Polymetallic nodules are essential for food-web integrity of a prospective deep-seabed mining area in Pacific abyssal plains
1.Ramírez-Llodrà, E. et al. Man and the last great wilderness: Human impact on the deep sea. PLoS ONE 6, e22588 (2011).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
2.Hein, J. R. & Koschinsky, A. Deep-ocean ferromanganese crusts and nodules. in Treatise on Geochemistry (eds. Holland, H. & Turekian, K.) vol. 13 273–291 (Elsevier Ltd., 2014).3.Hein, J. R. Manganese nodules. Encyclop. Mar. Geosci. 1, 408–412 (2016).
Google Scholar
4.Kuhn, T., Wegorzewski, A. V., Rühlemann, C. & Vink, A. Composition, formation, and occurrence of polymetallic nodules. in Deep-Sea Mining (ed. Sharma, R.) 23–63 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-52557-0_2.5.Amon, D. J. et al. Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion–Clipperton Zone. Sci. Rep. 6, 1–12 (2016).Article
CAS
Google Scholar
6.Purser, A. et al. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean. Curr. Biol. 26, R1268–R1269 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
7.Vanreusel, A., Hilário, A., Ribeiro, P. A., Menot, L. & Martínez Arbizu, P. Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci. Rep. 6, 26808 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
8.Iken, K., Brey, T., Wand, U., Voigt, J. & Junghans, P. Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): A stable isotope analysis. Prog. Oceanogr. 50, 383–405 (2001).ADS
Article
Google Scholar
9.Aberle, N. & Witte, U. Deep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: In situ pulse-chase experiments using 13C-labelled phytodetritus. Mar. Ecol. Prog. Ser. 251, 37–47 (2003).ADS
Article
Google Scholar
10.Sweetman, A. K. & Witte, U. Response of an abyssal macrofaunal community to a phytodetrital pulse. Mar. Ecol. Prog. Ser. 355, 73–84 (2008).ADS
Article
Google Scholar
11.van Oevelen, D., Soetaert, K. & Heip, C. H. R. Carbon flows in the benthic food web of the Porcupine Abyssal Plain: The (un)importance of labile detritus in supporting microbial and faunal carbon demands. Limnol. Oceanogr. 57, 645–664 (2012).ADS
Article
CAS
Google Scholar
12.Dunlop, K. M. et al. Carbon cycling in the deep eastern North Pacific benthic food web: Investigating the effect of organic carbon input. Limnol. Oceanogr. 61, 1956–1968 (2016).ADS
Article
Google Scholar
13.de Jonge, D. S. W. et al. Abyssal food-web model indicates faunal carbon flow recovery and impaired microbial loop 26 years after a sediment disturbance experiment. Prog. Oceanogr. 189, 102446 (2020).Article
Google Scholar
14.Smith, C. R., De Léo, F. C., Bernardino, A. F., Sweetman, A. K. & Martínez Arbizu, P. Abyssal food limitation, ecosystem structure and climate change. Trends Ecol. Evol. 23, 518–528 (2008).PubMed
Article
PubMed Central
Google Scholar
15.Meysman, F. J. R., Middelburg, J. J. & Heip, C. H. R. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 21, 688–695 (2006).PubMed
Article
PubMed Central
Google Scholar
16.van der Zee, E. M. et al. How habitat-modifying organisms structure the food web of two coastal ecosystems. Proc. R. Soc. B Biol. Sci. 283, 20152326 (2016).Article
CAS
Google Scholar
17.Giere, O. Meiobenthology: The Microscopic Motile Fauna of Aquatic Sediment (Springer, 2009).
Google Scholar
18.Hall, S. J. & Raffaelli, D. G. Food webs: Theory and reality. Adv. Ecol. Res. 24, 187–239 (1993).Article
Google Scholar
19.Mahatma, R. Meiofauna communities of the Pacific nodule province: Abundance, diversity and community structure. PhD-Thesis (Carl von Ossietzky Universität Oldenburg, 2009).20.McIntyre, A. Ecoloy of marine meiobenthos. Biol. Rev. 44, 245–288 (1969).Article
Google Scholar
21.Borowski, C. Physically disturbed deep-sea macrofauna in the Peru Basin, Southeast Pacific, revisited 7 years after the experimental impact. Deep. Res. II(48), 3809–3839 (2001).ADS
Google Scholar
22.Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed
Article
PubMed Central
Google Scholar
23.Roberts, D. & Moore, H. M. Tentacular diversity in deep-sea deposit-feeding holothurians: Implications for biodiversity in the deep sea. Biodivers. Conserv. 6, 1487–1505 (1997).Article
Google Scholar
24.Buhl-Mortensen, L. et al. Habitat complexity and bottom fauna composition at different scales on the continental shelf and slope of northern Norway. Hydrobiologia 685, 191–219 (2012).Article
Google Scholar
25.Simon-Lledó, E. et al. Ecology of a polymetallic nodule occurrence gradient: Implications for deep-sea mining. Limnol. Oceanogr. 64, 1883–1894 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
26.Hasemann, C. et al. Effects of dropstone-induced habitat heterogeneity on Arctic deep-sea benthos with special reference to nematode communities. Mar. Biol. Res. 9, 229–245 (2013).Article
Google Scholar
27.Riehl, T., Wölfl, A. C., Augustin, N., Devey, C. W. & Brandt, A. Discovery of widely available abyssal rock patches reveals overlooked habitat type and prompts rethinking deep-sea biodiversity. Proc. Natl. Acad. Sci. USA. 117, 15450–15459 (2020).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
28.Kidd, R. B., Huggett, J. & Huggett, Q. J. Rock debris on abyssal plains in the northeast Atlantic: A comparison of epibenthic sledge hauls and photographic surveys. Oceanol. Acta 4, 99–104 (1981).
Google Scholar
29.Gooday, A. J., Goineau, A. & Voltski, I. Abyssal foraminifera attached to polymetallic nodules from the eastern Clarion-Clipperton Fracture Zone: A preliminary description and comparison with North Atlantic dropstone assemblages. Mar. Biodivers. 45, 391–412 (2015).Article
Google Scholar
30.Ziegler, A. F., Smith, C. R., Edwards, K. F. & Vernet, M. Glacial dropstones: Islands enhancing seafloor species richness of benthic megafauna in West Antarctic Peninsula fjords. Mar. Ecol. Prog. Ser. 583, 1–14 (2017).ADS
Article
Google Scholar
31.Schulz, M., Bergmann, M., von Juterzenka, K. & Soltwedel, T. Colonisation of hard substrata along a channel system in the deep Greenland Sea. Polar Biol. 33, 1359–1369 (2010).Article
Google Scholar
32.Simon-Lledó, E. et al. Multi-scale variations in invertebrate and fish megafauna in the mid-eastern Clarion Clipperton Zone. Prog. Oceanogr. 187, 102405 (2020).Article
Google Scholar
33.Ilan, M., Ben-Eliahu, M. N. & Galil, B. Three deep water sponges from the eastern Mediterranean and their associated Fauna. Ophelia 39, 45–54 (1994).Article
Google Scholar
34.Beaulieu, S. E. Colonization of habitat islands in the deep sea: Recruitment to glass sponge stalks. Deep. Res. I(48), 1121–1137 (2001).Article
Google Scholar
35.Buhl-Mortensen, L. et al. Biological structures as a source of habitat heterogeneity and biodiversity on the deep ocean margins. Mar. Ecol. 31, 21–50 (2010).ADS
Article
Google Scholar
36.Huston, M. A. Introduction. in Biological Diversity. The coexistence of species on changing landscapes 1–11 (Cambridge University Press, 1994).37.Beaulieu, S. E. Life on glass houses: Sponge stalk communities in the deep sea. Mar. Biol. 138, 803–817 (2001).Article
Google Scholar
38.Dunne, J. A., Williams, R. J. & Martinez, N. D. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol. Lett. 5, 558–567 (2002).Article
Google Scholar
39.Sole, R. V. & Montoya, M. Complexity and fragility in ecological networks. Proc. R. Soc. B Biol. Sci. 268, 2039–2045 (2001).CAS
Article
Google Scholar
40.Warren, P. H. Spatial and temporal variation in the structure of a freshwater food web. Oikos 55, 299–311 (1989).Article
Google Scholar
41.Van Dover, C. L. et al. Biodiversity loss from deep-sea mining. Nat. Geosci. 10, 464–465 (2017).ADS
Article
CAS
Google Scholar
42.Niner, H. J. et al. Deep-sea mining with no net loss of biodiversity: An impossible aim. Front. Mar. Sci. 5, 00195 (2018).Article
Google Scholar
43.Washburn, T. W. et al. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 176, 24–39 (2019).Article
Google Scholar
44.Christodoulou, M. et al. Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17, 1845–1876 (2020).ADS
CAS
Article
Google Scholar
45.Christodoulou, M., O’Hara, T. D., Hugall, A. F. & Arbizu, P. M. Dark ophiuroid biodiversity in a prospective abyssal mine field. Curr. Biol. 29, 3909-3912.e3 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Ramírez-Llodrà, E. et al. Deep, diverse and definitely different: Unique attributes of the world’s largest ecosystem. Biogeosciences 7, 2851–2899 (2010).ADS
Article
Google Scholar
47.International Seabed Authority. Regulations on prospecting and exploration for polymetallic nodules in the Area. (2000).48.Stratmann, T. et al. Abyssal plain faunal carbon flows remain depressed 26 years after a simulated deep-sea mining disturbance. Biogeosciences 15, 4131–4145 (2018).ADS
CAS
Article
Google Scholar
49.Soetaert, K. & van Oevelen, D. Modeling food web interactions in benthic deep-sea ecosystems: A practical guide. Oceanography 22, 128–143 (2009).Article
Google Scholar
50.van Oevelen, D. et al. Quantifying food web flows using linear inverse models. Ecosystems 13, 32–45 (2010).Article
Google Scholar
51.International Seabed Authority. Draft environmental management plan for the Clarion-Clipperton Zone I. 1–18 (International Seabed Authority, 2011).52.Jung, H.-S., Lee, C.-B., Jeong, K.-S. & Kang, J.-K. Geochemical and mineralogical characteristics in two-color core sediments from the Korea Deep Ocean Study (KODOS) area, northeast equatorial Pacific. Mar. Geol. 144, 295–309 (1998).ADS
CAS
Article
Google Scholar
53.Wedding, L. M. et al. From principles to practice: A spatial approach to systematic conservation planning in the deep sea. Proc. R. Soc. B Biol. Sci. 280, 20131684 (2013).CAS
Article
Google Scholar
54.Hannides, A. K. & Smith, C. R. The Northeast Pacific abyssal plain. in Biogeochemistry of Marine Systems (eds. Black, K. D. & Shimmield, G. B.) 208–237 (Blackwell Publishing, 2003).55.International Seabed Authority. A geological model of polymetallic nodule deposits in the Clarion Clipperton Fracture Zone. ISA technical study No. 6. (2010).56.Schoening, T., Jones, D. O. B. & Greinert, J. Compact-morphology-based polymetallic nodule delineation. Sci. Rep. 7, 13338 (2017).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
57.Anonymous. Google Earth. https://www.google.com/earth/ (2018).58.Klein, H. Near-bottom currents in the deep Peru Basin, DISCOL experimental area. Dtsch. Hydrogr. Z. 45, 31–42 (1993).Article
Google Scholar
59.Bharatdwaj, K. Reliefs of the ocean basins. in Physical Geography (Oceanography) 1–53 (Discovery Publishing House, 2006).60.Glasby, G. P. Manganese: Predominant role of nodules and crusts. in Marine Geochemistry (eds. Schulz, H. D. & Zabel, M.) 371–427 (Springer-Verlag, 2006). https://doi.org/10.1007/3-540-32144-6_11.61.Haeckel, M., König, I., Riech, V., Weber, M. E. & Suess, E. Pore water profiles and numerical modelling of biogeochemical processes in Peru Basin deep-sea sediments. Deep. Res. I(48), 3713–3736 (2001).ADS
Google Scholar
62.Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 6, e1000097 (2009).PubMed
PubMed Central
Article
Google Scholar
63.Thiel, H. Use and protection of the deep sea: An introduction. Deep. Res. II(48), 3427–3431 (2001).ADS
Google Scholar
64.Anthropogenic disturbances in the deep sea. (Frontiers Media SA, 2019). https://doi.org/10.3389/978-2-88963-288-6.65.Assessing environmental impacts of deep-sea mining – revisiting decade-old benthic disturbances in Pacific nodule areas. Biogeosciences (2018).66.Martínez Arbizu, P. & Haeckel, M. RV SONNE Fahrtbericht/Cruise Report SO239. EcoResponse assessing the ecology, connectivity and resilience of polymetallic nodule field systems. vol. 25 (2015).67.Boetius, A. RV SONNE SO242/2. Cruise Report/Fahrtbericht. DISCOL revisited. Guayaquil: 28 August 2015: Guayaquil: 1 October 2015. SO242/2: JPI Oceans Ecological Aspects of Deep-Sea Mining. (2015).68.Horton, T. et al. World Register of Marine Species (WoRMS). http://www.marinespecies.org (2018). https://doi.org/10.14284/170.69.Ahnert, A. & Schriever, G. Response of abyssal copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules. Deep. Res. II 48, 3779–3794 (2001).ADS
CAS
Article
Google Scholar
70.Radziejewska, T. Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. Int. Rev. Hydrobiol. 87, 457–477 (2002).Article
Google Scholar
71.Borowski, C. & Thiel, H. Deep-sea macrofaunal impacts of a large-scale physical disturbance experiment in the Southeast Pacific. Deep. Res. II 45, 55–81 (1998).ADS
Article
Google Scholar
72.Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).ADS
Article
Google Scholar More