Soil degradation influences soil bacterial and fungal community diversity in overgrazed alpine meadows of the Qinghai-Tibet Plateau
1.Bryan, B. A. et al. China’s response to a national land-system sustainability emergency. Nature 559, 193–204 (2018).ADS
CAS
Article
Google Scholar
2.Zhang, W. J., Xue, X., Peng, F., You, Q. G. & Hao, A. H. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 20, e00774 (2019).3.Pan, T., Zou, X. T., Liu, Y. J., Wu, S. H. & He, G. M. Contributions of climatic and non-climatic drivers to grassland variations on the Tibetan Plateau. Ecol. Eng. 108, 307–317 (2017).Article
Google Scholar
4.Shen, H. H., Wang, S. P. & Tang, Y. H. Grazing alters warming effects on leaf photosynthesis and respiration in Gentiana straminea, an alpine forb species. J. Plant. Ecol. 6, 418–427 (2013).Article
Google Scholar
5.Li, G. Y., Jiang, C. H., Cheng, T. & Bai, J. Grazing alters the phenology of alpine steppe by changing the surface physical environment on the northeast Qinghai-Tibet Plateau, China. J. Environ. Manage. 248, 109257 (2019).6.Li, Y. M. et al. Changes of soil microbial community under different degraded gradients of alpine meadow. Agric. Ecosyst. Environ. 222, 213–222 (2016).Article
Google Scholar
7.Guo, N. et al. Changes in vegetation parameters and soil nutrients along degradation and recovery successions on alpine grasslands of the Tibetan plateau. Agric. Ecosyst. Environ. 284, 106593 (2019).8.Lin, L. et al. Predicting parameters of degradation succession processes of Tibetan Kobresia grasslands. Solid Earth 6, 1237–1246 (2015).ADS
Article
Google Scholar
9.Li, H. D. et al. Assessing revegetation effectiveness on an extremely degraded grassland, southern Qinghai-Tibetan Plateau, using terrestrial LiDAR and field data. Agric. Ecosyst. Environ. 282, 13–22 (2019).Article
Google Scholar
10.Wang, G. X., Qian, J., Cheng, G. D. & Lai, Y. M. Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci. Total Environ. 291, 207–217. https://doi.org/10.1016/s0048-9697(01)01100-7 (2002).CAS
Article
Google Scholar
11.Yuan, Z. Q. et al. Responses of soil organic carbon and nutrient stocks to human-induced grassland degradation in a Tibetan alpine meadow. CATENA 178, 40–48 (2019).CAS
Article
Google Scholar
12.Askari, M. S. & Holden, N. M. Quantitative soil quality indexing of temperate arable management systems. Soil Till Res. 150, 57–67 (2015).Article
Google Scholar
13.Lima, A. C. R., Brussaard, L., Totola, M. R., Hoogmoed, W. B. & de Goede, R. G. M. A functional evaluation of three indicator sets for assessing soil quality. Appl. Soil Ecol. 64, 194–200 (2013).Article
Google Scholar
14.Masto, R. E., Chhonkar, P. K., Singh, D. & Patra, A. K. Alternative soil quality indices for evaluating the effect of intensive cropping, fertilisation and manuring for 31 years in the semi-arid soils of India. Environ. Monit. Assess 136, 419–435. https://doi.org/10.1007/s10661-007-9697-z (2008).CAS
Article
PubMed
Google Scholar
15.Zhou, H. et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 651, 2281–2291 (2019).ADS
CAS
Article
Google Scholar
16.Yang, C., Zhang, F. G., Liu, N., Hu, J. & Zhang, Y. J. Changes in soil bacterial communities in response to the fairy ring fungus Agaricus gennadii in the temperate steppes of China. Pedobiologia 69, 34–40 (2018).Article
Google Scholar
17.Li, J. J. & Yang, C. Inconsistent response of soil bacterial and fungal communities in aggregates to litter decomposition during short-term incubation. Peerj 7, e8078 (2019).18.Yang, C., Li, J. J., Liu, N. & Zhang, Y. J. Effects of fairy ring fungi on plants and soil in the alpine and temperate grasslands of China. Plant Soil 441, 499–510 (2019).CAS
Article
Google Scholar
19.Yang, C., Liu, N. & Zhang, Y. J. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration. Geoderma 337, 444–452 (2019).ADS
CAS
Article
Google Scholar
20.Wardle, D. A. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).ADS
CAS
Article
Google Scholar
21.Wu, G.-L., Ren, G.-H., Dong, Q.-M., Shi, J.-J. & Wang, Y.-L. Above- and belowground response along degradation gradient in an alpine grassland of the Qinghai-Tibetan Plateau. Clean-Soil Air Water 42, 319–323. https://doi.org/10.1002/clen.201200084 (2014).CAS
Article
Google Scholar
22.Che, R. X. et al. Degraded patch formation significantly changed microbial community composition in alpine meadow soils. Soil Till Res. 195, 104426 (2019).23.Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31, 2882–2884 (2015).Article
Google Scholar
24.Harris, R. B. Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J. Arid Environ. 74, 1–12. https://doi.org/10.1016/j.jaridenv.2009.06.014 (2010).ADS
CAS
Article
Google Scholar
25.Ren, G., Shang, Z., Long, R., Hou, Y. & Deng, B. The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai-Tibetan Plateau China. Environ. Earth Sci. 69, 235–245. https://doi.org/10.1007/s12665-012-1951-1 (2013).Article
Google Scholar
26.Zhang, Y. et al. Diversity of nitrogen-fixing, ammonia-oxidizing, and denitrifying bacteria in biological soil crusts of a revegetation area in Horqin Sandy Land Northeast China. Ecol. Eng. 71, 71–79. https://doi.org/10.1016/j.ecoleng.2014.07.032 (2014).Article
Google Scholar
27.Wang, Y. et al. Effects of grassland degradation on ecological stoichiometry of soil ecosystems on the Qinghai-Tibet Plateau. Sci. Total Environ. 722, 137910. https://doi.org/10.1016/j.scitotenv.2020.137910 (2020).ADS
CAS
Article
PubMed
Google Scholar
28.Zhang, Y. et al. Soil bacterial and fungal diversity differently correlated with soil biochemistry in alpine grassland ecosystems in response to environmental changes. Sci. Rep. 7, 43077. https://doi.org/10.1038/srep43077 (2017).ADS
Article
PubMed
PubMed Central
Google Scholar
29.Hartmann, M. et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J. 8, 226–244. https://doi.org/10.1038/ismej.2013.141 (2014).CAS
Article
PubMed
Google Scholar
30.Liu, S. B., Zamanian, K., Schleuss, P. M., Zarebanadkouki, M. & Kuzyakov, Y. Degradation of tibetan grasslands: consequences for carbon and nutrient cycles. Agric. Ecosyst. Environ. 252, 93–104 (2018).CAS
Article
Google Scholar
31.He, S. Y. & Richards, K. Impact of meadow degradation on soil water status and pasture managementA case study in tibet. Land Degrad. Dev. 26, 468–479. https://doi.org/10.1002/ldr.2358 (2015).Article
Google Scholar
32.Yergeau, E., Hogues, H., Whyte, L. G. & Greer, C. W. The functional potential of high Arctic permafrost revealed by metagenomic sequencing, qPCR and microarray analyses. ISME J. 4, 1206–1214. https://doi.org/10.1038/ismej.2010.41 (2010).CAS
Article
PubMed
Google Scholar
33.Eichorst, S. A. et al. Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments. Environ. Microbiol. 20, 1041–1063 (2018).CAS
Article
Google Scholar
34.Fang, D. X. et al. Microbial community structures and functions of wastewater treatment systems in plateau and cold regions. Bioresour. Technol. 249, 684–693 (2018).CAS
Article
Google Scholar
35.Mukhopadhya, I., Hansen, R., El-Omar, E. M. & Hold, G. L. IBD—what role do proteobacteria play?. Nat. Rev. Gastroenterol. Hepatol. 9, 219–230. https://doi.org/10.1038/nrgastro.2012.14 (2012).CAS
Article
PubMed
Google Scholar
36.Kjoller, A. H. & Struwe, S. Fungal communities, succession, enzymes, and decomposition (2002).37.Poll, C., Brune, T., Begerow, D. & Kandeler, E. Small-scale diversity and succession of fungi in the detritusphere of rye residues. Microbial. Ecol. 59, 130–140. https://doi.org/10.1007/s00248-009-9541-9 (2010).Article
Google Scholar
38.Jangid, K. et al. Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties. Soil Biol. Biochem. 43, 2184–2193. https://doi.org/10.1016/j.soilbio.2011.06.022 (2011).CAS
Article
Google Scholar
39.Cao, C. et al. Soil bacterial community responses to revegetation of moving sand dune in semi-arid grassland. Appl. Microbiol. Biotechnol. 101, 6217–6228. https://doi.org/10.1007/s00253-017-8336-z (2017).CAS
Article
PubMed
Google Scholar
40.Tripathi, B. M. et al. Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microbial. Ecol. 64, 474–484. https://doi.org/10.1007/s00248-012-0028-8 (2012).Article
Google Scholar
41.Chu, H. et al. Bacterial community dissimilarity between the surface and subsurface soils equals horizontal differences over several kilometers in the western Tibetan Plateau. Environ. Microbiol. 18, 1523–1533. https://doi.org/10.1111/1462-2920.13236 (2016).CAS
Article
PubMed
Google Scholar
42.Wu, X. et al. Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau. Appl. Soil Ecol. 120, 81–88. https://doi.org/10.1016/j.apsoil.2017.08.001 (2017).Article
Google Scholar
43.Yang, C. et al. Assessing the effect of soil salinization on soil microbial respiration and diversities under incubation conditions. Appl. Soil Ecol. https://doi.org/10.1016/j.apsoil.2020.103671 (2020).Article
Google Scholar
44.Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814. https://doi.org/10.1038/nbt.2676 (2013).CAS
Article
PubMed
PubMed Central
Google Scholar
45.Mermin, J. et al. Reptiles, amphibians, and human Salmonella infection: a population-based, case-control study. Clin. Infect. Dis. 38, S253–S261. https://doi.org/10.1086/381594 (2004).Article
PubMed
Google Scholar
46.Wang, J. et al. Plant community ecological strategy assembly response to yak grazing in an alpine meadow on the eastern Tibetan Plateau. Land Degrad. Dev. 29, 2920–2931. https://doi.org/10.1002/ldr.3050 (2018).Article
Google Scholar
47.Ji, S., Geng, Y., Li, D. & Wang, G. Plant coverage is more important than species richness in enhancing aboveground biomass in a premature grassland, northern China. Agric. Ecosyst. Environ. 129, 491–496. https://doi.org/10.1016/j.agee.2008.11.002 (2009).Article
Google Scholar
48.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS
Article
PubMed
PubMed Central
Google Scholar
49.Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
50.Chen, W. et al. Consistent responses of surface- and subsurface soil fungal diversity to N enrichment are mediated differently by acidification and plant community in a semi-arid grassland. Soil Biol. Biochem. 127, 110–119. https://doi.org/10.1016/j.soilbio.2018.09.020 (2018).CAS
Article
Google Scholar
51.Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36, D480–D484. https://doi.org/10.1093/nar/gkm882 (2008).CAS
Article
PubMed
Google Scholar More