More stories

  • in

    Fluctuation spectra of large random dynamical systems reveal hidden structure in ecological networks

    Power spectral density for a general Ornstein–Uhlenbeck processIn the following we develop a method to compute the power spectral density of N-dimensional Ornstein–Uhlenbeck processes,$$frac{d{boldsymbol{xi }}}{dt}={boldsymbol{A}}{boldsymbol{xi }}+{boldsymbol{zeta }}(t),$$
    (15)
    where ζ(t) is an N-vector of Gaussian white noise with correlations ({mathbb{E}}[{boldsymbol{zeta }}(t){boldsymbol{zeta }}{(t^{prime} )}^{T}]=delta (t-t^{prime} ){boldsymbol{B}}). The matrix A determines the mean behaviour of ξ and is considered to be locally stable, i.e. all eigenvalues of A have negative real part. Using the matrices A and B one can fully determine the power spectral density of fluctuations for the Ornstein-Uhlenbeck process.We are interested in the case that the coefficients Aij and Bij are derived from a complex network of interactions with weights drawn at random, possibly with correlations. This framework encompasses a very general class of models with a wealth of real-world applications including but not limited to the ecological focus we have here. The method we describe exploits the underlying network structure of A and B to deduce a self-consistent scheme of equations whose solution contains information on the power spectral density.We start with the definition of the power spectral density Φ(ω) as the Fourier transform of the covariance ({mathbb{E}}[{boldsymbol{xi }}(t){boldsymbol{xi }}{(t+tau )}^{T}]) at equilibrium,$${mathbf{Phi }}(omega )=int_{-infty }^{infty }{{rm{e}}}^{-{rm{i}}omega tau }{mathbb{E}}[{boldsymbol{xi }}(t){boldsymbol{xi }}(t+tau )]dtau .$$
    (16)
    From ref. 33 on multivariate Ornstein–Uhlenbeck processes, we know that the power spectral density can also be written in the form of the matrix equation,$${mathbf{Phi }}(omega )={({boldsymbol{A}}-iomega {boldsymbol{I}})}^{-1}{boldsymbol{B}}{({{boldsymbol{A}}}^{T}+iomega {boldsymbol{I}})}^{-1}.$$
    (17)
    In practice, this equation is difficult to use for large systems as large matrix inversion is analytically intractable and numerical schemes are slow and sometimes unstable. We take an alternative route by recasting Eq. (17) as a complex Gaussian integral reminiscent of problems appearing in the statistical physics of disordered systems. Our approach in the following is to treat ω as a fixed parameter and drop the explicit dependence from our notation. We begin by writing$${mathbf{Phi }}(omega )=frac{| {boldsymbol{A}}-iomega {boldsymbol{I}}{| }^{2}}{{pi }^{N}| {boldsymbol{B}}| }int_{{mathbb{C}}}{e}^{-{{boldsymbol{u}}}^{dagger }{{boldsymbol{Phi }}}^{-1}{boldsymbol{u}}}{boldsymbol{u}}{{boldsymbol{u}}}^{dagger }mathop{prod }limits_{i=1}^{N}d{u}_{i} .$$
    (18)
    Simplification of the integrand is achieved by unpicking the matrix inversion in the exponent via a Hubbard-Stratonovich transformation46,47. To this end we recast the system in the language of statistical mechanics by introducing N complex-valued ‘spins’ ui and N auxiliary variables vi, with the ‘Hamiltonian’$${mathcal{H}}({boldsymbol{u}},{boldsymbol{v}})=-{{boldsymbol{u}}}^{dagger }({boldsymbol{A}}-{rm{i}}omega ){boldsymbol{v}}+{{boldsymbol{v}}}^{dagger }{({boldsymbol{A}}-{rm{i}}omega )}^{dagger }{boldsymbol{u}}+{{boldsymbol{v}}}^{dagger }{boldsymbol{B}}{boldsymbol{v}} .$$
    (19)
    Introducing a bracket operator$$langle cdots rangle :=frac{{int}_{{mathbb{C}}}{e}^{-{mathcal{H}}({boldsymbol{u}},{boldsymbol{v}})}(cdots )d{boldsymbol{u}}d{boldsymbol{v}}}{{int}_{{mathbb{C}}}{e}^{-{mathcal{H}}({boldsymbol{u}},{boldsymbol{v}})}d{boldsymbol{u}}d{boldsymbol{v}}} ,$$
    (20)
    we can obtain succinct expressions for the power spectral density Φ = 〈uu†〉 as well as the resolvent matrix ({boldsymbol{{mathcal{R}}}}={({rm{i}}omega -{boldsymbol{A}})}^{-1}=langle {boldsymbol{u}}{{boldsymbol{v}}}^{dagger }rangle). Thus we may write,$${mathbf{Phi }}=frac{1}{{mathcal{Z}}}{int}_{{mathbb{C}}}{e}^{-{mathcal{H}}({boldsymbol{u}},{boldsymbol{v}})}{boldsymbol{u}}{{boldsymbol{u}}}^{dagger }mathop{prod }limits_{i=1}^{N}d{u}_{i}d{v}_{i} ,$$
    (21)
    where ({mathcal{Z}}=| {boldsymbol{A}}-iomega {boldsymbol{I}}{| }^{2}/{pi }^{2N}).This construction may seem laborious at first, but it unlocks a powerful collection of statistical mechanics tools, including the ‘cavity method’. Originally, the cavity method has been introduced in order to analyse a model for spin glass systems48,49. Further applications of the method include the analysis of the eigenvalue distribution in sparse matrices50,51,52. We will exploit the network structure in a similar fashion in order to compute the power spectral density.In our analysis, we find that it is convenient to split the Hamiltonian in Eq. (19) into the sum of its local contributions at sites i, ({{mathcal{H}}}_{i}), and contributions from interactions between i and j, ({{mathcal{H}}}_{ij}),$${mathcal{H}}=mathop{sum}limits_{i}{{mathcal{H}}}_{i}+mathop{sum}limits_{i sim j}{{mathcal{H}}}_{ij} .$$
    (22)
    These terms can be decomposed as ({{mathcal{H}}}_{i}={{boldsymbol{w}}}_{i}^{dagger }{{boldsymbol{chi }}}_{i}{{boldsymbol{w}}}_{i}) and ({{mathcal{H}}}_{ij}={{boldsymbol{w}}}_{i}^{dagger }{{boldsymbol{chi }}}_{ij}{{boldsymbol{w}}}_{j}), where we introduce the compound spins ({{boldsymbol{w}}}_{i}={({u}_{i},{v}_{i})}^{T}) and transfer matrices,$${{boldsymbol{chi }}}_{i} = , left(begin{array}{ll}0&{A}_{ii}+iomega \ -{A}_{ii}+iomega &{B}_{ii}end{array}right) ,\ {{boldsymbol{chi }}}_{ij} = , left(begin{array}{ll}0&{A}_{ji}\ -{A}_{ij}&{B}_{ij}end{array}right) .$$
    (23)
    Let us focus on the power spectral density of a particular variable ξi, obtained from the diagonal element ϕi = Φii. For this we compute the single-site marginal fi by integrating over all other variables,$${f}_{i}({{boldsymbol{w}}}_{i})=frac{1}{{mathcal{Z}}}{int}_{{mathbb{C}}}{e}^{-{mathcal{H}}}mathop{prod}limits_{jne i}d{{boldsymbol{w}}}_{j}.$$
    (24)
    Alternatively, ϕi can be obtained as the top left entry of the covariance matrix ({{mathbf{Psi }}}_{i}=langle {{boldsymbol{w}}}_{i}{{boldsymbol{w}}}_{i}^{dagger }rangle). We write the covariance matrix as the integral,$${{mathbf{Psi }}}_{i}={int}_{{mathbb{C}}}{f}_{i}({{boldsymbol{w}}}_{i}){{boldsymbol{w}}}_{i}{{boldsymbol{w}}}_{i}^{dagger }d{{boldsymbol{w}}}_{i} ,$$
    (25)
    which could also be expressed in terms of a Gaussian integral,$${{mathbf{Psi }}}_{i}=frac{1}{{pi }^{2}| {{mathbf{Psi }}}_{i}| }{int}_{{mathbb{C}}}{e}^{-{{boldsymbol{w}}}_{i}^{dagger }{{mathbf{Psi }}}_{i}^{-1}{{boldsymbol{w}}}_{i}}{{boldsymbol{w}}}_{i}{{boldsymbol{w}}}_{i}^{dagger }d{{boldsymbol{w}}}_{i} .$$
    (26)
    By comparing Eqs. (25) and (26) we find that$${f}_{i}({{boldsymbol{w}}}_{i})=frac{1}{{pi }^{2}| {{mathbf{Psi }}}_{i}| }{e}^{-{{boldsymbol{w}}}_{i}^{dagger }{{mathbf{Psi }}}_{i}^{-1}{{boldsymbol{w}}}_{i}} .$$
    (27)
    We now insert Eq. (22) into Eq. (24) and obtain,$${f}_{i}({{boldsymbol{w}}}_{i})=frac{1}{{pi }^{2}| {{mathbf{Psi }}}_{i}| }{e}^{-{{mathcal{H}}}_{i}}{int}_{{mathbb{C}}}mathop{prod}limits_{i sim j}left({e}^{-{{mathcal{H}}}_{ij}-{{mathcal{H}}}_{ji}}{f}_{j}^{(i)}d{{boldsymbol{w}}}_{j}right) ,$$
    (28)
    where we write ({f}_{j}^{(i)}) for the ‘cavity marginals’,$${f}_{j}^{(i)}({{boldsymbol{w}}}_{j})=frac{1}{{{mathcal{Z}}}^{(i)}}{int}_{{mathbb{C}}}{e}^{-{{mathcal{H}}}^{(i)}}mathop{prod}limits_{kne i,j}d{{boldsymbol{w}}}_{k} .$$
    (29)
    In essence, the above discussion amounts to organising the 2N integrals in Eq. (21) in a convenient way, with the advantage of providing a simple intuition for the role of the underlying network. The superscript (i) is used to indicate that the quantity corresponds to the cavity network where node i has been removed. We will further use this notation for the ‘cavity covariance matrix’ ({{mathbf{Psi }}}_{jl}^{(i)}) introduced in the following.Next we perform the integration in Eq. (28) and compare to the form in Eq. (27). We thus obtain a recursion formula for the covariance matrix Ψi and the cavity covariance matrices ({{mathbf{Psi }}}_{jl}^{(i)}),$${{mathbf{Psi }}}_{i}={left({{boldsymbol{chi }}}_{i}-mathop{sum}limits_{{{i !sim! j}atop {i! sim! l}}}{{boldsymbol{chi }}}_{ij}{{mathbf{Psi }}}_{jl}^{(i)}{{boldsymbol{chi }}}_{li}right)}^{-1},$$
    (30)
    where the notation i ~ j indicates that we sum over nodes j connected to node i. Unless there is some specific structure underlying the network, we assume that most real world cases have a ‘tree-like’ structure from the local view point of a single node i. Hence, it is highly unlikely that the nodes j and l are nearby in the cavity network where node i is removed, and thus ({{mathbf{Psi }}}_{jl}^{(i)}) only gives non-zero contributions if j = l. We therefore reduce Eq. (30) and obtain for the covariance matrix,$${{mathbf{Psi }}}_{i}={left({{boldsymbol{chi }}}_{i}-mathop{sum}limits_{i sim j}{{boldsymbol{chi }}}_{ij}{{mathbf{Psi }}}_{j}^{(i)}{{boldsymbol{chi }}}_{ji}right)}^{-1}.$$
    (31)
    Similarly, the cavity covariance matrix obeys the equation,$${{mathbf{Psi }}}_{j}^{(i)}={left({{boldsymbol{chi }}}_{j}-mathop{sum}limits_{j sim k,kne i}{{boldsymbol{chi }}}_{jk}{{mathbf{Psi }}}_{k}^{(j)}{{boldsymbol{chi }}}_{kj}right)}^{-1}.$$
    (32)
    Here we use that Ψ(i, j) = Ψ(j) when the nodes i and k are not connected. In other words, removing node j from the cavity network where node i is missing, has the same effect as removing it from the full network. The system in Eq. (31) describes a collection of nonlinear matrix equations that must be solved self-consistently.For networks with high enough connectivity (and to good approximation even with modest connectivity), the removal of a single node does not affect the rest of the network, as its contribution is negligible compared to the full system. Hence the system in Eq. (31) can be reduced to a smaller set of equations approximately satisfied by the matrices Ψi:$${{mathbf{Psi }}}_{i}approx {left({{boldsymbol{chi }}}_{i}-mathop{sum}limits_{i sim j}{{boldsymbol{chi }}}_{ij}{{mathbf{Psi }}}_{j}{{boldsymbol{chi }}}_{ji}right)}^{-1}.$$
    (33)
    The power spectral density ϕi can be obtained as the top left entry of Ψi.In order to progress further, we now consider specific approximations that help us compute the power spectral density. First, we take a mean-field approach in order to obtain the mean power spectral density for all nodes part of the network; we then use the result for the mean-field in order to compute a close approximation to the local power spectral density of a single node. Later, we adapt the method to partitioned networks where nodes belong to different types of connected groups.Mean fieldFor the following, we assume that all agents in the system behave the same on average. In practice, the terms governed by self-interactions Aii are drawn from the same distribution for all agents. Similarly, the terms including Bii are governed by one distribution. Interaction strengths and connections with other nodes in the network are also sampled equally for all agents (we have explored a large Lotka-Volterra ecosystem as an example of such a network). In the mean-field (MF) formulation we assume that the mean degree and excess degree are approximately equal, and replace all quantities in Eqs. (31) and (32) with their average. Ψi = ΨMF ∀ i. We then obtain the following recursion equation,$${{mathbf{Psi }}}^{{rm{MF}}}={left[{mathbb{E}}[{{boldsymbol{chi }}}_{i}]-{mathbb{E}}left(mathop{sum}limits_{i sim j}{{boldsymbol{chi }}}_{ij}{{mathbf{Psi }}}^{{rm{MF}}}{{boldsymbol{chi }}}_{ji}right)right]}^{-1}.$$
    (34)
    In order to solve this equation, we parameterise,$${{mathbf{Psi }}}^{{rm{MF}}}=left(begin{array}{ll}phi &r\ -bar{r}&0end{array}right),$$
    (35)
    where the top left entry ϕ corresponds to the mean power spectral density, and we introduce r as the mean diagonal element of the resolvent matrix ({boldsymbol{{mathcal{R}}}}). Finally by inserting the ansatz of Eq. (35) into Eq. (34) we obtain,$$left(begin{array}{ll}phi &r\ -bar{r}&0end{array}right)^{-1}= , left(begin{array}{ll}0&{mathbb{E}}[{A}_{ii}]+iomega \ -{mathbb{E}}[{A}_{ii}]+iomega &{mathbb{E}}[{B}_{ii}]end{array}right)\ , +cleft(begin{array}{ll}0&bar{r}{mathbb{E}}[{A}_{ij}{A}_{ji}]\ -r{mathbb{E}}[{A}_{ij}{A}_{ji}]&phi {mathbb{E}}[{A}_{ij}^{2}]+(r+bar{r}){mathbb{E}}[{A}_{ij}{B}_{ij}]end{array}right),$$
    (36)
    where c is the average degree (i.e. number of connections) per node. Moreover, the expectations in the second term are to be taken over connected nodes i ~ j (i.e. non-zero matrix entries).From Eq. (36) above, we obtain the equations,$$frac{phi }{| r{| }^{2}} = , {mathbb{E}}[{B}_{ii}]+cleft(phi {mathbb{E}}[{A}_{ij}^{2}]+2{rm{Re}}(r){mathbb{E}}[{A}_{ij}{B}_{ij}]right),\ frac{bar{r}}{| r{| }^{2}} = , -!{mathbb{E}}[{A}_{ii}]+iomega -cr{mathbb{E}}[{A}_{ij}{A}_{ji}].$$
    (37)
    We solve the second equation in Eq. (37) for r and write the mean power spectral density in terms of r,$$phi = , | r{| }^{2}frac{{mathbb{E}}[{B}_{ii}]+2c{rm{Re}}(r){mathbb{E}}[{A}_{ij}{B}_{ij}]}{1-c| r{| }^{2}{mathbb{E}}[{A}_{ij}^{2}]},\ r = , frac{1}{2c{mathbb{E}}[{A}_{ij}{A}_{ji}]}left[-{mathbb{E}}[{A}_{ii}]+iomega right.\ , left.-sqrt{{(-{mathbb{E}}[{A}_{ii}]+iomega )}^{2}-4c{mathbb{E}}[{A}_{ij}{A}_{ji}]}right]$$
    (38)
    This equation informs the first part of the results presented in the main text.Single defect approximationThe single defect approximation (SDA) makes use of the mean-field approximation for the cavity fields, but retains local information about individual nodes. We parameterise similarly to Eq. (35) for a single individual. Moreover, we replace all other quantities with the respective mean-field approximation. Specifically, we obtain$${left(begin{array}{ll}{phi }_{i}^{{rm{SDA}}}&{r}_{i}^{{rm{SDA}}}\ -{bar{r}}_{i}^{{rm{SDA}}}&0end{array}right)}^{-1}= ,left(begin{array}{ll}0&{A}_{ii}+iomega \ -{A}_{ii}+iomega &{B}_{ii}end{array}right)\ , +mathop{sum}limits_{i sim j}left(begin{array}{ll}0&{bar{r}}^{{rm{MF}}}{A}_{ij}{A}_{ji}\ -{r}^{{rm{MF}}}{A}_{ij}{A}_{ji}&{phi }^{{rm{MF}}}{A}_{ij}^{2}+({r}^{{rm{MF}}}+{bar{r}}^{{rm{MF}}}){A}_{ij}{B}_{ij}end{array}right).$$
    (39)
    We solve this equation for ({phi }_{i}^{{rm{SDA}}},{r}_{i}^{{rm{SDA}}}), which delivers$$frac{{phi }_{i}^{{rm{SDA}}}}{| {r}_{i}^{{rm{SDA}}}{| }^{2}} = , {phi }^{{rm{MF}}}mathop{sum}limits_{i sim j}{A}_{ij}^{2}+2{rm{Re}}({r}^{{rm{MF}}})mathop{sum}limits_{i sim j}{A}_{ij}{B}_{ij}+{B}_{ii} ,\ {r}_{i}^{{rm{SDA}}} = , {left({A}_{ii}+iomega +{bar{r}}^{{rm{MF}}}mathop{sum}limits_{i sim j}{A}_{ij}{A}_{ji}right)}^{-1}.$$
    (40)
    Partitioned networkPreviously we assumed that all nodes in a network are interchangeable in distribution. However, many real-world applications feature agents with different properties, imposing a high-level structure on the network. We realise this by partitioning nodes into distinct groups that interact with each other (see the section Trophic structure model for a simple example).In order to handle different connected groups we make use of the cavity method as in Eqs. (31) and (32). In particular, we split the sum in the second term on the right-hand side of these equations into contributions from each group in the partitioned network. Let M denote the number of subgroups Vm in a partitioned network then we write,$${{mathbf{Psi }}}_{i}= , {left({{boldsymbol{chi }}}_{i}-mathop{sum }limits_{m}^{M}mathop{sum}limits_{{{i !sim! j}atop {j!in! {V}_{m}}}}{{boldsymbol{chi }}}_{ij}{{mathbf{Psi }}}_{j}^{(i)}{{boldsymbol{chi }}}_{ji}right)}^{-1} ,\ {{mathbf{Psi }}}_{j}^{(i)} = , {left({{boldsymbol{chi }}}_{j}-mathop{sum }limits_{m}^{M}mathop{sum}limits_{{{j !sim! k}atop {k!in !{V}_{m}}}}{{boldsymbol{chi }}}_{jk}{{mathbf{Psi }}}_{k}^{(j)}{{boldsymbol{chi }}}_{kj}right)}^{-1}.$$
    (41)
    Similar to the previous sections we replace all quantities with a mean-field average ({{mathbf{Psi }}}_{m}^{{rm{MF}}}), but for each group separately. Hence we obtain M equations of the form$${{mathbf{Psi }}}_{i}^{{rm{MF}}}={left[{mathbb{E}}[{{boldsymbol{chi }}}_{i}]-{mathbb{E}}left(mathop{sum }limits_{m}^{M}mathop{sum}limits_{{{i !sim! j}atop {j!in !{V}_{m}}}}{{boldsymbol{chi }}}_{ij}{{mathbf{Psi }}}_{m}^{{rm{MF}}}{{boldsymbol{chi }}}_{ji}right)right]}^{-1}.$$
    (42)
    In order to compute the mean power spectral density for different groups separately, we use a parameterisation as in Eq. (35) for each group. Therefore we have,$${{mathbf{Psi }}}_{m}^{{rm{MF}}}=left(begin{array}{ll}{phi }_{m}&{r}_{m}\ -{bar{r}}_{m}&0end{array}right),$$
    (43)
    for all m = 1, …, M. This delivers 2M equations to solve for all rm and ϕm. Numerically this is straightforward, although algebraically long-winded for the general case. However, the equations simplify for special cases. In the section Trophic structure model we demonstrate this method for a bipartite network where a lack of intra-group interactions simplifies the analysis.Large Lotka-Volterra ecosystemModel descriptionFirst, we define the framework for a general Lotka-Volterra ecosystem with N species and a large but finite system size V ≫ 1. Note that this parameter can be interpreted as a scaling factor for the fluctuation amplitude and thus, larger systems exhibit higher stability and quantitative reliability for our analytic results. Let Xi denote the number of individuals and xi = Xi/V the density of species i = 1, …, N. We start from the following set of reactions that define the underlying stochastic dynamics of the system:$$ , {X}_{i},mathop{to }limits^{{b}_{i}},2{X}_{i} ({rm{birth}})\ , 2{X}_{i},mathop{to }limits^{{R}_{ii}},{X}_{i} ({rm{death}})\ , {X}_{i}+{X}_{j},mathop{to }limits^{{R}_{ij}},left{begin{array}{ll}2{X}_{i}+{X}_{j}&({rm{mutualism}}),hfill\ {X}_{i}&({rm{competition}}),\ 2{X}_{i}&({rm{predation}}).hfillend{array}right.$$
    (44)
    The self-interactions are governed by the birth rate bi  > 0 and density-dependent mortality rate Rii  > 0. Furthermore, we define three interaction types between species i and j, namely mutualism, competition and predation. In the case of mutualistic interactions, both species benefit from each other, whereas competition means that both species have a higher mortality rate, depending on the density of the other species. For predator-prey pairs, one predator species benefits from the death of a prey species. The predator and prey species are chosen randomly, such that species i is equally likely to be a predator or prey of species j.With probability Pc we assign an interaction rate Rij  > 0 to the species pair (i, j), and with probability 1 − Pc there is no interaction between species i and j (i.e. Rij = 0). In other words, each species has on average c = NPc interaction partners. The reaction rates are considered to be i.i.d. random variables drawn from a half-normal distribution (| {mathcal{N}}(0,{sigma }^{2})|), where we write for the mean reaction rate (mu ={mathbb{E}}[{R}_{ij}]=sigma sqrt{2/pi }) and raw second moment ({sigma }^{2}={mathbb{E}}[{R}_{ij}^{2}]). For each interaction pair, the interaction type is chosen such that the proportion of predator-prey pairs is p ∈ [0, 1], and all non-predator-prey interactions are equally distributed between mutualistic and competitive interactions (i.e. the overall proportion of mutualistic/competitive interactions is 1/2(1 − p)). Lastly, we define the symmetry parameter γ = 1 − 2p, where γ = −1 if all interactions are of predator-prey type (p = 1), and similarly γ = +1 if there are no predator-prey interactions (p = 0). In a mixed case where predator-prey and mutualistic/competitive interactions have equal proportion (p = 1/2), we have γ = 0. Later we will see that γ is equivalent to the correlation of signed interaction strengths.In the limit V → ∞, the dynamics of the species density xi obey the ordinary differential equations,$$frac{d{x}_{i}}{dt}={x}_{i}left({b}_{i}+mathop{sum }limits_{j}^{N}{alpha }_{ij}{x}_{j}right),$$
    (45)
    where αij are the interaction coefficients with ∣αij∣ = ∣αji∣ = Rij. The signs of the interaction coefficients are determined by the type of interaction between species i and j. For mutualistic interactions we have αij = αji  > 0, and αij = αji  More

  • in

    Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi

    1.Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag. 33, 528–544 (2004).Article 

    Google Scholar 
    2.Six, J., Elliot, E. T. & Paustian, K. Soil microaggregate turnover and microaggregate formation: A mechanism for C organic under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).CAS 
    Article 

    Google Scholar 
    3.Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Reganold, J. P., Glover, J. D., Andrews, P. K. & Hinman, H. R. Sustainability of three apple production systems. Nature 410, 926–930 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Aziz, I., Mahmood, T. & Islam, K. R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Till. Res. 131, 28–35 (2013).Article 

    Google Scholar 
    7.Gautam, A., Guzman, J., Kovacs, P. & Kumar, S. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2021.1887480 (2021).Article 

    Google Scholar 
    8.Lin, Y., Ye, G., Liu, D., Fan, J. & Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019).CAS 
    Article 

    Google Scholar 
    9.Six, J., Bossuyt, H., DeGryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79, 7–31 (2004).Article 

    Google Scholar 
    10.Kumar, R., Rawat, K. S., Singh, J., Singh, A. & Rai, A. Soil aggregation dynamics and carbon sequestration. J. Appl. Nat. Sci. 5, 250–267 (2013).CAS 
    Article 

    Google Scholar 
    11.Lehmann, A., Zheng, W. S. & Rillig, M. C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1, 1828–1835 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5), 1028–1046 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Miller, R. M. & Jastrow, J. D. Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Molecular Biology and Physiology (eds Kapulnik, Y. & Douds, D. D.) 3–18 (Kluwer, 2000).Chapter 

    Google Scholar 
    14.Leifheit, E. E., Veresoglou, S. D., Lehmann, A., Morris, E. K. & Rillig, M. C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil 374, 523–537 (2014).CAS 
    Article 

    Google Scholar 
    15.Lehmann, A., Leifheit, E. F. & Rillig, M. C. Mycorrhizas and Soil Aggregation (Elsevier, 2017).Book 

    Google Scholar 
    16.Bethlenfalvay, G. J., Cantrell, I. C., Mihara, K. L. & Schreiner, R. P. Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol. Fertil. Soil. 28, 356–363 (1999).Article 

    Google Scholar 
    17.Rashid, M. I. et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 183, 26–41 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Velmourougane, K., Prasanna, R. & Saxena, A. K. Agriculturally important microbial biofilms: Present status and future prospects. J. Basic Microbiol. 57, 548–573 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bomfeti, C. A. et al. Exopolysaccharides produced by the symbiotic nitrogen fixing bacteria of leguminosae. Rev. Bras. Cienc. Sol. 35, 657–671 (2011).CAS 
    Article 

    Google Scholar 
    20.Daynes, C. N., Zhang, N., Saleeba, J. A. & McGee, P. A. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol. Biochem. 48, 151–161 (2012).CAS 
    Article 

    Google Scholar 
    21.Bystrianský, L. et al. Observations on two microbial life strategies in soil: Planktonic and biofilmforming microorganisms are separable. Soil Biol. Biochem. 136, 107535 (2019).Article 
    CAS 

    Google Scholar 
    22.Rillig, M. C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84, 355–363 (2004).Article 

    Google Scholar 
    23.Yang, Y., Chuangjun, H., Huang, L., Ban, Y. & Tang, M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12, e0182264 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Baldock, J. A. Interactions of organic materials and microorganisms with minerals in the stabilization of soil structure. In Interactions Between Soil Particles and Microorganisms (eds Huang, P. M. et al.) (Wiley, 2002).
    Google Scholar 
    25.Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163 (1982).CAS 
    Article 

    Google Scholar 
    26.Martens, D. A. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 29, 723–727 (2000).CAS 
    Article 

    Google Scholar 
    27.Aiken, G. R., McKnight, D. M., Wershaw, R. L. & MacCarthy, P. Humic Substances in Soil, Sediment, and Water (Wiley, 1985).
    Google Scholar 
    28.Jandl, R. & Sletten, R. S. Mineralization of forest soil carbon: Interactions with metals. J. Plant Nutr. Soil Sci. 162, 623–629 (1999).CAS 
    Article 

    Google Scholar 
    29.Bipfubusa, M., Angers, D. A., N’Dayegamiye, A. & Antoun, H. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci. Soc. Am. J. 72, 160–166 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Jiao, Y., Whalen, J. K. & Hendershot, W. H. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma 134, 24–33 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Gielnik, A. et al. Effect of digestate application on microbial respiration and bacterial communities’ diversity during bioremediation of weathered petroleum hydrocarbons contaminate. Sci. Total Environ. 670, 271–281 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Erktan, A., Rillig, M., Carminati, A., Jousset, A. & Scheu, S. Fungal and bacterial predator-prey systems influence soil aggregate formation and stabilization. Geophys. Res. Abstracts 21, 1–1 (2019).
    Google Scholar 
    33.Rillig, M. C. et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 205, 1385–1388 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Kandeler, E. Aggregate stability. In Methods in Soil Biology (eds Schiner, F. et al.) (Springer, 1996).
    Google Scholar 
    35.Demyan, M. S. et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. Eur. J. Soil Sci. 63(2), 189–199 (2012).CAS 
    Article 

    Google Scholar 
    36.Körschens, M., Schulz, E. & Behm, R. Hot water extractable carbon and nitrogen of soils as a criterion for their ability of N-release. Zentralbl. Mikrobiol. 145, 305–311 (1990).Article 

    Google Scholar 
    37.Wright, S. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Bradford, M. M. A rapid and senstive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).CAS 
    Article 

    Google Scholar 
    40.Simon, L. M., Lalonde, T. D. & Bruns, T. D. Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Lee, J., Lee, S. & Young, J. P. W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 65, 339–349 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Ampe, F., Omar, N. B., Moizan, C., Wacher, C. & Guyot, J.-P. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464–5473 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Muyzer, G., de Wall, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. Oikos 108, 643–647 (2005).Article 

    Google Scholar 
    46.ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.10). (Biometris, Wageningen University & Research, 2018). More

  • in

    Chemical cues that attract cannibalistic cane toad (Rhinella marina) larvae to vulnerable embryos

    Parotoid gland extract preparationAdult cane toads (obtained in south-eastern Queensland, December 2018) were killed humanely using the cool/freeze method8 and stored at − 20 °C. Parotoid glands (54 g) excised from 23 thawed toads were macerated in H2O (250 mL) with a commercial blender, and filtered through a bed of Celite 545. The filtrate was concentrated in vacuo at 40 °C, and was partitioned into ethyl acetate (EtOAc) and H2O solubles. The EtOAc extract (750 mg) containing mostly bufagenins (Fig. 1a) was used in the attractant assay without further purification.Figure 1Analytical HPLC (298 nm) chromatogram of extracts obtained from (a) frozen parotoid gland, (b) eggs, (c) early-development tadpole, (d) late-development tadpole and (e) fresh parotoid secretion of cane toads, Rhinella marina [HPLC condition: Agilent Zorbax C8 column, 5 μm, 4.6 × 150 mm, 1 mL/min flow rate 15 min gradient elution from 90% H2O in MeCN, to 100% MeCN, with a constant 0.01% TFA in MeCN modifier]. Highlights: light blue = unspecified bufagenins (MW 400–432); light pink = unspecified bufolipins (MW 630–700); blue = bufagenins 1–5; red = bufotoxins 6–10; pink = bufolipin 11. Structures for 1–11 are shown in Fig. 2, and were assigned on the basis of spectroscopic analysis and comparisons with authentic standards.Full size imageEgg extract preparationCane toad eggs obtained from two laboratory-laid clutches (see method below, Northern Territory, October 2010) were stored at − 20 °C until extraction. Frozen eggs were freeze-dried to yield dry material (1.5 g) that was extracted overnight at room temperature with 90:10 MeOH:H2O (100 mL). The resulting solvent extract was concentrated in vacuo at 40 °C to give a crude material (251 mg) which was partitioned into EtOAc and H2O solubles. The EtOAc (160 mg) extract containing mostly bufagenins and bufolipins (Fig. 1b) was used in the attractant assay without further purification.Early-development tadpole extract preparationEarly developmental stage cane toad tadpoles were collected live from the wild (Northern Territory, March 2010), and stored at − 18 °C until extraction. Frozen tadpoles were freeze-dried to yield dry material (2.6 g) that was extracted overnight at room temperature with 90:10 MeOH:H2O (100 mL). The resulting solvent extract was concentrated in vacuo at 40 °C to give a crude material (1062 mg), which was partitioned into n-BuOH and H2O solubles. The BuOH extract (582 mg) containing mostly bufagenins and bufolipins (Fig. 1c) was used in the attractant assay without further purification.Late-development tadpole extract preparationMid to late developmental stage tadpoles were collected live from the wild (Northern Territory, December 2010), and stored at − 18 °C until extraction. Frozen tadpoles were freeze-dried to give dry material (13.4 g) that was extracted overnight at room temperature with 90:10 MeOH:H2O (100 mL). The resulting solvent extract was concentrated in vacuo at 40 °C to give a crude material (6899 mg), which was partitioned into n-BuOH and H2O solubles. The BuOH extract (3885 mg) containing mostly bufagenins (Fig. 1d) was used in the attractant assay without further purification.Parotoid secretion extract preparationParotoid secretion was obtained from a live adult toad (Northern Territory, August 2011) by mechanical compression of the parotoid gland directly into MeOH, which following concentration in vacuo yielded a crude MeOH extract (26.2 mg). The crude MeOH extract containing mostly bufotoxins (Fig. 1e) was used in the attractant assay without further purification.Pure compounds preparationMarinobufagin (1), marinobufotoxin (6) and suberoyl-l-arginine (13) were obtained from our in-house pure compound library, and their purities were confirmed by LCMS, HRMS and NMR (see Supporting Information for 1H NMR spectra of the pure compounds). Plant cardenolides: digitoxigenin (14), ouabain (15) and digoxin (16) (Fig. 2) were purchased from Sigma Aldrich and were used in the attractant assay without further purification.Figure 2Compounds identified in different stages of cane toad (Rhinella marina) (1–13) and plant derived cardenolides (14–16).Full size imageChemical analysesAnalytical HPLC was performed using an Agilent 1100 series module equipped with a diode array detector on an Agilent Zorbax Stable Bond C8 column (4.6 × 150 mm, 5 μm), 1 mL/min flow rate, 15 min gradient elution from 90% H2O in MeCN to 100% MeCN with a constant 0.01% TFA in MeCN modifier. All analytes were prepared in MeOH stock solutions (1 mg/mL) and an aliquot (10 μL) used for each analysis. HPLC chromatograms were monitored at 298 nm (the α-pyrone chromophore common to all bufadienolides). Compounds 1–12 (Fig. 2) present in the extracts were identified by LC-DAD-ESIMS and comparison with authentic standards (see Supporting Information Table S1). LC-DAD-ESIMS (Liquid Chromatography coupled to Diode Array Detector and Electrospray Ionization Mass Spectra) was acquired using an Agilent 1100 Series LC/MSD mass detector in both positive and negative modes using Agilent Zorbax Stable Bond C8 column (4.6 × 150 mm, 5 μm) with 1 mL/min flow rate, 15 min gradient elution from 90% H2O in MeCN to 100% MeCN with a constant 0.05% formic acid in MeCN modifier.Bait preparationsStock solutions of all attractant extracts were prepared in MeOH (20, 2.0 and 0.20 mg/mL concentrations), with a fixed volume (0.5 mL) of each loaded onto porous ceramic rings (Majestic Aquariums, Sydney, NSW) to give a series of loadings per ceramic ring (10, 1.0 and 0.1 mg) per attractant extract preparation. Stock solutions were also prepared for all pure compound attractants in MeOH (5.0 and 0.5 mM) with a fixed volume (0.5 mL) of each loaded onto porous ceramic rings to give a series of loadings per ceramic ring (2.5 and 0.25 µmoles) per attractant pure compound preparation (marinobufagin, 1.00 and 0.10 mg; digitoxigenin, 0.94 and 0.094 mg; marinobufotoxin, 1.78 and 0.178 mg; ouabain octahydrate, 1.82 and 0.182 mg; digoxin, 1.95 and 0.195 mg; suberoyl-l-arginine, 0.825 and 0.0825 mg per ceramic ring, respectively). Negative controls were ceramic rings loaded with MeOH (0.5 mL/ring) only. All impregnated ceramic rings were left in the fume-hood overnight at room temperature to allow the MeOH to evaporate, and to fix the attractants to the ceramic matrix.Toad breedingAdult toads were collected from the Adelaide River floodplain, near the city of Darwin in tropical Australia, and the animals were held in outdoor enclosures at The University of Sydney Tropical Ecology Research Facility at Middle Point, Northern Territory (12°34.73′S, 131°18.85″E). Breeding was induced by injection of the synthetic gonadotrophin leuprorelin acetate (Lucrin, Abbott Australasia). Females were injected with 0.75 mL doses of 0.25 mg/mL, while males were injected with doses of 0.25 mL4,9. Toads were injected just prior to sunset, and the pairs were placed in 70 L plastic tubs set on an angle with 8 L water. The following morning, eggs were collected and placed in 18 L tanks holding 9 L aerated water. When eggs developed into free-swimming tadpoles (Gosner10 stage 25), tadpoles were transferred to outdoor 750 L mesocosms located in a shaded area. Tadpoles were fed algae wafers (Kyorin, Japan) ad libitum daily, with 50% of the water in mesocosms changed every 3 days. Tadpoles (stage 30–39) were haphazardly selected from mesocosms for use in attraction trials as required.Attraction trialsAttraction trials were conducted in a covered outdoor enclosure exposed to ambient temperature between 0930 and 1700 hours (maximum daily water temperature range over all trials: 26–32 °C). Each trial used plastic pools (1 m diameter) filled with 90 L of well water. Within each pool we placed two plastic traps (175 mm × 120 mm × 70 mm), each of which had a funnel (1 cm diameter) attached to one side. The traps were positioned in the centre of the pool 5 cm apart, with the funnels facing outward. Each pool was stocked with 50 tadpoles from a single clutch. Tadpoles were allowed to settle for 2 h, after which we randomly allocated treatments to traps (i.e., control or chemical). A single bait was added to each trap, and the number of tadpoles within each trap was counted hourly for 6 h. Water temperature was measured at hourly intervals using a hand-held thermometer.Attraction responses to 26 combinations of chemical/concentration were tested, using a total of nine tadpole clutches. Each concentration of each chemical was tested using 4–7 tadpole clutches. The tadpole clutches used for each trial were chosen randomly, with the proviso that they had not been previously tested with the same chemical concentration. Individual tadpoles and baits were used only once in trials.Statistical analysisWe analysed tadpole attraction as a binomial response (trap preference: chemical trap vs control trap) using logistic regression11 in R12, package MASS:glmmPQL). Models were based on the quasibinomial distribution to account for overdispersion of data, with Treatment (control vs. chemical) and Time (hourly intervals) as fixed effects. Random effects were accounted for by nesting trap within pool and responding tadpole clutch. We did not apply Bonferroni corrections to treatment p values due to the highly subjective nature of deciding when to apply such corrections13,14, see both papers for further problems with use of Bonferroni corrections). Rather, we provide unadjusted treatment p values in association with effect sizes (i.e., odds ratio of trap preference; this being a more meaningful indicator of biological significance) to interpret our attraction results13,14.Ethics approvalThis research was approved under permit 6033 from the University of Sydney Animal Care Committee. All methods were performed in accordance with the relevant guidelines and regulations, including ARRIVE guidelines.Consent for publicationAll authors agree to publication of this work. More

  • in

    Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming

    1.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article 

    Google Scholar 
    2.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 

    Google Scholar 
    3.Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).Article 

    Google Scholar 
    4.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 

    Google Scholar 
    5.Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).Article 

    Google Scholar 
    6.Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).Article 

    Google Scholar 
    7.Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).8.Wieder, W. R., Sulman, B. N., Hartman, M. D., Koven, C. D. & Bradford, M. A. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys. Res. Lett. 46, 14486–14495 (2019).Article 

    Google Scholar 
    9.Guo, X. et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).Article 

    Google Scholar 
    10.Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).Article 

    Google Scholar 
    11.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–795 (2016).Article 

    Google Scholar 
    12.Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 8, 825–828 (2018).Article 

    Google Scholar 
    13.Euskirchen, E. S., Mcguire, A. D., Chapin, F. S., Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).Article 

    Google Scholar 
    14.Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob. Chang. Biol. 17, 3392–3404 (2011).Article 

    Google Scholar 
    15.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article 

    Google Scholar 
    16.Naidu, D. G. & Bagchi, S. Greening of the earth does not compensate for rising soil heterotrophic respiration under climate change. Glob. Chang. Biol. 27, 2029–2038 (2021).Article 

    Google Scholar 
    17.Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).Article 

    Google Scholar 
    18.Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Chang. Biol. 21, 3846–3853 (2015).Article 

    Google Scholar 
    19.Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).Article 

    Google Scholar 
    20.Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Chang. 8, 813–818 (2018).Article 

    Google Scholar 
    21.Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Chang. 2, 106–110 (2012).Article 

    Google Scholar 
    22.Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).Article 

    Google Scholar 
    23.García-Palacios, P. et al. Pathways regulating decreased soil respiration with warming in a biocrust-dominated dryland. Glob. Chang. Biol. 24, 4645–4656 (2018).Article 

    Google Scholar 
    24.Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).Article 

    Google Scholar 
    25.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).Article 

    Google Scholar 
    26.Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).Article 

    Google Scholar 
    27.Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).Article 

    Google Scholar 
    28.Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 3, 909–912 (2013).Article 

    Google Scholar 
    29.Mueller, C. W. et al. Large amounts of labile organic carbon in permafrost soils of northern Alaska. Glob. Chang. Biol. 21, 2804–2817 (2015).Article 

    Google Scholar 
    30.Poeplau, C., Kätterer, T., Leblans, N. I. W. & Sigurdsson, B. D. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Glob. Chang. Biol. 23, 1316–1327 (2017).Article 

    Google Scholar 
    31.Wang, X. et al. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration. Glob. Chang. Biol. 20, 3229–3237 (2014).Article 

    Google Scholar 
    32.Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).Article 

    Google Scholar 
    33.Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).Article 

    Google Scholar 
    34.Raich, J. W. & Schlesinger, W. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44, 81–99 (1992).Article 

    Google Scholar 
    35.Jian, J. et al. A restructured and updated global soil respiration database (SRDB-V5). Earth Syst. Sci. Data 13, 255–267 (2021).Article 

    Google Scholar 
    36.Bond-Lamberty, B. & Thomson, A. A global database of soil respiration data. Biogeosciences 7, 1915–1926 (2010).Article 

    Google Scholar 
    37.Rustad, L. E., Huntington, T. G. & Boone, R. D. Controls on soil respiration: Implications for climate change. Biogeochemistry 48, 1–6 (2000).Article 

    Google Scholar 
    38.Hursh, A. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 23, 2090–2103 (2017).Article 

    Google Scholar 
    39.Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Chang. 6, 595–600 (2016).Article 

    Google Scholar 
    40.Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 

    Google Scholar 
    41.Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Chang. 7, 148–152 (2017).Article 

    Google Scholar 
    42.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).Article 

    Google Scholar 
    43.Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).Article 

    Google Scholar 
    44.Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. & Vitousek, P. M. Temperature influences carbon accumulation in moist tropical forests. Ecology 87, 76–87 (2006).Article 

    Google Scholar 
    45.Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).Article 

    Google Scholar 
    46.Plaza, C. et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631 (2019).Article 

    Google Scholar 
    47.Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 7, 817–822 (2017).Article 

    Google Scholar 
    48.Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).Article 

    Google Scholar 
    49.Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006).Article 

    Google Scholar 
    50.Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 77, 85–96 (2011).Article 

    Google Scholar 
    51.Serna-Chavez, H. M., Fierer, N. & Van Bodegom, P. M. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013).Article 

    Google Scholar 
    52.Xu, X. et al. Global pattern and controls of soil microbial metabolic quotient. Ecol. Monogr. 87, 429–441 (2017).Article 

    Google Scholar 
    53.van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    54.Hashimoto, S. et al. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12, 4121–4132 (2015).Article 

    Google Scholar 
    55.Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J. & Wieder, W. R. Applying population and community ecology theory to advance understanding of belowground biogeochemistry. Ecol. Lett. 20, 231–245 (2017).Article 

    Google Scholar 
    56.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6, 751–758 (2016).Article 

    Google Scholar 
    57.Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).Article 

    Google Scholar 
    58.Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).Article 

    Google Scholar 
    59.Hutchins, D. A. et al. Climate change microbiology — problems and perspectives. Nat. Rev. Microbiol. 17, 391–396 (2019).Article 

    Google Scholar 
    60.Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 

    Google Scholar 
    61.Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 

    Google Scholar 
    62.Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).Article 

    Google Scholar 
    63.Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S. & Janssens, I. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356 (2015).Article 

    Google Scholar 
    64.Birgander, J., Reischke, S., Jones, D. L. & Rousk, J. Temperature adaptation of bacterial growth and 14C-glucose mineralisation in a laboratory study. Soil Biol. Biochem. 65, 294–303 (2013).Article 

    Google Scholar 
    65.Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 25, 12–24 (2019).Article 

    Google Scholar 
    66.Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 333 (2013).Article 

    Google Scholar 
    67.Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–889 (2018).Article 

    Google Scholar 
    68.Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Chang. Biol. 19, 252–263 (2013).Article 

    Google Scholar 
    69.Takriti, M. et al. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biol. Biochem. 121, 212–220 (2018).Article 

    Google Scholar 
    70.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3, 395–398 (2013).Article 

    Google Scholar 
    71.Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Chang. Biol. 26, 3221–3229 (2020).Article 

    Google Scholar 
    72.Bååth, E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. Glob. Chang. Biol. 24, 2850–2861 (2018).Article 

    Google Scholar 
    73.Ratkowsky, D. A., Olley, J., McMeekin, T. A. & Ball, A. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149, 1–5 (1982).Article 

    Google Scholar 
    74.Rinnan, R., Rousk, J., Yergeau, E., Kowalchuk, G. A. & Bååth, E. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Glob. Chang. Biol. 15, 2615–2625 (2009).Article 

    Google Scholar 
    75.Roller, B. R. K. & Schmidt, T. M. The physiology and ecological implications of efficient growth. ISME J. 9, 1481–1487 (2015).Article 

    Google Scholar 
    76.Rousk, J., Frey, S. D. & Bååth, E. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Glob. Chang. Biol. 18, 3252–3258 (2012).Article 

    Google Scholar 
    77.Coleman, K. et al. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81, 29–44 (1997).Article 

    Google Scholar 
    78.Treseder, K. K. et al. Integrating microbial ecology into ecosystem models: Challenges and priorities. Biogeochemistry 109, 7–18 (2012).Article 

    Google Scholar 
    79.Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Chang. 4, 903–906 (2014).Article 

    Google Scholar 
    80.Steinweg, J. M., Plante, A. F., Conant, R. T., Paul, E. A. & Tanaka, D. L. Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol. Biochem. 40, 2722–2728 (2008).Article 

    Google Scholar 
    81.Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).Article 

    Google Scholar 
    82.Ye, J.-S., Bradford, M. A., Dacal, M., Maestre, F. T. & García-Palacios, P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob. Chang. Biol. 25, 3354–3364 (2019).Article 

    Google Scholar 
    83.Ye, J. S., Bradford, M. A., Maestre, F. T., Li, F. M. & García-Palacios, P. Compensatory thermal adaptation of soil microbial respiration rates in global croplands. Glob. Biogeochem. Cycles 34, e2019GB006507 (2020).
    Google Scholar 
    84.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).Article 

    Google Scholar 
    85.Hartley, I. P., Heinemeyer, A. & Ineson, P. Effects of three years of soil warming and shading on the rate of soil respiration: Substrate availability and not thermal acclimation mediates observed response. Glob. Chang. Biol. 13, 1761–1770 (2007).Article 

    Google Scholar 
    86.Hopkins, F. M., Torn, M. S. & Trumbore, S. E. Warming accelerates decomposition of decades-old carbon in forest soils. Proc. Natl Acad. Sci. USA 109, 1753–1751 (2012).Article 

    Google Scholar 
    87.Feng, W. et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming. Glob. Chang. Biol. 23, 4765–4776 (2017).Article 

    Google Scholar 
    88.Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Glob. Chang. Biol. 24, 4816–4826 (2018).Article 

    Google Scholar 
    89.Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth 2, 349–360 (2020).Article 

    Google Scholar 
    90.Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).Article 

    Google Scholar 
    91.Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).Article 

    Google Scholar 
    92.van Gestel, N. et al. Predicting soil carbon loss with warming. Nature 554, E4–E5 (2018).Article 

    Google Scholar 
    93.Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. USA 114, 6322–6327 (2017).Article 

    Google Scholar 
    94.Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).Article 

    Google Scholar 
    95.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 

    Google Scholar 
    96.Tifafi, M., Guenet, B. & Hatté, C. Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France. Glob. Biogeochem. Cycles 32, 42–56 (2018).Article 

    Google Scholar 
    97.Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).Article 

    Google Scholar  More

  • in

    Seagrass Posidonia is impaired by human-generated noise

    1.Potter, J. R. et al. Visual and passive acoustic marine mammal observations and high-frequency seismic source characteristics recorded during a seismic survey. IEEE J. Ocean. Eng. 32, 469–483 (2007).Article 

    Google Scholar 
    2.Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).Article 

    Google Scholar 
    3.Richardson, W., Greene, J., Malme, C. & Thomson, D. Marine Mammals and Noise (Academic Press, 1995).4.André, M. The sperm whale sonar: monitoring and use in mitigation of anthropogenic noise effects in the marine environment nuclear instruments and methods in physics research section a accelerators spectrometers detectors and associated equipment. NIM. Phys. Res. A 602, 262–267 (2009).Article 

    Google Scholar 
    5.Lucke, K., Siebert, U., Lepper, P. A. & Blanchet, M.-A. Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. J. Acoust. Soc. Am. 125, 4060–4070 (2009).Article 

    Google Scholar 
    6.Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).Article 

    Google Scholar 
    7.McCauley, R. D. et al. Widely used marine seismic survey air gun operations negatively impact zooplankton. Nat. Ecol. Evol. 1, 1–8 (2017).Article 

    Google Scholar 
    8.Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Assessing the impact of marine seismic surveys on Southeast Australian Scallop and Lobster Fisheries https://frdc.com.au/Archived-Reports/FRDC%20Projects/2012-008-DLD.PDF (2016).9.Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. Biol. Sci. 283, 20160839 (2016).10.Williams, R. et al. Impacts of anthropogenic noise on marine life: publication patterns, new discoveries, and future directions in research and management.Ocean Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    11.Solé, M. et al. Evidence of cnidarians sensitivity to sound after exposure to low frequency noise underwater sources. Sci. Rep. 6, 37979 (2016).12.Solé, M. et al. Offshore exposure experiments on cuttlefish indicate received sound pressure and particle motion levels associated with acoustic trauma. Sci. Rep. 7, 45899 (2017).13.Solé, M., Monge, M., André, M. & Quero, C. A proteomic analysis of the statocyst endolymph in common cuttlefish (Sepia officinalis): an assessment of acoustic trauma after exposure to sound. Sci. Rep. 9, 9340 (2019).14.Boudouresque, C. F., Mayot, N. & Pergen, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    15.den Hartog, C. The Sea‐grasses of the World (North Holland Publishing Co., 1970).16.Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).CAS 
    Article 

    Google Scholar 
    17.Hemminga, M. & Duarte, C. Seagrass Ecology (Cambridge University Press, 2000).18.Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733 (2017).CAS 
    Article 

    Google Scholar 
    19.Celdran, D. & Marin, A. Seed photosynthesis enhances Posidonia oceanica seedling growth seed collection. Ecosphere 4, 1–11 (2013).Article 

    Google Scholar 
    20.Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2, 821–824 (2012).Article 

    Google Scholar 
    21.Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A. & Verlaque, M. Regression of mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot. Mar. 52, 395–418 (2009).Article 

    Google Scholar 
    22.Verduin, J. J., Paling, E. I., Van Keulen, M. & Rivers, L. E. Recovery of donor meadows of Posidonia sinuosa and Posidonia australis contributes to sustainable seagrass transplantation. Int. J. Ecol. https://doi.org/10.1155/2012/837317 (2012).23.Gagliano, M., Mancuso, S. & Robert, D. Towards understanding plant bioacoustics. Trends Plant Sci. 17, 323–325 (2012).CAS 
    Article 

    Google Scholar 
    24.Hashiguchi, Y., Tasaka, M. & Morita, M. T. Mechanism of higher plant gravity sensing. Am. J. Bot. 100, 91–100 (2013).CAS 
    Article 

    Google Scholar 
    25.Pozueta-romero, J. Comparative analysis of mitochondrial translocators. FEBS 287, 62–66 (1991).CAS 
    Article 

    Google Scholar 
    26.Yoder, T., Zheng, H., Todd, P. & Al, E. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Phy. 125, 1045–1060 (2001).CAS 
    Article 

    Google Scholar 
    27.Kuo, J. Morphology, anatomy and histochemistry of the australian seagrasses of the genus Posidonia könig (posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis hook F. Aquat. Bot. 5, 171–190 (1978).Article 

    Google Scholar 
    28.Solé, M., Lenoir, M., Fortuño, J.-M., Van Der Schaar, M. & André, M. A critical period of susceptibility to sound in the sensory cells of cephalopod hatchlings. Biol. Open 7, 033860 (2018).29.Solé, M. et al. Does exposure to noise from human activities compromise sensory information from cephalopod statocysts? Deep. Res. Part II Top. Stud. Oceanogr. 95, 160–181 (2013).30.Slepecky, N., Hamernik, R., Henderson, D. & Al, E. Correlation of audiometric data with changes in cochlear hair cell sterocilia resulting from impulse noise trauma. Acta Otolaryngol. 93, 329–340 (1982).CAS 
    Article 

    Google Scholar 
    31.Avinash, G. B., Nuttall, A.-L. & Raphael, Y. 3-D analysis of F-actin in stereocilia of cochlear hair cells after loud noise exposure. Hear Res. 67, 139–146 (1993).CAS 
    Article 

    Google Scholar 
    32.Tilney, L. G., Saunders, J. C., Egelman, E. & DeRosier, D. J. Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae. Hear Res. 7, 181–197 (1982).CAS 
    Article 

    Google Scholar 
    33.Han, Y., Wang, X., Chen, J. & Sha, S. H. Noise-induced cochlear F-actin depolymerization is 560 mediated via ROCK2/p-ERM signaling. J. Neurochem. 133, 617–628 (2015).CAS 
    Article 

    Google Scholar 
    34.Wang, J., Dib, M., Lenoir, M. & Al, E. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig. Neuroscience 111, 635–648 (2002).CAS 
    Article 

    Google Scholar 
    35.Vicente-Torres, M. A. & Schacht, J. A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J. Neurosci. Res. 83, 1564–1572 (2006).CAS 
    Article 

    Google Scholar 
    36.Gonzalez-Gonzalez, S. The role of mitochondrial oxidative stress in hearing loss.Neurol. Disord. Ther. 1, 1–5 (2017).
    Google Scholar 
    37.Mishra, R. C., Ghosh, R. & Bae, H. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J. Exp. Bot. 6715, 4483–4494 (2016).Article 

    Google Scholar 
    38.van Wijk, K. J. & Kessler, F. Plastoglobuli: Plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu. Rev. Plant Biol. 68, 253–289 (2017).39.Vohník, M., Borovec, O., Župan, I. & Al, E. Anatomically and morphologically unique dark septate endophytic association in the roots of the mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza 25, 663–672 (2015).Article 

    Google Scholar 
    40.Genre, P. & Bonfante, A. Mechanisms underlying benefi cial plant – fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).41.Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. (Academic Press, Elsevier Ltd., 2008).42.Vohník, M., Borovec, O., Kolaříková, Z., Sudová, R. & Réblová, M. Extensive sampling and high-throughput sequencing reveal posidoniomyces atricolor gen. et sp. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica. MycoKeys 55, 59–86 (2019).Article 

    Google Scholar 
    43.Pijanowski, B. C. et al. Soundscape ecology: the science of sound in the landscape. Bioscience 61, 203–216 (2011).Article 

    Google Scholar 
    44.Lindseth, A. V. & Lobel, P. S. Underwater soundscape monitoring and fish bioacoustics: a review. Fishes 3, 36 (2018).45.McWilliam, J. N. & Hawkins, A. D. A comparison of inshore marine soundscapes. J. Exp. Mar. Biol. Ecol. 446, 166–176 (2013).Article 

    Google Scholar 
    46.Farina, A. Soundscape Ecology (Springer, 2014).47.Buscaino, G. et al. Temporal patterns in the soundscape of the shallow waters of a mediterranean marine protected area. Sci. Rep. 6, 1–13 (2016).Article 

    Google Scholar 
    48.Solé, M. et al. Ultrastructural damage of Loligo vulgaris and Illex coindetiistatocysts after low frequency sound exposure. PLoS One 8, 1–12 (2013).
    Google Scholar 
    49.André, M. et al. Low-frequency sounds induce acoustic trauma in cephalopods. Front. Ecol. Environ. 9, 489–493 (2011).50.André, M. et al. Contribution to the understanding of particle motion perception in marine invertebrates. Adv. Exp. Med. Biol. 875, 47–55 (2016). More

  • in

    Millimeter-sized smart sensors reveal that a solar refuge protects tree snail Partula hyalina from extirpation

    Smart solar sensor designTo prevent interference with the movements of the highly mobile E. rosea predators, we developed a custom smart solar sensor using the Michigan Micro Mote (M3) platform27,36. The M3 platform consists of a family of chips that can be integrated together through die-stacking in various ways, allowing its functionality to be customized. M3 achieves this degree of miniaturization by directly stacking bare-die chips, thus avoiding individual chip packaging, and custom-designed low-power circuits, reducing consumption to only 228 nW. The resulting systems can be powered for >1 week by a chip-scale battery36 measuring only 1.7 × 3.6 × 0.25 mm. For the solar sensor, we selected chips from this set with the following functionalities and stacked them as shown in Fig. 4: (1) two custom-designed thin-film lithium-chemistry batteries37, each with 8-µAh capacity and 4.2-V battery voltage, connected in parallel; (2) a power management chip to generate and regulate the three supply voltages used by the M3 chips from the battery supply voltage; (3) a microprocessor chip containing an ARM Cortex-M038 processor that executes the program controlling the sensor and 8 kB of SRAM for storing program and sensor data; (4) a short-range (5 cm) radio chip with on-chip antenna for retrieving data from the sensor; (5) a decoupling capacitor chip for stabilizing supply voltages; (6) a harvester chip that up-converts the voltage from the photovoltaic (PV) cells to the battery voltage and regulates battery charging; (7) a temperature sensor chip; (8) an inactive spacer chip that provides physical separation between the PV cell, which is exposed to light, and the remainder of the chips below it, which must be blocked from light; and (9) a PV chip for harvesting solar energy, containing also a small PV cell for receiving optical communication.Fig. 4: Structure and testing of custom-designed smart solar sensors.a Smart sensor before encapsulation showing the interconnected stack of chips. b Smart sensor after encapsulation with black and clear epoxy. c Sensor readings of eight randomly selected smart sensors, each indicated by a distinct symbol, at three light intensities across the temperature and battery voltage ranges observed during the sensor deployment with the σ/µ annotated.Full size imageThe battery chips measured 1.7 × 3.6 × 0.25 mm while the remaining chips were 1.05 mm wide, 150 μm thick and varied in length from 1.33 to 2.08 mm. The chips were stacked in staircase fashion (Fig. 4a) using die-attach film and connected electrically using wire bonding with gold 18-μm diameter wire. The radio die extended beyond the other chips at the back to expose the antenna. The chips communicated using a common bus protocol, called M-bus36. The final chip stack was encased in epoxy (Fig. 4b). The top portion of the sensor was encased with clear epoxy to allow light penetration, thereby enabling energy harvesting and optical communication. The bottom portion was encapsulated with black epoxy to protect the sensitive electronics from light. Finally, the entire sensor was coated with 4 μm of parylene. The sensor was tested to withstand immersion in brine at pressures up to 600 atm for 1 h and in saline solution for 2 weeks.The principal approach to reduce the M3 sensor’s power consumption is to duty-cycle its operation, meaning the processor executes code briefly (ms range) every 10–60 min and is in “sleep mode” for the remainder of the time. Sleep power is highly optimized to ~100 of nW using a number of recently developed circuit techniques39,40,41. In active mode, the processor is operating and obtains and stores sensor data. The processor clock frequency was set to 80 kHz, and at 0.6 V supply, the power consumption was 1.0 μW. In sleep mode, the processor and logic are power-gated42, and only the SRAM, timer, optical receiver, and power management remain on, reducing the power consumption to only 160 nW. The 10-min sleep mode period length was selected to amortize the high power in active mode and minimize overall power consumption while retaining a sufficiently small sensor acquisition interval for the proposed study. The average power consumption of the entire sensor including all peripherals was 228 nW, and in tests, it was able to operate on a battery charge alone for 1 week. With PV-based harvesting, the sensor becomes energy autonomous at light levels >850 lux. For this study, the sensors were retrieved and recharged using a light station after each deployment.Although duty-cycling lowers the average current draw from the battery, it limits measurements to times when the sensor is awake. This raised a particular difficulty for measuring the solar ecology of snails where continuous light monitoring is essential, preventing the use of duty-cycling. Typical light-sensing circuits monitor the current from a photodiode and consume ~μW power43, a load that would deplete the batteries in only a few hours. Hence the light intensity had to be monitored during sleep mode. To achieve this without substantially increasing the sleep mode current draw, we observed that the harvester circuit inherently integrates and quantizes the harvested energy from the photovoltaic (PV) cell in a manner proportion to the ambient light level and can be modified to function as a light sensor readout circuit.To up-convert the output voltage of the PV cell (250–450 mV) to that of the battery (3.9–4.2 V), the harvester performs a series of voltage doublings44 using the circuit shown in Supplementary Fig. 6. Each voltage doubling circuit consists of two chains of inverters, configured as a ring oscillator. The two oscillators are coupled through on-chip MIM capacitors and are connected to the supplies Vin and Vdouble, as shown. During one oscillation cycle, each capacitor experiences two different configurations. When the input to its driving inverters is high, a capacitor is placed between Vin and ground (GND), i.e., in parallel with the PV cell, which charges it with a finite amount of charge. When its driving inverter inputs are switched low, the capacitor is placed between Vin and Vdouble, and it delivers the received charge to Vdouble, thereby up-converting the voltage from the PV cell. The amount of charge that is transferred per cycle is kept constant by the frequency regulation circuit. If the PV cell is exposed to intense light and produces a high current, the regulation circuit increases the frequency by reducing the delay of the voltage-controlled delay element to maintain a constant charge transfer per cycle. Conversely, if the light level drops, the regulation circuit slows the oscillation frequency.As a result, the frequency of oscillation is proportional to the PV current to the first order. And, because the current of the PV cell is proportional to the light intensity, the oscillation frequency is a measure of the instantaneous ambient light level. To obtain the light dose over a sleep mode time period, we added a low-power counter (shown in Supplementary Fig. 6), which records the number of oscillations during this period, thereby integrating its total light dose. Each active-mode period, the microprocessor reads the counter value, resulting in a light sensor code, and resets the counter. The counter operates at a low supply voltage of 0.6 V, which reduces its power consumption by ~9× compared to a standard supply of 1.8 V. This allowed us to implement a 24 bit counter with negligible power consumption (5 nW or 2.2% of total average power). The resulting sensors continuously monitor the light level and record a light-dose code for every 10 min interval. The addition of the counter constitutes a relatively small change in the harvester circuit and allows light monitoring without additional chips or an increase in battery capacity or sensor size.Sensor testing and calibrationBecause the harvester oscillation frequency is dependent on temperature and battery voltage, these parameters are stored by the processor in SRAM along with the light sensor code. After data retrieval, the code is then converted to light intensity using a model that accounts for the temperature and battery voltage dependency. To construct this calibration model, four sensor nodes were measured at six light levels (0.5, 1, 5, 10, 50, and 100 klux) and four temperatures (25, 35, 45, and 55 °C), and four battery voltages (3.9, 4.0, 4.1, and 4.2 V); a total of 96 measurements were made for each sensor. After averaging the light sensor codes across the four sensors, a multidimensional, piecewise linear model was extracted to establish the relationship between the recorded digital code and the light intensity at a particular temperature and battery voltage (Supplementary Fig. 7). To calibrate the model for each fabricated sensor, we measured the light sensor code, temperature sensor code and battery voltage sensor code in controlled conditions (temperature: 25, 45, and 55 °C; light: 5 klux; battery voltage: 4.1 V) for each sensor. We then applied three-point calibration of the temperature sensor and one-point calibration of both the battery voltage and light sensors. The calibration conditions were selected based on the expected temperature and battery operating range in the field and on what the discriminating light intensity was expected to be. This was balanced with the time required to measure the 55 deployed systems in a controlled environment.To verify the accuracy of the light readings, eight randomly selected sensor systems were tested at three light levels (0.5, 5, and 50 klux) and three temperatures (25, 30, and 35 °C), a total of nine conditions each. These testing conditions were selected to match the conditions that sensors experienced during the field testing and are representative of the error in light readings for the collected data. Figure 4c shows the resulting measurements after calibration was applied. The x-axis is the reported light level, and the y-axis is the actual light level the sensor was exposed to. The worst-case variation in reported light measurement was sigma/mean = 28%, at 5 klux, showing acceptable stability.Nonlinearity was worse with a sensor light reading to actual controlled light intensity ratio ranging from −37 to +14%. However, because this is a comparative study of prey and predator species, and the same individual sensors were reused for both the prey and the predators, nonlinearity was judged to be less important than sensor-to-sensor variation and variation resulting from temperature change.We manufactured 201 smart solar sensor systems, most of which were used for bench top testing and green house testing at the University of Michigan using locally caught specimens of Cepaea nemoralis land snails (Supplementary Fig. 8). A total of 55 tested units were taken to Tahiti and were reused in multiple deployments while there. Our small batch production cost for these sensors was ~$500 US per unit (including wafer fabrication, wafer dicing, system assembly, encapsulation, and yield loss); however, for large volume ( >200 units) production, this was reduced to ~$150/unit.Field methodsTwo field populations of E. rosea and three of Partula hyalina located in five northern valleys of Tahiti-Nui, the main Tahitian peninsula, were investigated in August 2017 (Fig. 1a). These locations were selected by T. Coote, who had conducted extensive field surveys on Tahiti since 2004, as being the most accessible populations of both species then available.Although E. rosea remains widely distributed throughout Tahiti, it has become less numerous in many valleys in recent years, possibly because of the introduction of another snail predator, the New Guinea flatworm Platydemus manokwari12,35. Dead E. rosea shells were much more common than live specimens at our three Partula hyalina study locations, so we focused instead on the robust predator populations present in the nearby main Fautaua Valley and in its side-valley Fautaua-Iti. In both locations, we picked sites where foraging E. rosea had ready access to both shaded and open habitats. The Fautaua-Iti Valley location consisted of an open sunlit trail through the rainforest (Supplementary Fig. 1d), and the solar ecologies of nine predators were monitored here on two days: 5 on August 8 and 4 on August 11. The Fautaua Valley location consisted of a forest-edge adjoining an open grassy area (Supplementary Fig. 1e), and 29 predators were monitored here over two days: 12 on August 12 and 16 on August 14.All three of our Partula hyalina study sites (Fig. 1a) consisted of discrete patches of vegetation between the edge of the forest and the primary stream, or captage, within each valley. The Tahitian valley of Tipaerui encompasses a small side valley, Tipaerui-Iti, which contained the most robust known surviving population of P. hyalina on Tahiti, consisting of hundreds of individuals. They were restricted to a linear stand of Etlingera cevuga extending for 60–70 m (Supplementary Fig. 1a). The solar ecologies of 28 aestivating Tipaerui-Iti Partula hyalina individuals were recorded over two days: 12 on August 10 and 16 on August 15. Partula hyalina population sizes were much smaller in the other two valleys, Faarapa, and Matatia (Fig. 1a), requiring us to monitor all of the individuals we encountered. The Faarapa Valley site consisted of a mixed stand of Barringtonia asiatica, Alocasia macrorrhiza, and Pisona umbellifera (Supplementary Fig. 1b). We detected six individuals at this site, and their solar environments were monitored on August 5. Our remaining Partula hyalina study site was in Matatia Valley (Fig. 1a), where a small, low-density population occurred in scrubby habitat attached to the foliage of Z. officinale, Pisona umbellifera, and Inocarpus fagifer (Supplementary Fig. 1c). A total of seven individuals were detected and assayed on August 7.Each working day, we entered the study valley in the early morning between 8 and 9 a.m., prior to the appearance of the sun above the valley walls; and searched systematically for our respective target species. Euglandina rosea individuals were found foraging actively, either on the ground or climbing on vegetation, and they typically maintained this searching activity throughout the day. In contrast, Partula hyalina individuals were aestivating attached to the underside of leaves, and specimens typically remained in situ on the same leaf during the observation period.To track the solar ecology of each predator, a smart solar sensor was reversibly attached to the dorsal surface of each E. rosea shell using a nut and screw method. The nut (McMaster-Carr, Brass Hex Nut, narrow, 0–80 thread size) was glued (Loctite, Super Glue) directly on the predator’s shell, and after allowing 10 min for bonding, a sensor, preglued to a compatible screw (McMaster-Carr, 18–8 Stainless Steel Socket Head Screw 0–80 thread size, 1/16” long), was attached mechanically. Each predator was numerically labeled using nail polish and released at the exact spot it had been discovered. For the rest of the study period, each predator was visually tracked as it continued its foraging until mid-afternoon, when the sun descended below the valley walls, and the snails and sensors were recovered. These invasive predators were then euthanized.Aestivating Partula hyalina attach to the underside of leaves. Because our permit did not allow the direct attachment of light sensors to this endangered species, we deployed under-leaf sensors next to the aestivating snails using a nut/screw/magnets combination. This involved gluing, in advance, the screw to the sensor base and the nut to a round magnet (Radial Magnet Inc., Magnet Neodymium Iron Boron (NdFeB) N35, 4.78 mm diameter, 1.60 mm thickness). In the field, these components were assembled and held in place using another magnet positioned on the upper leaf surface. In addition to recording the under-leaf light intensities experienced by the aestivating Partula hyalina specimens, we also recorded the ambient light intensity by attaching a sensor to the upper surface of the leaves harboring the aestivating specimens.Each working day, the data recording function of the smart sensors was activated before going into the field and was terminated after returning from the field, and the data were then retrieved via the sensors’ wireless communication link. For each sensor, the recording start time, meaningful time of the measurement start time, meaningful measurement end time, and sensor recording end time were recorded to properly calibrate the time of the recorded samples. The received raw data in digital format were then translated to time and light intensity information using a MATLAB program and the calibration data specific for that sensor.Statistics and reproducibilityRecordings from each of the three categories (Partula hyalina leaf top, P. hyalina under leaf, and Euglandina rosea) over the 8 days of field recording were aggregated into their respective 10-min time intervals from 9:30 to 16:00 h. This recording time window avoided the early morning handling period when sensors were attached to the predator, spanned the midday period of peak solar irradiation (Figs. 2, 3), and enabled us to recover the visually tracked predators before losing them in the gathering darkness of the late afternoon valley forests. We collected light intensity measurements for 40 leaf top sensors, 41 under leaf P. hyalina, and 37 foraging E. rosea snails over the 9:30–16:00 h time period. Most aestivating P. hyalina (N = 26/41) had two under-leaf sensors bracketing the snails to record their immediate light environment (Fig. 1b) and for these individuals we used the mean light intensity of the two sensors to compare to the other two categories.We compared the three categories (leaf top, P. hyalina under leaf, and E. rosea) for the 40 timepoints over the 9:30–16:00 h time period using a repeated measures analysis of variance (ANOVA) in the nlme45 and car46 packages in R v.3.5.047. We first tested the light intensity measurements for conformance to a normal distribution using the R code shapiro.test, with the result being a highly skewed distribution. We thus LOG transformed the measurement data. We specified the following linear mixed model for the 9:30–16:00 time interval using the nlme package in R:$$begin{array}{c}lmeleft({mathrm{LOG}},{mathrm{fullmean}}sim {mathrm{group}}+{mathrm{time}}+{mathrm{group}}ast {mathrm{time}}right.\ left.{mathrm{random}}=;sim 1right|{mathrm{individual}},\ {mathrm{correlation}}=corAR1left({mathrm{from}}=;sim {mathrm{time}}left|{mathrm{individual}}right.right.\ left.{mathrm{method}}={^{primeprime}} {mathrm{{REML}}}{^{primeprime}} ,,{mathrm{na}}.,{mathrm{action}}={mathrm{na}}.{mathrm{exclude}}right)end{array}$$Where LOGfullmean = the LOG transformed light intensity readings, group = leaf top, P. hyalina under leaf, or E. rosea, time = the 40 10-min time intervals from the 9:30–16:00 time period. We considered each individual as a random block and included the correlation between time and individual. The repeated measures ANOVA utilized the restricted loglikelihood (REML) method and excluded any missing timepoint measurements (na.action = na.exclude) from the 9:30–16:00 h time period. After running the linear mixed model in R, we then used the Anova command from the R package car followed by a post-hoc Tukey’s test to determine which categories significantly differed in their light ecologies.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish

    1.Pafilis, P. et al. Reproductive biology of insular reptiles: marine subsidies modulate expression of the ‘island syndrome’. Copeia 2011, 545–552 (2011).Article 

    Google Scholar 
    2.Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).Article 

    Google Scholar 
    4.Gust, N. Variation in the population biology of protogynous coral reef fishes over tens of kilometres. Can. J. Fish. Aquat. Sci. 61, 205–218 (2004).Article 

    Google Scholar 
    5.Clifton, K. Asynchronous food availability on neighboring Caribbean coral reefs determines seasonal patterns of growth and reproduction for the herbivorous parrotfish Scarus iserti. Mar. Ecol. Prog. Ser. 116, 39–46 (1995).ADS 
    Article 

    Google Scholar 
    6.Goldstein, E. D., D’Alessandro, E. K. & Sponaugle, S. Demographic and reproductive plasticity across the depth distribution of a coral reef fish. Sci. Rep. 6, 34077 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Pérez-Ruzafa, A., Pérez-Marcos, M. & Marcos, C. From fish physiology to ecosystems management: keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences. Ecol. Ind. 90, 334–345 (2018).Article 

    Google Scholar 
    8.Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Leslie, H. M., Breck, E. N., Chan, F., Lubchenco, J. & Menge, B. A. Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc. Natl. Acad. Sci. 102, 10534–10539 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    11.Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 87–98 (2003).Article 

    Google Scholar 
    12.Glazier, D. S. Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 13, 539–555 (1999).Article 

    Google Scholar 
    13.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2001).Article 

    Google Scholar 
    14.Stearns, S. C. The Evolution of Life Histories (OUP Oxford, 1992).
    Google Scholar 
    15.Otero, X. L., Peña-Lastra, S. D. L., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751 (2017).
    Google Scholar 
    20.Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327 (2020).Article 

    Google Scholar 
    21.Bonaldo, R., Hoey, A. & Bellwood, D. The ecosystem roles of parrotfishes on tropical reefs. Oceanogr. Mar. Biol. 52, 81–132 (2014).Article 

    Google Scholar 
    22.Hoey, A. S. Feeding in parrotfishes: the influence of species, body size, and temperature. In Biology of Parrotfishes (ed Hoey, A. S. & Bonaldo, R. M) 119–133 (CRC Press, 2018).Chapter 

    Google Scholar 
    23.Lange, I. D. et al. Site-level variation in parrotfish grazing and bioerosion as a function of species-specific feeding metrics. Diversity 12, 379 (2020).Article 

    Google Scholar 
    24.Lokrantz, J., Nyström, M., Thyresson, M. & Johansson, C. The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27, 967–974 (2008).ADS 
    Article 

    Google Scholar 
    25.Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Graham, N. A. J. & McClanahan, T. R. The last call for marine wilderness? Bioscience 63, 397–402 (2013).Article 

    Google Scholar 
    28.Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159 (2020).Article 

    Google Scholar 
    29.Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. Mar. Freshwat. Ecosyst. 22, 232–261 (2012).CAS 
    Article 

    Google Scholar 
    30.Carr, P. et al. Status and phenology of breeding seabirds and a review of Important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31,  14–34 (2021).Article 

    Google Scholar 
    31.Hilton, G. M. & Cuthbert, R. J. The catastrophic impact of invasive mammalian predators on birds of the UK Overseas Territories: a review and synthesis. Ibis 152, 443–458 (2010).Article 

    Google Scholar 
    32.Stoddart, D. R. Rainfall on Indian Ocean coral islands. Atoll Res. Bull. 147, 1–21 (1971).Article 

    Google Scholar 
    33.Perry, C. T., Kench, P. S., O’Leary, M. J., Morgan, K. M. & Januchowski-Hartley, F. Linking reef ecology to island building: parrotfish identified as major producers of island-building sediment in the Maldives. Geology 43, 503–506 (2015).ADS 
    Article 

    Google Scholar 
    34.Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976–1976 (2017).PubMed 
    Article 

    Google Scholar 
    35.Taylor, B. M., Trip, E. D. L. & Choat, J. H. Dynamic demography: investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes (eds Hoey, A. S. & Bonaldo, R. M.) 69–98 (CRC Press, 2018).Chapter 

    Google Scholar 
    36.Colin, P. L. & Bell, L. J. Aspects of the spawning of labrid and scarid fishes (Pisces: Labroidei) at Enewetak Atoll, Marshall Islands with notes on other families. Environ. Biol. Fishes 31, 229–260 (1991).Article 

    Google Scholar 
    37.Bay, L. K., Choat, J. H., van Herwerden, L. & Robertson, D. R. High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?. Mar. Biol. 144, 757–767 (2004).CAS 
    Article 

    Google Scholar 
    38.Meyer, C. G., Papastamatiou, Y. P. & Clark, T. B. Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar. Biol 157, 1499–1511 (2010).Article 

    Google Scholar 
    39.Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J. & Lowerre-Barbieri, S. K. A standardized terminology for describing reproductive development in fishes. Mar. Coast. Fish. 3, 52–70 (2011).Article 

    Google Scholar 
    40.Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).ADS 
    Article 

    Google Scholar 
    41.Froese, R. & Pauly, D. FishBase (World Wide Web Electronic Publication, 2018).
    Google Scholar 
    42.Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).ADS 
    Article 

    Google Scholar 
    43.Polunin, N. V. C. & Roberts, C. M. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. Mar. Ecol. Prog. Ser. 100, 167–176 (1993).ADS 
    Article 

    Google Scholar 
    44.Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151, 1069–1076 (2007).Article 

    Google Scholar 
    45.McCauley, D. J. et al. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Kurita, Y., Meier, S. & Kjesbu, O. S. Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. J. Sea Res. 49, 203–219 (2003).ADS 
    Article 

    Google Scholar 
    48.Hoey, J., McCormick, M. I. & Hoey, A. S. Influence of depth on sex-specific energy allocation patterns in a tropical reef fish. Coral Reefs 26, 603–613 (2007).ADS 
    Article 

    Google Scholar 
    49.Tootell, J. S. & Steele, M. A. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181, 13–24 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Francis, R. I. C. C. Are growth parameters estimated from tagging and age-length data comparable?. Can. J. Fish. Aquat. Sci. 45, 936–942 (1988).Article 

    Google Scholar 
    51.Choat, J. H. & Robertson, D. R. Age-based studies. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed Sale, P. F.) 57–80 (Academic Press, 2002).Chapter 

    Google Scholar 
    52.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2020).Book 

    Google Scholar 
    53.Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    54.Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).Article 

    Google Scholar 
    55.Hoenig, J. M. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82, 898–903 (1983).
    Google Scholar 
    56.Taylor, B. M. et al. Bottom-up processes mediated by social systems drive demographic traits of coral-reef fishes. Ecology 99, 642–651 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Taylor, B. M. Drivers of protogynous sex change differ across spatial scales. Proc. Roy. Soc. B: Biol. Sci. 281, 20132423 (2014).Article 

    Google Scholar 
    58.Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6, e21062 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Gust, N., Choat, J. & Ackerman, J. Demographic plasticity in tropical reef fishes. Mar. Biol. 140, 1039–1051 (2002).Article 

    Google Scholar 
    60.Friedlander, A. & DeMartini, E. Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar. Ecol. Prog. Ser. 230, 253–264 (2002).ADS 
    Article 

    Google Scholar 
    61.Richardson, K. M., Iverson, J. B. & Kurle, C. M. Marine subsidies likely cause gigantism of iguanas in the Bahamas. Oecologia 189, 1005–1015 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M. & Byrd, G. V. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Briggs, A. A. et al. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos. PLoS ONE 7, e41364 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    65.Kolb, G., Ekholm, J. & Hambäck, P. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).ADS 
    Article 

    Google Scholar 
    66.Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 7, 3721 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Plass-Johnson, J. G., McQuaid, C. D. & Hill, J. M. Stable isotope analysis indicates a lack of inter- and intra-specific dietary redundancy among ecologically important coral reef fishes. Coral Reefs 32, 429–440 (2013).ADS 
    Article 

    Google Scholar 
    68.Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69, 340–349 (1988).Article 

    Google Scholar 
    69.Erler, D. V. et al. Has nitrogen supply to coral reefs in the south Pacific Ocean changed over the past 50 thousand years?. Paleoceanogr. Paleoclimatol. 34, 567–579 (2019).ADS 
    Article 

    Google Scholar 
    70.Benstead, J. P. et al. Coupling of dietary phosphorus and growth across diverse fish taxa: a meta-analysis of experimental aquaculture studies. Ecology 95, 2768–2777 (2014).Article 

    Google Scholar 
    71.McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).Article 

    Google Scholar 
    72.Sogard, S. M. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60, 1129–1157 (1997).
    Google Scholar 
    73.Walsh, S. M., Hamilton, S. L., Ruttenberg, B. I., Donovan, M. K. & Sandin, S. A. Fishing top predators indirectly affects condition and reproduction in a reef-fish community. J. Fish Biol. 80, 519–537 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.DeMartini, E., Friedlander, A. & Holzwarth, S. Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar. Ecol. Prog. Ser. 297, 259–271 (2005).ADS 
    Article 

    Google Scholar 
    75.Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).ADS 
    Article 

    Google Scholar 
    76.Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).Article 

    Google Scholar 
    77.Hixon, M. A., Johnson, D. W. & Sogard, S. M. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71,  2171–2185 (2014).Article 

    Google Scholar 
    78.Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Buckner, E. V., Hernández, D. L. & Samhouri, J. F. Conserving connectivity: Human influence on subsidy transfer and relevant restoration efforts. Ambio 47, 493–503 (2018).PubMed 

    Google Scholar 
    80.Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113, 4033–4038 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P., Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. https://doi.org/10.1016/j.cub.2021.03.104 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures

    1.Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Torres, A., Jaeger, J. A. G. & Alonso, J. C. Assessing large-scale wildlife responses to human infrastructure development. PNAS 113, 8472–8477 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bennett, V. J. Effects of road density and pattern on the conservation of species and biodiversity. Curr. Landsc. Ecol. Rep. 2, 1–11 (2017).Article 

    Google Scholar 
    4.Coffin, A. W. From roadkill to road ecology: a review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406 (2007).Article 

    Google Scholar 
    5.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).Article 

    Google Scholar 
    6.Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231 (1998).Article 

    Google Scholar 
    7.Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).Article 

    Google Scholar 
    8.Ascensão, F. et al. Disentangle the causes of the road barrier effect in small mammals through genetic patterns. PLoS ONE 11, e0151500 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Dyer, S. J., O’Neill, J. P., Wasel, S. M. & Boutin, S. Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can. J. Zool. 80, 839–845 (2002).Article 

    Google Scholar 
    10.Glista, D. J., DeVault, T. L. & DeWoody, J. A. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 91, 1–7 (2009).Article 

    Google Scholar 
    11.Taylor, B. D. & Goldingay, R. L. Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 37, 320–331 (2010).Article 

    Google Scholar 
    12.Tigas, L. A., Van Vuren, D. H. & Sauvajot, R. M. Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol. Conserv. 108, 299–306 (2002).Article 

    Google Scholar 
    13.Herrmann, H.-W., Pozarowski, K. M., Ochoa, A. & Schuett, G. W. An interstate highway affects gene flow in a top reptilian predator (Crotalus atrox) of the Sonoran Desert. Conserv. Genet. 18, 911–924 (2017).CAS 
    Article 

    Google Scholar 
    14.Holderegger, R. & Di Giulio, M. The genetic effects of roads: a review of empirical evidence. Basic Appl. Ecol. 11, 522–531 (2010).Article 

    Google Scholar 
    15.Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    16.Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).Article 

    Google Scholar 
    17.Kerley, L. L. et al. Effects of roads and human disturbance on Amur tigers. Conserv. Biol. 16, 97–108 (2002).Article 

    Google Scholar 
    18.Roedenbeck, I. A. & Voser, P. Effects of roads on spatial distribution, abundance and mortality of brown hare (Lepus europaeus) in Switzerland. Eur. J. Wildl. Res. 54, 425–437 (2008).Article 

    Google Scholar 
    19.Clark, R. W., Brown, W. S., Stechert, R. & Zamudio, K. R. Roads, interrupted dispersal, and genetic diversity in timber Rattlesnakes. Conserv. Biol. 24, 1059–1069 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Niko, B. & Waits, L. P. Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).Article 

    Google Scholar 
    21.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    22.Amos, W. & Balmford, A. When does conservation genetics matter?. Heredity 87, 257–265 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Frankham, R. Genetics and extinction. Biol. Cons. 126, 131–140 (2005).Article 

    Google Scholar 
    24.Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, e2015096118 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Keller, I. & Largiadèr, C. R. Recent Habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. Biol. Sci. 270, 417–423 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Noël, S., Ouellet, M., Galois, P. & Lapointe, F.-J. Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv. Genet. 8, 599–606 (2007).Article 
    CAS 

    Google Scholar 
    27.Marsh, D. M. et al. Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv. Genet. 9, 603–613 (2008).Article 

    Google Scholar 
    28.Brehme, C. S., Tracey, J. A., Mcclenaghan, L. R. & Fisher, R. N. Permeability of roads to movement of scrubland lizards and small mammals. Conserv. Biol. 27, 710–720 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ford, A. T. & Clevenger, A. P. Factors affecting the permeability of road mitigation measures to the movement of small mammals. Can. J. Zool. 97, 379–384 (2018).Article 

    Google Scholar 
    30.Claireau, F. et al. Major roads have important negative effects on insectivorous bat activity. Biol. Conserv. 235, 53–62 (2019).Article 

    Google Scholar 
    31.Jacobson, S. L., Bliss-Ketchum, L. L., Rivera, C. E. & Smith, W. P. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7, e01345 (2016).Article 

    Google Scholar 
    32.Assis, J. C., Giacomini, H. C. & Ribeiro, M. C. Road permeability index: evaluating the heterogeneous permeability of roads for wildlife crossing. Ecol. Ind. 99, 365–374 (2019).Article 

    Google Scholar 
    33.Lesbarrères, D., Primmer, C. R., Lodé, T. & Merilä, J. The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Écoscience 13, 531–538 (2006).Article 

    Google Scholar 
    34.Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics: quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Blair, C. et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol. Ecol. Resour. 12, 822–833 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Mona, S., Ray, N., Arenas, M. & Excoffier, L. Genetic consequences of habitat fragmentation during a range expansion. Heredity 112, 291–299 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Weyer, J., Jørgensen, D., Schmitt, T., Maxwell, T. J. & Anderson, C. D. Lack of detectable genetic differentiation between den populations of the Prairie Rattlesnake (Crotalus viridis) in a fragmented landscape. Can. J. Zool. 92, 837–846 (2014).Article 

    Google Scholar 
    39.Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10, 1500–1508 (1996).Article 

    Google Scholar 
    40.Ehrich, D. & Jorde, P. E. High genetic variability despite high-amplitude population cycles in lemmings. J. Mammal. 86, 380–385 (2005).Article 

    Google Scholar 
    41.Gauffre, B. et al. Short-term variations in gene flow related to cyclic density fluctuations in the common vole. Mol. Ecol. 23, 3214–3225 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Schweizer, M., Excoffier, L. & Heckel, G. Fine-scale genetic structure and dispersal in the common vole (Microtus arvalis). Mol. Ecol. 16, 2463–2473 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Keane, B., Ross, S., Crist, T. O. & Solomon, N. G. Fine-scale spatial patterns of genetic relatedness among resident adult prairie voles. J. Mammal. 96, 1194–1202 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Boyce, C. C. K. & Boyce, J. L. Population biology of Microtus arvalis. II. Natal and breeding dispersal of females. J. Anim. Ecol. 57, 723–736 (1988).Article 

    Google Scholar 
    45.Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article 

    Google Scholar 
    46.Salamolard, M., Butet, A., Leroux, A. & Bretagnolle, V. Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81, 2428–2441 (2000).Article 

    Google Scholar 
    47.Krebs, C. J. & Myers, J. H. Population cycles in small mammals. In Advances in Ecological Research Vol. 8 (ed. MacFadyen, A.) 267–399 (Academic Press, 1974).
    Google Scholar 
    48.Gerlach, G. & Musolf, K. Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv. Biol. 14, 1066–1074 (2000).Article 

    Google Scholar 
    49.Rico, A., Kindlmann, P. & Sedláček, F. Can the barrier effect of highways cause genetic subdivision in small mammals?. Acta Theriol. 54, 297–310 (2009).Article 

    Google Scholar 
    50.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Motro, U. & Thomson, G. On heterozygosity and the effective size of populations subject to size changes. Evolution 36, 1059–1066 (1982).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Kirkpatrick, M. & Jarne, P. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155, 154–167 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Xenikoudakis, G. et al. Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol. Ecol. 24, 3441–3454 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Parra, G. J. et al. Low genetic diversity, limited gene flow and widespread genetic bottleneck effects in a threatened dolphin species, the Australian humpback dolphin. Biol. Conserv. 220, 192–200 (2018).Article 

    Google Scholar 
    55.Berthier, K., Charbonnel, N., Galan, M., Chaval, Y. & Cosson, J.-F. Migration and recovery of the genetic diversity during the increasing density phase in cyclic vole populations. Mol. Ecol. 15, 2665–2676 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Norén, K. & Angerbjörn, A. Genetic perspectives on northern population cycles: bridging the gap between theory and empirical studies: GENETIC structure in cyclic populations. Biol. Rev. 89, 493–510 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Demographic fluctuations lead to rapid and cyclic shifts in genetic structure among populations of an alpine butterfly, Parnassius smintheus. J. Evol. Biol. 33, 668–681 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.ESRI. ArcGIS desktop: release 10.3 Environmental Systems Research Institute, Redlands, CA (2015).59.Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209–225 (2002).Article 

    Google Scholar 
    60.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    61.Schlaepfer, D. R., Braschler, B., Rusterholz, H.-P. & Baur, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9, e02488 (2018).Article 

    Google Scholar 
    62.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant-Kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21, 788–799 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Balkenhol, N., Cushman, S., Storfer, A. & Waits, L. Landscape Genetics: Concepts, Methods, Applications (Wiley, 2015).Book 

    Google Scholar 
    65.Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Lloyd, M. W., Campbell, L. & Neel, M. C. The Power to Detect Recent Fragmentation Events Using Genetic Differentiation Methods. PLoS ONE 8, e63981 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst. Zool. 35, 627–632 (1986).Article 

    Google Scholar 
    68.Nowak, R. M. Walker’s Mammals of the World (Johns Hopkins University Press, 1999).
    Google Scholar 
    69.García, J. T. et al. A complex scenario of glacial survival in Mediterranean and continental refugia of a temperate continental vole species (Microtus arvalis) in Europe. J. Zool. Syst. Evol. Res. 58, 459–474 (2020).Article 

    Google Scholar 
    70.Martínková, N. et al. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 22, 5205–5220 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Keyghobadi, N. K. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85(10), 1049–1064 (2007).Article 

    Google Scholar 
    72.Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16, 977–992 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Zellmer, A. J. & Knowles, L. L. Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol. Ecol. 18, 3593–3602 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Delaney, K. S., Riley, S. P. D. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Tkadlec, E. & Stenseth, N. C. A new geographical gradient in vole population dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1547–1552 (2001).CAS 
    Article 

    Google Scholar 
    76.Lambin, X., Bretagnolle, V. & Yoccoz, N. G. Vole population cycles in northern and southern Europe: Is there a need for different explanations for single pattern?. J. Anim. Ecol. 75, 340–349 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Ehrich, D. & Stenseth, N. C. Genetic structure of Siberian lemmings (Lemmus sibiricus) in a continuous habitat: large patches rather than isolation by distance. Heredity 86, 716–730 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Gauffre, B., Estoup, A., Bretagnolle, V. & Cosson, J. F. Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol. Ecol. 17, 4619–4629 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Galliard, J.-F.L., Rémy, A., Ims, R. A. & Lambin, X. Patterns and processes of dispersal behaviour in arvicoline rodents. Mol. Ecol. 21, 505–523 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Gauffre, B., Petit, E., Brodier, S., Bretagnolle, V. & Cosson, J. F. Sex-biased dispersal patterns depend on the spatial scale in a social rodent. Proc. R. Soc. B Biol. Sci. 276, 3487 (2009).CAS 
    Article 

    Google Scholar 
    81.Lidicker, W.Z. Jr. The role of dispersal in the demography of small mammals, in Small Mammals: their production and population dynamics. Eds F.B. Golley, K. Petrusewicz and L. Ryszkowski, 103–28 (Cambridge University Press, London, 1975).82.Gaines, M. S. & McClenaghan, L. R. Dispersal in small mammals. Annu. Rev. Ecol. Syst. 11, 163–196 (1980).Article 

    Google Scholar 
    83.Swingland, I. R. & Greenwood, P. J. The Ecology of Animal Movement (Clarendon Press, 1983).
    Google Scholar 
    84.Burton, C., Krebs, C. J. & Taylor, E. B. Population genetic structure of the cyclic snowshoe hare (Lepus americanus) in southwestern Yukon, Canada. Mol. Ecol. 11, 1689–1701 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Plante, Y., Boag, P. T. & White, B. N. Microgeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus) in relation to population density. Evolution 43, 1522–1537 (1989).PubMed 
    PubMed Central 

    Google Scholar 
    86.Encuesta sobre superficies y rendimientos del cultivo 2012. Catálogo de publicaciones de la Administración General del Estado (MAGRAMA, 2013).87.Oñate, J. J. et al. Programa piloto de acciones de conservación de la biodiversidad en sistemas ambientales con usos agrarios en el marco del desarrollo rural. Convenio de colaboración entre la Dirección General para la Biodiversidad (Ministerio de Medio Ambiente) y el Departamento Interuniversitario de Ecología (Universidad Autónoma de Madrid, 2003).88.Ji, S. et al. Impact of different road types on small mammals in Mt. Kalamaili Nature Reserve. Transp. Res. Part D Transp. Environ. 50, 223–233 (2017).Article 

    Google Scholar 
    89.Vignieri, S. N. Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus): connectivity patterns in pacific jumping mice. Mol. Ecol. 14, 1925–1937 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Russo, I.-R.M., Sole, C. L., Barbato, M., von Bramann, U. & Bruford, M. W. Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa). Sci. Rep. 6, 29168 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Mougeot, F., Lambin, X., Rodríguez-Pastor, R., Romairone, J. & Luque-Larena, J.-J. Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 100, e02776 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Schwartz, M. K. & McKelvey, K. S. Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv. Genet. 10, 441 (2009).Article 

    Google Scholar 
    93.Strauss, W. M. Preparation of genomic DNA from Mammalian tissue. Curr. Protoc. Mol. Biol. 42, 1–3 (1998).Article 

    Google Scholar 
    94.Ishibashi, Y. et al. Polymorphic microsatellite DNA markers in the field vole Microtus montebelli. Mol. Ecol. 8, 163–164 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Gauffre, B., Galan, M., Bretagnolle, V. & Cosson, J. Polymorphic microsatellite loci and PCR multiplexing in the common vole, Microtus arvalis. Mol. Ecol. Notes 7, 830–832 (2007).CAS 
    Article 

    Google Scholar 
    96.Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    97.Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).CAS 
    Article 

    Google Scholar 
    98.Brookfield, J. F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    100.Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article 

    Google Scholar 
    102.Coulon, A. genhet: an easy-to-use R function to estimate individual heterozygosity. Mol. Ecol. Resour. 10, 167–169 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Coltman, D. W., Pilkington, J. G. & Pemberton, J. M. Fine-scale genetic structure in a free-living ungulate population. Mol. Ecol. 12, 733–742 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Amos, W. et al. The influence of parental relatedness on reproductive success. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2021–2027 (2001).CAS 
    Article 

    Google Scholar 
    105.Aparicio, J. M., Ortego, J. & Cordero, P. J. What should we weigh to estimate heterozygosity, alleles or loci? Estimating heterozygosity from neutral markers. Mol. Ecol. 15, 4659–4665 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Nei, M. Analysis of gene diversity in subdivided populations. PNAS 70, 3321–3323 (1973).ADS 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    112.Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    113.Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Takezaki, N. & Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144, 389–399 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    117.Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185 (1996).Article 

    Google Scholar 
    118.Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar 
    120.Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).Article 

    Google Scholar 
    121.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, Berlin, 2007).MATH 
    Book 

    Google Scholar 
    122.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 2014).MATH 

    Google Scholar 
    123.Kirby, K. N. & Gerlanc, D. BootES: an R package for bootstrap confidence intervals on effect sizes. Behav. Res. Methods 45, 905–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    124.Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).MATH 
    Book 

    Google Scholar 
    126.González-Esteban, J. & Villate I. Microtus arvalis Pallas, 1778. In: Atlas y Libro Rojo de los Mamíferos Terrestres de España, Palomo, L.J., Gisbert, J. & Blanco J.C. (Eds.), Dirección General para la Biodiversidad-SECEM-SECEMU, 426-428 (2007). More