More stories

  • in

    Agricultural spider decline: long-term trends under constant management conditions

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, 137. https://doi.org/10.1126/science.aad2622 (2016).Article 
    CAS 

    Google Scholar 
    Thomas, J. A. & Morris, M. G. Patterns, mechanisms and rates of extinction among invertebrates in the United Kingdom. Phil. Trans. R. Soc. Lond. B 344, 47–54 (1994).Article 
    ADS 

    Google Scholar 
    Thomas, J. A. et al. Comparative losses of british butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881. https://doi.org/10.1126/science.1095046 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, 21. https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    CAS 

    Google Scholar 
    Barmentlo, S. H. et al. Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. Proc. Natl. Acad. Sci. USA 118, 8. https://doi.org/10.1073/pnas.2105692118j1of8 (2021).Article 

    Google Scholar 
    Ehlers, B. K., Bataillon, T. & Damgaard, C. F. Ongoing decline in insect-pollinated plants across Danish grasslands. Biol. Lett. 17, 20210493. https://doi.org/10.1098/rsbl.2021.0493 (2021).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 6. https://doi.org/10.1016/j.biocon.2019.108327 (2020).Article 

    Google Scholar 
    Jactel, H. et al. Insect decline: immediate action is needed. C. R. Biol. 343, 267–293. https://doi.org/10.5802/crbiol.37 (2020).Article 

    Google Scholar 
    Owens, A. C. S. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 9. https://doi.org/10.1016/j.biocon.2019.108259 (2020).Article 

    Google Scholar 
    Sanchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Michalko, R., Pekar, S. & Entling, M. H. An updated perspective on spiders as generalist predators in biological control. Oecologia https://doi.org/10.1007/s00442-018-4313-1 (2018).Article 

    Google Scholar 
    Nyffeler, M., Sterling, W. & Dean, D. How spiders make a living. Environ. Entomol. 23, 1357–1367 (1994).Article 

    Google Scholar 
    Branco, V. V. & Cardoso, P. An expert-based assessment of global threats and conservation measures for spiders. Glob. Ecol. Conserv. 24, 15. https://doi.org/10.1016/j.gecco.2020.e01290 (2020).Article 

    Google Scholar 
    Gobbi, M., Fontaneto, D. & De Bernardi, F. Influence of climate changes on animal communities in space and time: The case of spider assemblages along an alpine glacier foreland. Glob. Change Biol. 12, 1985–1992. https://doi.org/10.1111/j.1365-2486.2006.01236.x (2006).Article 
    ADS 

    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41, 233–243. https://doi.org/10.1111/ecog.02902 (2018).Article 

    Google Scholar 
    Potapov, A. M. et al. Functional losses in ground spider communities due to habitat structure degradation under tropical land-use change. Ecology 101, e02957. https://doi.org/10.1002/ecy.2957 (2020).Article 

    Google Scholar 
    Kormann, U. et al. Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers. Distrib. 21, 1204–1217. https://doi.org/10.1111/ddi.12324 (2015).Article 

    Google Scholar 
    Hogg, B. N. & Daane, K. M. Ecosystem services in the face of invasion: the persistence of native and nonnative spiders in an agricultural landscape. Ecol. Appl. 21, 565–576. https://doi.org/10.1890/10-0496.1 (2011).Article 

    Google Scholar 
    Galle, R., Happe, A. K., Baillod, A. B., Tscharntke, T. & Batary, P. Landscape configuration, organic management, and within-field position drive functional diversity of spiders and carabids. J. Appl. Ecol. 56, 63–72. https://doi.org/10.1111/1365-2664.13257 (2019).Article 

    Google Scholar 
    Pekár, S. Spiders (Araneae) in the pesticide world: An ecotoxicological review. Pest. Manage. Sci. 68, 1438–1446. https://doi.org/10.1002/ps.3397 (2012).Article 
    CAS 

    Google Scholar 
    Bommarco, R., Miranda, F., Bylund, H. & Bjorkman, C. Insecticides suppress natural enemies and increase pest damage in cabbage. J. Econ. Entomol. 104, 782–791. https://doi.org/10.1603/ec10444 (2011).Article 
    CAS 

    Google Scholar 
    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecol. Evol. 4, 384–392. https://doi.org/10.1038/s41559-020-1111-z (2020).Article 

    Google Scholar 
    Rix, M. G. et al. Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomol. 56, 14–22. https://doi.org/10.1111/aen.12258 (2017).Article 

    Google Scholar 
    Nyffeler, M. & Bonte, D. Where have all the spiders gone? Observations of a dramatic population density decline in the once very abundant garden spider, Araneus diadematus (Araneae: Araneidae), in the Swiss Midland. Insects 11, 12. https://doi.org/10.3390/insects11040248 (2020).Article 

    Google Scholar 
    Bowden, J. J., Hansen, O. L. P., Olsen, K., Schmidt, N. M. & Høye, T. T. Drivers of inter-annual variation and long-term change in High-Arctic spider species abundances. Polar Biol. 41, 1635–1649. https://doi.org/10.1007/s00300-018-2351-0 (2018).Article 

    Google Scholar 
    Samu, F., Németh, J. & Kiss, B. Assessment of the efficiency of a hand-held suction device for sampling spiders: Improved density estimation or oversampling?. Ann. Appl. Biol. 130, 371–378. https://doi.org/10.1111/j.1744-7348.1997.tb06840.x (1997).Article 

    Google Scholar 
    Nentwig, W. et al. Spiders of Europe. Version 07.2022. https://www.araneae.nmbe.ch (2022).Heimer, S. & Nentwig, W. Spinnen Mitteleuropas (Paul Parey, 1991).
    Google Scholar 
    Samu, F. & Szinetár, C. On the nature of agrobiont spiders. J. Arachnol. 30, 389–402. https://doi.org/10.1636/0161-8202(2002)030[0389:Otnoas]2.0.Co;2 (2002).Article 

    Google Scholar 
    Buchar, J. & Růžička, V. Catalogue of Spiders of the Czech Republic (Peres, 2002).
    Google Scholar 
    Samu, F. A general data model for databases in experimental animal ecology. Acta Zool. Acad. Sci. Hung. 45, 273–290 (1999).
    Google Scholar 
    Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R package version 1.0–12. (2014).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Vegan. Community Ecology Package. R package Version 2.5–6. The Comprehensive R Archive Network (2019).ter Braak, C. J. F. & Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.1x. (Microcomputer Power, 2018).McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156. https://doi.org/10.1371/journal.pone.0169156 (2017).Article 
    CAS 

    Google Scholar 
    Toju, H. & Baba, Y. G. DNA metabarcoding of spiders, insects, and springtails for exploring potential linkage between above- and below-ground food webs. Zool. Lett. 4, 12. https://doi.org/10.1186/s40851-018-0088-9 (2018).Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. USA 115, E10397–E10406. https://doi.org/10.1073/pnas.1722477115 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Harwood, J. D., Sunderland, K. D. & Symondson, W. O. C. Monoclonal antibodies reveal the potential of the tetragnathid spider Pachygnatha degeeri (Araneae: Tetragnathidae) as an aphid predator. Bull. Entomol. Res. 95, 161–167. https://doi.org/10.1079/BER2004346 (2005).Article 
    CAS 

    Google Scholar 
    Samu, F., Beleznai, O. & Tholt, G. A potential spider natural enemy against virus vector leafhoppers in agricultural mosaic landscapes: Corroborating ecological and behavioral evidence. Biol. Control. 67, 390–396. https://doi.org/10.1016/j.biocontrol.2013.08.016 (2013).Article 

    Google Scholar 
    Biteniekyté, M. & Relys, V. Epigeic spider communities of a peat bog and adjacent habitats. Rev. Iber. Aracnol. 15, 81–87 (2008).
    Google Scholar 
    Michalko, R., Kosulic, O., Hula, V. & Surovcova, K. Niche differentiation of two sibling wolf spider species, Pardosa lugubris and Pardosa alacris, along a canopy openness gradient. J. Arachnol. 44, 46–51 (2016).Article 

    Google Scholar 
    Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Naturwissenschaften 104, 30. https://doi.org/10.1007/s00114-017-1440-1 (2017).Article 
    CAS 

    Google Scholar 
    Sohlström, E. H. et al. Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830. https://doi.org/10.1016/j.agee.2021.107830 (2022).Article 
    CAS 

    Google Scholar 
    Sallé, A. et al. Climate change alters temperate forest canopies and indirectly reshapes arthropod communities. Front. For. Glob. Change 4, 710854 (2021).Article 

    Google Scholar 
    Høye, T. T. et al. Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods. Proc. Natl. Acas. Sci. USA 118, e2002557117 (2021).Article 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity: Ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).Article 

    Google Scholar 
    Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26, 474–481. https://doi.org/10.1016/j.tree.2011.05.009 (2011).Article 

    Google Scholar 
    Swinbank, A. The European Union’s Common Agricultural Policy (CAP) The New Palgrave Dictionary of Economics 1–9 (Palgrave Macmillan, 2016).
    Google Scholar 
    Wissinger, S. Cyclic colonization in predictably ephemeral habitats: A template for biological control in annual crop systems. Biol. Control 10, 4–15 (1997).Article 

    Google Scholar 
    Samu, F., Szita, É. & Botos, E. Short- and longer-term colonization of alfalfa by spiders: A case study into the succession of perennial fields. In European Arachnology 2008 (eds Nentwig, W. et al.) 153–163 (Natural History Museum, 2010).
    Google Scholar 
    Samu, F., Horváth, A., Neidert, D., Botos, E. & Szita, É. Metacommunities of spiders in grassland habitat fragments of an agricultural landscape. Basic Appl. Ecol. 31, 92–103. https://doi.org/10.1016/j.baae.2018.07.009 (2018).Article 

    Google Scholar  More

  • in

    Asynchrony in coral community structure contributes to reef-scale community stability

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).CAS 

    Google Scholar 
    Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).ADS 
    CAS 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 

    Google Scholar 
    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).ADS 
    CAS 

    Google Scholar 
    Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).
    Google Scholar 
    Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity?. Ecology 82, 2381–2396 (2001).
    Google Scholar 
    van Nes, E. H. & Scheffer, M. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86, 1797–1807 (2005).
    Google Scholar 
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. Plos Biol. 6, e122 (2008).
    Google Scholar 
    Loreau, M. et al. In Metacommunities: Spatial Dynamics and Ecological Communities (eds Holyoak, M. et al.) (The University of Chicago Press, 2005).
    Google Scholar 
    Loreau, M. From Populations to Ecosystems (Princeton University Press, 2010). https://doi.org/10.1515/9781400834167.vii.Book 

    Google Scholar 
    Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).
    Google Scholar 
    Costanza, J. K., Moody, A. & Peet, R. K. Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc. Ecol. 26, 851–864 (2011).
    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 

    Google Scholar 
    Nyström, M., Graham, N. A. J., Lokrantz, J. & Norström, A. V. Capturing the cornerstones of coral reef resilience: Linking theory to practice. Coral Reefs 27, 795–809 (2008).ADS 

    Google Scholar 
    Virah-Sawmy, M., Gillson, L. & Willis, K. J. How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar. Ecol. Monogr. 79, 557–574 (2009).
    Google Scholar 
    Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).
    Google Scholar 
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
    Google Scholar 
    Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid–host and predator–prey models: A review. Theor. Popul. Biol. 65, 299–315 (2004).MATH 

    Google Scholar 
    Wang, S., Haegeman, B. & Loreau, M. Dispersal and metapopulation stability. PeerJ 3, e1295 (2015).
    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100, 12765–12770 (2003).ADS 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. 96, 1463–1468 (1999).ADS 
    CAS 

    Google Scholar 
    Bouvier, T. et al. Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities. PLoS ONE 7, e37620 (2012).ADS 
    CAS 

    Google Scholar 
    Hammond, M., Loreau, M., Mazancourt, C. & Kolasa, J. Disentangling local, metapopulation, and cross-community sources of stabilization and asynchrony in metacommunities. Ecosphere 11, e03078 (2020).
    Google Scholar 
    Lamy, T., Legendre, P., Chancerelle, Y., Siu, G. & Claudet, J. Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE 10, e0138696 (2015).
    Google Scholar 
    Lamy, T. et al. Species insurance trumps spatial insurance in stabilizing biomass of a marine macroalgal metacommunity. Ecology 100, e02719 (2019).
    Google Scholar 
    Stier, A. C., Shelton, A. O., Samhouri, J. F., Feist, B. E. & Levin, P. S. Fishing, environment, and the erosion of a population portfolio. Ecosphere https://doi.org/10.1002/ecs2.3283 (2020).Article 

    Google Scholar 
    Burgess, S. C. et al. Beyond connectivity: How empirical methods can quantify population persistence to improve marine protected-area design. Ecol. Appl. 24, 257–270 (2014).
    Google Scholar 
    Saenz-Agudelo, P., Jones, G. P., Thorrold, S. R. & Planes, S. Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc. R. Soc. B Biol. Sci. 278, 2954–2961 (2011).
    Google Scholar 
    Wood, S., Paris, C. B., Ridgwell, A. & Hendy, E. J. Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Glob. Ecol. Biogeogr. 23, 1–11 (2014).
    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: From concept to measurement and application. Biol. Rev. https://doi.org/10.1111/brv.12756 (2021).Article 

    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).
    Google Scholar 
    Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).
    Google Scholar 
    Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).
    Google Scholar 
    Loreau, M. & Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).
    Google Scholar 
    Gross, K. et al. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).
    Google Scholar 
    Sullaway, G. H., Shelton, A. O. & Samhouri, J. F. Synchrony erodes spatial portfolios of an anadromous fish and alters availability for resource users. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13575 (2021).Article 

    Google Scholar 
    Adjeroud, M., Augustin, D., Galzin, R. & Salvat, B. Natural disturbances and interannual variability of coral reef communities on the outer slope of Tiahura (Moorea, French Polynesia): 1991 to 1997. Mar. Ecol. Prog. Ser. 237, 121–131 (2002).ADS 

    Google Scholar 
    Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).ADS 

    Google Scholar 
    Pratchett, M. S., Trapon, M., Berumen, M. L. & Chong-Seng, K. Recent Disturbances Augment Community Shifts in Coral Assemblages in Moorea, French Polynesia (SpringerLink, 2011). https://doi.org/10.1007/s00338-010-0678-2.Book 

    Google Scholar 
    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).ADS 
    CAS 

    Google Scholar 
    McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B 287, 20192628 (2020).
    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 

    Google Scholar 
    Penin, L., Adjeroud, M., Schrimm, M. & Lenihan, H. S. High spatial variability in coral bleaching around Moorea (French Polynesia): Patterns across locations and water depths. C. R. Biol. 330, 171–181 (2007).
    Google Scholar 
    Adam, T. C. et al. Herbivory, connectivity, and ecosystem resilience: Response of a coral reef to a large-scale perturbation. PLoS ONE 6, e23717 (2011).ADS 
    CAS 

    Google Scholar 
    Edmunds, P. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306 (2019).ADS 

    Google Scholar 
    Pérez-Rosales, G. et al. Documenting decadal disturbance dynamics reveals archipelago-specific recovery and compositional change on Polynesian reefs. Mar. Pollut. Bull. 170, 112659 (2021).
    Google Scholar 
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).ADS 

    Google Scholar 
    Jackson, J. B. C. et al. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland (2014)Edmunds, P. J. Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Sci. Rep. 8, 16615 (2018).ADS 

    Google Scholar 
    Burgess, S. C., Johnston, E. C., Wyatt, A. S. J., Leichter, J. J. & Edmunds, P. J. Response diversity in corals: Hidden differences in bleaching mortality among cryptic Pocillopora species. Ecology https://doi.org/10.1002/ecy.3324 (2021).Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).ADS 

    Google Scholar 
    Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875 (2018).
    Google Scholar 
    Hench, J. L., Leichter, J. J. & Monismith, S. G. Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr. 53, 2681–2694 (2008).ADS 

    Google Scholar 
    Barry, J. P. & Dayton, P. K. Ecological heterogeneity. Ecol. Stud. https://doi.org/10.1007/978-1-4612-3062-5_14 (1991).Article 

    Google Scholar 
    Edmunds, P. & Bruno, J. The importance of sampling scale in ecology: Kilometer-wide variation in coral reef communities. Mar. Ecol. Prog. Ser. 143, 165–171 (1996).ADS 

    Google Scholar 
    Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).ADS 
    CAS 

    Google Scholar 
    van Oppen, M. J. H. & Lough, J. M. Coral bleaching, patterns, processes, causes and consequences. Ecol. Stud. https://doi.org/10.1007/978-3-319-75393-5_14 (2018).Article 

    Google Scholar 
    Monismith, S. G. Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech. 39, 37–55 (2007).ADS 
    MATH 

    Google Scholar 
    Edmunds P. Of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Corals, ongoing since 2005. knb-lter-mcr.4.33 https://doi.org/10.6073/pasta/1f05f1f52a2759dc096da9c24e88b1e8 (2020).Cowles, J. et al. Resilience: insights from the U.S. Long-term ecological research network. Ecosphere 12, e03434 (2021).
    Google Scholar 
    Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
    Google Scholar 
    Veron, J. E. N. Corals of the world, v. 1–3. Australian Institute of Marine Science (2000)Washburn, L of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Ocean Currents and Biogeochemistry: salinity, temperature and current at CTD and ADCP mooring FOR01 from 2004 ongoing. knb-lter-mcr.30.36doi:10.6073/pasta/124d19950c5234bf1937661989dcced7 (2021).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).ADS 

    Google Scholar 
    Dean, R. G. & Dalrymple, R. A. Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering Vol. 2 (World Scientific, 1991).
    Google Scholar 
    Carroll, A., Harrison, P. & Adjeroud, M. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia. Coral Reefs 25, 93–97 (2006).ADS 

    Google Scholar 
    Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).ADS 

    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
    Google Scholar 
    Clarke, K. R., Somerfield, P. J. & Chapman, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55–80 (2006).
    Google Scholar 
    RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021).Oksanen J. et al. vegan: Community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Wickham, et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).Article 
    ADS 

    Google Scholar 
    Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).
    Google Scholar 
    Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).
    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 

    Google Scholar 
    Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).
    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).ADS 
    CAS 

    Google Scholar 
    Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410 (2010).
    Google Scholar 
    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).ADS 
    CAS 

    Google Scholar 
    Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 12, 443–451 (2009).
    Google Scholar 
    Connell, J. H. Diversity in tropical rain forests and coral reefs author. Science 199, 1302–1310 (1978).ADS 
    CAS 

    Google Scholar 
    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).ADS 
    CAS 

    Google Scholar 
    Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).
    Google Scholar 
    Moritz, C. et al. Long-term monitoring of benthic communities reveals spatial determinants of disturbance and recovery dynamics on coral reefs. Mar. Ecol. Prog. Ser. 672, 141–152 (2021).ADS 

    Google Scholar 
    Dietzel, A. et al. The spatial footprint and patchiness of large scale disturbances on coral reefs. Global Change Biol. 27, 4825–4838 (2021).CAS 

    Google Scholar 
    Leichter, J. et al. Biological and physical interactions on a tropical island coral reef: Transport and retention processes on Moorea, French Polynesia. Oceanography 26, 52–63 (2011).
    Google Scholar 
    Porter, J. W. et al. Population trends among Jamaican reef corals. Nature 294, 249–250 (1981).ADS 

    Google Scholar 
    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 

    Google Scholar 
    Whittaker, R. H. & Levin, S. A. The role of mosaic phenomena in natural communities. Theor. Popul. Biol. 12, 117–139 (1977).CAS 

    Google Scholar 
    Karlson, R. H. & Hurd, L. E. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12, 117–125 (1993).ADS 

    Google Scholar 
    Stoddart, D. R. Effects of Hurricane Hattie on the British Honduras reefs and cays, October 30–31, 1961. Atoll Res. Bull. 95, 1–142 (1963).
    Google Scholar 
    Witman, J. D. Physical disturbance and community structure of exposed and protected reefs: A case study from St. John U.S. Virgin Islands. Integr. Comp. Biol. 32, 641–654 (1992).
    Google Scholar 
    Thorson, J. T., Scheuerell, M. D., Olden, J. D. & Schindler, D. E. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc. R. Soc. B 285, 20180915 (2018).
    Google Scholar 
    Mellin, C., MacNeil, M. A., Cheal, A. J., Emslie, M. J. & Caley, M. J. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).
    Google Scholar 
    Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11, e12587 (2018).
    Google Scholar 
    Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. A connectivity portfolio effect stabilizes marine reserve performance. Proc. Natl. Acad. Sci. 117, 25595–25600 (2020).ADS 
    CAS 

    Google Scholar 
    Walter, J. A. et al. The spatial synchrony of species richness and its relationship to ecosystem stability. Ecology https://doi.org/10.1002/ecy.3486 (2021).Article 

    Google Scholar 
    Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography 42, 1200–1211 (2019).
    Google Scholar 
    Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B 287, 20192520 (2020).
    Google Scholar 
    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).
    Google Scholar 
    Downing, A. L., Brown, B. L. & Leibold, M. A. Multiple diversity–stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95, 173–184 (2014).
    Google Scholar 
    Moran, P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).
    Google Scholar 
    Townsend, D. L. & Gouhier, T. C. Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities. Theor. Ecol. 12, 319–327 (2019).
    Google Scholar 
    Yeager, M. E., Gouhier, T. C. & Hughes, A. R. Predicting the stability of multitrophic communities in a variable world. Ecology 101, e02992 (2020).
    Google Scholar 
    Hughes, T. P. et al. Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr. Biol. https://doi.org/10.1016/j.cub.2021.10.046 (2021).Article 

    Google Scholar 
    Jackson, J. B. C. Morphological strategies of sessile animals. In Biology and Systematics of Colonial Organisms (eds Larwood, G. & Rosen, B. R.) 499–555 (Academic, 1979).
    Google Scholar 
    Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef Corals: The helix experiment. Science 239, 1422–1424 (1988).ADS 
    CAS 

    Google Scholar 
    Edmunds, P. J. Unusually high coral recruitment during the 2016 El Niño in Mo’orea, French Polynesia. PLoS ONE 12, e0185167 (2017).
    Google Scholar 
    Bull, G. Distribution and abundance of coral plankton. Coral Reefs 4, 197–200 (1986).ADS 

    Google Scholar 
    Hodgson, G. Abundance and distribution of planktonic coral larvae in Kaneohe Bay, Oahu, Hawaii. Mar. Ecol. Prog. Ser. 26, 61–71 (1985).ADS 

    Google Scholar 
    Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 

    Google Scholar  More

  • in

    Benthic biota of Chilean fjords and channels in 25 years of cruises of the National Oceanographic Committee

    The data were recorded under the DarwinCore standard55,56 in a matrix named “Benthic biota of CIMAR-Fiordos and Southern Ice Field Cruises”58. The occurrence dataset contains direct basic information (description, scope [temporal, geographic and taxonomic], methodology, bibliography, contacts, data description, GBIF registration and citation), project details, metrics (taxonomy and occurrences classification), activity (citations and download events) and download options. The following data fields were occupied:Column 1: “occurrenceID” (single indicator of the biological record indicating the cruise and correlative record).Column 2: “basisOfRecord” (“PreservedSpecimen” for occurrence records with catalogue number of scientific collection, “MaterialCitation” for any literature record).Column 3: “institutionCode” (The acronym in use by the institution having custody of the sample or information referred to in the record).Column 4: “collectionCode” (The name of the cruise).Column 5: “catalogNumber” (The repository number in museums or correlative number).Column 6: “type” (All records entered as “text”).Column 7: “language” (Spanish, English or both).Column 8: “institutionID” (The identifier for the institution having custody of the sample or information referred to in the record).Column 9: “collectionID” (The identifier for the collection or dataset from which the record was derived).Column 10: “datasetID” (The code “CONA-benthic-biota-database” for entire database).Column 11: “recordedBy” (Author/s who recorded the original occurrence [publication source]).Column 12: “individualCount” (Number of individuals recorded).Column 13: “associatedReferences” (Publication source [report and/or paper/s] for each record).Column 14: “samplingProtocol” (The sampling gear for each record).Column 15: “eventDate” (The date-time or interval during which the record occurred).Column 16: “eventRemarks” (Comments or notes about the event).Column 17: “continent” (Location).Column 18: “country” (Location).Column 19: “countryCode” (The standard code for the country in which the location occurs).Column 20: “stateProvince” (Location, refers to the Administrative Region of Chile).Column 21: “county” (Location, refers to the Administrative Province of Chile).Column 22: “municipality” (Location, refers to the Administrative Commune of Chile).Column 23: “locality” (The specific name of the place).Column 24: “verbatimLocality” (The original textual description of the place).Column 25: “verbatimDepth” (The original description of the depth).Column 26: “minimumDepthInMeters” (The shallowest depth of a range of depths).Column 27: “maximumDepthInMeters” (The deepest depth of a range of depths).Column 28: “locationRemarks” (The name of the sample station of the cruise).Column 29: “verbatimLatitude” (The verbatim original latitude of the location).Column 30: “verbatimLongitude” (The verbatim original longitude of the location).Column 31: “verbatimCoordinateSystem” (The coordinate format for the “verbatimLatitude” and “verbatimLongitude” or the “verbatimCoordinates” of the location).Column 32: “verbatimSRS” (The spatial reference system [SRS] upon which coordinates given in “verbatimLatitude” and “verbatimLongitude” are based)Column 33: “decimalLatitude” (The geographic latitude in decimal degrees).Column 34: “decimalLongitude” (The geographic longitude in decimal degrees).Column 35: “geodeticDatum” (The spatial reference system [SRS] upon which the geographic coordinates given in “decimalLatitude” and “decimalLongitude” was based).Column 36: “coordinateUncertaintyInMeters” (The horizontal distance from the given “decimalLatitude” and “decimalLongitude” describing the smallest circle containing the whole of the location).Column 37: “georeferenceRemarks” (Notes about the spatial description determination).Column 38: “identifiedBy” (Responsible for recording the original occurrence [publication source]).Column 39: “dateIdentified” (The date-time or interval during which the identification occurred.)Column 40: “identificationQualifier” (A taxonomic determination [e.g., “sp.”, “cf.”]).Column 41: “scientificNameID” (An identifier for the nomenclatural details of a scientific name).Column 42: “scientificName” (The name of species or taxon of the occurrence record).Column 43: “kingdom” (The scientific name of the kingdom in which the taxon is classified).Column 44: “phylum” (The scientific name of the phylum or division in which the taxon is classified).Column 45: “class” (The scientific name of the class in which the taxon is classified).Column 46: “order” (The scientific name of the order in which the taxon is classified).Column 47: “family” (The scientific name of the family in which the taxon is classified).Column 48: “genus” (The scientific name of the genus in which the taxon is classified).Column 49: “subgenus” (The scientific name of the subgenus in which the taxon is classified).Column 50: “specificEpithet” (The name of the first or species epithet of the “scientificName”).Column 51: “infraspecificEpithet” (The name of the lowest or terminal infraspecific epithet of the “scientificName”).Column 52: “taxonRank” (The taxonomic rank of the most specific name in the “scientificName”).Column 53: “scientificNameAuthorship” (The authorship information for the “scientificName” formatted according to the conventions of the applicable nomenclatural Code).Column 54: “verbatimIdentification” (A string representing the taxonomic identification as it appeared in the original record).The information sources (see Fig. 2b) provided a total of 107 publications (22 cruise reports and 85 scientific papers; see Fig. 2c). Nineteen of the 22 cruise reports reviewed provided species occurrence records8,28,29,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46, one provided qualitative or descriptive data, with no recorded occurrences31, and two did not provide information on benthic biota (CIMAR-9 and −23 cruises). Of all the scientific papers reviewed, 74 provided records of species occurrences (Table 2), while 11 did not provide any record, as they were data without occurrences of geographically referenced species or with descriptive or qualitative information: Foraminifera59,60,61,62, Annelida63,64,65,66, Fishes67, Mollusca68 and Echinodermata69. The phyla with the highest number of publications were the following: Annelida (present in 18 reports and 21 papers), Mollusca (in 14 and 20), Arthropoda (in 10 and 18), Echinodermata (in 10 and 9), Chordata (in 10 and 9) and Foraminifera (in 4 and 10).Table 2 Publications with >100 occurrences, indicating the main recorded taxa.Full size tableThe information registry includes data on occurrences and number of individuals for 8,854 records (files in the database), representing 1,225 species (Fig. 3). The main taxa in terms of occurrence and number of species were Annelida (mainly Polychaeta), Foraminifera, Mollusca and Arthopoda (mainly Crustacea), together accumulating ~70% of total occurrences and ~73% of the total species (Fig. 3). The large number of recorded occurrences of Myzozoa (10%) should be highlighted, which, however, only represent about 32 species. Echinodermata represented ~8% of occurrences and 7% of species.Fig. 3Occurrences and total species by taxon, considering large taxonomic groups of the benthic biota recorded in the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences and species are represented in parentheses.Full size imageThe cruises with the highest number of occurrences were CIMAR-2 (with 1,424), followed by CIMAR-8 (1,040) and CIMAR-16 (813) (Fig. 4). Three dominant taxonomic groups were recorded in most cruises, except for cruises CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 (Fig. 4). The cruises with the highest number of species recorded were CIMAR-2 (with 335), CIMAR-3 (328) and CIMAR-8 (323) (Fig. 5). Three or fewer dominant taxonomic groups were recorded only in the CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 cruises (Fig. 5).Fig. 4Total occurrences and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences per dominant taxon are represented in parentheses.Full size imageFig. 5Total species and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of species per dominant taxon are represented in parentheses.Full size imageThe latitudinal bands 42°S and 45°S are those with the highest number of occurrences (Fig. 6), while the 56°S and 46°S bands had the fewest. The highest number of species was recorded in the 52°S and 50°S latitudinal bands, while, as with the occurrences, the lowest values corresponded to the 56°S and 46°S latitudinal bands (Fig. 6).Fig. 6Occurrences and number of species recorded by latitudinal band from the CIMAR 1 to 25 and CDHS-1995 cruises. SEP: South-eastern Pacific.Full size image More

  • in

    Genetic population structures of common scavenging species near hydrothermal vents in the Okinawa Trough

    Van Dover, C. L. et al. Environmental management of deep-sea chemosynthetic ecosystems: justification of and considerations for a spatially based approach. ISA Technical Study: No.9. (International Seabed Authority, 2011).Ikehata, K., Suzuki, R., Shimada, K., Ishibashi, J., & Urabe, T. Mineralogical and Geochemical Characteristics of Hydrothermal Minerals Collected from Hydrothermal Vent Fields in the Southern Mariana Spreading Center. In Subseafloor biosphere linked to hydrothermal systems: TAIGA Concept. 275–288 (Springer Tokyo, 2015).Rona, P. A. & Scott, S. D. A special issue on sea-floor hydrothermal mineralization; new perspectives; preface. Econ. Geol. 88, 1935–1976 (1993).
    Google Scholar 
    Glasby, G. P., Iizasa, K., Yuasa, M. & Usui, A. Submarine hydrothermal mineralization on the Izu-Bonin arc, south of Japan: an overview. Mar. Georesources Geotech. 18, 141–176 (2000).
    Google Scholar 
    Van Dover, C. L. Inactive sulfide ecosystems in the deep sea: a review. Front. Mar. Sci. 6, 461. https://doi.org/10.3389/fmars.2019.00461 (2019).Article 

    Google Scholar 
    Boschen, R. E., Rowde, A. A., Clark, M. R. & Gardner, J. P. Mining of deep-sea seafloor massive sulfides: a review of the deposits, their benthic communities, impacts from mining, regulatory frameworks and management strategies. Ocean Coast. Manag. 84, 54–67 (2013).
    Google Scholar 
    Washburn, T. W. et al. Ecological risk assessment for deep-sea mining. Ocean Coast. Manag. 176, 24–39 (2019).
    Google Scholar 
    Matsui, T., Sugishima, H., Okamoto, N., Igarashi, Y. Evaluation of turbidity and resedimentation through seafloor disturbance experiments for assessment of environmental impacts associated with exploitation of seafloor massive sulfides mining. Proceedings of the Twenty-eighth. International Ocean and Polar Engineering Conference. 144–151 (2018).International Seabed Authority. Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for marine minerals in the Area. https://www.isa.org.jm/documents/isba19ltc8 (2013).Suzuki, K., Yoshida, K., Watanabe, H. & Yamamoto, H. Mapping the resilience of chemosynthetic communities in hydrothermal vent fields. Sci. Rep. 8, 9364. https://doi.org/10.1038/s41598-018-27596-7 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yahagi, T., Watanabe, H., Ishibashi, J. I. & Kojima, S. Genetic population structure of four hydrothermal vent shrimp species (Alvinocarididae) in the Okinawa Trough, Northwest Pacific. Mar. Ecol. Prog. Ser. 529, 159–169 (2015).ADS 

    Google Scholar 
    Mullineaux, L. S. Deep-sea hydrothermal vent communities. In Marine community ecology and conservation (eds Bertness, M. D. et al.) 383–400 (Sinauer, 2013).
    Google Scholar 
    Van Dover, C. L., German, C. R., Speer, K. G., Parson, L. M. & Vrijenhoek, R. C. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295, 1253–1257 (2002).ADS 

    Google Scholar 
    Yahagi, T., Kayama-Watanabe, H., Kojima, S. & Kano, Y. Do larvae from deep-sea hydrothermal vents disperse in surface waters?. Ecology 98, 1524–1534 (2017).
    Google Scholar 
    Hebert, P. D. & Gregory, T. R. The promise of DNA barcoding for taxonomy. Syst. Biol. 54, 852–859 (2005).
    Google Scholar 
    Iguchi, A. et al. Comparative analysis on the genetic population structures of the deep-sea whelks Buccinum tsubai and Neptunea constricta in the Sea of Japan. Mar. Biol. 151, 31–39 (2007).
    Google Scholar 
    Goode, G. B. & Bean, T. H. A catalogue of the fishes of Essex County, Massachusetts, including the fauna of Massachusetts Bay and the contiguous deep waters. Bull. Essex Inst. 11, 1–38 (1879).
    Google Scholar 
    Johnson, J. Y. Descriptions of some new genera and species of fishes obtained at Madeira. Proc. Zool. Soc. Lond. 1862, 167–180 (1862).
    Google Scholar 
    Bate, C. S. Report on the Crustacea Macrura collected by the Challenger during the years 1873–76. Report on the scientific results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology 24, 1–942 (1888).
    Google Scholar 
    Folmer, O., Black, M., Hoeh, W. R., Lutz, R. & Vrijenhoek, R. C. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol Biotech. 3, 294–299 (1994).CAS 

    Google Scholar 
    Pilgrim, E. M., Blum, M. J., Reusser, D. A., Lee, H. & Darling, J. A. Geographic range and structure of cryptic genetic diversity among Pacific North American populations of the non-native amphipod Grandidierella japonica. Biol. Invasions 15, 2415–2428 (2013).
    Google Scholar 
    Suyama, Y. & Matsuki, Y. MIG-seq: an effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5, 16963. https://doi.org/10.1038/srep16963 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2020).Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 

    Google Scholar 
    Shen, W., Le, S., Li, Y. & Hu, F. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS ONE 11, e0163962. https://doi.org/10.1371/journal.pone.0163962 (2016).Article 
    CAS 

    Google Scholar 
    Paradis, E. pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 26, 419–420 (2010).CAS 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).CAS 

    Google Scholar 
    Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).CAS 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RaxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 

    Google Scholar 
    Ronquist, F. R. & Huelsenbeck, J. P. MRBAYES 3: Bayesian inference of phylogeny. Bioinformatics 19, 1572–1574 (2003).CAS 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2021).
    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, http://journal.embnet.org/index.php/embnetjournal/article/view/200/479 (2011).Rochette, N. C., Rivera-Colón, A. G. & Catchen, J. M. Stacks 2: Analytical methods for paired-end sequencing improve RADseq-based population genomics. Mol. Ecol. 28, 4737–4754 (2019).CAS 

    Google Scholar 
    Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).CAS 

    Google Scholar 
    Jombart, T. adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 

    Google Scholar 
    Goudet, J. Hierfstat, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2013).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5–6. https://CRAN.R-project.org/package=vegan (2019).Dana, J. D. Synopsis of the genera of Gammaracea. Am. J. Sci. Arts 8, 135–140 (1849).
    Google Scholar 
    Hansen, H. J. Malacostraca marina Groenlandiæ occidentalis Oversigt over det vestlige Grønlands Fauna af malakostrake Havkrebsdyr. Vidensk. Meddel. Natuirist. Foren Kjobenhavn, Aaret 9, 5–226 (1888).
    Google Scholar 
    Van Dover, C. L. The ecology of deep-sea hydrothermal vents (Princeton University Press, 2000).
    Google Scholar 
    Tunnicliffe, V. The biology of hydrothermal vents: ecology and evolution. Oceanogr. Mar. Biol. Annu. Rev. 29, 319–407 (1991).
    Google Scholar 
    Priede, I. G., Bagley, P. M., Smith, A., Creasey, S. & Merrett, N. R. Scavenging deep demersal fishes of the Porcupine Seabight, north-east Atlantic: observations by baited camera, trap and trawl. J. Mar. Biol. Assoc. U. K. 74, 481–498 (1994).
    Google Scholar 
    Causse, R., Biscoito, M. & Briand, P. First record of the deep-sea eel Ilyophis saldanhai (Synaphobranchidae, Anguilliformes) from the Pacific Ocean. Cybium 29, 413–416 (2005).
    Google Scholar 
    King, N. J., Bagley, P. M. & Priede, I. G. Depth zonation and latitudinal distribution of deep-sea scavenging demersal fishes of the Mid-Atlantic Ridge, 42 to 53°N. Mar. Ecol. Prog. Ser. 319, 263–274 (2006).ADS 

    Google Scholar 
    Leitner, A. B., Durden, J. M., Smith, C. R., Klingberg, E. D. & Drazen, J. C. Synaphobranchid eel swarms on abyssal seamounts: largest aggregation of fishes ever observed at abyssal depths. Deep Sea Res. Oceanogr. Res. Part I Pap. 167, 103423. https://doi.org/10.1016/j.dsr.2020.103423 (2021).Article 

    Google Scholar 
    Fishelson, L. Comparative internal morphology of deep-sea eels, with particular emphasis on gonads and gut structure. J. Fish. Biol. 44, 75–101 (1994).
    Google Scholar 
    Bailey, D. M. et al. High swimming and metabolic activity in the deep-sea eel Synaphobranchus kaupii revealed by integrated in situ and in vitro measurements. Physiol. Biochem. Zool. 78, 335–346 (2005).
    Google Scholar 
    Trenkel, V. M. & Lorance, P. Estimating Synaphobranchus kaupii densities: contribution of fish behaviour to differences between bait experiments and visual strip transects. Deep Sea Res. Oceanogr. Res. Part I Pap. 58, 63–71 (2011).ADS 

    Google Scholar 
    Raupach, M. J. et al. Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar. Biol. 157, 1783–1797 (2010).CAS 

    Google Scholar 
    Dambach, J., Raupach, M. J., Leese, F., Schwarzer, J. & Engler, J. O. Ocean currents determine functional connectivity in an Antarctic deep-sea shrimp. Mar. Ecol. 37, 1336–1344 (2016).ADS 
    CAS 

    Google Scholar 
    Dambach, J., Raupach, M. J., Mayer, C., Schwarzer, J. & Leese, F. Isolation and characterization of nine polymorphic microsatellite markers for the deep-sea shrimp Nematocarcinus lanceopes (Crustacea: Decapoda: Caridea). BMC Res. Notes 6, 75. https://doi.org/10.1186/1756-0500-6-75 (2013).Article 

    Google Scholar 
    Ritchie, H., Jamieson, A. J. & Piertney, S. B. Phylogenetic relationships among hadal amphipods of the Superfamily Lysianassoidea: Implications for taxonomy and biogeography. Deep Sea Res. Part I 105, 119–131 (2015).CAS 

    Google Scholar 
    Bowen, B. W. et al. Phylogeography unplugged: comparative surveys in the genomic era. Bull. Mar. Sci. 90, 13–46 (2014).
    Google Scholar 
    Ritchie, H., Jamieson, A. J. & Piertney, S. B. Population genetic structure of two congeneric deep-sea amphipod species from geographically isolated hadal trenches in the Pacific Ocean. Deep Sea Res. Part I. 119, 50–57 (2017).
    Google Scholar 
    Iguchi, A. et al. Deep-sea amphipods around cobalt-rich ferromanganese crusts: taxonomic diversity and selection of candidate species for connectivity analysis. PLoS ONE 15, e0228483. https://doi.org/10.1371/journal.pone.0228483 (2020).Article 
    CAS 

    Google Scholar 
    Baco, A. R. et al. A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Mol. Ecol. 25, 3276–3298 (2016).
    Google Scholar 
    Taylor, M. L. & Roterman, C. N. Invertebrate population genetics across Earth’s largest habitat: the deep-sea floor. Mol. Ecol. 26, 4872–4896 (2017).CAS 

    Google Scholar  More

  • in

    A simple soil mass correction for a more accurate determination of soil carbon stock changes

    Our approach uses hypothetical 30 cm fixed depth samples taken at three successive time points (t0, t1, and t2) with prescribed changes in SOC (1.4% to 1.6%) and BD (1.5–1.1 g cm−3) over these time points (Table 1). The 30 cm soil depth is the common international standard for sampling and analysis required for SOC stock assessment and adhered to by carbon accounting and market organizations6,18. The changes we adopted (a 27% decrease in BD and a 14% increase in SOC) while relatively large, are consistent with those reported in the literature. For example, Reganold and Palmer reported a 25% decrease in BD (1.2–0.9 g cm−3) in neighboring farms with differing management practices23, and Syswerda et al. observed a 17% increase in SOC concentration (10.4–12.2 g C kg soil−1) when converting from a conventionally to organically managed row crop rotation21.Table 1 Hypothetical changes in bulk density (BD) and soil organic carbon (SOC) concentration in 30 cm fixed depth samples at time points t0, t1 and t2 along with calculated values of SOC stock and total soil mass and mineral soil mass.Full size tableIn Table 1, the total soil mass, mineral soil mass, and the SOC stock of the fixed depth samples were calculated by equations as described in the introduction from our prescribed changes in BD and SOC values.ScenariosWe compared hypothetical ESM correction scenarios with our 30 cm fixed depth sample at each time point (Table 2, Figs. 2, 3).Table 2 Hypothetical ESM scenarios showing variation with depth for bulk density (BD) and soil organic carbon (SOC) at each sampling time point, along with the sample depth intervals investigated.Full size tableFigure 2Flow chart of the definition, sampling, and SOC stock correction for a theoretical data set at time points t0, t1, and t2 for scenarios s1 with linear distributions of BD and SOC and s2 with a linear increase in BD and exponential decrease in SOC with depth. Scenario s2 is sampled at (a) 10 cm, (b) 15 cm, and (c) 30 cm intervals.Full size imageFigure 3Scenarios (S1 and S2), showing (a) bulk density variation (BD, g cm−3), and (b) soil organic carbon (SOC, %) variation by depth (0–30 cm) at each time point (t0, t1, and t2). For scenario 2, the single 30 cm depth interval was used (2c). See Table 1 and 2 for details.Full size imageScenario 1We carried out the ESM correction on a 30 cm sample and assumed that the sample was homogenous throughout the profile, with constant SOC and BD values at each time point.To correct for the error in SOC stock estimation when using fixed depth soil sampling, we used  Eqs.2a, 2b and 2c that consider changes in BD28,35. The adjusted soil depth resulting from the change in BD is calculated as:$${mathrm{M}}_{mathrm{n}}= {mathrm{M}}_{mathrm{i}}$$
    (2a)
    $${mathrm{D}}_{mathrm{a}}*{mathrm{BD}}_{mathrm{n}}*left(1-mathrm{k}*{mathrm{SOC}}_{mathrm{n}}right)={mathrm{D}}_{mathrm{i}}*{mathrm{BD}}_{mathrm{i}}*left(1-mathrm{k}*{mathrm{SOC}}_{mathrm{i}}right)$$
    (2b)
    $${mathrm{D}}_{mathrm{a}}={mathrm{D}}_{mathrm{i}}*frac{{mathrm{BD}}_{mathrm{i}}}{{mathrm{BD}}_{mathrm{n}}}*frac{1-mathrm{k}*{mathrm{SOC}}_{mathrm{i}}}{1-mathrm{k}*{mathrm{SOC}}_{mathrm{n}}}$$
    (2c)
    where Mi = Initial mineral soil mass per area (left[frac{M}{{L}^{2}}right]) , Mn = New mineral soil mass per area (left[frac{M}{{L}^{2}}right]) , Da = Adjusted soil surface depth (left[Lright]) , BDi = Initial bulk density (left[frac{M}{{L}^{3}}right]) , BDn = New bulk density (left[frac{M}{{L}^{3}}right]) , SOCi = Initial SOC as a decimal percent (left[frac{M}{M}right]) , SOCn = New SOC as a decimal percent (left[frac{M}{M}right]) , Di = Initial depth (left[Lright]).To conform with Eq. (2a), an increase in SOC over time results in a displacement of some soil mineral mass from the sample, whereas a decrease in SOC over time requires some soil mineral mass to be replaced34. Multiplying the BD by the mineral fraction of the soil (left(1-mathrm{k}*{mathrm{SOC}}right)) for each time point allowed us to compare equivalent mineral mass28. The effect of a change in SOC on mineral mass is small, with a 1% change in SOC equating to approximately a 2% change in apparent depth. This adjustment relates SOC per unit of mineral mass of the fine fraction ( 2 mm)20. The corrected apparent depth can then be used to calculate the corrected SOC stock of a single layer, fixed depth sample (Eq. 3).$$SO{C}_{stock}={D}_{a}*BD*SOC$$
    (3)
    Scenario 2In ESM correction scenarios 2a, 2b, and 2c, we imposed variable, dynamic BD and SOC values with depth over time (Table 2, Figs. 2, 3). To investigate these profiles, we determined the SOC and BD values throughout the soil depth by separating the soil into one (1) cm depth increments (i.e., 0–1 cm, 1–2 cm, etc.). We refer to this calculated incremental profile as the scenario 2 baseline. We assumed that our prescribed SOC concentration varied with depth following an exponential decay. To represent this decay, we simulated the global average distribution of SOC concentration with depth on crop land36, following the distribution from Hobley and Wilson37 (Eq. 4),$$SOCleft(dright)=SO{C}_{infty }+left(SO{C}_{o}-SO{C}_{infty }right)times {e}^{-dk}$$
    (4)
    where SOC (d) is the SOC concentration at depth (d), ({SOC}_{infty }) is the infinity SOC concentration, SOC0 is the SOC concentration at the soil surface, and k is the decay rate. We solved for the decay rate, initial SOC0, and infinity ({SOC}_{infty }) to fit the global average distribution for the 30 cm profile36 and then scaled the SOC concentration to our 30 cm fixed depth sample’s average SOC (1.4%) at t0 (Fig. 3).In scenarios 2a, 2b, and 2c, the BD increased linearly with depth38,39. At the initial time point (t0), we varied the BD values by ± 10% of the BD average over the 30 cm depth, such that for example, BD at t0 (profile average of 1.5 g cm−3) was 1.35 g cm−3 and 1.65 g cm−3 for the upper (0–1 cm) and lower (29–30 cm) depth increment, respectively. For each sequential time point, as the average BD decreased, the soil expanded. To determine the expansion, the depth of the initial sample (e.g., at t0) that filled the 30 cm depth in the subsequent sample (e.g., at t1) was calculated as the initial depth multiplied by the ratio of the average initial BD over the average new BD (e.g., 1.5/1.3 = 1.15 for t0/t1).The linear increase in BD with depth of each following time point maintained the average BD of scenario 1. We then varied the new BD by ± the percent change in the average BD between the time periods (see annotated scripts “main.R” and “functions.R” in Supplementary Material 1 for the development of the theoretical dataset). We then divided each initial BD increment (using soil mass for every 1 cm depth increment) by the new BD in the expanded increment (using soil mass for every  > 1 cm depth increment) to determine the expanded depth of each increment. The SOC value at the initial time represented the same, now expanded, ( > 1 cm) increments, as SOC is a ratio of mass. We used a linear decay rate that was twice that of the percent change in BD between time points to maintain an average BD that was consistent with scenario 1. To model the subsequent fixed depth sample, the BD and SOC concentration values of this expanded soil profile were then interpolated back to the 30 × 1 cm increments of the scenario 2 baseline depth. This calculation preserved the prescribed average BD of the new time point by only expanding the initial SOC concentration.We adjusted the SOC concentration of the next time point to maintain the average SOC concentrations of the 30 cm fixed depth sample, (see annotated scripts “main.R” and “functions.R” in Supplementary Material 1). Because the BD changed between time points and because the SOC stock in the 30 cm fixed depth sample was known, we determined the change in SOC stock between time points by subtracting the average SOC stock in the prior sample from the new sample. We then weighted this change across the 30 cm profile using the distribution of the global soil SOC in the top 30 cm to simulate SOC stratification with reduced tillage or agricultural intensification40. We then multiplied this change by the BD to convert back to SOC concentration and added the delta ((Delta )) SOC value to the prior sample. A worked example is shown in Supplementary Material 2 “Correction Example”.At each time point we split the soil profile at 10 cm and 15 cm depth intervals to create samples for scenarios 2a (3 soil intervals) and 2b (2 soil intervals), respectively. Note that scenario 2c is mathematically equivalent to scenario 1—with only one sample depth interval (30 cm) the sample contains no data on varying SOC or BD. The samples for 2a and 2b were generated by summing the total mass per area and SOC stock values from the scenario 2 baseline to produce single sample values of total soil mass per area and SOC concentration values per depth interval (as would be determined in a laboratory) and calculating BD and mineral mass.In scenario 2, any required additional mineral mass and the associated SOC values were ‘placed’ at the base of the sample to represent a soil profile that had expanded below the fixed 30 cm depth. To account for this, we calculated the increase in adjusted sample depth and accumulated additional soil mineral mass with the lowest sample depth interval of each split sample (Eqs. 5 and 6).$$mathrm{Delta D}={D}_{a}-{D}_{i}$$
    (5)
    $$SO{C}_{stock}={(D}_{1}*B{D}_{1}*SO{C}_{1}+dots + {(D}_{j}+Delta D)*B{D}_{j}*SO{C}_{j}))*10^2 (mathrm{g}/mathrm{cm}^{2})/(mathrm{Mg}/mathrm{ha})$$
    (6)
    where (mathrm{ Delta D}) is the apparent change in depth needed to generate the same mineral mass of the initial sample and the subscript j is the number of sample depth intervals from 1 to j.Varying BD linearly with depth introduces additional complexity in the calculation of the apparent depth. Each sample depth interval may expand (or contract in cases not explored here) at differing rates. Here, the over or under sampling of soil mineral mass is no longer constant with depth and the correction for apparent depth (Da) is estimated with linear interpolation using the BD of each sampling depth interval (i.e., 10 cm, 15 cm, or 30 cm). To do so, we calculated the mineral mass in each depth interval, determined their difference between the initial sample time point and new sample time point, and converted the change in mineral mass to a depth, where:$${mathrm{D}}_{mathrm{a}}={mathrm{D}}_{mathrm{i}}+frac{left(mathrm{sum}left({mathrm{D}}_{mathrm{ij}}*{mathrm{BD}}_{mathrm{ij}}*(1-mathrm{k}*{mathrm{soc}}_{mathrm{ij}}right))- mathrm{sum}left({mathrm{D}}_{mathrm{nj}}*{mathrm{BD}}_{mathrm{nj}}*(1-mathrm{k}*{mathrm{soc}}_{nmathrm{j}})right)right)}{{mathrm{BD}}_{{mathrm{nj}}_{mathrm{bottom}}}*1-mathrm{k}*{mathrm{soc}}_{n{mathrm{j}}_{mathrm{bottom}}}}$$
    (7)
    where jbottom is the lowest sample depth interval, and other terms are as previous. Using Eqs. (5), (6), and (7), with variable BD and SOC values, SOC stock can be corrected using samples split into the 10 cm and 15 cm sampling depth intervals. More

  • in

    Ecological successions throughout the desiccation of Tirez lagoon (Spain) as an astrobiological time-analog for wet-to-dry transitions on Mars

    The ecological baseline in TirezThe geology and the climate of the Tirez region favored the generation and maintenance of a type of hypersaline habitat characterized by extreme seasonality: the sulfate-chlorine waters, with sodium and magnesium cations, showed significant seasonal variations15. The alkaline pH, the low oxidant value for the redox potential of the water column and the highly reduced sediments imposed extreme conditions (see Table 1 and Supplementary Information for details). This extreme seasonality requires to define a valid representative ecological baseline to compare the ecology of the lagoon between 2002 and 2021 and, in this way, set the basis to proposing our model of ecological succession with increasing dryness as a “time-analog” for early Mars. Taxonomic data from 2002 is a snapshot of the community during one season, so we include in our discussion the results presented by Montoya et al. (2013) from a sample campaign carried out in 2005, because they16 analyzed both water and sediment and during both the wet and dry seasons.We consider here only the results obtained by Montoya et al.16 by gene cloning, since those obtained by isolation and sequencing are not comparable. At the level of large groups, no major seasonal differences were observed: Pseudomonadota, followed by Bacteroidetes, were the dominant phyla, in both water and sediments, and both in the dry and the rainy seasons; although Alphaproteobacteria was the dominant class in water, while Gammaproteobacteria was dominant in sediments (in both dry and rainy seasons). With respect to the archaeal domain, all the identified sequences were affiliated to Halobacteriales order, mainly Halorubrum (water) and Halobacterium (sediment), both within Halobacteriaceae family. We can consider these results presented in Montoya et al.16 as the “ecological baseline” for Tirez, however taken with a grain of salt, because only 43 bacterial and 35 archaeal sequences, including rainy and dry seasons and water and sediments, were considered for analysis.Prokaryotic diversity in 2002As can be expected for an extreme environment, the bacterial diversity detected in 2002 was low, although we cannot exclude the possibility that this may reflect the limitation of DNA sequencing techniques at the time. 59% of the obtained clones in the then-wet sediments corresponded to the Malaciobacter genus. Malaciobacter (previously named17 Arcobacter) is an aerotolerant Epsilonproteobacteria. Species within this genus are moderately halophilic, e.g., M. halophilus, capable to grow in up to 4% NaCl. Even though the role that Malaciobacter can play in the environment is not known, it seems to thrive in aquatic systems, like sewage, with a high organic matter content17: e.g., M. canalis, M. cloacae, or M. defluvii.After Malaciobacter-like clones, the next most numerous group belongs to the phylum Bacillota (27% of the sequenced clones; Table 2). Under stressful environmental conditions, members of the genus Virgibacillus produce endospores, a very useful property in an extreme and variable environment (ionic strength, temperature, light intensity), easy to compare with early Mars. Endospores facilitate species survival, allowing them to overcome drastic negative changes, like dry periods, and to germinate when the conditions are favorable again. The closest identified species was the halotolerant V. halodenitrificans, but with low homology, not far from other halotolerant (e.g., V. dokdonensis) or halophilic (e.g., V. marismortui) species within the same genus. The other Gram-positive clones belong to the order Clostridiales. These clones cluster in two taxonomic units related with the strictly anaerobic genus Tissierella.Despite the abundance of Pseudomonadota, their biodiversity was very low, reduced to only two genera within the Epsilon- and Delta-proteobacteria. Six sequences affiliated to Deltaproteobacteria, and clustered in one OTU (salB38, similarity 96.6% with Desulfotignum), were retrieved. Its presence in anaerobic media rich in sulfates (Table 1) seems reasonable. In fact, sulfate-reducing activity was detected using a specific enrichment assay.Finally, one taxon belonging to the phylum Spirochaetota (previously named Spirochaetes) was identified. The presence of Spirochaetota in this system is not strange because members of the genus Spirochaeta are very often found in mud and anaerobic marine environments rich in sulfates18. Moreover, the closest species to SalB63, although with a low similarity of 87%, was Spirochaeta bajacaliforniensis, a spirochete isolated19 from a microbial mat in Laguna Figueroa (Baja California), an extensive hypersaline lagoon with high gypsum content, very similar, although much bigger, than Tirez lagoon.The diversity within the domain Archaea was very low in 2002. The phylogenetic analysis of 96 clones indicate that they correspond to one specie belonging to the obligate halophile genus Methanohalophilus. Their high similarity (99.3%) with several species of Methanohalophilus, such as M. portucalensis (isolated from sediments of a solar saltern in Portugal), M. mahii (isolated from sediments of the Great Salt Lake), or M. halophilus (isolated20 from a cyanobacterial mat at Hamelin Pool, Australia), makes impossible its adscription to any particular species level. Methanohalophilus is strictly methylotrophic, which is consistent with this environment, given that the methylotrophic methanogenesis pathway, non-competitive at low-salt conditions, is predominant at high saline concentrations21. We further confirmed methanogenic activity in Tirez by the measurement of methane by gas chromatography in enrichment cultures.Prokaryotic diversity in context of other studies between 2002 and 2021It was challenging to establish a timeline for the succession of the populations involved, because the scarcity of data harvested and published so far from Tirez. However, combining our results with the few data available in Montoya et al.16 and Preston et al.22 on samplings carried out on 2005 and 2017, respectively, we can see a clear predominance of the phylum Pseudomonadota: Epsilonproteobacteria, i.e. Arcobacter-like, and Deltaproteobacteria, mainly sulfate-reducing bacteria (this work, sampling 2002), and Gammaproteobacteria16 when Tirez maintained a water film, to eventually a final predominance of Gammaproteobacteria, e.g. Chromatiales and Pseudomonadales, in the dry Tirez (this work, 2020 sampling). The Bacillales order has remained widely represented both in the wet and dry Tirez.Regarding the archaeal domain, the few references available (Refs.16,22; this work) confirm that the members of the Halobacteriaceae family are well adapted to both the humid and dry ecosystems of Tirez, being predominant in both conditions. Preston et al.22 found that the second most abundant group of archaea in the dry sediments of Tirez was the Methermicoccaceae family, within the Methanosarcinales order, Methanomicrobia class. Taking into account the results obtained in the dry Tirez (Preston et al.22; and this work, sample 2020), the methanogenic archaea have decreased drastically through time, probably due to salt stress and the competition with sulfate-reducing bacteria.Prokaryotic diversity in 2021From a metabolic point of view, most of the bacteria present today in the sediment are chemoorganotrophs, anaerobes, and halophilic or halotolerant. Scarce information is available about the predominant OTU, Candidate Division OP1. The OP1 division was one of the main bacterial phyla in a sulfur-rich sample in the deepest analyzed samples from the Red Sea sediments under brine pools23. In addition, the phylogenetically related Candidate division KB1 has been observed in deep-sea hypersaline anoxic basins at Orca Basin (Gulf of Mexico), and other hypersaline environments24. Eight of the nine genera identified show coverage greater than 1% of the sequences: i.e., Rubinisphaera, Halothiobacillus, Thiohalophilus, Anaerobacillus/Halolactibacillus, Halomonas, Halothermothrix, and Aliifodinibius are halophilic or halotolerant genera13,25.Regarding archaea, our analyses reveal archaeal groups that seem to thrive in sediments from extreme environments, e.g., marine brine pools/deep water anoxic basins or hypersaline lakes. The most abundant OTU, Thermoplasmata KTK4A, was found prominent and active in the sediment of Lake Strawbridge, a hypersaline lake in Western Australia26, and in soda-saline lakes in China27. The creation of a Candidatus Haloplasmatales, a novel order to include KTK4A-related Thermoplasmata, has been proposed27. On the other hand, both in the aforementioned soda-saline lakes in China27 and in a sulfur-rich section of the sediments from below the Red Sea brine pools23, retrieved sequences were assigned to Marine Benthic Groups B, D, and E. Finally, in the section of nitrogen-rich sediments from the aforementioned Red Sea brine pools, the unclassified lineage ST-12K10A represented the most abundant archaeal group. In the Tirez Lagoon sediment after desiccation, all Methanomicrobia readings belonged to this group.The significance and implications of an ecosystem characterized in 2021 by high diversity, high inequality, and lack of isolated representatives, resides in that Tirez is today an ecosystem in which many (most) of the species/OTUs present are dormant, and they do not play any metabolic role. Hence the high percentage of raretons, greater than 80% for both bacteria and archaea, which are actually present in the lagoon but with only one or two copies each. Only those species adapted to the conditions imposed by the extreme environment are able to actually thrive, and consequently only a few species carry out all the metabolic activity. We conclude that the microbiota in Tirez today represents an ecosystem with a high resilience capacity in the face of environmental changes that may occur.We want to clearly highlight that the technique available in 2002 to study the microbiota of the Tirez lagoon only allowed to obtain a low-resolution image, but that was the state-of-the-art procedure at the time, and the Tirez lagoon cannot be sampled again with the conditions back in 2002, which no longer exist and are not expected to return. Although we have kept in storage several samples of water and sediment from the 2002 Tirez lagoon, it is reasonable to assume that those laboratory microcosms would have chemically and microbiologically changed during the last 20 years, and as such no longer represent reliable replicas of the original lagoon, so we cannot use them for the purposes of this work. Therefore, we are aware that any comparisons of the 2002 laboratory results with the much more robust results obtained by Illumina in 2021 need to be taken with a grain of salt. With all the precautions required, in a high-level, first-order comparison, the most noticeable difference between 2002 and 2021 is a drastic change in the microbial Tirez population. Only some OTUs within Bacillales (Virgibacillus/Anaerobacillus), sulfate-reducing Deltaproteobacteria (Desulfotignum/Desulfobacteraceae-Desulfovibrio), and Spirochaetes are shared among the 2002 and 2021 samples. This comparison is enough for the purposes of this work, as we are interested in the evolution of the lagoon system as a whole to establish a “time-analog” with the wet-to-dry transition on early Mars, and not in the particular outcome of each and every OTU in Tirez. With the results at hand, we conclude that, since 2002, the lacustrine microbiota has shifted to one more adapted to the extreme conditions in the dry sediments, derived from the gradual and persistent desiccation concluding ca. 7 years ago (i.e., completely desiccated in 2015), such as lack of light, absence of oxygen, and lack of water availability. This shift has likely been triggered because organisms that were originally in the lagoon but at low abundance in 2002 became dominant as they were better adapted to desiccation, and because the incoming of new microorganisms transported by birds or wind28.Lipid biomarkers analysis of the desiccated lake sedimentsThe analysis of cell membrane-derived lipid compounds on the dry lake sediments at present allow to provide another perspective of the microbial communities inhabiting the Tirez lagoon, by contributing additional information about the ecosystem and depositional environment. It is important to note that, analyzing only the 2021 lake sediments, we cannot differentiate between lipidic biomarkers of the microorganisms inhabiting Tirez in 2002 and before from those left behind by the microorganisms living in the dried sediments today. Instead, the analyses of lipid biomarkers provide clues about the different microorganisms that have populated Tirez through time, including both older communities inhabiting the former aqueous system and also younger communities better adapted to the present dry conditions. Thus, the lipid biomarkers analysis can be considered as a time-integrative record of the microbial community inhabiting Tirez during the last decades.Based on the molecular distribution of lipid biomarkers, the presence of gram-positive bacteria was inferred from the relative abundance of the monounsaturated alkanoic acid C18:1[ω9], or iso/anteiso pairs of alkanoic acids from 12 to 17 carbons29 with dominance of i/a-C15:0 and i/a-C17:0 (Fig. 3B). In contrast, generally ubiquitous alkanoic acids such as C16:1[ω7], C18:1[ω7], or C18:2[ω6] suggested a provenance rather related to gram-negative bacteria30. The combined detection of the i/a-C15:0 and i/a-C17:0 acids, with dominance of the iso over the anteiso congeners, together with other biomarkers such as the mid-chain branched 10Me16:0, the monounsaturated C17:1, or the cyclopropyl Cy17:0 and Cy19:0 acids, may be associated with a community of SRB31 in today´s dry sediments of Tirez. Specifically, most of those alkanoic acids have been found in a variety of Deltaproteobacteria and/or Bacteroidota (previously named Bacteroidetes). The presence of archaea was deduced from the detection of prominent peaks of archaeol in the polar fraction32 (Fig. 3C), as well as squalene and relatives (dihydrosqualene and tetrahydrosqualene) in the apolar fraction33 (Fig. 3A). Squalene and a variety of unsaturated derivatives are present in the neutral lipid fractions of many archaea with high abundances in saline lakes34. The relative abundance of autotrophs over heterotrophs35 can be estimated by the ratio of the autotrophically-related pristane and phytane over the both autotrophically- and heterotrophically-produced n-C17 and n-C18 alkanes ([Pr + Ph]/[n-C17 + n-C18]). A ratio of 0.56 in the Tirez sediments suggest the presence of a relevant proportion of heterotrophs in the ancient lacustrine system.Furthermore, the lipid biomarkers analysis was able to detect compounds specific of additional microbial sources, such as cyanobacteria36 (n-C17, C17:1, or 7Me-C15 and 7Me-C17), microalgae and/or diatoms (phytosterols37; or C20:5, and C22:6 alkanoic acids30), and other photoautotrophs (phytol and potentially degradative compounds such as pristane and phytane31). A relatively higher preservation of the cell-membrane remnants (i.e., lipids) compared to the DNA-composing nucleic acids may contribute to explain the lack of detection of cyanobacteria, diatoms and microalgae, and other phototrophs by DNA analysis (a deficit in our results shared with Montoya et al.16, and Preston et al.22). Although abundant in higher plants38, sterols such as those detected here (i.e., the sterols campesterol, stigmasterol, and β-sitosterol, as well as ergosterol) are also major sterols in some microalgal classes37 (such as Bacillariophyceae, Chrysophyceae, Euglenophyceae, Eustigmatophyceae, Raphidophyceae, Xanthophyceae, and Chlorophyceae), cyanobacteria (β-sitosterol), and fungi (ergosterol39).The carbon isotopic composition of lipid biomarkers provides a rapid screening of the carbon metabolism in a system, by recognizing the principal carbon fixation pathways used by autotrophs. The range of δ13C values measured in the Tirez sediments (from − 33.9 to − 16.1‰) denotes a mixed use of different carbon assimilation pathways, involving mostly the reductive pentose phosphate (a.k.a. Calvin–Benson–Bassham or just Calvin) cycle (from − 19 to − 30‰), and in lesser extent the reductive acetyl-CoA (a.k.a. Wood–Ljungdahl) pathway (from − 28 to − 44‰), and/or the reverse tricarboxylic acid (rTCA) cycle (from − 12 to − 21‰).The lipids synthesized by microorganisms using the Calvin or reductive acetyl-CoA pathway are typically depleted relative to the bulk biomass, particularly those produced via de latter pathway. In the dry Tirez sediments, the majority of the lipid compounds are more depleted in 13C than the bulk biomass (Fig. 4). In particular, the branched alkane DiMeC18 (Fig. 4A) and the SRB-indicative 10Me16:0 acid (Fig. 4B) showed the most depleted δ13C values and suggested the use of the reductive acetyl-CoA pathway. The rest of lipid compounds showed isotopic signatures (from − 16.1 to − 31.4‰) compatible with the prevalence of the Calvin pathway. These values may directly reflect the autotrophic activity of microorganisms fixing carbon via the Calvin cycle or heterotrophic activity of microorganisms growing on their remnants. Thus, the saturated and linear alkyl chains of lipids (i.e., n-alkanes, n-alkanoic acids, and n-alkanols) showing the most negative δ13C values (e.g., alkanes n-C17 and C17:1; or acid C18:1[ω7]) reflect prokaryotic sources of Calvin-users autotrophs (e.g., cyanobacteria or purple sulfur bacteria), while the rest of compounds with slightly less negative δ13C values instead stem from the autotrophic activity of eukaryotes also users of the Calvin cycle (unsaturated fatty acids and sterols) or from the metabolism of heterotrophs such as SRB (iso/anteiso-, other branched, and cyclopropyl fatty acids) and haloarchaea (isoprenoids, phytanol, and archaeol). All in all, the compound-specific isotope composition of the dry sediments in the today´s Tirez lagoon may indirectly reflect the prevailing autotrophic mechanisms in the present lacustrine system of Tirez, by showing isotopic signatures of secondary lipids similar to their carbon source40.In addition, the use of a number of lipid molecular ratios or proxies allow further characterization of the lacustrine ecosystem and depositional environment. For example, the average chain length of the n-alkanes (24.1) suggests a relevant presence of eukaryotic biomass in the lacustrine sediments, since long-chained alkanes ( > C20) are known to originate from epicuticular leaf waxes in higher plants41. Highlighting the relevance of eukaryotes and their ecological roles is one of the major contributions of this work, because previous studies on the microbial ecology of hypersaline environments have been focused primarily on prokaryotes42.The proportion of odd n-alkanes of high molecular chain (i.e., n-C27, n-C29, and n-C31) over even n-alkanes of low molecular chain (i.e., n-C15, n-C17, and n-C19) provides an estimate of the relative abundance of terrigenous over aqueous biomass43, which in Tirez is TAR = 1.8. The Paq index may also be used to differentiate the proportion of terrigenous versus aquatic (emergent and submerged) plant biomass44. A Paq of 0.3 in the Tirez sediments from 2021 supported the relative abundance of land plants. Finally, the depositional environment in the lacustrine system of Tirez may be also characterized analyzing the ratio of pristane over phytane (Pr/Ph), which is higher than 1 when phytol degrades to pristane under oxic conditions45. Assuming that both isoprenoids in the Tirez sediments derived from phytol31, according to their similarly depleted δ13C (Fig. 4A), we can conclude that the sediments in the Tirez lagoon were deposited under predominantly oxic conditions (i.e., Pr/Ph ratio of 1.1).In summary, the lipid biomarkers study revealed useful information about the depositional environment and lacustrine ecosystem, including the presence of active or past autotrophic metabolisms involving prokaryotes (e.g., cyanobacteria and purple sulfur bacteria) and eukaryotes (plants, diatoms and other microalgae), as well as heterotrophic metabolisms of likely SRB and haloarchaea growing on Calvin-users exudates. These results are quite in agreement with the microbial community previously reported16 in sediments from the wet and dry seasons: abundant Gammaproteobacteria and Alphaproteobacteria, together with Algae and Cyanobacteria, dinoflagellates and filamentous fungi, Bacillota, Actinomycetota (previously named Actinomycetes), and a halophilic sulfate-reducing Deltaproteobacteria.Tirez as the first astrobiological “time-analog” for early MarsEarly Mars most likely had a diversity of environments in terms of pH, redox conditions, geochemistry, temperature, and so on. Field research in terrestrial analog environments contribute to understand the habitability of this diversity of environments on Mars in the past, because terrestrial analogues are places on Earth characterized by environmental, mineralogical, geomorphological, or geochemical conditions similar to those observed on present or past Mars9. Therefore, so far analogs have been referred to terrestrial locations closely similar to any of the geochemical environments that have been inferred on Mars, i.e., they are “site-analogs” that represent snapshots in time: one specific environmental condition at a very specific place and a very specific time. Because of this, each individual field analog site cannot be considered an adequate representation of the changing martian environmental conditions through time. Here we introduce the concept of astrobiological “time-analog”, referred to terrestrial analogs that may help understand environmental transitions and the related possible ecological successions on early Mars. In this sense, they should be “time-resolved analogs”: dynamic analog environments where we can analyze changes over time. To the best of our knowledge, this is the first study that looks at the environmental microbiology of a Mars astrobiological analog site over a significant and long period of change, and try to understand the ecological successions to put them in the context of martian environmental evolution.As Mars lost most of its surface water at the end of the Hesperian5,9,12, this wet-to-dry global transition can be considered the major environmental perturbation in the geological history of Mars, and therefore merits to be the first one to be assigned a “time-analog” for its better understanding and characterization. The drying of Mars was probably a stepwise process, characterized by multiple transitions between drier and wetter environments12,47, and therefore the seasonal fluctuations and eventual full desiccation of Tirez represent a suitable analog to better understand possible ecological transitions during the global desiccation of most of the Mars’s surface before the Amazonian (beginning 3.2 Ga).To introduce Tirez as the first Mars astrobiological “time-analog” of the wet-to-dry transition on early Mars, the objective of this study was threefold: first, we wanted to identify the dominant prokaryotic microorganisms in the active Tirez lagoon 20 years ago, a unique hypersaline ecosystem with an ionic composition different from that of marine environments, and therefore potentially analogous to ancient saline lacustrine environments on Mars during the Noachian and into the Hesperian46,47. Our results provide a preliminary basis to hypothesize how the microbial communities on the Noachian Mars could have developed in salty environments with dramatically fluctuating water availability. The requirement to deal with important variations in ionic strength and water availability, involving at times the complete evaporation of the water, could have represented additional constraints48 for microorganisms on early Mars.The second objective of this investigation was the identification of the microbial community inhabiting the desiccated Tirez sediments today, after all the water was lost, as a potential analog to desiccated basins on Mars at the end of the Hesperian1,3,4,47. Our results suggest that hypothetical early microbial communities on early Mars, living with relative abundance of liquid water during the Noachian, would have been forced to adapt to increasingly desiccating surface environments, characterized by extreme conditions derived from the persistent dryness and lack of water availability. Our investigation in Tirez suggest that hypothetical microorganisms at the end of the Hesperian would have needed to evolve strategies similar to those of microorganisms on Earth adapted to living at very low water activity49, to thrive in the progressively desiccating sediments.And the third objective of this investigation was the identification of the lipidic biomarkers left behind by the microbial communities in Tirez, as a guide to searching and identifying the potential leftovers of a hypothetical ancient biosphere on Mars. Lipids (i.e., fatty acids and other biosynthesized hydrocarbons) are structural components of cell membranes bearing recognized higher resistance to degradation relative to other biomolecules, thus with potential to reconstruct paleobiology in a broader temporal scale than more labile molecules50. Our results reinforce the notion that lipidic biomarkers should be preferred targets in the search for extinct and/or extant life on Mars precisely because they are so recalcitrant. More

  • in

    Rewilding abandoned farmland has greater sustainability benefits than afforestation

    Castillo, C. P. et al. Agricultural Land Abandonment in the EU within 2015-2030. (Joint Research Centre (Seville site), 2018).van der Zanden, E. H., Verburg, P. H., Schulp, C. J. E. & Verkerk, P. J. Trade-offs of European agricultural abandonment. Land Use Policy 62, 290–301 (2017).Article 

    Google Scholar 
    Sun, Z. et al. Dietary change in high-income nations alone can lead to substantial double climate dividend. Nat. Food 3, 29–37 (2022).Article 
    CAS 

    Google Scholar 
    Rasmussen, L. V. et al. Social-ecological outcomes of agricultural intensification. Nat. Sustainability 1, 275–282 (2018).Article 

    Google Scholar 
    Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl. Acad. Sci. 117, 30882–30891 (2020).Article 
    CAS 

    Google Scholar 
    Seddon, N., Turner, B., Berry, P., Chausson, A. & Girardin, C. A. J. Grounding nature-based climate solutions in sound biodiversity science. Nat. Clim. Change 9, 84–87 (2019).Article 

    Google Scholar 
    Rey Benayas, J. M. & Bullock, J. M. Restoration of biodiversity and ecosystem services on agricultural land. Ecosystems 15, 883–899 (2012).Article 

    Google Scholar 
    Malhi, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Current Biology 32, R181–R196 (2022).Article 
    CAS 

    Google Scholar 
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).Article 
    CAS 

    Google Scholar 
    Zhou, Y. et al. Limited increases in savanna carbon stocks over decades of fire suppression. Nature 603, 445–449 (2022).Article 
    CAS 

    Google Scholar 
    Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, eaaz7005 (2020).Article 
    CAS 

    Google Scholar 
    Svenning, J.-C. Rewilding should be central to global restoration efforts. One Earth 3, 657–660 (2020).Article 

    Google Scholar 
    Dandy, N. & Wynne-Jones, S. Rewilding forestry. Forest Policy Econ. 109, 101996 (2019).Article 

    Google Scholar 
    Reino, L. et al. Does afforestation increase bird nest predation risk in surrounding farmland. Forest Ecol. Manag. 260, 1359–1366 (2010).Article 

    Google Scholar 
    Pausas, J. G. & Bond, W. J. Alternative biome states in terrestrial ecosystems. Trends Plant Sci. 25, 250–263 (2020).Article 
    CAS 

    Google Scholar 
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl. Acad. Sci. 113, 847–855 (2016).Article 
    CAS 

    Google Scholar 
    Johnston, C. M. T. & Radeloff, V. C. Global mitigation potential of carbon stored in harvested wood products. Proceedings of the National Academy of Sciences 116, 14526–14531 (2019).Article 
    CAS 

    Google Scholar 
    Shukla, P. R. et al. Climate Change and Land: an IPCC special report on climate change, desertification, landdegradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change (2019).Hong, S. et al. Divergent responses of soil organic carbon to afforestation. Nat. Sustainability 3, 694–700 (2020).Article 

    Google Scholar 
    Bala, G. et al. Combined climate and carbon-cycle effects of large-scale deforestation. Proc. Natl. Acad. Sci. 104, 6550–6555 (2007).Article 
    CAS 

    Google Scholar 
    Rohatyn, S., Yakir, D., Rotenberg, E. & Carmel, Y. Limited climate change mitigation potential through forestation of the vast dryland regions. Science 377, 1436–1439 (2022).Article 
    CAS 

    Google Scholar 
    Beer, C., Zimov, N., Olofsson, J., Porada, P. & Zimov, S. Protection of permafrost soils from thawing by increasing herbivore density. Sci Rep-Uk 10, 4170 (2020).Article 
    CAS 

    Google Scholar 
    Johnson, C. N. et al. Can trophic rewilding reduce the impact of fire in a more flammable world. Philos. Trans. R. Soc. B: Biological Sci. 373, 20170443 (2018).Article 

    Google Scholar 
    Kristensen, J. A., Svenning, J.-C., Georgiou, K. & Malhi, Y. Can large herbivores enhance ecosystem carbon persistence? Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.09.006 (2021).Granado-Díaz, R., Villanueva, A. J. & Gómez-Limón, J. A. Willingness to accept for rewilding farmland in environmentally sensitive areas. Land Use Policy 116, 106052 (2022).Article 

    Google Scholar 
    Broughton, R. K. et al. Long-term woodland restoration on lowland farmland through passive rewilding. PloS one 16, e0252466 (2021).Article 
    CAS 

    Google Scholar 
    Carver, S. et al. Guiding principles for rewilding. Conserv. Biology 35, 1882–1893 (2021).Article 

    Google Scholar  More

  • in

    Geographic and longitudinal variations of anatomical characteristics and mechanical properties in three bamboo species naturally grown in Lombok Island, Indonesia

    Sampling sites and sample preparationCulms of three- to four-year-old of Bambusa vulgaris Schrad. ex J.C., B. maculata Widjaja, and Gigantochloa atter (Hassk) Kurz ex Munro were collected from naturally bamboo forests at four sites in Lombok Island, Indonesia23. The culm age was estimated based on some morphological features (the presence of culm sheath, color, and sound created by tapping with fingers) checked by an experienced bamboo farmer. Figure 1 shows the map of sampling sites and climatic conditions of the sites. Ten individual culms in each species at each site were collected from different clumps and cut 20 cm above the ground (Fig. 2). A total of 120 culms (three species × four sites × 10 individual culms from 10 individual clumps) were collected in the present study (Fig. 2). To determine the longitudinal variations of the anatomical characteristics and mechanical properties, the internode section was collected at 2-m intervals from 2 to 8 m above the ground; a total of 480 internode sections. (120 culms × four heights) were obtained from three species (Fig. 2). The collection of bamboo culms was permitted by Indonesian Institute of Science (Reference no. B-206/SKIKH/KS.02.04/X/2020) and complied with relevant guidelines and regulations of Indonesian CITES Management Authority, Ministry of Environment and Forestry, Indonesia. In addition, the voucher specimen was deposited at the Herbarium Lesser Sunda, University of Mataram, Indonesia under the voucher number of DSR01, 02, and 03 (specimens were identified by Mr. Niechi Valentino). Table 1 shows the culm diameter at 1.3 m above the ground, total culm height, and mean value of culm thickness at four positions23.Figure 1Locations and climate conditions of sampling sites in the present study23. Note: Site I, Tempos (8°41′59″ S, 116°8′40″ E); Site II, Kabul (8°47′21″ S, 116°10′21″ E); Site III, Keruak (8°45′45″ S, 116°28′54″ E); Site IV, Genggelang (8°23′16″ S, 116°15′35″ E). *, mean annual precipitation. The value in the bracket is the mean annual temperature. Climate data were provided from Nusa Tenggara River Basin Management I, Indonesia. Mean monthly temperature and precipitation were calculated by averaging monthly values from 2016 to 2018. Bars indicate the mean values of precipitation. Circles indicate the mean values of temperature. The graph was originally created by R27 (version 4.0.3, https://www.R-project.org/).Full size imageFigure 2Photographs of the clumps in three bamboo species (a–c) and schematic diagrams of experimental procedures (d). Note: a, B. vulgaris; b, B. maculata; c, G. atter. The specimens of fiber area measurement and mechanical properties have the whole culm thickness (including the cortex and inner part of the culm) in the radial direction.Full size imageTable 1 Mean values and standard deviations of growth characteristics in three bamboo species at each site23.Full size tableAnatomical characteristicsThe internode sections were split into two parts: the strips (10 mm in the longitudinal direction) and the small blocks (10 [T] mm by 10 [L] mm by culm thickness in the radial direction) (Fig. 2). The strips and small blocks were the samples for measuring fiber length and fiber area, respectively. In the present study, the fiber area was defined as the sheaths area around the vascular bundles24.To determine the fiber length, small sticks (not including the cortex and the most inner part of the culm) were obtained from the strips with a razor blade (Fig. 2). Randomly selected sticks from each height position (without separation of collected positions of the samples within the radial direction of the culm in a height) were macerated with Schultze’s solution (100 mL of 35% nitric acid containing 6 g potassium chloride) at 70 °C for two hours. The length of 50 fibers was measured in each sample with a digital caliper (CD-15CX, Mitutoyo, Kawasaki, Japan) on a microprojector (V-12B, Nikon, Tokyo, Japan).To measure the fiber area, one block was taken at each height position on each individual culm (Fig. 2). The transverse sections of the blocks were polished with sandpaper sheet (#180, 3 M Japan, Tokyo, Japan), and then their images were captured using a microscope digital camera (DS-2210, Sato Shouji Inc., Kawasaki, Japan) attached to a stereo microscope (SZX12, Olympus, Tokyo, Japan). The fiber area was determined by ImageJ25 (version 1.53e). Binarized images were prepared by ImageJ to distinguish as clearly as possible between the vascular bundle and the background (Fig. 3). The darker area of binarized images in Fig. 3 was identified as fiber sheaths. The fiber area was calculated as follows:$$FAleft( % right) , = A_{fs} /A_{c} times {1}00$$
    (1)
    where FA = fiber area (%), Afs = the transverse-sectional area of fiber sheath in bamboo culm (mm2), and Ac = the transverse-sectional area of bamboo culm (mm2).Figure 3The photomicrographs of transverse section in B. vulgaris (a and d), B. maculata (b and e), and G. atter (c and f). Note: a, b and c, original image; d, e and f, binarized image processed by ImageJ25 (version 1.53e, https://imagej.nih.gov/ij/). The darker area in photomicrographs (d, e and f) is fiber sheath area.Full size imageMechanical propertiesThe following mechanical properties of culm were measured: bending properties (MOE and MOR), CS, and tensile properties (TM and TS). A total of 480 specimens (one specimen × four heights in an individual × ten individuals × three species × four sites) without node were obtained in each property (Fig. 2).The strips (10 [T] mm × 200 [L] mm × varied culm thickness in the radial direction) were prepared as the specimens for the static bending test (Fig. 2). The static bending test was conducted using a universal testing machine (MSC 5/500–2, Tokyo Testing Machine, Tokyo, Japan). A load was applied to the center of the specimen on the outer cortex surface with 180 mm span and 3 mm min−1 load speed. Due to larger thickness (exceeded 12.9 mm = 180 mm of span / 14) in the radial direction, the span / depth ratio in some specimens was less than 14, indicating that MOR in some specimens might be underestimated due to the occurrence of the shearing strength26. Of 480 specimens, the large culm thickness exceeded 12.9 mm was total 19 specimens from B. vulgaris species collected at 2 m height position from different sites (Site I = four specimens, Site II = six specimens, Site III = four specimens, and Site IV = five specimens). However, all these 19 specimens were broken at the tension side of the specimens during static bending test, which was the normal breaking forms of bending specimens with span / depth ratio less than 14.The load and deflection were recorded with a personal computer, and then MOE and MOR were calculated by the following formulae:$$MOE , left( {GPa} right) , = Delta Pl^{3} / , 4Delta Ybh^{3} , times 10^{ – 3}$$
    (2)
    $$MOR , left( {MPa} right) , = , 3Pl/ , 2bh^{2}$$
    (3)
    where ΔP = difference between upper and lower proportional limit within the range of elasticity (N), l = length of the span (mm), ∆Y = deflection due to ∆P (mm), b = width of the specimen (mm), h = height of the specimen (mm), and P = maximum load (N).The compressive test specimen (10 [T] mm × 20 [L] mm × culm thickness in the radial direction) was also prepared (Fig. 2). The test was conducted using a universal testing machine (RTF-2350, A&D, Tokyo, Japan) with a load speed of 0.3 mm min−1. The compressive strength parallel to grain (CS) was calculated by the following formula:$${text{CS }}left( {{text{MPa}}} right) , = P/A_{0}$$
    (4)
    where P = maximum load (N), and A0 = the cross-sectional area of the specimen (mm2).The tensile tests were conducted using bone-shaped specimens (Fig. 2). The specimen length was 230 (L) mm with a 20 (T) mm width of the specimen grip. The cross-sectional area of the specimen was 2 mm in the tangential direction by culm thickness in the radial direction. A strain gage type extensometer (SG25-10A, A&D, Tokyo, Japan) was used to detect the elongation in the test specimen. The specimen grip sections were attached to small boards (75 mm in length × 40 mm in width × 5 mm in thickness) and then were clamped between the metal grip of a universal testing machine (RTC-2410, A&D, Tokyo, Japan). The tensile load was applied at 1 mm min−1. The tensile strength (TS) and Young’s modulus (TM) were calculated by the following formulae:$${text{TS }}left( {{text{MPa}}} right) , = P/A_{0}$$
    (5)
    $${text{TM }}left( {{text{GPa}}} right) , = Delta Pl/A_{0} Delta l times {1}0^{{ – 3}}$$
    (6)
    where P = maximum load (N), A0 = the cross-sectional area of the specimen (mm2), ∆P = difference between upper and lower proportional limit within the range of elasticity (N), l = gauge length (mm), and ∆l = elongation of the original gauge length (mm).The moisture content and air-dry density of each specimen were measured after each mechanical testing by the oven-dry method. The moisture content and air-dry density of the specimen at testing were listed in Table S1.Statistical analysisThe statistical analyses were conducted using R software (version 4.0.3)27. To evaluate the longitudinal variations of the measured properties in each species, the y-intercept, linear, and nonlinear mixed-effects models with each measured property value as a responsible variable, the height position as a fixed effect, and site and individual culm as random effects were developed by the “lmer” function in “lme4” packages28 and the “nlme” function in the “nlme” package29. The following four full models were developed and compared:Model I (y-intercept model):$$Y_{ijk} = alpha_{{1}} + Site_{{{1}k}} + Culm_{{{1}jk}} + e_{ijk}$$
    (7)
    Model II (linear model):$$Y_{ijk} = , (beta_{0} + Site_{0k} + Culm_{0jk} )X_{ijk} + beta_{{1}} + Site_{{{1}k}} + Culm_{{{1}jk}} + e_{ijk}$$
    (8)
    Model III (logarithmic model):$$Y_{ijk} = , (gamma_{0} + Site_{0k} + Culm_{0jk} ){text{ ln }}left( {X_{ijk} } right) + gamma_{{1}} + Site_{{{1}k}} + Culm_{{{1}jk}} + e_{ijk}$$
    (9)
    Model IV (quadratic model):$$begin{gathered} Y_{ijk} = , (zeta_{0} + Site_{0k} + Culm_{0jk} )X_{ijk}^{{2}} + , (zeta_{{1}} + Site_{{{1}k}} + Culm_{{{1}jk}} )X_{ijk} hfill \ + zeta_{{2}} + Site_{{{2}k}} + Culm_{{{2}jk}} + e_{ijk} hfill \ end{gathered}$$
    (10)

    where Yijk is measured property at the ith height position from the jth individual culm within the kth site, Xijk is the ith height position from the jth individual culm within the kth site, α1, β0, β1, γ0, γ1, ζ0, ζ1, and ζ2 are the fixed effects, Site0k, Site1k, and Site2k are the random effect at the site level, Culm0jk, Culm1jk, and Culm2jk are the random effects at the individual culm level, and eijk is residual. Total 36 derived models (three y-intercept models, 15 linear models, nine logarithmic models, and nine quadratic models) were developed. The model selection was conducted using the Akaike information criterion30. The model with the minimum AIC value was regarded as the most parsimonious model among developed models. In addition, the differences in AIC (ΔAIC) ≤ 2 indicate no significant differences between models, and a simpler model with fewer parameters is preferred31. To evaluate the longitudinal variation, estimated values of each property was calculated at 0.1 m interval from 2.0 to 8.0 m above the ground using fixed-effect parameters of the selected models. Mean value and standard deviation were obtained from the estimated values from 2.0 to 8.0 m in each property. In addition, the coefficient of variation was also calculated from the mean value and standard deviation. The longitudinal variation patterns were classified into four types (Types A to D) based on the model selection (Fig. 4). Although model II to IV was selected, longitudinal variation with the coefficient of variation less than 3.0% was regarded as stable (Type A in Fig. 4).Figure 4Classification of longitudinal variation of bamboo culm property. Note: Lines or curves indicate formulae with fixed-effect parameters in the selected mixed-effect model for explaining longitudinal variation (Tables 3, 4, 5). Coefficient of variation calculated from mean values and standard deviation from 2 to 8 m above the ground estimated by fixed-effect parameters values less than 3.0% is regard as stable variation (Type A), even in selected model is Model II to IV.Full size imageGeographic variations in each bamboo property were estimated by evaluating the variance component of sites and culms as random effects by using the intercept-only linear mixed-effects model. The full model is described as follows:$$Y_{ijk} = mu + Site_{k} + Culm_{jk} + e_{ijk}$$
    (11)
    where Yijk is the bamboo property at the ith height position of the jth individual culm within kth site, μ is the model intercept or grand mean, Sitek is the random effect of the kth site, Culmjk is random effect of jth individual culm within kth site, and eijk is the residual. The contribution of each level of variation was calculated as a percentage of the total random variation in the best model32,33. More