More stories

  • in

    Functionalized MWCNTs-quartzite nanocomposite coated with Dacryodes edulis stem bark extract for the attenuation of hexavalent chromium

    1.Akpomie, K. G. & Dawodu, F. A. Montmorillonite-rice husk composite for heavy metal sequestration from binary aqua media: a novel adsorbent. Trans. R. Soc. South Africa 70(1), 83–88 (2015).Article 

    Google Scholar 
    2.Ali, A., Saeed, K. & Mabood, F. Removal of chromium (VI) from aqueous medium using chemically modified banana peels as efficient low-cost adsorbent. Alex. Eng. J. 55(3), 2933–2942 (2016).Article 

    Google Scholar 
    3.Amaku, J. F., Ogundare, S. A., Akpomie, K. G., Ngwu, C. M. & Conradie, J. Sequestered uptake of chromium(VI) by Irvingia gabonensis stem bark extract anchored silica gel. Biomass Conver. Biorefinery 3, 19 (2021).
    Google Scholar 
    4.Malwade, K., Lataye, D., Mhaisalkar, V., Kurwadkar, S. & Ramirez, D. Adsorption of hexavalent chromium onto activated carbon derived from Leucaena leucocephala waste sawdust: kinetics, equilibrium and thermodynamics. Int. J. Environ. Sci. Technol. 13(9), 2107–2116 (2016).CAS 
    Article 

    Google Scholar 
    5.Belay, A. A. Impacts of chromium from tannery effluent and evaluation of alternative treatment options. J. Environ. Prot. 1(01), 53 (2010).CAS 
    Article 

    Google Scholar 
    6.Das, A. K. Micellar effect on the kinetics and mechanism of chromium(VI) oxidation of organic substrates. Coord. Chem. Rev. 248(1), 81–99 (2004).CAS 
    Article 

    Google Scholar 
    7.Paš, M., Milačič, R., Drašar, K., Pollak, N. & Raspor, P. Uptake of chromium (III) and chromium (VI) compounds in the yeast cell structure. Biometals 17(1), 25–33 (2004).PubMed 
    Article 

    Google Scholar 
    8.Medeiros, M. et al. Elevated levels of DNA–protein crosslinks and micronuclei in peripheral lymphocytes of tannery workers exposed to trivalent chromium. Mutagenesis 18(1), 19–24 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Tuzen, M.; Elik, A.; Altunay, N., Ultrasound-assisted supramolecular solvent dispersive liquid-liquid microextraction for preconcentration and determination of Cr (VI) in waters and total chromium in beverages and vegetables. J. Mol. Liq. 2021, 329, 115556.10.Gao, H. et al. Improved Adsorption Performance of α-Fe2O3 Modified with Carbon Spheres for Cr (VI) Removal from Aqueous Solution. J. Nanosci. Nanotechnol. 18(2), 1034–1042 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Amaku, J. F.; Ogundare, S. A.; Akpomie, K. G.; Conradie, J., Enhanced sequestration of chromium (VI) onto spent self-indicating silica gels coated with Harpephyllum caffrum stem bark extract. International Journal of Environmental Analytical Chemistry 2021, 1–17.12.Pagilla, K. R. & Canter, L. W. Laboratory studies on remediation of chromium-contaminated soils. J. Environ. Eng. 125(3), 243–248 (1999).CAS 
    Article 

    Google Scholar 
    13.Ali, J. et al. Separation and preconcentration of trivalent chromium in environmental waters by using deep eutectic solvent with ultrasound-assisted based dispersive liquid-liquid microextraction method. J. Mol. Liq. 291, 111299 (2019).CAS 
    Article 

    Google Scholar 
    14.Aksu, Z., Özer, D., Ekiz, H. I., Kutsal, T. & Çaglar, A. Investigation of biosorption of chromium (VI) on Cladophora crispata in two-staged batch reactor. Environ. Technol. 17(2), 215–220 (1996).CAS 
    Article 

    Google Scholar 
    15.Tiravanti, G., Petruzzelli, D. & Passino, R. Pretreatment of tannery wastewaters by an ion exchange process for Cr(III) removal and recovery. Water Sci. Technol. 36(2), 197–207 (1997).CAS 
    Article 

    Google Scholar 
    16.Seaman, J. C., Bertsch, P. M. & Schwallie, L. In situ Cr (VI) reduction within coarse-textured, oxide-coated soil and aquifer systems using Fe (II) solutions. Environ. Sci. Technol. 33(6), 938–944 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    17.Amaku, J. F. et al. Chrysophyllum albidum stem bark extract coated tillite adsorbent for the uptake of Cr (VI): thermodynamic, kinetic, isotherm, and reusability. Biomass Conver. Biorefinery 2, 1–13 (2021).
    Google Scholar 
    18.Lyubchik, S. I. et al. Kinetics and thermodynamics of the Cr (III) adsorption on the activated carbon from co-mingled wastes. Colloids Surf. A 242(1), 151–158 (2004).CAS 
    Article 

    Google Scholar 
    19.Demirbas, E., Kobya, M., Senturk, E. & Ozkan, T. Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water Sea 30(4), 533–539 (2004).CAS 

    Google Scholar 
    20.Oliveira, E., Montanher, S., Andrade, A., Nobrega, J. & Rollemberg, M. Equilibrium studies for the sorption of chromium and nickel from aqueous solutions using raw rice bran. Process Biochem. 40(11), 3485–3490 (2005).CAS 
    Article 

    Google Scholar 
    21.Samuel, M. S. et al. Efficient removal of Chromium (VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Int. J. Biol. Macromol. 121, 285–292 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Samuel, M. S. et al. Preparation of graphene oxide/chitosan/ferrite nanocomposite for Chromium (VI) removal from aqueous solution. Int. J. Biol. Macromol. 119, 540–547 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Parlayici, S., Eskizeybek, V., Avcı, A. & Pehlivan, E. Removal of chromium (VI) using activated carbon-supported-functionalized carbon nanotubes. J. Nanostruct. Chem. 5(3), 255–263 (2015).CAS 
    Article 

    Google Scholar 
    24.Hu, J., Chen, C., Zhu, X. & Wang, X. Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 162(2), 1542–1550 (2009).CAS 
    PubMed 

    Google Scholar 
    25.Amaku, J., Ogundare, S., Akpomie, K., Ngwu, C. & Conradie, J. Enhanced chromium (VI) removal by Anacardium occidentale stem bark extract-coated multiwalled carbon nanotubes. Int. J. Environ. Sci. Technol. 6, 1–14 (2021).
    Google Scholar 
    26.Amaku, J. F. et al. Thermodynamics, kinetics and isothermal studies of chromium (VI) biosorption onto Detarium senegalense stem bark extract coated shale and the regeneration potentials. Int. J. Phytoremed. 5, 1–11 (2021).Article 
    CAS 

    Google Scholar 
    27.Tunali, S., Kiran, I. & Akar, T. Chromium (VI) biosorption characteristics of Neurospora crassa fungal biomass. Miner. Eng. 18(7), 681–689 (2005).CAS 
    Article 

    Google Scholar 
    28.Módenes, A. N. et al. Study of the involved sorption mechanisms of Cr (VI) and Cr (III) species onto dried Salvinia auriculata biomass. Chemosphere 172, 373–383 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    29.Hlihor, R. M., Figueiredo, H., Tavares, T. & Gavrilescu, M. Biosorption potential of dead and living Arthrobacter viscosus biomass in the removal of Cr(VI): Batch and column studies. Process Saf. Environ. Prot. 108, 44–56 (2017).CAS 
    Article 

    Google Scholar 
    30.Ji, B. et al. Chromium (VI) removal from water using starch coated nanoscale zerovalent iron particles supported on activated carbon. Chem. Eng. Commun. 7, 1–8 (2018).
    Google Scholar 
    31.Zhu, Y. et al. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Biores. Technol. 261, 142–150 (2018).CAS 
    Article 

    Google Scholar 
    32.Zhang, S.-H. et al. Mechanism investigation of anoxic Cr (VI) removal by nano zero-valent iron based on XPS analysis in time scale. Chem. Eng. J. 335, 945–953 (2018).CAS 
    Article 

    Google Scholar 
    33.Amaku, J. F. et al. Adsorption of Cr (VI) onto Azadirachta indica stem bark extract modified dolerite composite adsorbent. Int. J. Environ. Anal. Chem. 7, 1–18 (2021).
    Google Scholar 
    34.Agarwal, G., Bhuptawat, H. K. & Chaudhari, S. Biosorption of aqueous chromium (VI) by Tamarindus indica seeds. Biores. Technol. 97(7), 949–956 (2006).CAS 
    Article 

    Google Scholar 
    35.Zhang, Y. et al. Malic acid-enhanced chitosan hydrogel beads (mCHBs) for the removal of Cr (VI) and Cu (II) from aqueous solution. Chem. Eng. J. 3, 79 (2018).
    Google Scholar 
    36.Moussout, H., Ahlafi, H., Aazza, M. & El Akili, C. Performances of local chitosan and its nanocomposite 5% Bentonite/Chitosan in the removal of chromium ions (Cr (VI)) from wastewater. Int. J. Biol. Macromol. 108, 1063–1073 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Moreira, A. L. D. S. L. et al. Bifunctionalized chitosan: a versatile adsorbent for removal of Cu (II) and Cr (VI) from aqueous solution. Carbohydr. Polym. 201, 218–227 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Lordi, V. & Yao, N. Molecular mechanics of binding in carbon-nanotube–polymer composites. J. Mater. Res. 15(12), 2770–2779 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    39.Kataura, H. et al. Optical properties of single-wall carbon nanotubes. Synth. Met. 103(1–3), 2555–2558 (1999).CAS 
    Article 

    Google Scholar 
    40.Harris, P. J., Carbon nanotubes and related structures: new materials for the twenty-first century. AAPT: 2004.41.Stahl, H., Appenzeller, J., Martel, R., Avouris, P. & Lengeler, B. Intertube coupling in ropes of single-wall carbon nanotubes. Phys. Rev. Lett. 85(24), 5186 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Dai, H. et al. Electrical transport properties and field effect transistors of carbon nanotubes. NANO 1(01), 1–13 (2006).CAS 
    Article 

    Google Scholar 
    43.Rao, G. P., Lu, C. & Su, F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep. Purif. Technol. 58(1), 224–231 (2007).CAS 
    Article 

    Google Scholar 
    44.Vuković, G. D. et al. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem. Eng. J. 173(3), 855–865 (2011).Article 
    CAS 

    Google Scholar 
    45.Gao, Z., Bandosz, T. J., Zhao, Z., Han, M. & Qiu, J. Investigation of factors affecting adsorption of transition metals on oxidized carbon nanotubes. J. Hazard. Mater. 167(1–3), 357–365 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Xu, D., Tan, X., Chen, C. & Wang, X. Removal of Pb (II) from aqueous solution by oxidized multiwalled carbon nanotubes. J. Hazard. Mater. 154(1–3), 407–416 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Kanthapazham, R., Ayyavu, C. & Mahendiradas, D. Removal of Pb2+, Ni2+ and Cd2+ ions in aqueous media using functionalized MWCNT wrapped polypyrrole nanocomposite. Desalin. Water Treat. 57(36), 16871–16885 (2016).CAS 

    Google Scholar 
    48.Wang, Y. et al. Multi-walled carbon nanotubes with selected properties for dynamic filtration of pharmaceuticals and personal care products. Water Res. 92, 104–112 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Patiño, Y. et al. Adsorption of emerging pollutants on functionalized multiwall carbon nanotubes. Chemosphere 136, 174–180 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    50.Czech, B. & Oleszczuk, P. Sorption of diclofenac and naproxen onto MWCNT in model wastewater treated by H2O2 and/or UV. Chemosphere 149, 272–278 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Howard, J. L. The quartzite problem revisited. J. Geol. 113(6), 707–713 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    52.Olivier, T. T., Moïse, F., Jackson, S. A. & Francis, N. T. A review on traditional uses, phytochemical and pharmacological profiles, spiritual and economic values, and toxicity of Dacryodes Edulis (G. Don) HJ Lam. J. Drug Deliv. Therap. 6(5), 84–90 (2016).
    Google Scholar 
    53.Ogunmoyole, T., Kade, I., Johnson, O. & Makun, O. Effect of boiling on the phytochemical constituents and antioxidant properties of African pear Dacryodes edulis seeds in vitro. Afr. J. Biochem. Res. 6(8), 105–114 (2012).CAS 
    Article 

    Google Scholar 
    54.Omoregie, E. S. & Okugbo, O. T. In vitro antioxidant activity and phytochemical screening of methanol extracts of Ficus capensis and Dacryodes edulis leaves. Journal of Pharmacy & Bioresources 11(2), 66–75 (2014).Article 

    Google Scholar 
    55.Niazi, L., Lashanizadegan, A. & Sharififard, H. Chestnut oak shells activated carbon: Preparation, characterization and application for Cr (VI) removal from dilute aqueous solutions. J. Clean. Prod. 185, 554–561 (2018).CAS 
    Article 

    Google Scholar 
    56.Klimaviciute, R., Bendoraitiene, J., Rutkaite, R. & Zemaitaitis, A. Adsorption of hexavalent chromium on cationic cross-linked starches of different botanic origins. J. Hazard. Mater. 181(1–3), 624–632 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Mishra, S., Chakraborty, T. & Matsagar, V. Dynamic characterization of himalayan quartzite using SHPB. Procedia Eng. 191, 2–9 (2017).Article 

    Google Scholar 
    58.Torres, P., Manjate, R., Quaresma, S., Fernandes, H. & Ferreira, J. M. D. F. Development of ceramic floor tile compositions based on quartzite and granite sludges. J. Eur. Ceram. Soc. 27(16), 4649–4655 (2007).CAS 
    Article 

    Google Scholar 
    59.Amaral, P. M.; Fernandes, J. C.; Rosa, L. G. In A comparison between X-ray diffraction and petrography techniques used to determine the mineralogical composition of granite and comparable hard rocks, Materials science forum, Trans Tech Publ: 2006; pp 1628-1632.60.Hessel, C. M., Henderson, E. J. & Veinot, J. G. Hydrogen silsesquioxane: a molecular precursor for nanocrystalline Si−SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18(26), 6139–6146 (2006).CAS 
    Article 

    Google Scholar 
    61.Xie, P.-P. et al. Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 122, 392–398 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Wang, G. et al. Removal of Pb (II) from aqueous solutions by Phytolacca americana L. biomass as a low cost biosorbent. Arab. J. Chem. 11(1), 99–110 (2018).CAS 
    Article 

    Google Scholar 
    63.Brunauer, S. & Emmett, P. Chemisorptions of gases on iron synthetic ammonia catalysts1. J. Am. Chem. Soc. 62(7), 1732–1746 (1940).CAS 
    Article 

    Google Scholar 
    64.Xing, Z.; Hébert, R.; Beaucour, A.; Ledésert, B.; Noumowé, A.; Linder, N. In Influence of aggregate’s nature on their instability at elevated temperature, 2nd International RILEM Workshop on Concrete Spalling due to Fire Exposure, RILEM Publications SARL: 2011; pp 149–156.65.Szabó, M. et al. Equilibria and kinetics of chromium (VI) speciation in aqueous solution–a comprehensive study from pH 2 to 11. Inorg. Chim. Acta 472, 295–301 (2018).Article 
    CAS 

    Google Scholar 
    66.Saygi, K. O., Tuzen, M., Soylak, M. & Elci, L. Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. J. Hazard. Mater. 153(3), 1009–1014 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Shanmugalingam, A. & Murugesan, A. Removal of hexavalent chromium by adsorption on microwave assisted activated carbon prepared from stems of Leucas Aspera. Z. Phys. Chem. 232(4), 489–506 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Belachew, N. & Hinsene, H. Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Appl. Water Sci. 10(1), 38 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Gaikwad, M. S. & Balomajumder, C. Removal of Cr (VI) and fluoride by membrane capacitive deionization with nanoporous and microporous Limonia acidissima (wood apple) shell activated carbon electrode. Sep. Purif. Technol. 195, 305–313 (2018).CAS 
    Article 

    Google Scholar 
    70.Altundogan, H. S. Cr(VI) removal from aqueous solution by iron (III) hydroxide-loaded sugar beet pulp. Process Biochem. 40(3), 1443–1452 (2005).CAS 
    Article 

    Google Scholar 
    71.Demiral, H., Demiral, I., Tümsek, F. & Karabacakoğlu, B. Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chem. Eng. J. 144(2), 188–196 (2008).CAS 
    Article 

    Google Scholar 
    72.Ma, M., Lu, Y., Chen, R., Ma, L. & Wang, Y. Hexavalent chromium removal from water using heat-acid activated red mud. Open J. Appl. Sci. 4(05), 275 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    73.Aslani, H., Kosari, T. E., Naseri, S., Nabizadeh, R. & Khazaei, M. Hexavalent chromium removal from aqueous solution using functionalized chitosan as a novel nano-adsorbent: modeling and optimization, kinetic, isotherm, and thermodynamic studies, and toxicity testing. Environ. Sci. Pollut. Res. 2, 1–15 (2018).
    Google Scholar 
    74.Gao, H. et al. Characterization of Cr (VI) removal from aqueous solutions by a surplus agricultural waste—rice straw. J. Hazard. Mater. 150(2), 446–452 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Chagas, P. M. B. et al. Nanostructured oxide stabilized by chitosan: Hybrid composite as an adsorbent for the removal of chromium (VI). J. Environ. Chem. Eng. 6(1), 1008–1019 (2018).CAS 
    Article 

    Google Scholar 
    76.Qiu, J. et al. Adsorption of Cr (VI) using silica-based adsorbent prepared by radiation-induced grafting. J. Hazard. Mater. 166(1), 270–276 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Hamza, I. A. A., Martincigh, B. S., Ngila, J. C. & Nyamori, V. O. Adsorption studies of aqueous Pb(II) onto a sugarcane bagasse/multi-walled carbon nanotube composite. Phys. Chem. Earth Parts A/B/C 66, 157–166 (2013).ADS 
    Article 

    Google Scholar 
    78.Liu, Y. & Liu, Y.-J. Biosorption isotherms, kinetics and thermodynamics. Sep. Purif. Technol. 61(3), 229–242 (2008).CAS 
    Article 

    Google Scholar  More

  • in

    Impact of underground storm drain systems on larval ecology of Culex and Aedes species in urban environments of Southern California

    Ethics and vertebrate animalsThe field surveys and collections were conducted on accessible public areas or private residential areas with property owners’ permission. The study did not involve human participants, or endangered or protected species. Laboratory mice were used as a blood source for mosquitoes. All experimental protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the University of California, Irvine (UCI) (IACUC protocol number: AUP-19-165). All methods were carried out in accordance with relevant IACUC guidelines and regulations.Study sites and mosquito larval habitat surveillanceThe study was carried out in Orange County, California, USA. Orange County is a highly urbanized county with an estimated population density of approximately 1470 people/km2 according to U.S. Census Bureau, an average annual low/high temperature range of 13–25 °C, 65% relative humidity, and annual precipitation of about 350 mm according to U.S. Climate Data. Annual rainfall was 261 mm, 311 mm, 198 mm and 475 mm for 2016, 2017, 2018 and 2019, respectively. A major drought event occurred in December 2017 and February 2018 when the total rainfall in the 3-month period was 20.6% of the 30-year average. Both Ae. aegypti and Ae. albopictus were discovered in the county in 20158. Culex quinquefasciatus is the most abundant mosquito in the county and breeds readily in a variety of residential, commercial and USDS water sources, and is the primary vector of West Nile virus in southern California18.Larval mosquito surveillance in Orange County was conducted from 2016 to 2019 by the Orange County Mosquito and Vector Control District (OCMVCD) through its routine mosquito surveillance and treatment program, following the recommendations of the California Department of Public Health and the Mosquito and Vector Control Association of California19. Briefly, OCMVCD staff conducted routine inspection for aquatic habitats in randomly selected public areas, and performed door-to-door mosquito larval and adult sampling on residential or commercial premises upon the request of the residents or business owners while distributing public education materials for vector control and personal protection. Arial photography was used to examine the presence of abandoned swimming pools in residential areas. In addition to surface aquatic habitats, subsurface habitats (e.g., catch basins, underground drains, manhole chambers, and public utility vaults) were examined for larval abundance of all mosquito species. In 2019, OCMVCD completed 5,622 mosquito service requests, and conducted 11,813 inspection and treatments on routine sites using a variety of public health-approved adulticides and larvicides. A total of 38,099 underground drains and catch basins and 6925 km of flood channels were treated. In addition, a total of 17,783 km of gutters and 3562 neglected swimming pools were inspected and treated. The larval distribution data reported here were based on this extensive field sampling effort20.Larval sampling used standard mosquito dippers or pipettes, and specialized modifications of these to sample hard to reach areas. Mosquito larvae from each source were collected, transferred into a uniquely-numbered vial with isopropyl alcohol (70%), and submitted to the laboratory for identification; if present, live pupae were collected and held in site-specific labelled rearing chambers (BioQuip Products, Inc., Rancho Dominguez, CA) until emergence. Third and fourth instar mosquito larvae (1–100, depending on sample size) and emerged adults were identified to species using a stereo microscope (40–50x) and morphological features described in taxonomic keys21,22. Results were uploaded to OCMVCD’s data management system, along with collection date, GPS location, and habitat type for each sample site. For this study, larval habitats were classified into six types: small container, underground system, ornamental water features, marsh, pools/spas, and creek (Table S1). The container classification included flowerpots/vases, saucers, tires, bowls, boxes, buckets, dishes, tree holes, etc. Underground storm drain system referred to larval habitats such as catch basins, manhole chambers, underground drains, and public utility vaults that were below the ground. Water feature included flood control channels, ponds, fountains, birdbaths, street gutters and small reservoirs, etc. Marsh included both fresh and salt water marshes.Mosquito strains and water source for laboratory studiesWe examined the effect of USDS water on oviposition substrate preference and larval development in microcosms in an insectary with climate control (27 ± 1 °C, 70 ± 10% relative humidity, and 12 h light/12 h dark photoperiod) at UCI. To minimize potential bias on behavior and ecology from mosquito colonization, this study did not use previously established laboratory mosquito colonies. Instead, we used Ae. aegypti and Ae. albopictus adults reared from field-collected eggs using ovicups in residential areas of Orange and Los Angeles Counties, California, respectively. Culex quinquefasciatus were also reared from eggs of field-collected, blood-engorged adult mosquitoes using gravid traps in Orange County23.All experiments reported here used two types of habitat water: (1) USDS water collected from seven manhole chambers or catch basins (33°47′01.9″N, 117°53′19.0″W, Orange City, manhole; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, manhole; 33°44′44.4″N, 118°06′24.2″W, Seal Beach City, manhole; 33°55′38.9″N, 117°56′51.4″W, La Habra City, manhole; 33°52′48.9″N, 117°55′21.4″W, Fullerton City, catch basin; 33°54′35.2″N, 117°56′02.5″W, Fullerton City, catch basin; 33°52′25.0″N, 117°57′02.6″W, Fullerton City, catch basin); and 2) flowerpot water from vases of three cemeteries in Orange County (33°50′29.0″N, 117°53′57.9″W; 33°46′21.5″N, 117°50′35.8″W; 33°46′12.3″N, 117°50′21.4″W). Water (including sediments) from each breeding source was collected with mosquito dippers and mixed together by habitat type into 18.9 L (five-gallon) Nalgene™ containers. The containers were transported to the laboratory in shaded ice containers, and stored overnight in a refrigerator at 4 °C. The experiments described below were conducted on the field-collected water for the two habitat types. We selected flowerpot water as the comparison substrate because flowerpot containers showed the highest larval positivity rate in the study area.Oviposition preference testTo examine whether USDS water attracts or repels egg laying by Ae. aegypti and Ae. albopictus mosquitoes, a two-choice oviposition preference test was conducted. Briefly, this experiment used two ovicups placed within a mosquito cage (1 × 0.5 × 0.5 m3), one ovicup with 200 ml USDS water and another with 200 ml flowerpot water. Adult mosquitoes were bloodfed on mice; fully engorged females 3-days post-bloodfeeding were used for oviposition preference tests. Ten gravid Ae. aegypti females were released into a cage and allowed to lay eggs for three days, and the number of eggs in each ovicup were counted. Five replicates were used. The same experiment was conducted for Ae. albopictus.To evaluate whether the presence of Cx. quinquefasciatus larvae has any impact on the egg laying behavior of invasive Aedes mosquitoes, the two-choice oviposition preference test described above was used. One ovicup contained 200 ml USDS water and ten first-instar Cx. quinquefasciatus larvae, while the second ovicup contained 200 ml USDS water only. Ten gravid Ae. aegypti or Ae. albopictus females were released into a cage and allowed to lay eggs for three days. Five replicates were used. We also conducted this experiment using flowerpot water with the same design and same number of replicates to determine whether the impact of Cx. quinquefasciatus larvae on Aedes mosquito egg laying behavior was similar across different water substrate types.Egg hatchingTo investigate the effects of different habitat water sources on egg hatching, 50 Ae. aegypti or Ae. albopictus eggs on separate filter papers were introduced into ovicups with 200 ml USDS water or flowerpot water. Deoxygenized distilled water that we routinely use in laboratory mosquito colony maintenance was used as a positive control. The experiment was conducted in an insectary with climate control (27 ± 1 °C). The number of larvae hatched were counted daily for six days continuously. Five replicates were used.Larval survivorshipA life table study was conducted on Ae. aegypti and Ae. albopictus larvae to determine the effect of USDS water and flowerpot water on larval development and survivorship. Twenty-five newly hatched Ae. aegypti or Ae. albopictus larvae were introduced into a microcosm that contained 200 ml USDS or field flowerpot water. The number of dead and surviving larvae was recorded daily until they pupated. Pupae were counted, and removed to different paper cups for emergence to adults. Four replicates were used for each type of habitat water per species. We included Cx. quinquefasciatus in the larval life table study for method validation purposes because the larvae of this species were known to successfully develop into pupae and adults in USDS water in southern California10.Larval survivorship experiments were conducted in two different seasons. The first was in the summer (August–September) 2019 when the density of invasive Aedes species peaked19, and also insecticide runoff from mosquito and residential/agricultural pest control applications were at the highest levels in southern California24. The second was in the winter (December) 2019 when there was little insecticide treatment for mosquito and pest control. This design enabled us to examine seasonality in larval survivorship and the impact of environmental insecticide runoff in USDS water. To determine whether USDS water’s nutritional deficiency plays a major role in limiting Aedes larval development, we repeated the larval survival experiment by adding 0.1 g Tetramin Tropical Flakes, the standard larval mosquito diet in insectaries, to the microcosms every 2 days. The number of dead and surviving larvae, pupae, and emergent adults was recorded daily.Data analysisAll aquatic habitats that were positive or negative for the larvae of Ae. aegypti, Ae. albopictus and Cx. quinquefasciatus (the predominant species), were mapped using ArcGIS 10.7.1. The proportion of aquatic habitats positive for Ae. aegypti and Cx. quinquefasciatus was calculated for each habitat type from 2016 to 2019. To examine variation in Aedes and Culex larval positivity rate among different groups of larval habitats within the USDS, larval positivity rates for Ae. aegypti and Cx. quinquefasciatus were calculated for underground water retention vaults, underground catch basins/manholes, and underground pipelines/tunnels. The Chi-square test was used to examine the statistical significance. Culex quinquefasciatus was analyzed because it was the most common species, whereas Ae. albopictus was not included in the analysis due to insufficient number of Ae. albopictus positive habitats. To determine whether USDS water attracted or repelled oviposition of invasive Aedes mosquitoes, a pairwise t test was used to compare egg number in USDS water ovicups to flowerpot water ovicups for each Aedes species. Similarly, a pairwise t-test was used to test the effect of Cx. quinquefasciatus larvae on Aedes mosquito oviposition choice.To examine the effect of water sources on egg hatching, the t-test was used to analyze the egg hatching rate. The analysis of larval life table study data focused on pupation rates and larval-to-pupal development times. The pupation rate was calculated as the proportion of first-instar larvae that molted into pupae. The effect of water sources and larval food supplementation on pupation rate was analyzed using non-parametric Wilcoxon test. The t-test was used to analyze the duration of larval-to-pupal development. Kaplan–Meier survival analysis was used to determine the effects of food supplementation and water source on larval development for each species, and the log-rank test was conducted to determine their statistical significance. All statistical analyses were performed using JMP software (JMP 14.2, SAS Institute Inc.). More

  • in

    Aboveground plant-to-plant communication reduces root nodule symbiosis and soil nutrient concentrations

    1.Bezemer, T. M. & van Dam, N. M. Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol. Evol. 20, 617–624. https://doi.org/10.1016/j.tree.2005.08.006 (2005).Article 
    PubMed 

    Google Scholar 
    2.Kaplan, I. et al. Physiological integration of roots and shoots in plant defense strategies links above-and belowground herbivory. Ecol. Lett. 11, 841–851. https://doi.org/10.1111/j.1461-0248.2008.01200.x (2008).Article 
    PubMed 

    Google Scholar 
    3.Huang, W., Siemann, E., Carrillo, J. & Ding, J. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores. Ann. Bot. 115, 841–846. https://doi.org/10.1093/aob/mcv011 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Omer, A. D., Thaler, J. S., Granett, J. & Karban, R. Jasmonic acid induced resistance in grapevines to a root and leaf feeder. J. Econ. Entomol. 93, 840–845. https://doi.org/10.1603/0022-0493-93.3.840 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Yamawo, A., Ohsaki, H. & Cahill, J. F. Jr. Damage to leaf veins suppresses root foraging precision. Am. J. Bot. 106, 1126–1130. https://doi.org/10.1002/ajb2.1338 (2019).Article 
    PubMed 

    Google Scholar 
    6.Heil, M. & Karban, R. Explaining evolution of plant communication by airborne signals. Trends Ecol. Evol. 25, 137–144. https://doi.org/10.1016/j.tree.2009.09.010 (2010).Article 
    PubMed 

    Google Scholar 
    7.Karban, R., Yang, L. J. & Edwards, K. F. Volatile communication between plants that affects herbivory: A meta-analysis. Ecol. Lett. 17, 44–52. https://doi.org/10.1111/ele.12205 (2014).Article 
    PubMed 

    Google Scholar 
    8.Yoneya, K. & Takabayashi, J. Plant-plant communication mediated by airborne signals: Ecological and plant physiological perspectives. Plant Biotechnol. 31, 409–416. https://doi.org/10.5511/plantbiotechnology.14.0827a (2014).CAS 
    Article 

    Google Scholar 
    9.Morrell, K. & Kessler, A. Plant communication in a widespread goldenrod: Keeping herbivores on the move. Funct. Ecol. 31, 1049–1061. https://doi.org/10.1111/1365-2435.12793 (2017).Article 

    Google Scholar 
    10.Arimura, G. et al. Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512–515 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Shiojiri, K. et al. Weeding volatiles reduce leaf and seed damage to field-grown soybeans and increase seed isoflavones. Sci. Rep. 7, 1–8. https://doi.org/10.1038/srep41508 (2017).CAS 
    Article 

    Google Scholar 
    12.Karban, R., Shiojiri, K., Huntzinger, M. & McCall, A. C. Damage-induced resistance in sagebrush: Volatiles are key to intra- and interplant communication. Ecology 87, 922–930. https://doi.org/10.1890/0012-9658(2006)87[922:drisva]2.0.co;2 (2006).Article 
    PubMed 

    Google Scholar 
    13.Kikuta, Y. et al. Specific regulation of pyrethrin biosynthesis in Chrysanthemum cinerariaefolium by a blend of volatiles emitted from artificially damaged conspecific plants. Plant Cell Physiol. 52, 588–596. https://doi.org/10.1093/pcp/pcr017 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G. & Felton, G. W. Communication between plants: Induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125, 66–71. https://doi.org/10.1007/PL00008892 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Karban, R., Huntzinger, M. & McCall, A. C. The specificity of eavesdropping on sagebrush by other plants. Ecology 85, 1845–1852. https://doi.org/10.1890/03-0593 (2004).Article 

    Google Scholar 
    16.Shiojiri, K. et al. Exposure to artificially damaged goldenrod volatiles increases saponins in seeds of field-grown soybean plants. Phytochem. Lett. 36, 7–10. https://doi.org/10.1016/j.phytol.2020.01.014 (2020).CAS 
    Article 

    Google Scholar 
    17.Glinwood, R., Ninkovic, V. & Pettersson, J. Chemical interaction between undamaged plants—Effects on herbivores and natural enemies. Phytochemistry 72, 1683–1689. https://doi.org/10.1016/j.phytochem.2011.02.010 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Lokesh, R. A. V. I., Manasvi, V. & Lakshmi, B. P. Antibacterial and antioxidant activity of saponin from Abutilon indicum leaves. Asian J. Pharm. Clin. Res. 9, 344–347. https://doi.org/10.22159/ajpcr.2016.v9s3.15064 (2016).CAS 
    Article 

    Google Scholar 
    19.Raji, P., Samrot, A. V., Keerthana, D. & Karishma, S. Antibacterial activity of alkaloids, flavonoids, saponins and tannins mediated green synthesised silver nanoparticles against Pseudomonas aeruginosa and Bacillus subtilis. J. Cluster Sci. 30, 881–895. https://doi.org/10.1007/s10876-019-01547-2 (2019).CAS 
    Article 

    Google Scholar 
    20.Toth, R., Toth, D. & Starke, D. Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can. J. Bot. 68, 1039–1044. https://doi.org/10.1139/b90-131 (1990).Article 

    Google Scholar 
    21.Matyssek, R. et al. The plant’s capacity in regulating resource demand. Plant Biol. 7, 560–580. https://doi.org/10.1055/s-2005-872981 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Brundrett, M. C. Coevolution of roots and mycorrhizas of land plants. New Phytol. 154, 275–304. https://doi.org/10.1046/j.1469-8137.2002.00397.x (2002).Article 
    PubMed 

    Google Scholar 
    23.Kiers, E. T., Rousseau, R. A., West, S. A. & Denison, R. F. Host sanctions and the legume-rhizobium mutualism. Nature 425, 78–81. https://doi.org/10.1038/nature01931 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    24.Walters, D. R. Plant Defense: Warding Off Attack by Pathogens, Herbivores, and Parasitic Plants (Blackwell Publishing, 2011).
    Google Scholar 
    25.Szakiel, A., Pączkowski, C. & Henry, M. Influence of environmental biotic factors on the content of saponins in plants. Phytochem. Rev. 10, 493–502. https://doi.org/10.1007/s11101-010-9164-2 (2011).CAS 
    Article 

    Google Scholar 
    26.Singh, B. & Kaur, A. Control of insect pests in crop plants and stored food grains using plant saponins: A review. LWT 87, 93–101. https://doi.org/10.1016/j.lwt.2017.08.077 (2018).CAS 
    Article 

    Google Scholar 
    27.Barton, K. E. & Koricheva, J. The ontogeny of plant defense and herbivory: Characterizing general patterns using meta-analysis. Am. Nat. 175, 481–493. https://doi.org/10.1086/650722 (2010).Article 
    PubMed 

    Google Scholar 
    28.Feeny PP. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581 https://doi.org/10.2307/1934037 (1970).Article 

    Google Scholar 
    29.Dudt, J. F. & Shure, D. J. The influence of light and nutrients on foliar phenolics and insect herbivory. Ecology 75, 86–98. https://doi.org/10.2307/1939385 (1994).Article 

    Google Scholar 
    30.Julkunen-Tiitto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Asian J. Pharm. Clin. Res. 33, 213–217. https://doi.org/10.1021/jf00062a013 (1985).CAS 
    Article 

    Google Scholar 
    31.Folin, O. & Denis, W. A colorimetric method for the determination of phenols (and phenol derivatives) in urine. J. Biol. Chem. 22, 305–308 (1915).CAS 
    Article 

    Google Scholar 
    32.Huang, D., Ou, B. & Prior, R. L. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53, 1841–1856. https://doi.org/10.1021/jf030723c (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Mukai, T., Horie, H. & Goto, T. A simple method for determining saponin in tea seed. Chagyo Kenkyu Hokoku 75, 29–31 (1992) (Japanese with English abstract).CAS 
    Article 

    Google Scholar 
    34.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. A colorimetric method for the determination of sugars. Nature 168, 167–167 (1951).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. T. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356. https://doi.org/10.1021/ac60111a017 (1956).CAS 
    Article 

    Google Scholar 
    36.Harad, Y. Cation and anion exchange capacity of soil background and methods. 302 Jpn. J. Soil Scie. Plant Nutr. 55, 273–283. 303 (1984) (in Japanese).
    37.R Development Core Team. R A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    38.De Geyter, E., Lambert, E., Geelen, D. & Smagghe, G. Novel advances with plant saponins as natural insecticides to control pest insects. Pest Technol. 1, 96–105 (2007).
    Google Scholar 
    39.Pankhurst, C. E. & Sprent, J. I. Effects of water stress on the respiratory and nitrogen-fixing activity of soybean root nodules. J. Exp. Bot. 26, 287–304. https://doi.org/10.1093/jxb/26.2.287 (1975).CAS 
    Article 

    Google Scholar 
    40.Sparg, S., Light, M. E. & Van Staden, J. Biological activities and distribution of plant saponins. J. Ethnopharmacol. 94, 219–243. https://doi.org/10.1016/j.jep.2004.05.016 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Saha, S., Walia, S., Kumar, J., Dhingra, S. & Parmar, B. S. Screening for feeding deterrent and insect growth regulatory activity of triterpenic saponins from Diploknema butyracea and Sapindus mukorossi. J. Agric. Food Chem. 58, 434–440. https://doi.org/10.1021/jf902439m (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Hoagland, R. E., Zablotowicz, R. M. & Oleszek, W. A. Effects of alfalfa saponins on in vitro physiological activity of soil and rhizosphere bacteria. J. Crop. Prod. 4, 349–361. https://doi.org/10.1300/J144v04n02_16 (2001).CAS 
    Article 

    Google Scholar 
    43.Killeen, G. F. et al. Antimicrobial saponins of Yucca schidigera and the implications of their in vitro properties for their in vivo impact. J. Agric. Food Chem. 46, 3178–3186. https://doi.org/10.1021/jf970928j (1998).CAS 
    Article 

    Google Scholar 
    44.Sugiyama, A. The soybean rhizosphere: Metabolites, microbes, and beyond—A review. J. Adv. Res. 19, 67–73. https://doi.org/10.1016/j.jare.2019.03.005 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Lucas-Barbosa, D. Integration studies on plant-pollinator and plant–herbivore interactions. Trends Plant Sci. 21, 125–133. https://doi.org/10.1016/j.tplants.2015.10.013 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.De Deyn, G. B., Raaijmakers, C. E. & Van der Putten, W. H. Plant community development is affected by nutrients and soil biota. J. Ecol. 92(5), 824–834. https://doi.org/10.1111/j.0022-0477.2004.00924.x (2004).Article 

    Google Scholar 
    47.Knelman, J. E. et al. Nutrient addition dramatically accelerates microbial community succession. PLoS ONE 9(7), e102609. https://doi.org/10.1371/journal.pone.0102609 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Yoneya, K. & Takeshi, M. Co-evolution of foraging behaviour in herbivores and their natural enemies predicts multifunctionality of herbivore-induced plant volatiles. Funct. Ecol. 29, 451–461. https://doi.org/10.1111/1365-2435.12398 (2015).Article 

    Google Scholar 
    49.Karban, R. Plant communication increases heterogeneity in plant phenotypes and herbivore movement. Funct. Ecol. 31, 990–991. https://doi.org/10.1111/1365-2435.12806 (2017).Article 

    Google Scholar  More

  • in

    Millimeter-sized smart sensors reveal that a solar refuge protects tree snail Partula hyalina from extirpation

    Smart solar sensor designTo prevent interference with the movements of the highly mobile E. rosea predators, we developed a custom smart solar sensor using the Michigan Micro Mote (M3) platform27,36. The M3 platform consists of a family of chips that can be integrated together through die-stacking in various ways, allowing its functionality to be customized. M3 achieves this degree of miniaturization by directly stacking bare-die chips, thus avoiding individual chip packaging, and custom-designed low-power circuits, reducing consumption to only 228 nW. The resulting systems can be powered for >1 week by a chip-scale battery36 measuring only 1.7 × 3.6 × 0.25 mm. For the solar sensor, we selected chips from this set with the following functionalities and stacked them as shown in Fig. 4: (1) two custom-designed thin-film lithium-chemistry batteries37, each with 8-µAh capacity and 4.2-V battery voltage, connected in parallel; (2) a power management chip to generate and regulate the three supply voltages used by the M3 chips from the battery supply voltage; (3) a microprocessor chip containing an ARM Cortex-M038 processor that executes the program controlling the sensor and 8 kB of SRAM for storing program and sensor data; (4) a short-range (5 cm) radio chip with on-chip antenna for retrieving data from the sensor; (5) a decoupling capacitor chip for stabilizing supply voltages; (6) a harvester chip that up-converts the voltage from the photovoltaic (PV) cells to the battery voltage and regulates battery charging; (7) a temperature sensor chip; (8) an inactive spacer chip that provides physical separation between the PV cell, which is exposed to light, and the remainder of the chips below it, which must be blocked from light; and (9) a PV chip for harvesting solar energy, containing also a small PV cell for receiving optical communication.Fig. 4: Structure and testing of custom-designed smart solar sensors.a Smart sensor before encapsulation showing the interconnected stack of chips. b Smart sensor after encapsulation with black and clear epoxy. c Sensor readings of eight randomly selected smart sensors, each indicated by a distinct symbol, at three light intensities across the temperature and battery voltage ranges observed during the sensor deployment with the σ/µ annotated.Full size imageThe battery chips measured 1.7 × 3.6 × 0.25 mm while the remaining chips were 1.05 mm wide, 150 μm thick and varied in length from 1.33 to 2.08 mm. The chips were stacked in staircase fashion (Fig. 4a) using die-attach film and connected electrically using wire bonding with gold 18-μm diameter wire. The radio die extended beyond the other chips at the back to expose the antenna. The chips communicated using a common bus protocol, called M-bus36. The final chip stack was encased in epoxy (Fig. 4b). The top portion of the sensor was encased with clear epoxy to allow light penetration, thereby enabling energy harvesting and optical communication. The bottom portion was encapsulated with black epoxy to protect the sensitive electronics from light. Finally, the entire sensor was coated with 4 μm of parylene. The sensor was tested to withstand immersion in brine at pressures up to 600 atm for 1 h and in saline solution for 2 weeks.The principal approach to reduce the M3 sensor’s power consumption is to duty-cycle its operation, meaning the processor executes code briefly (ms range) every 10–60 min and is in “sleep mode” for the remainder of the time. Sleep power is highly optimized to ~100 of nW using a number of recently developed circuit techniques39,40,41. In active mode, the processor is operating and obtains and stores sensor data. The processor clock frequency was set to 80 kHz, and at 0.6 V supply, the power consumption was 1.0 μW. In sleep mode, the processor and logic are power-gated42, and only the SRAM, timer, optical receiver, and power management remain on, reducing the power consumption to only 160 nW. The 10-min sleep mode period length was selected to amortize the high power in active mode and minimize overall power consumption while retaining a sufficiently small sensor acquisition interval for the proposed study. The average power consumption of the entire sensor including all peripherals was 228 nW, and in tests, it was able to operate on a battery charge alone for 1 week. With PV-based harvesting, the sensor becomes energy autonomous at light levels >850 lux. For this study, the sensors were retrieved and recharged using a light station after each deployment.Although duty-cycling lowers the average current draw from the battery, it limits measurements to times when the sensor is awake. This raised a particular difficulty for measuring the solar ecology of snails where continuous light monitoring is essential, preventing the use of duty-cycling. Typical light-sensing circuits monitor the current from a photodiode and consume ~μW power43, a load that would deplete the batteries in only a few hours. Hence the light intensity had to be monitored during sleep mode. To achieve this without substantially increasing the sleep mode current draw, we observed that the harvester circuit inherently integrates and quantizes the harvested energy from the photovoltaic (PV) cell in a manner proportion to the ambient light level and can be modified to function as a light sensor readout circuit.To up-convert the output voltage of the PV cell (250–450 mV) to that of the battery (3.9–4.2 V), the harvester performs a series of voltage doublings44 using the circuit shown in Supplementary Fig. 6. Each voltage doubling circuit consists of two chains of inverters, configured as a ring oscillator. The two oscillators are coupled through on-chip MIM capacitors and are connected to the supplies Vin and Vdouble, as shown. During one oscillation cycle, each capacitor experiences two different configurations. When the input to its driving inverters is high, a capacitor is placed between Vin and ground (GND), i.e., in parallel with the PV cell, which charges it with a finite amount of charge. When its driving inverter inputs are switched low, the capacitor is placed between Vin and Vdouble, and it delivers the received charge to Vdouble, thereby up-converting the voltage from the PV cell. The amount of charge that is transferred per cycle is kept constant by the frequency regulation circuit. If the PV cell is exposed to intense light and produces a high current, the regulation circuit increases the frequency by reducing the delay of the voltage-controlled delay element to maintain a constant charge transfer per cycle. Conversely, if the light level drops, the regulation circuit slows the oscillation frequency.As a result, the frequency of oscillation is proportional to the PV current to the first order. And, because the current of the PV cell is proportional to the light intensity, the oscillation frequency is a measure of the instantaneous ambient light level. To obtain the light dose over a sleep mode time period, we added a low-power counter (shown in Supplementary Fig. 6), which records the number of oscillations during this period, thereby integrating its total light dose. Each active-mode period, the microprocessor reads the counter value, resulting in a light sensor code, and resets the counter. The counter operates at a low supply voltage of 0.6 V, which reduces its power consumption by ~9× compared to a standard supply of 1.8 V. This allowed us to implement a 24 bit counter with negligible power consumption (5 nW or 2.2% of total average power). The resulting sensors continuously monitor the light level and record a light-dose code for every 10 min interval. The addition of the counter constitutes a relatively small change in the harvester circuit and allows light monitoring without additional chips or an increase in battery capacity or sensor size.Sensor testing and calibrationBecause the harvester oscillation frequency is dependent on temperature and battery voltage, these parameters are stored by the processor in SRAM along with the light sensor code. After data retrieval, the code is then converted to light intensity using a model that accounts for the temperature and battery voltage dependency. To construct this calibration model, four sensor nodes were measured at six light levels (0.5, 1, 5, 10, 50, and 100 klux) and four temperatures (25, 35, 45, and 55 °C), and four battery voltages (3.9, 4.0, 4.1, and 4.2 V); a total of 96 measurements were made for each sensor. After averaging the light sensor codes across the four sensors, a multidimensional, piecewise linear model was extracted to establish the relationship between the recorded digital code and the light intensity at a particular temperature and battery voltage (Supplementary Fig. 7). To calibrate the model for each fabricated sensor, we measured the light sensor code, temperature sensor code and battery voltage sensor code in controlled conditions (temperature: 25, 45, and 55 °C; light: 5 klux; battery voltage: 4.1 V) for each sensor. We then applied three-point calibration of the temperature sensor and one-point calibration of both the battery voltage and light sensors. The calibration conditions were selected based on the expected temperature and battery operating range in the field and on what the discriminating light intensity was expected to be. This was balanced with the time required to measure the 55 deployed systems in a controlled environment.To verify the accuracy of the light readings, eight randomly selected sensor systems were tested at three light levels (0.5, 5, and 50 klux) and three temperatures (25, 30, and 35 °C), a total of nine conditions each. These testing conditions were selected to match the conditions that sensors experienced during the field testing and are representative of the error in light readings for the collected data. Figure 4c shows the resulting measurements after calibration was applied. The x-axis is the reported light level, and the y-axis is the actual light level the sensor was exposed to. The worst-case variation in reported light measurement was sigma/mean = 28%, at 5 klux, showing acceptable stability.Nonlinearity was worse with a sensor light reading to actual controlled light intensity ratio ranging from −37 to +14%. However, because this is a comparative study of prey and predator species, and the same individual sensors were reused for both the prey and the predators, nonlinearity was judged to be less important than sensor-to-sensor variation and variation resulting from temperature change.We manufactured 201 smart solar sensor systems, most of which were used for bench top testing and green house testing at the University of Michigan using locally caught specimens of Cepaea nemoralis land snails (Supplementary Fig. 8). A total of 55 tested units were taken to Tahiti and were reused in multiple deployments while there. Our small batch production cost for these sensors was ~$500 US per unit (including wafer fabrication, wafer dicing, system assembly, encapsulation, and yield loss); however, for large volume ( >200 units) production, this was reduced to ~$150/unit.Field methodsTwo field populations of E. rosea and three of Partula hyalina located in five northern valleys of Tahiti-Nui, the main Tahitian peninsula, were investigated in August 2017 (Fig. 1a). These locations were selected by T. Coote, who had conducted extensive field surveys on Tahiti since 2004, as being the most accessible populations of both species then available.Although E. rosea remains widely distributed throughout Tahiti, it has become less numerous in many valleys in recent years, possibly because of the introduction of another snail predator, the New Guinea flatworm Platydemus manokwari12,35. Dead E. rosea shells were much more common than live specimens at our three Partula hyalina study locations, so we focused instead on the robust predator populations present in the nearby main Fautaua Valley and in its side-valley Fautaua-Iti. In both locations, we picked sites where foraging E. rosea had ready access to both shaded and open habitats. The Fautaua-Iti Valley location consisted of an open sunlit trail through the rainforest (Supplementary Fig. 1d), and the solar ecologies of nine predators were monitored here on two days: 5 on August 8 and 4 on August 11. The Fautaua Valley location consisted of a forest-edge adjoining an open grassy area (Supplementary Fig. 1e), and 29 predators were monitored here over two days: 12 on August 12 and 16 on August 14.All three of our Partula hyalina study sites (Fig. 1a) consisted of discrete patches of vegetation between the edge of the forest and the primary stream, or captage, within each valley. The Tahitian valley of Tipaerui encompasses a small side valley, Tipaerui-Iti, which contained the most robust known surviving population of P. hyalina on Tahiti, consisting of hundreds of individuals. They were restricted to a linear stand of Etlingera cevuga extending for 60–70 m (Supplementary Fig. 1a). The solar ecologies of 28 aestivating Tipaerui-Iti Partula hyalina individuals were recorded over two days: 12 on August 10 and 16 on August 15. Partula hyalina population sizes were much smaller in the other two valleys, Faarapa, and Matatia (Fig. 1a), requiring us to monitor all of the individuals we encountered. The Faarapa Valley site consisted of a mixed stand of Barringtonia asiatica, Alocasia macrorrhiza, and Pisona umbellifera (Supplementary Fig. 1b). We detected six individuals at this site, and their solar environments were monitored on August 5. Our remaining Partula hyalina study site was in Matatia Valley (Fig. 1a), where a small, low-density population occurred in scrubby habitat attached to the foliage of Z. officinale, Pisona umbellifera, and Inocarpus fagifer (Supplementary Fig. 1c). A total of seven individuals were detected and assayed on August 7.Each working day, we entered the study valley in the early morning between 8 and 9 a.m., prior to the appearance of the sun above the valley walls; and searched systematically for our respective target species. Euglandina rosea individuals were found foraging actively, either on the ground or climbing on vegetation, and they typically maintained this searching activity throughout the day. In contrast, Partula hyalina individuals were aestivating attached to the underside of leaves, and specimens typically remained in situ on the same leaf during the observation period.To track the solar ecology of each predator, a smart solar sensor was reversibly attached to the dorsal surface of each E. rosea shell using a nut and screw method. The nut (McMaster-Carr, Brass Hex Nut, narrow, 0–80 thread size) was glued (Loctite, Super Glue) directly on the predator’s shell, and after allowing 10 min for bonding, a sensor, preglued to a compatible screw (McMaster-Carr, 18–8 Stainless Steel Socket Head Screw 0–80 thread size, 1/16” long), was attached mechanically. Each predator was numerically labeled using nail polish and released at the exact spot it had been discovered. For the rest of the study period, each predator was visually tracked as it continued its foraging until mid-afternoon, when the sun descended below the valley walls, and the snails and sensors were recovered. These invasive predators were then euthanized.Aestivating Partula hyalina attach to the underside of leaves. Because our permit did not allow the direct attachment of light sensors to this endangered species, we deployed under-leaf sensors next to the aestivating snails using a nut/screw/magnets combination. This involved gluing, in advance, the screw to the sensor base and the nut to a round magnet (Radial Magnet Inc., Magnet Neodymium Iron Boron (NdFeB) N35, 4.78 mm diameter, 1.60 mm thickness). In the field, these components were assembled and held in place using another magnet positioned on the upper leaf surface. In addition to recording the under-leaf light intensities experienced by the aestivating Partula hyalina specimens, we also recorded the ambient light intensity by attaching a sensor to the upper surface of the leaves harboring the aestivating specimens.Each working day, the data recording function of the smart sensors was activated before going into the field and was terminated after returning from the field, and the data were then retrieved via the sensors’ wireless communication link. For each sensor, the recording start time, meaningful time of the measurement start time, meaningful measurement end time, and sensor recording end time were recorded to properly calibrate the time of the recorded samples. The received raw data in digital format were then translated to time and light intensity information using a MATLAB program and the calibration data specific for that sensor.Statistics and reproducibilityRecordings from each of the three categories (Partula hyalina leaf top, P. hyalina under leaf, and Euglandina rosea) over the 8 days of field recording were aggregated into their respective 10-min time intervals from 9:30 to 16:00 h. This recording time window avoided the early morning handling period when sensors were attached to the predator, spanned the midday period of peak solar irradiation (Figs. 2, 3), and enabled us to recover the visually tracked predators before losing them in the gathering darkness of the late afternoon valley forests. We collected light intensity measurements for 40 leaf top sensors, 41 under leaf P. hyalina, and 37 foraging E. rosea snails over the 9:30–16:00 h time period. Most aestivating P. hyalina (N = 26/41) had two under-leaf sensors bracketing the snails to record their immediate light environment (Fig. 1b) and for these individuals we used the mean light intensity of the two sensors to compare to the other two categories.We compared the three categories (leaf top, P. hyalina under leaf, and E. rosea) for the 40 timepoints over the 9:30–16:00 h time period using a repeated measures analysis of variance (ANOVA) in the nlme45 and car46 packages in R v.3.5.047. We first tested the light intensity measurements for conformance to a normal distribution using the R code shapiro.test, with the result being a highly skewed distribution. We thus LOG transformed the measurement data. We specified the following linear mixed model for the 9:30–16:00 time interval using the nlme package in R:$$begin{array}{c}lmeleft({mathrm{LOG}},{mathrm{fullmean}}sim {mathrm{group}}+{mathrm{time}}+{mathrm{group}}ast {mathrm{time}}right.\ left.{mathrm{random}}=;sim 1right|{mathrm{individual}},\ {mathrm{correlation}}=corAR1left({mathrm{from}}=;sim {mathrm{time}}left|{mathrm{individual}}right.right.\ left.{mathrm{method}}={^{primeprime}} {mathrm{{REML}}}{^{primeprime}} ,,{mathrm{na}}.,{mathrm{action}}={mathrm{na}}.{mathrm{exclude}}right)end{array}$$Where LOGfullmean = the LOG transformed light intensity readings, group = leaf top, P. hyalina under leaf, or E. rosea, time = the 40 10-min time intervals from the 9:30–16:00 time period. We considered each individual as a random block and included the correlation between time and individual. The repeated measures ANOVA utilized the restricted loglikelihood (REML) method and excluded any missing timepoint measurements (na.action = na.exclude) from the 9:30–16:00 h time period. After running the linear mixed model in R, we then used the Anova command from the R package car followed by a post-hoc Tukey’s test to determine which categories significantly differed in their light ecologies.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Natural nutrient subsidies alter demographic rates in a functionally important coral-reef fish

    1.Pafilis, P. et al. Reproductive biology of insular reptiles: marine subsidies modulate expression of the ‘island syndrome’. Copeia 2011, 545–552 (2011).Article 

    Google Scholar 
    2.Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Hilderbrand, G. V. et al. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears. Can. J. Zool. 77, 132–138 (1999).Article 

    Google Scholar 
    4.Gust, N. Variation in the population biology of protogynous coral reef fishes over tens of kilometres. Can. J. Fish. Aquat. Sci. 61, 205–218 (2004).Article 

    Google Scholar 
    5.Clifton, K. Asynchronous food availability on neighboring Caribbean coral reefs determines seasonal patterns of growth and reproduction for the herbivorous parrotfish Scarus iserti. Mar. Ecol. Prog. Ser. 116, 39–46 (1995).ADS 
    Article 

    Google Scholar 
    6.Goldstein, E. D., D’Alessandro, E. K. & Sponaugle, S. Demographic and reproductive plasticity across the depth distribution of a coral reef fish. Sci. Rep. 6, 34077 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Pérez-Ruzafa, A., Pérez-Marcos, M. & Marcos, C. From fish physiology to ecosystems management: keys for moving through biological levels of organization in detecting environmental changes and anticipate their consequences. Ecol. Ind. 90, 334–345 (2018).Article 

    Google Scholar 
    8.Agrawal, A. A. Phenotypic plasticity in the interactions and evolution of species. Science 294, 321–326 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Leslie, H. M., Breck, E. N., Chan, F., Lubchenco, J. & Menge, B. A. Barnacle reproductive hotspots linked to nearshore ocean conditions. Proc. Natl. Acad. Sci. 102, 10534–10539 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Polis, G. A., Anderson, W. B. & Holt, R. D. Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Annu. Rev. Ecol. Syst. 28, 289–316 (1997).Article 

    Google Scholar 
    11.Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 87–98 (2003).Article 

    Google Scholar 
    12.Glazier, D. S. Trade-offs between reproductive and somatic (storage) investments in animals: a comparative test of the Van Noordwijk and De Jong model. Evol. Ecol. 13, 539–555 (1999).Article 

    Google Scholar 
    13.Zera, A. J. & Harshman, L. G. The physiology of life history trade-offs in animals. Annu. Rev. Ecol. Syst. 32, 95–126 (2001).Article 

    Google Scholar 
    14.Stearns, S. C. The Evolution of Life Histories (OUP Oxford, 1992).
    Google Scholar 
    15.Otero, X. L., Peña-Lastra, S. D. L., Pérez-Alberti, A., Ferreira, T. O. & Huerta-Diaz, M. A. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat. Commun. 9, 246 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: a global review. Conserv. Biol. 22, 16–26 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Graham, N. A. J. et al. Seabirds enhance coral reef productivity and functioning in the absence of invasive rats. Nature 559, 250–253 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Biodiversity increases ecosystem functions despite multiple stressors on coral reefs. Nat. Ecol. Evol. 4, 919–926 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Clements, K. D., German, D. P., Piché, J., Tribollet, A. & Choat, J. H. Integrating ecological roles and trophic diversification on coral reefs: multiple lines of evidence identify parrotfishes as microphages. Biol. J. Linn. Soc. 120, 729–751 (2017).
    Google Scholar 
    20.Nicholson, G. M. & Clements, K. D. Resolving resource partitioning in parrotfishes (Scarini) using microhistology of feeding substrata. Coral Reefs 39, 1313–1327 (2020).Article 

    Google Scholar 
    21.Bonaldo, R., Hoey, A. & Bellwood, D. The ecosystem roles of parrotfishes on tropical reefs. Oceanogr. Mar. Biol. 52, 81–132 (2014).Article 

    Google Scholar 
    22.Hoey, A. S. Feeding in parrotfishes: the influence of species, body size, and temperature. In Biology of Parrotfishes (ed Hoey, A. S. & Bonaldo, R. M) 119–133 (CRC Press, 2018).Chapter 

    Google Scholar 
    23.Lange, I. D. et al. Site-level variation in parrotfish grazing and bioerosion as a function of species-specific feeding metrics. Diversity 12, 379 (2020).Article 

    Google Scholar 
    24.Lokrantz, J., Nyström, M., Thyresson, M. & Johansson, C. The non-linear relationship between body size and function in parrotfishes. Coral Reefs 27, 967–974 (2008).ADS 
    Article 

    Google Scholar 
    25.Mumby, P. J. et al. Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311, 98–101 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Green, A. L. et al. Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design. Biol. Rev. 90, 1215–1247 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Graham, N. A. J. & McClanahan, T. R. The last call for marine wilderness? Bioscience 63, 397–402 (2013).Article 

    Google Scholar 
    28.Hays, G. C. et al. A review of a decade of lessons from one of the world’s largest MPAs: conservation gains and key challenges. Mar. Biol. 167, 159 (2020).Article 

    Google Scholar 
    29.Sheppard, C. R. C. et al. Reefs and islands of the Chagos Archipelago, Indian Ocean: why it is the world’s largest no-take marine protected area. Aquat. Conserv. Mar. Freshwat. Ecosyst. 22, 232–261 (2012).CAS 
    Article 

    Google Scholar 
    30.Carr, P. et al. Status and phenology of breeding seabirds and a review of Important bird and biodiversity areas in the British Indian Ocean Territory. Bird Conserv. Int. 31,  14–34 (2021).Article 

    Google Scholar 
    31.Hilton, G. M. & Cuthbert, R. J. The catastrophic impact of invasive mammalian predators on birds of the UK Overseas Territories: a review and synthesis. Ibis 152, 443–458 (2010).Article 

    Google Scholar 
    32.Stoddart, D. R. Rainfall on Indian Ocean coral islands. Atoll Res. Bull. 147, 1–21 (1971).Article 

    Google Scholar 
    33.Perry, C. T., Kench, P. S., O’Leary, M. J., Morgan, K. M. & Januchowski-Hartley, F. Linking reef ecology to island building: parrotfish identified as major producers of island-building sediment in the Maldives. Geology 43, 503–506 (2015).ADS 
    Article 

    Google Scholar 
    34.Yeager, L. A., Marchand, P., Gill, D. A., Baum, J. K. & McPherson, J. M. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies. Ecology 98, 1976–1976 (2017).PubMed 
    Article 

    Google Scholar 
    35.Taylor, B. M., Trip, E. D. L. & Choat, J. H. Dynamic demography: investigations of life-history variation in the parrotfishes. In Biology of Parrotfishes (eds Hoey, A. S. & Bonaldo, R. M.) 69–98 (CRC Press, 2018).Chapter 

    Google Scholar 
    36.Colin, P. L. & Bell, L. J. Aspects of the spawning of labrid and scarid fishes (Pisces: Labroidei) at Enewetak Atoll, Marshall Islands with notes on other families. Environ. Biol. Fishes 31, 229–260 (1991).Article 

    Google Scholar 
    37.Bay, L. K., Choat, J. H., van Herwerden, L. & Robertson, D. R. High genetic diversities and complex genetic structure in an Indo-Pacific tropical reef fish (Chlorurus sordidus): evidence of an unstable evolutionary past?. Mar. Biol. 144, 757–767 (2004).CAS 
    Article 

    Google Scholar 
    38.Meyer, C. G., Papastamatiou, Y. P. & Clark, T. B. Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar. Biol 157, 1499–1511 (2010).Article 

    Google Scholar 
    39.Brown-Peterson, N. J., Wyanski, D. M., Saborido-Rey, F., Macewicz, B. J. & Lowerre-Barbieri, S. K. A standardized terminology for describing reproductive development in fishes. Mar. Coast. Fish. 3, 52–70 (2011).Article 

    Google Scholar 
    40.Benkwitt, C. E., Wilson, S. K. & Graham, N. A. J. Seabird nutrient subsidies alter patterns of algal abundance and fish biomass on coral reefs following a bleaching event. Glob. Change Biol. 25, 2619–2632 (2019).ADS 
    Article 

    Google Scholar 
    41.Froese, R. & Pauly, D. FishBase (World Wide Web Electronic Publication, 2018).
    Google Scholar 
    42.Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).ADS 
    Article 

    Google Scholar 
    43.Polunin, N. V. C. & Roberts, C. M. Greater biomass and value of target coral-reef fishes in two small Caribbean marine reserves. Mar. Ecol. Prog. Ser. 100, 167–176 (1993).ADS 
    Article 

    Google Scholar 
    44.Wilson, S. K., Graham, N. A. J. & Polunin, N. V. C. Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar. Biol. 151, 1069–1076 (2007).Article 

    Google Scholar 
    45.McCauley, D. J. et al. From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Sci. Rep. 2, 409 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    46.Savage, C. Seabird nutrients are assimilated by corals and enhance coral growth rates. Sci. Rep. 9, 4284 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.Kurita, Y., Meier, S. & Kjesbu, O. S. Oocyte growth and fecundity regulation by atresia of Atlantic herring (Clupea harengus) in relation to body condition throughout the maturation cycle. J. Sea Res. 49, 203–219 (2003).ADS 
    Article 

    Google Scholar 
    48.Hoey, J., McCormick, M. I. & Hoey, A. S. Influence of depth on sex-specific energy allocation patterns in a tropical reef fish. Coral Reefs 26, 603–613 (2007).ADS 
    Article 

    Google Scholar 
    49.Tootell, J. S. & Steele, M. A. Distribution, behavior, and condition of herbivorous fishes on coral reefs track algal resources. Oecologia 181, 13–24 (2015).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Francis, R. I. C. C. Are growth parameters estimated from tagging and age-length data comparable?. Can. J. Fish. Aquat. Sci. 45, 936–942 (1988).Article 

    Google Scholar 
    51.Choat, J. H. & Robertson, D. R. Age-based studies. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed Sale, P. F.) 57–80 (Academic Press, 2002).Chapter 

    Google Scholar 
    52.McElreath, R. Statistical Rethinking: A Bayesian Course with Examples in R and Stan (CRC Press, 2020).Book 

    Google Scholar 
    53.Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    54.Bürkner, P. C. Advanced Bayesian multilevel modeling with the R package brms. R J. 10, 395–411 (2018).Article 

    Google Scholar 
    55.Hoenig, J. M. Empirical use of longevity data to estimate mortality rates. Fish. Bull. 82, 898–903 (1983).
    Google Scholar 
    56.Taylor, B. M. et al. Bottom-up processes mediated by social systems drive demographic traits of coral-reef fishes. Ecology 99, 642–651 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Taylor, B. M. Drivers of protogynous sex change differ across spatial scales. Proc. Roy. Soc. B: Biol. Sci. 281, 20132423 (2014).Article 

    Google Scholar 
    58.Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6, e21062 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Gust, N., Choat, J. & Ackerman, J. Demographic plasticity in tropical reef fishes. Mar. Biol. 140, 1039–1051 (2002).Article 

    Google Scholar 
    60.Friedlander, A. & DeMartini, E. Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian islands: the effects of fishing down apex predators. Mar. Ecol. Prog. Ser. 230, 253–264 (2002).ADS 
    Article 

    Google Scholar 
    61.Richardson, K. M., Iverson, J. B. & Kurle, C. M. Marine subsidies likely cause gigantism of iguanas in the Bahamas. Oecologia 189, 1005–1015 (2019).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Croll, D. A., Maron, J. L., Estes, J. A., Danner, E. M. & Byrd, G. V. Introduced predators transform subarctic islands from grassland to tundra. Science 307, 1959–1961 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Briggs, A. A. et al. Effects of spatial subsidies and habitat structure on the foraging ecology and size of geckos. PLoS ONE 7, e41364 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Sterner, R. W. & Elser, J. J. Ecological Stoichiometry: the Biology of Elements from Molecules to the Biosphere (Princeton University Press, 2002).
    Google Scholar 
    65.Kolb, G., Ekholm, J. & Hambäck, P. Effects of seabird nesting colonies on algae and aquatic invertebrates in coastal waters. Mar. Ecol. Prog. Ser. 417, 287–300 (2010).ADS 
    Article 

    Google Scholar 
    66.Lorrain, A. et al. Seabirds supply nitrogen to reef-building corals on remote Pacific islets. Sci. Rep. 7, 3721 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Plass-Johnson, J. G., McQuaid, C. D. & Hill, J. M. Stable isotope analysis indicates a lack of inter- and intra-specific dietary redundancy among ecologically important coral reef fishes. Coral Reefs 32, 429–440 (2013).ADS 
    Article 

    Google Scholar 
    68.Mizutani, H. & Wada, E. Nitrogen and carbon isotope ratios in seabird rookeries and their ecological implications. Ecology 69, 340–349 (1988).Article 

    Google Scholar 
    69.Erler, D. V. et al. Has nitrogen supply to coral reefs in the south Pacific Ocean changed over the past 50 thousand years?. Paleoceanogr. Paleoclimatol. 34, 567–579 (2019).ADS 
    Article 

    Google Scholar 
    70.Benstead, J. P. et al. Coupling of dietary phosphorus and growth across diverse fish taxa: a meta-analysis of experimental aquaculture studies. Ecology 95, 2768–2777 (2014).Article 

    Google Scholar 
    71.McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).Article 

    Google Scholar 
    72.Sogard, S. M. Size-selective mortality in the juvenile stage of teleost fishes: a review. Bull. Mar. Sci. 60, 1129–1157 (1997).
    Google Scholar 
    73.Walsh, S. M., Hamilton, S. L., Ruttenberg, B. I., Donovan, M. K. & Sandin, S. A. Fishing top predators indirectly affects condition and reproduction in a reef-fish community. J. Fish Biol. 80, 519–537 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.DeMartini, E., Friedlander, A. & Holzwarth, S. Size at sex change in protogynous labroids, prey body size distributions, and apex predator densities at NW Hawaiian atolls. Mar. Ecol. Prog. Ser. 297, 259–271 (2005).ADS 
    Article 

    Google Scholar 
    75.Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).ADS 
    Article 

    Google Scholar 
    76.Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs 39, 1221–1231 (2020).Article 

    Google Scholar 
    77.Hixon, M. A., Johnson, D. W. & Sogard, S. M. BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES J. Mar. Sci. 71,  2171–2185 (2014).Article 

    Google Scholar 
    78.Barneche, D. R., Robertson, D. R., White, C. R. & Marshall, D. J. Fish reproductive-energy output increases disproportionately with body size. Science 360, 642–645 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Buckner, E. V., Hernández, D. L. & Samhouri, J. F. Conserving connectivity: Human influence on subsidy transfer and relevant restoration efforts. Ambio 47, 493–503 (2018).PubMed 

    Google Scholar 
    80.Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113, 4033–4038 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Benkwitt, C. E., Gunn, R. L., Le Corre, M., Carr, P., Graham, N. A. J. Rat eradication restores nutrient subsidies from seabirds across terrestrial and marine ecosystems. Curr. Biol. https://doi.org/10.1016/j.cub.2021.03.104 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures

    1.Ibisch, P. L. et al. A global map of roadless areas and their conservation status. Science 354, 1423–1427 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Torres, A., Jaeger, J. A. G. & Alonso, J. C. Assessing large-scale wildlife responses to human infrastructure development. PNAS 113, 8472–8477 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Bennett, V. J. Effects of road density and pattern on the conservation of species and biodiversity. Curr. Landsc. Ecol. Rep. 2, 1–11 (2017).Article 

    Google Scholar 
    4.Coffin, A. W. From roadkill to road ecology: a review of the ecological effects of roads. J. Transp. Geogr. 15, 396–406 (2007).Article 

    Google Scholar 
    5.Fahrig, L. & Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecol. Soc. 14, 21 (2009).Article 

    Google Scholar 
    6.Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29, 207–231 (1998).Article 

    Google Scholar 
    7.Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).Article 

    Google Scholar 
    8.Ascensão, F. et al. Disentangle the causes of the road barrier effect in small mammals through genetic patterns. PLoS ONE 11, e0151500 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    9.Dyer, S. J., O’Neill, J. P., Wasel, S. M. & Boutin, S. Quantifying barrier effects of roads and seismic lines on movements of female woodland caribou in northeastern Alberta. Can. J. Zool. 80, 839–845 (2002).Article 

    Google Scholar 
    10.Glista, D. J., DeVault, T. L. & DeWoody, J. A. A review of mitigation measures for reducing wildlife mortality on roadways. Landsc. Urban Plan. 91, 1–7 (2009).Article 

    Google Scholar 
    11.Taylor, B. D. & Goldingay, R. L. Roads and wildlife: impacts, mitigation and implications for wildlife management in Australia. Wildl. Res. 37, 320–331 (2010).Article 

    Google Scholar 
    12.Tigas, L. A., Van Vuren, D. H. & Sauvajot, R. M. Behavioral responses of bobcats and coyotes to habitat fragmentation and corridors in an urban environment. Biol. Conserv. 108, 299–306 (2002).Article 

    Google Scholar 
    13.Herrmann, H.-W., Pozarowski, K. M., Ochoa, A. & Schuett, G. W. An interstate highway affects gene flow in a top reptilian predator (Crotalus atrox) of the Sonoran Desert. Conserv. Genet. 18, 911–924 (2017).CAS 
    Article 

    Google Scholar 
    14.Holderegger, R. & Di Giulio, M. The genetic effects of roads: a review of empirical evidence. Basic Appl. Ecol. 11, 522–531 (2010).Article 

    Google Scholar 
    15.Keller, L. F. & Waller, D. M. Inbreeding effects in wild populations. Trends Ecol. Evol. 17, 230–241 (2002).Article 

    Google Scholar 
    16.Benítez-López, A., Alkemade, R. & Verweij, P. A. The impacts of roads and other infrastructure on mammal and bird populations: a meta-analysis. Biol. Conserv. 143, 1307–1316 (2010).Article 

    Google Scholar 
    17.Kerley, L. L. et al. Effects of roads and human disturbance on Amur tigers. Conserv. Biol. 16, 97–108 (2002).Article 

    Google Scholar 
    18.Roedenbeck, I. A. & Voser, P. Effects of roads on spatial distribution, abundance and mortality of brown hare (Lepus europaeus) in Switzerland. Eur. J. Wildl. Res. 54, 425–437 (2008).Article 

    Google Scholar 
    19.Clark, R. W., Brown, W. S., Stechert, R. & Zamudio, K. R. Roads, interrupted dispersal, and genetic diversity in timber Rattlesnakes. Conserv. Biol. 24, 1059–1069 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Niko, B. & Waits, L. P. Molecular road ecology: exploring the potential of genetics for investigating transportation impacts on wildlife. Mol. Ecol. 18, 4151–4164 (2009).Article 

    Google Scholar 
    21.Frankham, R., Briscoe, D. A. & Ballou, J. D. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    22.Amos, W. & Balmford, A. When does conservation genetics matter?. Heredity 87, 257–265 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Frankham, R. Genetics and extinction. Biol. Cons. 126, 131–140 (2005).Article 

    Google Scholar 
    24.Teixeira, J. C. & Huber, C. D. The inflated significance of neutral genetic diversity in conservation genetics. Proc. Natl. Acad. Sci. U. S. A. 118, e2015096118 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Keller, I. & Largiadèr, C. R. Recent Habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles. Proc. Biol. Sci. 270, 417–423 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Noël, S., Ouellet, M., Galois, P. & Lapointe, F.-J. Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv. Genet. 8, 599–606 (2007).Article 
    CAS 

    Google Scholar 
    27.Marsh, D. M. et al. Effects of roads on patterns of genetic differentiation in red-backed salamanders, Plethodon cinereus. Conserv. Genet. 9, 603–613 (2008).Article 

    Google Scholar 
    28.Brehme, C. S., Tracey, J. A., Mcclenaghan, L. R. & Fisher, R. N. Permeability of roads to movement of scrubland lizards and small mammals. Conserv. Biol. 27, 710–720 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Ford, A. T. & Clevenger, A. P. Factors affecting the permeability of road mitigation measures to the movement of small mammals. Can. J. Zool. 97, 379–384 (2018).Article 

    Google Scholar 
    30.Claireau, F. et al. Major roads have important negative effects on insectivorous bat activity. Biol. Conserv. 235, 53–62 (2019).Article 

    Google Scholar 
    31.Jacobson, S. L., Bliss-Ketchum, L. L., Rivera, C. E. & Smith, W. P. A behavior-based framework for assessing barrier effects to wildlife from vehicle traffic volume. Ecosphere 7, e01345 (2016).Article 

    Google Scholar 
    32.Assis, J. C., Giacomini, H. C. & Ribeiro, M. C. Road permeability index: evaluating the heterogeneous permeability of roads for wildlife crossing. Ecol. Ind. 99, 365–374 (2019).Article 

    Google Scholar 
    33.Lesbarrères, D., Primmer, C. R., Lodé, T. & Merilä, J. The effects of 20 years of highway presence on the genetic structure of Rana dalmatina populations. Écoscience 13, 531–538 (2006).Article 

    Google Scholar 
    34.Landguth, E. L. et al. Quantifying the lag time to detect barriers in landscape genetics: quantifying the lag time to detect barriers in landscape genetics. Mol. Ecol. 19, 4179–4191 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Epps, C. W. & Keyghobadi, N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol. Ecol. 24, 6021–6040 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Blair, C. et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol. Ecol. Resour. 12, 822–833 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Mona, S., Ray, N., Arenas, M. & Excoffier, L. Genetic consequences of habitat fragmentation during a range expansion. Heredity 112, 291–299 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Weyer, J., Jørgensen, D., Schmitt, T., Maxwell, T. J. & Anderson, C. D. Lack of detectable genetic differentiation between den populations of the Prairie Rattlesnake (Crotalus viridis) in a fragmented landscape. Can. J. Zool. 92, 837–846 (2014).Article 

    Google Scholar 
    39.Frankham, R. Relationship of genetic variation to population size in wildlife. Conserv. Biol. 10, 1500–1508 (1996).Article 

    Google Scholar 
    40.Ehrich, D. & Jorde, P. E. High genetic variability despite high-amplitude population cycles in lemmings. J. Mammal. 86, 380–385 (2005).Article 

    Google Scholar 
    41.Gauffre, B. et al. Short-term variations in gene flow related to cyclic density fluctuations in the common vole. Mol. Ecol. 23, 3214–3225 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Schweizer, M., Excoffier, L. & Heckel, G. Fine-scale genetic structure and dispersal in the common vole (Microtus arvalis). Mol. Ecol. 16, 2463–2473 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Keane, B., Ross, S., Crist, T. O. & Solomon, N. G. Fine-scale spatial patterns of genetic relatedness among resident adult prairie voles. J. Mammal. 96, 1194–1202 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Boyce, C. C. K. & Boyce, J. L. Population biology of Microtus arvalis. II. Natal and breeding dispersal of females. J. Anim. Ecol. 57, 723–736 (1988).Article 

    Google Scholar 
    45.Luque-Larena, J. J. et al. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 14, 432–441 (2013).Article 

    Google Scholar 
    46.Salamolard, M., Butet, A., Leroux, A. & Bretagnolle, V. Responses of an avian predator to variations in prey density at a temperate latitude. Ecology 81, 2428–2441 (2000).Article 

    Google Scholar 
    47.Krebs, C. J. & Myers, J. H. Population cycles in small mammals. In Advances in Ecological Research Vol. 8 (ed. MacFadyen, A.) 267–399 (Academic Press, 1974).
    Google Scholar 
    48.Gerlach, G. & Musolf, K. Fragmentation of landscape as a cause for genetic subdivision in bank voles. Conserv. Biol. 14, 1066–1074 (2000).Article 

    Google Scholar 
    49.Rico, A., Kindlmann, P. & Sedláček, F. Can the barrier effect of highways cause genetic subdivision in small mammals?. Acta Theriol. 54, 297–310 (2009).Article 

    Google Scholar 
    50.Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10 (1975).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Motro, U. & Thomson, G. On heterozygosity and the effective size of populations subject to size changes. Evolution 36, 1059–1066 (1982).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Kirkpatrick, M. & Jarne, P. The effects of a bottleneck on inbreeding depression and the genetic load. Am. Nat. 155, 154–167 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Xenikoudakis, G. et al. Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol. Ecol. 24, 3441–3454 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Parra, G. J. et al. Low genetic diversity, limited gene flow and widespread genetic bottleneck effects in a threatened dolphin species, the Australian humpback dolphin. Biol. Conserv. 220, 192–200 (2018).Article 

    Google Scholar 
    55.Berthier, K., Charbonnel, N., Galan, M., Chaval, Y. & Cosson, J.-F. Migration and recovery of the genetic diversity during the increasing density phase in cyclic vole populations. Mol. Ecol. 15, 2665–2676 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Norén, K. & Angerbjörn, A. Genetic perspectives on northern population cycles: bridging the gap between theory and empirical studies: GENETIC structure in cyclic populations. Biol. Rev. 89, 493–510 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Jangjoo, M., Matter, S. F., Roland, J. & Keyghobadi, N. Demographic fluctuations lead to rapid and cyclic shifts in genetic structure among populations of an alpine butterfly, Parnassius smintheus. J. Evol. Biol. 33, 668–681 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.ESRI. ArcGIS desktop: release 10.3 Environmental Systems Research Institute, Redlands, CA (2015).59.Saunders, S. C., Mislivets, M. R., Chen, J. & Cleland, D. T. Effects of roads on landscape structure within nested ecological units of the Northern Great Lakes Region, USA. Biol. Conserv. 103, 209–225 (2002).Article 

    Google Scholar 
    60.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    61.Schlaepfer, D. R., Braschler, B., Rusterholz, H.-P. & Baur, B. Genetic effects of anthropogenic habitat fragmentation on remnant animal and plant populations: a meta-analysis. Ecosphere 9, e02488 (2018).Article 

    Google Scholar 
    62.Charlesworth, B. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10, 195–205 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Compton, B. W., McGarigal, K., Cushman, S. A. & Gamble, L. R. A resistant-Kernel model of connectivity for amphibians that breed in vernal pools. Conserv. Biol. 21, 788–799 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Balkenhol, N., Cushman, S., Storfer, A. & Waits, L. Landscape Genetics: Concepts, Methods, Applications (Wiley, 2015).Book 

    Google Scholar 
    65.Aguilar, R., Quesada, M., Ashworth, L., Herrerias-Diego, Y. & Lobo, J. Genetic consequences of habitat fragmentation in plant populations: susceptible signals in plant traits and methodological approaches. Mol. Ecol. 17, 5177–5188 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Lloyd, M. W., Campbell, L. & Neel, M. C. The Power to Detect Recent Fragmentation Events Using Genetic Differentiation Methods. PLoS ONE 8, e63981 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Smouse, P. E., Long, J. C. & Sokal, R. R. Multiple regression and correlation extensions of the mantel test of matrix correspondence. Syst. Zool. 35, 627–632 (1986).Article 

    Google Scholar 
    68.Nowak, R. M. Walker’s Mammals of the World (Johns Hopkins University Press, 1999).
    Google Scholar 
    69.García, J. T. et al. A complex scenario of glacial survival in Mediterranean and continental refugia of a temperate continental vole species (Microtus arvalis) in Europe. J. Zool. Syst. Evol. Res. 58, 459–474 (2020).Article 

    Google Scholar 
    70.Martínková, N. et al. Divergent evolutionary processes associated with colonization of offshore islands. Mol. Ecol. 22, 5205–5220 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Keyghobadi, N. K. The genetic implications of habitat fragmentation for animals. Can. J. Zool. 85(10), 1049–1064 (2007).Article 

    Google Scholar 
    72.Vandergast, A. G., Bohonak, A. J., Weissman, D. B. & Fisher, R. N. Understanding the genetic effects of recent habitat fragmentation in the context of evolutionary history: phylogeography and landscape genetics of a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus). Mol. Ecol. 16, 977–992 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Zellmer, A. J. & Knowles, L. L. Disentangling the effects of historic vs. contemporary landscape structure on population genetic divergence. Mol. Ecol. 18, 3593–3602 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Delaney, K. S., Riley, S. P. D. & Fisher, R. N. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5, e12767 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Tkadlec, E. & Stenseth, N. C. A new geographical gradient in vole population dynamics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 1547–1552 (2001).CAS 
    Article 

    Google Scholar 
    76.Lambin, X., Bretagnolle, V. & Yoccoz, N. G. Vole population cycles in northern and southern Europe: Is there a need for different explanations for single pattern?. J. Anim. Ecol. 75, 340–349 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Ehrich, D. & Stenseth, N. C. Genetic structure of Siberian lemmings (Lemmus sibiricus) in a continuous habitat: large patches rather than isolation by distance. Heredity 86, 716–730 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Gauffre, B., Estoup, A., Bretagnolle, V. & Cosson, J. F. Spatial genetic structure of a small rodent in a heterogeneous landscape. Mol. Ecol. 17, 4619–4629 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Galliard, J.-F.L., Rémy, A., Ims, R. A. & Lambin, X. Patterns and processes of dispersal behaviour in arvicoline rodents. Mol. Ecol. 21, 505–523 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.Gauffre, B., Petit, E., Brodier, S., Bretagnolle, V. & Cosson, J. F. Sex-biased dispersal patterns depend on the spatial scale in a social rodent. Proc. R. Soc. B Biol. Sci. 276, 3487 (2009).CAS 
    Article 

    Google Scholar 
    81.Lidicker, W.Z. Jr. The role of dispersal in the demography of small mammals, in Small Mammals: their production and population dynamics. Eds F.B. Golley, K. Petrusewicz and L. Ryszkowski, 103–28 (Cambridge University Press, London, 1975).82.Gaines, M. S. & McClenaghan, L. R. Dispersal in small mammals. Annu. Rev. Ecol. Syst. 11, 163–196 (1980).Article 

    Google Scholar 
    83.Swingland, I. R. & Greenwood, P. J. The Ecology of Animal Movement (Clarendon Press, 1983).
    Google Scholar 
    84.Burton, C., Krebs, C. J. & Taylor, E. B. Population genetic structure of the cyclic snowshoe hare (Lepus americanus) in southwestern Yukon, Canada. Mol. Ecol. 11, 1689–1701 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Plante, Y., Boag, P. T. & White, B. N. Microgeographic variation in mitochondrial DNA of meadow voles (Microtus pennsylvanicus) in relation to population density. Evolution 43, 1522–1537 (1989).PubMed 
    PubMed Central 

    Google Scholar 
    86.Encuesta sobre superficies y rendimientos del cultivo 2012. Catálogo de publicaciones de la Administración General del Estado (MAGRAMA, 2013).87.Oñate, J. J. et al. Programa piloto de acciones de conservación de la biodiversidad en sistemas ambientales con usos agrarios en el marco del desarrollo rural. Convenio de colaboración entre la Dirección General para la Biodiversidad (Ministerio de Medio Ambiente) y el Departamento Interuniversitario de Ecología (Universidad Autónoma de Madrid, 2003).88.Ji, S. et al. Impact of different road types on small mammals in Mt. Kalamaili Nature Reserve. Transp. Res. Part D Transp. Environ. 50, 223–233 (2017).Article 

    Google Scholar 
    89.Vignieri, S. N. Streams over mountains: influence of riparian connectivity on gene flow in the Pacific jumping mouse (Zapus trinotatus): connectivity patterns in pacific jumping mice. Mol. Ecol. 14, 1925–1937 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    90.Russo, I.-R.M., Sole, C. L., Barbato, M., von Bramann, U. & Bruford, M. W. Landscape determinants of fine-scale genetic structure of a small rodent in a heterogeneous landscape (Hluhluwe-iMfolozi Park, South Africa). Sci. Rep. 6, 29168 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    91.Mougeot, F., Lambin, X., Rodríguez-Pastor, R., Romairone, J. & Luque-Larena, J.-J. Numerical response of a mammalian specialist predator to multiple prey dynamics in Mediterranean farmlands. Ecology 100, e02776 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Schwartz, M. K. & McKelvey, K. S. Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv. Genet. 10, 441 (2009).Article 

    Google Scholar 
    93.Strauss, W. M. Preparation of genomic DNA from Mammalian tissue. Curr. Protoc. Mol. Biol. 42, 1–3 (1998).Article 

    Google Scholar 
    94.Ishibashi, Y. et al. Polymorphic microsatellite DNA markers in the field vole Microtus montebelli. Mol. Ecol. 8, 163–164 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    95.Gauffre, B., Galan, M., Bretagnolle, V. & Cosson, J. Polymorphic microsatellite loci and PCR multiplexing in the common vole, Microtus arvalis. Mol. Ecol. Notes 7, 830–832 (2007).CAS 
    Article 

    Google Scholar 
    96.Johnson, P. C. D. & Haydon, D. T. Software for quantifying and simulating microsatellite genotyping error. Bioinform. Biol. Insights 1, 71–75 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    97.Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).CAS 
    Article 

    Google Scholar 
    98.Brookfield, J. F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5, 453–455 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Adamack, A. T. & Gruber, B. PopGenReport: simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    100.Jones, O. R. & Wang, J. COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol. Ecol. Resour. 10, 551–555 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W. & Prodöhl, P. A. diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods Ecol. Evol. 4, 782–788 (2013).Article 

    Google Scholar 
    102.Coulon, A. genhet: an easy-to-use R function to estimate individual heterozygosity. Mol. Ecol. Resour. 10, 167–169 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    103.Coltman, D. W., Pilkington, J. G. & Pemberton, J. M. Fine-scale genetic structure in a free-living ungulate population. Mol. Ecol. 12, 733–742 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    104.Amos, W. et al. The influence of parental relatedness on reproductive success. Proc. R. Soc. Lond. Ser. B Biol. Sci. 268, 2021–2027 (2001).CAS 
    Article 

    Google Scholar 
    105.Aparicio, J. M., Ortego, J. & Cordero, P. J. What should we weigh to estimate heterozygosity, alleles or loci? Estimating heterozygosity from neutral markers. Mol. Ecol. 15, 4659–4665 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Peakall, R. & Smouse, P. E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28, 2537–2539 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Hedrick, P. W. A standardized genetic differentiation measure. Evolution 59, 1633–1638 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    110.Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11, 5–18 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    111.Nei, M. Analysis of gene diversity in subdivided populations. PNAS 70, 3321–3323 (1973).ADS 
    CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    112.Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47, 253–259 (1983).CAS 
    PubMed 
    MATH 
    Article 
    PubMed Central 

    Google Scholar 
    113.Bowcock, A. M. et al. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368, 455–457 (1994).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    114.Takezaki, N. & Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144, 389–399 (1996).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    115.Smouse, P. E. & Peakall, R. Spatial autocorrelation analysis of individual multiallele and multilocus genetic structure. Heredity 82, 561–573 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    116.Queller, D. C. & Goodnight, K. F. Estimating relatedness using genetic markers. Evolution 43, 258–275 (1989).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    117.Ritland, K. Estimators for pairwise relatedness and individual inbreeding coefficients. Genet. Res. 67, 175–185 (1996).Article 

    Google Scholar 
    118.Lynch, M. & Ritland, K. Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    119.Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    Article 

    Google Scholar 
    120.Legendre, P. Spatial autocorrelation: Trouble or new paradigm?. Ecology 74, 1659–1673 (1993).Article 

    Google Scholar 
    121.Zuur, A., Ieno, E. N. & Smith, G. M. Analyzing Ecological Data (Springer, Berlin, 2007).MATH 
    Book 

    Google Scholar 
    122.Hedges, L. V. & Olkin, I. Statistical Methods for Meta-Analysis (Academic Press, 2014).MATH 

    Google Scholar 
    123.Kirby, K. N. & Gerlanc, D. BootES: an R package for bootstrap confidence intervals on effect sizes. Behav. Res. Methods 45, 905–927 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    124.Cohen, J. A power primer. Psychol. Bull. 112, 155–159 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    125.Cohen, J. Statistical Power Analysis for the Behavioral Sciences (Academic Press, 2013).MATH 
    Book 

    Google Scholar 
    126.González-Esteban, J. & Villate I. Microtus arvalis Pallas, 1778. In: Atlas y Libro Rojo de los Mamíferos Terrestres de España, Palomo, L.J., Gisbert, J. & Blanco J.C. (Eds.), Dirección General para la Biodiversidad-SECEM-SECEMU, 426-428 (2007). More

  • in

    The role of plant labile carbohydrates and nitrogen on wheat-aphid relations 

    1.Yamauchi, A., Ikegawa, Y., Ohgushi, T. & Namba, T. Density regulation of co-occurring herbivores via two indirect effects mediated by biomass and non-specific induced plant defenses. Thyroid Res. https://doi.org/10.1007/s12080-020-00479-2 (2020).Article 

    Google Scholar 
    2.Wootton, J. T. Indirect effects in complex ecosystems: recent progress and future challenges. J. Sea Res. 48, 157–172. https://doi.org/10.1016/S1385-1101(02)00149-1 (2002).ADS 
    Article 

    Google Scholar 
    3.Wootton, J. T. The nature and consequences of indirect effects in ecological communities. Ann. Rev. Ecol. Syst. 25, 443–466. https://doi.org/10.1146/annurev.es.25.110194.002303 (1994).Article 

    Google Scholar 
    4.Comeault, A. A. & Matute, D. R. Temperature-dependent competitive outcomes between the fruit flies Drosophila santomea and Drosophila yakuba. Am. Nat. 197, 312–323. https://doi.org/10.1086/712781 (2021).Article 
    PubMed 

    Google Scholar 
    5.Darwin, C. On the Origin of Species by Means of Natural Selection or the Preservation of Favoured Races in the Struggle for Life (Murray, 1859).
    Google Scholar 
    6.Kankaanpää, T. et al. Parasitoids indicate major climate-induced shifts in arctic communities. Global Chang. Biol. https://doi.org/10.1111/gcb.15297 (2020).Article 

    Google Scholar 
    7.Nagelkerken, I., Goldenberg, S. U., Ferreira, C. M., Ullah, H. & Connell, S. D. Trophic pyramids reorganize when food web architecture fails to adjust to ocean change. Science 369, 829–832. https://doi.org/10.1126/science.aax0621 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Kaur, T. & Dutta, P. S. Persistence and stability of interacting species in response to climate warming: the role of trophic structure. Thyroid Res. https://doi.org/10.1007/s12080-020-00456-9 (2020).Article 

    Google Scholar 
    9.Han, P. et al. Global change-driven modulation of bottom–up forces and cascading effects on biocontrol services. Curr. Opin. Insect Sci. 35, 27–33. https://doi.org/10.1016/j.cois.2019.05.005 (2019).Article 
    PubMed 

    Google Scholar 
    10.Waring, G. L. & Cobb, N. S. in Insect-Plant Interactions, Vol. 4 (ed. Bernays, E. A.) 167–226 (CRC Press, 1992).11.Zavala, J. A., Gog, L. & Giacometti, R. Anthropogenic increase in carbon dioxide modifies plant-insect interactions. Ann. Appl. Biol. https://doi.org/10.1111/aab.12319 (2016).Article 

    Google Scholar 
    12.Bezemer, T. M. & Jones, T. H. Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82, 212. https://doi.org/10.2307/3546961 (1998).Article 

    Google Scholar 
    13.Navarro, E. C., Lam, S. K. & Trebicki, P. Elevated carbon dioxide and nitrogen impact wheat and its aphid pest. Front. Plant Sci. https://doi.org/10.3389/fpls.2020.605337 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Moreno-Delafuente, A., Viñuela, E., Fereres, A., Medina, P. & Trębicki, P. Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects 11, 459. https://doi.org/10.3390/insects11080459 (2020).Article 
    PubMed Central 

    Google Scholar 
    15.Shiferaw, B. et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security. Food Sec. 5, 291–317. https://doi.org/10.1007/s12571-013-0263-y (2013).Article 

    Google Scholar 
    16.Minks, A. K. & Harrewijn, P. Aphids. Their Biology, Natural Enemies and Control Vol. A (Elsevier, 1987).
    Google Scholar 
    17.Trebicki, P., Dader, B., Vassiliadis, S. & Fereres, A. Insect-plant-pathogen interactions as shaped by future climate: effects on biology, distribution, and implications for agriculture. Insect Sci. 24, 975–989. https://doi.org/10.1111/1744-7917.12531 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Aradottir, G. I. & Crespo-Herrera, L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: a review. Curr. Opin. Insect Sci. https://doi.org/10.1016/j.cois.2021.01.002 (2021).Article 
    PubMed 

    Google Scholar 
    19.Yin, W. et al. Microhabitat separation between the pest aphids Rhopalosiphum padi and Sitobion avenae: food resource or microclimate selection?. J. Pest. Sci. https://doi.org/10.1007/s10340-020-01298-4 (2020).Article 

    Google Scholar 
    20.Noble, D. in Perspectives on Organisms. Biological Time, Symmetries and Singularities Lecture Notes in Morphogenesis (eds. Longo, G. & Montévil, M.) VII–X (Springer, 2014).21.Sadras, V. O. Effective phenotyping applications require matching trait and platform and more attention to theory. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01339 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.West-Eberhard, M. J. Developmental Plasticity and Evolution (Oxford University Press, 2003).Book 

    Google Scholar 
    23.Sadras, V. O. et al. Aphid resistance: an overlooked ecological dimension of nonstructural carbohydrates in cereals. Front. Plant Sci. 11, 937. https://doi.org/10.3389/fpls.2020.00937 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Bogaert, F. et al. How the use of nitrogen fertiliser may switch plant suitability for aphids: the case of Miscanthus, a promising biomass crop, and the aphid pest Rhopalosiphum maidis. Pest Manag. Sci. 73, 1648–1654. https://doi.org/10.1002/ps.4505 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Radin, J. W. Control of plant growth by nitrogen: differences between cereals and broadleaf species. Plant Cell Environ. 6, 65–68 (1983).
    Google Scholar 
    26.Fereres, A., Lister, R. M., Araya, J. E. & Foster, J. E. Development and reproduction of the English grain aphid (Homoptera, Aphididae) on wheat cultivars infected with barley yellow dwarf virus. Environ. Entomol. 18, 388–393. https://doi.org/10.1093/ee/18.3.388 (1989).Article 

    Google Scholar 
    27.Pompon, J., Quiring, D., Goyer, C., Giordanengo, P. & Pelletier, Y. A phloem-sap feeder mixes phloem and xylem sap to regulate osmotic potential. J. Insect Physiol. 57, 1317–1322. https://doi.org/10.1016/j.jinsphys.2011.06.007 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Tjallingii, W. F. Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730. https://doi.org/10.1111/j.1570-7458.1978.tb02836.x (1978).Article 

    Google Scholar 
    29.Mattson, W. J. Herbivory in relation to plant nitrogen content. Ann. Rev. Ecol. Syst. 11, 119–161. https://doi.org/10.1146/annurev.es.11.110180.001003 (1980).Article 

    Google Scholar 
    30.White, T. C. R. The Inadequate Environment—Nitrogen and the Abundance of Animals (Springer Verlag, 1993).
    Google Scholar 
    31.Aqueel, M. A. & Leather, S. R. Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot. 30, 216–221. https://doi.org/10.1016/j.cropro.2010.09.013 (2011).Article 

    Google Scholar 
    32.Sadras, V. O. & Lemaire, G. Quantifying crop nitrogen status for comparisons of agronomic practices and genotypes. Field Crops Res. 164, 54–64 (2014).Article 

    Google Scholar 
    33.Gastal, F., Lemaire, G., Durand, J. L. & Louarn, G. in Crop Physiology: Applications for Genetic Improvement and Agronomy (eds. Sadras, V. O. & Calderini, D. F.) 161–206 (Academic Press, 2015).34.Lemaire, G. & Millard, P. An ecophysiological approach to modelling resource fluxes in competing plants. J. Exp. Bot. 50, 15–28. https://doi.org/10.1093/jexbot/50.330.15 (1999).CAS 
    Article 

    Google Scholar 
    35.Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 165, 351–372. https://doi.org/10.1111/j.1469-8137.2004.01224.x (2004).Article 

    Google Scholar 
    36.Sun, Y. C., Chen, F. J. & Ge, F. Elevated CO2 changes interspecific competition among three species of wheat aphids: Sitobion avenae, Rhopalosiphum padi, and Schizaphis graminum. Environ. Entomol. 38, 26–34. https://doi.org/10.1603/022.038.0105 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    37.Oehme, V., Högy, P., Zebitz, C. P. W. & Fangmeier, A. Effects of elevated atmospheric CO2 concentrations on phloem sap composition of spring crops and aphid performance. J. Plant Interact. 8, 74–84. https://doi.org/10.1080/17429145.2012.736200 (2013).CAS 
    Article 

    Google Scholar 
    38.Oehme, V., Hogy, P., Franzaring, J., Zebitz, C. P. W. & Fangmeier, A. Response of spring crops and associated aphids to elevated atmospheric CO2 concentrations. J. Appl. Bot. Food Qual. 84, 151–157 (2011).CAS 

    Google Scholar 
    39.Dáder, B., Fereres, A., Moreno, A. & Trębicki, P. Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci. Rep. 6, 19120. https://doi.org/10.1038/srep19120 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    40.Olin, S. et al. Modelling the response of yields and tissue C:N to changes in atmospheric CO2 and N management in the main wheat regions of western Europe. Biogeosciences 12, 2489–2515. https://doi.org/10.5194/bg-12-2489-2015 (2015).ADS 
    Article 

    Google Scholar 
    41.Justes, E., Mary, B., Meynard, J. M., Machet, J. M. & Thelierhuche, L. Determination of a critical nitrogen dilution curve for winter wheat crops. Ann. Bot. 74, 397–407 (1994).CAS 
    Article 

    Google Scholar 
    42.Evans, J. R. & Clarke, V. C. The nitrogen cost of photosynthesis. J. Exp. Bot. 70, 7–15. https://doi.org/10.1093/jxb/ery366 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Mittler, T. E., Dadd, R. H. & Daniels, S. C. Utilization of different sugars by aphid Myzus persicae. J. Insect Physiol. 16, 1873–2000. https://doi.org/10.1016/0022-1910(70)90234-9 (1970).CAS 
    Article 

    Google Scholar 
    44.Douglas, A. E. et al. Sweet problems: insect traits defining the limits to dietary sugar utilisation by the pea aphid, Acyrthosiphon pisum. J. Exp. Biol. 209, 1395–1403. https://doi.org/10.1242/jeb.02148 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Bloom, A. J., Chapin, F. S. I. & Mooney, H. A. Resource limitation in plants—an economic analogy. Ann. Rev. Ecol. Syst. 16, 363–392 (1985).Article 

    Google Scholar 
    46.Chapin, F. S. I., Schulze, E. D. & Mooney, H. A. The ecology and economics of storage in plants. Annu. Rev. Ecol. Syst. 21, 423–447 (1990).Article 

    Google Scholar 
    47.Ovenden, B. et al. Selection for water-soluble carbohydrate accumulation and investigation of genetic x environment interactions in an elite wheat breeding population. Theor. Appl. Gen. 130, 2445–2461. https://doi.org/10.1007/s00122-017-2969-2 (2017).CAS 
    Article 

    Google Scholar 
    48.del Pozo, A. et al. Physiological traits associated with wheat yield potential and performance under water-stress in a Mediterranean environment. Front. Plant Sci. https://doi.org/10.3389/fpls.2016.00987 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Dixon, A. F. G. in Aphids Their Biology, Natural Enemies and Control, Vol. A (eds. Minks, A. K. & Harrewijn, P.) (Elsevier, 1987).50.Brabec, M., Honek, A., Pekar, S. & Martinkova, Z. Population dynamics of aphids on cereals: digging in the time-series data to reveal population regulation caused by temperature. PLoS ONE https://doi.org/10.1371/journal.pone.0106228 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Cid, M., Ávila, A., García, A., Abad, J. & Fereres, A. New sources of resistance to lettuce aphids in Lactuca spp. Arthropod.-Plant Interact. 6, 655–669. https://doi.org/10.1007/s11829-012-9213-4 (2012).Article 

    Google Scholar 
    52.Collado-Gonzalez, J. et al. Effects of water deficit during maturation on amino acids and jujube fruit eating quality. Maced. J. Chem. Chem. Eng. 33, 103–117. https://doi.org/10.20450/mjcce.2014.375 (2014).Article 

    Google Scholar 
    53.Riga, P. et al. Diffuse light affects the contents of vitamin C, phenolic compounds and free amino acids in lettuce plants. Food Chem. 272, 227–234. https://doi.org/10.1016/j.foodchem.2018.08.051 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Nagumo, Y. et al. Rapid quantification of cyanamide by ultra-high-pressure liquid chromatography in fertilizer, soil or plant samples. J. Chromatogr. A 1216, 5614–5618. https://doi.org/10.1016/j.chroma.2009.05.067 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Cerrillo, I. et al. Effect of fermentation and subsequent pasteurization processes on amino acids composition of orange juice. Plant Foods Hum. Nutr. 70, 153–159. https://doi.org/10.1007/s11130-015-0472-y (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    56.Salazar, C., Armenta, J. M., Cortés, D. F. & Shulaev, V. Combination of an AccQ·Tag-ultra performance liquid chromatographic method with tandem mass spectrometry for the analysis of amino acids. Methods Mol. Biol. (Clifton N. J.) 828, 13–28. https://doi.org/10.1007/978-1-61779-445-2_2 (2012).CAS 
    Article 

    Google Scholar 
    57.Nadezdha, P. T., Pascal, B. A., Annick, M. & Panteley, D. P. HPLC analysis of mono- and disaccharides in food products. In Scientific Works Volume LX, 765–791 (Food Science, Engineering and Technology, 2013).58.Greenland, S. Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values. Am. Stat. 73, 106–114. https://doi.org/10.1080/00031305.2018.1529625 (2019).MathSciNet 
    Article 

    Google Scholar 
    59.Sarria, E., Cid, M., Garzo, E. & Fereres, A. Excel workbook for automatic parameter calculation of EPG data. Comput. Electron. Agric. 67, 35–42. https://doi.org/10.1016/j.compag.2009.02.006 (2009).Article 

    Google Scholar 
    60.Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, 2002).Book 

    Google Scholar 
    61.Garzo, E., Rizzo, E., Fereres, A. & Gomez, S. K. High levels of arbuscular mycorrhizal fungus colonization on Medicago truncatula reduces plant suitability as a host for pea aphids (Acyrthosiphon pisum). Insect Sci. 27, 99–112. https://doi.org/10.1111/1744-7917.12631 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Potvin, C., Lechowicz, M. J. & Tardif, S. The statistical analysis of ecological response curves obtained from experiments involving repeated measures. Ecology 71, 1389–1400 (1990).Article 

    Google Scholar  More

  • in

    Brain volume increase and neuronal plasticity underly predator-induced morphological defense expression in Daphnia longicephala

    1.Bradshaw, A. D. Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155 (1965).Article 

    Google Scholar 
    2.Weiss, L. C. & Tollrian, R. Predator induced defenses in Crustacea. in The Natural History of Crustacea: Life Histories, Volume 5 (eds. Welborn, G. & Thiel, M.) 303–321 (Oxford University Press, 2018).
    Google Scholar 
    3.Tollrian, R. Predator-induced helmet formation in Daphnia cucullata (Sars). Arch. für Hydrobiol. 119, 191–196 (1990).
    Google Scholar 
    4.Krueger, D. A. & Dodson, S. I. Embryological induction and predation ecology in Daphnia pulex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0219 (1981).Article 

    Google Scholar 
    5.Grant, J. W. G. & Bayly, I. A. E. Predator induction of crests in morphs of the Daphnia carinata King complex. Limnol. Oceanogr. https://doi.org/10.4319/lo.1981.26.2.0201 (1981).Article 

    Google Scholar 
    6.Macháček, J. Indirect effect of planktivorous fish on the growth and reproduction of Daphnia galeata. Hydrobiologia https://doi.org/10.1007/BF00028397 (1991).Article 

    Google Scholar 
    7.Stibor, H. & Luning, J. Predator-induced phenotypic variation in the pattern of growth and reproduction in Daphnia hyalina (Crustacea: Cladocera). Funct. Ecol. https://doi.org/10.2307/2390117 (1994).Article 

    Google Scholar 
    8.Dodson, S. I., Tollrian, R. & Lampert, W. Daphnia swimming behaviour during vertical migration. J. Plankton Res. 19, 969–978 (1997).Article 

    Google Scholar 
    9.Tollrian, R., Duggen, S., Weiss, L. C., Laforsch, C. & Kopp, M. Density-dependent adjustment of inducible defenses. Sci. Rep. 5, 12736 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Miyakawa, H. et al. Gene up-regulation in response to predator kairomones in the water flea Daphnia pulex. BMC Dev. Biol. https://doi.org/10.1186/1471-213X-10-45 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Oda, S., Kato, Y., Watanabe, H., Tatarazako, N. & Iguchi, T. Morphological changes in Daphnia galeata induced by a crustacean terpenoid hormone and its analog. Environ. Toxicol. Chem. https://doi.org/10.1002/etc.378 (2011).Article 
    PubMed 

    Google Scholar 
    12.Miyakawa, H., Sato, M., Colbourne, J. K. & Iguchi, T. Ionotropic glutamate receptors mediate inducible defense in the water flea Daphnia pulex. PLoS ONE 10, 1–12 (2015).Article 

    Google Scholar 
    13.Weiss, L. C., Kruppert, S., Laforsch, C. & Tollrian, R. Chaoborus and Gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals. PLoS ONE 7, e36879 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    14.Weiss, L. C., Leese, F., Laforsch, C. & Tollrian, R. Dopamine is a key regulator in the signalling pathway underlying predatorinduced defences in Daphnia. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2015.1440 (2015).Article 

    Google Scholar 
    15.Weiss, L. C., Leimann, J. & Tollrian, R. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation. J. Exp. Biol. 218, 2918–2926 (2015).Article 

    Google Scholar 
    16.Bullock, T. & Horridge, G. A. Structure and function in the nervous systems of invertebrates. (San Francisco, 1965).17.Fritsch, M., Kaji, T., Olesen, J. & Richter, S. The development of the nervous system in Laevicaudata (Crustacea, Branchiopoda): insights into the evolution and homologies of branchiopod limbs and ‘frontal organs’. Zoomorphology 132, 163–181 (2013).Article 

    Google Scholar 
    18.Kolb, B. & Whishaw, I. Q. Brain plasticity and behavior. Annu. Rev. Psychol. https://doi.org/10.1146/annurev.psych.49.1.43 (1998).Article 
    PubMed 

    Google Scholar 
    19.Turner, A. M. & Greenough, W. T. Differential rearing effects on rat visual cortex synapses. I. Synaptic and neuronal density and synapses per neuron. Brain Res. https://doi.org/10.1016/0006-8993(85)90525-6 (1985).Article 
    PubMed 

    Google Scholar 
    20.Woodley, S. K., Mattes, B. M., Yates, E. K. & Relyea, R. A. Exposure to sublethal concentrations of a pesticide or predator cues induces changes in brain architecture in larval amphibians. Oecologia 179, 655–665 (2015).ADS 
    Article 

    Google Scholar 
    21.Gronenberg, W., Heeren, S. & Hölldobler, B. Age-dependent and task-related morphological changes in the brain and the mushroom bodies of the ant Camponotus floridanus. J. Exp. Biol. 199, 2011–2019 (1996).CAS 
    Article 

    Google Scholar 
    22.Barth, M. & Heisenberg, M. Vision affects mushroom bodies and central complex in Drosophila melanogaster. Learn. Mem. https://doi.org/10.1101/lm.4.2.219 (1997).Article 
    PubMed 

    Google Scholar 
    23.Barth, M., Hirsch, H. V. B., Meinertzhagen, I. A. & Heisenberg, M. Experience-dependent developmental plasticity in the optic lobe of Drosophila melanogaster. J. Neurosci. https://doi.org/10.1523/jneurosci.17-04-01493.1997 (1997).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.van Dijk, L. J. A., Janz, N., Schäpers, A., Gamberale-Stille, G. & Carlsson, M. A. Experience-dependent mushroom body plasticity in butterflies: Consequences of search complexity and host range. Proc. R. Soc. B Biol. Sci. 284, 0–7 (2017).
    Google Scholar 
    25.Withers, G. S., Fahrbach, S. E. & Robinson, G. E. Selective neuroanatomical plasticity and division of labour in the honeybee. Nature https://doi.org/10.1038/364238a0 (1993).Article 
    PubMed 

    Google Scholar 
    26.Heisenberg, M., Heusipp, M. & Wanke, C. Structural plasticity in the Drosophila brain. J. Neurosci. https://doi.org/10.1523/jneurosci.15-03-01951.1995 (1995).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. https://doi.org/10.1242/jeb.017574 (2008).Article 
    PubMed 

    Google Scholar 
    28.Berlucchi, G. & Buchtel, H. A. Neuronal plasticity: historical roots and evolution of meaning. Exp. Brain Res. https://doi.org/10.1007/s00221-008-1611-6 (2009).Article 
    PubMed 

    Google Scholar 
    29.Zhai, R. G. & Bellen, H. J. The architecture of the active zone in the presynaptic nerve terminal. Physiology https://doi.org/10.1152/physiol.00014.2004 (2004).Article 
    PubMed 

    Google Scholar 
    30.Horn, G., Bradley, P. & McCabe, B. J. Changes in the structure of synapses associated with learning. J. Neurosci. https://doi.org/10.1523/jneurosci.05-12-03161.1985 (1985).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Beaulieu, C. & Colonnier, M. Richness of environment affects the number of contacts formed by boutons containing flat vesicles but does not alter the number of these boutons per neuron. J. Comp. Neurol. https://doi.org/10.1002/cne.902740305 (1988).Article 
    PubMed 

    Google Scholar 
    32.Anderson, B. J. Plasticity of gray matter volume: The cellular and synaptic plasticity that underlies volumetric change. Dev. Psychobiol. https://doi.org/10.1002/dev.20563 (2011).Article 
    PubMed 

    Google Scholar 
    33.Tyagarajan, S. K. & Fritschy, J.-M. Gephyrin: a master regulator of neuronal function?. Nat. Rev. Neurosci. 15, 141–156 (2014).CAS 
    Article 

    Google Scholar 
    34.Dutertre, S., Becker, C. M. & Betz, H. Inhibitory glycine receptors: an update. J. Biol. Chem. https://doi.org/10.1074/jbc.R112.408229 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Fritschy, J. M., Harvey, R. J. & Schwarz, G. Gephyrin: where do we stand, where do we go?. Trends Neurosci. https://doi.org/10.1016/j.tins.2008.02.006 (2008).Article 
    PubMed 

    Google Scholar 
    36.Choii, G. & Ko, J. Gephyrin: a central GABAergic synapse organizer. Exp. Mol. Med. https://doi.org/10.1038/emm.2015.5 (2015).Article 
    PubMed 

    Google Scholar 
    37.Phillips-Portillo, J. & Strausfeld, N. J. Representation of the brain’s superior protocerebrum of the flesh fly, Neobellieria bullata, in the central body. J. Comp. Neurol. https://doi.org/10.1002/cne.23094 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods https://doi.org/10.1038/nmeth.2019 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.de Reuille, P. B. et al. MorphoGraphX: a platform for quantifying morphogenesis in 4D. Elife https://doi.org/10.7554/eLife.05864 (2015).Article 

    Google Scholar 
    40.Cignoni, P. et al. MeshLab: An open-source 3D mesh processing tool. In 6th Eurographics Italian Chapter Conference 2008 – Proceedings (2008).
    Google Scholar 
    41.Horstmann, M. et al. Scan, extract, wrap, compute—a 3D method to analyse morphological shape differences. PeerJ 2018, 1–20 (2018).
    Google Scholar 
    42.R Development Core Team, R. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://doi.org/10.1007/978-3-540-74686-7 (2011).Article 

    Google Scholar 
    43.Wickham, H. et al. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. New York (2016).44.Ohyama, T. et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520, 633–639 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    45.Simpson, J. H. Chapter 3 Mapping and Manipulating Neural Circuits in the Fly Brain. Advances in Genetics. https://doi.org/10.1016/S0065-2660(09)65003-3 (2009).Article 

    Google Scholar 
    46.Boyan, G., Williams, L. & Liu, Y. Conserved patterns of axogenesis in the panarthropod brain. Arthropod Struct. Dev. https://doi.org/10.1016/j.asd.2014.11.003 (2015).Article 
    PubMed 

    Google Scholar 
    47.Cayre, M., Strambi, C. & Strambi, A. Neurogenesis in an adult insect brain and its hormonal control. Nature https://doi.org/10.1038/368057a0 (1994).Article 

    Google Scholar 
    48.Harzsch, S. & Dawirs, R. R. Neurogenesis in the developing crab brain: Postembryonic generation of neurons persists beyond metamorphosis. J. Neurobiol. https://doi.org/10.1002/(SICI)1097-4695(199603)29:3%3c384::AID-NEU9%3e3.0.CO;2-5 (1996).Article 
    PubMed 

    Google Scholar 
    49.Sandeman, R., Clarke, D., Sandeman, D. & Manly, M. Growth-related and antennular amputation-induced changes in the olfactory centers of crayfish brain. J. Neurosci. https://doi.org/10.1523/jneurosci.18-16-06195.1998 (1998).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Harzsch, S., Miller, J., Benton, J. & Beltz, B. From embryo to adult: Persistent neurogenesis and apoptotic cell death shape the lobster deutocerebrum. J. Neurosci. https://doi.org/10.1523/jneurosci.19-09-03472.1999 (1999).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Letourneau, J. G. Addition of sensory structures and associated neurons to the crayfish telson during development. J. Comp. Physiol. A https://doi.org/10.1007/BF00656778 (1976).Article 

    Google Scholar 
    52.Sandeman, D. C. Organization of the central nervous system. in The Biology of Crustacea. Vol. 3. Neurobiology: Structure and Function 1–61 (Academic Press, 1982).
    Google Scholar 
    53.Laverack, M. S. The numbers of neurones in decapod Crustacea. J. Crustac. Biol. 8, 1–11 (1988).Article 

    Google Scholar 
    54.Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 240–250 (2001).CAS 
    Article 

    Google Scholar 
    55.Bliss, T. V. P. & Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature https://doi.org/10.1038/361031a0 (1993).Article 
    PubMed 

    Google Scholar 
    56.Collingridge, G. L., Isaac, J. T. R. & Yu, T. W. Receptor trafficking and synaptic plasticity. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn1556 (2004).Article 
    PubMed 

    Google Scholar 
    57.Atwood, H. L. & Wojtowicz, J. M. Short-term and long-term plasticity and physiological differentiation of crustacean motor synapses. Int. Rev. Neurobiol. 28, 275–362 (1986).CAS 
    Article 

    Google Scholar 
    58.Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat. Neurosci. https://doi.org/10.1038/nn1206 (2004).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Hao, J., Wang, X. D., Dan, Y., Poo, M. M. & Zhang, X. H. An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons. Proc. Natl. Acad. Sci. USA. https://doi.org/10.1073/pnas.0912022106 (2009).Article 
    PubMed 

    Google Scholar 
    60.Fu, A. K. & Ip, N. Y. Regulation of postsynaptic signaling in structural synaptic plasticity. Curr. Opin. Neurobiol. https://doi.org/10.1016/j.conb.2017.05.016 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Chater, T. E. & Goda, Y. The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front. Cell. Neurosci. https://doi.org/10.3389/fncel.2014.00401 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Velazquez, J. L., Thompson, C. L., Barnes, E. M. & Angelides, K. J. Distribution and lateral mobility of GABA/benzodiazepine receptors on nerve cells. J. Neurosci. 9, 2163–2169 (1989).CAS 
    Article 

    Google Scholar 
    63.Gaiarsa, J. L., Caillard, O. & Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci. https://doi.org/10.1016/S0166-2236(02)02269-5 (2002).Article 
    PubMed 

    Google Scholar 
    64.Nusser, Z., Hájos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABA(A) receptors underlies potentiation at hippocampal inhibitory synapses. Nature https://doi.org/10.1038/25999 (1998).Article 
    PubMed 

    Google Scholar  More