Biodiversity–productivity relationships are key to nature-based climate solutions
1.UNEP. Global Environment Outlook – GEO6: Healthy Planet, Healthy People (Cambridge Univ. Press, 2019); https://www.unep.org/resources/global-environment-outlook-62.Dinerstein, E. et al. A global deal for nature: guiding principles, milestones, and targets. Sci. Adv. 5, eaaw2869 (2019).CAS
Article
Google Scholar
3.Mori, A. S., Spies, T. A., Sudmeier-Rieux, K. & Andrade, A. Reframing ecosystem management in the era of climate change: issues and knowledge from forests. Biol. Conserv. 165, 115–127 (2013).Article
Google Scholar
4.Warren, R., Price, J., Graham, E., Forstenhaeusler, N. & VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5° C rather than 2° C. Science 360, 791–795 (2018).CAS
Article
Google Scholar
5.Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).Article
CAS
Google Scholar
6.Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS
Article
Google Scholar
7.IPBES secretariat. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (eds. Diaz, S. et al.) (IPBES, 2019); https://ipbes.net/global-assessment8.Midgley, G. F. et al. Terrestrial carbon stocks and biodiversity: key knowledge gaps and some policy implications. Curr. Opin. Environ. Sustain. 2, 264–270 (2010).Article
Google Scholar
9.Jones, A. D., Calvin, K. V., Collins, W. D. & Edmonds, J. Accounting for radiative forcing from albedo change in future global land-use scenarios. Clim. Change 131, 691–703 (2015).Article
Google Scholar
10.Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).CAS
Article
Google Scholar
11.Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).Article
Google Scholar
12.Morecroft, M. D. et al. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 366, eaaw9256 (2019).CAS
Article
Google Scholar
13.Mori, A. S. Advancing nature-based approaches to address the biodiversity and climate emergency. Ecol. Lett. 23, 1729–1732 (2020).14.Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS
Article
Google Scholar
15.Holl, K. D. & Brancalion, P. H. S. Tree planting is not a simple solution. Science 368, 580–581 (2020).CAS
Article
Google Scholar
16.Hisano, M., Searle, E. B. & Chen, H. Y. H. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biol. Rev. 93, 439–456 (2018).Article
Google Scholar
17.Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Article
CAS
Google Scholar
18.Mori, A. S. Environmental controls on the causes and functional consequences of tree species diversity. J. Ecol. 106, 113–125 (2018).Article
Google Scholar
19.Hulvey, K. B. et al. Benefits of tree mixes in carbon plantings. Nat. Clim. Change 3, 869–874 (2013).CAS
Article
Google Scholar
20.World Economic Forum. The Global Risks Report 2020 https://www.weforum.org/reports/the-global-risks-report-2020 (2020).21.Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Ann. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article
Google Scholar
22.Isbell, F., Tilman, D., Polasky, S. & Loreau, M. The biodiversity-dependent ecosystem service debt. Ecol. Lett. 18, 119–134 (2015).Article
Google Scholar
23.Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article
Google Scholar
24.Mokany, K. et al. Integrating modelling of biodiversity composition and ecosystem function. Oikos 125, 10–19 (2016).Article
Google Scholar
25.Isbell, F. et al. Linking the influence and dependence of people on biodiversity across scales. Nature 546, 65–72 (2017).CAS
Article
Google Scholar
26.Running, S., Mu, Q., Zhao, M. & MODAPS-SIPS. MOD17A3 MODIS/Terra Gross Primary Productivity Yearly L4 Global 1km SIN Grid (NASA, 2015); https://doi.org/10.5067/MODIS/MOD17A3.00627.Fujimori, S., Hasegawa, T., Ito, A., Takahashi, K. & Masui, T. Gridded emissions and land-use data for 2005-2100 under diverse socioeconomic and climate mitigation scenarios. Sci. Data 5, 180210 (2018).Article
Google Scholar
28.Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).Article
CAS
Google Scholar
29.Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).Article
Google Scholar
30.Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).CAS
Article
Google Scholar
31.Ammer, C. Diversity and forest productivity in a changing climate. New Phytol. 221, 50–66 (2019).Article
Google Scholar
32.Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).Article
Google Scholar
33.Ricke, K., Drouet, L., Caldeira, K. & Tavoni, M. Country-level social cost of carbon. Nat. Clim. Change 8, 895–900 (2018).CAS
Article
Google Scholar
34.Anderson, C. M. et al. Natural climate solutions are not enough. Science 363, 933–934 (2019).CAS
Article
Google Scholar
35.Potapov, P. et al. The last frontiers of wilderness: tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, e1600821 (2017).Article
Google Scholar
36.Mori, A. S., Lertzman, K. P. & Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. J. Appl. Ecol. 54, 12–27 (2017).Article
Google Scholar
37.Bastin, J. F. et al. The global tree restoration potential. Science 365, 76–79 (2019).CAS
Article
Google Scholar
38.Quine, C. P., Bailey, S. A., Watts, K. & Hulme, P. Sustainable forest management in a time of ecosystem services frameworks: common ground and consequences. J. Appl. Ecol. 50, 863–867 (2013).Article
Google Scholar
39.Climate Change for Forest Policy-Makers: An Approach for Integrating Climate Change into National Forest Policy in Support of Sustainable Forest Management Version 2.0. FAO Forestry Paper No. 181 (FAO, 2018); http://www.fao.org/3/CA2309EN/ca2309en.pdf40.The Future We Want: Biodiversity and Ecosystems—Driving Sustainable Development. United Nations Development Programme Biodiversity and Ecosystems Global Framework 2012-2020 (UNDP, 2012); https://www.cbd.int/financial/mainstream/undp-globalframework2012-2020.pdf41.Thompson, I., Mackey, B., McNulty, S. & Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems. Technical Series No. 43 (Convention on Biological Diversity, 2009); https://www.cbd.int/doc/publications/cbd-ts-43-en.pdf42.CBD secretariat. Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second ad hoc Technical Expert Group on Biodiversity and Climate Change. Technical Series No. 41 (Convention on Biological Diversity, 2009); https://www.cbd.int/doc/publications/cbd-ts-41-en.pdf43.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS
Article
Google Scholar
44.Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol. 34, 746–758 (2019).Article
Google Scholar
45.Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol. Model. 385, 124–132 (2018).Article
Google Scholar
46.Jordano, P. & Rees, M. What is long-distance dispersal? And a taxonomy of dispersal events. J. Ecol. 105, 75–84 (2017).Article
Google Scholar
47.Veldman, J. W. et al. Comment on ‘The global tree restoration potential’. Science 366, eaay7976 (2019).Article
Google Scholar
48.Naudts, K. et al. Europe’s forest management did not mitigate climate warming. Science 351, 597–600 (2016).CAS
Article
Google Scholar
49.Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).CAS
Article
Google Scholar
50.Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).CAS
Article
Google Scholar
51.Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020).CAS
Article
Google Scholar
52.Bellamy, R. & Osaka, S. Unnatural climate solutions? Nat. Clim. Change 10, 98–99 (2020).Article
Google Scholar
53.Wisz, M. S. et al. Effects of sample size on the performance of species distribution models. Divers. Distrib. 14, 763–773 (2008).Article
Google Scholar
54.Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article
Google Scholar
55.Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article
Google Scholar
56.Collins, W. J. et al. Development and evaluation of an Earth-System model – HadGEM2. Geosci. Model Dev. 4, 1051–1075 (2011).Article
Google Scholar
57.Jones, C. D. et al. The HadGEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev. 4, 543–570 (2011).Article
Google Scholar
58.Griffies, S. M. et al. The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J. Clim. 24, 3520–3544 (2011).Article
Google Scholar
59.Fujimori, S., Hasegawa, T. & Masui, T. In Post-2020 Climate Action (eds Fujimori, S., Kainuma, M. & Masui, T.) 305–328 (Springer, 2017).60.Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. & Masui, T. Global land-use allocation model linked to an integrated assessment model. Sci. Total Environ. 580, 787–796 (2017).CAS
Article
Google Scholar
61.Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).Article
Google Scholar
62.Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).Article
Google Scholar
63.Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).Article
Google Scholar
64.Boyce, M. S., Vernier, P. R., Nielsen, S. E. & Schmiegelow, F. K. A. Evaluating resource selection functions. Ecol. Model. 157, 281–300 (2002).Article
Google Scholar
65.Pearson, R. G., Dawson, T. P. & Liu, C. Modelling species distributions in Britain: a hierarchical integration of climate and land-cover data. Ecography 27, 285–298 (2004).Article
Google Scholar
66.Tamme, R. et al. Predicting species’ maximum dispersal distances from simple plant traits. Ecology 95, 505–513 (2014).Article
Google Scholar
67.Engen, S., Lande, R., Walla, T. & DeVries, P. J. Analyzing spatial structure of communities using the two-dimensional Poisson lognormal species abundance model. Am. Nat. 160, 60–73 (2002).Article
Google Scholar
68.He, F. & Gaston, K. J. Occupancy, spatial variance, and the abundance of species. Am. Nat. 162, 366–375 (2003).Article
Google Scholar
69.Magurran, A. E. & McGill, B. J. Biological Diversity (Oxford Univ. Press, 2011).70.Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 785–794 (KDD, 2016); https://doi.org/10.1145/2939672.293978571.He, F. & Hubbell, S. P. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011).CAS
Article
Google Scholar
72.Neigel, J. E. Species–area relationships and marine conservation. Ecol. Appl 13, 138–145 (2003).Article
Google Scholar
73.Rogan, J. E. & Lacher, T. E. Impacts of Habitat Loss and Fragmentation on Terrestrial Biodiversity. in Earth Systems and Environmental Sciences. https://doi.org/10.1016/b978-0-12-409548-9.10913-3 (Elsevier, 2018).74.Chase, J. M. & Leibold, M. A. Spatial scale dictates the productivity–biodiversity relationship. Nature 416, 427–430 (2002).CAS
Article
Google Scholar
75.Botanic Gardens Conservation International. Global Tree Search Database. Version 1.3 (Botanic Gardens Conservation International, 2019); https://tools.bgci.org/global_tree_search.php More