More stories

  • in

    Parachute research is another ethical problem for Myanmar amber

    1.Sokol, J. Troubled treasure. Fossils in Burmese amber offer an exquisite view of dinosaur times—and an ethical minefield. Science (23 May 2019).2.Lawton, G. Blood amber: the exquisite trove of fossils fueling war in Myanmar. New Scientist (1 May 2019).3.Lawton, G. Military now controls Myanmar’s scientifically important amber mines. New Scientist (30 August 2019).4.Rayfield, E. J., Theodor, J. M. & Polly, P. D. Fossils from conflict zones and reproducibility of fossil-based scientific data. Society of Vertebrate Paleontology (SVP) (21 April 2020).5.Barrett, P. M. & Johanson, Z. J. Syst. Palaeontol. 18, 1059 (2020).Article 

    Google Scholar 
    6.Engel, M. S. Nature 584, 525 (2020).CAS 
    Article 

    Google Scholar 
    7.Barrett, P. M. & Johanson, Z. Nature 674, 586 (2020).
    Google Scholar 
    8.Poinar, G. & Ellenberger, S. Geoconserv. Res 3, 12–16 (2020).
    Google Scholar 
    9.Takai, M. et al. J. Hum. Evol. 84, 1–15 (2015).Article 

    Google Scholar 
    10.Barber, A. J., Khin Zaw & Crow, M. J. (eds) Myanmar: Geology, Resources and Tectonics Geological Society, London, Memoirs Vol. 48 (Geological Society of London, 2017).11.Jaeger, J.-J. et al. Proc. R. Soc. B 287, 20202129 (2020).Article 

    Google Scholar 
    12.Khin Zaw, Win Swe, Barber, A. J., Crow, M. J. & Yin Yin Nwe in Myanmar: Geology, Resources and Tectonics Geological Society, London, Memoirs Vol. 48 (eds Barber, A. J., Khin Zaw & Crow, M. J.) 1–17 (Geological Society of London, 2017).13.Phyo, M. M. et al. Minerals 10, 195 (2020).CAS 
    Article 

    Google Scholar 
    14.GIAC (Geodynamics of India-Asia Collision) Final Report, A Joint Project of Scientific Co-operation between Total Myanmar Exploration and Production (TMEP), Unocal, Universities of Myanmar and Thailand, Myanmar Oil and Gas Enterprise (MOGE) and Ecole Normale Superieure (ENS) (TMEP, Unocal, Univ. Myanmar, Univ. Thailand, MOGE, ENS, 1999). More

  • in

    Balance scientific and ethical concerns to achieve a nuanced perspective on ‘blood amber’

    College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, ChinaChao Shi, Hao-hong Cai, Ri-xin Jiang & Shuo WangKey Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, ChinaChao Shi & Hua PengDepartment of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, USAMichael S. EngelShanghai World Expo Museum, Shanghai, ChinaJi YuanKey Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, ChinaMing BaiDepartment of Entomology, College of Plant Protection, China Agricultural University, Beijing, ChinaDing YangCollege of Life and Environmental Sciences, Minzu University of China, Beijing, ChinaChun-lin LongCollege of Life Science, Shandong Normal University, Jinan, ChinaZun-tian ZhaoSouth China Botanical Garden, Chinese Academy of Sciences, Guangzhou, ChinaDian-xiang ZhangState Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, ChinaXian-chun ZhangState Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, ChinaYong-dong WangSchool of Environment, Earth, and Ecosystem Sciences, The Open University, Milton Keynes, UKRobert A. SpicerCAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, ChinaRobert A. SpicerS.W., M.S.E., D.-X.Z., X.-C.Z., H.P., Y.-D.W. and R.A.S. conceived the idea and drafted the initial manuscript, with contributions from all other authors. All authors jointly revised the paper. More

  • in

    A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host

    1.Koch, E. & McFall-Ngai, M. Model systems for the study of how symbiotic associations between animals and extracellular bacterial partners are established and maintained. Drug Discov. Today Dis. Models 28, 3–12 (2018).PubMed 
    Article 

    Google Scholar 
    2.Lee, K. H. & Ruby, E. G. Effect of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60, 1565–1571 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Kremer, N. et al. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14, 183–194 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bongrand, C. & Ruby, E. G. Achieving a multi-strain symbiosis: strain behavior and infection dynamics. ISME J. 13, 698–706 (2019).PubMed 
    Article 

    Google Scholar 
    5.McFall-Ngai, M. J. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68, 177–194 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Jones, B. W. & Nishiguchi, M. K. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144, 1151–1155 (2004).Article 

    Google Scholar 
    7.Graf, J. & Ruby, E. G. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl Acad. Sci. USA 95, 1818–1822 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.McFall-Ngai, M. J. & Ruby, E. G. Developmental biology in marine invertebrate symbioses. Curr. Opin. Microbiol. 3, 603–607 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Schwartzman, J. A. & Ruby, E. G. Stress as a normal cue in the symbiotic environment. Trends Microbiol. 24, 414–424 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).12.Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. USA 112, 566–571 (2015). In this study, the host’s delivery of chitin-derived N-acetylglucosamine is shown to develop 4 weeks after hatching, and this chitin is apparently delivered by haemocytes that lyse in the crypts only at night. A nocturnal acidification of the crypts results, and a model for how this outcome enhances bioluminescence is described.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Heath-Heckman, E. A. et al. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. mBio https://doi.org/10.1128/mBio.00167-13 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Koropatnick, T. A. et al. Microbial factor-mediated development in a host-bacterial mutualism. Science 306, 1186–1187 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Ruby, E. G. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6, 752–762 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Bongrand, C. & Ruby, E. G. The impact of Vibrio fischeri strain variation on host colonization. Curr. Opin. Microbiol. 50, 15–19 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Colton, D. M. & Stabb, E. V. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr. Genet. 62, 39–45 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Mandel, M. J. & Dunn, A. K. Impact and Influence of the natural Vibrio-squid symbiosis in understanding bacterial-animal interactions. Front. Microbiol. 7, 1982 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Aschtgen, M. S. et al. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 5, 32 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Stabb, E. V. & Visick, K. L. in The Prokaryotes (eds Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E. & Thompson, F.) 497–532 (Springer, 2013).23.Nawroth, J. C. et al. Motile cilia create fluid-mechanical microhabitats for the active recruitment of the host microbiome. Proc. Natl Acad. Sci. USA 114, 9510–9516 (2017). This work provides the first glimpse into the cilium-driven fluid mechanics that position V. fischeri cells to reach and settle in ‘quiet zones’ on the light organ surface, permitting a selective ‘recruitment’ of this microorganism from the planktonic environment.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Altura, M. A. et al. The first engagement of partners in the Euprymna scolopes-Vibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15, 2937–2950 (2013). Aggregations of only a few V. fischeri cells are observed to initiate normal host responses, and reveal that aggregation is a two-part process that begins with bacterial attachment to the cilia.PubMed 
    PubMed Central 

    Google Scholar 
    25.Nyholm, S. V., Stabb, E. V., Ruby, E. G. & McFall-Ngai, M. J. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl Acad. Sci. USA 97, 10231–10235 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yip, E. S., Geszvain, K., DeLoney-Marino, C. R. & Visick, K. L. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62, 1586–1600 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Koehler, S. et al. The model squid-vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. https://doi.org/10.1111/1462-2920.14392 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Morris, A. R. & Visick, K. L. Control of biofilm formation and colonization in Vibrio fischeri: a role for partner switching? Environ. Microbiol. 12, 2051–2059 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Norsworthy, A. N. & Visick, K. L. Gimme shelter: how Vibrio fischeri successfully navigates an animal’s multiple environments. Front. Microbiol. 4, 356 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Shibata, S., Yip, E. S., Quirke, K. P., Ondrey, J. M. & Visick, K. L. Roles of the structural symbiosis polysaccharide (syp) genes in host colonization, biofilm formation, and polysaccharide biosynthesis in Vibrio fischeri. J. Bacteriol. 194, 6736–6747 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Yip, E. S., Grublesky, B. T., Hussa, E. A. & Visick, K. L. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri. Mol. Microbiol. 57, 1485–1498 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Bassis, C. M. & Visick, K. L. The cyclic-di-GMP phosphodiesterase BinA negatively regulates cellulose-containing biofilms in Vibrio fischeri. J. Bacteriol. 192, 1269–1278 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Chavez-Dozal, A., Hogan, D., Gorman, C., Quintanal-Villalonga, A. & Nishiguchi, M. K. Multiple Vibrio fischeri genes are involved in biofilm formation and host colonization. FEMS Microbiol. Ecol. 81, 562–573 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Tischler, A. H., Lie, L., Thompson, C. M. & Visick, K. L. Discovery of calcium as a biofilm-promoting signal for Vibrio fischeri reveals new phenotypes and underlying regulatory complexity. J. Bacteriol. 200, e00016–e00018 (2018). This article expands our understanding of the regulatory controls and signals leading to biofilm formation by identifying calcium as a signal that induces a coordinate upregulation of Syp- and cellulose-dependent biofilm formation and revealing the sensor kinase HahK as a new biofilm regulator.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Ziemba, C., Shabtai, Y., Piatkovsky, M. & Herzberg, M. Cellulose effects on morphology and elasticity of Vibrio fischeri biofilms. NPJ Biofilms Microbiomes 2, 1 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Ray, V. A., Driks, A. & Visick, K. L. Identification of a novel matrix protein that promotes biofilm maturation in Vibrio fischeri. J. Bacteriol. 197, 518–528 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.Shibata, S. & Visick, K. L. Sensor kinase RscS induces the production of antigenically distinct outer membrane vesicles That depend on the symbiosis polysaccharide locus in Vibrio fischeri. J. Bacteriol. 194, 185–194 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Hussa, E. A., Darnell, C. L. & Visick, K. L. RscS functions upstream of SypG to control the syp locus and biofilm formation in Vibrio fischeri. J. Bacteriol. 190, 4576–4583 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Mandel, M. J., Wollenberg, M. S., Stabb, E. V., Visick, K. L. & Ruby, E. G. A single regulatory gene is sufficient to alter bacterial host range. Nature 458, 215–218 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Ray, V. A., Eddy, J. L., Hussa, E. A., Misale, M. & Visick, K. L. The syp enhancer sequence plays a key role in transcriptional activation by the sigma54-dependent response regulator SypG and in biofilm formation and host colonization by Vibrio fischeri. J. Bacteriol. 195, 5402–5412 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Visick, K. L. & Skoufos, L. M. Two-component sensor required for normal symbiotic colonization of Euprymna scolopes by Vibrio fischeri. J. Bacteriol. 183, 835–842 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Norsworthy, A. N. & Visick, K. L. Signaling between two interacting sensor kinases promotes biofilms and colonization by a bacterial symbiont. Mol. Microbiol. 96, 233–248 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Thompson, C. M., Marsden, A. E., Tischler, A. H., Koo, J. & Visick, K. L. Vibrio fischeri biofilm formation prevented by a trio of regulators. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01257-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Brooks, J. F. II & Mandel, M. J. The histidine kinase BinK Is a negative regulator of biofilm formation and squid colonization. J. Bacteriol. 198, 2596–2607 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Pankey, M. S. et al. Host-selected mutations converging on a global regulator drive an adaptive leap by bacteria to symbiosis. eLife https://doi.org/10.7554/eLife.24414 (2017). Evolutionary pathways that can lead to symbiotic colonization are revealed in this elegant study that follows the serial passage of a non-colonizing strain through many E. scolopes juveniles, resulting in altered, symbiosis-competent strains.Article 

    Google Scholar 
    46.Morris, A. R., Darnell, C. L. & Visick, K. L. Inactivation of a novel response regulator is necessary for biofilm formation and host colonization by Vibrio fischeri. Mol. Microbiol. 82, 114–130 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Morris, A. R. & Visick, K. L. The response regulator SypE controls biofilm formation and colonization through phosphorylation of the syp-encoded regulator SypA in Vibrio fischeri. Mol. Microbiol. 87, 509–525 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Brooks, J. F. II et al. Global discovery of colonization determinants in the squid symbiont Vibrio fischeri. Proc. Natl Acad. Sci. USA 111, 17284–17289 (2014). This large-scale investigation of colonization factors provides important information on genetic requirements for symbiosis and provides a wealth of data for hypothesis generation that will foster many subsequent studies.CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Thompson, C. M. & Visick, K. L. Assessing the function of STAS domain protein SypA in Vibrio fischeri using a comparative analysis. Front. Microbiol. 6, 760 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Rotman, E. R. et al. Natural strain variation reveals diverse biofilm regulation in squid-colonizing Vibrio fischeri. J. Bacteriol. https://doi.org/10.1128/JB.00033-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Bongrand, C. et al. A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J. 10, 2907–2917 (2016). This study of the genomes and behaviours of a collection of a number of squid symbionts propelled the field from the near-exclusive study of a single isolate, ES114, into new and exciting directions with the genomic sequencing of dominant strains that contain numerous additional genetic sequences and factors.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Newell, P. D., Boyd, C. D., Sondermann, H. & O’Toole, G. A. A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biol. 9, e1000587 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Christensen, D. G., Marsden, A. E., Hodge-Hanson, K., Essock-Burns, T. & Visick, K. L. LapG mediates biofilm dispersal in Vibrio fischeri by controlling maintenance of the VCBS-containing adhesin LapV. Mol. Microbiol. 114, 742–761 (2020). This article addresses a major long-standing question concerning the initiation of the light organ association; specifically, how do aggregated V. fischeri cells release themselves and migrate into host tissue? One factor may be an adhesin-cleaving protease, which is kept in check by a c-di-GMP-responsive protein, and can promote symbiont dispersal from biofilms.CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Fidopiastis, P. M. et al. Characterization of a Vibrio fischeri aminopeptidase and evidence for its influence on an early stage of squid colonization. J. Bacteriol. 194, 3995–4002 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Davidson, S. K., Koropatnick, T. A., Kossmehl, R., Sycuro, L. & McFall-Ngai, M. J. No means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cellul. Microbiol. 6, 1139–1151 (2004).CAS 
    Article 

    Google Scholar 
    56.Wang, Y. et al. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid-Vibrio symbiosis. Mol. Microbiol. 78, 903–915 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Stabb, E. V. Should they stay or should they go? Nitric oxide and the clash of regulators governing Vibrio fischeri biofilm formation. Mol. Microbiol. 111, 1–5 (2019).CAS 
    PubMed 

    Google Scholar 
    58.Thompson, C. M., Tischler, A. H., Tarnowski, D. A., Mandel, M. J. & Visick, K. L. Nitric oxide inhibits biofilm formation by Vibrio fischeri via the nitric oxide sensor HnoX. Mol. Microbiol. 111, 187–203 (2019). This publication provides insight into the complex role in symbiosis of the squid-produced defence molecule NO by uncovering its ability to inhibit biofilm formation via the NO sensor HnoX, a finding that suggests that NO may influence the location or timing of biofilm formation and/or promote dispersal during symbiotic initiation.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Singh, P., Brooks, J. F. II., Ray, V. A., Mandel, M. J. & Visick, K. L. CysK plays a role in Biofilm formation and colonization by Vibrio fischeri. Appl. Environ. Microbiol. 81, 5223–5234 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Raina, J. B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Brennan, C. A., DeLoney-Marino, C. R. & Mandel, M. J. Chemoreceptor VfcA mediates amino acid chemotaxis in Vibrio fischeri. Appl. Environ. Microbiol. 79, 1889–1896 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Graf, J., Dunlap, P. V. & Ruby, E. G. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176, 6986–6991 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Millikan, D. S. & Ruby, E. G. FlrA, a sigma54-dependent transcriptional activator in Vibrio fischeri, is required for motility and symbiotic light-organ colonization. J. Bacteriol. 185, 3547–3557 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Millikan, D. S. & Ruby, E. G. Vibrio fischeri flagellin A is essential for normal motility and for symbiotic competence during initial squid light organ colonization. J. Bacteriol. 186, 4315–4325 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Wolfe, A. J., Millikan, D. S., Campbell, J. M. & Visick, K. L. Vibrio fischeri sigma54 controls motility, biofilm formation, luminescence, and colonization. Appl. Environ. Microbiol. 70, 2520–2524 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.O’Shea, T. M. et al. Magnesium promotes flagellation of Vibrio fischeri. J. Bacteriol. 187, 2058–2065 (2005).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Ruby, E. G. & Asato, L. M. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159, 160–167 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Beeby, M. et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl Acad. Sci. USA 113, E1917–E1926 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Deloney-Marino, C. R. & Visick, K. L. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis. Can. J. Microbiol. 58, 29–38 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    70.Ruby, E. G. et al. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl Acad. Sci. USA 102, 3004–3009 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Nikolakakis, K., Monfils, K., Moriano-Gutierrez, S., Brennan, C. A. & Ruby, E. G. Characterization of the Vibrio fischeri fatty acid chemoreceptors, VfcB and VfcB2. Appl. Environ. Microbiol. 82, 696–704 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    72.Mandel, M. J. et al. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78, 4620–4626 (2012). While it was long-expected that V. fischeri might sense and be attracted to squid-produced molecules to facilitate directed migration into the light organ crypts, this work is the first to identify squid-produced molecules, chitin oligosaccharides, that function as a chemotactic signal promoting colonization.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Bennett, B. D., Essock-Burns, T. & Ruby, E. G. HbtR, a heterofunctional homolog of the virulence regulator TcpP, facilitates the transition between symbiotic and planktonic lifestyles in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.01624-20 (2020). Comparisons of V. fischeri with the related pathogen Vibrio cholerae reveal that a regulator conserved among Vibrio spp. plays very different roles in the interactions of these two microorganisms with their respective hosts.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    74.Brennan, C. A. et al. A model symbiosis reveals a role for sheathed-flagellum rotation in the release of immunogenic lipopolysaccharide. eLife 3, e01579 (2014). A surprising role for flagellar rotation in the release of lipopolysaccharide molecules that promote squid development is revealed in this work, providing a novel function for the flagellar sheath.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Stabb, E. V. & Millikan, D. S. in Defensive Mutualism in Microbial Symbiosis Vol. 27 (eds White, J. F. & Torres, M. S.) 85–98 (CRC Press, 2009).76.Bose, J. L., Rosenberg, C. S. & Stabb, E. V. Effects of luxCDABEG induction in Vibrio fischeri: enhancement of symbiotic colonization and conditional attenuation of growth in culture. Arch. Microbiol. 190, 169–183 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Visick, K. L., Foster, J., Doino, J., McFall-Ngai, M. & Ruby, E. G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182, 4578–4586 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Verma, S. C. & Miyashiro, T. Niche-specific impact of a symbiotic function on the persistence of microbial symbionts within a natural host. Appl. Environ. Microbiol. 82, 5990–5996 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    79.Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    80.Essock-Burns, T., Bongrand, C., Goldman, W. E., Ruby, E. G. & McFall-Ngai, M. J. Interactions of symbiotic partners drive the development of a complex biogeography in the squid-vibrio symbiosis. mBio 11, e00853-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Sycuro, L. K., Ruby, E. G. & McFall-Ngai, M. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J. Morphol. 267, 555–568 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Koch, E. J., Miyashiro, T., McFall-Ngai, M. J. & Ruby, E. G. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 23, 1624–1634 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    83.Wollenberg, M. S., Preheim, S. P., Polz, M. F. & Ruby, E. G. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion. Environ. Microbiol. 14, 655–668 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Chun, C. K. et al. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl Acad. Sci. USA 105, 11323–11328 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.McFall-Ngai, M., Heath-Heckman, E. A., Gillette, A. A., Peyer, S. M. & Harvie, E. A. The secret languages of coevolved symbioses: insights from the Euprymna scolopes-Vibrio fischeri symbiosis. Semin. Immunol. 24, 3–8 (2012).PubMed 
    Article 

    Google Scholar 
    86.Moriano-Gutierrez, S. et al. Critical symbiont signals drive both local and systemic changes in diel and developmental host gene expression. Proc. Natl Acad. Sci. USA 116, 7990–7999 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Verma, S. C. & Miyashiro, T. Quorum sensing in the squid-Vibrio symbiosis. Int. J. Mol. Sci. 14, 16386–16401 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    88.Stabb, E. V., Schaefer, A., Bose, J. L. & Ruby, E. G. in Chemical Communication Among Bacteria (eds Winans, S. C. & Bassler, B. L.) 233–250 (ASM Press, 2008).89.Lupp, C. & Ruby, E. G. Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. J. Bacteriol. 187, 3620–3629 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Kimbrough, J. H. & Stabb, E. V. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci. Rep. 7, 11734 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    91.Kimbrough, J. H. & Stabb, E. V. Substrate specificity and function of the pheromone receptor AinR in Vibrio fischeri ES114. J. Bacteriol. 195, 5223–5232 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Studer, S. V., Mandel, M. J. & Ruby, E. G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 190, 5915–5923 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Cao, X. et al. The novel sigma factor-like regulator RpoQ controls luminescence, chitinase activity, and motility in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.00285-11 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Studer, S. V. et al. Non-native acylated homoserine lactones reveal that LuxIR quorum sensing promotes symbiont stability. Environ. Microbiol. 16, 2623–2634 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Boettcher, K. J. & Ruby, E. G. Depressed light emission by symbiotic Vibrio fischeri of the sepiolid squid Euprymna scolopes. J. Bacteriol. 172, 3701–3706 (1990).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    96.Septer, A. N. & Stabb, E. V. Coordination of the arc regulatory system and pheromone-mediated positive feedback in controlling the Vibrio fischeri lux operon. PLoS ONE 7, e49590 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Stabb, E. V. Could positive feedback enable bacterial pheromone signaling to coordinate behaviors in response to heterogeneous environmental cues? mBio https://doi.org/10.1128/mBio.00098-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Bose, J. L. et al. Bioluminescence in Vibrio fischeri is controlled by the redox-responsive regulator ArcA. Mol. Microbiol. 65, 538–553 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Lyell, N. L. et al. Cyclic AMP receptor protein regulates pheromone-mediated bioluminescence at multiple levels in Vibrio fischeri ES114. J. Bacteriol. 195, 5051–5063 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    100.Lyell, N. L., Dunn, A. K., Bose, J. L. & Stabb, E. V. Bright mutants of Vibrio fischeri ES114 reveal conditions and regulators that control bioluminescence and expression of the lux operon. J. Bacteriol. 192, 5103–5114 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Septer, A. N., Lyell, N. L. & Stabb, E. V. The iron-dependent regulator fur controls pheromone signaling systems and luminescence in the squid symbiont Vibrio fischeri ES114. Appl. Environ. Microbiol. 79, 1826–1834 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    102.Stoudenmire, J. L. et al. An iterative, synthetic approach to engineer a high-performance PhoB-specific reporter. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00603-18 (2018). This study not only provides a road map for synthetic promoter engineering in V. fischeri but also uncovers evidence for possible microenvironments present within different crypts of the E. scolopes light organ.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    103.Bose, J. L. et al. Contribution of rapid evolution of the luxR-luxI intergenic region to the diverse bioluminescence outputs of Vibrio fischeri strains isolated from different environments. Appl. Environ. Microbiol. 77, 2445–2457 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    104.Dunn, A. K. Vibrio fischeri metabolism: symbiosis and beyond. Adv. Microb. Physiol. 61, 37–68 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    105.Schwartzman, J. A. & Ruby, E. G. A conserved chemical dialog of mutualism: lessons from squid and vibrio. Microbes Infect. 18, 1–10 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    106.Pan, S. et al. Model-enabled gene search (MEGS) allows fast and direct discovery of enzymatic and transport gene functions in the marine bacterium Vibrio fischeri. J. Biol. Chem. 292, 10250–10261 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    107.Thompson, L. R. et al. Transcriptional characterization of Vibrio fischeri during colonization of juvenile Euprymna scolopes. Environ. Microbiol. 19, 1845–1856 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Wier, A. M. et al. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc. Natl Acad. Sci. USA 107, 2259–2264 (2010). In the first dual transcriptional study of an animal host and its symbionts, gene expression in both partners is shown to be regulated over a day–night cycle, revealing a daily remodelling of the crypt epithelial cells and a night-time provision of chitin to the symbionts.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    109.Sun, Y., Verma, S. C., Bogale, H. & Miyashiro, T. NagC represses N-acetyl-glucosamine utilization genes in Vibrio fischeri within the light organ of Euprymna scolopes. Front. Microbiol. 6, 741 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    110.Wasilko, N. P. et al. Sulfur availability for Vibrio fischeri growth during symbiosis establishment depends on biogeography within the squid light organ. Mol. Microbiol. 111, 621–636 (2019). This study sheds light on both the nutritional adaptability of V. fischeri and the complex biogeography of the light organ by demonstrating that this symbiont uses different sulfur sources within different regions of the light organ.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    111.Septer, A. N. et al. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol. Microbiol. 95, 283–296 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    112.Lyell, N. L. & Stabb, E. V. Symbiotic characterization of Vibrio fischeri ES114 mutants that display enhanced luminescence in culture. Appl. Environ. Microbiol. 79, 2480–2483 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    113.Lyell, N. L. et al. An expanded transposon mutant library reveals that Vibrio fischeri delta-aminolevulinate auxotrophs can colonize Euprymna scolopes. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.02470-16 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    114.Colton, D. M., Stoudenmire, J. L. & Stabb, E. V. Growth on glucose decreases cAMP-CRP activity while paradoxically increasing intracellular cAMP in the light-organ symbiont Vibrio fischeri. Mol. Microbiol. 97, 1114–1127 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    115.Miyashiro, T. et al. The N-acetyl-D-glucosamine repressor NagC of Vibrio fischeri facilitates colonization of Euprymna scolopes. Mol. Microbiol. 82, 894–903 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Adin, D. M., Visick, K. L. & Stabb, E. V. Identification of a cellobiose utilization gene cluster with cryptic beta-galactosidase activity in Vibrio fischeri. Appl. Environ. Microbiol. 74, 4059–4069 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Pan, M., Schwartzman, J. A., Dunn, A. K., Lu, Z. & Ruby, E. G. A single host-derived glycan impacts key regulatory nodes of symbiont metabolism in a coevolved mutualism. mBio 6, e00811 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    118.Boettcher, K. J., McFall-Ngai, M. J. & Ruby, E. G. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179, 65–73 (1996).Article 

    Google Scholar 
    119.Kremer, N. et al. The dual nature of haemocyanin in the establishment and persistence of the squid-vibrio symbiosis. Proc. Biol. Sci. 281, 20140504 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    120.Stabb, E. V. Shedding light on the bioluminescence “paradox”. ASM News 71, 223–229 (2005).
    Google Scholar 
    121.Septer, A. N., Bose, J. L., Dunn, A. K. & Stabb, E. V. FNR-mediated regulation of bioluminescence and anaerobic respiration in the light-organ symbiont Vibrio fischeri. FEMS Microbiol. Lett. 306, 72–81 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    122.Dunn, A. K. Alternative oxidase activity reduces stress in Vibrio fischeri cells exposed to nitric oxide. J. Bacteriol. https://doi.org/10.1128/JB.00797-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    123.Dunn, A. K. & Stabb, E. V. Genetic analysis of trimethylamine N-oxide reductases in the light organ symbiont Vibrio fischeri ES114. J. Bacteriol. 190, 5814–5823 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    124.Septer, A. N., Wang, Y., Ruby, E. G., Stabb, E. V. & Dunn, A. K. The haem-uptake gene cluster in Vibrio fischeri is regulated by Fur and contributes to symbiotic colonization. Environ. Microbiol. 13, 2855–2864 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    125.Graf, J. & Ruby, E. G. Novel effects of a transposon insertion in the Vibrio fischeri glnD gene: defects in iron uptake and symbiotic persistence in addition to nitrogen utilization. Mol. Microbiol. 37, 168–179 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    126.Eickhoff, M. J. & Bassler, B. L. Vibrio fischeri siderophore production drives competitive exclusion during dual-species growth. Mol. Microbiol. 114, 244–261 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    127.Ferretti, P. et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe 24, 133–145 e135 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    128.Zheng, H. et al. Division of labor in honey bee gut microbiota for plant polysaccharide digestion. Proc. Natl Acad. Sci. USA 116, 25909–25916 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    129.Aschtgen, M. S. et al. Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J. Bacteriol. 198, 2156–2165 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    130.Aschtgen, M. S., Wetzel, K., Goldman, W., McFall-Ngai, M. & Ruby, E. Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell. Microbiol. 18, 488–499 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    131.Lynch, J. B. et al. Ambient pH alters the protein content of outer membrane vesicles, driving host development in a beneficial symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00319-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    132.Franzenburg, S. et al. Distinct antimicrobial peptide expression determines host species-specific bacterial associations. Proc. Natl Acad. Sci. USA 110, E3730–E3738 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    133.Chen, F. et al. Bactericidal permeability-increasing proteins shape host-microbe interactions. mBio 8, e00040-17 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    134.Heath-Heckman, E. A. et al. Shaping the microenvironment: evidence for the influence of a host galaxin on symbiont acquisition and maintenance in the squid-Vibrio symbiosis. Environ. Microbiol. 16, 3669–3682 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    135.Wang, Y. et al. H-NOX-mediated nitric oxide sensing modulates symbiotic colonization by Vibrio fischeri. Proc. Natl Acad. Sci. USA 107, 8375–8380 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    136.Schwartzman, J. A. et al. Acidic pH promotes lipopolysaccharide modification and alters colonization in a bacteria-animal mutualism. Mol. Microbiol. 112, 1326–1338 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    137.Kwong, W. K. & Moran, N. A. Gut microbial communities of social bees. Nat. Rev. Microbiol. 14, 374–384 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    138.Murfin, K. E. et al. Xenorhabdus bovienii strain diversity impacts coevolution and symbiotic maintenance with Steinernema spp. nematode hosts. mBio 6, e00076 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    139.Wollenberg, M. S. & Ruby, E. G. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl. Environ. Microbiol. 75, 193–202 (2009). This is the first comparative genome-level study of light organ symbionts both between and within adult squid, suggesting that on average each crypt of an organ is colonized by one or two V. fischeri cells, potentially creating crypt-separated, clonal lineages within a polyclonal organ.CAS 
    PubMed 
    Article 

    Google Scholar 
    140.Tomich, M., Planet, P. J. & Figurski, D. H. The tad locus: postcards from the widespread colonization island. Nat. Rev. Microbiol. 5, 363–375 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    141.Gyllborg, M. C., Sahl, J. W., Cronin, D. C. III., Rasko, D. A. & Mandel, M. J. Draft genome sequence of Vibrio fischeri SR5, a strain isolated from the light organ of the Mediterranean squid Sepiola robusta. J. Bacteriol. 194, 1639 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    142.Bongrand, C. et al. Using colonization assays and comparative genomics to discover symbiosis behaviors and factors in Vibrio fischeri. mBio https://doi.org/10.1128/mBio.03407-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    143.Coryell, R. L. et al. Phylogeographic patterns in the Philippine archipelago influence symbiont diversity in the bobtail squid-Vibrio mutualism. Ecol. Evol. 8, 7421–7435 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    144.Soto, W., Rivera, F. M. & Nishiguchi, M. K. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. Microb. Ecol. 67, 700–721 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    145.Soto, W., Travisano, M., Tolleson, A. R. & Nishiguchi, M. K. Symbiont evolution during the free-living phase can improve host colonization. Microbiology 165, 174–187 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    146.Fidopiastis, P. M., von Boletzky, S. & Ruby, E. G. A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J. Bacteriol. 180, 59–64 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    147.Dillon, M. M., Sung, W., Lynch, M. & Cooper, V. S. Periodic variation of mutation rates in bacterial genomes associated with replication timing. mBio https://doi.org/10.1128/mBio.01371-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    148.Dillon, M. M., Sung, W., Sebra, R., Lynch, M. & Cooper, V. S. Genome-wide biases in the rate and molecular spectrum of spontaneous mutations in Vibrio cholerae and Vibrio fischeri. Mol. Biol. Evol. 34, 93–109 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    149.Wollenberg, M. S. & Ruby, E. G. Phylogeny and fitness of Vibrio fischeri from the light organs of Euprymna scolopes in two Oahu, Hawaii populations. ISME J. 6, 352–362 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    150.Koch, E. J. et al. The cytokine MIF controls daily rhythms of symbiont nutrition in an animal-bacterial association. Proc. Natl Acad. Sci. USA 117, 27578–27586 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    151.Sun, Y. et al. Intraspecific competition impacts Vibrio fischeri strain diversity during initial colonization of the squid light organ. Appl. Environ. Microbiol. 82, 3082–3091 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    152.Speare, L. et al. Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc. Natl Acad. Sci. USA 115, E8528–E8537 (2018). The finding that V. fischeri engages in biological ‘warfare’ to become the sole colonizer of a given crypt has provided new insight into the dynamics and processes controlling light organ population structure and strain competition in nature.CAS 
    PubMed 
    Article 

    Google Scholar 
    153.Speare, L., Smith, S., Salvato, F., Kleiner, M. & Septer, A. N. Environmental viscosity modulates interbacterial killing during habitat transition. mBio https://doi.org/10.1128/mBio.03060-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    154.Guckes, K. R. et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J. Bacteriol. https://doi.org/10.1128/JB.00221-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    155.Guckes, K. R., Cecere, A. G., Williams, A. L., McNeil, A. E. & Miyashiro, T. The bacterial enhancer binding protein VasH promotes expression of a Type VI secretion system in Vibrio fischeri during symbiosis. J. Bacteriol. https://doi.org/10.1128/JB.00777-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    156.Bultman, K. M., Cecere, A. G., Miyashiro, T., Septer, A. N. & Mandel, M. J. Draft genome sequences of type VI secretion system-encoding Vibrio fischeri strains FQ-A001 and ES401. Microbiol. Resour. Announc. https://doi.org/10.1128/MRA.00385-19 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    157.Doino, J. A. & McFall-Ngai, M. J. A transient exposure to symbiosis-competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189, 347–355 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    158.Dunn, A. K., Martin, M. O. & Stabb, E. V. Characterization of pES213, a small mobilizable plasmid from Vibrio fischeri. Plasmid 54, 114–134 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    159.Lyell, N. L., Dunn, A. K., Bose, J. L., Vescovi, S. L. & Stabb, E. V. Effective mutagenesis of Vibrio fischeri by using hyperactive mini-Tn5 derivatives. Appl. Environ. Microbiol. 74, 7059–7063 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    160.Stoudenmire, J. L., Black, M., Fidopiastis, P. M. & Stabb, E. V. Mutagenesis of Vibrio fischeri and other marine bacteria using hyperactive mini-Tn5 derivatives. Methods Mol. Biol. 2016, 87–104 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    161.Pollack-Berti, A., Wollenberg, M. S. & Ruby, E. G. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ. Microbiol. 12, 2302–2311 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    162.Visick, K. L., Hodge-Hanson, K. M., Tischler, A. H., Bennett, A. K. & Mastrodomenico, V. Tools for rapid genetic engineering of Vibrio fischeri. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.00850-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    163.Burgos, H. L. et al. Multiplexed competition in a synthetic squid light organ microbiome using barcode-tagged gene deletions. mSystems 5, e00846-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    164.Brooks, J. F. II, Gyllborg, M. C., Kocher, A. A., Markey, L. E. & Mandel, M. J. TfoX-based genetic mapping identifies Vibrio fischeri strain-level differences and reveals a common lineage of laboratory strains. J. Bacteriol. 197, 1065–1074 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    165.Califano, G. et al. Draft genome sequence of Aliivibrio fischeri strain 5LC, a bacterium retrieved from gilthead seabream (Sparus aurata) larvae reared in aquaculture. Genome Announc. 3, e00593-15 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    166.Hehemann, J.-H. et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7, 12860 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    167.Nikolakakis, K., Lehnert, E., McFall-Ngai, M. J. & Ruby, E. G. Use of hybridization chain reaction-fluorescent in situ hybridization to track gene expression by both partners during initiation of symbiosis. Appl. Environ. Microbiol. 81, 4728–4735 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Beating in on a stable partnership

    1.Visick, K. L., Stabb, E. V. & Ruby, E. G. A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00557-0 (2021).Article 

    Google Scholar 
    2.Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00567-y (2021).Article 

    Google Scholar 
    3.Koch, E. J., Moriano-Gutierrez, S., Ruby, E. G., McFall-Ngai, M. & Liebeke, M. The impact of persistent colonization by Vibrio fischeri on the metabolome of the host squid Euprymna scolopes. J. Exp. Biol. 223, (2020).4.Schwartzman, J. A. et al. The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc. Natl Acad. Sci. 112, 566–571 (2015).CAS 
    Article 

    Google Scholar 
    5.Brooks, J. F. & Mandel, M. J. The histidine kinase BinK is a negative regulator of biofilm formation and squid colonization. J. Bacteriol. 198, 2596–2607 (2016).Article 

    Google Scholar 
    6.Bultman, K. M., Cecere, A. G., Miyashiro, T., Septer, A. N. & Mandel, M. J. Draft genome sequences of type VI secretion system-encoding Vibrio fischeri strains FQ-A001 and ES401. Microbiol. Resour. Announc. 8, e00385-19 (2019).Article 

    Google Scholar 
    7.Guckes, K. R. et al. Incompatibility of Vibrio fischeri strains during symbiosis establishment depends on two functionally redundant hcp genes. J. Bacteriol. 201, e00221-19 (2019).Article 

    Google Scholar 
    8.Moriano-Gutierrez, S. et al. The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol. 18, e3000934 (2020).CAS 
    Article 

    Google Scholar 
    9.Koehler, S. et al. The model squid–vibrio symbiosis provides a window into the impact of strain-and species-level differences during the initial stages of symbiont engagement. Environ. Microbiol. 21, 3269–3283 (2019).CAS 
    Article 

    Google Scholar 
    10.Bosch, T. C. G. & Hadfield, M. G. Cellular Dialogues in the Holobiont (CRC Press, 2020). More

  • in

    Vocal universals and geographic variations in the acoustic repertoire of the common bottlenose dolphin

    1.Foster, S. A. & Endler, J. A. Geographic Variation in Behavior: Perspectives on Evolutionary Mechanisms 1–336 (Oxford University Press, 1999).Book 

    Google Scholar 
    2.Mundiger, P. C. Microgeographic and macrogeographic variation in the acquired vocalizations of birds. In Acoustic Communication in Birds 147–208 (Academic Press, 1982).
    Google Scholar 
    3.Green, S. Dialects in Japanese monkeys: Vocal learning and cultural transmission of locale-specific vocal behavior?. Z. Tierpsychol. J. Comp. Ethol. 38(3), 304–314 (1975).CAS 
    Article 

    Google Scholar 
    4.Hodun, A., Snowdon, C. T. & Soini, P. Subspecific variation in the long calls of the tamarin, Saguinus fusckollis. Z. Tierpsychol. 57, 97–110 (1981).Article 

    Google Scholar 
    5.Ford, J. K. B. & Fisher, H. D. Group-specific dialects of killer whales (Orcinus orca) in British Columbia. In Communication and Behavior of Whales 129–161 (Westview Press for the American Association for the Advancement of Science, 1983).
    Google Scholar 
    6.Filatova, O. A. et al. Call diversity in the North Pacific killer whale populations: Implications for dialect evolution and population history. Anim. Behav. 83, 595–603 (2012).Article 

    Google Scholar 
    7.Rendell, L. E. & Whitehead, H. Vocal clans in sperm whales (Physeter macrocephalus). Proc. Biol. Sci. R. Soc. 270, 225–231 (2003).CAS 
    Article 

    Google Scholar 
    8.Gero, S., Whitehead, H. & Rendell, L. Individual, unit and vocal clan level identity cues in sperm whale codas. R. Soc. Open Sci. 3, 1–12 (2016).
    Google Scholar 
    9.Cise, A. M., Van Mahaffy, S. D., Baird, R. W., Mooney, T. A. & Barlow, J. Song of my people: Dialect differences among sympatric social groups of short-finned pilot whales in Hawai’i. Behav. Ecol. Sociobiol. 72, 1–13 (2018).Article 

    Google Scholar 
    10.Podos, J. & Warren, P. S. The evolution of geographic variation in birdsong. Adv. Study Behav. 37, 403–458 (2007).Article 

    Google Scholar 
    11.Walker, T. J. Factors responsible for intraspecific variation in the calling songs of crickets. Evolution 16, 407–428 (1962).Article 

    Google Scholar 
    12.Velásquez, N. A. Geographic variation in acoustic communication in anurans and its neuroethological implications. J. Physiol. 108, 167–173 (2014).
    Google Scholar 
    13.Amorim, T. O. S., Andriolo, A., Reis, S. S. & dos Santos, M. E. Vocalizations of Amazon river dolphins (Inia geoffrensis): Characterization, effect of physical environment and differences between populations. J. Acoust. Soc. Am. 139, 1285–1293 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    14.Moron, J. R. et al. Spinner dolphin whistle in the Southwest Atlantic Ocean: Is there a geographic variation?. J. Acoust. Soc. Am. 138, 2495–2498 (2015).ADS 
    PubMed 
    Article 

    Google Scholar 
    15.Bjørgesæter, A., Ugland, K. I. & Bjørge, A. Geographic variation and acoustic structure of the underwater vocalization of harbor seal (Phoca vitulina) in Norway, Sweden and Scotland. J. Acoust. Soc. Am. 116, 2459–2468 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    16.Janik, V. & Slater, P. The different roles of social learning in vocal communication. Anim. Behav. 60, 1–11 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Lameira, A. R., Delgado, R. A. & Wich, S. A. Review of geographic variation in terrestrial mammalian acoustic signals: Human speech variation in a comparative perspective. J. Evol. Psychol. 8, 309–332 (2010).Article 

    Google Scholar 
    18.Janik, V. Acoustic communication networks in marine mammals. In Animal Communication Networks 390–415 (University Press, 2005).
    Google Scholar 
    19.Deecke, V. B., Ford, J. K. B. & Spong, P. Dialect change in resident killer whales: Implications for vocal learning and cultural transmission. Anim. Behav. 60, 629–638 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Weilgart, L. & Whitehead, H. Group-specific dialects and geographical variation in coda repertoire in South Pacific sperm whales. Behav. Ecol. Sociobiol. 40, 277–285 (1997).Article 

    Google Scholar 
    21.Azevedo, A. F. & Van Sluys, M. Whistles of tucuxi dolphins (Sotalia fluviatilis) in Brazil: Comparisons among populations. J. Acoust. Soc. Am. 117, 1456–1464 (2005).ADS 
    PubMed 
    Article 

    Google Scholar 
    22.Bazúa-Durán, C. & Au, W. W. L. Geographic variations in the whistles of spinner dolphins (Stenella longirostris) of the Main Hawaiian Islands. J. Acoust. Soc. Am. 116, 3757–3769 (2004).ADS 
    PubMed 
    Article 

    Google Scholar 
    23.Hawkins, E. R. Geographic variations in the whistles of bottlenose dolphins (Tursiops aduncus) along the east and west coasts of Australia. J. Acoust. Soc. Am. 128, 924–935 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Wang, D., Würsig, B. & Evans, W. Whistles of bottlenose dolphins: Comparisons among populations. Aquat. Mamm. 21, 65–77 (1995).
    Google Scholar 
    25.Connor, R. C., Wells, R. S., Mann, J. & Read, A. J. The bottlenose dolphin: Social relationships in a fission–fusion society. In Cetacean Societies: Field Studies of Dolphins and Whales 91–126 (The University of Chicago Press, 2000).
    Google Scholar 
    26.Costa, A. P. B. et al. Ecological divergence and speciation in common bottlenose dolphins in the western South Atlantic. J. Evol. Biol. 34, 16–32 (2021).PubMed 
    Article 

    Google Scholar 
    27.Hoelzel, A. R., Potter, C. W. & Best, P. B. Genetic differentiation between parapatric “nearshore” and “offshore” populations of the bottlenose dolphin. Proc. R. Soc. Lond. B 265, 1177–1183 (1998).CAS 
    Article 

    Google Scholar 
    28.Louis, M. et al. Habitat-driven population structure of bottlenose dolphins, Tursiops truncatus, in the North-East Atlantic. Mol. Ecol. 23, 857–874 (2014).PubMed 
    Article 

    Google Scholar 
    29.Wells, R. S., Natoli, A. & Braulik, G. Tursiops truncatus. The IUCN Red List of Threatened Species (2019).30.Marino, L. et al. Cetaceans have complex brains for complex cognition. PLoS Biol. 5, 966–972 (2007).CAS 
    Article 

    Google Scholar 
    31.Janik, V. & Slater, P. Context-specific use suggests that bottlenose dolphin signature whistles are cohesion calls. Anim. Behav. 56, 829–838 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Sayigh, L. et al. Individual recognition in wild bottlenose dolphins: a field test using playback experiments. Anim. Behav. 57, 41–50 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Au, W. W. L. Echolocation signals of wild dolphins. Acoust. Phys. 50, 454–462 (2004).ADS 
    Article 

    Google Scholar 
    34.Herzing, D. & dos Santos, M. E. Functional aspects of echolocation in dolphins. In Echolocation in Bats and Dolphins 386–393 (The University of Chicago Press, 2004).
    Google Scholar 
    35.Jensen, F. H., Bejder, L., Wahlberg, M. & Madsen, P. T. Biosonar adjustments to target range of echolocating bottlenose dolphins (Tursiops sp.) in the wild. J. Exp. Biol. 212, 1078–1086 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Diáz-López, B. & Shirai, J. Mediterranean common bottlenose dolphin’s repertoire and communication use. In Dolphins: Anatomy, Behavior, and Threats 129–148 (Nova Science Publishers, 2009).
    Google Scholar 
    37.Herzing, D. L. Acoustics and social behavior of wild dolphins: Implications for a sound society. In Hearing by Whales and Dolphins Springer Handbook of Auditory Research 225–272 (Springer, 2000).
    Google Scholar 
    38.dos Santos, M. E., Ferreira, A. J. & Harzen, S. Rhythmic sound sequences emitted by aroused bottlenose dolphins in the Sado estuary, Portugal. In Sensory Systems of Aquatic Mammals 325–334 (De Spil Publishers, 1995).
    Google Scholar 
    39.Luís, A. R., Alves, I. S., Sobreira, F. V., Couchinho, M. N. & dos Santos, M. E. Brays and bits: Information theory applied to acoustic communication sequences of bottlenose dolphins. Bioacoustics 28, 286–296 (2019).Article 

    Google Scholar 
    40.Jones, B., Zapetis, M., Samuelson, M. M. & Ridgway, S. Sounds produced by bottlenose dolphins (Tursiops): A review of the defining characteristics and acoustic criteria of the dolphin vocal repertoire. Bioacoustics 29(4), 399–440 (2020).Article 

    Google Scholar 
    41.May-Collado, L. J. & Wartzok, D. A. comparison of bottlenose dolphin whistles in the Atlantic ocean: Factors promoting whistle variation. J. Mammal. 89, 1229–1240 (2008).Article 

    Google Scholar 
    42.Jones, G. J. & Sayigh, L. S. Geographic variation in rates of vocal production of free-ranging bottlenose dolphins. Mar. Mamm. Sci. 18, 374–393 (2002).Article 

    Google Scholar 
    43.La Manna, G. et al. Assessing geographical variation on whistle acoustic structure of three Mediterranean populations of common bottlenose dolphin (Tursiops truncatus). Behaviour 154, 583–607 (2017).Article 

    Google Scholar 
    44.Papale, E. et al. Acoustic divergence between bottlenose dolphin whistles from the Central-Eastern North Atlantic and Mediterranean Sea. Acta Ethologica 17, 155–165 (2014).Article 

    Google Scholar 
    45.R Development Core Team. R: A Language and Environment for Statistical Computing (2018).46.Wickham, H. ggplot2: Elegant Graphics for Data Analysis. https://ggplot2.tidyverse.org (Springer, 2016).47.Mccomb, K. & Semple, S. Coevolution of vocal communication and sociality in primates. Biol. Lett. 1, 381–385 (2005).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Leighton, G. M. Cooperative breeding influences the number and type of vocalizations in avian lineages. Proc. R. Soc. B Biol. Sci. 284, 1–9 (2017).
    Google Scholar 
    49.Freeberg, T. M., Dunbar, R. I. M. & Ord, T. J. Social complexity as a proximate and ultimate factor in communicative complexity. Philos. Trans. R. Soc. B Biol. Sci. 367, 1785–1801 (2012).Article 

    Google Scholar 
    50.Pollard, K. A. & Blumstein, D. T. Evolving communicative complexity: insights from rodents and beyond. Philos. Trans. R. Soc. B Biol. Sci. 367, 1869–1878 (2012).Article 

    Google Scholar 
    51.Gustison, M. L., Le Roux, A. & Bergman, T. J. Derived vocalizations of geladas (Theropithecus gelada) and the evolution of vocal complexity in primates. Philos. Trans. R. Soc. B Biol. Sci. 367, 1847–1859 (2012).Article 

    Google Scholar 
    52.Augusto, J. F., Rachinas-Lopes, P. & dos Santos, M. E. Social structure of the declining resident community of common bottlenose dolphins in the Sado Estuary, Portugal. J. Mar. Biol. Assoc. U. K. 92, 1773–1782 (2012).Article 

    Google Scholar 
    53.Luís, A. R., Couchinho, M. N. & dos Santos, M. E. Changes in the acoustic behavior of resident bottlenose dolphins near operating vessels. Mar. Mamm. Sci. 30, 1417–1426 (2014).Article 

    Google Scholar 
    54.Ridgway, S. H., Moore, P. W., Carder, D. A. & Romano, T. A. Forward shift of feeding buzz components of dolphins and belugas during associative learning reveals a likely connection to reward expectation, pleasure and brain dopamine activation. J. Exp. Biol. 217, 2910–2919 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Luís, A. R., Couchinho, M. N. & dos Santos, M. E. A quantitative analysis of pulsed signals emitted by wild bottlenose dolphins. PLoS ONE 11, 1–11 (2016).
    Google Scholar 
    56.Nowacek, D. P. Acoustic ecology of foraging bottlenose dolphins (Tursiops truncatus) habitat-specific use of three sound types. Mar. Mamm. Sci. 21, 587–602 (2005).Article 

    Google Scholar 
    57.Caldwell, M. C., Caldwell, D. K. & Tyack, P. L. Review of the signature-whistle-hypothesis for the Atlantic bottlenose dolphin, Tursiops truncatus. In The Bottlenose Dolphin 199–234 (Academic Press, 1990).
    Google Scholar 
    58.Laland, K. N. & Janik, V. M. The animal cultures debate. Evolution 21, 542–547 (2006).
    Google Scholar 
    59.Kershenbaum, A., Sayigh, L. S. & Janik, V. M. The encoding of individual identity in dolphin signature whistles: How much information is needed?. PLoS ONE 8, e77671 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.King, S. L. & Janik, V. M. Bottlenose dolphins can use learned vocal labels to address each other. Proc. Natl. Acad. Sci. U.S.A. 110, 13216–13221 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Sayigh, L., Esch, H., Wells, R. & Janik, V. Facts about signature whistles of bottlenose dolphins, Tursiops truncatus. Anim. Behav. 74, 1631–1642 (2007).Article 

    Google Scholar 
    62.Buckstaff, K. C. Effects of watercraft noise on the acoustic behavior of bottlenose dolphins, Tursiops truncatus, in Sarasota Bay, Florida. Mar. Mamm. Sci. 20, 709–725 (2004).Article 

    Google Scholar 
    63.Morisaka, T., Shinohara, M., Nakahara, F. & Akamatsu, T. Geographic variations in the whistles among three Indo-Pacific bottlenose dolphin. Fish. Sci. 71, 568–576 (2005).CAS 
    Article 

    Google Scholar 
    64.May-Collado, L. J. & Quiñones-Lebrón, S. G. Dolphin changes in whistle structure with watercraft activity depends on their behavioral state. J. Soc. Am. 135, EL193–EL198 (2014).ADS 

    Google Scholar 
    65.Garland, E. C. et al. Report dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Curr. Biol. 21, 687–691 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Whitehead, H. & Rendell, L. The Cultural Lives of Whales and Dolphins (The University of Chicago Press, 2015).
    Google Scholar 
    67.Herzing, D. L. Vocalizations and associated underwater behavior of free-ranging Atlantic spotted dolphins, Stenella frontalis and bottlenose dolphins, Tursiops truncatus. Aquat. Mamm. 22, 61–79 (1996).
    Google Scholar 
    68.May-Collado, L. J. Changes in whistle structure of two dolphin species during interspecific associations. Ethology 116, 1065–742010 (2010).Article 

    Google Scholar 
    69.Catchpole, C. K. The evolution of bird sounds in relation to mating and spacing behavior. In Acoustic Communication in Birds 297–319 (Academic Press, 1982).
    Google Scholar 
    70.Herman, L. M. The multiple functions of male song within the humpback whale (Megaptera novaeangliae) mating system: Review, evaluation, and synthesis. Biol. Rev. 92, 1795–1818 (2017).PubMed 
    Article 

    Google Scholar 
    71.Janik, V. M. Food-related bray calls in wild bottlenose dolphins (Tursiops truncatus). Proc. R. Soc. B Biol. Sci. 267, 923–927 (2000).CAS 
    Article 

    Google Scholar 
    72.King, S. L. & Janik, V. M. Come dine with me: food-associated social signalling in wild bottlenose dolphins (Tursiops truncatus). Anim. Cogn. 18, 969–974 (2015).PubMed 
    Article 

    Google Scholar 
    73.Herzing, D. L. Synchronous and rhythmic vocalizations and correlated underwater behavior of free-ranging Atlantic Spotted Dolphins (Stenella frontalis) and Bottlenose Dolphins (Tursiops truncatus) in the Bahamas. Anim. Behav. Cogn. 2, 14–29 (2015).Article 

    Google Scholar 
    74.Pleslić, G. et al. The abundance of common bottlenose dolphins (Tursiops truncatus) in the former special marine reserve of the Cres-Lošinj Archipelago, Croatia. Aquat. Conserv. Mar. Freshwat. Ecosyst. 25, 125–137 (2015).Article 

    Google Scholar 
    75.Rako-Gospic, N., Radulovi, M., Vu, T., Plesli, G. & Mackelworth, P. Factor associated variations in the home range of a resident Adriatic common bottlenose dolphin population. Mar. Pollut. Bull. 124, 234–244 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Rako, N. et al. Leisure boating noise as a trigger for the displacement of the bottlenose dolphins of the Cres-Lošinj archipelago (northern Adriatic Sea, Croatia). Mar. Pollut. Bull. 68, 77–84 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Barragán-Barrera, D. C. et al. High genetic structure and low mitochondrial diversity in bottlenose dolphins of the Archipelago of Bocas del Toro, Panama: A population at risk?. PLoS ONE 12, 1–22 (2017).Article 
    CAS 

    Google Scholar 
    78.Ey, E. & Fischer, J. The, “Acoustic Adaptation Hypothesis”—A review of the evidence from birds, anurans and mammals. Bioacoustics 19, 21–48 (2009).Article 

    Google Scholar 
    79.Papale, E., Azzolin, M. & Giacoma, C. Vessel traffic affects bottlenose dolphin (Tursiops truncatus) behaviour in waters surrounding Lampedusa Island, south Italy. J. Mar. Biol. Assoc. U.K. 92, 1877–1885 (2012).Article 

    Google Scholar 
    80.Gridley, T., Nastasi, A., Kriesell, H. J. & Elwen, S. H. The acoustic repertoire of wild common bottlenose dolphins (Tursiops truncatus) in Walvis Bay, Namibia. Bioacoustics 24, 153–174 (2015).Article 

    Google Scholar 
    81.Au, W. W. L. & Hastings, M. C. Emission of social sounds by marine animals. In Principles of Marine Bioacoustics 401–499 (Springer, 2008).
    Google Scholar 
    82.Bázua-Duran, C. & Bazúa-Durán, C. Differences in the whistle characteristics and repertoire of Bottlenose and Spinner Dolphins. An. Acad. Bras. Ciênc. 76, 386–392 (2004).PubMed 
    Article 

    Google Scholar 
    83.Lammers, M. O., Au, W. W. L. & Herzing, D. L. The broadband social acoustic signaling behavior of spinner and spotted dolphins. J. Acoust. Soc. Am. 114, 1629–1639 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    84.Simard, P. et al. Low frequency narrow-band calls in bottlenose dolphins (Tursiops truncatus): Signal properties, function, and conservation implications. J. Acoust. Soc. Am. 130, 3068–3076 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    85.Luís, A. R., Couchinho, M. N. & dos Santos, M. E. Signature whistles in wild bottlenose dolphins: Long-term stability and emission rates. Acta Ethologica 19, 113–122 (2016).Article 

    Google Scholar 
    86.Ford, J. K. B. Vocal traditions among resident killer whales (Orcinus orca) in coastal waters of British Columbia. Can. J. Zool. 69, 1454–1483 (1991).Article 

    Google Scholar 
    87.Papale, E. et al. Biphonic calls as signature whistles in a free-ranging bottlenose dolphin. Bioacoustics 24, 223–231 (2015).Article 

    Google Scholar 
    88.Elliser, C. R. & Herzing, D. L. Long-term interspecies association patterns of Atlantic bottlenose dolphins, Tursiops truncatus, and Atlantic spotted dolphins, Stenella frontalis, in the Bahamas. Mar. Mamm. Sci. 32, 38–56 (2015).Article 

    Google Scholar 
    89.Hoffmann-Kuhnt, M., Herzing, D. L., Ho, A. & Chitre, M. A. Whose line sound is it anyway? Identifying the vocalizer on underwater video by localizing with a hydrophone array. Anim. Behav. Cogn. 3, 288–298 (2016).Article 

    Google Scholar 
    90.Lima, I. M. S. et al. Whistle comparison of four delphinid species in Southeastern Brazil. J. Acoust. Soc. Am. 139, EL124 (2016).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    New evidence from exceptionally “well-preserved” specimens sheds light on the structure of the ammonite brachial crown

    1.Klug, C. & Lehmann, J. Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. in Ammonoid Paleobiology: From Anatomy to Ecology 507–529 (Springer, 2015).2.Klug, C. et al. Anatomy and evolution of the first Coleoidea in the Carboniferous. Commun. Biol. 2, 1–12 (2019).Article 

    Google Scholar 
    3.Klug, C., Schweigert, G., Tischlinger, H. & Pochmann, H. Failed prey or peculiar necrolysis? Isolated ammonite soft body from the Late Jurassic of Eichstätt (Germany) with complete digestive tract and male reproductive organs. Swiss J. Palaeontol. 140, 1–14 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Maeda, H. & Seilacher, A. Ammonoid taphonomy. In Ammonoid paleobiology 543–578 (Springer, 1996).5.Wani, R. & Gupta, N. S. Ammonoid taphonomy. In Ammonoid Paleobiology: from Macroevolution to Paleogeography 5, 555–598 (2015).6.Klug, C. & Vallon, L. H. Regurgitated ammonoid remains from the latest Devonian of Morocco. Swiss J. Palaeontol. 138, 87–97 (2019).Article 

    Google Scholar 
    7.Hoffmann, R., Stevens, K., Keupp, H., Simonsen, S. & Schweigert, G. Regurgitalites—a window into the trophic ecology of fossil cephalopods. J. Geol. Soc. 177, 82–102 (2020).ADS 
    Article 

    Google Scholar 
    8.Gale, A. S., Kennedy, W. J. & Martill, D. Mosasauroid predation on an ammonite-Pseudaspidoceras-from the Early Turonian of south-eastern Morocco. Acta Geol. Pol. 67, 31–46 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Vullo, R. Direct evidence of hybodont shark predation on Late Jurassic ammonites. Naturwissenschaften 98, 545–549 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Ibáñez, C. M. & Keyl, F. Cannibalism in cephalopods. Rev. Fish Biol. Fish. 20, 123–136 (2010).Article 

    Google Scholar 
    11.Lehmann, J., Solarczyk, A. & Friedrich, O. Belemnoid arm hooks from the Middle-Upper Albian boundary interval: taxonomy and palaeoecological significance. Paläontol. Z. 85, 287–302 (2011).Article 

    Google Scholar 
    12.Stevens, G. Palaeobiological and morphological aspects of Jurassic Onychites (cephalopod hooks) and new records from the New Zealand Jurassic. NZ J. Geol. Geophys. 53, 395–412 (2010).Article 

    Google Scholar 
    13.Klug, C., Davesne, D., Fuchs, D. & Argyriou, T. First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece. Swiss J. Palaeontol. 139, 1–13 (2020).Article 

    Google Scholar 
    14.Engeser, T. & Reitner, J. Beiträge zur Systematik von phragmokontragenden Coleoiden aus dem Untertithonium (Malm zeta,” Solnhofener Plattenkalk”) von Solnhofen und Eichstätt (Bayern). N. Jb. Geol. und Paläont. 527–545 (1981).15.Reitner, J. & Urlichs, M. Echte Weichteilbelemniten aus dem Untertoarcium (Posidonienschiefer) Südwestdeutschlands. N. Jb. Geol. Paläont. 165, 450–465 (1983).
    Google Scholar 
    16.Fuchs, D., Donovan, D. T. & Keupp, H. Taxonomic revision of “Onychoteuthis” conocauda Quenstedt, 1849 (Cephalopoda: Coleoidea). N. Jb. Geol. Pal. A. 270, 245–255 (2013).Article 

    Google Scholar 
    17.Donovan, D. T. & Crane, M. D. The type material of the Jurassic cephalopod Belemnotheutis. Palaeontology 35, 273–296 (1992).
    Google Scholar 
    18.Klug, C., Schweigert, G., Fuchs, D. & Dietl, G. First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany). Lethaia 43, 445–456 (2010).Article 

    Google Scholar 
    19.Hart, M. B., Hughes, Z., Page, K. N., Price, G. D. & Smart, C. W. Arm hooks of coleoid cephalopods from the Jurassic succession of the Wessex Basin, Southern England. Proc. Geol. Assoc. 130, 326–338 (2019).Article 

    Google Scholar 
    20.Doyle, P. & Shakides, E. V. The Jurassic Belemnite Suborder Belemnotheutina. Palaeontology 47, 983–998 (2004).Article 

    Google Scholar 
    21.Doguzhaeva, L. et al. An Early Triassic gladius associated with soft tissue remains from Idaho, USA—a squid-like coleoid cephalopod at the onset of Mesozoic Era. APP 63, 341–355 (2018).Article 

    Google Scholar 
    22.Doguzhaeva, L. A., Summesberger, H., Mutvei, H. & Brandstaetter, F. The mantle, ink sac, ink, arm hooks and soft body debris associated with the shells in Late Triassic coleoid cephalopod Phragmoteuthis from the Austrian Alps. Palaeoworld 16, 272–284 (2007).Article 

    Google Scholar 
    23.Engeser, T. S. & Clarke, M. R. Cephalopod hooks, both recent and fossil. in Paleontology and Neontology of Cephalopods 133–151 (Elsevier, 1988).24.Johnson, R. G. & Richardson, E. S. Ten-armed fossil cephalopod from the Pennsylvanian of Illinois. Science 159, 526–528 (1968).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Fuchs, D. & Hoffmann, R. Treatise Online no. 91: Part M, Chapter 10: Arm Armature in Belemnoid Coleoids. Treatise Online (2017).26.Fuchs, D., von Boletzky, S. & Tischlinger, H. New evidence of functional suckers in belemnoid coleoids (Cephalopoda) weakens support for the ‘Neocoleoidea’ concept. J. Molluscan Stud. 76, 404–406 (2010).Article 

    Google Scholar 
    27.Fuchs, D., Heyng, A. M. & Keupp, H. Acanthoteuthis problematica Naef, 1922, an almost forgotten taxon and its role in the interpretation of cephalopod arm armatures. N. Jb. Geol. Pal. A. 269, 241–250 (2013).Article 

    Google Scholar 
    28.Young, R. E., Vecchione, M. & Donovan, D. T. The evolution of coleoid cephalopods and their present biodiversity and ecology. S. Afr. J. Mar. Sci. 20, 393–420 (1998).Article 

    Google Scholar 
    29.Landman, N. H. & Waagé, K. M. Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Bull. AMNH 215, 257 (1993).
    Google Scholar 
    30.Kennedy, W. J., Landman, N. H., Cobban, W. A. & Larson, N. L. Jaws and Radulae in Rhaeboceras, a Late Cretaceous Ammonite. 20 (2002).31.Kruta, I., Landman, N., Rouget, I., Cecca, F. & Tafforeau, P. The radula of the Late Cretaceous scaphitid ammonite Rhaeboceras halli (Meek and Hayden, 1856). Palaeontology 56, 9–14 (2013).Article 

    Google Scholar 
    32.Kruta, I., Bardin, J., Smith, C. P. A., Tafforeau, P. & Landman, N. H. Enigmatic hook-like structures in Cretaceous ammonites (Scaphitidae). Palaeontology 63, 301–312 (2020).Article 

    Google Scholar 
    33.Miserez, A. et al. Microstructural and biochemical characterization of the nanoporous sucker rings from Dosidicus gigas. Adv. Mater. 21, 401–406 (2009).CAS 
    Article 

    Google Scholar 
    34.Kulicki, C. & Szaniawski, K. Cephalopod arm hooks from the Jurassic of Poland. Acta Palaeontol. Pol. 17, 379–419 (1972).
    Google Scholar 
    35.Jereb, P. & Roper, C. F. E. FAO Cephalopods of the World No. 4 Vol. 2, Oegopsid and Myopsid squids, 605 (Rome, 2010).36.Riegraf, W. v, Werner, G. & Lörcher, F. Der Posidonienschiefer: Biostratigraphie, Fauna und Fazies des Südwestdeutschen Untertoarciums, 1–195. (F. Enke, 1984)..37.Sasaki, M. A monograph of dibranchiate cephalopods of the Japanese and adjacent waters. J. Coll. Agric. Hokkaido Univ. 20, 1–357 (1929).
    Google Scholar 
    38.Evans, A. A systematic review of the squid family Cranchiidae (Cephalopoda: Oegopsida) in the Pacific Ocean. (PhD diss., Auckland University of Technology, 2018).39.Naef, A. Die fossilen Tintenfische. 322 pp. (1922).40.Kristensen, T. K. Scanning electron microscopy of hook development in Gonatus fabricii (Lichtenstein, 1818) (Mollusca: Cephalopoda). Vidensk. Meddel. Natuirist. Foren. Kjobenhavn. 140, 111–116 (1977).41.Hart, M. B., Arratia, G., Moore, C. & Ciotti, B. J. Life and death in the Jurassic seas of Dorset, Southern England. Proc. Geol. Assoc. 131, 629–638 (2020).Article 

    Google Scholar 
    42.Jenny, D. et al. Predatory behaviour and taphonomy of a Jurassic belemnoid coleoid (Diplobelida, Cephalopoda). Sci. Rep. 9, 1–11 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    43.Kröger, B., Vinther, J. & Fuchs, D. Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules: Extant cephalopods are younger than previously realised and were under major selection to become agile, shell-less predators. BioEssays 33, 602–613 (2011).PubMed 
    Article 
    CAS 

    Google Scholar 
    44.Jereb, P. & Roper, C. F. Cephalopods of the world. An annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiadariidae, Idiosepiidae and Spirulidae). 262 (2006).45.Bello, G., Potoschi, A. & Berdar, A. Adult of Ancistrocheirus lesueurii caught in the straits of Messina (Cephalopoda: Ancistrocheiridae). Bollettino Malacologico 29, 259–266 (1993).
    Google Scholar 
    46.Okutani, T. Rare and interesting squid from Japan V.: A gravid female of Ancistrocheirus lesueuri (D’ORBIGNY, 1839) Collected in the Kuroshio Area (Oegopsida: Enoploteuthidae). Venus (Japanese Journal of Malacology) 35, 73–81 (1976).47.Tsuchiya, K. Abralia fasciolata, a new species of enoploteuthid squid from the western Indian Ocean (Cephalopoda: Oegopsida). Bull. Natl. Sci. Museum 17, 69–79 (1991).
    Google Scholar 
    48.Hidaka, K. & Kubodera, T. Squids of the genus Abralia (Cephalopoda: Enoploteuthidae) from the western tropical Pacific with a description of Abralia omiae, a new species. Bull. Mar. Sci. 66, 417–443 (2000).
    Google Scholar 
    49.Bolstad, K. S. R. Systematics of the Onychoteuthidae Gray, 1847 (Cephalopoda: Oegopsida). Zootaxa 2696, 1–186 (2010).Article 

    Google Scholar 
    50.Hoffmann, R., Weinkauf, M. F. G. & Fuchs, D. Grasping the shape of belemnoid arm hooks—a quantitative approach. Paleobiology 43, 304–320 (2017).Article 

    Google Scholar 
    51.Mangold K. Les organes génitaux. In Traité de zoologie, Céphalopodes Tome V fascicule 4, Grassé, P. P (ed). 459–492. (Masson, 1989)52.Rosa, R. & Seibel, B. A. Voyage of the argonauts in the pelagic realm: physiological and behavioural ecology of the rare paper nautilus, Argonauta nouryi. ICES J. Mar. Sci. 67, 1494–1500 (2010).Article 

    Google Scholar 
    53.Jackson, G. D. & O’Shea, S. Unique hooks in the male scaled squid Lepidoteuthis grimaldi. J. Mar. Biol. Ass. 83, 1099–1100 (2003).Article 

    Google Scholar 
    54.Naglik, C., Tajika, A., Chamberlain, J. & Klug, C. Ammonoid locomotion. In Ammonoid Paleobiology: From anatomy to ecology 649–688 (Springer, 2015).55.Hoffmann, R., Lemanis, R., Naglik, C. & Klug, C. Ammonoid buoyancy. In Ammonoid paleobiology: From Anatomy to Ecology 613–648 (Springer, 2015).56.Ebel, K. Swimming abilities of ammonites and limitations. Paläontol. Z. 64, 25–37 (1990).Article 

    Google Scholar 
    57.Cobban, W. A., Walaszczyk, I., Obradovich, J. D. & McKinney, K. C. A USGS zonal table for the Upper Cretaceous middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. U.S. Geol. Surv. Open-File Rep. 1250, 45 (2006).
    Google Scholar 
    58.Landman, N. H., Kennedy, W. J., Cobban, W. A. & Larson, N. L. Scaphites of the “Nodosus Group” from the Upper Cretaceous (Campanian) of the Western Interior of North America. Bull. Am. Mus. Nat. Hist. 342, 1–242 (2010).Article 

    Google Scholar 
    59.Lee, H., Chung, M. K., Kang, H., Kim, B.-N. & Lee, D. S. Computing the Shape of Brain Networks Using Graph Filtration and Gromov-Hausdorff Metric. in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2011. 6892, 302–309 (Springer Berlin Heidelberg, 2011).60.Xia, K. & Wei, G.-W. Persistent homology analysis of protein structure, flexibility, and folding. Int. J. Numer. Methods Biomed. Eng. 30, 814–844 (2014).MathSciNet 
    Article 

    Google Scholar 
    61.Townsend, J., Micucci, C. P., Hymel, J. H., Maroulas, V. & Vogiatzis, K. D. Representation of molecular structures with persistent homology for machine learning applications in chemistry. Nat. Commun. 11, 1–9 (2020).
    Google Scholar 
    62.Xia, K. Persistent homology analysis of ion aggregations and hydrogen-bonding networks. Phys. Chem. Chem. Phys. 13, 13448–13460 (2018).Article 

    Google Scholar 
    63.Krishnapriyan, A. S., Montoya, J., Hummelshøj, J. & Morozov, D. Persistent homology advances interpretable machine learning for nanoporous materials. arXiv:2010.00532 [cond-mat, physics:physics] (2020).64.Fasy, B. T., Kim, J., Lecci, F. & Maria, C. Introduction to the R package TDA. arXiv preprint arXiv:1411.1830 (2014).65.Adler, D., Nenadic, O. & Zucchini, W. Rgl: A r-library for 3d visualization with opengl. in Proceedings of the 35th Symposium of the Interface: Computing Science and Statistics, Salt Lake City 35, 1–11 (2003).66.Roper, C. F., Sweeney, M. J. & Nauen, C. Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries, 277 (FAO Fish Synopsys, 1984). More

  • in

    Climate change drives widespread shifts in lake thermal habitat

    OverviewWe used long-term time series of lake temperature profiles to determine the magnitude of thermal habitat change in 139 widely distributed lakes. Time series were interpolated across depth and season to generate data with consistent resolutions across lakes. To assess temperature change, we used a metric, ‘thermal non-overlap’, based on the percentage of two kernel density estimations of lake temperature which are non-overlapping. We calculated the metric for a range of plausible seasonal and depth habitat restrictions for aquatic species in the face of climate change. We used BRT to explain variability across lakes in their thermal habitat non-overlap as a function of lake characteristics (mean depth and latitude), characteristics of the time series for each lake (starting day of the year, ending day of the year, starting year and ending year, average number of sampling dates per year, long-term trend in the number of sampling dates per year, long-term trend in the yearly seasonal range of sampling dates), the habitat restriction values (season and depth) and the location of the time series delineation for thermal non-overlap calculations (30th, 50th and/or 70th quantiles of the years included in each lake’s time series).Study sitesWe compiled long-term lake temperature data from 139 lakes across the globe. Temperature variations in many of these lakes have already been linked to climate change1,2,19,20,57,58, but temperature change in at least one lake may be partially due to background climate variation in addition to anthropogenic climate change (Atlantic Multidecadal Oscillation in Lake Annie)59. The lakes included in our analysis represent a wide range of surface area (0.02 to 68,800 km2), maximum depth (2.3 to 1,642 m), latitude (60 °S to 69 °N) and elevation (−212 to 1,987 m above sea level) (see Supplementary Table 1 for more information).Temperature dataIn total, we used more than 32 million lake temperature measurements for our analyses. The number of observations per lake ranged from 368 (Lake Stensjon) to 7,636,767 (Lake Superior) with approximately 232,000 observations per lake on average. Temperature data from each lake came from in situ temperature profiles60,61,62,63,64 for lakes smaller than 169 km2 and from a combination of in situ temperature profiles and remotely sensed surface water temperatures for 21 larger lakes. Remote sensing data were used in recognition that temperature and warming rates can vary substantially across latitude and longitude for large lakes19,20,21.The mean length of the temperature time series was 36 years with a range from 15 to 101 years. All lakes had temperature data which started in the year 2000 or earlier and ended in 2000 or later. Lakes had on average 29 temperature profiles per year (inner quartile range: 7–26). In situ temperature data were measured using a wide variety of temperature sensors. Data collection methods included regularly collected discrete temperature profiles, high-resolution thermistor chains and other commonly accepted tools for measuring aquatic temperature. The in situ data are publicly available through the environmental data initiative60.Remotely sensed lake surface temperatures were measured using the Advanced Very High-Resolution Radiometer (AVHRR) and processed by the Group for High Resolution Sea Surface Temperature (GHRSST) project65. AVHRR data have been validated against buoy data from the North American Great Lakes and found to have a root mean squared error of 0.55 °C compared with in situ measurements2. AVHRR temperature data were included to capture horizontal variability in temperature and warming in 21 of the 139 lakes that would not be captured by temperature profiles from a single central location19,20,21. AVHRR data were pooled with in situ data for temperature interpolation.Temperature interpolationTemperature data were spatially and temporally interpolated for each lake. All temperature profile data were first linearly interpolated across depth because temperature variability with depth is highly constrained by lake physics and typically allows for robust interpolations. The largest data gap over which depth interpolation occurred was 0.1 × mean depth of each lake. Following interpolation across depth, data were interpolated across time using standard spline interpolation models with a Kalman filter66. The model output was used to fill data gaps to produce a continuous, daily time series over the day of the year range for which temperature profiles had been regularly measured. Some times of the year were excluded from specific lakes because they lacked regular measurements throughout the length of the long-term time series. Thus, the same starting and ending day of the year was used for each lake throughout its time series, and was often shorter than the full annual cycle (Supplementary Table 1). The largest gap in time over which interpolation occurred was 30 days and this included extrapolations for lakes with missing data at the beginning or end of seasonal coverage in a specific year. Years with longer gaps were omitted from the analysis and the length of the seasonal coverage was optimized to minimize the number of years that needed to be removed. For large lakes with many sampling points (for example, Baikal, Superior, Victoria), temperature data were divided into 1,000 km2 latitude–longitude bins and interpolated across depth and across time separately for each bin. The mean seasonal coverage of the interpolated lake time series was 245 days per year with a minimum of 17 days per year and a maximum of 365 days per year.The interpolated temperature output had a daily temporal resolution and a depth resolution which varied continuously over depth. At the lake surface, we interpolated temperatures every 0.1 m (for example, 0 m, 0.1 m, 0.2 m), to every 1 m starting at a depth of 10 m (for example, 10 m, 11 m, 12 m) and every 100 m starting at a depth of 1,000 m (for example, 1,000 m, 1,100 m, 1,200 m). These depth increments were used because they consistently gave good coverage over all major lake strata, regardless of each lake’s morphometric characteristics, while minimizing computational intensity by eliminating redundancy within lake strata.Thermal habitat non-overlap calculationsAfter interpolating the temperature data across depth and season for each lake, we bisected it into an early part (part a) and a later part (part b). Parts a and b were iteratively delineated at three points positioned serially along the time series—at the 30th, 50th and 70th quantiles. We averaged the final non-overlap values across these three delineations for each lake so that the results depended less on the somewhat arbitrary decision of where to split the time series. For each delineation, we randomly sampled 10,000 temperature values from each of parts a and b. This was repeated ten times resulting in a total of 300,000 temperature values across all three time series delineations and all ten repetitions for each lake (10,000 × 3 × 10). The sampling probability for temperature values in each comparison was weighted by the volume increment associated with each temperature value (depth increment (Id) × cross-sectional area at each depth (Cd)). Id was calculated as the difference between the depth of the sampled temperature value and the next depth in the depth resolution of the interpolated temperatures. Cd at each depth for each lake was calculated using standard, three-parameter models for estimating lake cross-sectional area based on surface area, maximum depth and mean depth67. For large lakes with temperature data at multiple locations across latitude and longitude, Cd was divided by the number of latitude–longitude bins used for each lake. Temperature values from large lakes were sampled regardless of their associated latitude–longitude bins. As a result of the volume-weighting procedure, temperature measurements were sampled in proportion to the volume of water represented by each value, with temperatures representing larger volumes being sampled more often. As a consequence of this volume-weighting procedure, the resulting temperature distributions were robust to moderate changes in the depths used for the temperature interpolation (Supplementary Fig. 1).We defined thermal non-overlap (TNO) as the symmetric difference (Ө) between the kernel density estimations of temperature values from parts a and b of the time series as a proportion of the union (∪) of both kernel density estimations, following an established method42. Conversely, we defined the thermal habitat overlap (as opposed to non-overlap) as the intersection (∩) of the kernel density estimations as a proportion of the union (∪) of both distributions. All values were converted to percentages by multiplying by 100.$${mathrm{TNO}}left( % right) = 100 times frac{{{{T}}_{{mathrm{recent}}},ominus,{{T}}_{{mathrm{baseline}}}}}{{{{T}}_{{mathrm{recent}}} cup {{T}}_{{mathrm{baseline}}}}} = 100 times left( {1 – frac{{{{T}}_{{mathrm{recent}}} cap {{T}}_{{mathrm{baseline}}}}}{{{{T}}_{{mathrm{recent}}} cup {{T}}_{{mathrm{baseline}}}}}} right)$$
    (1)
    We used simulations to test the sensitivity of TNO to changes in mean and s.d. of temperature. We primed these simulations with three baseline temperature distributions all with a mean of 15 °C but with varying s.d. (4, 6, 8 °C). We simulated a range of additional temperature distributions by increasing and decreasing the mean and s.d. of the baseline temperature distributions and then calculated the corresponding values of TNO. The simulated change in both mean and s.d. varied from −3 to +3 °C. We found that TNO was sensitive to changes in mean and s.d. but was slightly more sensitive to reductions in s.d. compared with increases. TNO values also depended on the baseline s.d., such that lower starting s.d. elevates values of non-overlap given an equivalent change in temperature (Extended Data Fig. 1).We also quantified null values of thermal non-overlap (TNOo) by repeating the thermal non-overlap calculations but where parts a and b were defined by randomly dividing the individual years of data into two separate groups as opposed to sequentially dividing them along the time series.$${mathrm{TNO}}_{mathrm{o}}(% ) = 100 times frac{{{{T}}_{{mathrm{random}},{{a}}},ominus,{{T}}_{{mathrm{random}},{{b}}}}}{{{{T}}_{{mathrm{random}},{{a}}} cup {{T}}_{{mathrm{random}},{{b}}}}}$$
    (2)
    To calculate standardized thermal non-overlap (TNOs), we subtracted TNOo from TNO thereby setting the null expectation to zero.$${mathrm{TNO}}_{mathrm{s}}left( {mathrm{% }} right) = {mathrm{TNO}} – {mathrm{TNO}}_{mathrm{o}}$$
    (3)
    In this case, if the temperature distributions in the recent and baseline time periods were identical, the TNOs would equal approximately zero. Values different from zero reflect a combination of random noise and long-term temperature change. All non-overlap values described in the main text and shown in Figs. 2–6 reflect values of TNOs. A comparison between raw values of TNO and TNOo can be found in Extended Data Fig. 5. Thermal non-overlap values and the null values were calculated using the ‘overlap’ function from the ‘overlapping’ package42 in the R environment for statistical computing and visualization. In the function, we set the number of equally spaced points at which the overlapping kernel density estimation is evaluated to 100 for all comparisons because it minimized the values of TNOo (we considered a range of values from 5 to 10,000).To assess the effect of seasonal habitat restrictions (Slimit) and volumetric habitat restrictions (Vlimit), we modified equations (1)–(3) by comparing temperature values only from a specified range of depths and/or days of the year. We considered a range of habitat restrictions scaled from 0 to 0.95, where 0.95 is the most restrictive (temperature values were compared from within bins equivalent to 1/20th of the available seasonal and volumetric habitat) and 0 is the least restrictive (temperature values were compared regardless of season and depth). We focused our interpretations on the unitless habitat restrictions (scaled from 0 to 0.95) instead of in units of days or m3 so that habitat restrictions could be more readily compared across lakes. Comparing a Vlimit value of 0.8 across lakes of different sizes assumes that a habitat restriction of 2 m3 in a 10 m3 lake would be comparable to a 20 m3 habitat delineation in a 200 m3 lake. The actual size of the seasonal habitat restrictions for each lake in units of days were calculated using the value of Slimit as follows:$$S = left( {mathrm{doy}}_{mathrm{max}} – {mathrm{doy}}_{mathrm{min}}right)left( {1 – S_{mathrm{limit}}} right)$$where S is the seasonal habitat restriction in units of days, doymax is the maximum day of the year of the lakes’ seasonal coverage, doymin is the minimum day of the year of the lakes’ seasonal coverage and Slimit is the seasonal habitat restriction scaled from 0 to 0.95. For example, in a lake with a seasonal coverage from day of the year 1 to day of the year 365, with an Slimit value of 0.75, we compared randomly selected temperatures from time periods a and b separately for four seasonal bins (days of the year 1–91, 92–183, 184–273 and 274–365). Similarly, the actual size of the volumetric habitat restrictions (V) for each lake in units of m3 were calculated using the value of Vlimit as follows:$$V = left( {mathrm{volume}} right) times left( {1 – V_{mathrm{limit}}} right)$$where V is the volumetric habitat restriction in units of m3, volume is the lake’s total volume and Vlimit is the volumetric habitat restriction value scaled from 0 to 0.95. For example, if a lake with a volume of 100 m3 had a Vlimit value of 0.75, we randomly selected temperature values from time periods a and b which were within four 25 m3 (100 m3 × (1 − 0.8)) bins. Volume bins were subsequently translated into sequential depth bins for the purpose of temperature value selection, making them functionally depth limits, and they are presented as such in the main text.We factorially combined a discrete series of values for Slimit and Vlimit (0, 1/2, 2/3, 5/6, 8/9, 12/13 and 19/20) to test a range of combined seasonal and volumetric habitat restrictions that do not require the overlap or truncation of bins. For reference, habitat restrictions are presented visually for hypothetical ‘Species 1’ (Slimit = 0, Vlimit = 0.8), ‘Species 2’ (Slimit = 0.8, Vlimit = 0) and ‘Species 3’ (Slimit = 0.8, Vlimit = 0.8) examples (Fig. 1). These limits reflect hypothetical restrictions in a species’ habitat due to ecological factors and approximate the habitat available for a low-light specialist phytoplankton (species 1), a spring migratory fish (species 2) and a diapausing benthic invertebrate (species 3). In Fig. 6, the species habitat restriction values for P. rubescens were Slimit = 0.74, Vlimit = 0.89 (Fig. 6).Explaining variability in thermal habitat non-overlapWe used BRT to explain lake-to-lake variability in thermal habitat change (percentage of non-overlap) while accounting for differences in the temporal coverage of each lake’s time series. The predictor variables in the BRT were the starting year of the time series, ending year of the time series, starting day of the year of the seasonal coverage, ending day of the year of the seasonal coverage, average number of sampling dates per year, linear trend (Theil–Sen slope) in the average number of sampling dates per year, linear trend (Theil–Sen slope) in the yearly extent of the time series’ seasonal coverage, lake mean depth, absolute latitude (degrees from the Equator), seasonal habitat restriction, depth habitat restriction and time series delineation. Geospatial and morphometric data for each lake is available from the previously published HydroLAKES database41. Of the available lake characteristics, we used latitude and mean depth because they were most strongly correlated to TNOs values and because they were least correlated to the other predictors in the model. We used a 100-fold cross-validation with a 70–30% split by lake (that is, 70% of lakes were used in each BRT). Model results were averaged to ensure that the patterns described therein were robust to the exclusion of some lakes. We optimized the learning rate for each BRT by iteratively running the model with smaller and smaller learning rates (from 0.8, 0.4, 0.2, 0.1, 0.05 to 0.025) until the number of trees in the model was greater than 1,000, as suggested in previous literature68. We found that the BRT performed well in cross-validation—the correlation between predicted and observed values in the test datasets from the 100-fold cross-validation was moderate on average across models (r = 0.56, Kendall’s rank correlation; see full goodness-of-fit summary statistics in Extended Data Fig. 6). The correlation between the predicted and the observed values was high (r = 0.76, Kendall’s rank correlation) when predictions were averaged across BRT. We found minimal patterning in the model residuals when comparing the model residuals with each predictor variable used in the BRT (Extended Data Fig. 7).To calculate lake-specific mean thermal non-overlap values and facilitate comparison across lakes, we used the BRT to remove the variation in thermal non-overlap attributable to the starting year of the time series, ending year of the time series, starting day of the year of the seasonal coverage, ending day of the year of the seasonal coverage, average number of sampling dates per year, linear trend (Theil–Sen slope) in the average number of sampling dates per year and the linear trend (Theil–Sen slope) in the yearly extent of the time series’ seasonal coverage of each lake’s time series, following previously published work24. We did this by setting the values for these variables to their median and using the BRT to make a prediction for each lake with these medians as predictors, along with each lake’s observed values for mean depth, absolute latitude, seasonal habitat restriction, depth habitat restriction and time series delineation. The residuals from the BRT were then added back to the predicted values used in further analyses and plotting. The mean lake-specific thermal dissimilarities were calculated as the average across all seasonal habitat restrictions (Slimit), depth habitat restrictions (Vlimit) (0, 1/2, 2/3, 5/6, 8/9, 12/13 and 19/20) and all three time series delineations. The statistical significance of these lake-specific thermal non-overlap values was estimated on a continuous gradient and calculated using a Wilcoxon signed-rank test. In the test, we compared TNO values to TNOo values separately for each combination of time series delineation, seasonal habitat restriction and depth habitat restriction (n = 108). The average P values from these tests for each lake are shown in Supplementary Table 1.We compared thermal non-overlap values to a more widely used metric of whole-lake thermal change—whole-lake temperature trends. Whole-lake temperature trends were calculated based on the annual averages of all temperature values sampled for the pairwise thermal non-overlap calculations to maximize the comparability of the resulting temperature trends and thermal non-overlap values. Due to the temperature sampling probability being volume-weighted, the temperature trend was also indirectly volume-weighted. Temperature trends were calculated using Theil–Sen slopes applied to annual mean temperatures and the statistical significance of each trend (P value) was calculated using a bootstrapped one sample Wilcoxon signed-rank test with 1,000 repetitions. The input data for the Wilcoxon signed-rank test were the complete list of all slopes derived from all pairwise combinations of points in the time series. The number of pairwise slopes used in each repetition of the Wilcoxon signed-rank test was equal to the number of years of temperature data for each lake. Whole-lake temperature trends and thermal non-overlap values were not strongly correlated (r = 0.10, Kendall’s rank correlation coefficient; Extended Data Fig. 4). All statistics and graphics were produced in the R statistical computing environment69.Reporting SummaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    First dynamics of bacterial community during development of Acropora humilis larvae in aquaculture

    1.Chavanich, S., Viyakarn, V., Loyjiw, T., Pattaratamrong, P. & Chankong, A. Mass bleaching of soft coral, Sarcophyton spp. in Thailand and the role of temperature and salinity stress. ICES J. Mar. Sci. 66, 1515–1519 (2009).2.Phongsuwan, N. et al. Status and changing patterns on coral reefs in Thailand during the last two decades. Deep Sea Res. Pt. II Top. Stud. Oceanogr. 96, 19–24 (2013).ADS 
    Article 

    Google Scholar 
    3.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711. https://doi.org/10.1371/journal.pone.0000711 (2007).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.De´ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27-year decline of coral cover on the Great Barrier Reef and its causes. PNAS 109, 17995–17999 (2012).6.Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).Article 

    Google Scholar 
    7.Sheppard, C. et al. The Gulf: A young sea in decline. Mar. Pollut. Bull. 60, 13–38 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Cruz-Trinidad, A., Aliño, P. M., Geronimo, R. C. & Cabral, R. B. Linking food security with coral reefs and fisheries in the coral triangle. Coast Manag. 42, 160–182 (2014).Article 

    Google Scholar 
    9.Chavanich, S. et al. A tunicate from a Thai coral reef: A potential source of new anticancer compounds. Coral Reefs 24, 621. https://doi.org/10.1007/s00338-005-0036-y (2005).ADS 
    Article 

    Google Scholar 
    10.Rocha, J., Peixe, L., Gomes, N. & Calado, R. Cnidarians as a source of new marine bioactive compounds-an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Cooper, E. L., Hirabayashi, K., Strychar, K. B. & Sammarco, P. W. Corals and their potential applications to integrative medicine. Evid. Based Complement. Alternat. Med. 2014, 184959. https://doi.org/10.1155/2014/184959 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Petersen, D. et al. The application of sexual coral recruits for the sustainable management of ex situ populations in public aquariums to promote coral reef conservation-SECORE Project. Aquat. Conserv. 16, 167–179 (2006).Article 

    Google Scholar 
    13.Chavanich, S. & Viyakarn, V. Conservation and restoration of coral reefs under climate change: Strategies and practice. in The Cnidaria, Past, Present and Future. 787–792. (Springer, 2016).14.Boström-Einarsson, L. et al. Coral restoration–A systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631. https://doi.org/10.1371/journal.pone.0226631 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Webster, N. S. & Reusch, T. B. Microbial contributions to the persistence of coral reefs. ISME J. 11, 2167–2174 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.van Oppen, M. J. & Blackall, L. L. Coral microbiome dynamics, functions and design in a changing world. Nat. Rev. Microbiol. 17, 557–567 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    17.Lesser, M. P., Mazel, C. H., Gorbunov, M. Y. & Falkowski, P. G. Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305, 997–1000 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Chimetto, L. A. et al. Vibrios dominate as culturable nitrogen-fixing bacteria of the Brazilian coral Mussismilia hispida. Syst. Appl. Microbiol. 31, 312–319 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Ceh, J. et al. Nutrient cycling in early coral life stages: Pocillopora damicornis larvae provide their algal symbiont (Symbiodinium) with nitrogen acquired from bacterial associates. Ecol. Evol. 3, 2393–2400 (2013).Article 

    Google Scholar 
    20.Gochfeld, D. J. & Aeby, G. S. Antibacterial chemical defenses in Hawaiian corals provide possible protection from disease. Mar. Ecol. Prog. Ser. 362, 119–128 (2008).ADS 
    Article 

    Google Scholar 
    21.Kirkwood, M., Todd, J. D., Rypien, K. L. & Johnston, A. W. The opportunistic coral pathogen Aspergillus sydowii contains dddP and makes dimethyl sulfide from dimethylsulfoniopropionate. ISME J. 4, 147–150 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Raina, J.-B. et al. Isolation of an antimicrobial compound produced by bacteria associated with reef-building corals. PeerJ 4, e2275. https://doi.org/10.7717/peerj.2275 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Lodwig, E. M. et al. Amino-acid cycling drives nitrogen fixation in the legume—Rhizobium symbiosis. Nature 422, 722–726 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Bourne, D., Iida, Y., Uthicke, S. & Smith-Keune, C. Changes in coral-associated microbial communities during a bleaching event. ISME J. 2, 350–363 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Mouchka, M. E., Hewson, I. & Harvell, C. D. Coral-associated bacterial assemblages: Current knowledge and the potential for climate-driven impacts. Integr. Comp. Biol. 50, 662–674 (2010).PubMed 
    Article 

    Google Scholar 
    26.Lema, K. A., Willis, B. L. & Bourne, D. G. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria. Appl. Environ. Microbiol. 78, 3136–3144 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Bourne, D. G., Morrow, K. M. & Webster, N. S. Insights into the coral microbiome: Underpinning the health and resilience of reef ecosystems. Ann. Rev. Microbiol. 70, 317–340 (2016).CAS 
    Article 

    Google Scholar 
    28.Lema, K. A., Bourne, D. G. & Willis, B. L. Onset and establishment of diazotrophs and other bacterial associates in the early life history stages of the coral Acropora millepora. Mol. Ecol. 23, 4682–4695 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Zhou, G. et al. Microbiome dynamics in early life stages of the scleractinian coral Acropora gemmifera in response to elevated pCO2. Environ. Microbiol. 19, 3342–3352 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Bernasconi, R. et al. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front. Microbiol. 10, 1529. https://doi.org/10.3389/fmicb.2019.01529 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Damjanovic, K., Menéndez, P., Blackall, L. L. & van Oppen, M. J. H. Early life stages of a common broadcast spawning coral associate with specific bacterial communities despite lack of internalized bacteria. Microb. Ecol. 79, 706–719 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Miller, N., Maneval, P., Manfrino, C., Frazer, T. K. & Meyer, J. L. Spatial distribution of microbial communities among colonies and genotypes in nursery-reared Acropora cervicornis. PeerJ 8, e9635. https://doi.org/10.7717/peerj.9635 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Chamberland, V. F. et al. Four-year-old Caribbean Acropora colonies reared from field-collected gametes are sexually mature. Bull. Mar. Sci. 92, 263–264 (2016).Article 

    Google Scholar 
    34.Baria-Rodriguez, M. V., dela Cruz, D. W., Dizon, R. M., Yap, H. T. & Villanueva, R. D. Performance and cost-effectiveness of sexually produced Acropora granulosa juveniles compared with asexually generated coral fragments in restoring degraded reef areas. Aquat. Conserv. Mar. Freshwater Ecosyst. 29, 891–900 (2019).35.Henry, J. A., O’Neil, K. L. & Patterson, J. T. Native herbivores improve sexual propagation of threatened staghorn coral Acropora cervicornis. Front. Mar. Sci. 6, 713. https://doi.org/10.3389/fmars.2019.00713 (2019).36.Ligson, C. A., Tabalanza, T. D., Villanueva, R. D. & Cabaitan, P. C. Feasibility of early outplanting of sexually propagated Acropora verweyi for coral reef restoration demonstrated in the Philippines. Restor. Ecol. 28, 244–251 (2019).Article 

    Google Scholar 
    37.Tabalanza, T. D. et al. Successfully cultured and reared coral embryos from wild caught spawn slick in the Philippines. Aquaculture 525, 735354. https://doi.org/10.1016/j.aquaculture.2020.735354 (2020).Article 

    Google Scholar 
    38.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. Specificity of associations between bacteria and the coral Pocillopora meandrina during early development. Appl. Environ. Microbiol. 78, 7467–7475 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M. & Lin, C. Effects of temperature and salinity on survival rate of cultured corals and photosynthetic efficiency of the zooxanthellae in coral tissues. Ocean Sci. J. 50, 263–268 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Kuanui, P. et al. Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Estuar. Coast Shelf Sci. 235, 106515. https://doi.org/10.1016/j.ecss.2019.106515 (2020).Article 

    Google Scholar 
    41.Marotz, C. et al. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 62, 290–293 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bulan, D. E. et al. Spatial and seasonal variability of reef bacterial communities in the upper Gulf of Thailand. Front Mar. Sci. 5, 441. https://doi.org/10.3389/fmars.2018.00441 (2018).Article 

    Google Scholar 
    43.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl. Environ. Microbiol. 84. https://doi.org/10.1128/AEM.02627-17 (2018).47.Bharti, R. & Grimm, D. G. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform. 22, 178–193. https://doi.org/10.1093/bib/bbz155 (2019).Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    48.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.RStudio Team. RStudio: Integrated Development for R. (RStudio, PBC, 2020).50.Olson, N., Ainsworth, T., Gates, R. & Takabayashi, M. Diazotrophic bacteria associated with Hawaiian Montipora corals: Diversity and abundance in correlation with symbiotic dinoflagellates. J. Exp. Mar. Biol. Ecol. 371, 140–146 (2009).CAS 
    Article 

    Google Scholar 
    51.Sharp, K. H., Sneed, J., Ritchie, K., Mcdaniel, L. & Paul, V. J. Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. Biol. Bull. 228, 98–107 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Sharp, K. H., Distel, D. & Paul, V. J. Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J. 6, 790–801 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Apprill, A., Marlow, H. Q., Martindale, M. Q. & Rappé, M. S. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 3, 685–699 (2009).PubMed 
    Article 

    Google Scholar 
    54.Boch, C. A., Ananthasubramaniam, B., Sweeney, A. M., Doyle, F. J. III. & Morse, D. E. Effects of light dynamics on coral spawning synchrony. Biol. Bull. 220, 161–173 (2011).PubMed 
    Article 

    Google Scholar 
    55.Baquiran, J. I. P. et al. The prokaryotic microbiome of Acropora digitifera is stable under short-term artificial light pollution. Microorganisms 8, 1566. https://doi.org/10.3390/microorganisms8101566 (2020).CAS 
    Article 
    PubMed Central 
    PubMed 

    Google Scholar 
    56.Rohwer, F., Seguritan, V., Azam, F. & Knowlton, N. Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser. 243, 1–10 (2002).ADS 
    Article 

    Google Scholar 
    57.Pootakham, W. et al. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep. 7, 2774. https://doi.org/10.1038/s41598-017-03139-4 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Franco, Á. G., Cadavid, L. F. & Arévalo-Ferro, C. Biofilms and extracts from bacteria producing “quorum sensing” signaling molecules protomote chemotaxis and settlement behaviors in Hydractinia symbiolongicarpus (Cnidaria: Hydrozoa) larvae. Acta Biol. Colomb. 24, 150–162 (2019).Article 

    Google Scholar 
    59.Jayaprakash, N. et al. A marine bacterium, Micrococcus MCCB 104, antagonistic to vibrios in prawn larval rearing systems. Dis. Aquat. Org. 68, 39–45 (2005).CAS 
    Article 

    Google Scholar 
    60.Tsai, S., Chang, W.-C., Chavanich, S., Viyakarn, V. & Lin, C. Ultrastructural observation of oocytes in six types of stony corals. Tissue Cell 48, 349–355 (2016).PubMed 
    Article 

    Google Scholar 
    61.Lin, C., Kup, F.-W., Chavanich, S. & Viyakarn, V. Membrane lipid phase transition behavior of oocytes from three gorgonian corals in relation to chilling injury. PLoS ONE 9, e92812. https://doi.org/10.1371/journal.pone.0092812 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Shnit-Orland, M. & Kushmaro, A. Coral mucus-associated bacteria: A possible first line of defense. FEMS Microbiol. Ecol. 67, 371–380 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    63.Leite, D. C., Salles, J. F., Calderon, E. N., van Elsas, J. D. & Peixoto, R. S. Specific plasmid patterns and high rates of bacterial co-occurrence within the coral holobiont. Ecol. Evol. 8, 1818–1832 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rypien, K. L., Ward, J. R. & Azam, F. Antagonistic interactions among coral-associated bacteria. Environ. Microbiol. 12, 28–39 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    65.ElAhwany, A. M., Ghozlan, H. A., ElSharif, H. A. & Sabry, S. A. Phylogenetic diversity and antimicrobial activity of marine bacteria associated with the soft coral Sarcophyton glaucum. J. Basic Microbiol. 55, 2–10 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Damjanovic, K., van Oppen, M. J., Menéndez, P. & Blackall, L. L. Experimental inoculation of coral recruits with marine bacteria indicates scope for microbiome manipulation in Acropora tenuis and Platygyra daedalea. Front. Microbiol. 10, 1702. https://doi.org/10.3389/fmicb.2019.01702 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    67.Damjanovic, K., Blackall, L. L., Menéndez, P. & van Oppen, M. J. H. Bacterial and algal symbiont dynamics in early recruits exposed to two adult coral species. Coral Reefs 39, 189–202 (2020).Article 

    Google Scholar 
    68.Neave, M. J., Michell, C. T., Apprill, A. & Voolstra, C. R. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci. Rep. 7, 40579. https://doi.org/10.1038/srep40579 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Hernandez-Agreda, A., Leggat, W., Bongaerts, P., Herrera, C. & Ainsworth, T. D. Rethinking the coral microbiome: Simplicity exists within a diverse microbial biosphere. MBio 9, e00812. https://doi.org/10.1128/mBio.00812-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More