More stories

  • in

    Smell of green leaf volatiles attracts white storks to freshly cut meadows

    1.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).Article 

    Google Scholar 
    2.Bernays, E. A. & Wcislo, W. T. Sensory capabilities, information processing, and resource specialization. Q. Rev. Biol. 69, 187–204 (1994).Article 

    Google Scholar 
    3.Løkkeborg, S. Feeding behaviour of cod, Gadus morhua: Activity rhythm and chemically mediated food search. Anim. Behav. 56, 371–378 (1998).Article 

    Google Scholar 
    4.Niesterok, B., Krüger, Y., Wieskotten, S., Dehnhardt, G. & Hanke, W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J. Exp. Biol. 220, 174–185 (2017).Article 

    Google Scholar 
    5.Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & McGregor, I. S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).Article 

    Google Scholar 
    6.Nevo, O. & Heymann, E. W. Led by the nose: olfaction in primate feeding ecology. Evolutionary Anthropology: Issues, News, and Reviews 24, 137–148 (2015).Article 

    Google Scholar 
    7.Harel, R., Horvitz, N. & Nathan, R. Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    8.Amo, L., Galván, I., Tomás, G. & Sanz, J. J. Predator odour recognition and avoidance in a songbird. Funct. Ecol. 22, 289–293 (2008).Article 

    Google Scholar 
    9.Nevitt, G. A. Sensory ecology on the high seas: The odor world of the procellariiform seabirds. J. Exp. Biol. 211, 1706–1713 (2008).Article 

    Google Scholar 
    10.Wenzel, B. M. Olfaction 432–448 (Springer, 1971).Book 

    Google Scholar 
    11.Snyder, G. & Peterson, T. Olfactory sensitivity in the black-billed magpie and in the pigeon. Comp. Biochem. Physiol. A Physiol. 62, 921–925 (1979).Article 

    Google Scholar 
    12.Smith, S. A. & Paselk, R. A. Olfactory sensitivity of the turkey vulture (Cathartes aura) to three carrion-associated odorants. Auk 103, 586–592 (1986).Article 

    Google Scholar 
    13.Buitron, D. & Nuechterlein, G. L. Experiments on olfactory detection of food caches by black-billed magpies. Condor 87, 92–95 (1985).Article 

    Google Scholar 
    14.Rhoads, S. N. The power of scent in the turkey vulture. Am. Nat. 17, 829–833 (1883).Article 

    Google Scholar 
    15.Grigg, N. P. et al. Anatomical evidence for scent guided foraging in the turkey vulture. Sci. Rep. 7, 17408 (2017).ADS 
    Article 

    Google Scholar 
    16.Wetmore, A. The role of olfaction in food location by the turkey vulture (Cathartes aura). Oxford University Press (1965).17.Reynolds, A. M., Cecere, J. G., Paiva, V. H., Ramos, J. A. & Focardi, S. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proc. R. Soc. B. Biol. Sci. 282, 20150468 (2015).18.Wallraff, H. G. An amazing discovery: Bird navigation based on olfaction. J. Exp. Biol. 218, 1464–1466 (2015).Article 

    Google Scholar 
    19.Steiger, S. S., Fidler, A. E., Valcu, M. & Kempenaers, B. Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds?. Proc. R. Soc. Lond. B Biol. Sci. 275, 2309–2317 (2008).CAS 

    Google Scholar 
    20.Gwinner, H. & Berger, S. Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. 75, 971–976 (2008).Article 

    Google Scholar 
    21.Krause, E. T. et al. Advances in the Study of Behavior Vol. 50, 37–85 (Elsevier, 2018).
    Google Scholar 
    22.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    23.Halitschke, R., Stenberg, J. A., Kessler, D., Kessler, A. & Baldwin, I. T. Shared signals–‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol. Lett. 11, 24–34 (2008).PubMed 

    Google Scholar 
    24.Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C. & Preston, C. A. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311, 812–815 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Koski, T. M. et al. Do insectivorous birds use volatile organic compounds from plants as olfactory foraging cues? Three experimental tests. Ethology 121, 1131–1144 (2015).Article 

    Google Scholar 
    26.Mäntylä, E., Blande, J. D. & Klemola, T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature?. Arthropod-Plant Interact. 8, 143–153 (2014).Article 

    Google Scholar 
    27.Gagliardo, A., Ioale, P., Filannino, C. & Wikelski, M. Homing pigeons only navigate in air with intact environmental odours: A test of the olfactory activation Hypothesis with GPS data loggers. PLoS ONE https://doi.org/10.1371/journal.pone.0022385 (2011).28.Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: Evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805. https://doi.org/10.1242/jeb.085738 (2013).Article 
    PubMed 

    Google Scholar 
    29.Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071. https://doi.org/10.1242/jeb.034504 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. https://doi.org/10.1038/srep17061 (2015).31.Flack, A., Nagy, M., Fiedler, W., Couzin, I. D. & Wikelski, M. From local collective behavior to global migratory patterns in white storks. Science 360, 911–914. https://doi.org/10.1126/science.aap7781 (2018).ADS 
    Article 
    PubMed 

    Google Scholar 
    32.Klump, G. M., Kretzschmar, E. & Curio, E. The hearing of an avian predator and its avian prey. Behav. Ecol. Sociobiol. 18, 317–323. https://doi.org/10.1007/BF00299662 (1986).Article 

    Google Scholar 
    33.Wei, J. & Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal. Behav. 6, 369–371 (2011).CAS 
    Article 

    Google Scholar 
    34.Fall, R., Karl, T., Hansel, A., Jordan, A. & Lindinger, W. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. Atmos. 104, 15963–15974 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Hansson, B. S. From organism to molecule and back-insect olfaction during 40 years. J. Chem. Ecol. 40, 409 (2014).CAS 
    Article 

    Google Scholar 
    36.Roper, T. J. Olfaction in birds. Adv. Study Behav. 28, 247–247 (1999).Article 

    Google Scholar 
    37.Safi, K., Gagliardo, A., Wikelski, M. & Kranstauber, B. How displaced migratory birds could use volatile atmospheric compounds to find their migratory corridor: A test using a particle dispersion model. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2016.00175 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171 (2013).Article 

    Google Scholar 
    39.Papi, F. Olfactory navigation in birds. Experientia 46, 352–363 (1990).Article 

    Google Scholar 
    40.Hagelin, J. C. & Jones, I. L. Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication?. Auk 124, 741–761 (2007).Article 

    Google Scholar 
    41.Pollonara, E. et al. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: Displacements with shearwaters in the Mediterranean Sea. Sci. Rep. 5, 16486 (2015).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Environmental DNA signatures distinguish between tsunami and storm deposition in overwash sand

    1.Nicholls, R. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) Ch. 6 (Cambridge University Press, 2007).2.Gordon, M. et al. in Global Assessment Report on Disaster Risk Reduction Ch. 3 (UNDRR, 2019).3.Dominey-Howes, D. Documentary and geological records of tsunamis in the Aegean Sea region of Greece and their potential value to risk assessment and disaster management. Nat. Hazards 25, 195–224 (2002).Article 

    Google Scholar 
    4.Switzer, A. D., Yu, F., Gouramanis, C., Soria, J. & Pham, T. D. Integrated different records to assess coastal hazards at multi-century timescales. J. Coastal Res. 70, 723–728 (2014).Article 

    Google Scholar 
    5.Jankaew, K. et al. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455, 1228–1231 (2008).CAS 
    Article 

    Google Scholar 
    6.Liu, K. B. & Fearn, M. L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Res. 54, 238–245 (2000).Article 

    Google Scholar 
    7.Donnelly, J. P. & Woodruff, J. D. Intense hurricane activity over the past 5,000 years controlled by El Nino and the West African monsoon. Nature 447, 465–468 (2007).CAS 
    Article 

    Google Scholar 
    8.Nanayama, F. et al. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424, 660–663 (2003).CAS 
    Article 

    Google Scholar 
    9.Gouramanis, C. et al. High-frequency coastal overwash deposits from Phra Thong Island, Thailand. Sci. Rep. 7, 1–9 (2017).Article 

    Google Scholar 
    10.Nanayama, F. et al. differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sediment. Geol. 135, 255–264 (2000).Article 

    Google Scholar 
    11.Morton, R. A., Gelfenbaum, G. & Jaffe, B. E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 200, 184–207 (2007).Article 

    Google Scholar 
    12.Marriner, N. et al. Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Sci. Adv. 3, e1700485 (2017).Article 

    Google Scholar 
    13.Vött, A. et al. Returning to facts: response to the refusal of tsunami traces in the ancient harbour of Lechaion (Gulf of Corinth, Greece) by ‘non-catastrophists’ – Reaffirmed evidence of harbour destruction by historical earthquakes and tsunamis in AD 69–79 and the 6th cent. AD and a preceding pre-historical event in the early 8th cent. BC. Zeitschriff Geomorphologie 61, 275–302 (2018).14.Shanmugam, G. The tsunamite problem. J. Sediment. Res. 76, 718–730 (2006).Article 

    Google Scholar 
    15.Chagué-Goff, C., Chan, J. C. H., Goff, J. & Gadd, P. Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands. Isl. Arc 25, 333–349 (2016).Article 

    Google Scholar 
    16.Pham, D. T. et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits. Mar. Geol. 385, 274–292 (2017).CAS 
    Article 

    Google Scholar 
    17.Sawai, Y. et al. Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean Tsunami at Phra Thong Island, Thailand. Mar. Micropaleontol. 73, 70–79 (2009).Article 

    Google Scholar 
    18.Pilarczyk, J. E. et al. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogrogr. Palaeocl. 413, 144–157 (2017).Article 

    Google Scholar 
    19.Gouramanis C. in Geological Records of Tsunamis and other Extreme Waves (eds Engel, M., Pilarczyk, J., May, S. M., Brill, D. & Garrett, E.) Ch. 13 (Elsevier, 2020).20.Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B. & Dominey-Howes, D. Progress in palaeotsunami research. Sediment. Geol. 243, 70–88 (2012).Article 

    Google Scholar 
    21.Asano, R. et al. Changes in bacterial communities in seawater-flooded soil in the four years after the 2011 Tohoku tsunami in Japan. J. Mar. Sci. Eng. 8, 76 (2020).Article 

    Google Scholar 
    22.Atwater, B. F. et al. Extreme waves in the British Virgin Islands during the last centuries before 1500 CE. Geosphere 13, 301–368 (2017).Article 

    Google Scholar 
    23.Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).Article 

    Google Scholar 
    24.Ramesh, S., Jayaprakashvel, M. & Mathivanan, N. Microbial status in seawater and coastal sediment during pre- and post-tsunami periods in the Bay of Bengal, India. Mar. Ecol. 27, 198–203 (2006).Article 

    Google Scholar 
    25.Nayak, A. K. et al. Post tsunami changes in soil properties of Andaman Islands, India. Environ. Monit. Assess. 170, 185–193 (2010).CAS 
    Article 

    Google Scholar 
    26.Godson, P. S., Chandrasekar, N., Kumar, S. K. & Vimi, P. V. Microbial diversity in coastal sediments during pre- and post-tsunami periods in the south east coast of India. Front. Biol. 9, 161–167 (2014).Article 

    Google Scholar 
    27.Hiraoka, S. et al. Genomic and metagenomics analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics 17, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    28.Asano, R. et al. Seawater inundation from the 2011 Tohoku Tsunami continues to strongly affect soil bacterial communities 1 year later. Microb. Ecol. 66, 639–646 (2013).CAS 
    Article 

    Google Scholar 
    29.Somboonna, N. et al. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials. PLoS ONE 9, e94236 (2014).Article 
    CAS 

    Google Scholar 
    30.Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8, 1904–1919 (2014).CAS 
    Article 

    Google Scholar 
    31.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    32.Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9. 0 Tohoku Earthquake. Sci. Rep. 2, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    33.Morimura, S., Zeng, X., Noboru, N. & Hosono, T. Changes to the microbial communities within groundwater in response to a large crustal earthquake in Kumamoto, southern Japan. J. Hydrol. 581, 124341 (2020).Article 

    Google Scholar 
    34.Olsen, G. J., Lane, D. J., Giovannoni, S. J. & Pace, N. R. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).CAS 
    Article 

    Google Scholar 
    35.Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol. Biol. R 68, 669–685 (2004).CAS 
    Article 

    Google Scholar 
    36.Szczuciński, W. et al. Ancient sedimentary DNA reveals past tsunami deposits. Mar. Geol. 381, 29–33 (2016).Article 
    CAS 

    Google Scholar 
    37.Nealson, K. H. Sediment bacteria: who’s there, what are they doing, and what’s new? Annu. Rev. Earth Pl. Sc 25, 403–434 (1997).CAS 
    Article 

    Google Scholar 
    38.Srinivasalu, S., Karthikeyan, A., Switzer, A. D. & Gouramanis, C. Sedimentological characteristics of tsunami and storm deposits: a modern analogue from Southeast Indian Coast. In Paper Presented at the AOGS-AGU Join Assembly, Singapore, 13–17 September 2012 (2012)39.Switzer, A. D., Srinivasalu, S., Thangadurai, N. & Mohan, V. R. Bedding structures in Indian tsunami deposits provide clues to the dynamics of tsunami inundation. Geol. Soc. Spec. Publ. 361, 61–77 (2012).Article 

    Google Scholar 
    40.Gouramanis, C. et al. Same Same, but different: sedimentological comparison of recent storm and Tsunami deposits from the south-eastern coastline of India. In Paper presented in AGU Fall Meeting (NH21A-3811), San Francisco, California, 15 – 19 December 2014 (2014).41.Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of animal population. J. Anim. Ecol. 12, 42–58 (1943).Article 

    Google Scholar 
    42.Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).Article 

    Google Scholar 
    43.Xu, X. et al. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems. Sci. Rep. 5, 1–8 (2020).
    Google Scholar 
    44.Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).Article 

    Google Scholar 
    45.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    46.Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 63, 5–30 (2012).Article 

    Google Scholar 
    47.Szczuciński, W. et al. Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan – Insights from diatoms, nannoliths and grain size distribution. Sediment. Geol. 282, 40–56 (2012).Article 

    Google Scholar 
    48.Costa, P. J. M. et al. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits. Geol. Soc. Spec. Publ. 456, 167–190 (2018).Article 

    Google Scholar 
    49.Dominey-Howes, D., Dawson, A. & Smith, D. Late Holocene coastal tectonics at Falasarna, western Crete: a sedimentary study. Geol. Soc. Spec. Publ. 146, 343–352 (1999).Article 

    Google Scholar 
    50.Switzer, A. D. & Jones, B. G. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? Holocene 18, 787–803 (2008).Article 

    Google Scholar 
    51.Waring, B. & Hawkes, C. V. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiol. Ecol. 94, fiy001 (2018).52.Chénard, C. et al. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    53.Saxena, G. et al. Metagenomics reveals the influence of land use and rain on the benthic microbial communities in a tropical urban waterway. mSystems 3, e00136–17 (2018).54.Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PloS ONE 9, e87624 (2014).Article 
    CAS 

    Google Scholar 
    55.Mariadassou, M., Pichon, S. & Ebert, D. Microbial ecosystems are dominated by specialist taxa. Ecol. Lett. 18, 974–982 (2015).Article 

    Google Scholar 
    56.Sheth, A., Sanyal, S., Jaiswal, A. & Gandhi, P. Effects of the December 2004 India Ocean Tsunami on the Indian mainland. Earthq. Spectra 22, S435–S473 (2006).Article 

    Google Scholar 
    57.Blot, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26, 1237–1248 (2001).Article 

    Google Scholar 
    58.Folk, R. L. & Ward, W. C. Brazos river bar: a study in the significance of grain size parameter. J. Sediment. Res. 27, 3–26 (1957).Article 

    Google Scholar 
    59.Sambrook, J., Russell, D., & Sambrook, J. in The Condensed Protocols from Molecular Cloning: A Laboratory Manual (eds Sambrook, J. & Russell, D. W.) (Cold Spring Harbor Laboratory Press, 2006).60.Wilkins, D., Van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    61.Allen, M. A. & Cavicchioli, R. Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci. Rep. 7, 1–16 (2017).Article 
    CAS 

    Google Scholar 
    62.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).Article 

    Google Scholar 
    63.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    64.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).Article 

    Google Scholar 
    65.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    Article 

    Google Scholar 
    66.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).Article 
    CAS 

    Google Scholar 
    67.R Core Team. R: A language and environment for statistical computing. R https://www.R-project.org/ (2017).68.Oksanen, J. et al. vegan: Community Ecology Package. Vienna: R Foundation for Statistical Computing.[Google Scholar]. (2016).69.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    70.Anderson, M. & Ter Braa, C. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Sim. 73, 85–113 (2003).Article 

    Google Scholar 
    71.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    72.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B: Met. 57, 289–300 (1995).
    Google Scholar 
    73.Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295 (2014).Article 

    Google Scholar  More

  • in

    Bird-feeder cleaning lowers disease severity in rural but not urban birds

    1.Vitousek, P. M., Mooney, H. A., Lubchenco, J. & Melillo, J. M. Human domination of Earth’s ecosystems. Science 277, 494–499 (1997).CAS 
    Article 

    Google Scholar 
    2.Galvani, A. P., Bauch, C. T., Anand, M., Singer, B. H. & Levin, S. A. Human-environment interactions in population and ecosystem health. Proc. Natl. Acad. Sci. U.S.A. 113, 14502–14506 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Robb, G. N., McDonald, R. A., Chamberlain, D. E. & Bearhop, S. Food for thought: supplementary feeding as a driver of ecological change in avian populations. Front. Ecol. Environ. 6, 476–484 (2008).Article 

    Google Scholar 
    4.Wilcoxen, T. E. et al. Effects of bird-feeding activities on the health of wild birds. Conserv. Physiol. 3, 058 (2015).Article 
    CAS 

    Google Scholar 
    5.Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martinez-Abrain, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).PubMed 
    Article 

    Google Scholar 
    6.Jones, D. An appetite for connection: Why we need to understand the effect and value of feeding wild birds. Emu 111, 1–7 (2011).Article 

    Google Scholar 
    7.Hanmer, H. J., Thomas, R. L. & Fellowes, M. D. E. Provision of supplementary food for wild birds may increase the risk of local nest predation. Ibis 159, 158–167 (2017).Article 

    Google Scholar 
    8.Malpass, J. S., Rodewald, A. D. & Matthews, S. N. Species-dependent effects of bird feeders on nest predation and nest survival of urban American robins and northern cardinals. Condor 119, 1–16 (2017).Article 

    Google Scholar 
    9.Loss, S. R. & Marra, P. P. Population impacts of free-ranging domestic cats on mainland vertebrates. Front. Ecol. Environ. 15, 502–509 (2017).Article 

    Google Scholar 
    10.Jones, D. N. & Reynolds, S. J. Feeding birds in our towns: A global research opportunity. J. Avian Biol. 39, 265–271 (2008).Article 

    Google Scholar 
    11.Adelman, J. S., Moyers, S. C., Farine, D. R. & Hawley, D. M. Feeder use predicts both acquisition and transmission of a contagious pathogen in a North American songbird. Proc. R. Soc. B 282, 20151429 (2015).PubMed 
    Article 

    Google Scholar 
    12.Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host-parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    Article 

    Google Scholar 
    13.Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Dhondt, A. A., Dhondt, K. V., Hawley, D. M. & Jennelle, C. S. Experimental evidence for transmission of Mycoplasma gallisepticum in house finches by fomites. Avian Pathol. 36, 205–208 (2007).PubMed 
    Article 

    Google Scholar 
    15.Pierce II, R. A. & Denkler, S. Attracting hummingbirds to your property. In Agricultural Guides—University of Missouri-Columbia Extension, Vol. g9419 (2016). https://extensiondata.missouri.edu/pub/pdf/agguides/wildlife/g09419.pdf. Accessed 22 May 2020.16.Patterson, S., Janke, A., Bryan, G., Pease, J. & Jungbluth, K. Attracting Birds to Your Yard Vol. 219 (Iowa State Extension and Outreach Publications, 2017).
    Google Scholar 
    17.Feliciano, L. M., Underwood, T. J. & Aruscavage, D. F. The effectiveness of bird feeder cleaning methods with and without debris. Wilson J. Ornithol. 130, 313–320 (2018).Article 

    Google Scholar 
    18.Faustino, C. R. et al. Mycoplasma gallisepticum infection dynamics in a house finch population: Seasonal variation in survival, encounter and transmission rate. J. Anim. Ecol. 73, 651–669 (2004).Article 

    Google Scholar 
    19.Thompson, C. W., Hillgarth, N., Leu, M. & McClure, H. E. High parasite load in house finches (Carpodacus mexicanus) is correlated with expression of a sexually selected trait. Am. Nat. 149, 270–294 (1997).Article 

    Google Scholar 
    20.Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: A review. Landsc. Urban Plann. 74, 46–69 (2006).Article 

    Google Scholar 
    21.Bradley, C. A. & Altizer, S. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102 (2007).PubMed 
    Article 

    Google Scholar 
    22.Giraudeau, M., Mousel, M., Earl, S. & McGraw, K. J. Parasites in the city: Degree of urbanization predicts poxvirus and coccidian infections in house finches (Haemorhous mexicanus). PLoS ONE 9, e86747 (2014).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    23.Hasegawa, M., Ligon, R. A., Giraudeau, M., Watanabe, M. & McGraw, K. J. Urban and colorful male house finches are less aggressive. Behav. Ecol. 25, 641–649 (2014).Article 

    Google Scholar 
    24.Giraudeau, M., Toomey, M. B., Hutton, P. & McGraw, K. J. Expression of and choice for condition-dependent carotenoid-based color in an urbanizing context. Behav. Ecol. 29, 1307–1315 (2018).
    Google Scholar 
    25.Hill, G. E. A Red Bird in a Brown Bag: The Function and Evolution of Colorful Plumage in the House Finch (Oxford University Press, 2002).Book 

    Google Scholar 
    26.Pyle, P. Identification Guide to North American Birds, Part I (Slate Creek Press, 1997).
    Google Scholar 
    27.Brawner, W. R., Hill, G. E. & Sundermann, C. A. Effects of coccidial and mycoplasmal infections on carotenoid-based plumage pigmentation in male house finches. Auk 117, 952–963 (2000).Article 

    Google Scholar 
    28.Dolnik, O. V., Dolnik, V. R. & Bairlein, F. The effect of host foraging ecology on the prevalence and intensity of coccidian infection in wild passerine birds. Ardea 98, 97–103 (2010).Article 

    Google Scholar 
    29.Pierson, F. W., Larsen, C. T. & Gross, W. B. The effect of stress on the response of chickens to coccidiosis vaccination. Vet. Parasitol. 73, 177–180 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).Article 

    Google Scholar 
    31.Surmacki, A. & Hill, G. E. Coccidia infection does not influence preening behavior in American goldfinches. Acta Ethol. 17, 107–111 (2014).PubMed 
    Article 

    Google Scholar 
    32.Staley, M., Bonneaud, C., McGraw, K. J., Vleck, C. M. & Hill, G. E. Detection of Mycoplasma gallisepticum in house finches (Haemorhous mexicanus) from Arizona. Avian Dis. 62, 14–17 (2017).Article 

    Google Scholar 
    33.R Core Team. R: A language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2016). https://www.R-project.org/. Accessed 22 May 2020.34.Nolan, P. M., Hill, G. E. & Stoehr, A. M. Sex, size, and plumage redness predict house finch survival in an epidemic. Proc. R. Soc. B 265, 961–965 (1998).Article 

    Google Scholar 
    35.Hutton, P., Wright, C. D., DeNardo, D. F. & McGraw, K. J. No effect of human presence at night on disease, body mass, or metabolism in rural and urban house finches (Haemorhous mexicanus). Integr. Comp. Biol. 58, 977–985 (2018).PubMed 

    Google Scholar 
    36.Giraudeau, M. & McGraw, K. J. Physiological correlates of urbanization in a desert songbird. Integr. Comp. Biol. 54, 622–632 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Cook, M. O., Weaver, M. J., Hutton, P. & McGraw, K. J. The effects of urbanization and human disturbance on problem solving in juvenile house finches (Haemorhous mexicanus). Behav. Ecol. Sociobiol. 71, 85 (2017).Article 

    Google Scholar 
    38.Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B 373, 20170090 (2018).Article 
    CAS 

    Google Scholar 
    39.Boyd, M. L., Underwood, T. J. & Aruscavage, D. F. The efficacy of cleaning bird feeders with 10% bleach wipes to reduce bacteria. J. Pennsyl. Acad. Sci. 88, 220–226 (2014).
    Google Scholar 
    40.Belthoff, J. R. & Gowaty, P. A. Male plumage coloration affects dominance and aggression in female house finches. Bird Behav. 11, 1–7 (1996).Article 

    Google Scholar 
    41.Zylberberg, M., Klasing, K. C. & Hahn, T. P. House finches (Carpodacus mexicanus) balance investment in behavioural and immunological defences against pathogens. Biol. Lett. 9, 20120856 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Sykes, B. E., Hutton, P. & McGraw, K. J. Sex-specific relationships between urbanization, parasitism, and plumage coloration in house finches. Curr. Zool. https://doi.org/10.1093/cz/zoaa060 (2020).Article 

    Google Scholar 
    43.McGraw, K. J. & Ardia, D. R. Sex differences in carotenoid status and immune performance in zebra finches. Evol. Ecol. Res. 7, 251–262 (2005).
    Google Scholar 
    44.Bailly, J. et al. Negative impact of urban habitat on immunity in the great tit Parus major. Oecologia 182, 1053–1062 (2016).PubMed 
    Article 
    ADS 

    Google Scholar 
    45.Badyaev, A. V., Belloni, V. & Hill, G. E. House finch (Haemorhous mexicanus), version 1.0. In Birds of the World (ed. Poole, A. F.) (Cornell Lab of Ornithology, 2020).
    Google Scholar 
    46.Thompson, W. L. Agonistic behavior in the house finch. Part I: Annual cycle and display patterns. Condor 62, 245–271 (1960).Article 

    Google Scholar 
    47.Hotchkiss, E. R., Davis, A. K., Cherry, J. J. & Altizer, S. Mycoplasmal conjunctivitis and the behavior of wild house finches (Carpodacus mexicanus) at bird feeders. Bird Behav. 17, 1–8 (2005).
    Google Scholar  More

  • in

    Life history and nesting ecology of a Japanese tube-nesting spider wasp Dipogon sperconsus (Hymenoptera: Pompilidae)

    Nesting recordsDipogon nests were created singly per cane, because there were no examples in which wasps of two species emerged from the same cane in the study site. Thus, we designate “utilized canes” as “nests”.In the four years, in pine forests in Takarazuka, Hyogo, Japan, we collected a total of 419 nests with 1033 cells from which species of Dipogon emerged (Fig. 1; Table 1; Supplementary Table S1). The numbers of nests and cells and the average and SD of the number of cells per nest for each species are shown in Table 1. Other wasps, bees, and parasitic wasps and flies also emerged from our trap nests (Supplementary Table S2), but we did not consider their nesting in the following analyses. Among 1033 cells, D. sperconsus emerged from 623 cells, D. inconspersus from 26 cells, and D. bifasciatus (Geoffroy) from 4 cells, while rearing failure occurred in 380 cells (Table 1), the owners of which we designate as “unknown Dipogon spp.” Based on the total cells of Dipogon, the proportion of cells constructed by D. sperconsus was 60.3% (623/1033*100), that of D. inconspersus was 2.5% (26/1033*100), and that of D. bifasciatus was 0.39% (4/1033*100). Based on the cells of the identified species, the proportion of cells constructed by D. sperconsus was 95.4% (623/(623 + 26 + 4)*100), that of D. inconspersus was 4.0% (26/(623 + 26 + 4)*100), and that of D. bifasciatus was 0.6% (4/(623 + 26 + 4)*100). From these proportions, we can estimate the number of cells constructed by the three species of Dipogon in the total 1033 Dipogon cells as ca. 985.5 cells (1033*0.954) by D. sperconsus, ca. 41.3 cells (1033*0.04) by D inconspersus, and ca. 6.2 cells (1033*0.006) by D. bifasciatus.Figure 1The study site in Kirihata, Takarazuka City, Hyogo Pref., Japan, and trap nests. (a) An old pine forest in which trap nests were installed. (b) A set of trap nests (cane bundle), 15 mixed-size bamboo canes bound vertically with vinyl-covered wires like a screen, attached to a tree trunk approximately 1.5 m above the ground. (c) A nest of D. sperconsus; this cane was installed in Shibutani, Takarazuka, Hyoto Pref. about 1 km southeast of the present study site on 29 July 2007 and was withdrawn on 6 August 2007. (d) A nest (6–5-5–1) of D. sperconsus; this cane was installed in Kirihata, Takarazuka, Hyoto Pref. about 500 m west-southwest of the present study site on 25 August 2010 and was withdrawn on 27 August 2010 (prey spider, Agelena limbata Thorell). (e) A nest of D. sperconsus; this cane was installed in Najio, Nishinomiya, Hyoto Pref. about 10 km southwest of the present study site on 15 July 2007 and was withdrawn on 25 July 2007. The minimum grid in the background graph paper of (c)–(e) is 1 mm. All photos taken by Y. Nishimoto.Full size imageTable 1 The numbers of the collected nests and brood cells, and the mean number of cells per nest in three species of Dipogon (Deuteragenia).Full size tableBecause multiple cells were often constructed in a single nest, the number of nests was much smaller than the number of constructed cells. Among the 419 nests, 221 nests belonged to D. sperconsus, 7 nests belonged to D. inconspersus, and a single nest belonged to D. bifasciatus, but the remaining 190 nests could not be identified because of rearing failure (Table 1). The proportions of the nests in the three Dipogon species were calculated as follows: 96.5% (221/(221 + 7 + 1)*100) in D. sperconsus, 3.1% (7/(221 + 7 + 1)*100) in D inconspersus, and 0.4% (1/(221 + 7 + 1)*100) in D. bifasciatus. Thus, the estimated number of nests in each species was ca. 404.3 (419*0.965) in D. sperconsus, ca. 13.0 (419*0.031) in D inconspersus, and ca. 1.7 (419*0.004) in D. bifasciatus.Next, we considered whether the cane bundles were used randomly. Based on the yearly frequency distributions of nests (Supplementary Tables S3–S6), we developed a null hypothesis assuming the nests are randomly distributed over bundles, where a negative binomial distribution is expected (Supplementary Tables S7–S8). Our yearly data indicate that the null hypothesis was rejected and that nests were more or less aggregated in a few bundles (Supplementary Figure S1; test statistics, Supplementary Table S8). This aggregation tendency (e.g., no nests in some bundles) may imply that some selected sites for bundles are not appropriate for D. sperconsus, for some unknown behavioral reasons. Further studies are needed to verify the habitat use of this species.Yearly frequency distributions of the number of cells show that the range of cells constructed by D. sperconsus and unknown D. spp. combined were 1–10 cells, and the median was 2 cells (Supplementary Table S3–S6, Supplementary Figure S2). Most of the nests included 1–3 cells, and five or more cells were very rare. Most of the nests with many cells (e.g., 7–10 cells) were likely to be constructed by a single wasp because these wasps avoid interactions with other spider wasps. The average number of D. sperconsus cells per nest was 2.82 for four years, varying from 2.21 (2014) to 3.16 (2016) (Table 1), and the yearly differences were significant (Kruskal–Wallis test, (chi ^{2} = 7.70), df = 3, p = 0.05). In contrast, the average number of cells per nest of D. sayi sayi was slightly greater than that of D. sperconsus: 3.2 (1–6, SD = 1.47, n = 41) in the first generation and 4.7 (1–13, SD = 2.52, n = 107) in the second generation in Wisconsin, USA8; and 6.2 (1961), 4.0 (1962) and 3.0 (1963) in the summer generation and 7.5 (1961) and 3.2 (1962) in the overwintering generation in Northwestern Ontario9.Life history of Dipogon sperconsusDevelopmental periodThe developmental period of reared wasps was estimated in the summer and overwintering generations separately (Table 2, Supplementary Figure S3, Supplementary Tables S9–S12). In the summer generation, both females and males developed from egg to adult over approximately three weeks (23.1 days for females and 21.6 days for males; Table 2). There was no significant difference between sexes (t-test, after adjustment by Bonferroni method: p  > 0.05). In the overwintering generation, approximately eight months were required from egg to adult (246 days for females and 247 days for males). There was also no significant difference between sexes (t-test, after adjustment by Bonferroni method: p  > 0.05). In females, all developmental periods were significantly longer in the overwintering generation than in the summer generation (t-test, after adjustment by Bonferroni method: p  0.05 for egg and larval periods; p  0.1). Among the 40 coelotid female spiders, the sex ratio of wasp eggs was even: 20 female wasp eggs and 20 males. However, the female spiders on which female wasp eggs were laid were significantly greater in cephalothorax width than those on which male eggs were laid (t = 3.98, p  More

  • in

    Evidence for competition and cannibalism in wormlions

    1.Schoener, T. W. Field experiments on interspecific competition. Am. Nat. 122, 240–285 (1983).Article 

    Google Scholar 
    2.Keddy, P. A. Competition 2nd edn. (Kluwer, 2001).Book 

    Google Scholar 
    3.Kotler, B. P. & Brown, J. S. Environmental heterogeneity and the coexistence of desert rodents. Annu. Rev. Ecol. Syst. 19, 281–307 (1988).Article 

    Google Scholar 
    4.Kronfeld-Schor, N. & Dayan, T. Partitioning of time as an ecological resource. Annu. Rev. Ecol. Evol. Syst. 34, 153–181 (2003).Article 

    Google Scholar 
    5.Connell, J. H. On the prevalence and relative importance of interspecific competition: evidence from field experiments. Am. Nat. 122, 661–696 (1983).Article 

    Google Scholar 
    6.Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Morris, D. W. Toward an ecological synthesis: a case for habitat selection. Oecologia 136, 1–13 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Barkae, E. D., Abramsky, Z. & Ovadia, O. Can models of density-dependent habitat selection be applied for trap-building predators?. Popul. Ecol. 56, 175–184 (2014).Article 

    Google Scholar 
    9.Halliday, W. D. & Blouin-Demers, G. Red flour beetles balance thermoregulation and food acquisition via density-dependent habitat selection. J. Zool. 294, 198–205 (2014).Article 

    Google Scholar 
    10.Tregenza, T. Building on the ideal free distribution. Adv. Ecol. Res. 26, 253–307 (1995).Article 

    Google Scholar 
    11.Kingsolver, J. G. & Pfennig, D. W. Individual-level selection as a cause of Cope’s rule of phyletic size increase. Evolution 58, 1608–1612 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Alatalo, R. V. & Moreno, J. Body size, interspecific interactions, and use of foraging sites in tits (Paridae). Ecology 68, 1773–1777 (1987).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Honěk, A. Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66, 483–492 (1993).Article 

    Google Scholar 
    14.Sokolovska, N., Rowe, L. & Johansson, F. Fitness and body size in mature odonates. Ecol. Entomol. 25, 239–248 (2000).Article 

    Google Scholar 
    15.Werner, E. E. & Anholt, B. R. Ecological consequences of the trade-off between growth and mortality rates mediated by foraging activity. Am. Nat. 142, 242–272 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Blanckenhorn, W. U. The evolution of body size: What keeps organisms small?. Q. Rev. Biol. 75, 385–407 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Gotthard, K. Increased risk of predation as a cost of high growth rate: an experimental test in a butterfly. J. Anim. Ecol. 69, 896–902 (2000).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Van Buskirk, J. Competition, cannibalism, and size class dominance in a dragonfly. Oikos 65, 455–464 (1992).Article 

    Google Scholar 
    19.Fincke, O. M. Larval behaviour of a giant damselfly: Territoriality or size-dependent dominance?. Anim. Behav. 51, 77–87 (1996).Article 

    Google Scholar 
    20.Hopper, K. R., Crowley, P. H. & Kielman, D. Density dependence, hatching synchrony, and within-cohort cannibalism in young dragonfly larvae. Ecology 77, 191–200 (1996).Article 

    Google Scholar 
    21.Eitam, A., Blaustein, L. & Mangel, M. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146, 36–42 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Barkae, E. D., Scharf, I. & Ovadia, O. A stranger is tastier than a neighbor: cannibalism in Mediterranean and desert antlion populations. Behav. Ecol. 28, 69–76 (2017).Article 

    Google Scholar 
    23.Alford, R. A. & Wilbur, H. M. Priority effects in experimental pond communities: competition between Bufo and Rana. Ecology 66, 1097–1105 (1985).Article 

    Google Scholar 
    24.Dayton, G. H. & Fitzgerald, L. A. Priority effects and desert anuran communities. Can. J. Zool. 83, 1112–1116 (2005).Article 

    Google Scholar 
    25.Louette, G. & De Meester, L. Predation and priority effects in experimental zooplankton communities. Oikos 116, 419–426 (2007).Article 

    Google Scholar 
    26.Geange, S. W. & Stier, A. C. Order of arrival affects competition in two reef fishes. Ecology 90, 2868–2878 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Huey, R. B. & Pianka, E. R. Ecological consequences of foraging mode. Ecology 62, 991–999 (1981).Article 

    Google Scholar 
    28.Shine, R. & Li-Xin, S. Arboreal ambush site selection by pit-vipers Gloydius shedaoensis. Anim. Behav. 63, 565–576 (2002).Article 

    Google Scholar 
    29.Clark, R. W. Feeding experience modifies the assessment of ambush sites by the timber rattlesnake, a sit-and-wait predator. Ethology 110, 471–483 (2004).Article 

    Google Scholar 
    30.Tsairi, H. & Bouskila, A. Ambush site selection of a desert snake (Echis coloratus) at an oasis. Herpetologica 60, 13–23 (2004).Article 

    Google Scholar 
    31.Scharf, I., Lubin, Y. & Ovadia, O. Foraging decisions and behavioural flexibility in trap-building predators: a review. Biol. Rev. 86, 626–639 (2011).PubMed 
    Article 

    Google Scholar 
    32.Blamires, S. J. Biomechanical costs and benefits of sit-and-wait foraging traps. Isr. J. Ecol. Evol. 66, 5–14 (2020).Article 

    Google Scholar 
    33.Simberloff, D. et al. Holes in the doughnut theory: the dispersion of ant-lions. Brenesia 14, 13–46 (1978).
    Google Scholar 
    34.Farji-Brener, A. G., Carvajal, D., Gei, M. G., Olano, J. & Sanchez, J. D. Direct and indirect effect of soil structure on the density of an antlion larva in a tropical dry forest. Ecol. Entomol. 33, 183–188 (2008).Article 

    Google Scholar 
    35.Lucas, J. R. Metabolic rates and pit-construction costs of two antlion species. J. Anim. Ecol. 54, 295–309 (1985).Article 

    Google Scholar 
    36.Tanaka, K. Energetic cost of web construction and its effect on web relocation in the web-building spider Agelena limbata. Oecologia 81, 459–464 (1989).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Lubin, Y., Ellner, S. & Kotzman, M. Web relocation and habitat selection in desert widow spider. Ecology 74, 1915–1928 (1993).Article 

    Google Scholar 
    38.Loria, R., Scharf, I., Subach, A. & Ovadia, O. The interplay between foraging mode, habitat structure, and predator presence in antlions. Behav. Ecol. Sociobiol. 62, 1185–1192 (2008).Article 

    Google Scholar 
    39.Griffiths, D. Interference competition in ant-lion (Macroleon quinquemaculatus) larvae. Ecol. Entomol. 17, 219–226 (1992).Article 

    Google Scholar 
    40.Heiling, A. M. & Herberstein, M. E. The importance of being larger: intraspecific competition for prime web sites in orb-web spiders (Araneae, Araneidae). Behaviour 136, 669–677 (1999).Article 

    Google Scholar 
    41.Rayor, L. S. & Uetz, G. W. Trade-offs in foraging success and predation risk with spatial position in colonial spiders. Behav. Ecol. Sociobiol. 27, 77–85 (1990).Article 

    Google Scholar 
    42.Wilson, D. S. Prey capture and competition in the ant lion. Biotropica 6, 187–193 (1974).Article 

    Google Scholar 
    43.Rao, D. Experimental evidence for the amelioration of shadow competition in an orb-web spider through the ‘ricochet’ effect. Ethology 115, 691–697 (2009).Article 

    Google Scholar 
    44.Scharf, I. Factors that can affect the spatial positioning of large and small individuals in clusters of sit-and-wait predators. Am. Nat. 195, 649–663 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Matsura, T. & Takano, H. Pit-relocation of antlion larvae in relation to their density. Res. Popul. Ecol. 31, 225–234 (1989).Article 

    Google Scholar 
    46.Griffiths, D. Intraspecific competition in larvae of the ant-lion Morter sp. and interspecific interactions with Macroleon quinquemaculatus. Ecol. Entomol. 16, 193–201 (1991).Article 

    Google Scholar 
    47.Wise, D. H. Cannibalism, food limitation, intraspecific competition, and the regulation of spider populations. Annu. Rev. Entomol. 51, 441–465 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Klokočovnik, V., Veler, E. & Devetak, D. Antlions in interaction: confrontation of two competitors in limited space. Isr. J. Ecol. Evol. 66, 73–81 (2020).Article 

    Google Scholar 
    49.Buddle, C. M., Walker, S. E. & Rypstra, A. L. Cannibalism and density-dependent mortality in the wolf spider Pardosa milvina (Araneae: Lycosidae). Can. J. Zool. 81, 1293–1297 (2003).Article 

    Google Scholar 
    50.Ovadia, O., Scharf, I., Barkae, E. D., Levi, T. & Alcalay, Y. Asymmetrical intra-guild predation and niche differentiation in two pit-building antlions. Isr. J. Ecol. Evol. 66, 82–90 (2020).Article 

    Google Scholar 
    51.Devetak, D. Wormlion Vermileo vermileo (L.) (Diptera: Vermileonidae) in Slovenia and Croatia. Ann. Ser. Hist. Nat. 18, 283–286 (2008).
    Google Scholar 
    52.Dor, R., Rosenstein, S. & Scharf, I. Foraging behaviour of a neglected pit-building predator: the wormlion. Anim. Behav. 93, 69–76 (2014).Article 

    Google Scholar 
    53.Miler, K., Yahya, B. E. & Czarnoleski, M. Substrate moisture, particle size and temperature preferences of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 44, 488–493 (2019).Article 

    Google Scholar 
    54.Miler, K., Yahya, B. E. & Czarnoleski, M. Different predation efficiencies of trap-building larvae of sympatric antlions and wormlions from the rainforest of Borneo. Ecol. Entomol. 43, 255–262 (2018).Article 

    Google Scholar 
    55.Franks, N. R., Worley, A., Falkenberg, M., Sendova-Franks, A. B. & Christensen, K. Digging the optimum pit: antlions, spirals and spontaneous stratification. Proc. R. Soc. B 286, 20190365 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Scharf, I., Daniel, A., MacMillan, H. A. & Katz, N. The effect of fasting and body reserves on cold tolerance in 2 pit-building insect predators. Curr. Zool. 63, 287–294 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    57.Devetak, D. Substrate particle size-preference of wormlion Vermileo vermileo (Diptera: Vermileonidae) larvae and their interaction with antlions. Eur. J. Entomol. 105, 631–635 (2008).Article 

    Google Scholar 
    58.Adar, S., Dor, R. & Scharf, I. Habitat choice and complex decision making in a trap-building predator. Behav. Ecol. 27, 1491–1498 (2016).Article 

    Google Scholar 
    59.Scharf, I. et al. The contribution of shelter from rain to the success of pit-building predators in urban habitats. Anim. Behav. 142, 139–145 (2018).Article 

    Google Scholar 
    60.Katz, N., Pruitt, J. N. & Scharf, I. The complex effect of illumination, temperature, and thermal acclimation on habitat choice and foraging behavior of a pit-building wormlion. Behav. Ecol. Sociobiol. 71, 137 (2017).Article 

    Google Scholar 
    61.Bar-Ziv, M. A., Bega, D., Subach, A. & Scharf, I. Wormlions prefer both fine and deep sand but only deep sand leads to better performance. Curr. Zool. 65, 393–400 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).
    Google Scholar 
    63.Ovadia, O. & Abramsky, Z. Density-dependent habitat selection: evaluation of the isodar method. Oikos 73, 86–94 (1995).Article 

    Google Scholar 
    64.Jensen, W. E. & Cully, J. F. Density-dependent habitat selection by brown-headed cowbirds (Molothrus ater) in tallgrass prairie. Oecologia 142, 136–149 (2005).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Whitham, T. G. The theory of habitat selection: examined and extended using Pemphigus aphids. Am. Nat. 115, 449–466 (1980).Article 

    Google Scholar 
    66.van Beest, F. M. et al. Increasing density leads to generalization in both coarse-grained habitat selection and fine-grained resource selection in a large mammal. J. Anim. Ecol. 83, 147–156 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Mathis, A. Territoriality in a terrestrial salamander: the influence of resource quality and body size. Behaviour 112, 162–175 (1990).Article 

    Google Scholar 
    68.Croy, M. I. & Hughes, R. N. Effects of food supply, hunger, danger and competition on choice of foraging location by the fifteen-spined stickleback, Spinachia spinachia L. Anim. Behav. 42, 131–139 (1991).Article 

    Google Scholar 
    69.Davey, A. J. H., Hawkins, S. J., Turner, G. F. & Doncaster, C. P. Size-dependent microhabitat use and intraspecific competition in Cottus gobio. J. Fish Biol. 67, 428–443 (2005).Article 

    Google Scholar 
    70.Abrahams, M. V. Patch choice under perceptual constraints: a cause for departures from an ideal free distribution. Behav. Ecol. Sociobiol. 19, 409–415 (1986).Article 

    Google Scholar 
    71.Sutherland, W. J., Townsend, C. R. & Patmore, J. M. A test of the ideal free distribution with unequal competitors. Behav. Ecol. Sociobiol. 23, 51–53 (1988).Article 

    Google Scholar 
    72.McClure, M. S. Spatial distribution of pit-making ant lion larvae (Neuroptera: Myrmeleontidae): density effects. Biotropica 8, 179–183 (1976).Article 

    Google Scholar 
    73.Rayor, L. S. & Uetz, G. W. Age-related sequential web building in the colonial spider Metepeira incrassata (Araneidae): an adaptive spacing strategy. Anim. Behav. 59, 1251–1259 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Yip, E. C., Levy, T. & Lubin, Y. Bad neighbors: hunger and dominance drive spacing and position in an orb-weaving spider colony. Behav. Ecol. Sociobiol. 71, 128 (2017).Article 

    Google Scholar 
    75.Murcia, C. Edge effects in fragmented forests: implications for conservation. Trends Ecol. Evol. 10, 58–62 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Minias, P., Janiszewski, T. & Lesner, B. Center-periphery gradients of chick survival in the colonies of Whiskered Terns Chlidonias hybrida may be explained by the variation in the maternal effects of egg size. Acta Ornithol. 48, 179–186 (2013).Article 

    Google Scholar 
    77.Geange, S. W. & Stier, A. C. Priority effects and habitat complexity affect the strength of competition. Oecologia 163, 111–118 (2010).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Hallander, H. Prey, cannibalism and microhabitat selection in the wolf spiders Pardosa chelata OF Müller and P. pullata Clerck. Oikos 21, 337–340 (1970).Article 

    Google Scholar 
    79.Skevington, J. H. & Dang, P. T. Exploring the diversity of flies (Diptera). Biodiversity 3, 3–27 (2002).Article 

    Google Scholar 
    80.Scharf, I., Silberklang, A., Avidov, B. & Subach, A. Do pit-building predators prefer or avoid barriers? Wormlions’ preference for walls depends on light conditions. Sci. Rep. 10, 10928 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Russian forest sequesters substantially more carbon than previously reported

    Russia has been reporting almost no changes in forested area, growing stock volume (GSV) and biomass to the United Nations Framework Convention on Climate Change (UNFCCC)1 and the Food and Agriculture Organization of the United Nations (FAO) Forest Resources Assessment (FRA)2 since the collapse of the USSR and the decline in the Soviet Forest Inventory and Planning (FIP) system. According to the State Forest Register (SFR)3, which is the main repository of forest information, and national reporting to the FAO FRA2, the GSV and the above ground biomass (AGB) increased by 1.1% and 0.6% (Table S1), respectively, during 1990–2015, yet studies using remote sensing (RS) indicate increased vegetation productivity4, tree cover (annual rate + 0.417% over 1982–2016)5, increased AGB (+ 329 Tg C yr−1 over 2000–20076), total biomass (annual rate + 0.44% or + 153 Tg C yr−1 over 1990–20077), and forest ecosystem carbon pools (ca + 470 Tg C yr−1 over 2001–20198). This inconsistency in estimates can be explained by an information gap that appeared when Russia decided to move from the FIP to another system for the collection of forest information at the national scale – the National Forest Inventory (NFI).The FIP involves revisiting every forest stand (on the ground for managed forests or using RS techniques for remote non-commercial forests) on a 10–15-year interval, with the measurement of forest parameters combined with the formulation of forest management directives. After the collapse of the USSR, the inventory within the FIP system slowed down substantially. For example, more than 50% of the forest area was surveyed by the FIP more than 25 years ago9. For these reasons, the reliability of information on forests in Russia has deteriorated since 1988, which is the year when FIP-based reporting10 involved the largest inventory efforts in recent decades. According to this report10, the total GSV of Russian forests was 81.7 × 109 m3 (without shrubland, bias corrected11). This value is used here as a reference to quantify biomass stock changes in Russia with respect to the current decade.In contrast, NFI is a state-of-the-art inventory system based on a statistical sampling method. It was initiated in 2007 and the first cycle was completed in 2020. The NFI data processing is ongoing, but the first official press release12 suggests that Russian forest accumulated 102 × 109 m3 over its lifespan until 2014. Once finalized, the NFI will be verified before adoption as the official source of information to the SFR and national reporting. The NFI has received some criticism13 because of the relatively sparse sampling employed and the stratification method used, which is partially based on outdated FIP data.In Russia, the long intervals between consecutive surveys and the difficulty in accessing very remote regions in a timely manner by an inventory system make satellite RS an essential tool for capturing forest dynamics and providing a comprehensive, wall-to-wall perspective on biomass distribution. However, observations from current RS sensors are not suited for producing accurate biomass estimates unless the estimation method is calibrated with a dense network of measurements from ground surveys14. Here we calibrated models relating two global RS biomass data products (GlobBiomass GSV15 and CCI Biomass GSV16) and additional RS data layers (forest cover mask9, the Copernicus Global Land Cover CGLS‐LC100 product17) with ca 10,000 ground plots (see Material and Methods) to reduce nuances in the individual input maps due to imperfections in the RS data and approximations in the retrieval procedure18,19. The combination of these two sources of information, i.e., ground measurements and RS, utilizes the advantages of both sources in terms of: (i) highly accurate ground measurements and (ii) the spatially comprehensive coverage of RS products and methods. The amount of ground plots currently available may be insufficient for providing an accurate estimate of GSV for the country when used alone, but they are the key to obtaining unbiased estimates when used to calibrate RS datasets20. The map merging procedure was preferred over a plot-aided direct estimation of GSV or AGB from the RS data because of the usually poor association between biomass measured at inventory plots and remote sensing observables21. In addition, models relating biomass and remote sensing observables that are trained with spatially inhomogeneous datasets (Figure S1) tend to be biased in regions not represented by the dataset of the reference biomass measurements.We estimate the total GSV of Russia for the year 2014 for the official forested area (713.1 × 106 ha) to be 111 ± 1.3 × 109 m3, which is 39% higher than the 79.9 × 109 m3 (excluding shrubland) figure reported in the SFR3 for the same year. An additional 7.1 × 109 m3 or 9% were found due to the larger forested area (+ 45.7 106 ha) recognized by RS9, following the expansion of forests to the north22, to higher elevations, in abandoned arable land23, as well as the inclusion of parks, gardens and other trees outside of forest, which were not counted as forest in the SFR. Based on cross-validation, our estimate at the regional level (81 regions of Russia – Table S2, Figure S2) is unbiased. The standard error varied from 0.6 to 17.6% depending on the region. The median error was 1.6%, while the area weighted error was 1.2%. The predicted GSV (Fig. 1) with associated uncertainties is available here (https://doi.org/10.5281/zenodo.3981198) as a GeoTiff at a spatial resolution of 3.2 arc sec. (ca 0.5 ha).Figure 1Predicted mean forest growing stock volume (m3 ha-1) for the year ca 2014 (Generated by Esri ArcGIS Desktop v.10.7, URL: https://desktop.arcgis.com/en/arcmap/).Full size imageHoughton et al.24 estimated forest biomass based on RS and FIP data in Russia for the year 2000. Average forest biomass density varied between 80.6 and 88.2 Mg ha-1 depending on which forest mask was used. Our estimate for the year 2014 of 107 Mg ha-1 (using the conversion factor of GSV to AGB from24 0.6859) is 21–33% higher than the one by Houghton et al., but this is consistent with expected biomass increases over time, i.e., 14 years after the Houghton et al. estimate.Assuming an unchanged total forest area (721.7 × 106 ha) in 1988 and 2014, we conclude that Russian forests have accumulated 1,163 × 106 m3 yr-1 or 407 Tg C yr-1 in live biomass of trees on average over 26 years. This gives an average GSV change rate of + 1.61 m3 ha-1 yr-1 or + 0.56 t C ha-1 yr-1. The sequestration rate obtained, however, should be treated with caution because different methods have been applied in 1988 and 2014 (see “Caveats and Limitations” section). To provide some context for the magnitude of these numbers, one can compare the Russian forest gain to the net GSV losses in tropical forests over the period 1990–2015 according to FAO FRA25 (-1,033 × 106 m3 yr-1 in the regions with a negative trend: South and Central America, South and Southeast Asia, and Africa). A similar divergence in the carbon sink between Tropical and Boreal forest was recognized by Tagesson et al.26.In terms of carbon stock change, our estimates are substantially higher than those reported by Pan et al.7 for 1990–2007 (+ 153 Tg C yr-1) based on FIP data. The biomass carbon estimates by Liu et al.6 are instead in line with our results. There is an increase in the annual rate of AGB in Russia of + 329 Tg C yr−1 (annual variation from 214 to 400 Tg C yr−1) over 2000–20076. Interestingly, another boreal country – Canada – has demonstrated neutral or negative trends (from 0 to -14 Tg C yr−1) for the same time span using the same estimation method6.We can observe different spatial patterns in the change in the GSV density between 1988 (FIP10, bias corrected11) and 2014 (our estimate), which can be explained by climate change, CO2 fertilisation and changes in disturbance regimes (Fig. 2). The average linear trend in the annual temperature increase during 1976–2014 in Russia is + 0.45 °C per 10 years27. The temperature increase is statistically significant in every region except for western Siberia (Fig. 2–3). Significantly increased temperature extremes and an increase in the number of days without precipitation is observed in the south of European Russia, Baikal, Kamchatka, and Chukotka27 (Fig. 2–1). Some regions in the south of the European part of Russia are colored in dark blue, but they, as a rule, have a small share of forested area, which is often linked to water bodies and, therefore, suffers less from increased drought (Fig. 2–1). Central and eastern Siberia suffer from an increase in disturbances, which offsets the climate stimulation effect (Fig. 2–4). The forested area in the Nenets region (Fig. 2–2) is 4 times larger in 2014 based on the RS forest mask compared to the SFR in 1988 (where forest was accounted for up until a certain latitude at that time), where the increase in area resulted in a decrease in the average GSV.Figure 2Change in growing stock volume (m3 ha-1) from 1988 to 2014 (average over administrative regions) (Generated by Esri ArcGIS Desktop v.10.7, URL: https://desktop.arcgis.com/en/arcmap/). These changes can be categorized into: 1—significant increase in air temperature and drought; 2—substantially increased forest area, which lowers the average GSV density; 3—least (not significant) temperature increase; 4—increase of disturbances: wildfire and harvest (southern part), which offsets the climate stimulation effect.Full size imageFocusing specifically on national reporting of managed forest to the UNFCCC, 72% of forested area in Russia is considered to be managed1. We multiplied the GSV density by the managed forest area for each administrative region (Table S3). The difference in GSV estimation (between ours and the one from the SFR report) is 23.6 × 109 m3 (Table S3) or 33% higher. From the GSV of managed forests in 2014 and based on the same area in 1988, we can estimate the sequestration rate of live biomass of managed forests as 354 Tg C yr-1 , which is considerably higher than the figure of 230 Tg C yr-1 in the current report1.This proof of concept demonstrates the relevance of complementing recent NFI data with remote sensing map products. Our study demonstrates that the already considerable value of forest inventory data can be further enhanced in a forest resources mapping scenario. In addition, we seek to promote greater access to these data by opening up their access to the larger scientific community. Through the integration of RS estimates of GSV and forest inventory data from Russia, we confirm that carbon stocks increased substantially during the last few decades in contrast to the figures provided in official national reporting. Russian forests play an even more important global role in carbon sequestration than previously thought, where the increase in growing stock is of the same magnitude as the net losses in tropical forests over the same time period. More

  • in

    Ecological factors influence balancing selection on leaf chemical profiles of a wildflower

    1.Falconer, D. S. & Mackay, T. F. C. Introduction to Quantitative Genetics (Longman, 1996).2.Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 

    Google Scholar 
    3.Kingsolver, J. G., Diamond, S. E., Siepielski, A. M. & Carlson, S. M. Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol. Ecol. 26, 1101–1118 (2012).Article 

    Google Scholar 
    4.Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Kulbaba, M. W., Sheth, S. N., Pain, R. E., Eckhart, V. M. & Shaw, R. G. Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73, 1746–1758 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Lande, R. & Shannon, S. The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50, 434–437 (1996).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Anderson, J. T., Inouye, D. W., McKinney, A. M., Colautti, R. I. & Mitchell-Olds, T. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 279, 3843–3852 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Steffen, W., Crutzen, P. J. & McNeil, J. R. The Anthropocene: are humans now overwhelming the great forces of nature? Ambio 36, 614–621 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Zhang, X.-S. & Hill, W. G. Genetic variability under mutation selection balance. Trends Ecol. Evol. 20, 468–470 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.McGuigan, K., Aguirre, J. D. & Blows, M. W. Simultaneous estimation of additive and mutational genetic variance in an outbred population of Drosophila serrata. Genetics 201, 1239–1251 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Huang, W. et al. Spontaneous mutations and the origin and maintenance of quantitative genetic variation. eLife 5, e14625 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nat. Rev. Genet. 8, 845–856 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Charlesworth, B. Causes of natural variation in fitness: evidence from studies of Drosophila populations. Proc. Natl Acad. Sci. USA 112, 1662–1669 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Subramaniam, B. & Rausher, M. D. Balancing selection on a floral polymorphism. Evolution 54, 691–695 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Charlesworth, D. Balancing selection and its effects on sequences in nearby genome regions. PLoS Genet. 2, e64 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Hedrick, P. W. & Thomson, G. Evidence for balancing selection at HLA. Genetics 104, 449–456 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Troth, A., Puzey, J. R., Kim, R. S., Willis, J. H. & Kelly, J. K. Selective trade-offs maintain alleles underpinning complex trait variation in plants. Science 361, 475–478 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Delph, L. F. & Kelly, J. K. On the importance of balancing selection in plants. N. Phytol. 201, 45–56 (2014).Article 

    Google Scholar 
    20.Anderson, J. T., Wagner, M. R., Rushworth, C. A., Prasad, K. V. S. K. & Mitchell-Olds, T. The evolution of quantitative traits in complex environments. Heredity 112, 4–12 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Anderson, J. T. & Wadgymar, S. M. Climate change disrupts local adaptation and favours upslope migration. Ecol. Lett. 23, 181–192 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Agrawal, A. A. & Fishbein, M. Plant defense syndromes. Ecology 87, S132–S149 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Carmona, D., Lajeunesse, M. J. & Johnson, M. T. Plant traits that predict resistance to herbivores. Funct. Ecol. 25, 358–367 (2011).Article 

    Google Scholar 
    24.DeLucia, E. H., Nabity, P. D., Zavala, J. A. & Berenbaum, M. R. Climate change: resetting plant–insect interactions. Plant Physiol. 160, 1677–1685 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    26.Prasad, K. V. S. K. et al. A gain-of-function polymorphism controlling complex traits and fitness in nature. Science 337, 1081–1084 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Bergelson, J., Dwyer, G. & Emerson, J. J. Models and data on plant–enemy coevolution. Annu. Rev. Genet. 35, 469–499 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Hodgins, K. A. & Barrett, S. C. H. Female reproductive success and the evolution of mating-type frequencies in tristylous populations. N. Phytol. 171, 569–580 (2006).Article 

    Google Scholar 
    29.Trotter, M. V. & Spencer, H. G. Complex dynamics occur in a single-locus, multiallelic model of general frequency-dependent selection. Theor. Popul. Biol. 76, 292–298 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Tuinstra, M. R., Ejeta, G. & Goldsbrough, P. B. Heterogeneous inbred family (HIF) analysis: a method for developing near-isogenic loci that differ at quantitative traits. Theor. Appl. Genet. 95, 1005–1011 (1997).CAS 
    Article 

    Google Scholar 
    31.Salehin, M. et al. Auxin-sensitive Aux/IAA proteins mediate drought tolerance in Arabidopsis by regulating glucosinolate levels. Nat. Commun. 10, 4021 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Hossain, M. S. et al. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem. 77, 977–983 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Wang, B. et al. Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 126 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Bloom, T. C., Baskin, J. M. & Baskin, C. C. Ecological life history of the facultative woodland biennial Arabis laevigata variety laevigata (Brassicaceae): seed dispersal. J. Torrey Bot. Soc. 129, 21–28 (2002).Article 

    Google Scholar 
    36.Song, B.-H. et al. Multilocus patterns of nucleotide diversity, population structure, and linkage disequilibrium in Boechera stricta, a wild relative of Arabidopsis. Genetics 181, 1021–1033 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Mackay, T., Stone, E. & Ayroles, J. The genetics of quantitative traits: challenges and prospects. Nat. Rev. Genet. 10, 565–577 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Hedrick, P. W. Genetic polymorphism in heterogeneous environments: a decade later. Annu. Rev. Ecol. Syst. 17, 535–566 (1986).Article 

    Google Scholar 
    39.Hedrick, P. W. Antagonistic pleiotropy and genetic polymorphism: a perspective. Heredity 82, 126–133 (1999).Article 

    Google Scholar 
    40.Turelli, M. & Barton, N. H. Polygenic variation maintained by balancing selection: pleiotropy, sex-dependent allelic effects and G × E interactions. Genetics 166, 1053–1079 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Gillespie, J. H. & Langley, C. H. A general model to account for enzyme variation in natural populations. Genetics 76, 837–848 (1974).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Anderson, J. T., Willis, J. H. & Mitchell-Olds, T. Evolutionary genetics of plant adaptation. Trends Genet. 27, 258–266 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Anderson, J. T., Lee, C.-R., Rushworth, C. A., Colautti, R. I. & Mitchell-Olds, T. Genetic trade-offs and conditional neutrality contribute to local adaptation. Mol. Ecol. 22, 699–708 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Oakley, C. G., Ågren, J., Atchison, R. A. & Schemske, D. W. QTL mapping of freezing tolerance: links to fitness and adaptive trade-offs. Mol. Ecol. 23, 4304–4315 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Price, N. et al. Combining population genomics and fitness QTLs to identify the genetics of local adaptation in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 115, 5028–5033 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Kettunen, J. et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 44, 269–276 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Abuelsoud, W., Hirschmann, F. & Papenbrock, J. in Drought Stress in Plants Vol. 1 (eds Hossain, M. A. et al.) 227–248 (Springer, 2016).48.Nguyen, D., Rieu, I., Mariani, C. & van Dam, N. M. How plants handle multiple stresses: hormonal interactions underlying responses to abiotic stress and insect herbivory. Plant Mol. Biol. 91, 727–740 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Shani, E. M. et al. Plant stress tolerance requires auxin-sensitive Aux/IAA transcriptional repressors. Curr. Biol. 27, 437–444 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Hopkins, R. J., van Dam, N. M. & van Loon, J. J. A. Role of glucosinolates in insect–plant relationships and multitrophic interactions. Annu. Rev. Entomol. 54, 57–83 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Burow, M., Müller, R., Gershenzon, J. & Wittstock, U. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis. J. Chem. Ecol. 32, 2333–2349 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Wagner, M. R. & Mitchell-Olds, T. Plasticity of plant defense and its evolutionary implications in wild populations of Boechera stricta. Evolution 72, 1034–1049 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.56.0 (2020).55.Wang et al. Correction to: Ancient polymorphisms contribute to genome-wide variation by long-term balancing selection and divergent sorting in Boechera stricta. Genome Biol. 20, 16 (2019).Article 

    Google Scholar 
    56.Carley, L. et al. Data to accompany: Ecological factors influence balancing selection on leaf chemical profiles of a wildflower. Dryad Data https://doi.org/10.5061/dryad.7h44j0zsr (2021).57.Atkinson, N. J., Lilley, C. J. & Urwin, P. E. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 162, 2028–2041 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Sharma, A. et al. Comprehensive analysis of plant rapid alkalization factor (RALF) genes. Plant Physiol. Biochem. 106, 82–90 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Dutilleul, C., Jourdain, A., Bourguignon, J. & Hugouvieux, V. The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol. 147, 239–251 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Jiang, S.-C. et al. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. Plant Mol. Biol. 88, 369–385 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Wen, J., Vanek-Krebitz, M., Hoffmann-Sommergruber, K., Scheiner, O. & Breitender, H. The potential of Betv1 homologues, a nuclear multigene family, as phylogenetic markers in flowering plants. Mol. Phylogenet. Evol. 8, 317–333 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Koo, A. J., Fulda, M., Browse, J. & Ohlrogge, J. B. Identification of a plastid acyl‐acyl carrier protein synthetase in Arabidopsis and its role in the activation and elongation of exogenous fatty acids. Plant J. 44, 620–632 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Henrissat, B. et al. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl Acad. Sci. USA 92, 7090–7094 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Longevity and germination of Juniperus communis L. pollen after storage

    A uniform response of the pollen grains towards storage conditions was registered in all five shrubs investigated with a conspicuous decline in germination percentage and pollen tube length after storage. Pollen tube growth reacted more sensitively to storage than germination. The most profound reductions in pollen viability traits were observed in samples stored at + 4 °C. The germination percentage of freshly collected pollen of individual shrubs ranged between 67.3 and 88.6%, whereas that in stored pollen was between 18.0 and 39.6%. In relative terms, storage represented a 49.3–73.2% decline in germination (Fig. 1). The same tendency was also observed in pollen tube growth, when freshly collected pollen possessed 248.0–367.3 µm long pollen tubes, and pollen stored at + 4 °C was characterised by 93.9–218.5 µm long pollen tubes. The corresponding decline reached 32.5–68.7%.Figure 1Graphical illustrations of variation in pollen germination percentage (a) and pollen tube length (b) of individual shrubs revealed in fresh pollen and in pollen under storage. Different letters refer to the statistical significance of the differences between tested individuals and storage variants, resulting from Duncan’s pairwise tests.Full size imageContrary to storage at + 4 °C, pollen stored at − 20 °C had an increased germination by 0.3% in shrub no. 1 and 0.6% in shrub no. 5 as compared with fresh pollen. A more conspicuous increase in pollen germinability was registered in individual no. 4, exhibiting 70.0% germination in fresh pollen and 93.6% in pollen stored at − 20 °C. In the remaining two shrubs (no. 2, 3), only a negligible decline in pollen germination was recorded. The deviation from freshly collected pollen varied within 0.5–16.8%. In general, the germination characteristics of pollen stored at − 20 °C were comparable with those of the fresh pollen and varied between 67.6 and 93.6%. As a second viability trait, pollen tube growth deviated more profoundly from that of fresh pollen than germination. On average, the pollen tube length of pollen stored at − 20 °C ranged from 163.0 to 286.6 µm, which represents a 11.4–45.7% decline compared to fresh pollen (Figs. 1, S1). ANOVA and Duncan`s grouping confirmed the highly significant differences between tested shrubs in both pollen germination percentage (P  More