Evidence for competition and cannibalism in wormlions
1.Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285 (1983).Article
Google Scholar
2.Keddy, P. A. Competition 2nd edn. (Kluwer, 2001).Book
Google Scholar
3.Kotler, B. P. & Brown, J. S. Environmental heterogeneity and the coexistence of desert rodents. Annu. Rev. Ecol. Syst. 19, 281–307 (1988).Article
Google Scholar
4.Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article
Google Scholar
5.Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696 (1983).Article
Google Scholar
6.Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).PubMed
Article
PubMed Central
Google Scholar
7.Morris, D. W. Toward an ecological synthesis: a case for habitat selection. Oecologia 136, 1–13 (2003).ADS
PubMed
Article
PubMed Central
Google Scholar
8.Barkae, E. D., Abramsky, Z. & Ovadia, O. Can models of density-dependent habitat selection be applied for trap-building predators?. Popul. Ecol. 56, 175–184 (2014).Article
Google Scholar
9.Halliday, W. D. & Blouin-Demers, G. Red flour beetles balance thermoregulation and food acquisition via density-dependent habitat selection. J. Zool. 294, 198–205 (2014).Article
Google Scholar
10.Tregenza, T. Building on the ideal free distribution. Adv. Ecol. Res. 26, 253–307 (1995).Article
Google Scholar
11.Kingsolver, J. G. & Pfennig, D. W. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58, 1608–1612 (2004).PubMed
Article
PubMed Central
Google Scholar
12.Alatalo, R. V. & Moreno, J. Body size, interspecific interactions, and use of foraging sites in tits (Paridae). Ecology 68, 1773–1777 (1987).PubMed
Article
PubMed Central
Google Scholar
13.Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).Article
Google Scholar
14.Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248 (2000).Article
Google Scholar
15.Werner, E. E. & Anholt, B. R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142, 242–272 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Blanckenhorn, W. U. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75, 385–407 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Gotthard, K. Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J. Anim. Ecol. 69, 896–902 (2000).PubMed
Article
PubMed Central
Google Scholar
18.Van Buskirk, J. Competition, cannibalism, and size class dominance in a dragonfly. Oikos 65, 455–464 (1992).Article
Google Scholar
19.Fincke, O. M. Larval behaviour of a giant damselfly: Territoriality or size-dependent dominance?. Anim. Behav. 51, 77–87 (1996).Article
Google Scholar
20.Hopper, K. R., Crowley, P. H. & Kielman, D. Density dependence, hatching synchrony, and within-cohort cannibalism in young dragonfly larvae. Ecology 77, 191–200 (1996).Article
Google Scholar
21.Eitam, A., Blaustein, L. & Mangel, M. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146, 36–42 (2005).ADS
PubMed
Article
PubMed Central
Google Scholar
22.Barkae, E. D., Scharf, I. & Ovadia, O. A stranger is tastier than a neighbor: cannibalism in Mediterranean and desert antlion populations. Behav. Ecol. 28, 69–76 (2017).Article
Google Scholar
23.Alford, R. A. & Wilbur, H. M. Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66, 1097–1105 (1985).Article
Google Scholar
24.Dayton, G. H. & Fitzgerald, L. A. Priority effects and desert anuran communities. Can. J. Zool. 83, 1112–1116 (2005).Article
Google Scholar
25.Louette, G. & De Meester, L. Predation and priority effects in experimental zooplankton communities. Oikos 116, 419–426 (2007).Article
Google Scholar
26.Geange, S. W. & Stier, A. C. Order of arrival affects competition in two reef fishes. Ecology 90, 2868–2878 (2009).PubMed
Article
PubMed Central
Google Scholar
27.Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).Article
Google Scholar
28.Shine, R. & Li-Xin, S. Arboreal ambush site selection by pit-vipers Gloydius shedaoensis. Anim. Behav. 63, 565–576 (2002).Article
Google Scholar
29.Clark, R. W. Feeding experience modifies the assessment of ambush sites by the timber rattlesnake, a sit-and-wait predator. Ethology 110, 471–483 (2004).Article
Google Scholar
30.Tsairi, H. & Bouskila, A. Ambush site selection of a desert snake (Echis coloratus) at an oasis. Herpetologica 60, 13–23 (2004).Article
Google Scholar
31.Scharf, I., Lubin, Y. & Ovadia, O. Foraging decisions and behavioural flexibility in trap-building predators: a review. Biol. Rev. 86, 626–639 (2011).PubMed
Article
Google Scholar
32.Blamires, S. J. Biomechanical costs and benefits of sit-and-wait foraging traps. Isr. J. Ecol. Evol. 66, 5–14 (2020).Article
Google Scholar
33.Simberloff, D. et al. Holes in the doughnut theory: the dispersion of ant-lions. Brenesia 14, 13–46 (1978).
Google Scholar
34.Farji-Brener, A. G., Carvajal, D., Gei, M. G., Olano, J. & Sanchez, J. D. Direct and indirect effect of soil structure on the density of an antlion larva in a tropical dry forest. Ecol. Entomol. 33, 183–188 (2008).Article
Google Scholar
35.Lucas, J. R. Metabolic rates and pit-construction costs of two antlion species. J. Anim. Ecol. 54, 295–309 (1985).Article
Google Scholar
36.Tanaka, K. Energetic cost of web construction and its effect on web relocation in the web-building spider Agelena limbata. Oecologia 81, 459–464 (1989).ADS
PubMed
Article
PubMed Central
Google Scholar
37.Lubin, Y., Ellner, S. & Kotzman, M. Web relocation and habitat selection in desert widow spider. Ecology 74, 1915–1928 (1993).Article
Google Scholar
38.Loria, R., Scharf, I., Subach, A. & Ovadia, O. The interplay between foraging mode, habitat structure, and predator presence in antlions. Behav. Ecol. Sociobiol. 62, 1185–1192 (2008).Article
Google Scholar
39.Griffiths, D. Interference competition in ant-lion (Macroleon quinquemaculatus) larvae. Ecol. Entomol. 17, 219–226 (1992).Article
Google Scholar
40.Heiling, A. M. & Herberstein, M. E. The importance of being larger: intraspecific competition for prime web sites in orb-web spiders (Araneae, Araneidae). Behaviour 136, 669–677 (1999).Article
Google Scholar
41.Rayor, L. S. & Uetz, G. W. Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav. Ecol. Sociobiol. 27, 77–85 (1990).Article
Google Scholar
42.Wilson, D. S. Prey capture and competition in the ant lion. Biotropica 6, 187–193 (1974).Article
Google Scholar
43.Rao, D. Experimental evidence for the amelioration of shadow competition in an orb-web spider through the ‘ricochet’ effect. Ethology 115, 691–697 (2009).Article
Google Scholar
44.Scharf, I. Factors that can affect the spatial positioning of large and small individuals in clusters of sit-and-wait predators. Am. Nat. 195, 649–663 (2020).PubMed
Article
PubMed Central
Google Scholar
45.Matsura, T. & Takano, H. Pit-relocation of antlion larvae in relation to their density. Res. Popul. Ecol. 31, 225–234 (1989).Article
Google Scholar
46.Griffiths, D. Intraspecific competition in larvae of the ant-lion Morter sp. and interspecific interactions with Macroleon quinquemaculatus. Ecol. Entomol. 16, 193–201 (1991).Article
Google Scholar
47.Wise, D. H. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu. Rev. Entomol. 51, 441–465 (2006).CAS
PubMed
Article
PubMed Central
Google Scholar
48.Klokočovnik, V., Veler, E. & Devetak, D. Antlions in interaction: confrontation of two competitors in limited space. Isr. J. Ecol. Evol. 66, 73–81 (2020).Article
Google Scholar
49.Buddle, C. M., Walker, S. E. & Rypstra, A. L. Cannibalism and density-dependent mortality in the wolf spider Pardosa milvina (Araneae: Lycosidae). Can. J. Zool. 81, 1293–1297 (2003).Article
Google Scholar
50.Ovadia, O., Scharf, I., Barkae, E. D., Levi, T. & Alcalay, Y. Asymmetrical intra-guild predation and niche differentiation in two pit-building antlions. Isr. J. Ecol. Evol. 66, 82–90 (2020).Article
Google Scholar
51.Devetak, D. Wormlion Vermileo vermileo (L.) (Diptera: Vermileonidae) in Slovenia and Croatia. Ann. Ser. Hist. Nat. 18, 283–286 (2008).
Google Scholar
52.Dor, R., Rosenstein, S. & Scharf, I. Foraging behaviour of a neglected pit-building predator: the wormlion. Anim. Behav. 93, 69–76 (2014).Article
Google Scholar
53.Miler, K., Yahya, B. E. & Czarnoleski, M. Substrate moisture, particle size and temperature preferences of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 44, 488–493 (2019).Article
Google Scholar
54.Miler, K., Yahya, B. E. & Czarnoleski, M. Different predation efficiencies of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 43, 255–262 (2018).Article
Google Scholar
55.Franks, N. R., Worley, A., Falkenberg, M., Sendova-Franks, A. B. & Christensen, K. Digging the optimum pit: antlions, spirals and spontaneous stratification. Proc. R. Soc. B 286, 20190365 (2019).PubMed
Article
PubMed Central
Google Scholar
56.Scharf, I., Daniel, A., MacMillan, H. A. & Katz, N. The effect of fasting and body reserves on cold tolerance in 2 pit-building insect predators. Curr. Zool. 63, 287–294 (2017).PubMed
PubMed Central
Google Scholar
57.Devetak, D. Substrate particle size-preference of wormlion Vermileo vermileo (Diptera: Vermileonidae) larvae and their interaction with antlions. Eur. J. Entomol. 105, 631–635 (2008).Article
Google Scholar
58.Adar, S., Dor, R. & Scharf, I. Habitat choice and complex decision making in a trap-building predator. Behav. Ecol. 27, 1491–1498 (2016).Article
Google Scholar
59.Scharf, I. et al. The contribution of shelter from rain to the success of pit-building predators in urban habitats. Anim. Behav. 142, 139–145 (2018).Article
Google Scholar
60.Katz, N., Pruitt, J. N. & Scharf, I. The complex effect of illumination, temperature, and thermal acclimation on habitat choice and foraging behavior of a pit-building wormlion. Behav. Ecol. Sociobiol. 71, 137 (2017).Article
Google Scholar
61.Bar-Ziv, M. A., Bega, D., Subach, A. & Scharf, I. Wormlions prefer both fine and deep sand but only deep sand leads to better performance. Curr. Zool. 65, 393–400 (2019).PubMed
Article
PubMed Central
Google Scholar
62.Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).
Google Scholar
63.Ovadia, O. & Abramsky, Z. Density-dependent habitat selection: evaluation of the isodar method. Oikos 73, 86–94 (1995).Article
Google Scholar
64.Jensen, W. E. & Cully, J. F. Density-dependent habitat selection by brown-headed cowbirds (Molothrus ater) in tallgrass prairie. Oecologia 142, 136–149 (2005).ADS
PubMed
Article
PubMed Central
Google Scholar
65.Whitham, T. G. The theory of habitat selection: examined and extended using Pemphigus aphids. Am. Nat. 115, 449–466 (1980).Article
Google Scholar
66.van Beest, F. M. et al. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 83, 147–156 (2014).PubMed
Article
PubMed Central
Google Scholar
67.Mathis, A. Territoriality in a terrestrial salamander: the influence of resource quality and body size. Behaviour 112, 162–175 (1990).Article
Google Scholar
68.Croy, M. I. & Hughes, R. N. Effects of food supply, hunger, danger and competition on choice of foraging location by the fifteen-spined stickleback, Spinachia spinachia L. Anim. Behav. 42, 131–139 (1991).Article
Google Scholar
69.Davey, A. J. H., Hawkins, S. J., Turner, G. F. & Doncaster, C. P. Size-dependent microhabitat use and intraspecific competition in Cottus gobio. J. Fish Biol. 67, 428–443 (2005).Article
Google Scholar
70.Abrahams, M. V. Patch choice under perceptual constraints: a cause for departures from an ideal free distribution. Behav. Ecol. Sociobiol. 19, 409–415 (1986).Article
Google Scholar
71.Sutherland, W. J., Townsend, C. R. & Patmore, J. M. A test of the ideal free distribution with unequal competitors. Behav. Ecol. Sociobiol. 23, 51–53 (1988).Article
Google Scholar
72.McClure, M. S. Spatial distribution of pit-making ant lion larvae (Neuroptera: Myrmeleontidae): density effects. Biotropica 8, 179–183 (1976).Article
Google Scholar
73.Rayor, L. S. & Uetz, G. W. Age-related sequential web building in the colonial spider Metepeira incrassata (Araneidae): an adaptive spacing strategy. Anim. Behav. 59, 1251–1259 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
74.Yip, E. C., Levy, T. & Lubin, Y. Bad neighbors: hunger and dominance drive spacing and position in an orb-weaving spider colony. Behav. Ecol. Sociobiol. 71, 128 (2017).Article
Google Scholar
75.Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).CAS
PubMed
Article
PubMed Central
Google Scholar
76.Minias, P., Janiszewski, T. & Lesner, B. Center-periphery gradients of chick survival in the colonies of Whiskered Terns Chlidonias hybrida may be explained by the variation in the maternal effects of egg size. Acta Ornithol. 48, 179–186 (2013).Article
Google Scholar
77.Geange, S. W. & Stier, A. C. Priority effects and habitat complexity affect the strength of competition. Oecologia 163, 111–118 (2010).ADS
PubMed
Article
PubMed Central
Google Scholar
78.Hallander, H. Prey, cannibalism and microhabitat selection in the wolf spiders Pardosa chelata OF Müller and P. pullata Clerck. Oikos 21, 337–340 (1970).Article
Google Scholar
79.Skevington, J. H. & Dang, P. T. Exploring the diversity of flies (Diptera). Biodiversity 3, 3–27 (2002).Article
Google Scholar
80.Scharf, I., Silberklang, A., Avidov, B. & Subach, A. Do pit-building predators prefer or avoid barriers? Wormlions’ preference for walls depends on light conditions. Sci. Rep. 10, 10928 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar More