More stories

  • in

    Canopy distribution and microclimate preferences of sterile and wild Queensland fruit flies

    1.Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science (80-) 328, 894–899 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Benton, M. J. The red queen and the court jester: Species diversity and the role of biotic and abiotic factors through time. Science (80-) 323, 728–732 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Revisiting water loss in insects: a large scale view. J. Insect Physiol. 47, 1377–1388 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Abram, P., Boivin, G., Moiroux, J. & Brodeur, J. Behavioural effects of temperature on ectothermic animals: unifying thermal physiology and behavioural plasticity. Biol. Rev. Camb. Philos. Soc. 92, 1859–1876 (2016).PubMed 
    Article 

    Google Scholar 
    5.Woods, H. A., Dillon, M. E. & Pincebourde, S. The roles of microclimatic diversity and of behavior in mediating the responses of ectotherms to climate change. J. Therm. Biol. 54, 86–97 (2015).PubMed 
    Article 

    Google Scholar 
    6.Duffy, G. A., Coetzee, B. W., Janion-Scheepers, C. & Chown, S. L. Microclimate-based macrophysiology: implications for insects in a warming world. Curr. Opin. Insect Sci. 11, 84–89 (2015).PubMed 
    Article 

    Google Scholar 
    7.Pincebourde, S., Sinoquet, H., Combes, D. & Casas, J. Regional climate modulates the canopy mosaic of favourable and risky microclimates for insects. J. Anim. Ecol. 76, 424–438 (2007).PubMed 
    Article 

    Google Scholar 
    8.Sinoquet, H. et al. 3-D maps of tree canopy geometries at leaf scale. Ecology 90, 283 (2009).Article 

    Google Scholar 
    9.Pincebourde, S. & Woods, H. A. Climate uncertainty on leaf surfaces: The biophysics of leaf microclimates and their consequences for leaf-dwelling organisms. Funct. Ecol. 26, 844–853 (2012).Article 

    Google Scholar 
    10.Pincebourde, S. & Casas, J. Narrow safety margin in the phyllosphere during thermal extremes. Proc. Natl. Acad. Sci. 116, 5588–5596 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Classen, A. T., Hart, S. C., Whitman, T. G., Cobb, N. S. & Koch, G. W. Insect infestations linked to shifts in microclimate: important climate change implications. Soil Sci. Soc. Am. J. 69, 2049–2057 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Beetge, L. & Krüger, K. Drought and heat waves associated with climate change affect performance of the potato aphid Macrosiphum euphorbiae. Sci. Rep. 9, 3645 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Dale, A. G. & Frank, S. D. Warming and drought combine to increase pest insect fitness on urban trees. PLoS One 12, e0173844 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Sørensen, J. G., Addison, M. F. & Terblanche, J. S. Mass-rearing of insects for pest management: challenges, synergies and advances from evolutionary physiology. Crop Prot. 38, 87–94 (2012).Article 

    Google Scholar 
    15.Klassen, W. & Curtis, C. F. History of the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 3–36 (Springer, 2005).16.Orozco-Dávila, D. et al. Mass rearing and sterile insect releases for the control of Anastrepha spp. pests in Mexico-a review. Entomol. Exp. Appl. 164, 176–187 (2017).Article 

    Google Scholar 
    17.Vreysen, M. J. B., Hendrichs, J. & Enkerlin, W. R. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 14, 107–130 (2006).
    Google Scholar 
    18.Enkerlin, W. R. Impact of fruit fly control programmes using the sterile insect technique. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds. Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 652–676 (Springer, 2005).19.Dunn, D. W. & Follett, P. A. The sterile insect technique (SIT)-an introduction. Entomol. Exp. Appl. 164, 151–154 (2017).Article 

    Google Scholar 
    20.Vargas, R. I. Mass production of tephritid fruit flies. in Fruit Flies: Their Biology, Natural Enemies, and Control (eds. Robinson, A. S. & Hooper, G.) 141–152 (Elsevier, 1989).21.Perez-Staples, D., Shelly, T. E. & Yuval, B. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomol. Exp. Appl. 146, 66–78 (2013).Article 

    Google Scholar 
    22.Koyama, J., Kakinohana, H. & Miyatake, T. Eradication of the melon fly, Bactrocera cucurbitae, in Japan: importance of behavior, ecology, genetics, and evolution. Annu. Rev. Entomol. 49, 331–349 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Cayol, J. P. Changes in sexual behavior and life history traits of tephritid species caused by mass-rearing processes. in Fruit flies (Tephritidae): Phylogeny and Evolution of Behavior (eds. Aluja, M. & Norrbom, A. L.) 843–860 (CRC Press, 2000).24.Meza-Hernández, J. S. & Díaz-Fleischer, F. Comparison of sexual compatibility between laboratory and wild Mexican fruit flies under laboratory and field conditions. J. Econ. Entomol. 99, 1979–1986 (2006).PubMed 
    Article 

    Google Scholar 
    25.Moreno, D. S., Sanchez, M., Robacker, D. C. & Worley, J. Mating competitiveness of irradiated mexican fruit fly (Diptera: Tephritidae). J. Econ. Entomol. 84, 1227–1234 (1991).Article 

    Google Scholar 
    26.Orozco-Dávila, D., Hernández, R., Meza, S. & Domínguez, J. Sexual competitiveness and compatibility between mass-reared sterile flies and wild populations of Anastrepha ludens (Diptera: Tephritidae) from different regions in Mexico. Florida Entomol. 90, 19–26 (2007).Article 

    Google Scholar 
    27.Weldon, C. W., Schutze, M. K. & Karsten, M. Trapping to monitor tephritid movement: results, best practice, and assessment of alternatives. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 175–217 (Springer, 2014).28.Dominiak, B. C., Worsley, P. M. & Nicol, H. Release from a point source and dispersal of sterile Queensland fruit fly (Bactrocera tryoni (froggatt)) (Diptera: Tephritidae) at Wagga Wagga. Plant Prot. Q. 28, 120–125 (2013).
    Google Scholar 
    29.Dimou, I., Koutsikopoulos, C., Economopoulos, A. P. & Lykakis, J. The distribution of olive fruit fly captures with McPhail traps within an olive orchard. Phytoparasitica 31, 124–131 (2003).Article 

    Google Scholar 
    30.Raghu, S., Drew, R. A. I. & Clarke, A. R. Influence of host plant structure and microclimate on the abundance and behavior of a tephritid fly. J. Insect. Behav. 17, 179–190 (2004).Article 

    Google Scholar 
    31.Kaspi, R. & Yuval, B. Mediterranean Fruit Fly leks: factors affecting male location. Funct. Ecol. 13, 539–545 (1999).Article 

    Google Scholar 
    32.Baker, P. S. & van der Valk, H. Distribution and behaviour of sterile Mediterranean fruit flies in a host tree. J. Appl. Entomol. 114, 67–76 (1992).Article 

    Google Scholar 
    33.Aluja, M. & Birke, A. Habitat use by adults of Anastrepha obliqua (Diptera: Tephritidae) in a mixed mango and tropical plum orchard. Ann. Entomol. Soc. Am. 86, 799–812 (1993).Article 

    Google Scholar 
    34.Aluja, M., Jácome, I., Birke, A., Lozada, N. & Quintero, G. Basic patterns of behavior in wild Anastrepha striata (Diptera: Tephritidae) flies under field-cage conditions. Ann. Entomol. Soc. Am. 86, 776–793 (1993).Article 

    Google Scholar 
    35.Huettel, M. D. Monitoring the quality of laboratory-reared insects: A biological and behavioral perspective. Environ. Entomol. 5, 807–814 (1976).Article 

    Google Scholar 
    36.Dominiak, B. C. & Daniels, D. Review of the past and present distribution of Mediterranean fruit fly (Ceratitis capitata Wiedemann) and Queensland fruit fly (Bactrocera tryoni Froggatt) in Australia. Aust. J. Entomol. 51, 104–115 (2012).Article 

    Google Scholar 
    37.MacLellan, R. & King, K. National fruit fly surveillance programme 2017–2018. Surveillance 45, 68–71 (2018).
    Google Scholar 
    38.Aguilar, G., Blanchon, D., Foot, H., Pollonais, C. & Mosee, A. Queensland fruit fly invasion of New Zealand: Predicting area suitability under future climate change scenarios. Unitec ePress Perspectives in Biosecurity Research Series (2015).39.Vargas, R. I., Leblanc, L., Piñero, J. C. & Hoffman, K. Male annihilation, past, present, and future. in Trapping Tephritid Fruit Flies: Lures, Area-Wide Programs, and Trade Implications (eds. Shelly, T., Epsky, N., Jang, E. B., Reyes-Flores, J. & Vargas, R.) 493–511 (Springer, 2014).40.Vargas, R., Piñero, J. & Leblanc, L. An overview of pest species of Bactrocera fruit flies (Diptera: Tephritidae) and the integration of biopesticides with other biological approaches for their management with a focus on the Pacific region. Insects 6, 297–318 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Clarke, A. R., Powell, K. S., Weldon, C. W. & Taylor, P. W. The ecology of Bactrocera tryoni (Diptera: Tephritidae): What do we know to assist pest management?. Ann. Appl. Biol. 158, 26–54 (2011).Article 

    Google Scholar 
    42.Dominiak, B. C. Review of dispersal, survival, and establishment of Bactrocera tryoni (Diptera: Tephritidae) for quarantine purposes. Ann. Entomol. Soc. Am. 105, 434–446 (2012).Article 

    Google Scholar 
    43.Hancock, D. L., Hamacek, E. L., Lloyd, A. C. & Elson-Harris, M. M. The distribution and host plants of fruit flies (Diptera: Tephritidae) in Australia. Queensland Department of Primary Industries (2000).44.PHA. The National Plant Health Status Report (08/09). Plant Health Australia, Canberra, ACT (2009).45.Ha, A., Larson, K., Harvey, S., Fisher, W. & Malcolm, L. Benefit-cost analysis of options for managing Queensland fruit fly in Victoria. Victoria Department of Primary Industries (2010).46.Dominiak, B. C. Components of a systems approach for the management of Queensland fruit fly Bactrocera tryoni (Froggatt) in a post dimethoate fenthion era. Crop Prot. 116, 56–67 (2019).Article 

    Google Scholar 
    47.Stringer, L. D., Kean, J. M., Beggs, J. R. & Suckling, D. M. Management and eradication options for Queensland fruit fly. Popul. Ecol. 59, 259–273 (2017).Article 

    Google Scholar 
    48.Lynch, K. E., White, T. E. & Kemp, D. J. The effect of captive breeding upon adult thermal preference in the Queensland fruit fly (Bactrocera tryoni). J. Therm. Biol. 78, 290–297 (2018).PubMed 
    Article 

    Google Scholar 
    49.Weldon, C. W., Yap, S. & Taylor, P. W. Desiccation resistance of wild and mass-reared Bactrocera tryoni (Diptera: Tephritidae). Bull. Entomol. Res. 103, 690–699 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Fanson, B. G., Sundaralingam, S., Jiang, L., Dominiak, B. C. & D’Arcy, G. A review of 16 years of quality control parameters at a mass-rearing facility producing Queensland fruit fly, Bactrocera tryoni. Entomol. Exp. Appl. 151, 152–159 (2014).Article 

    Google Scholar 
    51.Moadeli, T., Taylor, P. W. & Ponton, F. High productivity gel diets for rearing of Queensland fruit fly, Bactrocera tryoni. J. Pest Sci. 2004(90), 507–520 (2017).Article 

    Google Scholar 
    52.Pérez-Staples, D., Weldon, C. W. & Taylor, P. W. Sex differences in developmental response to yeast hydrolysate supplements in adult Queensland fruit fly. Entomol. Exp. Appl. 141, 103–113 (2011).Article 

    Google Scholar 
    53.Perez-Staples, D., Prabhu, V. & Taylor, P. W. Post-teneral protein feeding enhances sexual performance of Queensland fruit flies. Physiol. Entomol. 32, 225–232 (2007).Article 

    Google Scholar 
    54.McInnis, D. O., Rendon, P. & Komatsu, J. Mating and remating of medflies (Diptera: Tephritidae) in Guatemala: Individual fly marking in field cages. Florida Entomol. 85, 126–137 (2002).Article 

    Google Scholar 
    55.R Core Team. R: a language and environment for statistical computing version 1.1.419. R Foundation for Statistical Computing (2019).56.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    57.Bartoń, K. MuMIn: Multi-Model Inference. R Package version 1.43.6 (2019).58.Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    59.Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).Article 

    Google Scholar 
    60.Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).Article 

    Google Scholar 
    61.Lenth, R. emmeans: estimated marginal means, aka least-squares means. R Package version 1.3.3 (2019).62.Prokopy, R. J., Bennett, E. W. & Bush, G. L. Mating behavior in Rhagoletis pomonella (Diptera: Tephritidae) II. Temportal organization. Can. Entomol. 104, 97–104 (1972).Article 

    Google Scholar 
    63.McQuate, G. T. & Vargas, R. I. Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and the oriental fruit fly, B. dorsalis. J. Insect Sci. 7, 13 (2007).Article 

    Google Scholar 
    64.Casas, J. & Aluja, M. The geometry of search movements of insects in plant canopies. Behav. Ecol. 8, 37–45 (1997).Article 

    Google Scholar 
    65.Shelly, T. E. & Kennelly, S. S. Settlement patterns of Mediterranean fruit flies in the tree canopy: an experimental analysis. J. Insect Behav. 20, 453–472 (2007).Article 

    Google Scholar 
    66.Warburg, M. S. & Yuval, B. Circadian patterns of feeding and reproductive activities of Mediterranean fruit flies (Diptera: Tephritidae) on various hosts in Israel. Ann. Entomol. Soc. Am. 90, 487–495 (1997).Article 

    Google Scholar 
    67.Hendrichs, J. & Hendrichs, M. A. Mediterranean fruit fly (Diptera: Tephritidae) in nature: Location and diel pattern of feeding and other activities on fruiting and nonfruiting hosts and nonhosts. Ann. Entomol. Soc. Am. 83, 632–641 (1990).Article 

    Google Scholar 
    68.Morgan, K. R., Shelly, T. E. & Kimsey, L. S. Body temperature regulation, energy metabolism, and foraging in light-seeking and shade-seeking robber flies. J. Comp. Physiol. B Biochem. Syst. Environ. Physiol. 155, 561–570 (1985).69.Whitman, D. Function and evolution of thermoregulation in the desert grasshopper Taeniopoda eques. J. Anim. Ecol. 57, 369–383 (1988).Article 

    Google Scholar 
    70.Tychsen, P. H. & Fletcher, B. S. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 17, 2139–2156 (1971).Article 

    Google Scholar 
    71.Cheng, D., Chen, L., Yi, C., Liang, G. & Xu, Y. Association between changes in reproductive activity and D-glucose metabolism in the tephritid fruit fly, Bactrocera dorsalis (Hendel). Sci. Rep. 4, 7489 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    72.Warburg, M. S. & Yuval, B. Effects of energetic reserves on behavioral patterns of Mediterranean fruit flies (Diptera: Tephritidae). Oecologia 112, 314–319 (1997).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Arita, L. & Kaneshiro, K. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Pacific Sci. 43, 135–143 (1989).
    Google Scholar 
    74.Hendrichs, J., Lauzon, C. R., Cooley, S. S. & Prokopy, R. J. Contribution of natural food sources to adult longevity and fecundity of Rhagoletis pomonella (Diptera: Tephritidae). Ann. Entomol. Soc. Am. 86, 250–264 (1993).Article 

    Google Scholar 
    75.Urbaneja-Bernat, P., Tena, A., González-Cabrera, J. & Rodriguez-Saona, C. Plant guttation provides nutrient-rich food for insects. Proc. R. Soc. B Biol. Sci. 287, 20201080 (2020).CAS 
    Article 

    Google Scholar 
    76.Drew, R., Courtice, A. & Teakle, D. Bacteria as a natural source of food for adult fruit flies (Diptera: Tephritidae). Oecologia 60, 279–284 (1983).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Prokopy, R. J., Drew, R. A. I., Sabine, B. N. E., Lloyd, A. C. & Hamacek, E. Effects of physiological and experiential state of Bactrocera tryoni flies on intra-tree foraging behavior for food (Bacteria) and host fruit. Oecologia 87, 394–400 (1991).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Scarpati, M. L., Scalzo, R. L., Vita, G. & Gambacorta, A. Chemiotropic behavior of female olive fly (Bactrocera oleae GMEL.) on Olea Europeae L. J. Chem. Ecol. 22, 1027–1036 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Truu, M. et al. Elevated air humidity changes soil bacterial community structure in the silver birch stand. Front. Microbiol. 8, 557 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Hockberger, P. E. The discovery of the damaging effect of sunlight on bacteria. J. Photochem. Photobiol. B Biol. 58, 185–191 (2000).CAS 
    Article 

    Google Scholar 
    81.Jones, J., Raju, B. & Engelhard, A. Effects of temperature and leaf wetness on development of bacterial spot of geraniums and chrysanthemums incited by Pseudomonas cichorii. Plant Dis. 68, 248–251 (1984).Article 

    Google Scholar 
    82.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 8, 795 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    83.Majumder, R., Sutcliffe, B., Taylor, P. W. & Chapman, T. A. Next-generation sequencing reveals relationship between the larval microbiome and food substrate in the polyphagous Queensland fruit fly. Sci. Rep. 9, 14292 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    84.Deutscher, A. T. et al. Near full-length 16S rRNA gene next-generation sequencing revealed Asaia as a common midgut bacterium of wild and domesticated Queensland fruit fly larvae. Microbiome 6, 85 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    85.Morrow, J., Frommer, M., Shearman, D. & Riegler, M. The microbiome of field-caught and laboratory-adapted Australian tephritid fruit fly species with different host plant use and specialisation. Microb. Ecol. 70, 498–508 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    86.Thaochan, N., Drew, R. A. I., Hughes, J. M., Vijaysegaran, S. & Chinajariyawong, A. Alimentary tract bacteria isolated and identified with API-20E and molecular cloning techniques from Australian tropical fruit flies, Bactrocera cacuminata and B. tryoni. J. Insect Sci. 10, 131 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    87.Sultana, S., Baumgartner, J. B., Dominiak, B. C., Royer, J. E. & Beaumont, L. J. Potential impacts of climate change on habitat suitability for the Queensland fruit fly. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    88.Meats, A. The bioclimatic potential of the Queensland fruit fly, Dacus tryoni, Australia. Proc. Ecol. Soc. Aust. 11, 151–161 (1981).ADS 

    Google Scholar 
    89.Fletcher, B. The ecology of a natural population of the Queensland Fruit Fly, Dacus tryoni. IV. The immigration and emigration of adults. Aust. J. Zool. 21, 541 (1973).Article 

    Google Scholar 
    90.Bateman, M. A. The ecology of fruit flies. Annu. Rev. Entomol. 17, 493–518 (1972).Article 

    Google Scholar 
    91.O’Loughlin, G. T., East, R. A. & Meats, A. Survival, development rates and generation times of the Queensland fruit fly, Dacus tryoni, in a marginally favourable climate: experiments in Victoria. Aust. J. Zool. 32, 353–361 (1984).Article 

    Google Scholar 
    92.Dominiak, B. C., Mavi, H. S. & Nicol, H. I. Effect of town microclimate on the Queensland fruit fly Bactrocera tryoni. Aust. J. Exp. Agric. 46, 1239–1249 (2006).Article 

    Google Scholar 
    93.Weldon, C. W., Terblanche, J. S. & Chown, S. L. Time-course for attainment and reversal of acclimation to constant temperature in two Ceratitis species. J. Therm. Biol. 36, 479–485 (2011).Article 

    Google Scholar 
    94.Nyamukondiwa, C., Weldon, C. W., Chown, S. L., le Roux, P. C. & Terblanche, J. S. Thermal biology, population fluctuations and implications of temperature extremes for the management of two globally significant insect pests. J. Insect Physiol. 59, 1199–1211 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Meats, A. Rapid acclimatization to low temperature in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 19, 1903–1911 (1973).Article 

    Google Scholar 
    96.Meats, A. Developmental and long-term acclimation to cold by the Queensland fruit-fly (Dacus tryoni) at constant and fluctuating temperatures. J. Insect Physiol. 22, 1013–1019 (1976).ADS 
    Article 

    Google Scholar 
    97.Fay, H. A. C. & Meats, A. Survival rates of the queensland fruit fly, dacus tryoni, in early spring: Field-cage studies with cold-acclimated wild flies and irradiated, warm- or cold-acclimated, laboratory flies. Aust. J. Zool. 35, 187–195 (1987).Article 

    Google Scholar 
    98.Fay, H. A. C. & Meats, A. The sterile insect release method and the importance of thermal conditioning before release: field-cage experiments with dacus tryoni in spring weather. Aust. J. Zool. 35, 197–204 (1987).Article 

    Google Scholar 
    99.Bubliy, O. A. & Loeschcke, V. Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster. J. Evol. Biol. 18, 789–803 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Weldon, C., Diaz-Fleischer, F. & Perez-Staples, D. Desiccation resistance of tephritid flies: Recent research results and future directions. in Area-Wide Management of Fruit Fly Pests (eds. Pérez-Staples, D., Díaz-Fleischer, F., Montoya, P. & Vera, T.) 3–36 (CRC Press, 2019).101.Nishida, T. Food system of tephritid fruit flies in Hawaii. Proc. Hawaiian Entomol. Soc. 23, 245–254 (1980).
    Google Scholar 
    102.Nishida, T. & Bess, H. A. Studies on the ecology and control of the melon fly Dacus (Strumeta) Cucurbitae Coquillett (Diptera: Tephritidae). Hawaii Agric. Exp. Stn. Tech. Bull. 1–44 (1957). More

  • in

    A new galling insect model enhances photosynthetic activity in an obligate holoparasitic plant

    1.Redfern, M. Plant Galls. The New Naturalist Library (Harper Collins, 2011).
    Google Scholar 
    2.Stone, G. N. & Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 18, 512–522 (2003).Article 

    Google Scholar 
    3.Dawkins, R. The Extended Phenotype (Oxford University Press, 1982).
    Google Scholar 
    4.Raman, A. Morphogenesis of insect-induced plant galls: Facts and questions. Flora 206, 517–533 (2011).Article 

    Google Scholar 
    5.Gatjens-Boniche, O. The mechanism of plant gall induction by insects: Revealing clues, facts, and consequences in a cross-kingdom complex interaction. Rev. Biol. Trop. 67, 1359–1382 (2019).Article 

    Google Scholar 
    6.Gonçalves-Alvim, S. J. & Fernandes, G. W. Biodiversity of galling insects: Historical, community and habitat effects in four neotropical savannas. Biodivers. Conserv. 10, 79–98 (2001).Article 

    Google Scholar 
    7.Veldtman, R. & McGeoch, M. Gall-forming insect species richness along a non-scleromorphic vegetation rainfall gradient in South Africa: The importance of plant community composition. Austral. Ecol. 28, 1–13 (2003).Article 

    Google Scholar 
    8.Stuart, J., Chen, M.-S., Shukle, R. & Harris, M. Gall midges (Hessian flies) as plant pathogens. Annu. Rev. Phytopath. 50, 339–357 (2012).CAS 
    Article 

    Google Scholar 
    9.Kono, H. Langrüssler aus japanischen Reich. Insecta Matsumurana 4, 145–162 (1930).
    Google Scholar 
    10.Morimoto, K. & Kojima, H. Weevils of the genus Smicronyx in Japan (Coleoptera: Curculionidae). Entomol. Rev. Jpn. 62, 1–9 (2007).
    Google Scholar 
    11.Hayakawa, H., Fujii, S. & Yoshitake, H. Reexamination of the host plant of Smicronyx madaranus (Coleoptera, Curculionidae, Smicronycinae). SAYABANE 30, 51–55 (2018) (in Japanese).
    Google Scholar 
    12.Yukawa, J. Synchronization of gallers with host plant phenology. Popul. Ecol. 42, 105–113 (2000).Article 

    Google Scholar 
    13.Vitou, J., Skuhravá, M., SkuhravÝ, V., Scott, J. & Sheppard, A. The role of plant phenology in the host specificity of Gephyraulus raphanistri (Diptera: Cecidomyiidae) associated with Raphanus spp. (Brassicaceae). Eur. J. Entomol. 105, 113–119 (2008).
    Article 

    Google Scholar 
    14.Yamaguchi, H. et al. Phytohormones and willow gall induction by a gall-inducing sawfly. New Phytol. 196, 586–595 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tanaka, Y., Okada, K., Asami, T. & Suzuki, Y. Phytohormones in Japanese mugwort gall induction by a gall-inducing gall midge. Biosci. Biotechnol. Biochem. 77, 1942–1948 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Liu, P., Yang, Z. X., Chen, X. M. & Foottit, R. G. The effect of the gall-forming aphid Schlechtendalia chinensis (Hemiptera: Aphididae) on leaf wing ontogenesis in Rhus chinensis (Sapindales: Anacardiaceae). Ann. Entomol. Soc. Am. 107, 242–250 (2014).Article 

    Google Scholar 
    17.Hirano, T. et al. Reprogramming of the developmental program of Rhus javanica during initial stage of gall induction by Schlechtendalia chinensis. Front. Plant Sci. 11, 471 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Kaiser, B., Vogg, G., Fürst, U. B. & Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 6, 45 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Pattee, H. E., Allred, K. R. & Wiebe, H. H. Photosynthesis in dodder. Weeds 13, 193–195 (1965).CAS 
    Article 

    Google Scholar 
    20.van der Kooij, T. A. W., Krause, K., Dörr, I. & Krupinska, K. Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus Cuscuta. Planta 210, 701–707 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Sherman, T. D., Pettigrew, W. T. & Vaughn, K. C. Structural and immunological characterization of the Cuscuta pentagona L. chloroplast. Plant Cell Physiol. 40, 592–603 (1999).CAS 
    Article 

    Google Scholar 
    22.Machado, M. A. & Zetsche, K. A structural, functional and molecular analysis of plastids of the holoparasites Cuscuta reflexa and Cuscuta europaea. Planta 181, 91–96 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Hibberd, J. M. et al. Localization of photosynthetic metabolism in the parasitic angiosperm Cuscuta reflexa. Planta 205, 506–513 (1998).CAS 
    Article 

    Google Scholar 
    24.Taiz, L., Zieiger, E., Max Moller, I. & Angus, M. Plant Physiology and Development 6th edn. (Sinauer Associates, 2015).
    Google Scholar 
    25.Bartlett, L. & Connor, E. F. Exogenous phytohormones and the induction of plant galls by insects. Arthropod Plant Interact. 8, 339–348 (2014).
    Google Scholar 
    26.Tooker, J. F. & Helms, A. M. Phytohormone dynamics associated with gall insects, and their potential role in the evolution of the gall-inducing habit. J. Chem. Ecol. 40, 742–753 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Tokuda, M. et al. Phytohormones related to host plant manipulation by a gall-inducing leafhopper. PLoS ONE 8, e62350 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Suzuki, H. et al. Biosynthetic pathway of the phytohormone auxin in insects and screening of its inhibitors. Insect Biochem. Mol. Biol. 53, 66–72 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Yokoyama, C., Takei, M., Kouzuma, Y., Nagata, S. & Suzuki, Y. Novel tryptophan metabolic pathways in auxin biosynthesis in silkworm. J. Insect Physiol. 101, 91–96 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kaiser, W., Huguet, E., Casas, J., Commin, C. & Giron, D. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc. Biol. Sci. 277, 2311–2319 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Body, M., Kaiser, W., Dubreuil, G., Casas, J. & Giron, D. Leaf-miners co-opt microorganisms to enhance their nutritional environment. J. Chem. Ecol. 39, 969–977 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Giron, D. & Glevarec, G. Cytokinin-induced phenotypes in plant-insect interactions: Learning from the bacterial world. J. Chem. Ecol. 40, 826–835 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Gutzwiller, F., Dedeine, F., Kaiser, W., Giron, D. & Lopez-Vaamonde, C. Correlation between the green-island phenotype and Wolbachia infections during the evolutionary diversification of Gracillariidae leaf-mining moths. Ecol. Evol. 5, 4049–4062 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Giron, D., Huguet, E., Stone, G. N. & Body, M. Insect-induced effects on plants and possible effectors used by galling and leaf-mining insects to manipulate their host-plant. J. Insect Physiol. 84, 70–89 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Zhao, C. et al. A massive expansion of effector genes underlies gall-formation in the wheat pest Mayetiola destructor. Curr. Biol. 25, 613–620 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Lemus, L. P. et al. Salivary proteins of a gall-inducing aphid and their impact on early gene responses of susceptible and resistant poplar genotypes. bioRxiv https://doi.org/10.1101/504613 (2018).Article 

    Google Scholar 
    37.Vogel, A. et al. Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris. Nat. Commun. 9, 2515 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Senthil-Kumar, M. & Mysore, K. S. Tobacco rattle virus–based virus-induced gene silencing in Nicotiana benthamiana. Nat. Protoc. 9, 1549–1562 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Norkunas, K., Harding, R., Dale, J. & Dugdale, B. Improving agroinfiltration-based transient gene expression in Nicotiana benthamiana. Plant Methods 14, 71 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Christiaens, O. et al. RNA interference: A promising biopesticide strategy against the African Sweetpotato Weevil Cylas brunneus. Sci. Rep. 6, 38836 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Maire, J., Vincent-Monégat, C., Masson, F., Zaidman-Rémy, A. & Heddi, A. An IMD-like pathway mediates both endosymbiont control and host immunity in the cereal weevil Sitophilus spp. Microbiome. 6, 6 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Barnewall, E. C. & De Clerck-Floate, R. A. A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact. 6, 449–459 (2012).Article 

    Google Scholar 
    43.Aistova, E. V. & Bezborodov, V. G. Weevils belonging to the genus Smicronyx Schönherr, 1843 (Coleoptera, Curculionidae) affecting dodders (Cuscuta Linnaeus, 1753) in the Russian Far East. Russ. J. Biol. Invasions. 8, 184–188 (2017).Article 

    Google Scholar 
    44.Dinelli, G., Bonetti, A. & Tibiletti, E. Photosynthetic and accessory pigments in Cuscuta-Campestris Yuncker and some host species. Weed Res. 33, 253–260 (1993).CAS 
    Article 

    Google Scholar 
    45.Anikin, V. V., Nikelshparg, M. I., Nikelshparg, E. I. & Konyukhov, I. V. Photosynthetic activity of the dodder Cuscuta campestris (Convolvulaceae) in case of plant inhabitation by the gallformed weevil Smicronyx smreczynskii (Coleoptera, Curculionidae). Chem. Biol. Ecol. 17, 42–47 (2017) (in Russian).
    Google Scholar 
    46.Zagorchev, L. I., Albanova, I. A., Tosheva, A. G., Li, J. & Teofanova, D. R. Metabolic and functional distinction of the Smicronyx sp. galls on Cuscuta campestris. Planta 248, 591–599 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 9, 676–682 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Carneiro, R. G. D. S. & Isaias, R. M. D. S. Gradients of metabolite accumulation and redifferentiation of nutritive cells associated with vascular tissues in galls induced by sucking insects. AoB Plants. 7, plv086 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Porra, R. J., Thompson, W. A. & Kriedemann, P. E. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394 (1989).CAS 
    Article 

    Google Scholar 
    50.Kawase, M., Hanba, Y. T. & Katsuhara, M. The photosynthetic response of tobacco plants overexpressing ice plant aquaporin McMIPB to a soil water deficit and high vapor pressure deficit. J. Plant Res. 126, 517–527 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comput. Graph Stat. 5, 299–314 (1996).
    Google Scholar  More

  • in

    Shell shock: a biologist’s quest to save the endangered painted snail

    Download PDF

    In my laboratory at the University of Oriente, in Santiago de Cuba, we study the six species of Polymita, known as painted snails, which are endemic to eastern Cuba and are in danger of extinction. The shells’ vibrant swirls and stripes look as if they’ve been painted by hand. Unfortunately, you can find their shells for sale on eBay, and many are exported to places such as the United States, China and Spain for use in art and jewellery — despite laws banning such trade.Painted snails live in mangrove forests, in sandy and rocky coastal areas and in rainforests. Some species are important parts of agro-ecosystems, such as coffee and coconut plantations. In 1995, my team began a breeding laboratory. We needed a way to isolate individual snails in containers, and to provide them with food, such as a fig-tree branch covered with moss, lichens and sooty mould fungus. But getting enough of the right containers was a problem because the nation was in an economic depression then.My students realized that when tourists visited Cuba, they left behind plastic one-litre water bottles. Since then we’ve been using them as living spaces for the snails.We study the breeding behaviour, nesting, hatching and growth of these hermaphrodites. If we want to save Polymita, we need to know more about their reproduction patterns — why one species hatches only between July and December, for instance.When mating, Polymita use a protrusion called a dart to transfer hormones, but we know very little about it. We are studying how these hormones affect the reproductive tract and influence fertilization success.In Cuba, there is more support for medical research than for biodiversity research. So we look for collaborations around the world. My motto is a Cuban saying: “We have the ‘no’, and therefore always have to look for the ‘yes’.” In other words, there is always another way, if you keep looking.

    Nature 594, 606 (2021)
    doi: https://doi.org/10.1038/d41586-021-01683-8

    Related Articles

    My race against time to capture the sounds of ancient rainforests

    Fighting fires to save a natural reserve in Brazil

    Catching a wave to study coral

    Subjects

    Careers

    Conservation biology

    Developing world

    Latest on:

    Careers

    Six reasons to launch a Young Academy
    Career Column 21 JUN 21

    Better together: collaborative spaces can inspire scientists of all ages
    Career Column 18 JUN 21

    Webcast: How to learn to code
    Career News 16 JUN 21

    Developing world

    Regulate waste recycling internationally
    Correspondence 15 JUN 21

    Count the cost of disability caused by COVID-19
    Comment 26 MAY 21

    How waste water is helping South Africa fight COVID-19
    Technology Feature 24 MAY 21

    Jobs from Nature Careers

    All jobs

    Deputy Director, Division of Lung Diseases
    National Institutes of Health (NIH)
    Bethesda, MD, United States

    JOB POST

    Associate Senior Lecturer/Assistant Professor in Analytical chemistry
    Stockholm University
    Stockholm, Sweden

    JOB POST

    Senior Project Manager – COSMIC
    Wellcome Trust Sanger Institute
    Cambridge, United Kingdom

    JOB POST

    METAL-ORGANIC FRAMEWORK SYNTHESIS AND ADSORPTION STUDIES
    KU Leuven
    Leuven, Belgium

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Fear of large carnivores is tied to ungulate habitat use: evidence from a bifactorial experiment

    1.Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484. https://doi.org/10.1126/science.1241484 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ford, A. T. & Goheen, J. R. Trophic cascades by large carnivores: A case for strong Inference and mechanism. Trend Ecol. Evol. 30, 725–735 (2015).Article 

    Google Scholar 
    4.Suraci, J. P., Clinchy, M., Dill, L. M., Roberts, D. & Zanette, L. Y. Fear of large carnivores causes a trophic cascade. Nat. Commun. 7, 10698. https://doi.org/10.1038/ncomms10698 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Atkins, J. L. et al. Cascading impacts of large-carnivore extirpation in an African ecosystem. Science 364, 173–177 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Brown, J. S., Laundre, J. W. & Gurung, M. The ecology of fear: Optimal foraging, game theory and trophic interactions. J. Mammal. 80, 385–399 (1999).Article 

    Google Scholar 
    7.Brown, J. S. Ecology of fear. In Encyclopedia of Animal Behaviour (ed. Chun, C.) (Academic Press, 2019).
    Google Scholar 
    8.Trussell, G. C., Ewanchuk, P. J. & Matassa, C. M. The fear of being eaten reduces energy transfer in a simple food chain. Ecology 87, 2979–2984 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Schmitz, O. J., Krivan, V. & Ovadia, O. Trophic cascades: The primacy of trait-mediated indirect interactions. Ecol. Lett. 7, 153–163 (2004).Article 

    Google Scholar 
    10.Say-Sallaz, E., Chamaillé-James, S., Fritz, H. & Valeix, M. Non-consumptive effects of predation in large terrestrial mammals: Mapping our knowledge and revealing the tip of the iceberg. Biol. Conserv. 235, 36–52 (2019).Article 

    Google Scholar 
    11.Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 113, 838–846 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Asner, G. P. et al. Large-scale impacts of herbivores on the structural diversity of African savannas. Proc. Natl. Acad. Sci. USA 106, 4947–4952 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ford, A. T. et al. Large carnivores make savanna tree communities less thorny. Science 346, 346–349 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Bernes, C. et al. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates: A systematic review. Environ. Evid. 7, 13. https://doi.org/10.1186/s13750-018-0125-3 (2018).Article 

    Google Scholar 
    15.Creel, S. The control of risk hypothesis: Reactive vs proactive antipredator responses and stress-mediated vs food-mediated costs of response. Ecol. Lett. 21, 947–956 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Riginos, C. Climate and the landscape of fear in an African savanna. J. Anim. Ecol. 84, 124–133 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.le Roux, E. G., Kerley, I. H. & Cromsigt, J. P. G. M. Megaherbivores modify trophic cascades triggered by fear of predation in an African savanna ecosystem. Curr. Biol. 28, 2493–2499 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    18.Eldridge, D. J. et al. Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecol. Lett. 14, 709–722 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Stanton, R. A. et al. Shrub encroachment and vertebrate diversity: A global meta-analysis. Glob. Ecol. Biogeogr. 27, 368–379 (2018).Article 

    Google Scholar 
    20.Soto-Shoender, J. R., McCleery, R. A., Monadjem, A. & Gwinn, D. C. The importance of grass cover for mammalian diversity and habitat associations in a bush encroached savanna. Biol. Conserv. 221, 127–136 (2018).Article 

    Google Scholar 
    21.Courbin, N. et al. Reactive responses of zebra to lion encounters shape their predator-prey space game at large scale. Oikos 125, 829–838 (2016).Article 

    Google Scholar 
    22.van Buskirk, J. Specific induced responses to different predator species in anuran larvae. J. Evol. Biol. 14, 482–489 (2001).Article 

    Google Scholar 
    23.Chalcraft, D. R. & Resetarits, W. J. Jr. Predator identity and ecological impacts: Functional redundancy or functional diversity?. Ecology 84, 2407–2418 (2003).Article 

    Google Scholar 
    24.Templeton, C. N., Greene, E. & Davis, K. Allometry of alarm calls: Black-capped chickadees encode information about predator size. Science 308, 1934–1937 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autonomy. Behav. Eco. 21, 91–96 (2009).Article 

    Google Scholar 
    26.Dröge, E., Creel, S., Becker, M. S. & Msoka, J. Risky times and risky places interact to affect prey behaviour. Nat. Ecol. Evol. 1, 1123–1128 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Davies, A. B., Tambling, C. J., Kerley, G. I. H. & Asner, G. P. Effects of vegetation structure on the location of lion kill sites in African thicket. PLoS ONE https://doi.org/10.1371/journal.pone.0149098 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Bertram, B. C. R. Serengeti Predators and their Social Systems in Serengeti: Dynamics of an Ecosystem, 221–285. (Sinclair, A. R. E. and Norton-Griffiths, M., Eds). (University of Chicago Press, Chicago, 1979).29.Bailey, T. N. The African Leopard: Ecology and Behavior of a Solitary Felid (Columbia University Press, 1993).Book 

    Google Scholar 
    30.Hayward, M. W. & Kerley, G. I. H. Prey preferences and dietary overlap amongst Africa’s large predators. S. Afr. J. Wildl. Res. 38, 93–108 (2008).Article 

    Google Scholar 
    31.McCleery, R. A. et al. Animal diversity declines with broad-scale homogenization of canopy cover in African savannas. Biol. Conserv. 226, 54–62 (2018).Article 

    Google Scholar 
    32.Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: Relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).Article 

    Google Scholar 
    33.Sirami, C. & Monadjem, A. Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Divers. Distrib. 18, 390–400 (2012).Article 

    Google Scholar 
    34.Estes, R. D. The Behavior Guide to African Mammals: Including Hoofed Mammals, Carnivores, Primates (University of California Press, 2012).
    Google Scholar 
    35.Hayward, M. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313 (2006).Article 

    Google Scholar 
    36.Holekamp, K. E. & Dloniak, S. M. Intraspecific Variation in the Behavioral Ecology of a Tropical Carnivore, the Spotted Hyena in Advances in the Study of Behavior. Vol. 42 189–229 (Elsevier, 2010).37.Retief, F. The Ecology of Spotted Hyena, Crocuta crocuta, in Majete Wildlife Reserve, Malawi. Dissertation. (Stellenbosch University, 2016).38.Suraci, J. P. et al. A new automated behavioural response system to integrate playback experiments into camera trap studies. Methods Ecol. Evol. 8, 957–964 (2017).Article 

    Google Scholar 
    39.Smith, J. A. et al. Fear of the human ‘super predator’ reduces feeding time in large carnivores. Proc. R. Soc. Lond. Ser. B. https://doi.org/10.1098/rspb.2017.0433 (2017).Article 

    Google Scholar 
    40.Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Lond. B. 272, 2627–2634 (2005).
    Google Scholar 
    41.Scogings, P. F. Large herbivores and season independently affect woody stem circumference increment in a semi-arid savanna. Plant Ecol. 215, 1433–1443 (2014).Article 

    Google Scholar 
    42.Skinner, J. D. & Chimimba, C. T. The Mammals of the Southern African Sub-region (Cambridge University Press, 2005).Book 

    Google Scholar 
    43.Canfield, R. H. Application of the line interception method in sampling range vegetation. J. For. 39, 388–394 (1941).
    Google Scholar 
    44.Favreau, F. R., Pays, O., Goldizen, A. W. & Fritz, H. Short-term behavioural responses of impalas in simulated antipredator and social contexts. PLoS ONE https://doi.org/10.1371/journal.pone.0084970 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Suraci, J. P., Clinchy, M. & Zanette, L. Y. Do large carnivores and mesocarnivores have redundant impacts on intertidal prey?. PLoS ONE https://doi.org/10.1371/journal.pone.0170255 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Chandler, R. B., Engebretsen, K., Cherry, M. J., Garrison, E. P. & Miller, K. V. Estimating recruitment from capture–recapture data by modelling spatio-temporal variation in birth and age-specific survival rates. Methods Ecol. Evol. 9, 2115–2130 (2018).Article 

    Google Scholar 
    47.Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Stud. Behav. 16, 229–249 (1986).Article 

    Google Scholar 
    48.Lind, J. & Cresswell, W. Determining the fitness consequences of anti-predation behavior. Behav. Ecol. 16, 945–956 (2005).Article 

    Google Scholar 
    49.Berger, J. Carnivore repatriation and holarctic prey: Narrowing the deficit in ecological effectiveness. Conserv. Biol. 21, 1105–1116 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Dalerum, F. & Belton, L. African ungulates recognize a locally extinct native predator. Behav. Ecol. 26, 215–222 (2015).Article 

    Google Scholar 
    51.Palmer, M. S. & Gross, A. Eavesdropping in an African large mammal community: Antipredator responses vary according to signaler reliability. Anim. Behav. 137, 1–9 (2018).Article 

    Google Scholar 
    52.Crawley, M. J. Statistical Computing: An Introduction to Data Analysis Using S-PLUS (Wiley, 2002).MATH 

    Google Scholar 
    53.Hodges, J. S. Richly Parameterized Linear Models: Additive, Time Series, and Spatial Models Using Random Effects (CRC Press, 2016).MATH 
    Book 

    Google Scholar 
    54.Agresti, A. An Introduction to Categorical Data Analysis 2nd edn. (Wiley, 2002).MATH 
    Book 

    Google Scholar 
    55.Hopcraft, J. G. C., Sinclair, A. R. E. & Packer, C. Planning for success: Serengeti lions seek prey accessibility rather than abundance. J. Anim. Ecol. 74, 559–566 (2005).Article 

    Google Scholar 
    56.Gorini, L. et al. Habitat heterogeneity and mammalian predator-prey interactions. Mammal Rev. 42, 55–77 (2011).Article 

    Google Scholar 
    57.Creel, S. et al. What explains variation in the strength of behavioral responses to predation risk? A standardized test with large carnivore and ungulate guilds in three ecosystems. Biol. Conserv. 232, 164–172 (2019).Article 

    Google Scholar 
    58.Palmer, M. S., Fieberg, J., Swanson, A., Kosmala, M. & Packer, C. A ‘dynamic’ landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle. Ecol. Lett. 20, 1364–1373 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Kohl, M. T. et al. Diel predator activity drives a dynamic landscape of fear. Ecol. Monogr. 88, 1–10. https://doi.org/10.1002/ecm.1313 (2018).Article 

    Google Scholar 
    60.Breitenmoser, U., Breitenmoser-Wursten, C., Carbyn, L. N. & Funk, S. M. Assessment of Carnivore Reintroduction in Carnivore Conservation (eds. J. L. Gittleman, S. M. Funk, D. W. Macdonald and R. K. Wayne) 241–280 (Cambridge University Press and Zoological Society of London, 2001).61.Hayward, M. W. et al. The reintroduction of large carnivores to the Eastern Cape, South Africa: an assement. Oryx 41, 205–214 (2007).Article 

    Google Scholar 
    62.Thaker, M. et al. Minimizing predation risk in a landscape of multiple predators: Effects on the spatial distribution of African ungulates. Ecology 92, 398–407 (2011).PubMed 
    Article 

    Google Scholar 
    63.Augustine, D. J. & Mcnaughton, S. J. Regulation of shrub dynamics by native browsing ungulates on East African rangeland. J. Appl. Ecol. 41, 45–58 (2004).Article 

    Google Scholar 
    64.Daskin, J. H., Stalmans, M. & Pringle, R. M. Ecological legacies of civil war: 35-year increase in savanna tree cover following wholesale large-mammal declines. J. Ecol. 104, 79–89 (2016).Article 

    Google Scholar 
    65.Loggins, A. A., Shrader, A. M., Monadjem, A. & McCleery, R. A. Shrub cover homogenizes small mammals’ activity and perceived predation risk. Sci. Rep. https://doi.org/10.1038/s41598-019-53071-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Keesing, F. & Young, T. P. Cascading consequences of the loss of large mammals in an African savanna. Bioscience 64, 487–495 (2014).Article 

    Google Scholar  More

  • in

    Untangling the influence of biotic and abiotic factors on habitat selection by a tropical rodent

    1.Webster, M. S. Role of predators in the early post-settlement demography of coral-reef fishes. Oecologia 131(1), 52–60 (2002).PubMed 
    Article 
    ADS 

    Google Scholar 
    2.Ward-Fear, G. et al. The ecological and life history correlates of boldness in free-ranging lizards. Ecosphere 9, e02125 (2018).Article 

    Google Scholar 
    3.Hyslop, N. L., Meyers, J. M., Cooper, R. J. & Stevenson, D. J. Effects of body size and sex of Drymarchon couperi (Eastern Indigo Snake) on habitat use, movements, and home range size in Georgia. J. Wildl. Manag. 78, 101–111 (2014).Article 

    Google Scholar 
    4.Roe, J. H., Kish, A. L. & Nacy, J. P. Variation and repeatability of home range in a forest-dwelling terrestrial turtle: implications for prescribed fire in forest management. J. Zool. 310(1), 71–81 (2020).CAS 
    Article 

    Google Scholar 
    5.Campanella, F., Auster, P. J., Taylor, J. C. & Muñoz, R. C. Dynamics of predator–prey habitat use and behavioral interactions over diel periods at sub-tropical reefs. PLoS ONE 14(2), e0211886 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6(6), e21062 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Delgado, M. D. M., Bettega, C., Martens, J. & Packert, M. Ecotypic changes of alpine birds to climate change. Sci. Rep. 9, 16082 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    8.He, P., Maldonado-Chaparro, A. A. & Farine, D. R. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav. Ecol. Sociobiol. 73, 9 (2019).Article 

    Google Scholar 
    9.Abramsky, Z., Rosensweig, M. L. & Subach, A. Measuring the benefit of habitat selection. Behav. Ecol. 13, 497–502 (2002).Article 

    Google Scholar 
    10.Rosenzweig, M. L. A theory of habitat selection. Ecology 62(2), 327–335 (1981).Article 

    Google Scholar 
    11.Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1550), 2233–2244 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Manly, B. F., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer, 2002).
    Google Scholar 
    13.Aplin, K. P. & Baverstock, P. R. Pale field-rat, Rattus tunneyi. In The Mammals of Australia 3rd edn (Eds. S. van Dyck and R. Strahan. Reed New Holland, 2008).14.B.O.M. Australian Bureau of Meterology. Australian Government, http://www.bom.gov.au/ (Accessed 25 May 2016).15.Thiele, K. R. & Prober, S. M. Assessment of impacts of feral horses (Equus caballus) in the Australian alps, part 1. Report to Australian Alps Liaison committee. https://www.yumpu.com/en/document/read/37598528/assessment-of-impacts-of-feral-horses-australian-alps-national- (1999).16.Ward-Fear, G., Brown, G. P., Pearson, D. J. & Shine, R. An invasive tree facilitates the persistence of native rodents on an overgrazed floodplain in tropical Australia. Austral. Ecol. 42, 385–393 (2017).Article 

    Google Scholar 
    17.Braithwaite, R. W. & Griffiths, A. D. The paradox of Rattus tunneyi: endangerment of a native pest. Wildl. Res. 2, 1–21 (1996).Article 

    Google Scholar 
    18.Clutton-Brock, T. H. Mammalian mating systems. Proc. R. Soc. Lond. B Biol. Sci. 236, 339–372 (1989).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    19.Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. The action plan for Australian Mammals 2012. (Eds. CSIRO; CSIRO Publishing, 2014).20.Young, S. & Hill, B. Threatened species of the Northern Territory: Pale Field-Rat Rattus tunneyi. Online factsheet. (Eds.Department of Land and Resource Management, Northern Territory Government.) https://nt.gov.au/__data/assets/pdf_file/0020/205517/pale-field-rat.pdf (2016).21.IUCN International Union for the Conservation of Nature. https://www.iucnredlist.org/species/19369/115150024#threats ( (Accessed 11 May 2021).22.O’Neill, S., Short, J. & Calver, M. The distribution, habitat preference and population dynamics of the pale field-rat (Rattus tunneyi) at Edel Land, Shark Bay, Western Australia: the role of refuges and refugia in population persistence. Wildl. Res. WR20005; (2021). (In press).23.Tuft, K. et al. Cats are a key threatening factor to the survival of local populations of native small mammals in Australia’s tropical savannas: evidence from translocations trials with Rattus tunneyi. Wildl. Res. (2021). (WR20193; In press).24.Parsons, W. & Cuthbertson, E. Noxious Weeds of Australia (CSIRO Publishing, 1992).
    Google Scholar 
    25.W.A. Government. Chinee apple: declared pest. Online factsheet (Eds. Department of Agriculture and Fisheries WA). https://www.agric.wa.gov.au/declared-plants/chinee-apple-declared-pest (2016).26.Greenhouse, S. W. & Geisser, S. On methods in the analysis of profile data. Psychometrika 24, 95–112 (1959).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    27.Brown, J. S. Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22, 37–47 (1988).Article 

    Google Scholar 
    28.Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    29.Bedoya-Perez, M., Carthey, A. R., Mella, V. A., McArthur, C. & Banks, P. A practical guide to avoid giving up on giving-up densities. Behav. Ecol. Sociobiol. 67(10), 1–13 (2013).Article 

    Google Scholar 
    30.Long, J. L. Introduced Mammals of the World: Their History, Distribution Ad Influence (CSIRO Publishing, 2003).Book 

    Google Scholar 
    31.Kutt, A. S. & Gordon, I. J. Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savvanas. Anim. Conserv. 15(4), 416–425 (2012).Article 

    Google Scholar 
    32.Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. & Fisher, A. Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following removal of introduced herbivores. Austral. Ecol. 36(7), 791–799 (2011).Article 

    Google Scholar 
    33.Cherubin, R. C., Venn, S. E., Driscoll, D. A., Doherty, T. S. & Ritchie, E. G. Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia. Ecol. Manag. Restor. 20, 47–56 (2019).Article 

    Google Scholar 
    34.Schulz, M., Schroder, M. & Green, K. The occurrence of the broad-toothed rat Mastacomys fuscus in relation to feral horse impacts. Ecol. Manag. Restor. 20, 31–36 (2019).Article 

    Google Scholar 
    35.Braithwaite, R. W. & Muller, W. Rainfall, groundwater and refuges: predicting extinctions of Australian tropical mammal species. Aust. J. Ecol. 22, 57–67 (1997).Article 

    Google Scholar 
    36.Short, J., O’Neill, S. & Richards, J. D. Irruption and collapse of a population of pale field-rat (Rattus tunneyi) at Heirisson Prong, Shark Bay, Western Australia. Aust. Mammal. 40, 36–46 (2018).Article 

    Google Scholar 
    37.Shrader, A. M., Brown, J. S., Kerley, G. I. H. & Kotler, B. P. Do free-ranging domestic goats show “landscapes of fear”? Patch use in response to habitat features and predator cues. J. Arid Environ. 72, 1811–1819 (2008).Article 
    ADS 

    Google Scholar 
    38.Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutierrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: a field experiment with a Neotropical rodent. Oikos 74, 259–264 (1995).Article 

    Google Scholar 
    39.Arthur, A. D., Pech, R. P. & Dickman, C. R. Effects of predation and habitat structure on the population dynamics of house mice in large outdoor enclosures. Oikos 108, 562–572 (2005).Article 

    Google Scholar 
    40.Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).
    Google Scholar 
    41.Wheeler, H. C. & Hik, D. S. Giving-up densities and foraging behaviour indicate possible effects of shrub encroachment on arctic ground squirrels. Anim. Behav. 95, 1–8 (2014).Article 

    Google Scholar 
    42.Carthey, A. J. R. & Banks, P. B. Foraging in groups affects giving-up densities: solo foragers quit sooner. Oecologia 178, 707–713. https://doi.org/10.1007/s00442-015-3274-x (2015).Article 
    PubMed 
    ADS 

    Google Scholar 
    43.Frank, A. S. K. et al. Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas. J. Appl. Ecol. 51, 1486–1493 (2014).Article 

    Google Scholar 
    44.Hradsky, B. B., Mildwaters, C., Ritchie, E. G., Christie, F. & Di Stefano, J. Responses of invasive predators and native prey to a prescribed forest fire. J. Mammal. 98(3), 835–847 (2017).Article 

    Google Scholar 
    45.Newsome, A. E. & Corbett, L. K. Outbreaks of rodents in semi-arid and arid Australia: causes, preventions, and evolutionary considerations. In Rodents in Desert Environments (eds Prakash, I. & Gosh, P. K.) 117–153 (Dr W. Junk, 1975).Chapter 

    Google Scholar 
    46.Ims, R. A. Responses in spatial organization and behaviour to manipulations of the food resource in the vole Clethrionomys rufocanus. J. Anim. Ecol. 56, 585–596 (1987).Article 

    Google Scholar 
    47.Ims, R. A. Spatial clumping of sexually receptive females induces space sharing among male voles. Nature 335, 541–543 (1988).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    48.Ims, R. A. Male spacing systems in microtine rodents. Am. Nat. 130, 475–484 (1987).Article 

    Google Scholar 
    49.Crowcroft, P. Territoriality in wild house mice, Mus musculus. J. Mammal. 36, 299–301 (1955).Article 

    Google Scholar 
    50.Wolff, J. O. Rodent Societies : An Ecological and Evolutionary Perspective (The University of Chicago Press, 2007).Book 

    Google Scholar 
    51.Watts, C. H. S. & Aslin, H. J. The Rodents of Australia (Angus & Robertson Publishers, 1981).
    Google Scholar 
    52.Laundre, J. W. et al. The landscape of fear: the missing link to understand top-down and bottom-up controls of prey abundance?. Ecology 95, 1141–1152 (2014).PubMed 
    Article 

    Google Scholar 
    53.Creel, S., Christianson, D., Liley, S. & Winnie, J. A. Jr. Predation risk affects reproductive physiology and demography of elk. Science 315, 960 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    54.Lande, R. & Barrowclough, G. F. Effective population size, genetic variation and their use in population management. In Viable Populations for Conservation (ed. Soulé, M. E.) 87–123 (Cambridge University Press, 1987).Chapter 

    Google Scholar 
    55.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    56.Watts, C. H. S. The foods eaten by some Australian rodents (Muridae). Aust. Wildl. Res. 4, 151–157 (1977).Article 

    Google Scholar 
    57.Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).Article 

    Google Scholar 
    58.Schlaepfer, M. A., Sax, D. F. & Olden, J. D. The potential conservation value of non-native species. Conserv. Biol. 25, 428–437 (2011).PubMed 
    Article 

    Google Scholar 
    59.Utz, R. M., Slater, A., Rosche, H. & Carson, W. P. Do dense layers of invasive plants elevate the foraging intensity of small mammals in temperate deciduous forests? A case study from Pennsylvania, USA. NeoBiota 56, 73–88 (2020).Article 

    Google Scholar 
    60.Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).Article 

    Google Scholar 
    61.Guiden, P. W. & Orrock, J. L. Invasive exotic shrub modifies a classic animal–habitat relationship and alters patterns of vertebrate seed predation. Ecology 98, 321–327 (2017).PubMed 
    Article 

    Google Scholar 
    62.Gorman, D. & Turra, A. The role of mangrove revegetation as a means of restoring macrofaunal communities along degraded coasts. Sci. Total Environ. 566, 223–229 (2016).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    63.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46. https://doi.org/10.1111/rec.13035 (2019).Article 

    Google Scholar 
    64.Parreira, B. & Chikhi, L. On some genetic consequences of social structure, mating systmes, dispersal, and sampling. Proc. Natl. Acad. Sci. 112(26), E3318–E3326 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    65.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar  More

  • in

    Smell of green leaf volatiles attracts white storks to freshly cut meadows

    1.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).Article 

    Google Scholar 
    2.Bernays, E. A. & Wcislo, W. T. Sensory capabilities, information processing, and resource specialization. Q. Rev. Biol. 69, 187–204 (1994).Article 

    Google Scholar 
    3.Løkkeborg, S. Feeding behaviour of cod, Gadus morhua: Activity rhythm and chemically mediated food search. Anim. Behav. 56, 371–378 (1998).Article 

    Google Scholar 
    4.Niesterok, B., Krüger, Y., Wieskotten, S., Dehnhardt, G. & Hanke, W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J. Exp. Biol. 220, 174–185 (2017).Article 

    Google Scholar 
    5.Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & McGregor, I. S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).Article 

    Google Scholar 
    6.Nevo, O. & Heymann, E. W. Led by the nose: olfaction in primate feeding ecology. Evolutionary Anthropology: Issues, News, and Reviews 24, 137–148 (2015).Article 

    Google Scholar 
    7.Harel, R., Horvitz, N. & Nathan, R. Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    8.Amo, L., Galván, I., Tomás, G. & Sanz, J. J. Predator odour recognition and avoidance in a songbird. Funct. Ecol. 22, 289–293 (2008).Article 

    Google Scholar 
    9.Nevitt, G. A. Sensory ecology on the high seas: The odor world of the procellariiform seabirds. J. Exp. Biol. 211, 1706–1713 (2008).Article 

    Google Scholar 
    10.Wenzel, B. M. Olfaction 432–448 (Springer, 1971).Book 

    Google Scholar 
    11.Snyder, G. & Peterson, T. Olfactory sensitivity in the black-billed magpie and in the pigeon. Comp. Biochem. Physiol. A Physiol. 62, 921–925 (1979).Article 

    Google Scholar 
    12.Smith, S. A. & Paselk, R. A. Olfactory sensitivity of the turkey vulture (Cathartes aura) to three carrion-associated odorants. Auk 103, 586–592 (1986).Article 

    Google Scholar 
    13.Buitron, D. & Nuechterlein, G. L. Experiments on olfactory detection of food caches by black-billed magpies. Condor 87, 92–95 (1985).Article 

    Google Scholar 
    14.Rhoads, S. N. The power of scent in the turkey vulture. Am. Nat. 17, 829–833 (1883).Article 

    Google Scholar 
    15.Grigg, N. P. et al. Anatomical evidence for scent guided foraging in the turkey vulture. Sci. Rep. 7, 17408 (2017).ADS 
    Article 

    Google Scholar 
    16.Wetmore, A. The role of olfaction in food location by the turkey vulture (Cathartes aura). Oxford University Press (1965).17.Reynolds, A. M., Cecere, J. G., Paiva, V. H., Ramos, J. A. & Focardi, S. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proc. R. Soc. B. Biol. Sci. 282, 20150468 (2015).18.Wallraff, H. G. An amazing discovery: Bird navigation based on olfaction. J. Exp. Biol. 218, 1464–1466 (2015).Article 

    Google Scholar 
    19.Steiger, S. S., Fidler, A. E., Valcu, M. & Kempenaers, B. Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds?. Proc. R. Soc. Lond. B Biol. Sci. 275, 2309–2317 (2008).CAS 

    Google Scholar 
    20.Gwinner, H. & Berger, S. Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. 75, 971–976 (2008).Article 

    Google Scholar 
    21.Krause, E. T. et al. Advances in the Study of Behavior Vol. 50, 37–85 (Elsevier, 2018).
    Google Scholar 
    22.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    23.Halitschke, R., Stenberg, J. A., Kessler, D., Kessler, A. & Baldwin, I. T. Shared signals–‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol. Lett. 11, 24–34 (2008).PubMed 

    Google Scholar 
    24.Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C. & Preston, C. A. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311, 812–815 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Koski, T. M. et al. Do insectivorous birds use volatile organic compounds from plants as olfactory foraging cues? Three experimental tests. Ethology 121, 1131–1144 (2015).Article 

    Google Scholar 
    26.Mäntylä, E., Blande, J. D. & Klemola, T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature?. Arthropod-Plant Interact. 8, 143–153 (2014).Article 

    Google Scholar 
    27.Gagliardo, A., Ioale, P., Filannino, C. & Wikelski, M. Homing pigeons only navigate in air with intact environmental odours: A test of the olfactory activation Hypothesis with GPS data loggers. PLoS ONE https://doi.org/10.1371/journal.pone.0022385 (2011).28.Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: Evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805. https://doi.org/10.1242/jeb.085738 (2013).Article 
    PubMed 

    Google Scholar 
    29.Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071. https://doi.org/10.1242/jeb.034504 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. https://doi.org/10.1038/srep17061 (2015).31.Flack, A., Nagy, M., Fiedler, W., Couzin, I. D. & Wikelski, M. From local collective behavior to global migratory patterns in white storks. Science 360, 911–914. https://doi.org/10.1126/science.aap7781 (2018).ADS 
    Article 
    PubMed 

    Google Scholar 
    32.Klump, G. M., Kretzschmar, E. & Curio, E. The hearing of an avian predator and its avian prey. Behav. Ecol. Sociobiol. 18, 317–323. https://doi.org/10.1007/BF00299662 (1986).Article 

    Google Scholar 
    33.Wei, J. & Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal. Behav. 6, 369–371 (2011).CAS 
    Article 

    Google Scholar 
    34.Fall, R., Karl, T., Hansel, A., Jordan, A. & Lindinger, W. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. Atmos. 104, 15963–15974 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Hansson, B. S. From organism to molecule and back-insect olfaction during 40 years. J. Chem. Ecol. 40, 409 (2014).CAS 
    Article 

    Google Scholar 
    36.Roper, T. J. Olfaction in birds. Adv. Study Behav. 28, 247–247 (1999).Article 

    Google Scholar 
    37.Safi, K., Gagliardo, A., Wikelski, M. & Kranstauber, B. How displaced migratory birds could use volatile atmospheric compounds to find their migratory corridor: A test using a particle dispersion model. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2016.00175 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171 (2013).Article 

    Google Scholar 
    39.Papi, F. Olfactory navigation in birds. Experientia 46, 352–363 (1990).Article 

    Google Scholar 
    40.Hagelin, J. C. & Jones, I. L. Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication?. Auk 124, 741–761 (2007).Article 

    Google Scholar 
    41.Pollonara, E. et al. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: Displacements with shearwaters in the Mediterranean Sea. Sci. Rep. 5, 16486 (2015).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Environmental DNA signatures distinguish between tsunami and storm deposition in overwash sand

    1.Nicholls, R. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) Ch. 6 (Cambridge University Press, 2007).2.Gordon, M. et al. in Global Assessment Report on Disaster Risk Reduction Ch. 3 (UNDRR, 2019).3.Dominey-Howes, D. Documentary and geological records of tsunamis in the Aegean Sea region of Greece and their potential value to risk assessment and disaster management. Nat. Hazards 25, 195–224 (2002).Article 

    Google Scholar 
    4.Switzer, A. D., Yu, F., Gouramanis, C., Soria, J. & Pham, T. D. Integrated different records to assess coastal hazards at multi-century timescales. J. Coastal Res. 70, 723–728 (2014).Article 

    Google Scholar 
    5.Jankaew, K. et al. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455, 1228–1231 (2008).CAS 
    Article 

    Google Scholar 
    6.Liu, K. B. & Fearn, M. L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Res. 54, 238–245 (2000).Article 

    Google Scholar 
    7.Donnelly, J. P. & Woodruff, J. D. Intense hurricane activity over the past 5,000 years controlled by El Nino and the West African monsoon. Nature 447, 465–468 (2007).CAS 
    Article 

    Google Scholar 
    8.Nanayama, F. et al. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424, 660–663 (2003).CAS 
    Article 

    Google Scholar 
    9.Gouramanis, C. et al. High-frequency coastal overwash deposits from Phra Thong Island, Thailand. Sci. Rep. 7, 1–9 (2017).Article 

    Google Scholar 
    10.Nanayama, F. et al. differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sediment. Geol. 135, 255–264 (2000).Article 

    Google Scholar 
    11.Morton, R. A., Gelfenbaum, G. & Jaffe, B. E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 200, 184–207 (2007).Article 

    Google Scholar 
    12.Marriner, N. et al. Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Sci. Adv. 3, e1700485 (2017).Article 

    Google Scholar 
    13.Vött, A. et al. Returning to facts: response to the refusal of tsunami traces in the ancient harbour of Lechaion (Gulf of Corinth, Greece) by ‘non-catastrophists’ – Reaffirmed evidence of harbour destruction by historical earthquakes and tsunamis in AD 69–79 and the 6th cent. AD and a preceding pre-historical event in the early 8th cent. BC. Zeitschriff Geomorphologie 61, 275–302 (2018).14.Shanmugam, G. The tsunamite problem. J. Sediment. Res. 76, 718–730 (2006).Article 

    Google Scholar 
    15.Chagué-Goff, C., Chan, J. C. H., Goff, J. & Gadd, P. Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands. Isl. Arc 25, 333–349 (2016).Article 

    Google Scholar 
    16.Pham, D. T. et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits. Mar. Geol. 385, 274–292 (2017).CAS 
    Article 

    Google Scholar 
    17.Sawai, Y. et al. Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean Tsunami at Phra Thong Island, Thailand. Mar. Micropaleontol. 73, 70–79 (2009).Article 

    Google Scholar 
    18.Pilarczyk, J. E. et al. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogrogr. Palaeocl. 413, 144–157 (2017).Article 

    Google Scholar 
    19.Gouramanis C. in Geological Records of Tsunamis and other Extreme Waves (eds Engel, M., Pilarczyk, J., May, S. M., Brill, D. & Garrett, E.) Ch. 13 (Elsevier, 2020).20.Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B. & Dominey-Howes, D. Progress in palaeotsunami research. Sediment. Geol. 243, 70–88 (2012).Article 

    Google Scholar 
    21.Asano, R. et al. Changes in bacterial communities in seawater-flooded soil in the four years after the 2011 Tohoku tsunami in Japan. J. Mar. Sci. Eng. 8, 76 (2020).Article 

    Google Scholar 
    22.Atwater, B. F. et al. Extreme waves in the British Virgin Islands during the last centuries before 1500 CE. Geosphere 13, 301–368 (2017).Article 

    Google Scholar 
    23.Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).Article 

    Google Scholar 
    24.Ramesh, S., Jayaprakashvel, M. & Mathivanan, N. Microbial status in seawater and coastal sediment during pre- and post-tsunami periods in the Bay of Bengal, India. Mar. Ecol. 27, 198–203 (2006).Article 

    Google Scholar 
    25.Nayak, A. K. et al. Post tsunami changes in soil properties of Andaman Islands, India. Environ. Monit. Assess. 170, 185–193 (2010).CAS 
    Article 

    Google Scholar 
    26.Godson, P. S., Chandrasekar, N., Kumar, S. K. & Vimi, P. V. Microbial diversity in coastal sediments during pre- and post-tsunami periods in the south east coast of India. Front. Biol. 9, 161–167 (2014).Article 

    Google Scholar 
    27.Hiraoka, S. et al. Genomic and metagenomics analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics 17, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    28.Asano, R. et al. Seawater inundation from the 2011 Tohoku Tsunami continues to strongly affect soil bacterial communities 1 year later. Microb. Ecol. 66, 639–646 (2013).CAS 
    Article 

    Google Scholar 
    29.Somboonna, N. et al. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials. PLoS ONE 9, e94236 (2014).Article 
    CAS 

    Google Scholar 
    30.Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8, 1904–1919 (2014).CAS 
    Article 

    Google Scholar 
    31.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    32.Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9. 0 Tohoku Earthquake. Sci. Rep. 2, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    33.Morimura, S., Zeng, X., Noboru, N. & Hosono, T. Changes to the microbial communities within groundwater in response to a large crustal earthquake in Kumamoto, southern Japan. J. Hydrol. 581, 124341 (2020).Article 

    Google Scholar 
    34.Olsen, G. J., Lane, D. J., Giovannoni, S. J. & Pace, N. R. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).CAS 
    Article 

    Google Scholar 
    35.Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol. Biol. R 68, 669–685 (2004).CAS 
    Article 

    Google Scholar 
    36.Szczuciński, W. et al. Ancient sedimentary DNA reveals past tsunami deposits. Mar. Geol. 381, 29–33 (2016).Article 
    CAS 

    Google Scholar 
    37.Nealson, K. H. Sediment bacteria: who’s there, what are they doing, and what’s new? Annu. Rev. Earth Pl. Sc 25, 403–434 (1997).CAS 
    Article 

    Google Scholar 
    38.Srinivasalu, S., Karthikeyan, A., Switzer, A. D. & Gouramanis, C. Sedimentological characteristics of tsunami and storm deposits: a modern analogue from Southeast Indian Coast. In Paper Presented at the AOGS-AGU Join Assembly, Singapore, 13–17 September 2012 (2012)39.Switzer, A. D., Srinivasalu, S., Thangadurai, N. & Mohan, V. R. Bedding structures in Indian tsunami deposits provide clues to the dynamics of tsunami inundation. Geol. Soc. Spec. Publ. 361, 61–77 (2012).Article 

    Google Scholar 
    40.Gouramanis, C. et al. Same Same, but different: sedimentological comparison of recent storm and Tsunami deposits from the south-eastern coastline of India. In Paper presented in AGU Fall Meeting (NH21A-3811), San Francisco, California, 15 – 19 December 2014 (2014).41.Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of animal population. J. Anim. Ecol. 12, 42–58 (1943).Article 

    Google Scholar 
    42.Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).Article 

    Google Scholar 
    43.Xu, X. et al. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems. Sci. Rep. 5, 1–8 (2020).
    Google Scholar 
    44.Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).Article 

    Google Scholar 
    45.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    46.Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 63, 5–30 (2012).Article 

    Google Scholar 
    47.Szczuciński, W. et al. Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan – Insights from diatoms, nannoliths and grain size distribution. Sediment. Geol. 282, 40–56 (2012).Article 

    Google Scholar 
    48.Costa, P. J. M. et al. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits. Geol. Soc. Spec. Publ. 456, 167–190 (2018).Article 

    Google Scholar 
    49.Dominey-Howes, D., Dawson, A. & Smith, D. Late Holocene coastal tectonics at Falasarna, western Crete: a sedimentary study. Geol. Soc. Spec. Publ. 146, 343–352 (1999).Article 

    Google Scholar 
    50.Switzer, A. D. & Jones, B. G. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? Holocene 18, 787–803 (2008).Article 

    Google Scholar 
    51.Waring, B. & Hawkes, C. V. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiol. Ecol. 94, fiy001 (2018).52.Chénard, C. et al. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    53.Saxena, G. et al. Metagenomics reveals the influence of land use and rain on the benthic microbial communities in a tropical urban waterway. mSystems 3, e00136–17 (2018).54.Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PloS ONE 9, e87624 (2014).Article 
    CAS 

    Google Scholar 
    55.Mariadassou, M., Pichon, S. & Ebert, D. Microbial ecosystems are dominated by specialist taxa. Ecol. Lett. 18, 974–982 (2015).Article 

    Google Scholar 
    56.Sheth, A., Sanyal, S., Jaiswal, A. & Gandhi, P. Effects of the December 2004 India Ocean Tsunami on the Indian mainland. Earthq. Spectra 22, S435–S473 (2006).Article 

    Google Scholar 
    57.Blot, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26, 1237–1248 (2001).Article 

    Google Scholar 
    58.Folk, R. L. & Ward, W. C. Brazos river bar: a study in the significance of grain size parameter. J. Sediment. Res. 27, 3–26 (1957).Article 

    Google Scholar 
    59.Sambrook, J., Russell, D., & Sambrook, J. in The Condensed Protocols from Molecular Cloning: A Laboratory Manual (eds Sambrook, J. & Russell, D. W.) (Cold Spring Harbor Laboratory Press, 2006).60.Wilkins, D., Van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    61.Allen, M. A. & Cavicchioli, R. Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci. Rep. 7, 1–16 (2017).Article 
    CAS 

    Google Scholar 
    62.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).Article 

    Google Scholar 
    63.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    64.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).Article 

    Google Scholar 
    65.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    Article 

    Google Scholar 
    66.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).Article 
    CAS 

    Google Scholar 
    67.R Core Team. R: A language and environment for statistical computing. R https://www.R-project.org/ (2017).68.Oksanen, J. et al. vegan: Community Ecology Package. Vienna: R Foundation for Statistical Computing.[Google Scholar]. (2016).69.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    70.Anderson, M. & Ter Braa, C. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Sim. 73, 85–113 (2003).Article 

    Google Scholar 
    71.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    72.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B: Met. 57, 289–300 (1995).
    Google Scholar 
    73.Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295 (2014).Article 

    Google Scholar  More

  • in

    Bird-feeder cleaning lowers disease severity in rural but not urban birds

    1.Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 
    Article 

    Google Scholar 
    2.Galvani, A. P., Bauch, C. T., Anand, M., Singer, B. H. & Levin, S. A. Human-environment interactions in population and ecosystem health. Proc. Natl. Acad. Sci. U.S.A. 113, 14502–14506 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robb, G. N., McDonald, R. A., Chamberlain, D. E. & Bearhop, S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484 (2008).Article 

    Google Scholar 
    4.Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol. 3, 058 (2015).Article 
    CAS 

    Google Scholar 
    5.Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martinez-Abrain, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).PubMed 
    Article 

    Google Scholar 
    6.Jones, D. An appetite for connection: Why we need to understand the effect and value of feeding wild birds. Emu 111, 1–7 (2011).Article 

    Google Scholar 
    7.Hanmer, H. J., Thomas, R. L. & Fellowes, M. D. E. Provision of supplementary food for wild birds may increase the risk of local nest predation. Ibis 159, 158–167 (2017).Article 

    Google Scholar 
    8.Malpass, J. S., Rodewald, A. D. & Matthews, S. N. Species-dependent effects of bird feeders on nest predation and nest survival of urban American robins and northern cardinals. Condor 119, 1–16 (2017).Article 

    Google Scholar 
    9.Loss, S. R. & Marra, P. P. Population impacts of free-ranging domestic cats on mainland vertebrates. Front. Ecol. Environ. 15, 502–509 (2017).Article 

    Google Scholar 
    10.Jones, D. N. & Reynolds, S. J. Feeding birds in our towns: A global research opportunity. J. Avian Biol. 39, 265–271 (2008).Article 

    Google Scholar 
    11.Adelman, J. S., Moyers, S. C., Farine, D. R. & Hawley, D. M. Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird. Proc. R. Soc. B 282, 20151429 (2015).PubMed 
    Article 

    Google Scholar 
    12.Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host-parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    Article 

    Google Scholar 
    13.Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Dhondt, A. A., Dhondt, K. V., Hawley, D. M. & Jennelle, C. S. Experimental evidence for transmission of Mycoplasma gallisepticum in house finches by fomites. Avian Pathol. 36, 205–208 (2007).PubMed 
    Article 

    Google Scholar 
    15.Pierce II, R. A. & Denkler, S. Attracting hummingbirds to your property. In Agricultural Guides—University of Missouri-Columbia Extension, Vol. g9419 (2016). https://extensiondata.missouri.edu/pub/pdf/agguides/wildlife/g09419.pdf. Accessed 22 May 2020.16.Patterson, S., Janke, A., Bryan, G., Pease, J. & Jungbluth, K. Attracting Birds to Your Yard Vol. 219 (Iowa State Extension and Outreach Publications, 2017).
    Google Scholar 
    17.Feliciano, L. M., Underwood, T. J. & Aruscavage, D. F. The effectiveness of bird feeder cleaning methods with and without debris. Wilson J. Ornithol. 130, 313–320 (2018).Article 

    Google Scholar 
    18.Faustino, C. R. et al. Mycoplasma gallisepticum infection dynamics in a house finch population: Seasonal variation in survival, encounter and transmission rate. J. Anim. Ecol. 73, 651–669 (2004).Article 

    Google Scholar 
    19.Thompson, C. W., Hillgarth, N., Leu, M. & McClure, H. E. High parasite load in house finches (Carpodacus mexicanus) is correlated with expression of a sexually selected trait. Am. Nat. 149, 270–294 (1997).Article 

    Google Scholar 
    20.Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plann. 74, 46–69 (2006).Article 

    Google Scholar 
    21.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    22.Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. J. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    23.Hasegawa, M., Ligon, R. A., Giraudeau, M., Watanabe, M. & McGraw, K. J. Urban and colorful male house finches are less aggressive. Behav. Ecol. 25, 641–649 (2014).Article 

    Google Scholar 
    24.Giraudeau, M., Toomey, M. B., Hutton, P. & McGraw, K. J. Expression of and choice for condition-dependent carotenoid-based color in an urbanizing context. Behav. Ecol. 29, 1307–1315 (2018).
    Google Scholar 
    25.Hill, G. E. A Red Bird in a Brown Bag: The Function and Evolution of Colorful Plumage in the House Finch (Oxford University Press, 2002).Book 

    Google Scholar 
    26.Pyle, P. Identification Guide to North American Birds, Part I (Slate Creek Press, 1997).
    Google Scholar 
    27.Brawner, W. R., Hill, G. E. & Sundermann, C. A. Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. Auk 117, 952–963 (2000).Article 

    Google Scholar 
    28.Dolnik, O. V., Dolnik, V. R. & Bairlein, F. The effect of host foraging ecology on the prevalence and intensity of coccidian infection in wild passerine birds. Ardea 98, 97–103 (2010).Article 

    Google Scholar 
    29.Pierson, F. W., Larsen, C. T. & Gross, W. B. The effect of stress on the response of chickens to coccidiosis vaccination. Vet. Parasitol. 73, 177–180 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).Article 

    Google Scholar 
    31.Surmacki, A. & Hill, G. E. Coccidia infection does not influence preening behavior in American goldfinches. Acta Ethol. 17, 107–111 (2014).PubMed 
    Article 

    Google Scholar 
    32.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in house finches (Haemorhous mexicanus) from Arizona. Avian Dis. 62, 14–17 (2017).Article 

    Google Scholar 
    33.R Core Team. R: A language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016). https://www.R-project.org/. Accessed 22 May 2020.34.Nolan, P. M., Hill, G. E. & Stoehr, A. M. Sex, size, and plumage redness predict house finch survival in an epidemic. Proc. R. Soc. B 265, 961–965 (1998).Article 

    Google Scholar 
    35.Hutton, P., Wright, C. D., DeNardo, D. F. & McGraw, K. J. No effect of human presence at night on disease, body mass, or metabolism in rural and urban house finches (Haemorhous mexicanus). Integr. Comp. Biol. 58, 977–985 (2018).PubMed 

    Google Scholar 
    36.Giraudeau, M. & McGraw, K. J. Physiological correlates of urbanization in a desert songbird. Integr. Comp. Biol. 54, 622–632 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Cook, M. O., Weaver, M. J., Hutton, P. & McGraw, K. J. The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus). Behav. Ecol. Sociobiol. 71, 85 (2017).Article 

    Google Scholar 
    38.Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B 373, 20170090 (2018).Article 
    CAS 

    Google Scholar 
    39.Boyd, M. L., Underwood, T. J. & Aruscavage, D. F. The efficacy of cleaning bird feeders with 10% bleach wipes to reduce bacteria. J. Pennsyl. Acad. Sci. 88, 220–226 (2014).
    Google Scholar 
    40.Belthoff, J. R. & Gowaty, P. A. Male plumage coloration affects dominance and aggression in female house finches. Bird Behav. 11, 1–7 (1996).Article 

    Google Scholar 
    41.Zylberberg, M., Klasing, K. C. & Hahn, T. P. House finches (Carpodacus mexicanus) balance investment in behavioural and immunological defences against pathogens. Biol. Lett. 9, 20120856 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sykes, B. E., Hutton, P. & McGraw, K. J. Sex-specific relationships between urbanization, parasitism, and plumage coloration in house finches. Curr. Zool. https://doi.org/10.1093/cz/zoaa060 (2020).Article 

    Google Scholar 
    43.McGraw, K. J. & Ardia, D. R. Sex differences in carotenoid status and immune performance in zebra finches. Evol. Ecol. Res. 7, 251–262 (2005).
    Google Scholar 
    44.Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    45.Badyaev, A. V., Belloni, V. & Hill, G. E. House finch (Haemorhous mexicanus), version 1.0. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    46.Thompson, W. L. Agonistic behavior in the house finch. Part I: Annual cycle and display patterns. Condor 62, 245–271 (1960).Article 

    Google Scholar 
    47.Hotchkiss, E. R., Davis, A. K., Cherry, J. J. & Altizer, S. Mycoplasmal conjunctivitis and the behavior of wild house finches (Carpodacus mexicanus) at bird feeders. Bird Behav. 17, 1–8 (2005).
    Google Scholar  More