More stories

  • in

    Design of synthetic human gut microbiome assembly and butyrate production

    Model-guided procedure guides the exploration of butyrate production landscapesWe aimed to explore the butyrate production landscape as a function of community composition to decipher microbial interactions shaping butyrate production. Exploring the butyrate production functional landscape is a major challenge because the number of sub-communities increases exponentially with the number of species43. To investigate the landscape, we developed a modeling framework to guide the iterative design of informative experiments (Fig. 1a, b). Microbial interactions can impact growth or metabolite production by influencing the availability of ecological niches or facilitating metabolite degradation. To capture these two types of interactions, we implemented a two-stage modeling framework to determine the contributions of microbial interactions to species growth and community assembly or metabolite production. In the first stage, a dynamic ecological model, referred to as the generalized Lotka–Volterra model (gLV), predicts community assembly. The second stage predicts metabolite production as a function of the resulting community composition (Fig. 1b). The gLV model is a set of coupled ordinary differential equations that capture the temporal change in species abundances due to monospecies growth parameters and inter-species growth interactions (see the “Methods” section)16. To estimate parameters for the gLV model, we use Bayesian parameter inference techniques to determine the uncertainty in our parameters based on biological and technical variability in the experimental data44.Fig. 1: Iterative modeling framework to predict microbial community assembly and metabolic function.a Two-stage modeling framework for predicting community assembly and function. The generalized Lotka–Volterra model (gLV) represents community dynamics. A Bayesian Inference approach was used to determine parameter uncertainties due to biological and technical variability. A linear regression model with interactions maps assembled community composition to metabolite concentration. Combining these two models enables prediction of a probability distribution of metabolite concentration from initial species abundances. b Design–Test–Learn cycle for model development. First, we use our model to explore the design space of possible experiments (i.e. different initial conditions of species presence/absence) and design communities that span a desired range of metabolite concentrations. Next, we use high-throughput experiments to measure species abundance and metabolite concentration. Finally, we evaluate the model’s predictive capability and infer an updated set of parameters based on the new experimental measurements. c Phylogenetic tree of the synthetic human gut microbiome composed of 25 highly prevalent and diverse species. Branch color indicates phylum and underlined species denote butyrate producers.Full size imageOur metabolite production model consists of a linear regression model with interaction terms mapping community composition (i.e. abundance of each species) at a specific time point to the concentration of an output metabolite at that time. This model was based on a phenomenological model of metabolite production used in bioprocess engineering expanded to microbial communities (see the “Methods” section). In the regression model, the first-order terms capture the monospecies production per unit biomass and the interaction terms represent the impact of inter-species interactions on metabolite production per unit biomass (i.e. deviations from constant metabolite production per unit biomass19). To estimate parameters for the regression model, we use Lasso regression to identify the most impactful interactions. Altogether, the composite gLV and regression model predicts the probability distribution of the metabolite concentration given an initial condition of species abundances (Fig. 1b, see the “Methods” section).In metabolic and protein engineering, a design–test–learn cycle (DTL) has been used to design biomolecules45 or metabolic pathways46 with properties that satisfy desired performance specifications. We hypothesized that this engineering-inspired approach could be used to explore community design spaces and understand the composition–function mapping for butyrate production. Each cycle consisted of: (1) a design phase wherein we used our model informed by experimental observations to simulate a vast number of potential community compositions to identify sub-communities that satisfied biological objectives (i.e. desired butyrate concentrations), (2) a test phase wherein the selected sub-communities were assembled and species abundance and butyrate concentration were measured, and (3) a learn phase wherein patterns in our experimental data were used to estimate model parameters and to extract information about the key microbial interactions influencing community assembly and butyrate production.Two-stage model enables efficient exploration of low richness community design spaceTo develop a system of microbes representing major metabolic functions in the gut, we selected 25 prevalent bacterial species from all major phyla in the human gut microbiome47 (Fig. 1c, Supplementary Data 1). This community contained five butyrate-producing Firmicutes which have been shown to play important roles in human health and protection from diseases (Fig. 1c, Supplementary Data 1). Due to the lack of a defined medium that universally supports the growth of gut microbes, most in vitro studies use undefined media, making it difficult to interrogate the effects of unknown components on community behaviors48. To maximize our knowledge of the substrates available to the communities, we developed a chemically defined medium to grow the synthetic communities (see the “Methods” section).Based on previous studies using pairwise communities to predict higher richness community behaviors16,18,49, we hypothesized that training our model on single and pairwise community measurements would provide an informative starting point for mapping composition–function relationships determining butyrate production. To do so, we first measured time-resolved growth of single species and observed a wide variety of growth dynamics within each phylum, including disparate growth rates and carrying capacities (Supplementary Fig. 1). We assembled each pairwise community containing at least one butyrate producer (the focal species of our system50) and measured species abundance and the concentrations of organic acid fermentation products (including butyrate, lactate, succinate, and acetate) after 48 h. The pairwise consortia displayed a broad range of butyrate concentrations of 0–50 mM (Fig. 2a).Fig. 2: Exploring the predicted butyrate production of 3–5 member communities with a model trained on 1–2 species communities.a Categorical scatter plot of butyrate production in 1–2 species and 24–25 species communities. Solid datapoints indicate the mean of the biological replicates which are represented by transparent datapoints connected to the mean with transparent lines. The colors indicate which butyrate producer was present in the community with green indicating the presence of multiple butyrate producers. DP− and AC− indicate the 24-species communities lacking Desulfovibrio piger (DP) and Anaerostipes caccae (AC), respectively. b Predicted medians (black line) and 60 percent confidence intervals (gray bars) of butyrate concentration for all 3–5 member communities containing at least one butyrate producer (46,591 community predictions). Colored lines indicate median and 60 percent confidence interval of butyrate production of communities chosen for the experimental design with the color indicating the number of species in the community (156 communities). Subplots separate groups of communities based on the identities of the combination of butyrate producers specified. c Scatter plot of measured butyrate versus predicted butyrate for 3–5 species communities. Colors indicate which butyrate producer was present in the community as in a. Biological replicates (n = 1–5, depending on the community, exact values in source data) are indicated by transparent squares connected to the corresponding mean, which is represented by the large data point. Prediction error bars (x-axis) indicate the 60% confidence interval of the predicted butyrate distribution as in b, with the center being the median prediction. Dashed line indicates the linear regression between the mean measured butyrate and the median predicted butyrate. Indicated statistics are for Pearson correlation (two-sided). Source data are available in the Source Data file.Full size imageSingle-species deletion communities have been used to investigate the contributions of individual species to a community function13,16. Therefore, we characterized the full 25-species community and each single-species deletion sub-community (i.e. 24-member consortia). In stark contrast to the pairwise communities, the 24- and 25-species communities exhibited similar low butyrate production (~2–22 mM Butyrate). The absence of only two species Desulfovibrio piger (DP) (~22 mM Butyrate) and Anaerostipes caccae (AC) (~2 mM Butyrate) resulted in a significant increase or decrease in butyrate concentration compared to the remaining 24-member and 25-member communities (Fig. 2a, Supplementary Fig. 2a). In addition, the concentrations of all measured organic acids spanned a much smaller range in the 24 and 25-member communities than the single and pairwise consortia (Supplementary Fig. 2b). These results suggest that high richness communities may trend towards a similar low butyrate-producing state that is difficult to change by the deletion of most single species and motivates a model-guided design strategy for exploring how community richness shapes butyrate production.To determine whether individual and pairwise communities could predict community composition and butyrate production of low richness communities (i.e. 3–5 species), we estimated the parameters of our model based on experimental measurements. Our initial model was informed only by pairwise communities that contained at least one butyrate producer (Supplementary Data 2, M1) and was thus naïve to all interactions between non-butyrate producers. We assumed that the unobserved growth interactions could be predicted based on trends in measured interactions across phylogenetic relatedness (see the “Methods” section)16. However, the resulting model was unable to predict butyrate production in the 24-and 25-member communities (Supplementary Fig. 3), which we attributed to missing information about non-butyrate producer interactions in our training data. Thus, we used our model to explore a low richness design space of 3–5 species communities based on the assumption that pairwise interactions would be more observable in low than high richness (i.e. >10 species) communities to identify an improved parameter estimate for non-butyrate producer interactions.We used our initial M1 model to predict the probability distributions of butyrate production for all 3–5 species communities containing at least one butyrate producer (46,591 communities). The predicted butyrate production varied substantially based on the combination of butyrate producers present in each community (Fig. 2b). In addition, we observed variations in the shapes of the probability distributions based on how the uncertainty in growth prediction propagated through the regression model. For instance, the butyrate concentration in the AC, Roseburia intestinalis (RI) pairwise community was lower than the AC monoculture, even though RI was low abundance, resulting in a high magnitude negative parameter in the regression model for a production interaction between AC and RI (Supplementary Data 3). Due to the uncertainty in the growth parameters, the model predicted that RI would grow substantially in a subset of the 3–5 member simulations containing both AC and RI. The variability in predicted RI growth combined with the high magnitude negative interaction parameter between AC and RI resulted in distributions where the median butyrate concentration was high (i.e. for simulations where RI did not grow substantially), and the 60 percent confidence interval extended to 0 mM butyrate (i.e. when RI grew substantially) (Fig. 2b). In sum, these results demonstrate that the shape of the predicted probability distributions can provide information about the uncertainty in species growth based on experimental observations.Based on the simulations, we selected 156 communities that spanned a broad range of predicted butyrate concentrations across the butyrate producer groups to evaluate experimentally (Fig. 2b). The model prediction exhibited good agreement with the rank order of butyrate production (Spearman rho = 0.84, p = 9*10−43) (Fig. 2c) and species abundance (Spearman rho = 0.76, p = 3*10−122) (Supplementary Fig. 4a–d), demonstrating that our initial model could predict a wide range of butyrate production in low richness communities.Composition–function landscape predicts contributions of growth and production interactionsEncouraged by our model’s predictive ability, we sought to explore composition–function relationships in higher richness communities (i.e. >10 species) using a model with updated parameters based on measurements of the 3–5 member communities (Supplementary Data 2, M2). Since the human gut microbiome exhibits functional redundancy in butyrate pathways51, we first used model M2 to simulate the assembly of all communities containing all five butyrate producers (5-butyrate producer or 5BP, 1,048,576 total) to map the composition–function landscape for butyrate production (Fig. 3a). In addition, we simulated the assembly of all communities containing the four butyrate producers excluding AC (4-butyrate producer or 4BP, 1,048,576 total) to understand how the composition–function landscape changes in the absence of the most productive butyrate producer (Fig. 3b). The majority of 5BP communities were predicted to have higher butyrate concentration than any of the 4BP communities (Fig. 3a, b), consistent with the substantial decrease in butyrate in the AC deletion community observed previously (Fig. 2a).Fig. 3: Community composition–function landscapes reveal key role of production interactions on A. caccae and negative impact of D. piger on butyrate production.a Scatter plot of predicted total butyrate producer abundance versus predicted butyrate concentration for all possible communities in which all five butyrate producers are present (1,048,576 communities). Histograms indicate the butyrate concentration distribution across the given axis. Communities are colored according to the presence (red) or absence (blue) of D. piger (DP). Blue and red dashed lines indicate the linear regression of communities with (red, y = −2.3x + 25.8, r = −0.34) or without (blue, y = 3.1x + 28.0, r = 0.76) DP. The white star indicates the full 25-member community and black star indicates the community of five butyrate producers alone. Large data points indicate communities chosen for experimental validation. Black triangles indicate leave-one-out communities, black circles indicate designed communities, and gray squares indicate random communities, with open/closed symbols indicate the absence/presence of DP. b Scatter plot of predicted total butyrate producer abundance versus predicted butyrate concentration for all possible communities in which all four butyrate producers excluding AC are present (1,048,576 communities). Histograms indicate the butyrate concentration distribution. Gray dashed line indicates the mean predicted butyrate concentration across all communities. Black dashed line indicates the linear regression of all communities (y = 13.2x−0.1, r = 0.64). The white star indicates the full 24-member community and the black star indicates the four butyrate producers alone. Large data points indicate communities chosen for experimental validation. c, d Scatter plots of experimental measurements of total butyrate producer abundance versus butyrate concentration for communities with (c) and without (d) AC. Data point shapes correspond to the legends in (a) and (b) and represent the mean of biological replicates, which are shown as small datapoints connected to the corresponding mean with lines (n = 2 except for 5 BP, 24 and 25 species communities where n = 5–8). Dashed line in (d) indicates the linear regression (y = 8.9x−0.5). e Comparison of butyrate concentration in communities from a and b with and without DP for both the designed and random experimental sets for the 5BP communities and designed set for the 4BP communities. Data point shapes correspond to the legends in a and b and represent the mean of biological replicates, which are shown as small datapoints connected to the corresponding mean with lines. Box and whisker plots represent the median (center line), quartiles (box), and range (whiskers) of the mean butyrate concentration for each community, excluding outliers (points outside 1.5 times the interquartile range). Indicated p-values are from a Mann–Whitney U test (5BP Designed: n = 28 for DP+ and n = 54 for DP−; 5BP Random: n = 27 for DP+ and n = 55 for DP−; 4BP: n = 42 for DP+ and n = 42 for DP−). f Butyrate concentration per unit biomass as a function of sulfide concentration after 24 h of growth. Butyrate concentration per biomass was normalized to the no sulfide condition. Circles indicate the mean of biological replicates, with individual replicates shown as transparent squares (n = 4). Inset: Butyrate concentration per biomass (mM OD600−1) for AC with and without the addition of 1.6 mM sulfide across time (n = 3). Endpoint sulfide concentrations were higher in the data shown in the inset than in the main figure (Supplementary Fig. 6). Source data are available in the Source Data file.Full size imageThe relationship between butyrate producer abundance and butyrate can provide insight into the contributions of growth and production interactions in the presence and absence of AC (Fig. 3a, b). If butyrate producer abundance correlates with butyrate, then growth interactions drive butyrate production, whereas the contributions of production interactions would reduce the strength of this correlation. The 5BP communities were predicted to have a large contribution of production interactions as evidenced by a weak correlation between butyrate concentration and butyrate producer abundance (Spearman rho = 0.17, p  More

  • in

    A natural constant predicts survival to maximum age

    1.Bailey, D. L., Humm, J. L., Todd-Pokropek, A. & van Aswegen, A. Nuclear Medicine Physics: A Handbook for Teachers and Students. International Atomic Energy Agency (International Atomic Energy Agency, 2014).2.McGraw-Hill. McGraw-Hill encyclopedia of science & technology. (McGraw-Hill, 2007).3.Medawar, P. B. An unsolved problem of biology. in The uniqueness of the individual (ed. Medawar, P. B.) 44–70 (Basic Books, Inc., 1952).4.Leike, A. Demonstration of the exponential decay law using beer froth. Eur. J. Phys. 23, 21–26 (2002).Article 

    Google Scholar 
    5.Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).Article 

    Google Scholar 
    6.Vetter, E. F. Estimation of natural mortality in fish stocks: a review. Fish. Bull. 86, 25–43 (1988).
    Google Scholar 
    7.Gosselin, J., Zedrosser, A., Swenson, J. E. & Pelletier, F. The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proc. R. Soc. B Biol. Sci. 282, 1–9 (2015).8.Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban . Urban Green. 2, 139–147 (2004).Article 

    Google Scholar 
    9.Hoenig, J. M. et al. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate. ICES J. Mar. Sci. 73, 2453–2467 (2016).Article 

    Google Scholar 
    10.Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance. (Pearson Education Limited, 2014).11.Myers, R. A., Bowen, K. G. & Barrowman, N. J. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56, 2404–2419 (1999).
    Google Scholar 
    12.Simpfendorfer, C. A., Bonfil, R. & Latour, R. J. Mortality estimation. in. FAO Fish. Tech. Pap. 474, 127 (2005).
    Google Scholar 
    13.Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).Article 

    Google Scholar 
    14.IUCN. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Geographical 14, 1–113 (2019).15.Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. B Biol. Sci. 360, 13–20 (2005).Article 

    Google Scholar 
    16.Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. U. S. A. 116, 9658–9664 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Gavrilov, L. & Gavrilova, N. The biology of life span: a quantitative approach. (Harwood Academic Publishers, 1991).18.Sekharan, K. Estimates of the stocks of oil sardine and mackerel in the present fishing grounds off the West coast of India. Indian J. Fish. 21, 177–182 (1974).
    Google Scholar 
    19.Alagaraja, K. Simple methods for estimation of parameters for assessing exploited fish stocks. Indian J. Fish. 31, 177–208 (1984).
    Google Scholar 
    20.Cadima, E. L. Fish stock assessment manual. FAO Fish. Tech. Pap. 393, 161 (2003).
    Google Scholar 
    21.Hewitt, D. A. & Hoenig, J. M. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 103, 433–437 (2005).
    Google Scholar 
    22.Dureuil, M. et al. Unified natural mortality estimation for teleosts and elasmobranchs. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13704 (accepted).23.Litzgus, J. D. Sex differences in longevity in the spotted turtle (Clemmys guttata). Copeia 2, 281–288 (2006).Article 

    Google Scholar 
    24.Calder, W. A. III Body size, mortality, and longevity. J. Theor. Biol. 102, 135–144 (1983).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872 (1972).Article 

    Google Scholar 
    26.Holt, S. J. A note on the relation between the mortality rate and the duration of life in an exploited fish population. Int. Comm. Northwest Atl. Fish. Res. Bull. 2, 73–75 (1965).
    Google Scholar 
    27.Hoenig, J. M. Should natural mortality estimators based on maximum age also consider sample size? Trans. Am. Fish. Soc. 146, 136–146 (2017).Article 

    Google Scholar 
    28.Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).Article 

    Google Scholar 
    29.Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence: late survival sacrificed for reproduction. Philos. Trans. R. Soc. Lond., B 332, 15–24 (1991).CAS 
    Article 

    Google Scholar 
    32.Froese, R. & Pauly, D. FishBase. World Wide Web Electronic Publication (2019). Available at: www.fishbase.org. (accessed: 6th February 2018)33.I. C. E. S. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel). in Report of the ICES Advisory Committee, 2019. ICES Advice 2019, her.27.3a47d 11 (2019).34.Caswell, H. & Shyu, E. Senescence, selection gradients and mortality. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 56–82 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.00435.Promislow, D. E. L. Senescence in natural populations of mammals: a comparative study. Evolution 45, 1869–1887 (1991).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Sibly, R. M., Collett, D., Promislow, D. E. L., Peacock, D. J. & Harvey, P. H. Mortality rates of mammals. J. Zool. 243, 1–12 (1997).Article 

    Google Scholar 
    37.Blumstein, D. T. & Møller, A. P. Is sociality associated with high longevity in North American birds? Biol. Lett. 4, 146–148 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Salguero-Gómez, R. & Jones, O. R.. Life history trade-offs modulate the speed of senescence. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 403–421 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.02040.Hoekstra, L. A., Schwartz, T. S., Sparkman, A. M., Miller, D. A. W. & Bronikowski, A. M. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. 34, 38–54 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Bonduriansky, R. & Brassil, C. E. Rapid and costly ageing in wild male flies. Nature 420, 377 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).Article 

    Google Scholar 
    43.Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).Article 

    Google Scholar 
    44.Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Ruby, J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. Elife 7, 1–18 (2018).Article 

    Google Scholar 
    46.Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958–960 (1997).CAS 
    Article 

    Google Scholar 
    47.Cooke, G. M., Tonkins, B. M. & Mather, J. A. Care and Enrichment for Captive Cephalopods. in The Welfare of Invertebrate Animals (eds. Carere, C. & Mather, J.). 179–208 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-13947-6_848.Baudisch, A. et al. The pace and shape of senescence in angiosperms. J. Ecol. 101, 596–606 (2013).Article 

    Google Scholar 
    49.Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS One 13, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    50.Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825).
    Google Scholar 
    51.Makeham, W. M. On the law of mortality and the construction of annuity tables. Assur. Mag. J. Inst. Actuar. 8, 301–310 (1860).Article 

    Google Scholar 
    52.Finch, C. E. & Pike, M. C. Maximum life span predictions from the Gompertz mortality model. J. Gerontol. Biol. Sci. 51A, 183–194 (1996).Article 

    Google Scholar 
    53.Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K. & Ghalambor, D. E. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431, 1095–1099 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Kirkwood, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).Article 

    Google Scholar 
    55.Gavrilov, L. A. & Gavrilova, N. S. New trend in old-age mortality: gompertzialization of mortality trajectory. Gerontology 65, 451–457 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ohsumi, S. Interspecies relationships among some biological parameters in cetaceans and estimation of the natural mortality coefficient of the Southern Hemisphere minke whale. Rep. Int. Whal. Comm. 29, 397–406 (1979).
    Google Scholar 
    57.Mizroch, S. A. On the relationship between mortality rate and length in baleen whales. Rep. Int. Whal. Comm. 35, 505–510 (1985).
    Google Scholar  More

  • in

    North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift

    1.Astthorsson, O. S. & Palsson, O. K. Predation on euphausiids by cod, Gadus morhua, in winter in Icelandic subarctic waters. Mar. Biol. 96, 327–334 (1987).Article 

    Google Scholar 
    2.MacAulay, M. C., Wishner, K. F. & Daly, K. L. Acoustic scattering from zooplankton and micronekton in relation to a whale feeding site near Georges Bank and Cape Cod. Cont. Shelf Res. 15, 509–537 (1995).Article 

    Google Scholar 
    3.Víkingsson, G. A. Feeding of fin whales (Balaenoptera physalus) off Iceland – diurnal and seasonal variation and possible rates. J. Northwest Atl. Fish. Sci. 22, 77–89 (1997).Article 

    Google Scholar 
    4.Tarling, G. A., Ensor, N. S., Fregin, T., Goodall-Copestake, W. P. & Fretwell, P. An introduction to the biology of Northern krill (Meganyctiphanes norvegica Sars). Adv. Mar. Biol. 57, 1–40 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.McBride, M. M. et al. Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71, 1934–1955 (2014).Article 

    Google Scholar 
    6.Orlova, E.L. et al. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009). Front. Mar. Sci. 1, 1–13 (2015).Article 

    Google Scholar 
    7.Silva, T. et al. Long-term changes of euphausiids in shelf and oceanic habitats southwest, south and southeast of Iceland. J. Plankton Res. 36, 1262–1278 (2014).Article 

    Google Scholar 
    8.Warner, A. J. & Hays, G. C. Sampling by the Continuous Plankton Recorder Survey. Prog. Oceanogr. 6611, 237–256 (1994).Article 

    Google Scholar 
    9.Williams, R. & Lindley, J. A. Variability in abundance, vertical distribution and ontogenetic migrations of Thysanoessa longicaudata (Crustacea: Euphausiacea) in the north-eastern Atlantic Ocean. Mar. Biol. 69, 321–330 (1982).Article 

    Google Scholar 
    10.Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).Article 

    Google Scholar 
    11.Edwards, M., Beaugrand, G., Helaouët, P., Alheit, J. & Coombs, S. Marine ecosystem response to the Atlantic Multidecadal Oscillation. PLoS ONE 8, e57212 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Harris, V., Edwards, M. & Olhede, S. C. Multidecadal Atlantic climate variability and its impact on marine pelagic communities. J. Mar. Syst. 133, 55–69 (2014).Article 

    Google Scholar 
    14.Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibanez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Edwards, M., Beaugrand, G., Hays, G. C., Koslow, J. A. & Richardson, A. J. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25, 602–610 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Harris, V., Olhede, S. C. & Edwards, M. Multidecadal spatial reorganisation of plankton communities in the North East Atlantic. J. Mar. Syst. 142, 16–24 (2015).Article 

    Google Scholar 
    17.Reid, P. C. & Edwards, M. Long-term changes in the pelagos, benthos and fisheries of the North Sea. Senckenbergiana maritima. 32, 107–115 (2001).Article 

    Google Scholar 
    18.Gregory, B., Christophe, L. & Martin, E. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).Article 

    Google Scholar 
    19.Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).Article 

    Google Scholar 
    22.Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Progr. Ser. 458, 1–19 (2012).Article 

    Google Scholar 
    23.Bograd, S. J., Checkley, D. A. & Wooster, W. S. CalCOFI: a half century of physical, chemical, and biological research in the California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2349–2353 (2003).Article 

    Google Scholar 
    24.Brinton, E. & Townsend, A. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2449–2472 (2003).Article 

    Google Scholar 
    25.Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Caesar, A.L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation.Nature 556, 191–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Reid, P. C. et al. A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Glob. Chang. Biol. 13, 1910–1921 (2007).Article 

    Google Scholar 
    28.Burrows, M. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9, 959–963 (2019).Article 

    Google Scholar 
    29.Biri, S. & Klein, B. North Atlantic sub‐polar gyre climate index: a new approach. J. Geophys. Res. Ocean. 124, 4222–4237 (2019).Article 

    Google Scholar 
    30.Batten, S. et al. CPR sampling: the technical background, materials and methods, consistency and comparability. Prog. Oceanogr. 58, 193–215 (2003).Article 

    Google Scholar 
    31.Reid, P. C. et al. The Continuous Plankton Recorder: concepts and history, from plankton indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).Article 

    Google Scholar 
    32.Richardson, A. J. et al. Using Continuous Plankton Recorder data. Prog. Oceanogr. 68, 27–74 (2006).Article 

    Google Scholar 
    33.Dalpadado, P., Yamaguchi, A., Ellertsen, B. & Johannessen, S. Trophic interactions of macro-zooplankton (krill and amphipods) in the marginal ice zone of the Barents Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 55, 2266–2274 (2008).Article 

    Google Scholar 
    34.Letessier, T. B., Cox, M. J. & Brierley, A. S. Drivers of euphausiid species abundance and numerical abundance in the Atlantic Ocean. Mar. Biol. 156, 2539–2553 (2009).Article 

    Google Scholar 
    35.Lowe, M. R., Lawson, G. L. & Fogarty, M. J. Drivers of euphausiid distribution and abundance in the Northeast U.S. Shelf Large Marine Ecosystem. ICES J. Mar. Sci. 75, 1280–1295 (2018).Article 

    Google Scholar 
    36.Lindley, J. A. Population dynamics and production of euphausiids. I. Thysanoessa longicaudata in the North Atlantic Ocean. Mar. Biol. 46, 121–130 (1978).Article 

    Google Scholar 
    37.Lindley, J. A. Population dynamics and production of euphausiids II. Thysanoessa inermis and T. raschii in the North Sea and American Coastal Waters. Mar. Biol. 59, 225–233 (1980).Article 

    Google Scholar 
    38.Lindley, J. A. Population dynamics and production of euphausiids. Mar. Biol. 71, 1–6 (1982).Article 

    Google Scholar 
    39.Rayner, N. A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).Article 

    Google Scholar 
    40.Edwards, M., Johns, D. G. D., Leterme, S. C. S., Svendsen, E. & Richardson, A. J. A. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnol. Oceanogr. 51, 820–829 (2006).Article 

    Google Scholar 
    41.Hélaouët, P., Beaugrand, G. & Reygondeau, G. Reliability of spatial and temporal patterns of C. finmarchicus inferred from the CPR survey. J. Mar. Syst. 153, 18–24 (2016).Article 

    Google Scholar 
    42.Owens, N. J. P. et al. All plankton sampling systems underestimate abundance: response to “Continuous Plankton Recorder underestimates zooplankton abundance” by J.W. Dippner and M. Krause. J. Mar. Syst. 128, 240–242 (2013).Article 

    Google Scholar 
    43.Jonas, T. D., Walne, A., Beaugrand, G., Gregory, L. & Hays, G. C. The volume of water filtered by a Continuous Plankton Recorder sample: the effect of ship speed. J. Plankton Res. 26, 1499–1506 (2004).Article 

    Google Scholar  More

  • in

    Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain

    1.Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0150-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gutzwiller, F. et al. Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 Genes Genomes Genet. 5, 2843–2856 (2015).CAS 

    Google Scholar 
    3.Bennuru, S. et al. Stage-specific transcriptome and proteome analyses of the filarial parasite Onchocerca volvulus and its Wolbachia endosymbiont. MBio 7, e02028-e2116 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Baião, G. C., Schneider, D. I., Miller, W. J. & Klasson, L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genom. 20, 465 (2019).Article 
    CAS 

    Google Scholar 
    5.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7, e38544 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Sazama, E. J., Bosch, M. J., Shouldis, C. S., Ouellette, S. P. & Wesner, J. S. Incidence of Wolbachia in aquatic insects. Ecol. Evol. 7, 1165–1169 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Detcharoen, M., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Wolbachia megadiversity: 99% of these microorganismic manipulators unknown. FEMS Microbiol. Ecol. 95, fiz151 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. U. S. A. 107, 769–774 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 
    Article 

    Google Scholar 
    11.Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science (80-). 322, 702–702 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    12.Osborne, S. E., Leong, Y. S., O’Neill, S. L. & Johnson, K. N. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog. 5, e1000656 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Cattel, J., Martinez, J., Jiggins, F., Mouton, L. & Gibert, P. Wolbachia-mediated protection against viruses in the invasive pest Drosophila suzukii. Insect Mol. Biol. 25, 595–603 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science (80-). 300, 1742–1745 (2003).CAS 
    Article 
    ADS 

    Google Scholar 
    15.Herbert, R. I. & McGraw, E. A. The nature of the immune response in novel Wolbachia-host associations. Symbiosis 74, 225–236 (2018).Article 

    Google Scholar 
    16.Woodford, L. et al. Vector species-specific association between natural Wolbachia infections and avian malaria in black fly populations. Sci. Rep. 8, 4188 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    17.Huigens, M. E., De Almeida, R. P., Boons, P. A. H., Luck, R. F. & Stouthamer, R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc. B Biol. Sci. 271, 509–515 (2004).CAS 
    Article 

    Google Scholar 
    18.Detcharoen, M., Arthofer, W., Jiggins, F. M., Steiner, F. M. & Schlick-Steiner, B. C. Wolbachia affect behavior and possibly reproductive compatibility but not thermoresistance, fecundity, and morphology in a novel transinfected host, Drosophila nigrosparsa. Ecol. Evol. 10, 4457–4470 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Woolfit, M. et al. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 5, 2189–2204 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Suh, E., Mercer, D. R., Fu, Y. & Dobson, S. L. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Appl. Environ. Microbiol. 75, 7783–7788 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.McGraw, E. A., Merritt, D. J., Droller, J. N. & O’Neill, S. L. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc. R. Soc. B Biol. Sci. 268, 2565–2570 (2001).CAS 
    Article 

    Google Scholar 
    22.Xie, J., Vilchez, I. & Mateos, M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One 5, e12149 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    23.Hutchence, K. J., Fischer, B., Paterson, S. & Hurst, G. D. D. How do insects react to novel inherited symbionts? A microarray analysis of Drosophila melanogaster response to the presence of natural and introduced Spiroplasma. Mol. Ecol. 20, 950–958 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.O’Grady, P. M. & DeSalle, R. Phylogeny of the genus Drosophila. Genetics 209, 1–25 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science (80-). 325, 1244–1246 (2009).CAS 
    Article 
    ADS 

    Google Scholar 
    26.Bächli, G., Viljoen, F., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill, 2005).27.Kinzner, M.-C. et al. Life-history traits and physiological limits of the alpine fly Drosophila nigrosparsa (Diptera: Drosophilidae): A comparative study. Ecol. Evol. 8, 2006–2020 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kinzner, M.-C. et al. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Sci. Total Environ. 695, 133753 (2019).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    29.Kinzner, M.-C. et al. Oviposition substrate of the mountain fly Drosophila nigrosparsa (Diptera: Drosophilidae). PLoS One 11, e0165743 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Cicconardi, F. et al. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics’ and structural biology’s lenses. Sci. Rep. 7, 43770 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    31.Tratter Kinzner, M. et al. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob. Ecol. Conserv. 18, e00638 (2019).Article 

    Google Scholar 
    32.Arthofer, W. et al. Genomic resources notes accepted 1 August 2014–30 September 2014. Mol. Ecol. Resour. 15, 228–229 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol. Phylogenet. Evol. 112, 230–243 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Verspoor, R. L. & Haddrill, P. R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One 6, e26318 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    35.Lints, F. A. Size in relation to development-time and egg-density in Drosophila melanogaster. Nature 197, 1128–1130 (1963).Article 
    ADS 

    Google Scholar 
    36.Clemson, A. S., Sgrò, C. M. & Telonis-Scott, M. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: Quantitative traits to transcripts. J. Evol. Biol. 29, 2447–2463 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Morozova, T. V., Anholt, R. H. & Mackay, T. F. Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol. 7, R95 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Elya, C., Zhang, V., Ludington, W. B. & Eisen, M. B. Stable host gene expression in the gut of adult Drosophila melanogaster with different bacterial mono-associations. PLoS One 11, e0167357 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: A phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Zhang, B. et al. Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation. Insect Biochem. Mol. Biol. 79, 108–118 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Gazara, R. K. et al. De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene 627, 85–93 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020), https://www.R-project.org.46.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2016).PubMed Central 
    Article 

    Google Scholar 
    47.Thurmond, J. et al. FlyBase 2.0: The next generation. Nucleic Acids Res. 47, D759–D765 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hardcastle, T. J. & Kelly, K. A. BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 11, 422 (2010).Article 

    Google Scholar 
    49.Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).Article 
    CAS 

    Google Scholar 
    50.Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 11, 367 (2010).Article 
    CAS 

    Google Scholar 
    51.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. (2019) https://cran.r-project.org/web/packages/vegan/.52.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).54.Wittkopp, P. J. Variable gene expression in eukaryotes: A network perspective. J. Exp. Biol. 210, 1567–1575 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lin, Y., Chen, Z.-X., Oliver, B. & Harbison, S. T. Microenvironmental gene expression plasticity among individual Drosophila melanogaster. G3 Genes Genomes Genet. 6, 4197–4210 (2016).CAS 

    Google Scholar 
    56.Kristensen, T. N., Sørensen, P., Pedersen, K. S., Kruhøffer, M. & Loeschcke, V. Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173, 1329–1336 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dunning, L. T., Dennis, A. B., Sinclair, B. J., Newcomb, R. D. & Buckley, T. R. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol. Ecol. 23, 2712–2726 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lambert, A. J. & Brand, M. D. Reactive oxygen species production by mitochondria. In Mitochondrial DNA. Methods in Molecular Biology (ed. Stuart, J. A.) vol. 554 165–181 (Humana Press, 2009).
    Google Scholar 
    59.Kurz, M. et al. Structural and functional characterization of the oxidoreductase α-DsbA1 from Wolbachia pipientis. Antioxidants Redox Signal. 11, 1485–1500 (2009).CAS 
    Article 

    Google Scholar 
    60.Zug, R. & Hammerstein, P. Wolbachia and the insect immune system: What reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front. Microbiol. 6, 1201 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Ratzka, C., Gross, R. & Feldhaar, H. Endosymbiont tolerance and control within insect hosts. Insects 3, 553–572 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A. 109, E23-31 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Brennan, L. J., Haukedal, J. A., Earle, J. C., Keddie, B. & Harris, H. L. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol. Biol. 21, 510–520 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Blagrove, M. S. C., Arias-Goeta, C., Failloux, A.-B. & Sinkins, S. P. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc. Natl. Acad. Sci. 109, 255–260 (2012).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    65.Andrews, E. S., Crain, P. R., Fu, Y., Howe, D. K. & Dobson, S. L. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types. PLoS Pathog. 8, e1003075 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Oliveira, M. F. et al. Haem detoxification by an insect. Nature 400, 517–518 (1999).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    67.Paiva-Silva, G. O. et al. A heme-degradation pathway in a blood-sucking insect. Proc. Natl. Acad. Sci. U. S. A. 103, 8030–8035 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    68.Levi, S. & Rovida, E. The role of iron in mitochondrial function. Biochim. Biophys. Acta Gen. Subj. 1790, 629–636 (2009).CAS 
    Article 

    Google Scholar 
    69.Kremer, N. et al. Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 5, e1000630 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Kremer, N. et al. Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol. 12, S7 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    71.Peng, Y., Nielsen, J. E., Cunningham, J. P. & McGraw, E. A. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl. Environ. Microbiol. 74, 3943–3948 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Peng, Y. & Wang, Y. Infection of Wolbachia may improve the olfactory response of Drosophila. Chin. Sci. Bull. 54, 1369–1375 (2009).
    Google Scholar 
    73.Fattouh, N., Cazevieille, C. & Landmann, F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl. Trop. Dis. 13, e0007218 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Chagas-Moutinho, V. A., Silva, R., de Souza, W. & Motta, M. C. Identification and ultrastructural characterization of the Wolbachia symbiont in Litomosoides chagasfilhoi. Parasit. Vectors 8, 74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of Wolbachia-host interactions. Annu. Rev. Genet. 42, 683–707 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Ping, Y. et al. Linking Aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer’s model. PLoS Genet. 11, e1005025 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Ping, Y. et al. Shal/Kv4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. PLoS One 6, e16043 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    78.Ping, Y. & Tsunoda, S. Inactivity-induced increase in nAChRs upregulates Shal K+ channels to stabilize synaptic potentials. Nat. Neurosci. 15, 90–97 (2012).CAS 
    Article 

    Google Scholar 
    79.Kim, W. J., Jan, L. Y. & Jan, Y. N. A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron 80, 1190–1205 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.King, A. N. et al. A peptidergic circuit links the circadian clock to locomotor activity. Curr. Biol. 27, 1915-1927.e5 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Kim, Y. J., Žitňan, D., Galizia, C. G., Cho, K. H. & Adams, M. E. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16, 1395–1407 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 14, 3158 (2013).Article 
    CAS 

    Google Scholar 
    83.Kvam, V. M., Liu, P. & Si, Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am. J. Bot. 99, 248–256 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Guo, Y., Li, C. I., Ye, F. & Shyr, Y. Evaluation of read count based RNAseq analysis methods. BMC Genom. 14, S2 (2013).Article 

    Google Scholar  More

  • in

    Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance

    1.Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).ADS 
    Article 

    Google Scholar 
    3.Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article 

    Google Scholar 
    4.Steneck, R. S. Regular sea urchins as drivers of shallow benthic marine community structure. Dev. Aquacult. Fish. Sci. 43, 255–279 (2020).
    Google Scholar 
    5.Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    6.Pearse, J. S. Ecological role of purple sea urchins. Science 31, 940–941 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Harrold, C. & Reed, D. C. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66, 1160–1169 (1985).Article 

    Google Scholar 
    8.Kriegisch, N., Reeves, S. E., Flukes, E. B., Johnson, C. R. & Ling, S. D. Drift-kelp suppresses foraging movement of overgrazing sea urchins. Oecologia 190, 665–677 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Pearse, J. S. & Hines, A. H. Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar. Ecol. Prog. Ser. 39, 275–283 (1987).ADS 
    Article 

    Google Scholar 
    10.Watanabe, J. M. & Harrold, C. Destructive grazing by sea urchins Strongylocentrotus spp. in a central California kelp forest: potential roles of recruitment, depth, and predation. Mar. Ecol. Prog. Ser. 71, 125–141 (1991).ADS 
    Article 

    Google Scholar 
    11.Reid, J. et al. The economic value of the recreational red abalone fishery in northern California. Calif. Fish Game 102, 119–130 (2016).
    Google Scholar 
    12.Menge, B. A. & Menge, D. N. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).Article 

    Google Scholar 
    13.Breitburg, D. L., Loher, T., Pacey, C. A. & Gerstein, A. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 67, 489–507 (1997).Article 

    Google Scholar 
    14.Hauri, C. et al. (2009) Ocean acidification in the California current system. Oceanography 22, 60–71 (2009).Article 

    Google Scholar 
    15.Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277, 1409–1415 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sellers, A. J. et al. Seasonal upwelling reduces herbivore control of tropical rocky intertidal algal communities. Ecology e03335 https://doi.org/10.1002/ecy.3335(2021).17.Moulin, L., Grosjean, P., Leblud, J., Batigny, A. & Dubois, P. Impact of elevated pCO2 on acid-base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: a study in mesocosms. J. Exp. Mar. Biol. Ecol. 457, 97–104 (2014).CAS 
    Article 

    Google Scholar 
    18.Siikavuopio, S. I., Dale, T., Mortensen, A. & Foss, A. Effects of hypoxia on feed intake and gonad growth in the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 266, 112–116 (2007).Article 

    Google Scholar 
    19.Low, H. N. N. The Effects of Upwelling-driven Hypoxia on Sea Urchins in California Current Kelp Forests. PhD dissertation, Stanford University, Stanford, CA (2018).20.Low, N. H. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Low, N. H. & Micheli, F. Short-and long-term impacts of variable hypoxia exposures on kelp forest sea urchins. Sci. Rep. 10, 1–9 (2020).CAS 
    Article 

    Google Scholar 
    22.Huyer, A. Coastal upwelling in the California current system. Prog. Oceanogr. 12, 259–284 (1983).ADS 
    Article 

    Google Scholar 
    23.Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).24.Feely, R. A. et al. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Cont. Shelf Res. 152, 50–60 (2018).ADS 
    Article 

    Google Scholar 
    25.Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    26.Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Iles, A. C. et al. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Change Biol. 18, 783–796 (2012).ADS 
    Article 

    Google Scholar 
    29.CeNCOOS. Real-Time Sensor Feeds of Oceanographic and Atmospheric Models’ Online Tool to Extract Temperature, pH, and Dissolved Oxygen. https://data.cencoos.org (2020).30.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.McGregor, H. V., Dima, M., Fischer, H. W. & Mulitza, S. Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315, 637–639 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Narayan, N., Paul, A., Mulitza, S. & Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 6, 815–823 (2010).ADS 
    Article 

    Google Scholar 
    33.Barton, E. D. D., Field, D. B. B. & Roy, C. Canary current upwelling: more or less?. Prog. Oceanogr. 116, 167–178 (2013).ADS 
    Article 

    Google Scholar 
    34.Mote, P. W. & Mantua, N. J. Coastal upwelling in a warmer future. Geophys. Res. Lett. 29, 2138 (2002).ADS 
    Article 

    Google Scholar 
    35.Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).Article 

    Google Scholar 
    36.Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S. & Bell, J. L. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30, 1823 (2003).38.García‐Reyes, M. & Largier, J. Observations of increased wind‐driven coastal upwelling off central California. J. Geophys. Res. Oceans 115, 1–8 (2010).39.Varela, R., Álvarez, I., Santos, F., DeCastro, M. & Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010?. Sci. Rep. 5, 1–15 (2015).40.Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: a global analysis. Sci. Total Environ. 639, 1501–1511 (2018).41.Abrahams, A., Schlegel, R. W. & Smit, A. J. Variation and change of upwelling dynamics detected in the world’s eastern boundary upwelling systems. Front. Mar. Sci. 8, 626411 (2021).Article 

    Google Scholar 
    42.IPCC Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. 151 (eds Core Writing Team et al.) (IPCC, Geneva, 2014).
    Google Scholar 
    43.Rykaczewski, R. R. & Dunne, J. P. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37, 1-5 (2010).44.Somero, G. N. et al. What changes in the carbonate system, oxygen, and temperature portend for the northeastern Pacific Ocean: a physiological perspective. Bioscience 66, 14–26 (2016).Article 

    Google Scholar 
    45.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).PubMed 
    Article 

    Google Scholar 
    49.Fitzgerald-Dehoog, L., Browning, J. & Allen, B. J. Food and heat stress in the California mussel: evidence for an energetic trade-off between survival and growth. Biol. Bull. 223, 205–216 (2012).PubMed 
    Article 

    Google Scholar 
    50.Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 19374 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Brown, N. E., Bernhardt, J. R., Anderson, K. M. & Harley, C. D. Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth. Sci. Rep. 8, 1–9 (2018).
    Google Scholar 
    52.Wahle, R. A. & Peckham, S. H. Density-related reproductive trade-offs in the green sea urchin, Strongylocentrotus droebachiensis. Mar. Biol. 134, 127–137 (1999).Article 

    Google Scholar 
    53.Rogers-Bennett, L., Allen, B. L. & Rothaus, D. P. Status and habitat associations of the threatened northern abalone: importance of kelp and coralline algae. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 573–581 (2011).Article 

    Google Scholar 
    54.Brown, M. B., Edwards, M. S. & Kim, K. Y. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29, 203–215 (2014).CAS 
    Article 

    Google Scholar 
    55.Klinger, T. S. & Lawrence, J. M. Distance perception of food and the effect of food quantity on feeding behavior of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Mar. Freshw. Behav. Physiol. 11, 327–344 (1985).Article 

    Google Scholar 
    56.Trowbridge, C. D. Establishment of the green alga Codium fragile ssp. tomentosoides on New Zealand rocky shores: current distribution and invertebrate grazers. J. Ecol. 83, 949–965 (1995).Article 

    Google Scholar 
    57.Meidel, S. K. & Scheibling, R. E. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166 (1999).Article 

    Google Scholar 
    58.Harianto, J., Nguyen, H. D., Holmes, S. P. & Byrne, M. The effect of warming on mortality, metabolic rate, heat-shock protein response and gonad growth in thermally acclimated sea urchins (Heliocidaris erythrogramma). Mar. Biol. 165, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    59.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    60.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
    Article 

    Google Scholar 
    61.Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19–25 (2011).CAS 
    Article 

    Google Scholar 
    62.Catarino, A. I., Bauwens, M. & Dubois, P. Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ. Sci. Pollut. Res. 19, 2344–2353 (2012).CAS 
    Article 

    Google Scholar 
    63.Rogers-Bennett, L., Bennett, W. A., Fastenau, H. C. & Dewees, C. M. Spatial variation in red sea urchin reproduction and morphology: implications for harvest refugia. Ecol. Appl. 5, 1171–1180 (1995).Article 

    Google Scholar 
    64.Quinn, J. F., Wing, S. R. & Botsford, L. W. Harvest refugia in marine invertebrate fisheries: models and applications to the red sea urchin, Strongylocentrotus franciscanus. Am. Zool. 33, 537–550 (1993).Article 

    Google Scholar 
    65.Eurich, J. G., Selden, R. L. & Warner, R. R. California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence. Mar. Ecol. Prog. Ser. 498, 217–225 (2014).ADS 
    Article 

    Google Scholar 
    66.Steneck, R. S., Leland, A., McNaught, D. C. & Vavrinec, J. Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine’s kelp forest ecosystem. Bull. Mar. Sci. 89, 31–55 (2013).Article 

    Google Scholar 
    67.Gerard, V. A. Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar. Biol. 66(1), 27–35 (1982).CAS 
    Article 

    Google Scholar 
    68.Simonson, E. J., Scheibling, R. E. & Metaxas, A. Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar. Ecol. Prog. Ser. 537, 89–104 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).Article 

    Google Scholar 
    70.O’Donnell, M. J., Hammond, L. M. & Hofmann, G. E. Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Mar. Biol. 156, 439–446 (2009).Article 
    CAS 

    Google Scholar 
    71.Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).CAS 
    Article 

    Google Scholar 
    72.Marcel, E. V. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B 270, 367–372 (2003).Article 

    Google Scholar 
    73.Parker, L. M., Ross, P. M. & O’Connor, W. A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol. 158, 689–697 (2011).Article 

    Google Scholar 
    74.Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Conor, J. J. Gonad growth in the sea urchin, Strongylocentrotus purpuratus (Stimpson) (Echinodermata: Echinoidea) and the assumptions of gonad index methods. J. Exp. Mar. Biol. Ecol. 10, 89–103 (1972).Article 

    Google Scholar 
    76.Bandstra, L., Hales, B. & Takahashi, T. High-frequency measurements of total CO2: method development and first oceanographic observations. Mar. Chem. 100, 24–38 (2006).CAS 
    Article 

    Google Scholar 
    77.Hales, B., Chipman, D. & Takahashi, T. High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors. Limnol. Oceanogr. Methods 2, 356–364 (2004).Article 

    Google Scholar 
    78.Lavigne, H., Epitalon, J. M. & Gattuso, J. P. Seacarb: Seawater Carbonate Chemistry with R. R package version 3.0 http://CRAN.R-project.org/package=seacarb (2011).79.Gattuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. Seacarb: seawater carbonate chemistry. R package version 3.2.10. http://CRAN.R-project.org/package=seacarb (2018).80.Murie, K. A. & Bourdeau, P. E. Fragmented kelp forest canopies retain their ability to alter local seawater chemistry. Sci. Rep. 10, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    81.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2013). More

  • in

    The land use–food–coronavirus nexus

    1.Jones, B. A. et al. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Chand, A. Nat. Food 1, 528 (2020).Article 

    Google Scholar 
    3.Messmer, T. A. Hum.-Wildl. Interact. 14, 137–140 (2020).
    Google Scholar 
    4.Malik, Y. S. et al. Vet. Quart. 40, 68–76 (2020).CAS 
    Article 

    Google Scholar 
    5.Konda, M., Dodda, B., Konala, V., Naramala, S. & Adapa, S. Cureus 12, e8932 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    6.Lu, R. et al. Lancet 395, 565–574 (2020).CAS 
    Article 

    Google Scholar 
    7.Lam, T. T. et al. Nature 583, 282–285 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Trends. Ecol. Evol. 32, 55–67 (2017).Article 

    Google Scholar 
    9.Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Nat. Food https://doi.org/10.1038/s43016-021-00285-x (2021).10.Ancillotto, L., Santini, L., Ranc, N., Maiorano, L. & Russo, D. Sci. Nat. 103, 15 (2016).CAS 
    Article 

    Google Scholar 
    11.Laurance, W. F. & Williamson, G. B. Conserv. Biol. 15, 1529–1535 (2001).Article 

    Google Scholar 
    12.Chand, A. Nat. Food 2, 137 (2021).Article 

    Google Scholar 
    13.Manning, L. Nat. Food 2, 10 (2021).Article 

    Google Scholar 
    14.Frutos, R., Serra-Cobo, J., Pinault, L., Lopez Roig, M. & Devaux, C. A. Front. Microbiol. 12, 591535 (2021).Article 

    Google Scholar 
    15.Schmiege, D. et al. One Health 10, 100170 (2020).Article 

    Google Scholar 
    16.Afelt, A., Frutos, R. & Devaux, C. Front. Microbiol. 9, 702 (2018).Article 

    Google Scholar  More

  • in

    Ixodiphagus hookeri wasps (Hymenoptera: Encyrtidae) in two sympatric tick species Ixodes ricinus and Haemaphysalis concinna (Ixodida: Ixodidae) in the Slovak Karst (Slovakia): ecological and biological considerations

    1.George, J. E., Pound, J. M. & Davey, R. B. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology 129(S1), 5353–5366 (2004).Article 
    CAS 

    Google Scholar 
    2.Abbas, R. Z. et al. Acaricide resistance in cattle ticks and approaches to its management: The state of play. Vet. Parasitol. 203, 6–20 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Yessinou, R. E. et al. Resistance of tick Rhipicephalus microplus to acaricides and control strategies. J. Ent. Zool. Stud. 4, 408–414 (2016).
    Google Scholar 
    4.Bradberry, S. M. et al. Poisoning due to pyrethroids. Toxicol. Rev. 24, 93–106 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Klainbart, S. et al. Tremor salivation syndrome in canine following pyrethroid/permethrin intoxication. Pharm. Anal. Acta 5, 320 (2014).
    Google Scholar 
    6.Antwi, F. B. & Reddy, G. V. P. Toxicological effects of pyrethroids on non-target aquatic insects. Environ. Toxicol. Pharmacol. 40, 915–923 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Glorennec, P. et al. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int. 104, 76–82 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Alfeev, N. I. The utilization of Hunterellus hookeri How. for the control of the ticks, Ixodes ricinus L. and Ixodes persulcatus P. Sch. with reference to peculiarities of their metamorphosis under conditions of the Province of Lenningrad. Rev. Appl. Ent. B. 34, 108–109 (1946).
    Google Scholar 
    9.Hu, R., Hyland, K. E. & Oliver, J. H. A review on the use of Ixodiphagus wasps (Hymenoptera: Encyrtidae) as natural enemies for the control of ticks (Acari: Ixodidae). Syst. Appl. Acarol. 3, 19–28 (1988).
    Google Scholar 
    10.Mwangi, E. N. et al. The impact of Ixodiphagus hookeri, a tick parasitoid, on Amblyomma variegatum (Acari: Ixodidae) in a field trial in Kenya. Exp. Appl. Acarol. 21, 117–126 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Takasu, K. & Nakamura, S. Life history of the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Kenya. Biol. Control 46, 114–121 (2008).Article 

    Google Scholar 
    12.Rehacek, J. & Kocianova, E. Attempt to infect Hunterellus hookeri Howard (Hymenoptera, Encyrtidae), an endoparasite of ticks, with Coxiella burnetti. Acta Virol. 36, 492 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Plantard, O. et al. Detection of Wolbachia in the tick Ixodes ricinus is due to the presence of the hymenoptera endoparasitoid Ixodiphagus hookeri. PLoS ONE 7, e30692 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Bohacsova, M. et al. Arsenophonus nasoniae and Rickettsiae infection of Ixodes ricinus due to parasitic wasp Ixodiphagus hookeri. PLoS ONE 11, e0149950 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Mather, T. N., Piesman, J. & Spielman, A. Absence of spirochete (Borrelia burgdorferi) and piroplasms (Babesia microti) in deer tick (Ixodes dammini) parasitized by Chalcid wasps (Hunterellus hookeri). Med. Vet. Entomol. 1, 3–8 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Noda, H., Munderloh, U. & Kurtti, T. Endosymbionts of ticks relationship to Wolbachia spp. and tick-borne pathogens of humans and animals. Appl. Environ. Microbiol. 63, 3926–3932 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Ahantarig, A. et al. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. 58, 419–428 (2013).CAS 
    Article 

    Google Scholar 
    18.Duron, O. et al. Evolutionary changes in symbiont community structure in ticks. Mol. Ecol. 26, 2905–2921 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Vila, A. et al. Endosymbionts carried by ticks feeding on dogs in Spain. Ticks Tick Borne Dis. 10, 848–852 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Cooley, R. A. & Kohls, G. M. A summary of tick parasites. In Proceedings of the 5th Pacific Science Congress, Vol. 5, 3375–3381 (1934).21.Bowman, J. L., Logan, T. M. & Hair, J. A. Host suitability of Ixodiphagus texanus Howard on five species of hard ticks. J. Agric. Entomol. 3, 1–9 (1986).
    Google Scholar 
    22.Mather, T. N., Piesman, J. & Spielman, A. Absence of spirochete (Borrelia burgdorferi ) and piroplasms (Babesia microti) in deer tick (Ixodes dammini) parasitized by Chalcid wasps (Hunterellus hookeri). Med. Vet. Entomol. 1, 3–8 (1987).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Hu, R., Hyland, K. E. & Mather, T. N. Occurrence and distribution in Rhode Island of Hunterellus hookeri (Hymenoptera: Encyrtidae), a wasp parasitoid of Ixodes dammini. J. Med. Entomol. 30, 277–280 (1993).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Stafford, K. C. 3rd., Denicola, A. J. & Kilpatrick, H. J. Reduced abundance of Ixodes scapularis (Acari: Ixodidae) and the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae) with reduction of white-tailed deer. J. Med. Entomol. 40, 642–652 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Hu, R. & Hyland, K. E. Prevalence and seasonal activity of the wasp parasitoid, Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in its tick host, Ixodes scapularis (Acari: Ixodidae). Syst. Appl. Acarol. 2, 95–100 (1997).
    Google Scholar 
    26.Lopes, A. J. O. et al. Parasitism by Ixodiphagus Wasps (Hymenoptera: Encyrtidae) in Rhipicephalus sanguineus and Amblyomma Ticks (Acari: Ixodidae) in Three Regions of Brazil. J. Econ. Entomol. 5, 1979–1981 (2012).Article 

    Google Scholar 
    27.Fiedler, O. G. H. A new African tick parasite, Hunterellus theilerae sp. n. Onderstepoort. J. Vet. Res. 26, 61–63 (1953).
    Google Scholar 
    28.Hoogstraal, H. & Kaiser, M. N. Records of Hunterellus theileri Fielder (Encyrtidae: Chalcidoidea) parasitizing Hyalomma ticks on birds migrating through Egypt. Ann. Ent. Soc. Am. 54, 616–617 (1961).Article 

    Google Scholar 
    29.Mwangi, E. N., Newson, R. M. & Kaaya, G. P. A hymenopteran parasitoid of the Bont tick Amblyomma variegatum Fabricius (Acarina: Ixodidae) in Kenya. Discov. Innov. 5, 331–335 (1993).
    Google Scholar 
    30.Shastri, U. V. Some observations on Hunterellus hookeri Howard, a parasitoid of Hyalomma-anatolicum anatolicum Koch, 1844 in Marathwada region Maharashtra State. Cheiron 13, 67–71 (1984).
    Google Scholar 
    31.Gaye, M. et al. Hymenopteran parasitoids of hard ticks in western Africa and the Russian Far East. Microorganisms 8, 1992 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    32.Oliver, J. H. A wasp parasite of the possum tick, Ixodes tasmani, Australia. Pan-Pac. Entomol. 40, 227–230 (1964).
    Google Scholar 
    33.Doube, B. M. & Heath, A. C. G. Observations on the biology and seasonal abundance of an encyrtid wasp, a parasite of ticks in Queensland. J. Med. Entomol. 12, 433–447 (1975).CAS 
    PubMed 

    Google Scholar 
    34.Heath, A. C. G. & Cane, R. P. A new species of Ixodiphagus (Hymenoptera: Chalcidoidea: Encyrtidae) parasitizing seabird ticks in New Zealand. N. Z. J. Zool. 37, 147–155 (2010).Article 

    Google Scholar 
    35.Costa Lima, A. The chalcid Hunterellus hookeri Howard, a parasite of the tick Rhipicephalus sanguineus Latreille, observed in Rio de Janeiro. Rev. Vet. Zoot. 5, 201–203 (1915).
    Google Scholar 
    36.Philip, C. B. Occurrence of a colony of the tick parasite Hunterellus hookeri Howard in West Africa. US Public Health Serv. Rpts. 46, 2168–2172 (1931).Article 

    Google Scholar 
    37.Bishopp, F. C. Record of hymenopterous parasites of ticks in the United States. Proc. Entomol. Soc. Wash. 36, 87–88 (1934).
    Google Scholar 
    38.Gahan, A. B. On the identities of chalcidoid tick parasites (Hymenoptera). Proc. Entomol. Soc. Wash. 36, 89–97 (1934).
    Google Scholar 
    39.Munaf, H. B. The first record of Hunterellus hookeri parasitizing Rhipicephalus sanguineus in Indonesia. South Asian J. Tropic. Med. Public Health 7, 492 (1976).CAS 

    Google Scholar 
    40.Cheong, W. H., Rajamanikam, C. & Mahadevan, S. A case of Hunterellus hookeri parasitization of ticks in Pentaling Jaya, Peninsula Malaysia. South Asian J. Tropic. Med. Publ. Health 9, 456–458 (1978).CAS 

    Google Scholar 
    41.Coronado, A. Ixodiphagus hookeri Howard, 1907 (Hymenoptera: Encyrtidae) in the brown dog tick Rhipicephalus sanguineus Latreille, 1806 (Acari: Ixodidae) in Venezuela. Entomotropica 21, 61–64 (2006).
    Google Scholar 
    42.Bezerra Santos, M. et al. Larvae of Ixodiphagus wasps (Hymenoptera: Encyrtidae) in Rhipicephalus sanguineus sensu lato ticks (Acari: Ixodidae) from Brazil. Ticks Tick Borne Dis. https://doi.org/10.1016/j.ttbdis.2017.03.004 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Řehaček, J. Uzitočný cudzopasnik. Enviromagazin 3, 19 (1998).
    Google Scholar 
    44.Collatz, J. et al. A hidden beneficial: Biology of the tick-wasp Ixodiphagus hookeri in Germany. J. Appl. Entomol. 135, 351–358 (2011).Article 

    Google Scholar 
    45.Tijsse-Klasen, E. et al. Parasites of vectors—Ixodiphagus hookeri and its Wolbachia symbionts in ticks in the Netherlands. Parasit. Vectors 4, 228 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Ramos, R. A. et al. Occurrence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in Ixodes ricinus (Acari: Ixodidae) in southern Italy. Ticks Tick Borne Dis. 6, 234–236 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Sormunen, J. J. et al. First evidence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) parasitization in Finnish castor bean ticks (Ixodes ricinus). Exp. Appl. Acarol. 79, 395–404 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Krawczyk, A. I. et al. Tripartite interactions among Ixodiphagus hookeri, Ixodes ricinus and deer: Differential interference with transmission cycles of tick-borne pathogens. Pathogens 9, 339 (2020).PubMed Central 
    Article 

    Google Scholar 
    49.Pervomaisky, G. S. On the infestation of Ixodes persulcatus by Hunterellus hookeri How. (Hymenoptera). Zool. Zh. 22, 211–213 (1943).
    Google Scholar 
    50.Alfeev, N. I. & Klimas, Y. V. Experience in cultivating ichneumon flies, Hunterellus hookeri, obtained from United States, which destroy ixodid ticks of Soviet fauna. Priroda 2, 98–101 (1938).
    Google Scholar 
    51.Brumpt, E. Utilisation des insectes auxiliares entomophages dans la lutte contre les insectes pathogenes. Presse Med. Paris 36, 359–361 (1913).
    Google Scholar 
    52.Klyushkina, E. A. A parasite of the ixodid ticks, Hunterellus hookeri How. in the Crimea. Zool. Zh. 37, 1561–1563 (1958).
    Google Scholar 
    53.Slovak, M. Finding of the endoparasitoid Ixodiphagus hookeri (Hymenoptera, Encyrtidae) in Haemaphysalis concinna ticks in Slovakia. Biologia 58, 890 (2003).
    Google Scholar 
    54.Brumpt, E. Parasitisme latent de l’Ixodiphagus caucurtei chez les larves gorgées et les nymphes á jeun de divers ixodines (Ixodes ricinus et Rhipicephalus sanguineus). Comptes Rendus de l’Académie des Sciences de Paris 191, 1085–1087 (1930).
    Google Scholar 
    55.Boucek, Z. & Černy, V. A parasite of ticks, the chalcid Hunterellus hookeri in Czechoslovakia. Zool. Listy 3, 109–111 (1954).
    Google Scholar 
    56.Heglasová, I. et al. Ticks, fleas and rodent-hosts analyzed for the presence of Borrelia miyamotoi in Slovakia: The first record of Borrelia miyamotoi in a Haemaphysalis inermis tick. Ticks Tick Borne Dis. 11, 101456 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Nosek, J. The ecology, bionomics and behavior of Haemaphysalis (Haemaphysalis) concinna tick. Z. Parasitenkd. 36, 233–241 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Nosek, J. The ecology and public health importance of Dermacentor marginatus and D. reticulatus ticks in central Europe. Folia Parasitol. 19, 93–102 (1972).CAS 

    Google Scholar 
    59.Széll, Z. et al. Temporal distribution of Ixodes ricinus, Dermacentor reticulatus and Haemaphysalis concinna in Hungary. Vet. Parasitol. 141, 377–379 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Harnok, S. & Farkas, R. Influence of biotope on the distribution and peak activity of questing ixodid ticks in Hungary. Med. Vet. Entomol. 23, 41–46 (2009).Article 

    Google Scholar 
    61.Bartosik, K., Wiśniowski, L. & Buczek, A. Abundance and seasonal activity of adult Dermacentor reticulatus (Acari: Amblyommidae) in eastern Poland in relation to meteorological conditions and the photoperiod. Ann. Agric. Environ. Med. 18, 340–344 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    62.Egyed, L. et al. Seasonal activity and tick-borne pathogen infection rates of Ixodes ricinus ticks in Hungary. Ticks Tick Borne Dis. 3, 90–94 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Hornok, S. et al. Ixodid ticks on ruminants, with on-host initiated moulting (apolysis) of Ixodes, Haemaphysalis and Dermacentor larvae. Vet. Parasitol. 187, 350–353 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Buczek, A. et al. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit. Vectors 7, 562 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Chitimia-Dobler, L. Spatial distribution of Dermacentor reticulatus in Romania. Vet. Parasitol. 214, 219–223 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Pfäffle, M., Littwin, N. & Petney, T. Host preferences of immature Dermacentor reticulatus (Acari: Ixodidae) in a forest habitat in Germany. Ticks Tick Borne Dis. 6, 508–515 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Collatz, J. et al. Being a parasitoid of parasites: Host finding in the tick wasp Ixodiphagus hookeri by odours from mammals. Ent. Exp. Appl. 134, 131–137 (2010).Article 

    Google Scholar 
    68.Takasu, K. et al. Host recognition by the tick parasitoid Ixodiphagus hookeri (Hymenoptera: Encyrtidae). Environ. Entomol. 32, 614–617 (2003).Article 

    Google Scholar 
    69.Demas, F. A. et al. Cattle and Amblyomma variegatum odors used in host habitat and host finding by the tick parasitoid, Ixodiphagus hookeri. J. Chem. Ecol. 26, 1079–1093 (2000).CAS 
    Article 

    Google Scholar 
    70.Alfeev, N. I. & Klimas, Y. V. On the possibility of developing ichneumon flies, Hunterellus hookeri in climatic conditions of the USSR. Sovet. Vet. 15, 55 (1938).
    Google Scholar 
    71.Logan, T. M., Bowman, J. L. & Hair, J. A. Parthenogenesis and overwintering behavior in Ixodiphagus texanus Howard. J. Agric. Entomol. 2, 272–276 (1985).
    Google Scholar 
    72.Wood, H. P. Notes on the life history of the tick parasite Hunterellus hookeri Howard. J. Econ. Entomol. 4, 425–431 (1911).Article 

    Google Scholar 
    73.Cooley, R. A. & Kohls, G. M. Egg laying of Ixodiphagus caucurtei du Buysson in larval ticks. Science 67, 656 (1928).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Hu, R. Identification of the wasp parasitoid of the deer tick, Ixodes dammini, in Rhode Island and its implication in the control of Lyme disease. M.S. thesis, University of Rhode Island, USA (1990).75.Mwangi, E. N. et al. Parasitism of Amblyomma variegatum by a hymenopteran parasitoid in the laboratory, and some aspects of its basic biology. Biol. Control 4, 101–104 (1994).Article 

    Google Scholar 
    76.Hu, R. & Hyland, K. E. Effects of the feeding proces of Ixodes scapularis (Acari: Ixodidae) on embryonic development of its parasitoid, Ixodiphagus hookeri (Hymenoptera: Encyrtidae). J. Med. Entomol. 35, 1050–1053 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    77.Knipling, E. F. & Steelman, C. D. Feasibility of controlling Ixodes scapularis ticks (Acari: Ixodidae), the vector of Lyme disease, by parasitoid augmentation. J. Med. Entomol. 37, 647–652 (2000).Article 

    Google Scholar 
    78.Stafford, K. C. 3rd., Denicola, A. J. & Magnarelli, L. A. Presence of Ixodiphagus hookeri (Hymenoptera: Encyrtidae) in two Connecticut populations of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 33, 183–188 (1996).PubMed 
    Article 

    Google Scholar 
    79.Cole, M. M. Biological control of ticks by the use of hymenopterous insects. A review. World Health Organization (WHO/EBL/43.66) 43, 1–12 (1965).
    Google Scholar 
    80.Hoogstraal, H., Santana, F. J. & van Peenen, P. F. D. Ticks (Ixodoidea) of Mt. Sontra, Danang, Republic of Vietnam. Ann. Ent. Soc. Am. 61, 722–729 (1968).CAS 
    Article 

    Google Scholar 
    81.Zchori-Fein, E. et al. A newly discovered bacterium associated with parthenogenesis and a change in host selection behawior in parasitoid wasps. PNAS 98, 12555–12560 (2001).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Giorgini, M. et al. Rickettsia symbionts cause parthenogenic reproduction in the parasitoid wasp Pnigalio soemius (Hymenoptera: Eulophidae). Appl. Environ. 8, 2589–2599 (2010).Article 
    CAS 

    Google Scholar  More

  • in

    Biobased and mechanically stiff lignosulfonate/cationic-polyelectrolyte/sugar complexes with coexisting ionic and covalent crosslinks

    1.Andrady AL. The plastic in microplastics: a review. Mar Pollut Bull. 2017;119:12–22.CAS 
    Article 

    Google Scholar 
    2.Akdogan Z, Guven B. Microplastics in the environment: a critical review of current understanding and identification of future research needs. Environ Pollut. 2019;254:113011.CAS 
    Article 

    Google Scholar 
    3.Dilkes-Hoffman LS, Pratt S, Lant PA, Laycock B. The role of biodegradable plastic in solving plastic solid waste accumulation. In: Al-Salem SM, editor. Plastics to energy. New York: William Andrew Publishing; 2019. p. 469–505.4.Reichert CL, Bugnicourt E, Coltelli MB, Cinelli P, Lazzeri A, Canesi I, et al. Bio-based packaging: materials, modifications, industrial applications and sustainability. Polymers. 2020;12:1558CAS 
    Article 

    Google Scholar 
    5.Reglero Ruiz JA, Trigo-López M, García FC, García JM. Functional aromatic polyamides. Polymers. 2017;9:414.Article 

    Google Scholar 
    6.Pilato L. Phenolic resins: a century of progress. New York: Springer; 2010.7.Ko HU, Zhai L, Park JH, Lee JY, Kim D, Kim J. Poly(vinyl alcohol)–lignin blended resin for cellulose-based composites. J Appl Polym Sci. 2018;135:46655.Article 

    Google Scholar 
    8.Shikinaka K, Nakamura M, Otsuka Y. Strong UV absorption by nanoparticulated lignin in polymer films with reinforcement of mechanical properties. Polymer. 2020;190:122254.CAS 
    Article 

    Google Scholar 
    9.Kargarzadeh H, Galeski A, Pawlak A. PBAT green composites: effects of kraft lignin particles on the morphological, thermal, crystalline, macro and micromechanical properties. Polymer. 2020;203:122748.CAS 
    Article 

    Google Scholar 
    10.Matsuoka T, Nonaka H. Wet extrusion of wood powder using a cellulose derivative. Jpn TAPPI J. 2020;74:516–24.Article 

    Google Scholar 
    11.Shen X, Berton P, Shamshina JL, Rogers RD. Preparation and comparison of bulk and membrane hydrogels based on Kraft-and ionic-liquid-isolated lignins. Green Chem. 2016;18:5607–20.CAS 
    Article 

    Google Scholar 
    12.Li H, Sun JT, Wang C, Liu S, Yuan D, Zhou X, et al. High modulus, strength, and toughness polyurethane elastomer based on unmodified lignin. ACS Sustain Chem Eng. 2017;5:7942–9.CAS 
    Article 

    Google Scholar 
    13.Dehne L, Vila C, Saake B, Schwarz KU. Esterification of Kraft lignin as a method to improve structural and mechanical properties of lignin-polyethylene blends. J Appl Polym Sci. 2017;134:44582.Article 

    Google Scholar 
    14.Dick TA, Couve J, Gimello O, Mas A, Robin JJ. Chemical modification and plasma-induced grafting of pyrolitic lignin. Evaluation of the reinforcing effect on lignin/poly (L-lactide) composites. Polymer. 2017;118:280–96.Article 

    Google Scholar 
    15.Ushimaru K, Morita T, Fukuoka T. Moldable and humidity-responsive self-healable complex from lignosulfonate and cationic polyelectrolyte. ACS Sustain Chem Eng. 2018;6:14831–7.CAS 
    Article 

    Google Scholar 
    16.Ushimaru K, Hamano Y, Morita T, Fukuoka T. Moldable material from ε-poly-l-lysine and lignosulfonate: mechanical and self-healing properties of a bio-based polyelectrolyte complex. ACS Omega. 2019;4:9756–62.CAS 
    Article 

    Google Scholar 
    17.Hellwig M, Henle T. Baking, ageing, diabetes: a short history of the Maillard reaction. Angew Chem Int Ed. 2014;53:10316–29.CAS 
    Article 

    Google Scholar 
    18.Henning C, Glomb MA. Pathways of the Maillard reaction under physiological conditions. Glycoconj J. 2016;33:499–512.CAS 
    Article 

    Google Scholar 
    19.Ushimaru K, Morita T, Fukuoka T. Bio-based, flexible, and tough material derived from ε-poly-l-lysine and fructose via the Maillard reaction. ACS Omega. 2020;5:22793–9.CAS 
    Article 

    Google Scholar 
    20.Ushimaru K, Morita T, Fukuoka T. A bio-based adhesive composed of polyelectrolyte complexes of lignosulfonate and cationic polyelectrolytes. J Wood Chem Technol. 2020;40:172–7.CAS 
    Article 

    Google Scholar 
    21.Zhang ZH, Zeng XA, Brennan CS, Ma H, Aadil RM. Preparation and characterisation of novelty food preservatives by Maillard reaction between ε-polylysine and reducing sugars. Int J Food Sci Technol. 2019;54:1824–35.CAS 
    Article 

    Google Scholar 
    22.Lay M, Thajudin NLN, Hamid ZAA, Rusli A, Abdullah MK, Shuib RK. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos B Eng. 2019;176:107341.CAS 
    Article 

    Google Scholar 
    23.Bunn HF, Higgins PJ. Reaction of monosaccharides with proteins: possible evolutionary significance. Science. 1981;213:222–4.CAS 
    Article 

    Google Scholar 
    24.Suarez G, Rajaram RAMA, Oronsky AL, Gawinowicz MA. Nonenzymatic glycation of bovine serum albumin by fructose (fructation). Comparison with the Maillard reaction initiated by glucose. J Biol Chem. 1989;264:3674–9.CAS 
    Article 

    Google Scholar 
    25.Kim C, Yoshie N. Polymers healed autonomously and with the assistance of ubiquitous stimuli: how can we combine mechanical strength and a healing ability in polymers? Polym J. 2018;50:919–29.CAS 
    Article 

    Google Scholar 
    26.Gong JP, Katsuyama Y, Kurokawa T, Osada Y. Double-network hydrogels with extremely high mechanical strength. Adv Mater. 2003;15:1155–8.CAS 
    Article 

    Google Scholar 
    27.Gong JP. Why are double network hydrogels so tough? Soft Matter. 2010;6:2583–90.CAS 
    Article 

    Google Scholar 
    28.Ducrot E, Chen Y, Bulters M, Sijbesma RP, Creton C. Toughening elastomers with sacrificial bonds and watching them break. Science. 2014;344:186–9.CAS 
    Article 

    Google Scholar 
    29.Neal JA, Mozhdehi D, Guan Z. Enhancing mechanical performance of a covalent self-healing material by sacrificial noncovalent bonds. J Am Chem Soc. 2015;137:4846–50.CAS 
    Article 

    Google Scholar 
    30.Nakajima T. Generalization of the sacrificial bond principle for gel and elastomer toughening. Polym J. 2017;49:477–85.CAS 
    Article 

    Google Scholar 
    31.Yamini G, Shakeri A, Zohuriaan-Mehr MJ, Kabiri K. Cyclocarbonated lignosulfonate as a bio-resourced reactive reinforcing agent for epoxy biocomposite: from natural waste to value-added bio-additive. J CO2 Util. 2018;24:50–8.32.Szabó G, Romhányi V, Kun D, Renner K, Pukánszky B. Competitive interactions in aromatic polymer/lignosulfonate blends. ACS Sustain Chem Eng. 2017;5:410–9.Article 

    Google Scholar 
    33.Lee SI, Chun BC. Effect of EGMA content on the tensile and impact properties of poly (phenylene sulfide)/EGMA blends. Polymer. 1998;39:6441–7.CAS 
    Article 

    Google Scholar 
    34.Yang Y, Duan H, Zhang S, Niu P, Zhang G, Long S, et al. Morphology control of nanofillers in poly (phenylene sulfide): a novel method to realize the exfoliation of nanoclay by SiO2 via melt shear flow. Compos Sci Technol. 2013;75:28–34.CAS 
    Article 

    Google Scholar 
    35.Tao X, Nonaka H. Wet extrusion molding of wood powder with hydroxy-propylmethyl cellulose and with citric acid as a crosslinking agent. BioResources. 2021;16:2314–25.CAS 

    Google Scholar 
    36.Hasegawa D, Teramoto Y, Nishio Y. Molecular complex of lignosulfonic acid/poly (vinyl pyridine) via ionic interaction: characterization of chemical composition and application to material surface modifications. J Wood Sci. 2008;54:143–52.CAS 
    Article 

    Google Scholar 
    37.Wei C, Zhu X, Peng H, Chen J, Zhang F, Zhao Q. Facile preparation of lignin-based underwater adhesives with improved performances. ACS Sustain Chem Eng. 2019;7:4508–14.CAS 
    Article 

    Google Scholar  More