial oxidation of propane. FEMS Microbiol Lett. 1994;122:1–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Hausinger RP. New insights into acetone metabolism. J Bacteriol. 2007;189:671–3.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Dedysh SN, Dunfield PF. Facultative methane oxidizers. In: McGenity TJ, editor. Taxonomy, genomics and ecophysiology of hydrocarbon-degrading microbes. Cham: Springer International Publishing; 2019:279–97. https://doi.org/10.1007/978-3-030-14796-9_11.78.Belova SE, Baani M, Suzina NE, Bodelier PLE, Liesack W, Dedysh SN. Acetate utilization as a survival strategy of peat-inhabiting Methylocystis spp. Environ Microbiol Rep. 2011;3:36–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Belova SE, Kulichevskaya IS, Bodelier PL, Dedysh SN. Methylocystis bryophila sp. nov., a facultatively methanotrophic bacterium from acidic Sphagnum peat, and emended description of the genus Methylocystis (ex Whittenbury et al. 1970) Bowman et al. 1993. Int J Syst Evol Microbiol. 2013;63:1096–104.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Fisher OS, Kenney GE, Ross MO, Ro SY, Lemma BE, Batelu S, et al. Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nat Commun. 2018;9:4276.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    81.El Sheikh AF, Poret-Peterson AT, Klotz MG. Characterization of two new genes, amoR and amoD, in the amo operon of the marine ammonia oxidizer Nitrosococcus oceani ATCC 19707. Appl Environ Microbiol. 2008;74:312–8.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Pol A, Barends TR, Dietl A, Khadem AF, Eygensteyn J, Jetten MS, et al. Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol. 2014;16:255–64.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Sützl L, Foley G, Gillam EMJ, Bodén M, Haltrich D. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases. Biotechnol Biofuels. 2019;12:118.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Fröbel J, Rose P, Müller M. Twin-arginine-dependent translocation of folded proteins. Philos Trans R Soc Lond B Biol Sci. 2012;367:1029–46.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    85.Sluis MK, Larsen RA, Krum JG, Anderson R, Metcalf WW, Ensign SA. Biochemical, molecular, and genetic analyses of the acetone carboxylases from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. J Bacteriol. 2002;184:2969–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Kotani T, Yurimoto H, Kato N, Sakai Y. Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5. J Bacteriol. 2007;189:886–93.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Furuya T, Nakao T, Kino K. Catalytic function of the mycobacterial binuclear iron monooxygenase in acetone metabolism. FEMS Microbiol Lett. 2015;362:fnv136.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    88.Koop DR, Casazza JP. Identification of ethanol-inducible P-450 isozyme 3a as the acetone and acetol monooxygenase of rabbit microsomes. J Biol Chem. 1985;260:13607–12.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    89.Patel NA, Crombie A, Slade SE, Thalassinos K, Hughes C, Connolly JB, et al. Comparison of one- and two-dimensional liquid chromatography approaches in the label-free quantitative analysis of Methylocella silvestris. J Proteome Res. 2012;11:4755–63.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Jain M, Nagar P, Sharma A, Batth R, Aggarwal S, Kumari S, et al. GLYI and D-LDH play key role in methylglyoxal detoxification and abiotic stress tolerance. Sci Rep. 2018;8:5451.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.MacLean MJ, Ness LS, Ferguson GP, Booth IR. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli. Mol Microbiol. 1998;27:563–71.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Detman A, Mielecki D, Pleśniak Ł, Bucha M, Janiga M, Matyasik I. et al. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle. Biotechnol Biofuels. 2018;11:116.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    93.Cooper RA, Kornberg HL. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci. 1967;168:263–80.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. Oxidation of methane by a biological dicopper centre. Nature. 2010;465:115–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    95.Ross MO, MacMillan F, Wang J, Nisthal A, Lawton TJ, Olafson BD, et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science. 2019;364:566–70.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Ro SY, Schachner LF, Koo CW, Purohit R, Remis JP, Kenney GE, et al. Native top-down mass spectrometry provides insights into the copper centers of membrane-bound methane monooxygenase. Nat Commun. 2019;10:2675.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    97.Liew EF, Tong D, Coleman NV, Holmes AJ. Mutagenesis of the hydrocarbon monooxygenase indicates a metal centre in subunit-C, and not subunit-B, is essential for copper-containing membrane monooxygenase activity. Microbiology. 2014;160:1267–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Nguyen TT, Hwang IY, Na JG, Lee EY. Biological conversion of propane to 2-propanol using group I and II methanotrophs as biocatalysts. J Ind Microbiol Biotechnol. 2019;46:675–85.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Hur DH, Nguyen TT, Kim D, et al. EY. Selective bio-oxidation of propane to acetone using methane-oxidizing Methylomonas sp. DH-1 J Ind Microbiol Biotechnol. 2017;44:1097–105.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    100.Schoell M. Genetic characterization of natural gases. AAPG Bull. 1983;67:2225–38.CAS 

    Google Scholar  More

  • in

    Ammonia-oxidizing archaea have similar power requirements in diverse marine oxic sediments

    1.Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA. 2012;109:16213–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere: geosphere interactions. Mar Geol. 2014;352:409–25.CAS 
    Article 

    Google Scholar 
    3.D’Hondt S, Jørgensen BB, Miller DJ, Batzke A, Blake R, Cragg BA, et al. Distributions of microbial activities in deep subseafloor sediments. Science 2004;306:2216–21.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    4.Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science. 2012;336:922–5.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci. 2015;8:299–304.Article 
    CAS 

    Google Scholar 
    6.Jørgensen BB, Marshall IPG. Slow microbial life in the seabed. Annu Rev Mar Sci. 2016;8:311–32.Article 

    Google Scholar 
    7.Danovaro R, Dell’Anno A, Corinaldesi C, Rastelli E, Cavicchioli R, Krupovic M, et al. Virus-mediated archaeal hecatomb in the deep seafloor. Sci Adv. 2016;2:e1600492.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    8.Engelhardt T, Kallmeyer J, Cypionka H, Engelen B. High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME J. 2014;8:1503–9.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Engelhardt T, Orsi WD, Jørgensen BB. Viral activities and life cycles in deep subseafloor sediments. Environ Microbiol Rep. 2015;7:868–73.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in natural settings. Am J Sci. 2015;315:167–203.CAS 
    Article 

    Google Scholar 
    11.LaRowe DE, Amend JP. Power limits for microbial life. Front Microbiol. 2015;6:718.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Hoehler TM, Jørgensen BB. Microbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Zhao R, Mogollón JM, Abby SS, Schleper C, Biddle JF, Roerdink DL, et al. Geochemical transition zone powering microbial growth in subsurface sediments. Proc Natl Acad Sci USA 2020;117:32617–26.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Bradley J, Arndt S, Amend J, Burwicz E, Dale AW, Egger M, et al. Widespread energy limitation to life in global subseafloor sediments. Sci Adv 2020;6:eaba0697.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Bradley JA, Amend JP, LaRowe DE. Survival of the fewest: Microbial dormancy and maintenance in marine sediments through deep time. Geobiology 2019;17:43–59.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Lloyd KG, Steen AD, Ladau J, Yin J, Crosby L. Phylogenetically novel uncultured microbial cells dominate earth microbiomes. mSystems 2018;3:e00055–18.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Durbin AM, Teske A. Microbial diversity and stratification of south pacific abyssal marine sediments. Environ Microbiol. 2011;13:3219–34.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Tully BJ, Heidelberg JF. Potential mechanisms for microbial energy acquisition in oxic deep-sea sediments. Appl Environ Microbiol. 2016;82:4232–43.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Vuillemin A, Wankel SD, Coskun ÖK, Magritsch T, Vargas S, Estes ER, et al. Archaea dominate oxic subseafloor communities over multimillion-year time scales. Sci Adv 2019;5:eaaw4108.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Hiraoka S, Hirai M, Matsui Y, Makabe A, Minegishi H, Tsuda M, et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 2020;14:740–56.CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Hoshino T, Doi H, Uramoto G-I, Wörmer L, Adhikari RR, Xiao N, et al. Global diversity of microbial communities in marine sediment. Proc Natl Acad Sci USA 2020;117:27587–97.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Zhao R, Hannisdal B, Mogollon JM, Jørgensen SL. Nitrifier abundance and diversity peak at deep redox transition zones. Sci Rep. 2019;9:8633.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Jensen K, Sloth NP, Risgaardpetersen N, Rysgaard S, Revsbech NP. Estimation of nitrification and denitrification from microprofiles of oxygen and nitrate in model sediment systems. Appl Environ Microbiol. 1994;60:2094–100.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Middelburg JJ, Soetaert K, Herman PMJ, Heip CHR. Denitrification in marine sediments: a model study. Glob Biogeochemical Cycles. 1996;10:661–73.CAS 
    Article 

    Google Scholar 
    26.Devol AH. Denitrification, anammox, and n2 production in marine sediments. Annu Rev Mar Sci. 2015;7:403–23.Article 

    Google Scholar 
    27.Wankel SD, Germanovich LN, Lilley MD, Genc G, DiPerna CJ, Bradley AS, et al. Influence of subsurface biosphere on geochemical fluxes from diffuse hydrothermal fluids. Nat Geosci. 2011;4:461–8.CAS 
    Article 

    Google Scholar 
    28.Middelburg JJ. Chemoautotrophy in the ocean. Geophys Res Lett. 2011;38:L24604.Article 
    CAS 

    Google Scholar 
    29.Meador TB, Schoffelen N, Ferdelman TG, Rebello O, Khachikyan A, Könneke M. Carbon recycling efficiency and phosphate turnover by marine nitrifying archaea. Sci Adv 2020;6:eaba1799.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M. et al. Proteomics and comparative genomics of nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci USA. 2016;113:E7937–E46.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Kerou M, Ponce-Toledo RI, Zhao R, Abby SS, Hirai M, Nomaki H et al. Genomes of thaumarchaeota from deep sea sediments reveal specific adaptations of three independently evolved lineages. ISME J. 2021. https://doi.org/10.1038/s41396-021-00962-6.32.Boetius A, Ferdelman T, Lochte K. Bacterial activity in sediments of the deep Arabian sea in relation to vertical flux. Deep-Sea Res Part II. 2000;47:2835–75.Article 

    Google Scholar 
    33.Grandel S, Rickert D, Schluter M, Wallmann K. Pore-water distribution and quantification of diffusive benthic fluxes of silicic acid, nitrate and phosphate in surface sediments of the deep arabian sea. Deep-Sea Res Part II. 2000;47:2707–34.CAS 
    Article 

    Google Scholar 
    34.Orcutt BN, Wheat CG, Rouxel O, Hulme S, Edwards KJ, Bach W. Oxygen consumption rates in subseafloor basaltic crust derived from a reaction transport model. Nat Commun. 2013;4:2539.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    35.Ziebis W, McManus J, Ferdelman T, Schmidt-Schierhorn F, Bach W, Muratli J, et al. Interstitial fluid chemistry of sediments underlying the North Atlantic gyre and the influence of subsurface fluid flow. Earth Planet Sci Lett. 2012;323:79–91.Article 
    CAS 

    Google Scholar 
    36.Huang Y. The no3-/o2 respiration ratio of the deep sedimentary biosphere in the pacific gyres. Open Access Master’s Thesis Paper 288, University of Rhode Island. 2014; https://digitalcommons.uri.edu/theses/288.37.Ryan WBF, Carbotte SM, Coplan JO, O’Hara S, Melkonian A, Arko R, et al. Global multi-resolution topography synthesis. Geochem Geophysics Geosystems. 2009;10:Q03014.
    Google Scholar 
    38.Bolleter W, Bushman C, Tidwell PW. Spectrophotometric determination of ammonia as indophenol. Anal Chem. 1961;33:592–4.CAS 
    Article 

    Google Scholar 
    39.Hansen HP, Koroleff F. Determination of nutrients. Methods of seawater analysis. 1999. p. 159−228.40.Expedition 336 Scientists. Sediment and basement contact coring. In Edwards, KJ, Bach, W, Klaus, A, and the Expedition 336 Scientists, Proc IODP, 336: Tokyo (Integrated Ocean Drilling Program Management International, Inc) 2012.41.Mogollón JM, Mewes K, Kasten S. Quantifying manganese and nitrogen cycle coupling in manganese‐rich, organic carbon‐starved marine sediments: Examples from the Clarion−Clipperton fracture zone. Geophys Res Lett. 2016;43:7114–23.Article 
    CAS 

    Google Scholar 
    42.Jørgensen BB. Comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. Ii. Calculation from mathematical models. Geomicrobiol J. 1978;1:29–47.Article 

    Google Scholar 
    43.Grundmanis V, Murray JW. Aerobic respiration in pelagic marine sediments. Geochimica et Cosmochimica Acta. 1982;46:1101–20.CAS 
    Article 

    Google Scholar 
    44.Murray JW, Kuivila KM. Organic matter diagenesis in the northeast pacific: Transition from aerobic red clay to suboxic hemipelagic sediments. Deep-Sea Res Part A. 1990;37:59–80.CAS 
    Article 

    Google Scholar 
    45.Anderson LA, Sarmiento JL. Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochemical Cycles. 1994;8:65–80.CAS 
    Article 

    Google Scholar 
    46.Dick JM. Calculation of the relative metastabilities of proteins using the chnosz software package. Geochemical Trans. 2008;9:10.Article 
    CAS 

    Google Scholar 
    47.Helgeson HC. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci. 1969;267:729–804.CAS 
    Article 

    Google Scholar 
    48.Jung M-Y, Sedlacek CJ, Dimitri Kits K, Mueller AJ, Rhee S-K, Hink L et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. Preprint at bioRxiv https://doi.org/10.1101/2021.03.02.433310. 2021.49.Beman JM, Chow CE, King AL, Feng YY, Fuhrman JA, Andersson A, et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc Natl Acad Sci USA. 2011;108:208–13.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Zeebe RE, Wolf-Gladrow D. CO2 in seawater: equilibrium, kinetics, isotopes. Gulf Professional Publishing; 2001.51.Bayer B, Vojvoda J, Reinthaler T, Reyes C, Pinto M, Herndl GJ. Nitrosopumilus adriaticus sp. Nov. And nitrosopumilus piranensis sp. Nov., two ammonia-oxidizing archaea from the Adriatic sea and members of the class nitrososphaeria. Int J Syst Evolut Microbiol. 2019;69:1892–902.CAS 
    Article 

    Google Scholar 
    52.Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., nitrosopumilus cobalaminigenes sp. nov., nitrosopumilus oxyclinae sp. nov., and nitrosopumilus ureiphilus sp. nov., four marine ammonia-oxidizing archaea of the phylum thaumarchaeota. Int J Syst Evolut Microbiol. 2017;67:5067–79.Article 

    Google Scholar 
    53.Tijhuis L, van Loosdrecht MCM, Heijnen JJ. A thermodynamically based correlation for maintenance Gibbs energy requirements in aerobic and anaerobic chemotrophic growth. Biotechnol Bioeng. 1993;42:509–19.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Glover HE. The relationship between inorganic nitrogen oxidation and organic carbon production in batch and chemostat cultures of marine nitrifying bacteria. Arch Microbiol. 1985;142:45–50.CAS 
    Article 

    Google Scholar 
    55.Jahnke RA, Emerson SR, Reimers CE, Schuffert J, Ruttenberg K, Archer D. Benthic recycling of biogenic debris in the eastern tropical Atlantic ocean. Geochimica et Cosmochimica Acta. 1989;53:2947–60.CAS 
    Article 

    Google Scholar 
    56.Nath BN, Mudholkar AV. Early diagenetic processes affecting nutrients in the pore waters of central Indian ocean cores. Mar Geol. 1989;86:57–66.CAS 
    Article 

    Google Scholar 
    57.Van Der Loeff MMR. Oxygen in pore waters of deep-sea sediments. Philos Trans R Soc A. 1990;331:69–84.
    Google Scholar 
    58.Mewes K, Mogollón J, Picard A, Rühlemann C, Eisenhauer A, Kuhn T, et al. Diffusive transfer of oxygen from seamount basaltic crust into overlying sediments: an example from the Clarion–Clipperton fracture zone. Earth Planet Sci Lett. 2016;433:215–25.CAS 
    Article 

    Google Scholar 
    59.Buchwald C, Homola K, Spivack AJ, Estes ER, Murray RW, Wankel SD. Isotopic constraints on nitrogen transformation rates in the deep sedimentary marine biosphere. Glob Biogeochemical Cycles. 2018;32:1688–702.CAS 
    Article 

    Google Scholar 
    60.Volz JB, Mogollón JM, Geibert W, Arbizu PM, Koschinsky A, Kasten S. Natural spatial variability of depositional conditions, biogeochemical processes and element fluxes in sediments of the eastern Clarion-Clipperton zone, pacific ocean. Deep Sea Res Part I. 2018;140:159–72.CAS 
    Article 

    Google Scholar 
    61.Wang Y, Van, Cappellen P. A multicomponent reactive transport model of early diagenesis: Application to redox cycling in coastal marine sediments. Geochimica et Cosmochimica Acta. 1996;60:2993–3014.CAS 
    Article 

    Google Scholar 
    62.Soetaert K, Herman PMJ, Middelburg JJ. A model of early diagenetic processes from the shelf to abyssal depths. Geochimica et Cosmochimica Acta. 1996;60:1019–40.CAS 
    Article 

    Google Scholar 
    63.Wilson TRS. Evidence for denitrification in aerobic pelagic sediments. Nature 1978;274:354–6.CAS 
    Article 

    Google Scholar 
    64.Brandes JA, Devol AH. Simultaneous nitrate and oxygen respiration in coastal sediments – evidence for discrete diagenesis. J Mar Res. 1995;53:771–97.CAS 
    Article 

    Google Scholar 
    65.Gao H, Schreiber F, Collins G, Jensen MM, Kostka JE, Lavik G, et al. Aerobic denitrification in permeable wadden sea sediments. ISME J. 2010;4:417–26.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Marchant HK, Ahmerkamp S, Lavik G, Tegetmeyer HE, Graf J, Klatt JM, et al. Denitrifying community in coastal sediments performs aerobic and anaerobic respiration simultaneously. ISME J. 2017;11:1799–812.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Bianchi D, Weber TS, Kiko R, Deutsch C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat Geosci. 2018;11:263–8.CAS 
    Article 

    Google Scholar 
    68.Henriksen K, Hansen J, Blackburn T. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Mar Biol. 1981;61:299–304.CAS 
    Article 

    Google Scholar 
    69.Billen G. Evaluation of nitrifying activity in sediments by dark 14c-bicarbonate incorporation. Water Res. 1976;10:51–7.CAS 
    Article 

    Google Scholar 
    70.Newell SE, Fawcett SE, Ward BB. Depth distribution of ammonia oxidation rates and ammonia-oxidizer community composition in the sargasso sea. Limnol Oceanogr. 2013;58:1491–500.CAS 
    Article 

    Google Scholar 
    71.Zhao R, Dahle H, Ramírez GA, Jørgensen SL. Indigenous ammonia-oxidizing archaea in oxic subseafloor oceanic crust. mSystems 2020;5:e00758–19.PubMed 
    PubMed Central 

    Google Scholar 
    72.Müller V, Hess V. The minimum biological energy quantum. Front Microbiol. 2017;8:2019.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Jørgensen SL, Hannisdal B, Lanzen A, Baumberger T, Flesland K, Fonseca R, et al. Correlating microbial community profiles with geochemical data in highly stratified sediments from the arctic mid-ocean ridge. Proc Natl Acad Sci USA. 2012;109:2846–55.Article 

    Google Scholar 
    74.Daims H, Lebedeva EV, Pjevac P, Han P, Herbold C, Albertsen M, et al. Complete nitrification by nitrospira bacteria. Nature 2015;528:504–9.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Durbin AM, Teske A. Sediment-associated microdiversity within the marine group i crenarchaeota. Environ Microbiol Rep. 2010;2:693–703.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Bristow LA, Dalsgaard T, Tiano L, Mills DB, Bertagnolli AD, Wright JJ, et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc Natl Acad Sci USA. 2016;113:10601–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoa gene diversity points to distinct biogeography of ammonia-oxidizing crenarchaeota in the ocean. Environ Microbiol. 2013;15:1647–58.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. Cyanate as an energy source for nitrifiers. Nature 2015;524:105–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Marschall E, Jogler M, Henßge U, Overmann J. Large-scale distribution and activity patterns of an extremely low-light-adapted population of green sulfur bacteria in the black sea. Environ Microbiol. 2010;12:1348–62.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.McCollom T, Amend J. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro‐organisms in oxic and anoxic environments. Geobiology 2005;3:135–44.CAS 
    Article 

    Google Scholar 
    82.D’Hondt S, Rutherford S, Spivack AJ. Metabolic activity of subsurface life in deep-sea sediments. Science 2002;295:2067–70.PubMed 
    Article 

    Google Scholar 
    83.Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci USA. 2004;101:4631–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Gibson B, Wilson DJ, Feil E, Eyre-Walker A. The distribution of bacterial doubling times in the wild. Proc R Soc B: Biol Sci 2018;285:20180789.Article 
    CAS 

    Google Scholar 
    85.Weissman JL, Hou S, Fuhrman JA. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc Natl Acad Sci 2021;118:e2016810118.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    86.Steen AD, Kevorkian RT, Bird JT, Dombrowski N, Baker BJ, Hagen SM, et al. Kinetics and identities of extracellular peptidases in subsurface sediments of the white oak river estuary, North Carolina. Appl Environ Microbiol. 2019;85:e00102–19.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Kim J-G, Kim S-J, Cvirkaite-Krupovic V, Yu W-J, Gwak J-H, López-Pérez M, et al. Spindle-shaped viruses infect marine ammonia-oxidizing thaumarchaea. Proc Natl Acad Sci USA 2019;116:15645–50.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Cai L, Jørgensen BB, Suttle CA, He M, Cragg BA, Jiao N, et al. Active and diverse viruses persist in the deep sub-seafloor sediments over thousands of years. ISME J. 2019;13:1857–64.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Paul SA, Gaye B, Haeckel M, Kasten S, Koschinsky A. Biogeochemical regeneration of a nodule mining disturbance site: trace metals, doc and amino acids in deep-sea sediments and pore waters. Front Mar Sci. 2018;5:117.Article 

    Google Scholar 
    90.D’Hondt S, Pockalny R, Fulfer VM, Spivack AJ. Subseafloor life and its biogeochemical impacts. Nat Commun. 2019;10:3519.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar  More

  • in

    Modeling host-associating microbes under selection

    Baseline model: no competitionWe start by assuming no competition and consider unconstrained growth in each of the two compartments. In this case, the equations describing our model become linear and can be rewritten in matrix form [4] as$$left( {begin{array}{*{20}{c}} {frac{{partial n_{H}}}{{partial t}}} \ {frac{{partial n_{E}}}{{partial t}}} end{array}} right) = underbrace{left( {begin{array}{*{20}{c}} {r_{H} – m_{E}} & {m_{H}} \ {m_{E}} & {r_{E} – m_{H}} end{array}} right)}_{{mathrm{projection}}, {mathrm{matrix}}}left( {begin{array}{*{20}{c}} {n_{H}} \ {n_{E}}end{array}} right)$$
    (2)
    The dominant eigenvalue λ of the above-defined projection matrix gives the asymptotic overall growth rate of the considered microbial lineage. This quantity is an appropriate measure of fitness [4] insofar as it measures reproductive as well as transmission success and recapitulates the effects of all the life-history traits (rE, rH, mE, and mH, also defining the phenotype in our model). Overall microbial fitness is thus integrated across the different steps of the life cycle, thereby considering the reproductive rates (i.e., replication rates) within each of the compartments and importantly transmission rates (i.e., migration rates) across the compartments. The dominant right eigenvector represents the stable distribution of microbes in the two compartments, and the number of microbes in each of the compartments grows exponentially with rate λ. The value of λ can be calculated at each point of the phenotypic space defined by the ranges of possible values that could be taken by the life-history traits rE, rH, mE, and mH. The dependence of λ on these traits tells us at which points of the phenotypic space fitness is maximized and how it can be increased at all other points.From the projection matrix, we calculate the dominant eigenvalue as$$lambda = frac{1}{2}left(sqrt {left( {r_E + r_H – m_E – m_H} right)^2 {,}-{,} 4left( {r_Er_H – r_Em_E – r_Hm_H} right)} + r_E +r_H – m_E – m_H right).$$
    (3)
    Note that if microbes replicate at the same rate in the host and in the environment, i.e., if rE = rH = r, λ simplifies to r, regardless of the migration rates mH and mE. When there is an asymmetry between the two replication rates however, which is very likely to be the case in nature, then the migration rates also affect the overall growth rate. In the following sections, we study this effect compared to the effect of the replication rates. We arbitrarily set rH ≤ rE, and rE  > 0 – otherwise the lineage goes extinct. In biological terms, this corresponds to the situation where the microbial lineage is initially more adapted to the environment than to the host and thus grows faster in the environment. But mathematically, in this model, host and environment are symmetrical, i.e., they only differ by the rates defined above. Thus, the chosen direction of this inequality does not carry any strong meaning, and there is no loss of generality in making this choice. In particular, one can access the opposite biological situation where microbes replicate faster in the host than in the environment – as is the case for viruses, that can only replicate in the host (rH  > 0) but decay in the environment (rE  0. Setting rE = 1 to scale time (and thus, measuring all other rates in units of the replication rate of the microbe in the environment), λ reduces to$${uplambda}_{sym} = frac{1}{2}left( {1 + r_H – 2m + sqrt {left( {1 – r_H} right)^2 {,}+ {,}4m^2} } right)$$
    (4)
    For any fixed positive value of m, λsym is a strictly increasing function of rH, which reflects the fact that increasing rH allows for additional growth within the host. We will limit ourselves to the study of rH ≥ −1, which ensures a positive value for λsym. For any fixed value of rH, λsym is a decreasing function of m, which reflects the fact that for increasing m, microbes are increasingly lost towards the host, where growth is slower than in the environment. Figure 1C shows the value of λsym on the reduced phenotypic space defined by rH and m. The maximum possible value for λ is 1 (in units of rE). This value is achieved either by increasing the ratio of replication rates between host and environment, so that the replication rates in both compartments are identical (strategy I), or by reducing migration between host and environment, and in particular, by reducing mH (strategy II). This second strategy allows microbes to spend a longer time in the environment on average. Note however, that this strategy is limited, since setting m to zero decouples the two compartments completely, in which case the microbial lineage is no longer subject to a multi-step life cycle.How strong is the selection on these traits? This question can be approached by inferring how strongly the overall growth rate depends on the traits we are considering. One standard approach to measure this is sensitivity analysis [4]. One defines the sensitivity of the overall growth rate λ achieved by the phenotype described by the vector x = (x1,…, xN) in the trait space to its ith life-history trait as$$s_{mathrm{i}}left( {mathbf{x}} right) = left. {frac{{partial {uplambda}}}{{partial {mathrm{x}}_{mathrm{i}}}}} right|_{mathbf{x}}$$
    (5)
    This quantity gives the change in the value of λ that results from a small increment of the trait i. It is a local property that can be calculated for each point ({mathbf{x}}) of the trait space. The vector of the sensitivities at point ({mathbf{x}}) gives the direction of the selection gradient on the fitness landscape. In other words, to achieve efficient phenotypic adaptation, the lineage should move in the trait space following the direction of this gradient.If the lineage can invest in phenotypic adaptation only by tuning one of its life-history traits at a time, then it should act upon the trait that has the largest (absolute) sensitivity at the current position of the lineage in the trait space. In our model, in all generic cases (i.e., when m  > 0), the largest sensitivity is always associated to the increase of the trait rE, the replication rate in the fast-growing compartment. However, we assume that the considered microbial lineage is initially fully adapted to the environment, so that it has reached its evolutionary limit, and we can essentially ignore the sensitivity to rE throughout the manuscript to focus on the sensitivity to the other traits. This reasoning allows to divide the trait space into regions of distinct optimal strategies, as shown in Fig. 1C. In the regime of high migration rates (i.e., when the switch between the compartments is so rapid that the microbial lineage is almost experiencing a habitat having average properties between the host and the environment), strategy I (increasing rH) becomes almost always optimal, except for small replication ratios, where there is almost no replication in the host. In summary, migration rates are important when replication in the host is slow compared to the environment, and when migration itself is slow. These conclusions remain qualitatively unchanged with asymmetric migration rates, although a third optimal strategy (increasing mE) appears for an intermediate region of the traits space when the asymmetry is important (see electronic Supplementary Material (ESM) section 1 and Supplementary Fig. S1).Model with global competition between all microbesIn the baseline model, there are no constraints on growth. In nature, however, microbes do face limits to their growth. Since the equations above are linear and can only give rise to exponential growth or exponential decay, they can only describe the microbial dynamics over a limited period of time. In order to account for saturation and competition during growth, we thus need to introduce non-linear terms to the equations (1). The study of this kind of systems often focus on long-term dynamics, yet it can be of high practical relevance to study the transient optimal strategies, as shorter timescales are often relevant in the real world – whether it be due to experimental constraints or to ecological disturbances and perturbations [20]. Since we are going to consider some out-of equilibrium dynamics, in particular in the section with competition limited to one of the compartments, and because we are also interested in transient properties, we will adopt a numerical approach based on the number of microbes [21, 22].In this section, we study the case of a microbial lineage constrained by global competition occurring at rate k = kHH = kEE = kEH = kHE. This situation could correspond to a host-associated microbe living in direct contact with an external environment, e.g., on the surface of an organism. Alternatively, what we call the “environment” in our model could represent another host compartment in direct contact with the other, like the gut lumen and the colonic crypts. In that case, microbes living in association with the host are in direct contact with those in the environment and can mutually impact each other’s growth. This is of particular relevance if microbes living in both compartments rely on and are limited by the same nutrients for growth.From the microbial abundances in the two compartments obtained by numerically solving the equations, one can build a proxy for the overall growth rate of the microbial lineage. To remain consistent with the previous section, we define$$varLambda left( {mathbf{x}} right) = frac{1}{{t_{max}}}log left( {frac{{n_Eleft( {t_{max}} right) + n_Hleft( {t_{max}} right)}}{{n_Eleft( 0 right) + n_Hleft( 0 right)}}} right)$$
    (6)
    i.e., the effective exponential growth rate of the microbial lineage over a chosen period of time [0, tmax]. Figure 2A provides a graphical explanation for the expression of Λ. There are indeed several fundamental differences between the effective exponential growth rate Λ in a non-linear system and the asymptotic growth rate λ in a linear system, the dominant eigenvalue of the projection matrix as defined in the baseline model. First, Λ provides a measure of growth for the whole lineage, but is not an asymptotic growth rate (as compared to λ in the baseline model): in the case of global saturation, replication stops when the carrying capacity is reached, and the asymptotic growth rate for the whole lineage would thus be zero. Therefore, the choice of the probing time tmax has an impact on Λ, as shown in Fig. 2A. Second, the choice of the exact form of Λ now implies biological assumptions on the selection pressure experienced by the microbial lineage: choosing the effective exponential growth rate over the whole lineage as we do implies that selection is acting on both compartments evenly. There may be some situations in which the microbes in one of the compartments only are artificially selected for (e.g., as part of the protocol of an evolution experiment). In such cases, it would make sense to define Λ as the effective exponential growth rate over just this compartment. This may lead to different conclusions, in particular at the transient scale. One must thus adapt Λ to the specifics of the modeled system. In addition, the choice of tmax itself has a biological meaning, and should in particular not exceed the time upon which the dynamics of the system are accurately described by the set of equations. This may also be determined by experimental times.Fig. 2: Optimal strategies in the model with global competition.A Temporal dynamics of the total number of microbes nE(t) + nH(t) for three different sets of traits values, differing only by their intensity of competition k = kHH = kEE = kEH = kHE. Other parameter values are: rH = 0.1, mE = mH = 0.5. The effective overall growth rate Λ is calculated numerically by taking the slope of the straight line that connects the abundances in t = 0 and in tmax, thus making Λ a quantity that strongly depends on tmax. B Change in the contour line delimiting the regions of optimality of the two optimal strategies (strategy I: increasing rH; strategy II: decreasing mH) with tmax, the time chosen to measure the final number of microbes, measured in units of 1/rE. Initially the microbes are equally distributed between the host and the environment. Supplementary Fig. S2 shows how this is modified with different initial conditions. Because in this model all the microbes are equally impacted by competition, with tmax large enough, one recovers the contour line of the baseline model calculated analytically (black line). Continuous lines: k = 0, i.e., no competition. Dashed lines: increasing values of k (competition intensity). C, D Change in the fitness landscape with tmax (panel C: tmax = 0.7 and panel D: tmax = 3). The colored lines show the contour delimiting the regions of optimality of strategies I and II for three different values of k, as shown on panel B. Black line: long-term limit of no competition from the base model.Full size imageWe now calculate the sensitivity of Λ in the direction of the trait i at the point x of the phenotypic space as$$S_i = frac{{varLambda left( {x_1,x_2, ldots ,x_{i – 1},x_i + delta x_i,x_{i + 1}, ldots ,x_N} right) – varLambda left( {x_1,x_2, ldots ,x_N} right)}}{{delta x_i}}$$
    (7)
    with δxi the discretization interval, and N the number of traits defining a phenotype x.For this numerical approach, additional choices need to be made. First, the trait space needs to be discretized. Then, to calculate Eq. (7), one needs to choose a set of initial conditions and a probing time at which to measure the microbial abundances, as exposed in detail for the linear case in [20]. Finally, we need to choose the discretization interval δxi. In the following, we always choose δxi sufficiently small for convergence, i.e., so that it does not significantly impact the numerical values of the sensitivities, and focus on the choices of the other parameters (probing time and initial conditions) and the influence of the competition intensity k. One strategy to explore the possible impact of initial conditions is to use “stage biased vectors” [20], i.e., extreme initial distributions of microbes across the two compartments. This corresponds to initial conditions where microbes either exist only in the host or only in the environment.In Fig. 2B, we show how the contour lines delimiting the two optimal strategies change with the final time tmax chosen to measure the overall growth rate and with the intensity of competition k, for a mixed initial condition (nE(0) = 0.5, nH(0) = 0.5), and Supplementary Fig. S2 shows how this is modified with stage biased vectors. In all cases, with sufficiently long tmax, the contours converge to the contour plot of the baseline model shown in the previous section. This is expected, since competition here affects all the microbes in the same way, so that the equilibrium distribution is the same as the asymptotic distribution of the baseline model (given by the dominant eigenvector). Mathematically, global competition can be seen as a modification of the baseline projection matrix by subtracting an identity matrix times a scalar depending on time. This does neither affect the eigenvectors nor the dependence of the dominant eigenvalue on the traits.In the case where all the microbes are initially in the environment (Supplementary Fig. S2A), there is no transient effect and whichever tmax is chosen, all the contour lines collapse to the limit of the baseline case. In the case where all the microbes are initially in the host (Supplementary Fig. S2B), a third optimal strategy transiently appears (increasing mE) and remains at long times around m = 0. In this unfavorable condition (m = 0 and an initially empty environment), increasing the microbial flux towards the environment becomes more important than limiting the flux of microbes leaving it (which is nonexistent when m = 0).Finally, we observe that the intensity of competition has only a small effect on the contours (Fig. 2B and S2B), but increasing k appears to slightly accelerate convergence to the baseline contour. By limiting growth in the host compartment – when it is initially relatively more populated than in the asymptotic distribution – competition facilitates the convergence to the baseline asymptotic distribution, where most of the microbes live in the environment.Model with competition within one of the compartments onlyIn this section we consider competition happening inside one of the compartments only (i.e., kEH = kHE = 0 and kEE ≠ 0 or kHH ≠ 0). We will start by considering competition in the host only (the slow-replicating compartment). In a second step we also look at the case with competition limited to the environment. One should bear in mind that it also covers the case of competition limited to a host where replication is faster than in the environment (rH  > rE), provided a switch of the H and E index.In the case where competition is limited to only one of the compartments, we do not expect an equilibrium to exist for all traits combination of the phenotypic space. If migration is not sufficiently important, the number of microbes in the unconstrained compartment keeps increasing exponentially faster than the number of microbes in the constrained compartment, which contribution to the whole lineage thus becomes rapidly negligible. At sufficiently high migration rates however, an equilibrium is expected, because microbes switch habitats sufficiently rapidly for competition to be globally effective, although it directly affects only one of the compartments.Competition in the host only (slow-replicating compartment)When there is competition in the host only, there is no (positive) equilibrium for all mH  More

  • in

    Effects of large herbivore grazing on relics of the presumed mammoth steppe in the extreme climate of NE-Siberia

    1.Doughty, C. E., Wolf, A. & Field, C. B. Biophysical feedbacks between the Pleistocene megafauna extinction and climate: The first human-induced global warming?. Geophys. Res. Lett. 37, L15703 (2010).ADS 
    Article 

    Google Scholar 
    2.Svenning, J.-C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Owen-Smith, N. The pivotal role of megaherbivores. Paleobiology 13, 351–362 (1987).Article 

    Google Scholar 
    4.Vera, F. W. M. Grazing Ecology and Forest History (CABI Publishing, 2000). https://doi.org/10.1079/9780851994420.0000.Book 

    Google Scholar 
    5.Zimov, S. A. et al. Steppe-Tundra transition: A herbivore-driven biome shift at the end of the pleistocene. Am. Nat. 146, 765–794 (1995).Article 

    Google Scholar 
    6.Gill, J. L. Ecological impacts of the late quaternary megaherbivore extinctions. New Phytol. 201, 1163–1169 (2014).PubMed 
    Article 

    Google Scholar 
    7.Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. 113, 847–855 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Martin, P. S. & Wright, H. E. Pleistocene Extinctions: The Search for a Cause, Vol 6*** (Yale University Press, 1967).
    Google Scholar 
    9.Haynes, G. The evidence for human agency in the late Pleistocene megafaunal extinctions. In Encyclopedia of the Anthropocene, voxl 1 (eds DellaSala, D. & Goldstein, M.) 219–226 (Elsevier Inc., 2018).Chapter 

    Google Scholar 
    10.Johnson, C. N. Ecological consequences of Late Quaternary extinctions of megafauna. Proc. R. Soc. B Biol. Sci. 276, 2509–2519 (2009).CAS 
    Article 

    Google Scholar 
    11.Gradmann, R. Die Steppenheidentheorie. Geogr. Z. 39, 265–278 (1933).
    Google Scholar 
    12.Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Zimov, S. A., Zimov, N. S., Tikhonov, A. N. & Chapin, F. S. Mammoth steppe: A high-productivity phenomenon. Quat. Sci. Rev. 20, 20 (2012).
    Google Scholar 
    14.Zimov, S. A., Zimov, N. S. & Chapin, F. S. The past and future of the mammoth steppe ecosystem. Springer Earth Syst. Sci. https://doi.org/10.1007/978-3-642-25038-5_10 (2012).Article 

    Google Scholar 
    15.Zimov, S. A. Pleistocene park: Return of the Mammoth’ s ecosystem. Science (80–) 08, 796–798 (2005).Article 
    CAS 

    Google Scholar 
    16.Yurtsev, B. A. The pleistocene ‘Tundra-steppe’ and the productivity paradox: The landscape approach. Quat. Sci. Rev. https://doi.org/10.1016/S0277-3791(00)00125-6 (2001).Article 

    Google Scholar 
    17.Blinnikov, M. S., Gaglioti, B. V., Walker, D. A., Wooller, M. J. & Zazula, G. D. Pleistocene graminoid-dominated ecosystems in the Arctic. Quat. Sci. Rev. 30, 2906–2929 (2011).ADS 
    Article 

    Google Scholar 
    18.Kienast, F. Plant macrofossil records—Arctic Eurasia. In Encyclopedia of Quaternary Science (eds Elias, S. A. & Mock, C.) 733–745 (Elsevier, 2013).Chapter 

    Google Scholar 
    19.Guthrie, R. D. Mammals of the mammoth steppe as paleoenvironmental indicators. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 307–326 (Elsevier Inc, 1982).Chapter 

    Google Scholar 
    20.Kienast, F., Schirrmeister, L., Siegert, C. & Tarasov, P. Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quat. Res. 63, 283–300 (2005).Article 

    Google Scholar 
    21.Sher, A. V., Kuzmina, S. A., Kuznetsova, T. V. & Sulerzhitsky, L. D. New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quat. Sci. Rev. 24, 533–569 (2005).ADS 
    Article 

    Google Scholar 
    22.Guthrie, R. D. Origin and causes of the mammoth steppe: A story of cloud cover, woolly mammal tooth pits, buckles, and inside-out Beringia. Quatern. Sci. Rev. 20, 20 (2001).
    Google Scholar 
    23.Rivals, F., Semprebon, G. & Lister, A. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quat. Int. 255, 188–195 (2012).Article 

    Google Scholar 
    24.van Asperen, E. N. & Kahlke, R.-D. Dietary traits of the late Early Pleistocene Bison menneri (Bovidae, Mammalia) from its type site Untermassfeld (Central Germany) and the problem of Pleistocene ‘wood bison’. Quat. Sci. Rev. 177, 299–313 (2017).ADS 
    Article 

    Google Scholar 
    25.Saarinen, J. & Lister, A. M. Dental mesowear reflects local vegetation and niche separation in Pleistocene proboscideans from Britain. J. Quat. Sci. 31, 799–808 (2016).Article 

    Google Scholar 
    26.Sher, A. V. Fossil saiga in northeastern Siberia and Alaska. Int. Geol. Rev. 10, 1247–1260 (1968).Article 

    Google Scholar 
    27.Kahlke, R. D. & Lacombat, F. The earliest immigration of woolly rhinoceros (Coelodonta tologoijensis, Rhinocerotidae, Mammalia) into Europe and its adaptive evolution in Palaearctic cold stage mammal faunas. Quat. Sci. Rev. 27, 1951–1961 (2008).ADS 
    Article 

    Google Scholar 
    28.Kahlke, R. D. The origin of Eurasian Mammoth Faunas (Mammuthus-Coelodonta Faunal Complex). Quat. Sci. Rev. 96, 32–49 (2014).ADS 
    Article 

    Google Scholar 
    29.Rivals, F. & Lister, A. M. Dietary flexibility and niche partitioning of large herbivores through the Pleistocene of Britain. Quat. Sci. Rev. 146, 116–133 (2016).ADS 
    Article 

    Google Scholar 
    30.Kahlke, R. D. The maximum geographic extension of Late Pleistocene Mammuthus primigenius (Proboscidea, Mammalia) and its limiting factors. Quat. Int. 379, 147–154 (2015).Article 

    Google Scholar 
    31.Chapin, F. S., Shaver, R. R., Giblin, A. E., Nadelhoffer, K. G. & Laundre, J. A. Response of arctic tundra to experimental and observed changes in climat. Ecology 76, 694–711 (1995).Article 

    Google Scholar 
    32.Reinecke, J., Troeva, E. & Wesche, K. Extrazonal steppes and other temperate grasslands of northern Siberia—phytosociological classification and ecological characterization. Phytocoenologia 47, 167–196 (2017).Article 

    Google Scholar 
    33.Yurtsev, B. A. Relics of the xerophyte vegetation of Beringia in northeastern Asia. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 157–177 (Elsevier Inc, 1982).Chapter 

    Google Scholar 
    34.Ashastina, K. et al. Woodlands and steppes: Pleistocene vegetation in Yakutia’s most continental part recorded in the Batagay permafrost sequence. Quartern. Sci. Rev. 196, 38–61 (2018).ADS 
    Article 

    Google Scholar 
    35.Chytrý, M. et al. Refugial ecosystems in central Asia as indicators of biodiversity change during the Pleistocene–Holocene transition. Ecol. Indic. 77, 357–367 (2017).Article 

    Google Scholar 
    36.Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science (80–) 326, 1100–1103 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Cingolani, A. M., Noy-Meir, I. & Díaz, S. Grazing effects on rangeland diversity: A synthesis of contemporary models. Ecol. Appl. 15, 757–773 (2005).Article 

    Google Scholar 
    38.Wehrden, H. V., Hanspach, J., Kaczensky, P., Fischer, J. & Wesche, K. Global assessment of the non-equilibrium concept in rangelands. Ecol. Appl. 22, 393–399 (2012).Article 

    Google Scholar 
    39.Wang, Y. et al. Combined effects of livestock grazing and abiotic environment on vegetation and soils of grasslands across Tibet. Appl. Veg. Sci. 20, 327–339 (2017).Article 

    Google Scholar 
    40.Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).PubMed 
    Article 

    Google Scholar 
    41.Manseau, M., Huot, J. & Crête, M. Effects of summer grazing by caribou on composition and productivity of vegetation: Community and landscape level. J. Ecol. 84, 503–513 (1996).Article 

    Google Scholar 
    42.Suominen, O. & Olofsson, J. Impacts of semi-domesticated reindeer on structure of tundra and forest communities in fennoscandia: A review. Ann. Zool. Fennici 37, 233–249 (2000).
    Google Scholar 
    43.Virtanen, R. Effects of grazing on above-ground biomass on a mountain snowbed, NW Finland. Oikos 90, 295–300 (2000).Article 

    Google Scholar 
    44.Ravolainen, V. T. et al. Rapid, landscape scale responses in riparian tundra vegetation to exclusion of small and large mammalian herbivores. Basic Appl. Ecol. 12, 643–653 (2011).Article 

    Google Scholar 
    45.Wang, Y. & Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: A review of Chinese literature. Biodivers. Conserv. 25, 2401–2420 (2016).Article 

    Google Scholar 
    46.Díaz, S., Noy-meir, I. & Cabido, M. Can grazing of herbaceous plants be predicted response from simple vegetative traits?. J. Appl. Ecol. 38, 497–508 (2001).Article 

    Google Scholar 
    47.Díaz, S. et al. Plant trait responses to grazing—a global synthesis. Glob. Change Biol. 13, 313–341 (2007).ADS 
    Article 

    Google Scholar 
    48.Pakeman, R. J. & Marriott, C. A. A functional assessment of the response of grassland vegetation to reduced grazing and abandonment. J. Veg. Sci. 21, 683–694 (2010).
    Google Scholar 
    49.Troeva, E. I. & Cherosov, M. M. Transformation of Steppe communities of Yakutia due to climatic change and anthropogenic impact in Eurasian Steppes. Ecol. Probl. Livelih. Changing World https://doi.org/10.1007/978-94-007-3886-7_14 (2012).Article 

    Google Scholar 
    50.Gavrilyeva, L., Sofronov, R., Arzhakova, A., Barashkova, N. & Ivanov, I. Hayfields and pastures. In The Far North: Plant Biodiversity and Ecology of Yakutia (ed. Al, T.) 275–281 (Springer, 2010).
    Google Scholar 
    51.Gill, J. L. Learning from Africa’s herbivores. Science (80–) 350, 1036–1037 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Reinecke, J. S. F. The Return of the Mammoth Steppe?—Rewilding in Yakutia and the Actual Impact of Large Herbivore Grazing on Vegetation (Technische Universität Dresden, 2019).
    Google Scholar 
    53.Malyschev, L. I. Flora of Siberia (Science Publishers, 2006).
    Google Scholar 
    54.Cornelissen, J. H. C. et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust. J. Bot. 51, 335–380 (2003).Article 

    Google Scholar 
    55.McCune, B. Improved estimates of incident radiation and heat load using non-parametric regression against topographic variables. J. Veg. Sci. 18, 751–754 (2007).Article 

    Google Scholar 
    56.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    57.Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: Software for ordination. 496 (2012).58.Ashastina, K. Palaeo-environments at the Batagay site in West Beringia During the Late Quaternary (Friedrich-Schiller-Universität Jena, 2018).
    Google Scholar 
    59.McCune, B. & Mefford, M. J. PC-ORD. (2011).60.Pakeman, R. J., Lennon, J. J. & Brooker, R. W. Trait assembly in plant assemblages and its modulation by productivity and disturbance. Oecologia 167, 209–218 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Troeva, E. I., Isaev, A. P., Cherosov, M. M. & Karpov, N. S. The Far North: Plant Diversity and Ecology of Yakutia (Springer, 2010).Book 

    Google Scholar 
    62.Elvebakk, A. ‘Arctic hotspot complexes’—proposed priority sites for studying and monitoring effects of climatic change on arctic biodiversity. Phytocoenologia 35, 1067–1079 (2005).Article 

    Google Scholar 
    63.Coughenour, M. B. Graminoid responses to grazing by large herbivores: Adaptations, exaptations, and interacting processes. Ann. Missouri Bot. Gard. 72, 852–863 (1985).Article 

    Google Scholar 
    64.Quiroga, R. E., Golluscio, R. A., Blanco, L. J. & Fernández, R. J. Aridity and grazing as convergent selective forces: An experiment with an Arid Chaco bunchgrass. Ecol. Appl. 20, 1876–1889 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Herms, D. A. & Matson, W. J. The dilemma of plants: To grow or defend. Q. Rev. Biol. 67, 293–335 (1992).Article 

    Google Scholar 
    66.Hobbie, S. E. Effect of plant species on nutrient cycling. Trends Ecol. Evol. 7, 336–339 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Coley, P. D., Bryant, J. P. & Chapin, F. S. Resource availability and plant antiherbivore defense. Science (80–) 230, 895–899 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Wesche, K., Nadrowski, K. & Retzer, V. Habitat engineering under dry conditions: The impact of pikas (Ochotona pallasi) on vegetation and site conditions in southern Mongolian steppes. J. Veg. Sci. 18, 665 (2007).Article 

    Google Scholar 
    69.Newediuk, L. J., Waters, I. & Hare, J. F. Aspen parkland pasture altered by Richardson’s ground squirrel (Urocitellus richardsonii Sabine) activity: The good, the bad, and the not so ugly?. Can. Field-Nat. 129, 331–341 (2015).Article 

    Google Scholar 
    70.Wheeler, H. C. & Hik, D. S. Arctic ground squirrels Urocitellus parryii as drivers and indicators of change in northern ecosystems. Mamm. Rev. 43, 238–255 (2013).Article 

    Google Scholar 
    71.Steuter, A. A. & Hidinger, L. Comparative ecology of bison and cattle on mixed-grass prairie. Gt. Plains Res. 9, 329–342 (1999).
    Google Scholar 
    72.Ivanova, V. Tipchakovye stepi—odin iz etapov pastbischnoi digressii rastitelnosti v doline srednei Leny. In Rastitelnost Yakutii i Eyo Okhrana (ed. Andreyev, V.) 37–56 (1981).73.Ivanova, V. O vliyanii vypasa na stepnuyu rastitelnost v doline r. Leny. In Lyubite i okhranyaite prirodu Yakutii 86–93 (1967).74.Gavrilyeva, L. Pastbishnaya Digressiya i Ratsionalnoye Ispolzovaniye Rastitelnosti Alasov Leno-Amginskogo Mezhdurechya (University of Yakutsk, 1998).
    Google Scholar 
    75.Bazha, S. N., Gunin, P. D., Danzhalova, E. V., Drobyshev, Y. I. & Prishcepa, A. V. Pastoral degradataion of steppe ecosystems in Central Mongolia. In Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World (eds Werger, M. J. A. & Staalduinen, M. A.) 289–319 (Springer, 2012).Chapter 

    Google Scholar 
    76.Crate, S. et al. Permafrost livelihoods: A transdisciplinary review and analysis of thermokarst-based systems of indigenous land use. Anthropocene 18, 89–104 (2017).Article 

    Google Scholar 
    77.Ellis, J. & Swift, D. Stability of African pastoral ecosystems: Alternate paradigms and implications for development. J. Range Manag. 41, 450–459 (1988).Article 

    Google Scholar 
    78.Nachinshonhor, U. G. Use of steppe vegetation by nomadic pastoralism in Mongolia. In Ecological Research Monographs (eds Yamamura, N. et al.) 145–156 (Springer, 2014).
    Google Scholar 
    79.Wang, Y. et al. Multiple indicators yield diverging results on grazing degradation and climate controls across Tibetan pastures. Ecol. Indic. 93, 1199–1208 (2018).Article 

    Google Scholar 
    80.Ahlborn, J. et al. Climate—grazing interactions in Mongolian rangelands: Effects of grazing change along a large-scale environmental gradient. J. Arid Environ. 173, 20 (2020).Article 

    Google Scholar 
    81.Vesk, P. A. & Westoby, M. Predicting plant species’ responses to grazing. J. Appl. Ecol. 28, 897–909 (2001).Article 

    Google Scholar 
    82.Shipley, L. Grazers and browsers: how digestive morphology affects diet selection. Grazing behavior of livestock and wildlife 70, 20–27 (1999).83.Larter, N. C. Diet and habitat selection of an erupting wood bison population. 1–118 (1988).84.Kuznetsova, T. V. Fossils of the mammoth fauna. Russian-German Cooperation SYSTEM LAPTEV SEA: The Expedition Lena—New Siberian Islands 2007 during the International Polar Year 2007/2008, 139–140 (2008).85.Kuznetsova, T. V., Sulerzhitsky, L. D. & Siegert, C. New data on the ‘Mammoth’ fauna of the Laptev Shelf Land (East Siberian Arctic). In The World of Elephants—International Congress 289–292 (2001).86.Haynes, G. Elephants (and extinct relatives) as earth-movers and ecosystem engineers. Geomorphology 157–158, 99–107 (2012).ADS 
    Article 

    Google Scholar 
    87.Gill, R. The influence of large herbivores on tree recruitment and forest dynamics. In Large Herbivore Ecology, Ecosystem Dynamics and Conservation (eds Danell, K. et al.) 170–202 (Cambridge University Press, 2006).Chapter 

    Google Scholar 
    88.Martin, P. J. Digestive and grazing strategies of animals in the arctic steppe. In Paleoecology of Beringia (eds Hopkins, D. M. et al.) 259–266 (Elsevier Inc, 1982).Chapter 

    Google Scholar 
    89.Huisman, J. & Olff, H. Competition and facilitation in multispecies plant-herbivore systems of productive environments. Ecol. Lett. 1, 25–29 (1998).Article 

    Google Scholar 
    90.Waldram, M. S., Bond, W. J. & Stock, W. D. Ecological engineering by a mega-grazer: White Rhino impacts on a south African savanna. Ecosystems 11, 101–112 (2008).Article 

    Google Scholar 
    91.Cornelissen, P. Large Herbivores as a Driving Force of Woodland-Grassland Cycles (Wageningen University, 2017).
    Google Scholar 
    92.Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: Linking theory to observation. Biotechnol. Agron. Soc. Environ. 14, 203–211 (2003).
    Google Scholar 
    93.Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. 109, 21384–21389 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Viral lysis modifies seasonal phytoplankton dynamics and carbon flow in the Southern Ocean

    1.Behrenfeld MJ, Boss ES. Student’s tutorial on bloom hypotheses in the context of phytoplankton annual cycles. Glob Chang Biol. 2018;24:55–77.PubMed 
    Article 

    Google Scholar 
    2.Suttle CA. Marine viruses—major players in the global ecosystem. Nat Rev Microbiol. 2007;5:801–12.CAS 
    Article 

    Google Scholar 
    3.Calbet A, Landry MR. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr. 2004;49:51–7.CAS 
    Article 

    Google Scholar 
    4.Baudoux A-C, Noordeloos AAM, Veldhuis MJW, Brussaard CPD. Virally induced mortality of Phaeocystis globosa during two spring blooms in temperate coastal waters. Aquat Micro Ecol. 2006;44:207–17.Article 

    Google Scholar 
    5.Vardi A, Haramaty L, Van Mooy BAS, Fredricks HF, Kimmance SA, Larsen A, et al. Host-virus dynamics and subcellular controls of cell fate in a natural coccolithophore population. Proc Natl Acad Sci. 2012;109:19327–32.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Mojica KDA, Huisman J, Wilhelm SW, Brussaard CPD. Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean. ISME J. 2016;10:500–13.CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Safi KA, Brian Griffiths F, Hall JA. Microzooplankton composition, biomass and grazing rates along the WOCE SR3 line between Tasmania and Antarctica. Deep Sea Res Part I Oceanogr Res Pap. 2007;54:1025–41.Article 

    Google Scholar 
    8.Brussaard CPD, Kuipers B, Veldhuis MJW. A mesocosm study of Phaeocystis globosa population dynamics I. Regulatory role of viruses in bloom control. Harmful Algae. 2005;4:859–74.Article 

    Google Scholar 
    9.Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol Prog Ser. 1993;93:39–48.Article 

    Google Scholar 
    10.Brussaard CPD, Mari X, Van Bleijswijk JDL, Veldhuis MJW. A mesocosm study of Phaeocystis globosa (Prymnesiophyceae) population dynamics: II. Significance for the microbial community. Harmful Algae. 2005;4:875–93.Article 

    Google Scholar 
    11.Wilhelm SW, Suttle CA. Viruses and nutrient cycles in the sea. Bioscience. 1999;49:781–8.Article 

    Google Scholar 
    12.Brussaard CPD, Timmermans KR, Uitz J, Veldhuis MJW. Virioplankton dynamics and virally induced phytoplankton lysis versus microzooplankton grazing southeast of the Kerguelen (Southern Ocean). Deep Sea Res Part II Top Stud Oceanogr. 2008;55:752–65.Article 

    Google Scholar 
    13.Weitz JS, Wilhelm SW. Ocean viruses and their effects on microbial communities and biogeochemical cycles. F1000 Biol Rep. 2012;4:2–9.Article 

    Google Scholar 
    14.Brussaard CPD, Martínez J. Algal bloom viruses. Plant Viruses. 2008;2:1–13.
    Google Scholar 
    15.Nagasaki K. Dinoflagellates, diatoms, and their viruses. J Microbiol. 2008;46:235–43.PubMed 
    Article 

    Google Scholar 
    16.Coy SR, Gann ER, Pound HL, Short SM, Wilhelm SW. Viruses of eukaryotic algae: diversity, methods for detection, and future directions. Viruses. 2018;10:487.PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    17.Muhling M, Fuller NJ, Millard A, Somerfield PJ, Marie D, Wilson WH, et al. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: Evidence for viral control of phytoplankton. Environ Microbiol. 2005;7:499–508.CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Haaber J, Middelboe M. Viral lysis of Phaeocystis pouchetii: Implications for algal population dynamics and heterotrophic C, N and P cycling. ISME J. 2009;3:430–41.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Brussaard CPD. Viral control of phytoplankton populations—a review. J Eukaryot Microbiol. 2004;51:125–38.PubMed 
    Article 

    Google Scholar 
    20.Evans C, Brussaard CPD. Viral lysis and microzooplankton grazing of phytoplankton throughout the Southern Ocean. Limnol Oceanogr. 2012;57:1826–37.Article 

    Google Scholar 
    21.Brussaard CPD, Noordeloos AAM, Witte H, Collenteur MCJ, Schulz K, Ludwig A, et al. Arctic microbial community dynamics influenced by elevated CO2 levels. Biogeosciences. 2013;10:719–31.Article 

    Google Scholar 
    22.Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC, Graven HD, et al. Global ocean storage of anthropogenic carbon. Biogeosciences. 2013;10:2169–91.CAS 
    Article 

    Google Scholar 
    23.Frölicher TL, Sarmiento JL, Paynter DJ, Dunne JP, Krasting JP, Winton M. Dominance of the Southern Ocean in anthropogenic carbon and heat uptake in CMIP5 models. J Clim. 2015;28:862–86.Article 

    Google Scholar 
    24.Bakker DCE, De Baar HJW, Bathmann UV. Changes of carbon dioxide in surface waters during spring in the Southern Ocean. Deep Sea Res Part II Top Stud Oceanogr. 1997;44:91–127.Article 

    Google Scholar 
    25.Moreau S, Schloss IR, Mostajir B, Demers S, Almandoz GO, Ferrario ME, et al. Influence of microbial community composition and metabolism on air–sea ΔpCO2 variation off the western Antarctic Peninsula. Mar Ecol Prog Ser. 2012;446:45–59.CAS 
    Article 

    Google Scholar 
    26.Ducklow H, Clarke A, Dickhut R, Doney SC, Geisz H, Huang K, et al. The marine system of the Western Antarctic Peninsula. In: Rogers AD, Johnston NM, Murphy EJ, Clarke A, editors. Antarctic ecosystems: an extreme environment in a changing world. Blackwell Publishing Ltd.; 2012. pp. 121–59.27.Shreeve RS, Ward P, Whitehouse MJ. Copepod growth and development around South Georgia: Relationships with temperature, food and krill. Mar Ecol Prog Ser. 2002;233:169–83.Article 

    Google Scholar 
    28.Barrera-Oro E. The role of fish in the Antarctic marine food web: differences between inshore and offshore waters in the southern Scotia Arc and west Antarctic Peninsula. Antarct Sci. 2002;14:293–309.Article 

    Google Scholar 
    29.Belton B, Thilsted SH. Fisheries in transition: Food and nutrition security implications for the global South. Glob Food Sec. 2014;3:59–66.Article 

    Google Scholar 
    30.Turner JT. Zooplankton fecal pellets, marine snow, phytodetritus and the ocean’s biological pump. Prog Oceanogr. 2015;130:205–48.Article 

    Google Scholar 
    31.Gordon AL. Bottom water formation. In: Steele JH, Turekian KK, Thorpe SA, editors. Encyclopedia of ocean sciences, 1st ed. Elsevier; 2001. pp. 334–40.32.Jacobs SS. Bottom water production and its links with the thermohaline circulation. Antarct Sci. 2004;16:427–37.Article 

    Google Scholar 
    33.Petrou K, Baker KG, Nielsen DA, Hancock AM, Schulz KG, Davidson AT. Acidification diminishes diatom silica production in the Southern Ocean. Nat Clim Chang. 2019;9:781–6.CAS 
    Article 

    Google Scholar 
    34.Sommer U, Lengfellner K. Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol. 2008;14:1199–208.Article 

    Google Scholar 
    35.Moline MA, Claustre H, Frazer TK, Schofield O, Vernet M. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. Glob Chang Biol. 2004;10:1973–80.Article 

    Google Scholar 
    36.Biggs TEG, Alvarez-Fernandez S, Evans C, Mojica KDA, Rozema PD, Venables HJ, et al. Antarctic phytoplankton community composition and size structure: importance of ice type and temperature as regulatory factors. Polar Biol. 2019;42:1997–2015.Article 

    Google Scholar 
    37.Clarke A, Meredith MP, Wallace MI, Brandon MA, Thomas DN. Seasonal and interannual variability in temperature, chlorophyll and macronutrients in northern Marguerite Bay, Antarctica. Deep Res Part II Top Stud Oceanogr. 2008;55:1988–2006.Article 

    Google Scholar 
    38.Marie D, Partensky F, Vaulot D, Brussaard CPD. Enumeration of phytoplankton, bacteria, and viruses in marine samples. Curr Protoc Cytom. 1999;10:11.11.1–5.
    Google Scholar 
    39.Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Vaulot D. CYTOPC: processing software for flow cytometric data. Signal Noise. 1989;2:8.
    Google Scholar 
    41.Biggs TEG, Brussaard CPD, Evans C, Venables HJ, Pond DW. Plasticity in dormancy behaviour of Calanoides acutus in Antarctic coastal waters. ICES J Mar Sci. 2020;77:1738–51.Article 

    Google Scholar 
    42.Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Mojica KDA, Evans C, Brussaard CPD. Flow cytometric enumeration of marine viral populations at low abundances. Aquat Microb Ecol. 2014;71:203–9.Article 

    Google Scholar 
    44.Brussaard CPD, Payet JP, Winter C, Weinbauer MG. Quantification of aquatic viruses by flow cytometry. Man Aquat viral Ecol. 2010;11:102–9.Article 

    Google Scholar 
    45.Lawrence JE, Brussaard CPD, Suttle CA. Virus-specific responses of Heterosigma akashiwo to infection. Appl Environ Microbiol. 2006;72:7829–34.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Tomaru Y, Nagasaki K. Flow cytometric detection and enumeration of DNA and RNA viruses infecting marine eukaryotic microalgae. J Oceanogr. 2007;63:215–21.CAS 
    Article 

    Google Scholar 
    47.Jacquet S, Heldal M, Iglesias-Rodriguez D, Larsen A, Wilson W, Bratbak G. Flow cytometric analysis of an Emiliana huxleyi bloom terminated by viral infection. Aquat Micro Ecol. 2002;27:111–24.Article 

    Google Scholar 
    48.Brussaard CPD. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Brussaard CPD, Thyrhaug R, Marie D, Bratbak G. Flow cytometric analyses of viral infection in two marine phytoplankton species, Micromonas pusilla (Prasinophyceae) and Phaeocystis pouchetii (Prymnesiophyceae). J Phycol. 1999;35:941–8.Article 

    Google Scholar 
    50.Kimmance SA, Wilson WH, Archer SD. Modified dilution technique to estimate viral versus grazing mortality of phytoplankton: Limitations associated with method sensitivity in natural waters. Aquat Microb Ecol. 2007;49:207–22.Article 

    Google Scholar 
    51.Garrison DL, Gowing MM, Hughes MP, Campbell L, Caron DA, Dennett MR, et al. Microbial food web structure in the Arabian Sea: A US JGOFS study. Deep Sea Res Part II Top Stud Oceanogr. 2000;47:1387–422.Article 

    Google Scholar 
    52.Worden AZ, Nolan JK, Palenik B. Assessing the dynamics and ecology of marine picophytoplankton: the importance of the eukaryotic component. Limnol Oceanogr. 2004;49:168–79.CAS 
    Article 

    Google Scholar 
    53.van Leeuwe MA, Webb AL, Venables HJ, Visser RJW, Meredith MP, Elzenga JTM, et al. Annual patterns in phytoplankton phenology in Antarctic coastal waters explained by environmental drivers. Limnol Oceanogr. 2020;65:1651–68.Article 

    Google Scholar 
    54.Baudoux A-C, Veldhuis MJW, Witte HJ, Brussaard CPD. Viruses as mortality agents of picophytoplankton in the deep chlorophyll maximum layer during IRONAGES III. Limnol Oceanogr. 2007;52:2519–29.CAS 
    Article 

    Google Scholar 
    55.Baudoux A-C, Veldhuis MJW, Noordeloos AAM, van Noort G, Brussaard CPD. Estimates of virus- vs. grazing induced mortality of picophytoplankton in the North Sea during summer. Aquat Micro Ecol. 2008;52:69–82.Article 

    Google Scholar 
    56.Kranzler CF, Krause JW, Brzezinski MA, Edwards BR, Biggs WP, Maniscalco M, et al. Silicon limitation facilitates virus infection and mortality of marine diatoms. Nat Microbiol. 2019;4:1790–7.CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Tomaru Y, Takao Y, Suzuki H, Nagumo T, Nagasaki K. Isolation and characterization of a single-stranded RNA virus infecting the bloom-forming diatom Chaetoceros socialis. Appl Environ Microbiol. 2009;75:2375–81.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Kattner G, Hagen W. Lipids in marine copepods: Latitudinal characteristics and perspective to global warming. In: Kainz M, Brett M, Arts M, editors. Lipids in aquatic ecosystems. Springer New York; 2009. pp. 257–80.59.Ploug H, Iversen MH, Fischer G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: Implications for substrate turnover by attached bacteria. Limnol Oceanogr. 2008;53:1878–86.Article 

    Google Scholar 
    60.Voss M. Content of copepod faecal pellets in relation to food supply in Kiel Bight and its effect on sedimentation rate. Mar Ecol Prog Ser. 1991;75:217–25.Article 

    Google Scholar 
    61.Lønborg C, Middelboe M, Brussaard CPD. Viral lysis of Micromonas pusilla: Impacts on dissolved organic matter production and composition. Biogeochemistry. 2013;116:231–40.Article 
    CAS 

    Google Scholar 
    62.Yamada Y, Tomaru Y, Fukuda H, Nagata T. Aggregate formation during the viral lysis of a marine diatom. Front Mar Sci. 2018;5:167.63.Maat DS, Crawfurd KJ, Timmermans KR, Brussaard CPD. Elevated CO2 and phosphate limitation favor Micromonas pusilla through stimulated growth and reduced viral impact. Appl Environ Microbiol. 2014;80:3119–27.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Maat DS, Brussaard CPD. Both phosphorus- and nitrogen limitation constrain viral proliferation in marine phytoplankton. Aquat Micro Ecol. 2016;77:87–97.Article 

    Google Scholar 
    65.Maat DS, de Blok R, Brussaard CPD. Combined phosphorus limitation and light stress prevent viral proliferation in the phytoplankton species Phaeocystis globosa, but Not in Micromonas pusilla. Front Mar Sci. 2016;3:160.66.Maat DS, Biggs TEG, Evans C, van Bleijswijk JDL, van Der Wel NN, Dutilh BE, et al. Characterization and temperature dependence of arctic Micromonas polaris viruses. Viruses. 2017;9:6–9.Article 
    CAS 

    Google Scholar 
    67.Piedade GJ, Wesdorp EM, Montenegro-Borbolla E, Maat DS, Brussaard CPD. Influence of irradiance and temperature on the virus MpoV-45T infecting the Arctic picophytoplankter Micromonas polaris. Viruses. 2018;10:676.68.Gann ER, Gainer PJ, Reynolds TB, Wilhelm SW. Influence of light on the infection of Aureococcus anophagefferens CCMP 1984 by a “giant virus”. PLoS ONE. 2020;15:e0226758.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Evans C, Wilson WH. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi. Limnol Oceanogr. 2008;53:2035–40.Article 

    Google Scholar 
    70.Vermont AI, Martínez Martínez J, Waller JD, Gilg IC, Leavitt AH, Floge SA, et al. Virus infection of Emiliania huxleyi deters grazing by the copepod Acartia tonsa. J Plankton Res. 2016;38:1194–205.Article 

    Google Scholar 
    71.González JM, Suttle CA. Grazing by marine nanoflagellates on viruses and virus-sized particles: ingestion and digestion. Mar Ecol Prog Ser. 1993;94:1–10.Article 

    Google Scholar 
    72.Rose JM, Caron DA. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol Oceanogr. 2007;52:886–95.Article 

    Google Scholar 
    73.Helenius LK, Saiz E. Feeding behaviour of the nauplii of the marine calanoid copepod Paracartia grani Sars: Functional response, prey size spectrum, and effects of the presence of alternative prey. PLoS ONE. 2017;12:e0172902.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Djeghri N, Atkinson A, Fileman ES, Harmer RA, Widdicombe CE, McEvoy AJ, et al. High prey-predator size ratios and unselective feeding in copepods: a seasonal comparison of five species with contrasting feeding modes. Prog Oceanogr. 2018;165:63–74.Article 

    Google Scholar 
    75.Gonçalves RJ, Gréve H, van S, Couespel D, Kiørboe T. Mechanisms of prey size selection in a suspension-feeding copepod, Temora longicornis. Mar Ecol Prog Ser. 2014;517:61–74.Article 

    Google Scholar 
    76.Zhao Z, Gonsior M, Schmitt-Kopplin P, Zhan Y, Zhang R, Jiao N, et al. Microbial transformation of virus-induced dissolved organic matter from picocyanobacteria: coupling of bacterial diversity and DOM chemodiversity. ISME J. 2019;13:2551–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, et al. Long-term climate change: Projections, commitments, and irreversibility. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. United Kingdom and NY, USA: Cambridge University Press; 2013.78.Montes-Hugo M, Doney SC, Ducklow HW, Fraser W, Martinson D, Stammerjohn SE, et al. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula. Science. 2009;323:1470–3.CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Arrigo KR, van Dijken GL. Continued increases in Arctic Ocean primary production. Prog Oceanogr. 2015;136:60–70.Article 

    Google Scholar 
    80.Vernet M, Martinson D, Iannuzzi R, Stammerjohn S, Kozlowski W, Sines K, et al. Primary production within the sea-ice zone west of the Antarctic Peninsula: I—Sea ice, summer mixed layer, and irradiance. Deep Sea Res Part II Top Stud Oceanogr. 2008;55:2068–85.Article 

    Google Scholar 
    81.Deppeler SL, Davidson AT. Southern Ocean phytoplankton in a changing climate. Front Mar Sci. 2017;4:40.82.Van de Poll WH, Kulk G, Rozema PD, Brussaard CPD, Visser RJW, Buma AGJ. Contrasting glacial meltwater effects on post-bloom phytoplankton on temporal and spatial scales in Kongsfjorden. Spitsbergen Elem Sci Anth. 2018;6:50.Article 

    Google Scholar 
    83.Ardyna M, Babin M, Gosselin M, Devred E, Rainville L, Tremblay J-É. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys Res Lett. 2014;41:6207–12.Article 

    Google Scholar 
    84.Venables HJ, Clarke A, Meredith MP. Wintertime controls on summer stratification and productivity at the western Antarctic Peninsula. Limnol Oceanogr. 2013;58:1035–47.Article 

    Google Scholar 
    85.Mendes CRB, Tavano VM, Dotto TS, Kerr R, de Souza MS, Garcia CAE, et al. New insights on the dominance of cryptophytes in Antarctic coastal waters: a case study in Gerlache Strait. Deep Sea Res Part II Top Stud Oceanogr. 2017;149:161–70.Article 
    CAS 

    Google Scholar 
    86.Rozema PD, Venables HJ, van de Poll WH, Clarke A, Meredith MP, Buma AGJ. Interannual variability in phytoplankton biomass and species composition in northern Marguerite Bay (West Antarctic Peninsula) is governed by both winter sea ice cover and summer stratification. Limnol Oceanogr. 2017;62:235–52.Article 

    Google Scholar  More