More stories

  • in

    Barrier crossings and winds shape daily travel schedules and speeds of a flight generalist

    1.Newton, I. The Migration Ecology of Birds (Academic Press, Cambridge, 2008).
    Google Scholar 
    2.Akesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 78 (2020).Article 

    Google Scholar 
    3.Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. USA 105, 19052–19059 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Alerstam, T. Optimal bird migration revisited. J. Ornithol. 152, 5–23 (2011).Article 

    Google Scholar 
    5.Mellone, U., López-López, P., Limiñana, R., Piasevoli, G. & Urios, V. The trans-equatorial loop migration system of Eleonora’s falcon: Differences in migration patterns between age classes, regions and seasons. J. Avian Biol. 44, 417–426 (2013).
    Google Scholar 
    6.Sur, M. et al. Relevance of individual and environmental drivers of movement of Golden Eagles. Ibis 162, 381–399 (2020).Article 

    Google Scholar 
    7.Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between pre-breeding and post-breeding. Am. Nat. 181, 837–845 (2013).PubMed 
    Article 

    Google Scholar 
    8.Vansteelant, W. M. G. et al. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 46, 25–39 (2015).Article 

    Google Scholar 
    9.Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Miller, T. A. et al. Limitations and mechanisms influencing the migratory performance of soaring birds. Ibis 158, 116–134 (2016).Article 

    Google Scholar 
    11.Shamoun-Baranes, J. et al. The effect of wind, season and latitude on the migration speed of white storks Ciconia ciconia, along the eastern migration route. J. Avian Biol. 34, 97–104 (2003).Article 

    Google Scholar 
    12.Dodge, S. et al. Environmental drivers of variability in the movement ecology of turkey vultures (Cathartes aura) in North and South America. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 1471–2970 (2014).Article 

    Google Scholar 
    13.Nourani, E., Yamaguchi, N. M., Manda, A. & Higuchi, H. Wind conditions facilitate the seasonal water-crossing behaviour of Oriental Honey-buzzards Pernis ptilorhynchus over the East China Sea. Ibis 158, 506–518 (2016).Article 

    Google Scholar 
    14.Rus, A. I., Duerr, A. E., Miller, T. A., Belthoff, J. R. & Katzner, T. E. Counterintuitive roles of experience and weather on migratory performance. Auk 134, 485–497 (2017).Article 

    Google Scholar 
    15.Thorup, K., Alerstam, T., Hake, M. & Kjellén, N. Bird orientation: Compensation for wind drift in migrating raptors is age dependent. Proc. R. Soc. Lond. B Biol. Sci. 270, S8–S11 (2003).Article 

    Google Scholar 
    16.Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Vansteelant, W. M. G., Kekoonen, J. & Byholm, P. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-saharan africa. Proc. R. Soc. Lond. B Biol. Sci. 284, 20170387 (2017).
    Google Scholar 
    18.Mellone, U. et al. Seasonal differences in migration patterns of a soaring bird in relation to environmental conditions: A multi-scale approach. Behav. Ecol. Sociobiol. 69, 75–82 (2015).Article 

    Google Scholar 
    19.Rotics, S. et al. Early arrival at breeding grounds: Causes, costs and a trade off with overwintering latitude. J. Anim. Ecol. 87, 1627–1638 (2018).PubMed 
    Article 

    Google Scholar 
    20.Shamoun-Baranes, J., Bouten, W., vanLoon, E. E., Meijer, C. & Camphuysen, C. J. Flap or soar? How a flight generalist responds to its aerial environment. Philos. Trans. R. Soc. B 371, 20150395 (2016).Article 

    Google Scholar 
    21.Bildstein, K. L. Migrating Raptors of the World: Their Ecology and Conservation (Cornell Univ, 2006).
    Google Scholar 
    22.Klaassen, R. H. G., Ens, B. J., Shamoun-Baranes, J., Exo, K. M. & Bairlein, F. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behav. Ecol. 23, 58–68 (2012).Article 

    Google Scholar 
    23.Klaassen, R. H. G., Schlaich, A. E., Bouten, W. & Koks, B. J. Migrating Montagu’s harriers frequently interrupt daily flights in both Europe and Africa. J. Avian Biol. 48, 180–190 (2017).Article 

    Google Scholar 
    24.Shamoun-Baranes, J., Liechti, F. & Vansteelant, W. M. G. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A. 203, 509–529 (2017).CAS 
    Article 

    Google Scholar 
    25.Spaar, R. & Bruderer, B. Migration by flapping or soaring: Flight strategies of Marsh, Montagu’s and Pallid Harriers in southern Israel. Condor 99, 458–469 (1997).Article 

    Google Scholar 
    26.Duriez, O., Peron, G., Gremillet, D., Sforzi, A. & Monti, F. Migrating ospreys use thermal uplift over the open sea. Biol. Lett. 14, 20180687 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Nourani, E. et al. Sea-crossing along migratory flyways is limited more strongly by wind than by lack of uplift. bioRxiv (2020).28.Alerstam, T. Flight by night or day? Optimal daily timing of bird migration. J. Theor. Biol. 258, 530–536 (2009).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    29.Strandberg, R. & Alerstam, T. The strategy of fly-and-forage migration, illustrated for the osprey (Pandion haliaetus). Behav. Ecol. Sociobiol. 61, 1865–1875 (2007).Article 

    Google Scholar 
    30.Strandberg, R., Klaassen, R. H. G., Olofsson, P. & Alerstam, T. Daily travel schedules of adult Eurasian hobbies Falco subbuteo—variability in flight hours and migration speed along the route. Ardea 97, 287–295 (2009).Article 

    Google Scholar 
    31.Hadjikyriakou, T. G., Nwankwo, E. C., Virani, M. Z. & Kirschel, A. N. Habitat availability influences migration speed, refueling patterns and seasonal flyways of a fly-and-forage migrant. Mov. Ecol. 8, 10 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Mellone, U., Limiñana, R., López-López, P. & Urios, V. Regional and age-dependent differences in the effect of wind on the migratory routes of Eleonora’s Falcon. Curr. Zool. 61, 428–434 (2015).Article 

    Google Scholar 
    33.Cramp, S. & Simmons, K. E. L. The Birds of the Western Palaearctic Vols. 1–5 (Oxford University Press, 1977–1988).34.López-López, P., Limiñana, R., Mellone, U. & Urios, V. From the Mediterranean Sea to Madagascar: Are there ecological barriers for the long-distance migrant Eleonora’s falcon?. Landsc. Ecol. 25, 803–813 (2010).Article 

    Google Scholar 
    35.Kemp, M. U., Shamoun-Baranes, J., van Gasteren, H., Bouten, W. & van Loon, E. E. Can wind help explain seasonal differences in avian migration speed?. J. Avian Biol. 41, 672–677 (2010).Article 

    Google Scholar 
    36.Kokko, H. Competition for early arrival in birds. J. Anim. Ecol. 68, 940–950 (1999).Article 

    Google Scholar 
    37.Karlsson, H., Nilsson, C., Bäckman, J. & Alerstam, T. Nocturnal passerine migrants fly faster in pre-breeding than in post-breeding: A test of the time minimisation hypothesis. Anim. Behav. 83, 87–93 (2012).Article 

    Google Scholar 
    38.Pennycuick, C. J. Modelling the Flying Bird (Elsevier, Amsterdam, 2008).
    Google Scholar 
    39.Morbey, Y. E. & Ydenberg, R. C. Protandrous arrival timing to breeding areas: A review. Ecol. Lett. 4, 663–673 (2001).Article 

    Google Scholar 
    40.Sarà, M. et al. Broadfront migration leads to strong migratory connectivity in the lesser kestrel (Falco naumanni). J. Biogeogr. 46, 2663–2677 (2019).Article 

    Google Scholar 
    41.Limiñana, R., Romero, M., Mellone, U. & Urios, V. Is there a different response to winds during migration between soaring and flapping raptors? An example with the Montagu’s harrier and the lesser kestrel. Behav. Ecol. Sociobiol. 67, 823–835 (2013).Article 

    Google Scholar 
    42.Mellone, U., López-López, P., Limiñana, R. & Urios, V. Weather conditions promote route flexibility during open ocean crossing in a long-distance migratory raptor. Int. J. Biometeorol. 55, 463–468 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    43.Negro, J. J., De la Riva, M. & Bustamante, J. Patterns of winter distribution and abundance of lesser kestrels (Falco naumanni) in Spain. J. Raptor Res. 25, 31 (1991).
    Google Scholar 
    44.Hubner, C. E. The importance of pre-breeding areas for the arctic barnacle goose Branta leucopsis. Ardea 94, 701–713 (2006).
    Google Scholar 
    45.Klaassen, R. H. G., Strandberg, R., Hake, M. & Alerstam, T. Flexibility in daily travel routines causes regional variation in bird migration speed. Behav. Ecol. Sociobiol. 62, 1427–1432 (2008).Article 

    Google Scholar 
    46.Whitworth, D., Newman, S. H., Mundkur, T. & Harris, P. Wild Birds and Avian Influenza: An Introduction to Applied Field Research and Disease Sampling Techniques, FAO Animal Production and Health Manual, No. 5 (FAO, Rome, (2007).47.Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br. J. Pharmacol. 40, 1769–1777 (2020).
    Google Scholar 
    48.Barron, D. G., Brawn, J. D. & Weatherhead, P. J. Meta-analysis of transmitter effects on avian behaviour and ecology. Methods Ecol. Evol. 1, 180–187 (2010).Article 

    Google Scholar 
    49.Vavrek Matthew, J. Fossil: Palaeoecological and palaeogeographical analysis tools. Palaeontol. Electron. 14, 1–16 (2011).
    Google Scholar 
    50.QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation Project, 2020).51.Klaassen, R. H., Hake, M., Strandberg, R. & Alerstam, T. Geographical and temporal flexibility in the response to crosswinds by migrating raptors. Proc. R. Soc. Lond. B: Biol. Sci. 278, 1339–1346 (2010).
    Google Scholar 
    52.Shamoun-Baranes, J., Burant, J. B., van Loon, E. E., Bouten, W. & Camphuysen, C. J. Short distance migrants travel as far as long distance migrants in lesser black-backed gulls Larus fuscus. J. Avian Biol. 48, 49–57 (2017).Article 

    Google Scholar 
    53.Limiñana, R., Romero, M., Mellone, U. & Urios, V. Mapping the migratory routes and wintering areas of Lesser Kestrels Falco naumanni: New insights from satellite telemetry. Ibis 154, 389–399 (2012).Article 

    Google Scholar 
    54.Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    55.Sefick, S. Jr. Stream Metabolism-A Package for Calculating Single Station Metabolism from Diurnal OXYGEN Curves. R package version 1.2 (2016).56.Dodge, S. et al. The environmental-data automated track annotation (Env-DATA) system: Linking animal tracks with environmental data. Mov. Ecol. 1, 3 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.R Development Core TEAM. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.r-project.org/ (2020).58.Russell, L. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1.4.5 https://CRAN.R-project.org/package=emmeans (2020).59.Zeileis, A. & Jackman, S. Regression models for count data in R. J. Stat. Softw. 27, 1–25 (2008).
    Google Scholar 
    60.Hothorn, T., Bretz, F., Westfall, P., Heibergeer, R. M. & Schuetzenmeister A. Simultaneous Inference in General Parametric Models, package “Multcomp”. http://cran.r-project.org/web/packages/multcomp/multcomp.pdf (2014).61.Bartoń, K. MuMIn: Multi-model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn (2019).62.Cade, B. S. Model averaging and muddled multimodel inferences. Ecology 96(9), 2370–2382 (2015).PubMed 
    Article 

    Google Scholar 
    63.Buchan, C. et al. Carryover effects of long-distance avian migration are weaker than effects of breeding environment in a partially migratory bird. Sci. Rep. 11, 935 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Kuznetsova, A., Brockhof, P. B. & Christensen, R. H. B. lmerTest: Tests in Linear Mixed Efects Models. R package version 2.0-32 (2017).65.Nakagawa, S. & Hanson, P. J. A general and simple method for obtaining R2 from generalised linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).Article 

    Google Scholar 
    66.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    67.Eager, C.D. Standardize: Tools for Standardising Variables for Regression in R. R package version 0.2.1. Retrieved from https://CRAN.R-project.org/package=standardize (2017).68.Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2011).
    Google Scholar 
    69.Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2014).
    Google Scholar 
    70.Meyer, D., Zeileis, A. & Hornik, K. vcd: Visualising Categorical Data. R package version 1.4-4 (2017). More

  • in

    Npas4a expression in the teleost forebrain is associated with stress coping style differences in fear learning

    1.Baker, M. R., Hofmann, H. A. & Wong, R. Y. Neurogenomics of Behavioural Plasticity in Socioecological Contexts (Wiley, 2001).Book 

    Google Scholar 
    2.Koolhaas, J. M. et al. Coping styles in animals: Current status in behavior and stress-physiology. Neurosci. Biobehav. Rev. 23(7), 925–935 (1999).CAS 
    Article 

    Google Scholar 
    3.Koolhaas, J. M., de Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31(3), 307–321 (2010).CAS 
    Article 

    Google Scholar 
    4.Øverli, Ø. et al. Evolutionary background for stress-coping styles: Relationships between physiological, behavioral, and cognitive traits in non-mammalian vertebrates. Neurosci. Biobehav. Rev. 31(3), 396–412 (2007).Article 

    Google Scholar 
    5.Brown, G. E. et al. Retention of acquired predator recognition among shy versus bold juvenile rainbow trout. Behav. Ecol. Sociobiol. 67(1), 43–51 (2013).Article 

    Google Scholar 
    6.Dougherty, L. R. & Guillette, L. M. Linking personality and cognition: a meta-analysis. Philos. Trans. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rstb.2017.0282 (2018).Article 

    Google Scholar 
    7.Lucon-Xiccato, T. & Bisazza, A. Individual differences in cognition among teleost fishes. Behav. Process. 141, 184–195 (2017).Article 

    Google Scholar 
    8.Miller, N. Cognition in fishes. Behav. Process. https://doi.org/10.1016/j.beproc.2017.03.013 (2017).Article 

    Google Scholar 
    9.Sih, A. & Del Giudice, M. Linking behavioural syndromes and cognition: A behavioural ecology perspective. Philos. Trans. R. Soc. B. Biol. Sci. 367(1603), 2762–2772 (2012).Article 

    Google Scholar 
    10.Amy, M., van Oers, K. & Naguib, M. Worms under cover: Relationships between performance in learning tasks and personality in great tits (Parus major). Anim. Cogn. https://doi.org/10.1007/s10071-012-0500-3 (2012).Article 
    PubMed 

    Google Scholar 
    11.Bolhuis, J. E., Schouten, W. G. P., De, L. J. A., Schrama, J. W. & Wiegant, V. M. Individual coping characteristics, rearing conditions and behavioural flexibility in pigs. Behav. Brain Res. 152(2), 351–360 (2004).Article 

    Google Scholar 
    12.DePasquale, C., Wagner, T., Archard, G. A., Ferguson, B. & Braithwaite, V. A. Learning rate and temperament in a high predation risk environment. Oecologia 176(3), 661–667 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    13.Dugatkin, L. A. & Alfieri, M. S. Boldness, behavioral inhibition and learning. Ethol. Ecol. Evol. 15(1), 43–49 (2003).Article 

    Google Scholar 
    14.Mazza, V., Eccard, J. A., Zaccaroni, M., Jacob, J. & Dammhahn, M. The fast and the flexible: Cognitive style drives individual variation in cognition in a small mammal. Anim. Behav. https://doi.org/10.1016/j.anbehav.2018.01.011 (2018).Article 

    Google Scholar 
    15.Mesquita, F. O., Borcato, F. L. & Huntingford, F. A. Cue-based and algorithmic learning in common carp: A possible link to stress coping style. Behav. Process. 115, 25–29 (2015).Article 

    Google Scholar 
    16.Trompf, L. & Brown, C. Personality affects learning and trade-offs between private and social information in guppies, Poecilia reticulata. Anim. Behav. 88, 99–106 (2014).Article 

    Google Scholar 
    17.Budaev, S. V. & Zhuikov, A. Y. Avoidance learning and “personality” in the guppy (Poecilia reticulata). J. Comp. Psychol. 112(1), 92–94 (1998).Article 

    Google Scholar 
    18.Exnerová, A., Svádová, K. H., Fučíková, E., Drent, P. & Štys, P. Personality matters: Individual variation in reactions of naive bird predators to aposematic prey. Proc. R. Soc. B. Biol. Sci. https://doi.org/10.1098/rspb.2009.1673 (2010).Article 

    Google Scholar 
    19.Miller, K. A., Garner, J. P. & Mench, J. A. Is fearfulness a trait that can be measured with behavioural tests? A validation of four fear tests for Japanese quail. Anim Behav. https://doi.org/10.1016/j.anbehav.2005.08.018 (2006).Article 

    Google Scholar 
    20.Øverli, Ø. & Sørensen, C. On the role of neurogenesis and neural plasticity in the evolution of animal personalities and stress coping styles. Brain Behav. Evol. https://doi.org/10.1159/000447085 (2016).Article 
    PubMed 

    Google Scholar 
    21.Sørensen, C., Johansen, I. B. & Øverli, Ø. Neural plasticity and stress coping in teleost fishes. Gen. Comp. Endocrinol. https://doi.org/10.1016/j.ygcen.2012.12.003 (2013).Article 
    PubMed 

    Google Scholar 
    22.Wong, R. Y., Lamm, M. S. & Godwin, J. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genom. 16(1), 425 (2015).Article 

    Google Scholar 
    23.Oswald, M. E., Singer, M. & Robison, B. D. The quantitative genetic architecture of the bold-shy continuum in zebrafish, Denio rerio. PLoS ONE 8(7), e28865. https://doi.org/10.1371/journal.pone.0068828 (2013).CAS 
    Article 

    Google Scholar 
    24.Kfir, A. et al. Learning-induced modulation of the GABAB-mediated inhibitory synaptic transmission: Mechanisms and functional significance. J.. Neurophysiol. https://doi.org/10.1152/jn.00004.2014 (2014).Article 
    PubMed 

    Google Scholar 
    25.Lin, Y. et al. Activity-dependent regulation of inhibitory synapse development by Npas4. Nature https://doi.org/10.1038/nature07319 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Maya-Vetencourt, J. F. et al. Experience-dependent expression of NPAS4 regulates plasticity in adult visual cortex. J. Physiol. https://doi.org/10.1113/jphysiol.2012.234237 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Heaney, C. F. & Kinney, J. W. Role of GABABreceptors in learning and memory and neurological disorders. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2016.01.007 (2016).Article 
    PubMed 

    Google Scholar 
    28.Ploski, J. E., Monsey, M. S., Nguyen, T., DiLeone, R. J. & Schafe, G. E. The neuronal PAS domain protein 4 (Npas4) is required for new and reactivated fear memories. PLoS ONE https://doi.org/10.1371/journal.pone.0023760 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Ramamoorthi, K. et al. Npas4 regulates a transcriptional program in CA3 required for contextual memory formation. Science https://doi.org/10.1126/science.1208049 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Baker, M. R. & Wong, R. Y. Contextual fear learning and memory differ between stress coping styles in zebrafish. Sci. Rep. https://doi.org/10.1038/s41598-019-46319-0 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Maren, S., Phan, K. L. & Liberzon, I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. https://doi.org/10.1038/nrn3492 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Lal, P. et al. Identification of a neuronal population in the telencephalon essential for fear conditioning in zebrafish. BMC Biol. https://doi.org/10.1186/s12915-018-0502-y (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Ganz, J. et al. Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000 Res. https://doi.org/10.12688/f1000research.5595.2 (2015).Article 

    Google Scholar 
    34.de CarmoSilva, R. X., Lima-Maximino, M. G. & Maximino, C. The aversive brain system of teleosts: Implications for neuroscience and biological psychiatry. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2018.10.001 (2018).Article 

    Google Scholar 
    35.Panula, P. et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis. https://doi.org/10.1016/j.nbd.2010.05.010 (2010).Article 
    PubMed 

    Google Scholar 
    36.Wong, R. Y. et al. Comparing behavioral responses across multiple assays of stress and anxiety in zebrafish (Danio rerio). Behaviour 149(10–12), 1205–1240 (2012).
    Google Scholar 
    37.Kern, E. M. A., Robinson, D., Gass, E., Godwin, J. & Langerhans, R. B. Correlated evolution of personality, morphology and performance. Anim. Behav. 117, 79–86 (2016).Article 

    Google Scholar 
    38.Wong, R. Y., McLeod, M. M. & Godwin, J. Limited sex-biased neural gene expression patterns across strains in Zebrafish (Danio rerio). BMC Genom. 15(1), 905. https://doi.org/10.1186/1471-2164-15-905 (2014).Article 

    Google Scholar 
    39.Wong, R. Y., Oxendine, S. E. & Godwin, J. Behavioral and neurogenomic transcriptome changes in wild-derived zebrafish with fluoxetine treatment. BMC Genom. 14(1), 348 (2013).CAS 
    Article 

    Google Scholar 
    40.Goodman, A. C. & Wong, R. Y. Differential effects of ethanol on behavior and GABAA receptor expression in adult zebrafish (Danio rerio) with alternative stress coping styles. Sci. Rep. https://doi.org/10.1038/s41598-020-69980-2 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Baker, M. R., Goodman, A. C., Santo, J. B. & Wong, R. Y. Repeatability and reliability of exploratory behavior in proactive and reactive zebrafish Danio rerio. Sci. Rep. https://doi.org/10.1038/s41598-018-30630-3 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Johnson, Z. V. et al. Exploratory behaviour is associated with microhabitat and evolutionary radiation in Lake Malawi cichlids. Anim. Behav. https://doi.org/10.1016/j.anbehav.2019.11.006 (2020).Article 

    Google Scholar 
    43.Gerlai, R. Learning and memory in zebrafish (Danio rerio). Methods Cell Biol. https://doi.org/10.1016/bs.mcb.2016.02.005 (2016).Article 
    PubMed 

    Google Scholar 
    44.Norton, W. & Bally-Cuif, L. Adult zebrafish as a model organism for behavioural genetics. BMC Neurosci. https://doi.org/10.1186/1471-2202-11-90 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Oliveira, R. F. Mind the fish: Zebrafish as a model in cognitive social neuroscience. Front. Neural Circuits https://doi.org/10.3389/fncir.2013.00131 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Wong, R. Y., French, J. & Russ, J. B. Differences in stress reactivity between zebrafish with alternative stress coping styles. R. Soc. Open Sci. https://doi.org/10.1098/rsos.181797 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Maren, S. Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci. https://doi.org/10.1146/annurev.neuro.24.1.897 (2001).Article 
    PubMed 

    Google Scholar 
    48.McCurley, A. T. & Callard, G. V. Characterization of housekeeping genes in zebrafish: Male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol. Biol. https://doi.org/10.1186/1471-2199-9-102 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Wong, R. Y., Ramsey, M. E. & Cummings, M. E. Localizing brain regions associated with female mate preference behavior in a swordtail. PLoS ONE https://doi.org/10.1371/journal.pone.0050355 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Wong, R. Y. & Cummings, M. E. Expression patterns of Neuroligin-3 and tyrosine hydroxylase across the brain in mate choice contexts in female swordtails. Brain Behav Evol https://doi.org/10.1159/000360071 (2014).Article 
    PubMed 

    Google Scholar 
    51.Wullimann, M. F., Rupp, B. & Reichert, H. Neuroanatomy of the zebrafish brain: A topological. Atlas https://doi.org/10.1007/978-3-0348-8979-7 (1996).Article 

    Google Scholar 
    52.Benjamini, Y., Drai, D., Elmer, G., Kafkafi, N. & Golani, I. Controlling the false discovery rate in behavior genetics research. Behav. Brain Res. 125(1–2), 279–284 (2001).CAS 
    Article 

    Google Scholar 
    53.Wassertheil, S. & Cohen, J. Statistical power analysis for the behavioral sciences. Biometrics https://doi.org/10.2307/2529115 (1970).Article 

    Google Scholar 
    54.Starkings, S. IBM SPSS statistics 19 made simple by Colin D. Gray and Paul R. Kinnear. Int. Stat. Rev. https://doi.org/10.1111/j.1751-5823.2012.00187_13.x (2012).Article 

    Google Scholar 
    55.Richardson, J. T. E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. https://doi.org/10.1016/j.edurev.2010.12.001 (2011).Article 

    Google Scholar 
    56.Benito, E. & Barco, A. The neuronal activity-driven transcriptome. Mol. Neurobiol. https://doi.org/10.1007/s12035-014-8772-z (2015).Article 
    PubMed 

    Google Scholar 
    57.Vertkin, I. et al. GABA B receptor deficiency causes failure of neuronal homeostasis in hippocampal networks. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1424810112 (2015).Article 
    PubMed 

    Google Scholar 
    58.von Trotha, J. W., Vernier, P. & Bally-Cuif, L. Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. Eur. J. Neurosci. https://doi.org/10.1111/ejn.12692 (2014).Article 

    Google Scholar 
    59.Ganz, J. et al. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J. Comp. Neurol. https://doi.org/10.1002/cne.22757 (2012).Article 
    PubMed 

    Google Scholar 
    60.Perathoner, S., Cordero-Maldonado, M. L. & Crawford, A. D. Potential of zebrafish as a model for exploring the role of the amygdala in emotional memory and motivational behavior. J. Neurosci. Res. https://doi.org/10.1002/jnr.23712 (2016).Article 
    PubMed 

    Google Scholar 
    61.Qiu, J. et al. Decreased Npas4 and Arc mRNA levels in the hippocampus of aged memory-impaired wild-type but not memory preserved 11β-HSD1 deficient mice. J. Neuroendocrinol. https://doi.org/10.1111/jne.12339 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Vindas, M. A. et al. How do individuals cope with stress? Behavioural, physiological and neuronal differences between proactive and reactive coping styles in fish. J. Exp. Biol. https://doi.org/10.1242/jeb.153213 (2017).Article 
    PubMed 

    Google Scholar 
    63.Øverli, Ø., Pottinger, T. G., Carrick, T. R., Øverli, E. & Winberg, S. Brain monoaminergic activity in rainbow trout selected for high and low stress responsiveness. Brain. Behav. Evol. https://doi.org/10.1159/000047238 (2001).Article 
    PubMed 

    Google Scholar 
    64.Walker, D. L., Toufexis, D. J. & Davis, M. Role of the bed nucleus of the stria terminalis versus the amygdala in fear, stress, and anxiety. Eur. J. Pharmacol. https://doi.org/10.1016/S0014-2999(03)01282-2 (2003).Article 
    PubMed 

    Google Scholar 
    65.Goode, T. D. & Maren, S. Role of the bed nucleus of the stria terminalis in aversive learning and memory. Learn. Mem. https://doi.org/10.1101/lm.044206.116 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Henckens, M. J. A. G. et al. CRF receptor type 2 neurons in the posterior bed nucleus of the stria terminalis critically contribute to stress recovery. Mol. Psychiatry https://doi.org/10.1038/mp.2016.133 (2017).Article 
    PubMed 

    Google Scholar 
    67.Rink, E. & Wullimann, M. F. Connections of the ventral telencephalon (subpallium) in the zebrafish (Danio rerio). Brain Res. https://doi.org/10.1016/j.brainres.2004.03.027 (2004).Article 
    PubMed 

    Google Scholar 
    68.Boulton, K. et al. How integrated are behavioral and endocrine stress response traits? A repeated measures approach to testing the stress-coping style model. Ecol. Evol. 5(3), 618–633 (2015).Article 

    Google Scholar 
    69.Baugh, A. T. et al. Corticosterone responses differ between lines of great tits (Parus major) selected for divergent personalities. Gen. Comp. Endocrinol. 175(3), 488–494 (2012).CAS 
    Article 

    Google Scholar 
    70.Wong RY, French J, Russ JB (2018) Differences in stress reactivity between zebrafish with alternative stress coping styles. Dissertation (University of Nebraska at Omaha).71.Furukawa-Hibi, Y., Yun, J., Nagai, T. & Yamada, K. Transcriptional suppression of the neuronal PAS domain 4 (Npas4) gene by stress via the binding of agonist-bound glucocorticoid receptor to its promoter. J. Neurochem. https://doi.org/10.1111/jnc.12034 (2012).Article 
    PubMed 

    Google Scholar 
    72.Ibi, D. et al. Social isolation rearing-induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotion-related behaviors in juvenile mice. J. Neurochem. https://doi.org/10.1111/j.1471-4159.2007.05207.x (2008).Article 
    PubMed 

    Google Scholar 
    73.Yun, J. et al. Chronic restraint stress impairs neurogenesis and hippocampus-dependent fear memory in mice: Possible involvement of a brain-specific transcription factor Npas4. J. Neurochem. https://doi.org/10.1111/j.1471-4159.2010.06893.x (2010).Article 
    PubMed 

    Google Scholar 
    74.Sun, X. & Lin, Y. Npas4: Linking neuronal activity to memory. Trends Neurosci. https://doi.org/10.1016/j.tins.2016.02.003 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    75.Makkar, S. R., Zhang, S. Q. & Cranney, J. Behavioral and neural analysis of GABA in the acquisition, consolidation, reconsolidation, and extinction of fear memory. Neuropsychopharmacology https://doi.org/10.1038/npp.2010.53 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Impact of the female and hermaphrodite forms of Opuntia robusta on the plant defence hypothesis

    Study areaWe performed this study in San Nicolas Tecoaco village (20° 2′ 38.2ʺ N, 98° 35′ 16ʺ W), Hidalgo State, central Mexico, from March 2014 to October 2014. This location has an annual average temperature of 16 °C and an average altitude of 2600 m above sea level. The type of vegetation occurring in this area is classified as a xerophilous shrubland42.Study speciesOpuntia robusta (Cactaceae) is an endemic plant found in Meridional Altiplano, México43, which exists in the following three sexual forms: hermaphrodite, dioecious (male and female), and trioecious44. In a parallel study, Sandoval-Molina45 found that the most common herbivores of this plant were leaf-footed bugs, Chelinidea sp., Narnia sp. (Hemiptera: Coreidae), the cactus long-horned beetle, Moneilema sp. (Coleoptera: Cerambycidae), and mining insects. Before 2017, this population was considered to be gynodioecious; thus, we did not collect samples from male individuals in this study. In 2018, fewer than 15 male individuals were reportedly present in a population of more than 800, and most of these were hermaphrodites (Supplementary Information).Determination of plant sexWhite empty anthers, short style, and well-developed lobular stigma characterised female flowers, while a relatively longer style compared to that of the female and functional anthers characterised hermaphrodite individuals44.Comparison of tissue cost between female and hermaphrodite individualsIn March 2017, we undertook a census in San Nicolas Tecoaco, to identify the number of female and hermaphrodite plants with cladode and flower sprouts from the set of plants studied in the previous years. We selected 1–2 m tall plants, located 5–10 m apart for sampling. Finally, we randomly selected 19 plants (eleven female and eight hermaphrodite individuals) bearing flower buds and young cladodes on different branches for analysis and tagged the cladodes and flower sprouts using a permanent marker. We marked the flower sprouts on the adjacent side of their parental cladode surface.Between March 2017 and June 2017, we obtained sufficient data to estimate the relative growth rates of the species, in order to explore possible differences in the energy costs of cladodes and flower buds between the two sexual forms of O. robusta. We measured the length, width, and thickness of each cladode and flower bud twice during the study, once at the beginning, and once at the end of the study. Additionally, we also measured the lengths of the flowers from the base to the beginning of the sepals. Since the flower buds were spherical, we considered the thickness to be equal to the width. Subsequently, we calculated the flower volume immediately after the emergence of cladodes and flower buds, and the final volume after anthesis. We estimated the initial and final volumes (Vx) of the cladodes using the formula Vx = ((a/2))/((b/2)π)c, and those of the flowers using the formula Vx = 4/3πa2b. Here, x represents the time of measurement (initial or final), a and b represent the major and minor axes of the ellipsis, while c represents the cladode thickness. We measured all estimators to the nearest 1.0 mm and represented values in centimetres. We estimated the relative growth rate (RGR) using the formula proposed by Hunt46: RGR = (lnVf – lnVi)/(t2 – t1). Here, Vf represents the final volume [cm3], Vi represents the initial volume [cm3], t1 represents the initial time [day], and t2 represents the final time [day].We compared relative growth rate data using a generalized linear model (GLM) with gamma error distribution in the R software, using the log link function47. The explanatory variables included sex, type of structure, and their interactions. We performed partial regression using the ggeffects package in R48.We obtained meteorological variables, including total precipitation [mm], maximum temperature [°C], minimum temperature [°C], mean temperature [°C], global radiation [W(m2)−1], relative humidity [%], reference evapotranspiration [mm], and potential evapotranspiration [mm] for the Singuilucan municipality from March–October 2014, from the official Mexican Government weather station database of the Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias49. We summed up the data for the per-day total precipitation, and that for the reference and potential evapotranspiration, from the beginning of each month through the sampling day. In the months (March, April, and May) or days when values from the meteorological database were underestimated, we averaged the values for the closest preceding and following days. If we lacked the data for more than one day and the data for such days could not be acquired, we considered a repetition of the averaged value for the days for which we lacked data, between the existing days. For July, we considered the values for the previous day (11/07/14), since we lacked the data for the days on which sampling was performed and the subsequent days. For the additive variables (total precipitation, reference, and potential evapotranspiration), we summed up data for 30 days, excluding data for one day, for the 31-day period.To determine the effects of the environmental variables on the concentration and presence/absence of secondary metabolites, we used R to formulate a structural equation model (SEM) in piecewiseSEM47,50. For concentrations, we fitted linear mixed-effects models using the nlme package51 and used the plant ID as a random factor. To evaluate the presence or absence of substances, we fitted generalized linear models with binomial error distributions and logits as the link functions. The concentration and presence/absence of 4-HBA, CGA, and QUE were dependent variables, and total precipitation, average temperature, global radiation, relative humidity, and potential evapotranspiration were explanatory variables. We analysed the sexes separately, and the substance concentration variables were log + 1 transformed. We assessed the goodness-of-fit using the Fisher function in the piecewiseSEM package50, where a larger p-value implies better data adjustment to the model. We conducted a visualisation of the SEM models using Biorender52, flaticon53, and CorelDRAW54.We estimated fruit traits (biomass [g], volume [cm3], and tissue density [g × cm−3]) and the number of fruits eaten by fructivores and compared them between the sexual forms using data reported by Janczur et al.18. The former comparison enabled the assessment of the possible differences in reproduction per fruit biomass between the sexual forms. The latter comparison enabled the assessment of the differences in preference for fruits eaten by animals in relation to the different sexual forms, and thus, the mechanisms by which this may increase the probability of seed dispersal. Higher zoochory of one sexual form may occur not only because of differences in fruit biomass density [g × cm−3], but also because of differences in the volatile substance content between the sexual forms.To test the effects of sexual form on fruit traits, we used generalized linear models in R. To analyse the number of fruits eaten, we used the negative binomial error distribution and log link function, and the Gaussian error distribution and identity link function for the other fruit traits47,55,56. We performed all post-hoc contrasts for fruit traits using the emmeans package47,57, and generated plots using the ggplot R package47,58. We compared the average number of fruits produced by the two sexual forms using the Kruskal–Wallis test.Comparison of secondary metabolite occurrence/concentration between female and hermaphrodite individualsWe obtained plant samples for secondary metabolite analysis using 100 m long Canfield lines, which were parallel to the contours of the hill and located 60 m from each other, and selected plants that were located near the lines and were 10 m apart for analysis. We randomly assigned each plant to one of the eight groups established herein, with three female plants and twelve hermaphrodite plants. The uneven number of individuals of each sex was attributable to the low proportion of females in the population. We tagged examined cladodes on their surface using a permanent marker.We used a stainless-steel punch (Ø = 0.5 cm) to remove two samples of vegetative tissue from cladodes belonging to the same order of each plant. We perforated the mid-section of the arc delimited by the border of the upper quarters of the cladodes, approximately 1 cm away from the edge. We placed samples in labelled Ziploc bags, stored them in a cooler containing ice, and then transported them to the laboratory in a portable refrigerator at − 20 °C. The samples were stored in the laboratory at − 40 °C until extraction.We performed homogenisation of approximately 1 g of the sample containing the cuticle in 35 mL of 100% methanol in an ultrasonic 6 L bath for 30 min at room temperature (21 °C). We filtered the methanol extracts, placed them in amber bottles, and stored the bottles at − 20 °C until further analysis59. We determined the types and concentrations of secondary metabolites in these tissues using high-performance liquid chromatography (HPLC), in accordance with the procedure described by Janczur and González Camarena59, using the following: Waters 717 liquid chromatograph with autosampler, Waters 2487 HPLC Absorbance UV–Vis Detector, Waters 1525 Binary HPLC Pump, Waters control module with SAT/IN Bus (Waters, Milford, MA, USA), Symmetry HPLC C18 column (particle size 5 µm, length 250 mm, internal Ø = 4.6 cm; Waters, Milford, MA, USA). We filtered the extracts using a 0.45 µm pore size nylon-membrane filter. The mobile phase consisted of 0.1% v/v acetic acid (A) together with 100% acetonitrile (B). For the mobile phase A, we dissolved 1 mL of glacial acetic acid with HPLC water, until the volume was 1 L. For the mobile phase B, we used 100% acetonitrile. We filtered both mobile phases using a 0.45 µm nylon membrane. We degasified them with an ultrasonic bath for 30 min. We set the column temperature at 25 °C, used the 254 nm UV detector, and established the flow of the mobile phase, injection volume, and run time as 0.2–0.8 mL/min, at 8 µL, and 35 min, respectively. To wash the piston seals, we used MeOH : H2O (60 : 50). To generate the calibration curves, we used standards for salicylic acid (SA), 4-hydroxybenzoic acid (4-HBA), chlorogenic acid (CGA), and quercetin (QUE) (Sigma-Aldrich). We generated the following calibration curves: yi = 1109.4xi + 481.67, yi = 296.01xi + 133.74, yi = 551.41xi + 263.64, and yi = 919.96xi + 201.64; here, yi represents the area below the absorbance curve, xi represents the concentration of the secondary metabolite, and i = 1, 2, 3, and 4 for 4-HBA, CGA, QUE, and SA, respectively. SA was not present in any of the samples tested (Table S1 online31).We used a logistic regression model to test the effect of the sexual form, month of study, cladode age category, cladode size, the number of cladodes above a given cladode, and the cladode order above the soil level, on the probability of detecting secondary metabolites in the cladodes. Since the latter data were ordinal, the sexual form and month were considered as discrete variables and treated the other traits as continuous variables60. We applied the generalized linear mixed model (GLMM) with a logit link function [ln(P/(1-P)], where P indicated the probability of detecting a given metabolite, binomial response distribution, maximum likelihood estimation technique, Newton–Raphson optimisation algorithm, and Person Chi-Square/df fit criterion. We used the GLIMMIX procedure in SAS statistical software61 (Methods S1).We used generalized linear models (GLMs) in R47 to determine the relationship between cladode length, width, thickness, months, age, cladode order from the soil, and cladodes above a given cladode, and the concentrations of the different secondary metabolites. Since many concentrations were null, we analysed only the positive concentrations (Methods S1).Comparison of damage between female and hermaphrodite individualsWe used the same plants as those used for relative growth rate analysis. We analysed the extent of damage caused by herbivorous insects on both sexes of O. robusta from March–June 2017. We selected two branches, one with flowers and the other with cladodes, from each plant. We estimated two types of damage caused by herbivores using image analysis, to determine the total percentage of tissue removed and other types of damage, such as scars or necrosis. We acquired photographs of one randomly selected face of each structure, using a Nikon D3200 with an AF-S DX NIKKOR 18–55 mm f/3.5–5.6G VR lens (Nikon Corporation, Tokyo, Japan) mounted on a tripod, using a 1-cm piece of millimetre paper as a reference for size. We analysed all images using ImageJ62 to estimate the total proportion of damaged areas.We analysed data on herbivore damage and other damages using a GLM procedure with the Gaussian error distribution and identity link function47 in R. The response variables were the logit transformed proportion of damage (ln[P/(1-P)]), where P represents the proportion of tissue damaged. In our statistical models, the transformation improved the distribution of residuals. The explanatory variables were sex, type of structure, and their interactions. We performed partial regressions using the ggeffects package in R48.Comparison of the occurrence/concentrations of secondary metabolites between younger and older vegetative tissuesWe named the oldest cladodes (closest to the soil) as ‘first-order cladodes,’ those growing on the oldest cladodes as ‘second-order cladodes’ etc. We selected each plant branch with the largest number of cladodes. We measured the length, width, and thickness of each cladode. We sampled vegetative tissues from plants belonging to each of the eight groups; the first group on the 10th March, the second group on the 12th April and so on, through the 10th May, 14th June, 12th July, 10th August, 13th September, and 11th October 2014. We measured the length and width of each cladode to the nearest 0.5 cm, using a measuring tape, and their thickness to the nearest 0.01 mm, using a calliper. We conducted the latter measurement in the apical part of the cladodes in the case of apical cladodes, or at the point of ramification of the daughter cladode when it grew on its apex.During eight years of observations prior to the commencement of this study, we observed that the age of the cladodes in the studied zone could be estimated by examining the following colour patterns of their spines: 1—yellowish, 2—yellow, white base, 3—white-yellowish, 4—white, 5—greyish, 6—black, with ‘1’ being the youngest, and ‘6’ being the oldest. We assigned each cladode to one of the classes. We used the HPLC procedure described by Janczur and González Camarena59 to determine the concentrations of different secondary metabolites in the plant tissues.To test whether different estimators of cladode age were parallel (to test whether younger cladodes were mostly apical, and thus bore fewer cladodes above), we examined the relationship between the cladode order from the soil or cladode number above a given cladode and cladode age, using ordinary least squares regression (OLS). We used a numerical algorithm applied to the SMATR software for R63. We included a test for the determination of the effects of cladode age estimators on the SMSs occurrence/concentration in the same GLM models, as described in the previous section.Trade-off between investments in defence, growth, and reproductionWe tested the relationship between cladode length and cladode order or cladode age to determine whether cladode size was parallel to cladode age. We performed OLS analysis and slope comparison between sexual forms using the Wald test (WT—test statistic) and tested the significance of differences between the intercepts. We used a numerical algorithm applied in the SMATR software63. To estimate the relative investment in growth and reproduction, we counted the number of flower and cladode buds on parental cladodes of the same plants used in the study performed by Sandoval and Janczur (Dataset online29). We used generalized linear models in R, with a negative binomial error distribution and log link function47,55,56, to test the effects of sexual form on the average number of flower and cladode buds. Significant differences between the number of flowers and cladodes for certain sexual forms implies a higher relative reproductive investment.We used the same method of quantification for the standardized major axis and GLM models for intersexual comparisons, as described in the previous Sect. 59. For example, larger relative allocations for reproduction and secondary metabolites together with lower allocation to growth in one sexual form, compared to lower allocations for reproduction and secondary metabolites, and higher allocations for growth in the other sexual form imply that the production of secondary metabolites does not compete with either growth or reproduction; rather, growth competes with reproduction, and allocation to the production of secondary metabolites is an outcome of the gain in terms of fitness from such an allocation.Effects of the existence of trade-offs between different secondary metabolites on the predictions of the plant defence hypothesisWe used ordinary least squares regression (OLS), coefficient of determination, and t-tests to determine the existence of possible trade-offs in the proportion of cladodes harbouring different secondary metabolites. We performed the t-test to determine the significance of correlation between cladode order and cladode age64.Ethics statementThis research did not involve any human or animal measurements. We obtained permission from the head of the Singuilucan municipality, State of Hidalgo, Mexico, to conduct research activities at the selected sites of the municipality. The owners of the lands permitted us to conduct the study and were informed of the permission granted by the municipality. MKJ obtained a permit (09,448/14) from the Ministry of Environment and Natural Resources of the United States of Mexico (SEMARNAT), which stated that no permission is necessary to conduct field studies on plants belonging to the genus Opuntia. The study site was not considered to be a protected area65, and O. robusta was not considered to be an endangered species66. During this study, we did not affect or involve any endangered species. As we did not sample all plants, we did not deposit specimens in a public herbarium. No plant was killed or severely damaged as a result of our research activity; the plant material used for this study was sampled at a limited scale, and therefore, the sampling presented with negligible effects on the functions of the broader ecosystem. All the methods were carried out in accordance to relevant guidelines and regulations. More

  • in

    Bacillus amyloliquefaciens FH-1 significantly affects cucumber seedlings and the rhizosphere bacterial community but not soil

    1.Sun, Y., Hu, K. L., Zhang, K. F., Jiang, L. H. & Xu, Y. Simulation of nitrogen fate for greenhouse cucumber grown under different water and fertilizer management using the EU-Rotate_N model. Agric. Water Manage. 112, 21–32 (2012).Article 

    Google Scholar 
    2.Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Boyce, A. N. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 21(5), 573. https://doi.org/10.3390/molecules21050573 (2016).3.Ferreira, C. M. H., Soares, H. & Soares, E. V. Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. Sci. Total Environ. 682, 779–799. https://doi.org/10.1016/j.scitotenv.2019.04.225 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Sammauria, R., Kumawat, S., Kumawat, P., Singh, J. & Jatwa, T. K. Microbial inoculants: potential tool for sustainability of agricultural production systems. Arch. Microbiol. 202(4), 677–693 https://doi.org/10.1007/s00203-019-01795-w (2020).5.Singh, M. et al. PGPR Amelioration in Sustainable Agriculture 41–66 (Woodhead Publishing, 2019).Book 

    Google Scholar 
    6.Berg, G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 (2009).CAS 
    Article 

    Google Scholar 
    7.Olanrewaju, O. S., Glick, B. R. & Babalola, O. O. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9 (2017).8.Ambrosini, A., de Souza, R. & Passaglia, L. M. P. Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil 400, 193–207. https://doi.org/10.1007/s11104-015-2727-7 (2016).CAS 
    Article 

    Google Scholar 
    9.O’Callaghan, M. Microbial inoculation of seed for improved crop performance: Issues and opportunities. Appl. Microbiol. Biotechnol. 100, 5729–5746 (2016).CAS 
    Article 

    Google Scholar 
    10.Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L. & Bell, T. H. The inherent conflicts in developing soil microbial inoculants. Trends Biotechnol. 37, 140–151 (2019).CAS 
    Article 

    Google Scholar 
    11.Chen, X. H. et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat. Biotechnol. 25, 1007–1014 (2007).CAS 
    Article 

    Google Scholar 
    12.Chowdhury, S. P., Hartmann, A., Gao, X. W. & Borriss, R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42—A review. Front. Microbiol. 6, 780. https://doi.org/10.3389/fmicb.2015.00780 (2015).13.Han, L. et al. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Appl. Soil Ecol. 136, 55–66 (2019).Article 

    Google Scholar 
    14.Wu, B. et al. Effects of Bacillus amyloliquefaciens ZM9 on bacterial wilt and rhizosphere microbial communities of tobacco. Appl. Soil Ecol. 103, 1–12 (2016).ADS 
    Article 

    Google Scholar 
    15.Krober, M. et al. Effect of the strain Bacillus amyloliquefaciens FZB42 on the microbial community in the rhizosphere of lettuce under field conditions analyzed by whole rnetagenome sequencing. Front. Microbiol. 5, 252. https://doi.org/10.3389/fmicb.2014.00252 (2014).16.Shen, Z. Z. et al. Effect of the combination of bio-organic fertiliser with Bacillus amyloliquefaciens NJN-6 on the control of banana Fusarium wilt disease, crop production and banana rhizosphere culturable microflora. Biocontrol Sci. Technol. 25, 716–731 (2015).Article 

    Google Scholar 
    17.Shen, Z. Z. et al. Rhizosphere microbial community manipulated by 2 years of consecutive biofertilizer application associated with banana Fusarium wilt disease suppression. Biol. Fertility Soils 51, 553–562 (2015).CAS 
    Article 

    Google Scholar 
    18.Li, Q. et al. Rhizosphere microbiome mediated growth-promoting mechanisms of Bacillus amyloliquefaciens FH-1 on rice. Acta Microbiol. Sin. 59, 1–17 (2019).ADS 
    CAS 

    Google Scholar 
    19.Qin, Y. X., Shang, Q. M., Zhang, Y., Li, P. L. & Chai, Y. R. Bacillus amyloliquefaciens L-S60 reforms the rhizosphere bacterial community and improves growth conditions in cucumber plug seedling. Front. Microbiol. 8, 2620. https://doi.org/10.3389/fmicb.2017.02620 (2017).20.Idris, E. E., Iglesias, D. J., Talon, M. & Borriss, R. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20, 619–626. https://doi.org/10.1094/Mpmi-20-6-0619 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    21.Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332, 1097–1100 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. & Kao-Kniffin, J. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9, 980–989. https://doi.org/10.1038/ismej.2014.196 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    23.de Vries, F. T., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270 (2020).ADS 
    Article 

    Google Scholar 
    24.Rodriguez, P. A. et al. Systems biology of plant–microbiome interactions. Mol. Plant 12, 804–821. https://doi.org/10.1016/j.molp.2019.05.006 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Trabelsi, D. & Mhamdi, R. Microbial inoculants and their impact on soil microbial communities: A review. Biomed. Res. Int. 2013, 863240. https://doi.org/10.1155/2013/863240 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    26.Gu, Y. et al. The effect of microbial inoculant origin on the rhizosphere bacterial community composition and plant growth-promotion. Plant Soil 452, 105–117. https://doi.org/10.1007/s11104-020-04545-w (2020).CAS 
    Article 

    Google Scholar 
    27.Ke, X. B. et al. Effect of inoculation with nitrogen-fixing bacterium Pseudomonas stutzeri A1501 on maize plant growth and the microbiome indigenous to the rhizosphere. Syst. Appl. Microbiol. 42, 248–260 (2019).CAS 
    Article 

    Google Scholar 
    28.Barberan, A., Bates, S. T., Casamayor, E. O. & Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351. https://doi.org/10.1038/ismej.2011.119 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    29.Kong, Z. Y. et al. Co-occurrence patterns of microbial communities affected by inoculants of plant growth-promoting bacteria during phytoremediation of heavy metal contaminated soils. Ecotoxicol. Environ. Saf. 183, 109504. https://doi.org/10.1016/j.ecoenv.2019.109504 (2019).30.Newman, M. E. Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103, 8577–8582. https://doi.org/10.1073/pnas.0601602103 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Mendes, R. & Raaijmakers, J. M. Cross-kingdom similarities in microbiome functions. ISME J. 9, 1905–1907. https://doi.org/10.1038/ismej.2015.7 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Mueller, U. G. & Sachs, J. L. Engineering microbiomes to improve plant and animal health. Trends Microbiol. 23, 606–617. https://doi.org/10.1016/j.tim.2015.07.009 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Toju, H. et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 4, 247–257 (2018).Article 

    Google Scholar 
    34.Chowdhury, S. P. et al. Effects of Bacillus amyloliquefaciens FZB42 on lettuce growth and health under pathogen pressure and its impact on the rhizosphere bacterial community. Plos One 8(7), e68818. https://doi.org/10.1371/journal.pone.0068818 (2013).35.Correa, O. S. et al. Bacillus amyloliquefaciens BNM122, a potential microbial biocontrol agent applied on soybean seeds, causes a minor impact on rhizosphere and soil microbial communities. Appl. Soil Ecol. 41, 185–194 (2009).Article 

    Google Scholar 
    36.Wan, T. T., Zhao, H. H. & Wang, W. Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition. Biol. Control 112, 1–9 (2017).Article 

    Google Scholar 
    37.Wan, T. T., Zhao, H. H. & Wang, W. Effects of the biocontrol agent Bacillus amyloliquefaciens SN16-1 on the rhizosphere bacterial community and growth of tomato. J. Phytopathol. 166, 324–332 (2018).CAS 
    Article 

    Google Scholar 
    38.Nautiyal, C. S. et al. Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress. Plant Physiol. Biochem. 66, 1–9 (2013).CAS 
    Article 

    Google Scholar 
    39.Kumar, S., Suyal, D. C., Yadav, A., Shouche, Y. & Goel, R. Microbial diversity and soil physiochemical characteristic of higher altitude. Plos One 14(3), e0213844. https://doi.org/10.1371/journal.pone.0213844 (2019).40.Kielak, A. M., Barreto, C. C., Kowalchuk, G. A., van Veen, J. A. & Kuramae, E. E. The ecology of acidobacteria: Moving beyond genes and genomes. Front. Microbiol. 7, 744. https://doi.org/10.3389/fmicb.2016.00744 (2016).41.Ul-Hassan, A. & Wellington, E. M. Actinobacteria in Encyclopedia of Microbiology (Third Edition) (ed Schaechter, M.) 25–44 (Academic Press, 2009).42.Zhang, M., Powell, C. A., Guo, Y., Benyon, L. & Duan, Y. Characterization of the microbial community structure in Candidatus Liberibacter asiaticus-infected citrus plants treated with antibiotics in the field. BMC Microbiol. 13, 112. https://doi.org/10.1186/1471-2180-13-112 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Albuquerque, L., Johnson, M. M., Schumann, P., Rainey, F. A. & da Costa, M. S. Description of two new thermophilic species of the genus Rubrobacter, Rubrobacter calidifluminis sp. nov. and Rubrobacter naiadicus sp. Nov., and emended description of the genus Rubrobacter and the species Rubrobacter bracarensis. Syst. Appl. Microbiol. 37, 235–243. https://doi.org/10.1016/j.syapm.2014.03.001 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Egas, C. et al. Complete genome sequence of the radiation-resistant bacterium Rubrobacter radiotolerans RSPS-4. Stand. Genomic. Sci. 9(3), 1062–1075. https://doi.org/10.4056/sigs.5661021 (2014).45.Ge, S. M., Zhou, M. H., Dong, X. J., Lu, Y. & Ge, S. C. Distinct and effective biotransformation of hexavalent chromium by a novel isolate under aerobic growth followed by facultative anaerobic incubation. Appl. Microbiol. Biotechnol. 97, 2131–2137 (2013).CAS 
    Article 

    Google Scholar 
    46.Sturm, G., Jacobs, J., Sproer, C., Schumann, P. & Gescher, J. Leucobacter chromiiresistens sp. nov., a chromate-resistant strain. Int. J. Syst. Evol. Microbiol. 61, 956–960 (2011).CAS 
    Article 

    Google Scholar 
    47.Muir, R. E. & Tan, M. W. Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: Characterization of a novel host-pathogen interaction. Appl. Environ. Microbiol. 74, 4185–4198 (2008).CAS 
    Article 

    Google Scholar 
    48.Zhang, Y. et al. Abundance and diversity of candidate division JS1-and Chloroflexi-related bacteria in cold seep sediments of the northern South China Sea. Front. Earth Sci. Prc. 6, 373–382. https://doi.org/10.1007/s11707-012-0324-0 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    49.Bennett, A. C., Murugapiran, S. K. & Hamilton, T. L. Temperature impacts community structure and function of phototrophic Chloroflexi and Cyanobacteria in two alkaline hot springs in Yellowstone National Park. Environ. Microbiol. Rep. https://doi.org/10.1111/1758-2229.12863 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Devos, D. P. Gemmata obscuriglobus. Curr. Biol. 23, R705-707. https://doi.org/10.1016/j.cub.2013.07.013 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Dong, L. L. et al. Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chin. Med. UK 13, 41. https://doi.org/10.1186/s13020-018-0198-5 (2018).52.Ma, Q. et al. Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing. Bioresour. Technol. 179, 436–443 (2015).CAS 
    Article 

    Google Scholar 
    53.Kepel, B. J. F., Gani, M. A. & Tallei, T. E. Comparison of bacterial community structure and diversity in traditional gold mining waste disposal site and rice field by using a metabarcoding approach. Int. J. Microbiol. 2020, 1858732. https://doi.org/10.1155/2020/1858732 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Chouari, R. et al. Molecular evidence for novel planctomycete diversity in a municipal wastewater treatment plant. Appl. Environ. Microbiol. 69, 7354–7363. https://doi.org/10.1128/aem.69.12.7354-7363.2003 (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Zhao, Y. et al. Endosphere microbiome comparison between symptomatic and asymptomatic roots of Brassica napus infected with Plasmodiophora brassicae. Plos One 12(10), e0185907. https://doi.org/10.1371/journal.pone.0185907 (2017).56.Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. https://doi.org/10.1038/s41396-019-0383-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Faust, K. & Raes, J. Microbial interactions: From networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    Article 

    Google Scholar 
    58.Olesen, J. M., Bascompte, J., Dupont, Y. L. & Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 104, 19891–19896 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Kang, Y., Shen, M., Wang, H. & Zhao, Q. A possible mechanism of action of plant growth-promoting rhizobacteria (PGPR) strain Bacillus pumilus WP8 via regulation of soil bacterial community structure. J. Gen. Appl. Microbiol. 59, 267–277 (2013).CAS 
    Article 

    Google Scholar 
    60.Wang, J. et al. Traits-based integration of multi-species inoculants facilitates shifts of indigenous soil bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01692 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing (2020).62.Xiong, J. et al. Evidence of bacterioplankton community adaptation in response to long-term mariculture disturbance. Scientific Report 5, 15274. https://doi.org/10.1038/srep15274 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    63.Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12(6), R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).64.Jiang, Y. J. et al. Plant cultivars imprint the rhizosphere bacterial community composition and association networks. Soil Biol. Biochem. 109, 145–155 (2017).CAS 
    Article 

    Google Scholar 
    65.Ju, F., Xia, Y., Guo, F., Wang, Z. P. & Zhang, T. Taxonomic relatedness shapes bacterial assembly in activated sludge of globally distributed wastewater treatment plants. Environ. Microbiol. 16, 2421–2432 (2014).CAS 
    Article 

    Google Scholar  More

  • in

    Reproduction strategies of the silver birch (Betula pendula Roth) at post-industrial sites

    1.Stearns, S.C. The Evolution of Life Histories. https://doi.org/10.1046/j.1420-9101.1993.6020304.x (Oxford University Press/Wiley, 1992).2.Dingle, H. The evolution of life histories. in Population Biology (Wöhrmann K., Jain S.K. eds.). https://doi.org/10.1007/978-3-642-74474-7_9 (Springer, 1990).3.Yang, L., Walck, J. L. & El-Kassaby, Yousry, A. Roles of the environment in plant life-history tradeoffs. in Advances in Seed Biology (Jimenez-Lopez, J.C. ed.) 674. https://doi.org/10.5772/intechopen.70312.4.Hamrick, J. L. & Godt, M. J. W. Effects of life history traits on genetic diversity in plant species. Philos. Trans. R. Soc. Lond.. Ser. B Biol. Sci. 351, 1291–1298 (1996).5.Hobbs, R. J., Higgs, E. & Harris, J. A. Novel ecosystems: Implications for conservation and restoration. Trends Ecol. Evol. 24, 599–605 (2006).Article 

    Google Scholar 
    6.Prozherina, N., Freiwald, V., Rousi, M. & Oksanen, E. Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula). New Phytol. 159, 623–636 (2003).CAS 
    Article 

    Google Scholar 
    7.Zvereva, Elena, L., Roitto, M. & Kozlov, M. V. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environ. Rev. 18, 355–367 (2010).8.Niinemets, Ü. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. For. Ecol. Manag. 260, 1623–1639 (2010).Article 

    Google Scholar 
    9.Possen, B. J. H. M. et al. Adaptability of birch (Betula pendula Roth) and aspen (Populus tremula L.) genotypes to different soil moisture conditions. For. Ecol. Manag. 262, 1387–1399 (2011).10.Řehounková, K. & Prach, K. Life-history traits and habitat preferences of colonizing plant species in long-term spontaneous succession in abandoned gravel–sand pits. Basic Appl. Ecol. 11, 45–53 (2010).Article 

    Google Scholar 
    11.Franiel, I. The Biology and Ecology of Betula pendula Roth on Post-Industrial Waste Dumping Grounds: The Variability Range of Life History Traits (Silesia University, 2012).
    Google Scholar 
    12.Kompała-Ba̧ba, A. & Ba̧ba, W. Participation of grasses (Poaceae) in the communities, which developed on iron smelter affected lands in the Silesian Uplands. Fragm. Florist. Geobot. Pol. 20, 267–284 (2013).13.Kompała-Bąba, A. & Bąba, W. The spontaneous succession in a sand-pit—The role of life history traits and species habitat preferences. Polish J. Ecol. 61, 13–22 (2013).
    Google Scholar 
    14.Darbah, J. N. T. et al. Impacts of elevated atmospheric CO2 and O3 on paper birch (Betula papyrifera): Reproductive fitness. Sci. World J. 7, 240–246 (2007).Article 

    Google Scholar 
    15.Alvarez-Cansino, L., Zunzunegui, M., Díaz Barradas, M. C. & Esquivias, M. P. Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Ann. Bot. 106, 989–998 (2010).16.Zvereva, E. L., Roitto, M. & Kozlov, M. V. Growth and reproduction of vascular plants in polluted environments: A synthesis of existing knowledge. Environ. Rev. 18, 355–367 (2010).CAS 
    Article 

    Google Scholar 
    17.Franiel, I. & Babczyńska, A. The growth and reproductive effort of Betula pendula Roth in a heavy-metals polluted area. Polish J. Environ. Stud. 20, 1097–1101 (2011).CAS 

    Google Scholar 
    18.Lancaster, L. T., Morrison, G. & Fitt, R. N. Life history trade-offs, the intensity of competition, and coexistence in novel and evolving communities under climate change. Philos. Trans. R. Soc. B Biol. Sci. 372, (2017).19.Obeso, J. R. Costs of reproduction in ilex aquifolium: Effects at tree, branch and leaf levels. J. Ecol. 85, 159–166 (1997).Article 

    Google Scholar 
    20.Obeso, J. R. The costs of reproduction in plants. New Phytol. 155, 321–348 (2002).Article 

    Google Scholar 
    21.Cipollini, M. L. & Stiles, E. W. Costs of reproduction in Nyssa sylvatica: Sexual dimorphism in reproductive frequency and nutrient flux. Oecologia 86, 585–593 (1991).ADS 
    Article 

    Google Scholar 
    22.Seidling, W., Starfinger, U. & Stöcklin, J. Plant population ecology. Prog. Bot. 55, 345–370 (1994).Article 

    Google Scholar 
    23.Possen, B. J. H. M. et al. Variation in 13 leaf morphological and physiological traits within a silver birch ( Betula pendula ) stand and their relation to growth. Can. J. For. Res. 44, 657–665 (2014).Article 

    Google Scholar 
    24.Körner, C. Limitation and stress—Always or never?. J. Veg. Sci. 14, 141–143 (2003).
    Google Scholar 
    25.Giuliani, C., Lazzaro, L., Mariotti Lippi, M., Calamassi, R. & Foggi, B. Temperature-related effects on the germination capacity of black locust (Robinia pseudoacacia L., Fabaceae) seeds. Folia Geobot. 50, 275–282 (2015).26.Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature https://doi.org/10.1038/nature11014 (2012).Article 
    PubMed 

    Google Scholar 
    27.Koski, V. & Rousi, M. A review of the promises and constraints of breeding silver birch (Betula pendula Roth) in Finland. For. Int. J. For. Res. 78, 187–198 (2005).
    Google Scholar 
    28.Marguí, E., Queralt, I., Carvalho, M. L. & Hidalgo, M. Assessment of metal availability to vegetation (Betula pendula) in Pb–Zn ore concentrate residues with different features. Environ. Pollut. 145, 179–184 (2007).Article 

    Google Scholar 
    29.Hynynen, J. et al. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in northern Europe. Forestry 83, 103–119 (2010).30.Frouz, J. et al. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites. Ecol. Eng. 84, 233–239 (2015).Article 

    Google Scholar 
    31.Řehounková, K., Lencová, K. & Prach, K. Spontaneous establishment of woodland during succession in a variety of central European disturbed sites. Ecol. Eng. 111, 94–99 (2018).Article 

    Google Scholar 
    32.Franiel, I. & Więski, K. Leaf features of silver birch (Betula pendula Roth). Variability within and between two populations (uncontaminated vs Pb-contaminated and Zn-contaminated site). Trees 19, 81–88 (2005).33.Kozlov, M. V. & Zvereva, E. L. Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Rev. Environ. Sci. Bio/Technol. 6, 231–259 (2007).CAS 
    Article 

    Google Scholar 
    34.Zvereva, E. L. & Kozlov, M. V. Growth and reproduction of dwarf shrubs, Vaccinium myrtillus and V. vitis-idaea, in a severely polluted area. Basic Appl. Ecol. https://doi.org/10.1016/j.baae.2004.11.003 (2005).35.Kozlov, M. V. Pollution resistance of mountain birch, Betula pubescens subsp. czerepanovii, near the copper–nickel smelter: Natural selection or phenotypic acclimation? Chemosphere 59, 189–197 (2005).36.Kondracki, J. Geografia fizyczna Polski. (Physical Geography of Poland). (PWN (in Polish), 2001).37.Pełka-Gościniak, J. Environmental aspects of relief transformation (Silesian Upland, Southern Poland). Environ. Socio-Econ. Stud. 2, 13–20.38.Tomusiak, R. et al. Age tables for silver birch (Betula pendula Roth) trees for early succession stands on abandoned agricultural lands. Sylwan 158, 579–589 (2014).
    Google Scholar 
    39.Szymkiewicz, B. Tablice Zasobności i Przyrostu Drzewostanów Ważniejszych Gatunków Drzew Leśnych. (Państwowe Wydawnictwo Rolnicze i Leśne, 2001).40.Dubois, H., Verkasalo, E. & Claessens, H. Potential of Birch (Betula pendula Roth and B. pubescens Ehrh.) for forestry and forest-based industry sector within the changing climatic and socio-economic context of Western Europe. Forests 11, 336 (2020).41.Ostrowska, A., Gawliński, S. & Szczubiałka, Z. Metody Analizy i Oceny Właściwości Gleb i Roślin. Katalog (Methods for Analysis and Assessment of Soil and Plant Properties) Catalog. (Instytut Ochrony Środowiska, 1991).42.Baskin, C. C. & Baskin, J. M. Seeds : Ecology, Biogeography, and Evolution of Dormancy and Germination. (Elsevier, 2014).43.Soltani, E., Ghaderi-Far, F., Baskin, C. C. & Baskin, J. M. Problems with using mean germination time to calculate rate of seed germination. Aust. J. Bot. 63, 631–635 (2015).Article 

    Google Scholar 
    44.Flores, P., Poggi, D., García, S. M., Catraro, M. & Gariglio, N. Effects of pre-stratification storage conditions on black walnut seed post-stratification germination capacity. Int. J. Fruit Sci. 17, 29–40 (2017).Article 

    Google Scholar 
    45.Ranal, M. A., de Santana, D. G., Ferreira, W. R. & Mendes-Rodrigues, C. Calculating germination measurements and organizing spreadsheets. Rev. Bras. Botân. 32, 849–855 (2009).Article 

    Google Scholar 
    46.Matthews, S. & Khajeh Hosseini, M. Mean germination time as an indicator of emergence performance in soil of seed lots of maize (Zea mays). Seed Sci. Technol. 34, 339–347 (2006).47.Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0. (Microcomputer Power, 2012).48.Inc., D. Dell Statistica (Data Analysis Software System, Version 13). (2016).49.Team, R. D. C. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2008).50.Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692 (2010).CAS 
    Article 

    Google Scholar 
    51.Gray, S. B. & Brady, S. M. Plant developmental responses to climate change. Dev. Biol. 419, 64–77 (2016).CAS 
    Article 

    Google Scholar 
    52.Dahl, Å. E. & Fredrikson, M. The timetable for development of maternal tissues sets the stage for male genomic selection in Betula pendula (Betilaceae). Am. J. Bot. 83, 895–902 (1996).Article 

    Google Scholar 
    53.Kozlov, M. V. & Zvereva, E. L. Reproduction of mountain birch along a strong pollution gradient near Monchegorsk, Northwestern Russia. Environ. Pollut. 132, 443–451 (2004).CAS 
    Article 

    Google Scholar 
    54.Sultan, S. E. Phenotypic plasticity in plants: A case study in ecological development. Evol. Dev. 5, 25–33 (2003).Article 

    Google Scholar 
    55.Zvereva, E. L. & Kozlov, M. V. Effects of pollution-induced habitat disturbance on the response of willows to simulated herbivory. J. Ecol. 89, 21–30 (2001).Article 

    Google Scholar 
    56.Eränen, J. K. Local adaptation of mountain birch to heavy metals in subarctic industrial barrens. For. Snow Landsc. Res. 80, 161–167 (2006).
    Google Scholar 
    57.Neuvonen, S., Nyyssonen, T., Ranta, H. & Kiilunen, S. Simulated acid rain and the reproduction of mountain birch [Betula pubescens ssp. tortuosa (Ledeb.) Nyman]: A cautionary tale. New Phytol. 118, 111–117 (1991).58.Cuinica, L. G., Abreu, I., Gomes, C. R. & Esteves da Silva, J. C. G. Exposure of Betula pendula Roth pollen to atmospheric pollutants CO, O3 and SO2. Grana 52, 299–304 (2013).59.Pasonen, H.-L., Pulkkinen, P. & Kärkkäinen, K. Genotype-environment interactions in pollen competitive ability in an anemophilous tree, Betula pendula Roth. Theor. Appl. Genet. 105, 465–473 (2002).Article 

    Google Scholar 
    60.Sarvas, R. On the flowering of birch and the quality of seed crop. Commun. Inst. For. Fenn. 1–38 (1952).61.Midmore, E., McCartan, S., Jinks, R. & Cahalan, C. Using thermal time models to predict germination of five provenances of silver birch (Betula pendula Roth) in southern England. Silva Fenn. 49, 1–12 (2015).62.Bojarczuk, K. et al. Effect of polluted soil and fertilisation on growth and physiology of Silver Birch (Betula pendula Roth.) seedlings. Polish J. Environ. Stud. 11, 483–492 (2002).63.Wierzbicka, M. & Rostański, A. Microevolutionary changes in ecotypes of calamine waste heap vegetation near Olkusz, Poland: A review. Acta Bot. Cracoviensia 44, 7–10 (2002).
    Google Scholar 
    64.Mahdi, T. & Whittaker, J. B. Do birch trees (Betula pendula) grow better if foraged by wood ants?. J. Anim. Ecol. 62, 101–116 (1993).Article 

    Google Scholar 
    65.Barantal, S. et al. Contrasting effects of tree species and genetic diversity on the leaf—Miner communities associated with silver birch. Oecologia 189, 687–697 (2019).ADS 
    Article 

    Google Scholar 
    66.Santamour, Frank, S. & Greene, A. European hornet damage to ash and birch trees. J. Arboric. 12, 273–279 (1986).67.Klingeman, B., Oliver, J. & F., H. Who’s doin’ all that chewin’? The European hornet. Tenn. Green Times 2, 34–36 (2001).68.Ylioja, T., Roininen, H., Heinonen, J. & Rousi, M. Susceptibility of Betula pendula clones to Phytobia betulae, a dipteran miner of birch stems. Can. J. For. Res. 30, 1824–1829 (2000).Article 

    Google Scholar 
    69.Franiel, I. Development of Betula pendula seedlings growing on the Silesia Steelworks dumping grounds in Katowice. Acta Agrophys. 51, 51–55 (2001).
    Google Scholar  More

  • in

    Multi-community effects of organic and conventional farming practices in vineyards

    1.Díaz et al. Summary for Policymakers of the Global Assessment.pdf.2.Kehoe, L. et al. Biodiversity at risk under future cropland expansion and intensification. Nat. Ecol. Evolut. 1, 1129–1135 (2017).Article 

    Google Scholar 
    3.Hendershot, J. N. et al. Intensive farming drives long-term shifts in avian community composition. Nature 579, 393–396 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 28, 230–238 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Michael, D. R., Wood, J. T., O’Loughlin, T. & Lindenmayer, D. B. Influence of land sharing and land sparing strategies on patterns of vegetation and terrestrial vertebrate richness and occurrence in Australian endangered eucalypt woodlands. Agr. Ecosyst. Environ. 227, 24–32 (2016).Article 

    Google Scholar 
    6.Tittonell, P. Ecological intensification of agriculture—Sustainable by nature. Curr. Opin. Environ. Sustain. 8, 53–61 (2014).Article 

    Google Scholar 
    7.Willer, E. H., Schlatter, B., Trávní, J., Kemper, L. & Lernoud, J. The World of Organic Agriculture Statistics and Emerging Trends 2020. 337.8.Reganold, J. P. & Wachter, J. M. Organic agriculture in the twenty-first century. Nat. Plants 2 (2016).9.Connor, D. J. Organic agriculture cannot feed the world. Field Crop Res. 106, 187–190 (2008).Article 

    Google Scholar 
    10.Seufert, V. & Ramankutty, N. Many shades of gray—The context-dependent performance of organic agriculture. Sci. Adv. 3, e1602638 (2017).11.Smith, O. M. et al. Landscape context affects the sustainability of organic farming systems. Proc. Natl. Acad. Sci. 117, 2870–2878 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Bengtsson, J., Ahnström, J. & Weibull, A.-C. The effects of organic agriculture on biodiversity and abundance: A meta-analysis: Organic agriculture, biodiversity and abundance. J. Appl. Ecol. 42, 261–269 (2005).Article 

    Google Scholar 
    13.Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: A hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Lichtenberg, E. M. et al. A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob. Change Biol. 23, 4946–4957 (2017).ADS 
    Article 

    Google Scholar 
    15.Lori, M., Symnaczik, S., Mäder, P., De Deyn, G. & Gattinger, A. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-regression. PLOS ONE 12, e0180442 (2017).16.Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26, 474–481 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Birkhofer, K., Ekroos, J., Corlett, E. B. & Smith, H. G. Winners and losers of organic cereal farming in animal communities across Central and Northern Europe. Biol. Cons. 175, 25–33 (2014).Article 

    Google Scholar 
    18.Mackie, K. A., Müller, T., Zikeli, S. & Kandeler, E. Long-term copper application in an organic vineyard modifies spatial distribution of soil micro-organisms. Soil Biol. Biochem. 65, 245–253 (2013).CAS 
    Article 

    Google Scholar 
    19.Buchholz, J. et al. Soil biota in vineyards are more influenced by plants and soil quality than by tillage intensity or the surrounding landscape. Sci. Rep. 7 (2017).20.Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).Article 

    Google Scholar 
    21.Power, A. G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 365, 2959–2971 (2010).Article 

    Google Scholar 
    22.Peigné, J. et al. Earthworm populations under different tillage systems in organic farming. Soil Tillage Res. 104, 207–214 (2009).Article 

    Google Scholar 
    23.Biondi, A., Desneux, N., Siscaro, G. & Zappalà, L. Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87, 803–812 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Mehrabi, Z., Seufert, V., Ramankutty, N. The conventional versus alternative agricultural divide: A response to Garibaldi et al. Trends Ecol. Evolut. 32, 720–721 (2017).25.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    26.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6 (2015).27.Holzschuh, A., Steffan-Dewenter, I. & Tscharntke, T. Agricultural landscapes with organic crops support higher pollinator diversity. Oikos 117, 354–361 (2008).Article 

    Google Scholar 
    28.Muneret, L., Auriol, A., Thiéry, D. & Rusch, A. Organic farming at local and landscape scales fosters biological pest control in vineyards. Ecol. Appl. 29, e01818 (2019).29.Gabriel, D. et al. Scale matters: The impact of organic farming on biodiversity at different spatial scales: Scale matters in organic farming. Ecol. Lett. 13, 858–869 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Agreste. Pratiques Phytosanitaires en Viticulture. Campagne 2016. (2020)31.Agreste. La Viticulture Bio en Nouvelle-Aquitaine: Un Dynamisme à Tous les Stades de la Filière. (2020).32.Gruber, S. & Claupein, W. Effect of tillage intensity on weed infestation in organic farming. Soil Tillage Res. 105, 104–111 (2009).Article 

    Google Scholar 
    33.Pfingstmann, A. et al. Contrasting effects of tillage and landscape structure on spiders and springtails in vineyards. Sustainability 11, 2095 (2019).Article 

    Google Scholar 
    34.Dittmer, S. & Schrader, S. Longterm effects of soil compaction and tillage on Collembola and straw decomposition in arable soil. Pedobiologia 44, 527–538 (2000).Article 

    Google Scholar 
    35.Kolb, S., Uzman, D., Leyer, I., Reineke, A. & Entling, M. H. Differential effects of semi-natural habitats and organic management on spiders in viticultural landscapes. Agric. Ecosyst. Environ. 287, 106695 (2020).36.Birkhofer, K. et al. Relationships between multiple biodiversity components and ecosystem services along a landscape complexity gradient. Biol. Cons. 218, 247–253 (2018).Article 

    Google Scholar 
    37.Kratschmer, S. et al. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agric. Ecosyst. Environ. 266, 142–152 (2018).Article 

    Google Scholar 
    38.Ullmann, K. S., Meisner, M. H. & Williams, N. M. Impact of tillage on the crop pollinating, ground-nesting bee, Peponapis pruinosa in California. Agric. Ecosyst. Environ. 232, 240–246 (2016).Article 

    Google Scholar 
    39.Jiang, X., Wright, A. L., Wang, X. & Liang, F. Tillage-induced changes in fungal and bacterial biomass associated with soil aggregates: A long-term field study in a subtropical rice soil in China. Appl. Soil. Ecol. 48, 168–173 (2011).Article 

    Google Scholar 
    40.Zuber, S. M. & Villamil, M. B. Meta-analysis approach to assess effect of tillage on microbial biomass and enzyme activities. Soil Biol. Biochem. 97, 176–187 (2016).CAS 
    Article 

    Google Scholar 
    41.Luff, M. L. The biology of the ground beetle Harpalus rufipes in a strawberry field in Northumberland. Ann. Appl. Biol. 94, 153–164 (1980).Article 

    Google Scholar 
    42.Shearin, A. F., Reberg-Horton, S. C. & Gallandt, E. R. Direct effects of tillage on the activity density of ground beetle (Coleoptera: Carabidae) weed seed predators. Environ. Entomol. 36, 1140–1146 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    44.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Goded, S., Ekroos, J., Azcárate, J. G., Guitián, J. A. & Smith, H. G. Effects of organic farming on plant and butterfly functional diversity in mosaic landscapes. Agric. Ecosyst. Environ. 284, 106600 (2019).46.Rusch, A., Valantin-Morison, M., Sarthou, J.-P. & Roger-Estrade, J. Multi-scale effects of landscape complexity and crop management on pollen beetle parasitism rate. Landsc. Ecol. 26, 473–486 (2011).Article 

    Google Scholar 
    47.Tamburini, G., De Simone, S., Sigura, M., Boscutti, F. & Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 53, 233–241 (2016).Article 

    Google Scholar 
    48.Le Féon, V. et al. Intensification of agriculture, landscape composition and wild bee communities: A large scale study in four European countries. Agric. Ecosyst. Environ. 137, 143–150 (2010).Article 

    Google Scholar 
    49.Sousa, J. P. et al. Changes in Collembola richness and diversity along a gradient of land-use intensity: A pan European study. Pedobiologia 50, 147–156 (2006).Article 

    Google Scholar 
    50.Vanbergen, A. J. et al. Scale-specific correlations between habitat heterogeneity and soil fauna diversity along a landscape structure gradient. Oecologia 153, 713–725 (2007).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Lehmitz, R., Russell, D., Hohberg, K., Christian, A. & Xylander, W. E. R. Active dispersal of oribatid mites into young soils. Appl. Soil. Ecol. 55, 10–19 (2012).Article 

    Google Scholar 
    52.Concepción, E. D., Díaz, M. & Baquero, R. A. Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landsc. Ecol. 23, 135–148 (2008).Article 

    Google Scholar 
    53.Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – Eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Desneux, N., Decourtye, A. & Delpuech, J.-M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. Entomol. 52, 81–106 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Naveed, M. et al. Simultaneous loss of soil biodiversity and functions along a copper contamination gradient: When soil goes to sleep. Soil Sci. Soc. Am. J. 78, 1239–1250 (2014).ADS 
    Article 
    CAS 

    Google Scholar 
    56.Eijsackers, H., Beneke, P., Maboeta, M., Louw, J. P. E. & Reinecke, A. J. The implications of copper fungicide usage in vineyards for earthworm activity and resulting sustainable soil quality. Ecotoxicol. Environ. Saf. 62, 99–111 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl. Acad. Sci. 117, 1573–1579 (2020).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    58.Muneret, L. et al. Organic farming expansion drives natural enemy abundance but not diversity in vineyard-dominated landscapes. Ecol. Evol. https://doi.org/10.1002/ece3.5810 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Lechenet, M., Dessaint, F., Py, G., Makowski, D. & Munier-Jolain, N. Reducing pesticide use while preserving crop productivity and profitability on arable farms. Nat. Plants 3 (2017).60.Le Féon, V. et al. Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric. Ecosyst. Environ. 166, 94–101 (2013).Article 

    Google Scholar 
    61.McCravy, K. & Ruholl, J. Bee (Hymenoptera: Apoidea) diversity and sampling methodology in a midwestern USA deciduous forest. Insects 8, 81 (2017).PubMed Central 
    Article 

    Google Scholar 
    62.Bano, R. & Roy, S. Extraction of Soil Microarthropods: A Low Cost Berlese-Tullgren Funnels Extractor. 4.63.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: Challenges and solutions: Multimodel inference. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Burnham, K. P. & Anderson, D. R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).MathSciNet 
    Article 

    Google Scholar 
    65.Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020).66.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).67.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020). R Package Version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa68.Bates, D., Maechler, M., Bolker, B., Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01 (2015). More

  • in

    Aquatic reservoir of Vibrio cholerae in an African Great Lake assessed by large scale plankton sampling and ultrasensitive molecular methods

    1.Mutreja, A. et al. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477, 462–465 (2011).CAS 
    Article 

    Google Scholar 
    2.Ali, M., Nelson, A. R., Lopez, A. L. & Sack, D. A. Updated global burden of cholera in endemic countries. PLoS Negl. Trop. Dis. 9, e0003832 (2015).Article 

    Google Scholar 
    3.Bompangue, D. N. et al. Lakes as source of cholera outbreaks, Democratic Republic of Congo. Emerg. Infect. Dis. 14, 798–800 (2008).Article 

    Google Scholar 
    4.Weill, F. X. et al. Genomic history of the seventh pandemic of cholera in Africa. Science 358, 785–789 (2017).CAS 
    Article 

    Google Scholar 
    5.Hounmanou, Y. M. G. et al. Genomic insights into Vibrio cholerae O1 responsible for cholera epidemics in Tanzania between 1993 and 2017. PLoS Neglect Trop. D. 13, e0007934 (2019).Article 

    Google Scholar 
    6.Colwell, R. R. Global climate and infectious disease: the cholera paradigm. Science 274, 2025–2031 (1996).CAS 
    Article 

    Google Scholar 
    7.Singleton, F., Attwell, R., Jangi, M. & Colwell, R. Influence of salinity and organic nutrient concentration on survival and growth of Vibrio choleraein aquatic microcosms. Appl. Environ. Microbiol. 43, 1080–1085 (1982).CAS 
    Article 

    Google Scholar 
    8.Kirschner, A. K. T. et al. Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: Dependence on temperature and dissolved organic carbon quality. Appl. Environ. Microb. 74, 2004–2015 (2008).CAS 
    Article 

    Google Scholar 
    9.Reid, P. C. et al. The continuous plankton recorder: concepts and history, from Plankton Indicator to undulating recorders. Prog. Oceanogr. 57, 117–173 (2003).Article 

    Google Scholar 
    10.Vezzulli, L. et al. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. Proc. Natl. Acad. Sci. USA. 113, E5062–E5071 (2016).CAS 
    Article 

    Google Scholar 
    11.Huq, A. et al. Detection, isolation, and identification of Vibrio cholerae from the environment. Curr. Protoc. Microbiol. https://doi.org/10.1002/9780471729259.mc06a05s26 (2012).12.Thompson, F. L. et al. Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl. Environ. Microb. 71, 5107–5115 (2005).CAS 
    Article 

    Google Scholar 
    13.Vezzulli, L. et al. GbpA as a novel qPCR target for the species-specific detection of Vibrio cholerae O1, O139, Non-O1/Non-O139 in environmental, stool, and historical continuous plankton recorder samples. s. PLoS ONE 10, e0123983 (2015).Article 

    Google Scholar 
    14.Alam, M. et al. Toxigenic Vibrio cholerae in the aquatic environment of Mathbaria, Bangladesh. Appl. Environ. Microb. 72, 2849–2855 (2006).CAS 
    Article 

    Google Scholar 
    15.Senoh, M. et al. Isolation of viable but nonculturable Vibrio cholerae O1 from environmental water samples in Kolkata, India, in a culturable state. Microbiol. Open 3, 239–246 (2014).CAS 
    Article 

    Google Scholar 
    16.Vezzulli, L. et al. Whole-genome enrichment provides deep insights into vibrio cholerae metagenome from an African river. Microb. Ecol. 73, 734–738 (2017).CAS 
    Article 

    Google Scholar 
    17.Kaboré, S. et al. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res Microbiol 169, 1–10 (2018).Article 

    Google Scholar 
    18.Bwire, G. et al. Environmental surveillance of Vibrio cholerae O1/O139 in the five African Great Lakes and other major surface water sources in Uganda. Front. Microbiol. 9, 1560 (2018).Article 

    Google Scholar 
    19.Vezzulli, L., Baker-Austin, C., Kirschner, A., Pruzzo, C. & Martinez-Urtaza, J. Global emergence of environmental non-O1/O139 Vibrio cholerae infections linked with climate change: a neglected research field? Environ. Microbiol. 22, 4342–4355 (2020).CAS 
    Article 

    Google Scholar  More

  • in

    Novel robust time series analysis for long-term and short-term prediction

    The data needed for estimating the SR relationship consist of spawning biomass (S) and recruitment (R) observed over time. A lognormal distribution is frequently used as the distribution of errors for SR relationships13. We therefore assume that the residuals from a regression model having (r=log (R)) as a response variable and the logarithm of the latent SR relationship as the mean will have a normal distribution. In addition, we assume that the latent SR relationship is likely to be contaminated by some outliers given that fish populations often suffer from nonnegligible contamination, such as sporadic strong cohorts5.Figure 3Parameter estimates of the density-independent parameter (a), density-dependent parameter (b), and autocorrelation ((rho)) for the simulation using the HS SR function with autocorrelation (true (rho = 0.8)) in the residuals.Full size imageFigure 4Application of the robust SR model to fish population data from Japan. (Top) Estimates of ((b-min (S))/(max (S)-min (S))) using the LS and RSR methods. (Bottom) Examples of fitted SR curves using the LS (black line) and RSR (red line) methods (left, walleye pollock in the Sea of Japan; right, round herring in the Tsushima warm current).Full size imageA robust regression approachSuppose that the logarithm of recruitment ((r_t = log (R_t), (t = 1, ldots , T))) has the following autocorrelated normal distribution,$$begin{aligned} r_t = f(S_t|{varvec{theta }})+varepsilon _t, end{aligned}$$
    (1)
    where (varepsilon _t) is a scaled autoregressive error of order one, that is, (sqrt{lambda _t}(varepsilon _t-rho sqrt{lambda _{t-1}} varepsilon _{t-1})= e_t) with a gaussian noise (e_t) of mean zero and variance (sigma ^2), (S_t) is the spawning biomass, (f(S_t|{varvec{theta }})) is the logarithm of a density-dependent population growth model (spawner-recruitment (SR) curve), ({varvec{theta }}) is the parameter (vector) of the SR curve, (rho) is the autocorrelation, and (sigma ^2) is the base variance of the normal distribution. (lambda _t , (in (0,1])) is the weight for a datum in year t. Rearranging the equation for (varepsilon _t), we have (varepsilon _t sim N(rho sqrt{lambda _{t-1}} varepsilon _{t-1}, sigma ^2/lambda _t)) (Appendix A). We define (lambda _t) to be related to the magnitude of the residual (varepsilon _t),$$begin{aligned} lambda _t = exp left( – phi varepsilon _t^2 right) , end{aligned}$$where (phi , ( >0)) is the parameter that adjusts the influence of outliers. Given that the base variance (sigma ^2) is divided by (lambda _t), the variance is inflated when the difference between the datum and the SR curve is large. The model is equivalent to the AR(1) model when (lambda _t equiv 1) (i.e., (phi =0)) for any t. (sqrt{lambda _t}) is interpreted as the probability of the datum being generated from an uncontaminated normal distribution. When changing the (phi) parameter with (rho =0), the shapes of the probability density function and its derivative are similar to the Tukey’s biweight (also called bisquare) function14, which is close to the gaussian function near zero but decays swiftly as the datum becomes farther from zero (Fig. 1).By solving the equation at equilibrium, the mean deviance residual at (t=1) is zero and the variance at (t=1) is given by ({text{var}}({varepsilon_{1}} ){ = }{sigma ^{2}} {{/}}left[ {lambda _{1}} left( {1} – {rho ^{2}} {tilde{lambda }} right) right]), where ({tilde{lambda }}) is calculated by substituting the sample mean of (lambda _t), (tilde{lambda } = (1/T) sum _{t=1}^T lambda _t) (Appendix B). Incorporating the initial status, the log-likelihood function to be maximized is given by$$begin{aligned} log (L) = sum _{t=1}^T log left( N(r_t|f(S_t|{varvec{theta }})+delta _t, nu _t sigma ^2 lambda _t^{-1}) right) , end{aligned}$$
    (2)
    where (delta _{t} = 0) and (nu _{t} = (1-rho ^2 tilde{lambda })^{-1}) if (t = 1), and (delta _{t} = rho sqrt{lambda _{t-1}} varepsilon _{t-1}) and (nu _{t} = 1) if (t > 1). Because (varepsilon _{t-1}) increases and (lambda _{t-1}) decreases when there is an outlier at (t-1), the multiplication of (rho) and (sqrt{lambda _{t-1}}) mitigates the influence of an extreme outlier on autocorrelation and contributes to the restoration of the original autocorrelation.We need to estimate the parameters (sigma), (rho), and (phi) in addition to the SR relationship parameters ({varvec{theta }}). The parameter (phi) determines the mixing proportion of contamination and governs the predictive ability of the model. We use time series cross-validation15, which is also called retrospective forecasting16 (RF), to stably determine the value of (phi). First we delete the last datum. Then we use the SR relationship estimated from the data excluding the last datum to forecast recruitment and calculate its error assuming that the deleted recruitment for the last year is true. Next, we delete the two last data, forecast the second-to-last recruitment, and calculate the error assuming that the deleted second-to-last year’s recruitment is true. After the procedure is repeated on a rolling basis, the (phi) parameter having the smallest average error is finally selected. The optimum (phi) is determined by minimizing the following RF error:$$begin{aligned} RF_R = exp left( frac{1}{P} sum _{t=1}^P log left[ left( r_{T-(t-1)} -hat{r}_{T-(t-1)}^{1:(T-t)} right) ^2 right] right) . end{aligned}$$
    (3)
    This is the geometric mean of predicted errors, which stabilizes the performance of retrospective forecasting. (r_{T-(t-1)}) is the logarithm of observed recruitment in year (T-(t-1)) and (hat{r}_{T-(t-1)}^{1:(T-t)}) is the predicted value estimated using the data from years 1 to (T-t), which is given by$$begin{aligned} hat{r}_{T-(t-1)}^{1:(T-t)} = f(S_{T-(t-1)}|hat{varvec{theta }})+hat{rho } sqrt{hat{lambda }_{T-t}} hat{varepsilon }_{T-t}, end{aligned}$$where (t = 1, ldots , P). We adopt (P=10) for stable estimation in this paper, though we commonly take 5 as the minimum P17.All subsequent analyses are performed using R18 and its package TMB19 (Template Model Builder).SimulationWe generate the simulated data ((left{ (R_t, S_t) ; t = 1, ldots , T right})) with some outliers and autocorrelated errors and test the performance of our robust SR (RSR) method in comparison with the LS and LAD methods. LAD was chosen because it is a typical robust method and is generally superior to the least median squares method used in Chen & Paloheimo (1995)11. The average recruitment data are generated from the Hockey–Stick (HS) SR function12, (f(S_t|{varvec{theta }}) = log left( a min (S_t, b) right)), where ({varvec{theta }} = (a, b) = (1.2, 500)). Stochastic normal errors are added to the log recruitment data with or without autocorrelation. When there is an autocorrelation in the residuals of log recruitment, the autocorrelation is set to (rho = 0.8). To examine the effect of outliers, we add the outliers that occur at the expected frequency of twice per 10 years ((p=0.2)) to the residuals of log recruitment. The patterns of outlier occurrence are threefold: evenly occurring positive and negative outliers ((q=0.5)), all positive outliers ((q=1.0)), and all negative outliers ((q=0.0)) (see Appendix C for the definition of q). We then have eight types of simulated data (no outliers, positive and negative outliers, all positive outliers, and all negative outliers for autocorrelation in the normal residual (rho = 0) and (rho =0.8), respectively). The simulations are replicated 1,000 times for each of the eight types. The length of each SR data time series (T) is set to 30 years which is typical for SR time series data9,12. The performance of the methods is evaluated by two indicators that represent long-term and short-term predictive abilities ((hat{R}_0 – R_0)/R_0) and ((hat{R}_{T+1} – R_{T+1})/R_{T+1}), respectively, where the former is the asymptotic maximum recruitment ((R_0 = ab) for the HS SR function) and the latter is recruitment in the ensuing year (T+1), which is given by (R_{T+1} = exp (f(S_{T+1}|{varvec{theta }}) + rho omega _{T} + eta _{T+1})), where (omega _T) and (eta _{T+1}) are independent gaussian noises (Appendix C). Note that the true recruitment at (T+1) does not include any outliers. The mathematical details of the simulation are given in Appendix C. Autocorrelation is always estimated such that (rho) is set to zero when an estimate of (rho) is equal to or less than zero because a negative autocorrelation is usually impractical20. The parameter (log (phi )) in RSR is chosen from the grid values from (-3.0) to 3.0 in increments of 0.5. The best (phi) is a minimizer of the RF error (RF_R) (Eq. 3).For sensitivity tests, we conduct the following additional simulations: (S1) same as the above base case scenario (S0) except that (a = 1.8); (S2) same as S0 except that (p = 0.1) (the expected frequency of outliers is once every 10 years) in place of (p=0.2); (S3) same as S0 except that (p = 0.3) (the expected frequency of outliers is three times every 10 years) in place of (p=0.2); (S4) same as S0 except that (f(S_t|{varvec{theta }})) is the logarithm of the Beverton–Holt function; (S5) same as S0 except that (f(S_t|{varvec{theta }})) is the logarithm of the Ricker function; S6) same as S0 except for the spawner-abundance dependent p, in which the expected frequency of outliers is higher for lower spawner abundances than for higher spawner abundances.Finally, we calculate biological reference points related to maximum sustainable yield (MSY), i.e., fishing rate at MSY ((F_{rm {msy}})) and spawning biomass at MSY ((S_{rm {msy}})), for each scenario and evaluate their relative biases. To calculate (F_{rm {msy}}) and (S_{rm {msy}}), we require additional information on survival and growth as well as an assumption about population dynamics. For simplicity, we use the delay-difference model as the population dynamics model5. The mathematical details are given in Appendix D.Real data analysisIchinokawa, Okamura & Kurota (2017) fitted the SR curves to fish population data from Japan which comprise 26 SR datasets (Appendix E), demonstrating that some populations showed strong density dependence but others had weak or low density dependence. We fit the HS SR curves to the same 26 SR datasets used in Ichinokawa, Okamura & Kurota (2017). Because Ichinokawa, Okamura & Kurota (2017) used LS as the fitting method, we use LS and RSR to compare the density-independent parameter (log (hat{a})), standardized density-dependent parameter (( hat{b}-min (S) )/( max (S) – min (S) )), autocorrelation in the residuals (hat{rho }), and predictability (hat{RF}_R) in the HS SR curves. More