Massive soybean expansion in South America since 2000 and implications for conservation
1.Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. Proc. Natl Acad. Sci. USA 108, 20260–20264 (2011).CAS
Article
Google Scholar
2.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS
Article
Google Scholar
3.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS
Article
Google Scholar
4.Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).CAS
Article
Google Scholar
5.Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS
Article
Google Scholar
6.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS
Article
Google Scholar
7.Graesser, J., Ramankutty, N. & Coomes, O. T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 13, 084021 (2018).Article
Google Scholar
8.Zalles, V. et al. Near doubling of Brazil’s intensive row crop area since 2000. Proc. Natl Acad. Sci. USA 116, 428–435 (2019).CAS
Article
Google Scholar
9.FAOSTAT (FAO, 2019); http://www.fao.org/faostat10.Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article
Google Scholar
11.Fuchs, R. et al. Why the US–China trade war spells disaster for the Amazon. Nature 567, 451–454 (2019).CAS
Article
Google Scholar
12.Lambin, E. F. et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Change 8, 109–116 (2018).Article
Google Scholar
13.Rudorff, B. F. T. et al. The soy moratorium in the Amazon biome monitored by remote sensing images. Remote Sens. 3, 185–202 (2011).Article
Google Scholar
14.Gibbs, H. K. et al. Brazil’s soy moratorium. Science 347, 377–378 (2015).CAS
Article
Google Scholar
15.Kastens, J. H., Brown, J. C., Coutinho, A. C., Bishop, C. R. & Esquerdo, J. Soy moratorium impacts on soybean and deforestation dynamics in Mato Grosso, Brazil. PLoS ONE 12, e0176168 (2017).Article
CAS
Google Scholar
16.Gollnow, F., Hissa, Ld. B. V., Rufin, P. & Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 78, 377–385 (2018).Article
Google Scholar
17.Rausch, L. L. et al. Soy expansion in Brazil’s Cerrado. Conserv. Lett. https://doi.org/10.1111/conl.12671 (2019).18.Spera, S. A., Galford, G. L., Coe, M. T., Macedo, M. N. & Mustard, J. F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Glob. Change Biol. 22, 3405–3413 (2016).Article
Google Scholar
19.Noojipady, P. et al. Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome. Environ. Res. Lett. 12, 025004 (2017).Article
CAS
Google Scholar
20.Soterroni, A. C. et al. Expanding the soy moratorium to Brazil’s Cerrado. Sci. Adv. 5, eaav7336 (2019).Article
Google Scholar
21.Rajão, R. et al. The rotten apples of Brazil’s agribusiness. Science 369, 246–248 (2020).Article
CAS
Google Scholar
22.Heilmayr, R., Rausch, L. L., Munger, J. & Gibbs, H. K. Brazil’s Amazon soy moratorium reduced deforestation. Nat. Food 1, 801–810 (2020).Article
Google Scholar
23.Cerrado Manifesto. The Future of the Cerrado in the Hands of the Market: Deforestation and Native Vegetation Conversion Must Be Stopped (2017); http://d3nehc6yl9qzo4.cloudfront.net/downloads/cerradoconversionzero_sept2017_2.pdf24.Meyfroidt, P. et al. Multiple pathways of commodity crop expansion in tropical forest landscapes. Environ. Res. Lett. 9, 074012 (2014).Article
Google Scholar
25.PRODES (INPE, 2019); http://www.obt.inpe.br/OBT/assuntos/programas/amazonia/prodes26.Turubanova, S., Potapov, P. V., Tyukavina, A. & Hansen, M. C. Ongoing primary forest loss in Brazil, Democratic Republic of the Congo, and Indonesia. Environ. Res. Lett. 13, 074028 (2018).Article
Google Scholar
27.Argentina: Oilseeds and Products Annual (USDA Foreign Agricultural Service, 2016).28.Nepstad, D. et al. Slowing Amazon deforestation through public policy and interventions in beef and soy supply chains. Science 344, 1118–1123 (2014).CAS
Article
Google Scholar
29.Seymour, F. & Harris, N. L. Reducing tropical deforestation. Science 365, 756–757 (2019).CAS
Article
Google Scholar
30.Richards, P. D., Walker, R. T. & Arima, E. Y. Spatially complex land change: the indirect effect of Brazil’s agricultural sector on land use in Amazonia. Glob. Environ. Change 29, 1–9 (2014).Article
Google Scholar
31.Gasparri, N. I. & le Polain de Waroux, Y. The coupling of South American soybean and cattle production frontiers: new challenges for conservation policy and land change science. Conserv. Lett. 8, 290–298 (2015).Article
Google Scholar
32.Fehlenberg, V. et al. The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob. Environ. Change 45, 24–34 (2017).Article
Google Scholar
33.le Polain de Waroux, Y. et al. The restructuring of South American soy and beef production and trade under changing environmental regulations. World Dev. 121, 188–202 (2019).Article
Google Scholar
34.Tyukavina, A. et al. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 3, e1601047 (2017).Article
Google Scholar
35.De Sy, V. et al. Land use patterns and related carbon losses following deforestation in South America. Environ. Res. Lett. 10, 124004 (2015).Article
Google Scholar
36.Fearnside, P. M. Soybean cultivation as a threat to the environment in Brazil. Environ. Conserv. 28, 23–38 (2002).Article
Google Scholar
37.Barona, E., Ramankutty, N., Hyman, G. & Coomes, O. T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/5/2/024002 (2010).38.Macedo, M. N. et al. Decoupling of deforestation and soy production in the southern Amazon during the late 2000s. Proc. Natl Acad. Sci. USA 109, 1341–1346 (2012).CAS
Article
Google Scholar
39.Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/2050: the 2012 Revision (FAO, 2012).
Google Scholar
40.Brandão, A. Jr et al. Estimating the potential for conservation and farming in the Amazon and Cerrado under four policy scenarios. Sustainability https://doi.org/10.3390/su12031277 (2020).41.Martini, D. Z., Moreira, M. A., Cruz de Aragão, L. E. Oe, Formaggio, A. R. & Dalla-Nora, E. L. Potential land availability for agricultural expansion in the Brazilian Amazon. Land Use Policy 49, 35–42 (2015).Article
Google Scholar
42.Hunke, P., Mueller, E. N., Schröder, B. & Zeilhofer, P. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8, 1154–1180 (2014).Article
Google Scholar
43.Nosetto, M. D., Paez, R. A., Ballesteros, S. I. & Jobbágy, E. G. Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the Pampas. Agric. Ecosyst. Environ. 206, 60–70 (2015).Article
Google Scholar
44.Schulz, C. et al. Physical, ecological and human dimensions of environmental change in Brazil’s Pantanal wetland: synthesis and research agenda. Sci. Total Environ. 687, 1011–1027 (2019).CAS
Article
Google Scholar
45.Weinhold, D., Killick, E. & Reis, E. J. Soybeans, poverty and inequality in the Brazilian Amazon. World Dev. 52, 132–143 (2013).Article
Google Scholar
46.Garrett, R. D. & Rausch, L. L. Green for gold: social and ecological tradeoffs influencing the sustainability of the Brazilian soy industry. J. Peasant Stud. 43, 461–493 (2016).Article
Google Scholar
47.Oliveira, G. & Hecht, S. Sacred groves, sacrifice zones and soy production: globalization, intensification and neo-nature in South America. J. Peasant Stud. 43, 251–285 (2016).Article
Google Scholar
48.Garrett, R. D. et al. Intensification in agriculture-forest frontiers: land use responses to development and conservation policies in Brazil. Glob. Environ. Change 53, 233–243 (2018).Article
Google Scholar
49.Song, X.-P. et al. National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey. Remote Sens. Environ. 190, 383–395 (2017).Article
Google Scholar
50.King, L. et al. A multi-resolution approach to national-scale cultivated area estimation of soybean. Remote Sens. Environ. 195, 13–29 (2017).Article
Google Scholar
51.Potapov, P. et al. Annual continuous fields of woody vegetation structure in the Lower Mekong region from 2000-2017 Landsat time-series. Remote Sens. Environ. 232, 111278 (2019).Article
Google Scholar
52.Potapov, P. et al. Landsat analysis ready data for global land cover and land cover change mapping. Remote Sens. 12, 426 (2020).Article
Google Scholar
53.Global Forest Resources Assessment 2015 (FAO, 2015).54.Brazil’s Submission of a Forest Reference Emission Level (FREL) for Reducing Emissions from Deforestation in the Amazonia Biome for REDD+ Results-Based Payments Under the UNFCCC from 2016 to 2020 (Ministry of Environment of Brazil, 2018); https://redd.unfccc.int/files/2018_frel_submission_brazil.pdf55.Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article
Google Scholar
56.Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).CAS
Article
Google Scholar More