More stories

  • in

    Optimization of green and environmentally-benign synthesis of isoamyl acetate in the presence of ball-milled seashells by response surface methodology

    McElroy, C. R., Constantinou, A., Jones, L. C., Summerton, L. & Clark, J. H. Towards a holistic approach to metrics for the 21st century pharmaceutical industry. Green Chem. 17, 3111–3121. https://doi.org/10.1039/C5GC00340G (2015).Article 
    CAS 

    Google Scholar 
    Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400. https://doi.org/10.1126/science.aay3060 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sheldon, R. A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48. https://doi.org/10.1021/acssuschemeng.7b03505 (2018).Article 
    CAS 

    Google Scholar 
    Anastas, P. T. & Williamson, T. C. in Green Chemistry, Vol. 626 ACS Symposium Series Ch. 1, 1–17 (American Chemical Society, 1996). https://doi.org/10.1021/bk-1996-0626.ch001.Clark, H. J. Green chemistry: Challenges and opportunities. Green Chem. 1, 1–8. https://doi.org/10.1039/A807961G (1999).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G. & Eslami, M. Highly efficient organocatalytic synthesis of diverse and densely functionalized 2-amino-3-cyano-4 H-pyrans under mechanochemical ball milling. Green Chem. 16, 4914–4921 (2014).Article 
    CAS 

    Google Scholar 
    Eze, A. A. et al. Wet ball milling of niobium by using ethanol, determination of the crystallite size and microstructures. Sci. Rep. 11, 1–8 (2021).Article 

    Google Scholar 
    Gorrasi, G. & Sorrentino, A. Mechanical milling as a technology to produce structural and functional bio-nanocomposites. Green Chem. 17, 2610–2625 (2015).Article 
    CAS 

    Google Scholar 
    Li, L. H., Glushenkov, A. M., Hait, S. K., Hodgson, P. & Chen, Y. High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci. Rep. 4, 1–6 (2014).
    Google Scholar 
    Mac Naughton, G. E., Rolfe, S. A. & Siraj-Blatchford, I. E. Doing Early Childhood Research: International Perspectives on Theory and Practice (Open University Press, 2001).Evangelisti, L. et al. The borderline between reactivity and pre-reactivity of binary mixtures of gaseous carboxylic acids and alcohols. Angew. Chem. 129, 3930–3933 (2017).Article 
    ADS 

    Google Scholar 
    Gaspa, S., Porcheddu, A. & De Luca, L. Metal-free oxidative cross esterification of alcohols via acyl chloride formation. Adv. Synth. Catal. 358, 154–158 (2016).Article 
    CAS 

    Google Scholar 
    Fiorio, J. L., Braga, A. H., Guedes, C. L. S. B. & Rossi, L. M. Reusable heterogeneous tungstophosphoric acid-derived catalyst for green esterification of carboxylic acids. ACS Sustain. Chem. Eng. 7, 15874–15883 (2019).Article 
    CAS 

    Google Scholar 
    Karimi, B., Mirzaei, H. M. & Mobaraki, A. Periodic mesoporous organosilica functionalized sulfonic acids as highly efficient and recyclable catalysts in biodiesel production. Catal. Sci. Technol. 2, 828–834 (2012).Article 
    CAS 

    Google Scholar 
    Tran, T. T. V. et al. Selective production of green solvent (isoamyl acetate) from fusel oil using a sulfonic acid-functionalized KIT-6 catalyst. Mol. Catal. 484, 110724 (2020).Article 
    CAS 

    Google Scholar 
    Afshar, S. et al. Optimization of catalytic activity of sulfated titania for efficient synthesis of isoamyl acetate by response surface methodology. Mon. Chem. Chem. Mon. 146, 1949–1957 (2015).Article 
    CAS 

    Google Scholar 
    Chng, L. L., Yang, J. & Ying, J. Y. Efficient synthesis of amides and esters from alcohols under aerobic ambient conditions catalyzed by a Au/mesoporous Al2O3 nanocatalyst. Chemsuschem 8, 1916–1925 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lozano, P., Bernal, J. M. & Navarro, A. A clean enzymatic process for producing flavour esters by direct esterification in switchable ionic liquid/solid phases. Green Chem. 14, 3026–3033 (2012).Article 
    CAS 

    Google Scholar 
    Su, L., Hong, R., Guo, X., Wu, J. & Xia, Y. Short-chain aliphatic ester synthesis using Thermobifida fusca cutinase. Food Chem. 206, 131–136 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Güvenç, A., Kapucu, N., Kapucu, H., Aydoğan, Ö. & Mehmetoğlu, Ü. Enzymatic esterification of isoamyl alcohol obtained from fusel oil: Optimization by response surface methodolgy. Enzyme Microb. Technol. 40, 778–785 (2007).Article 

    Google Scholar 
    Torres, S., Baigorí, M. D., Swathy, S., Pandey, A. & Castro, G. R. Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Res. Int. 42, 454–460 (2009).Article 
    CAS 

    Google Scholar 
    Ando, H., Kurata, A. & Kishimoto, N. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J. Appl. Microbiol. 118, 873–880 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ghamgui, H., Karra-Chaâbouni, M., Bezzine, S., Miled, N. & Gargouri, Y. Production of isoamyl acetate with immobilized Staphylococcus simulans lipase in a solvent-free system. Enzyme Microb. Technol. 38, 788–794 (2006).Article 
    CAS 

    Google Scholar 
    Romero, M., Calvo, L., Alba, C., Daneshfar, A. & Ghaziaskar, H. Enzymatic synthesis of isoamyl acetate with immobilized Candida antarctica lipase in n-hexane. Enzyme Microb. Technol. 37, 42–48 (2005).Article 
    CAS 

    Google Scholar 
    Borges, M. E. & Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review. Renew. Sustain. Energy Rev. 16, 2839–2849 (2012).Article 
    CAS 

    Google Scholar 
    Li, K.-T., Wang, C.-K., Wang, I. & Wang, C.-M. Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl. Catal. A 392, 180–183 (2011).Article 
    CAS 

    Google Scholar 
    Clark, J. H. & Rhodes, C. N. In Clean Synthesis Using Porous Inorganic Solid Catalysts and Supported Reagents, Vol. 4, (Royal Society of Chemistry, London, 2000). https://doi.org/10.1039/9781847550569Dekamin, M. G. et al. Sodium alginate: An efficient biopolymeric catalyst for green synthesis of 2-amino-4H-pyran derivatives. Int. J. Biol. Macromol. 87, 172–179 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Melfi, D. T., dos Santos, K. C., Ramos, L. P. & Corazza, M. L. Supercritical CO2 as solvent for fatty acids esterification with ethanol catalyzed by Amberlyst-15. J. Supercrit. Fluids 158, 104736 (2020).Article 
    CAS 

    Google Scholar 
    Azudin, N. Y., Mashitah, M. & Abd Shukor, S. R. Optimization of isoamyl acetate production in a solvent-free system. J. Food Qual. 36, 441–446 (2013).Article 
    CAS 

    Google Scholar 
    Ćorović, M. et al. Immobilization of Candida antarctica lipase B onto Purolite® MN102 and its application in solvent-free and organic media esterification. Bioprocess Biosyst. Eng. 40, 23–34 (2017).Article 
    PubMed 

    Google Scholar 
    Liu, C. & Luo, G. Synthesis of isoamyl acetate catalyzed by ferric tri-dodecylsulfonate. Riyong Huaxue Gongye 34, 403–405 (2004).
    Google Scholar 
    Narwal, S. K., Saun, N. K., Dogra, P. & Gupta, R. Green synthesis of isoamyl acetate via silica immobilized novel thermophilic lipase from Bacillus aerius. Russ. J. Bioorg. Chem. 42, 69–73 (2016).Article 
    CAS 

    Google Scholar 
    Pizzio, L., Vázquez, P., Cáceres, C. & Blanco, M. Tungstophosphoric and molybdophosphoric acids supported on zirconia as esterification catalysts. Catal. Lett. 77, 233–239 (2001).Article 
    CAS 

    Google Scholar 
    Saha, B., Alqahtani, A. & Teo, H. T. R. Production of iso-Amyl Acetate: Heterogeneous Kinetics and Techno-feasibility Evaluation for Catalytic Distillation. Int. J. Chem. React. Eng. 3(1), https://doi.org/10.2202/1542-6580.1231 (2005).Osorio-Viana, W., Ibarra-Taquez, H. N., Dobrosz-Gomez, I. & Gómez-García, M. Á. Hybrid membrane and conventional processes comparison for isoamyl acetate production. Chem. Eng. Process. 76, 70–82 (2014).Article 
    CAS 

    Google Scholar 
    Fang, M. et al. Synthesis of isoamyl acetate using polyoxometalate-based sulfonated ionic liquid as catalyst. Indian J. Chem. Sect. A 53A, 1485–1492 (2014).Yang, Z., Zhou, C., Zhang, W., Li, H. & Chen, M. β-MnO2 nanorods: A new and efficient catalyst for isoamyl acetate synthesis. Colloids Surf., A 356, 134–139 (2010).Article 
    CAS 

    Google Scholar 
    Yang, Z. et al. Kinetic study and process simulation of transesterification of methyl acetate and isoamyl alcohol catalyzed by ionic liquid. Ind. Eng. Chem. Res. 54, 1204–1215 (2015).Article 
    CAS 

    Google Scholar 
    Dohendou, M., Pakzad, K., Nezafat, Z., Nasrollahzadeh, M. & Dekamin, M. G. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int. J. Biol. Macromol. 192, 771–819. https://doi.org/10.1016/j.ijbiomac.2021.09.162 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Alirezvani, Z. Melamine-modified chitosan materials: An efficient and recyclable bifunctional organocatalyst for green synthesis of densely functionalized bioactive dihydropyrano[2,3-c]pyrazole and benzylpyrazolyl coumarin derivatives. Int. J. Biol. Macromol. 129, 407–421. https://doi.org/10.1016/j.ijbiomac.2019.01.027 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G., Kazemi, E., Karimi, Z., Mohammadalipoor, M. & Naimi-Jamal, M. R. Chitosan: An efficient biomacromolecule support for synergic catalyzing of Hantzsch esters by CuSO4. Int. J. Biol. Macromol. 93, 767–774. https://doi.org/10.1016/j.ijbiomac.2016.09.012 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valiey, E., Dekamin, M. G. & Bondarian, S. Sulfamic acid grafted to cross-linked chitosan by dendritic units: A bio-based, highly efficient and heterogeneous organocatalyst for green synthesis of 2,3-dihydroquinazoline derivatives. RSC Adv. 13, 320–334. https://doi.org/10.1039/D2RA07319F (2023).Article 
    ADS 
    CAS 

    Google Scholar 
    Dekamin, M. G., Azimoshan, M. & Ramezani, L. Chitosan: A highly efficient renewable and recoverable bio-polymer catalyst for the expeditious synthesis of α-amino nitriles and imines under mild conditions. Green Chem. 15, 811–820. https://doi.org/10.1039/C3GC36901C (2013).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. Cu (II) and magnetite nanoparticles decorated melamine-functionalized chitosan: A synergistic multifunctional catalyst for sustainable cascade oxidation of benzyl alcohols/Knoevenagel condensation. Sci. Rep. 9, 17758 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rostami, N., Dekamin, M., Valiey, E. & Fanimoghadam, H. Chitosan-EDTA-Cellulose network as a green, recyclable and multifunctional biopolymeric organocatalyst for the one-pot synthesis of 2-amino-4H-pyran derivatives. Sci. Rep. 12, 8642–8642 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frindy, S., el Kadib, A., Lahcini, M., Primo, A. & García, H. Copper nanoparticles stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C−S cross-coupling. ChemCatChem 7, 3307–3315 (2015).Article 
    CAS 

    Google Scholar 
    Pettignano, A. et al. Alginic acid aerogel: A heterogeneous Brønsted acid promoter for the direct Mannich reaction. New J. Chem. 39, 4222–4226 (2015).Article 
    CAS 

    Google Scholar 
    Schnepp, Z. Biopolymers as a flexible resource for nanochemistry. Angew. Chem. Int. Ed. 52, 1096–1108 (2013).Article 
    CAS 

    Google Scholar 
    Khrunyk, Y., Lach, S., Petrenko, I. & Ehrlich, H. Progress in modern marine biomaterials research. Mar. Drugs 18, 589 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, I. Molecular self-assembly: Smart design of surface and interface via secondary molecular interactions. Langmuir 29, 2476–2489. https://doi.org/10.1021/la304123b (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Shaheed, N., Javanshir, S., Esmkhani, M., Dekamin, M. G. & Naimi-Jamal, M. R. Synthesis of nanocellulose aerogels and Cu-BTC/nanocellulose aerogel composites for adsorption of organic dyes and heavy metal ions. Sci. Rep. 11, 18553 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, M. A. et al. Processing Aspects and biomedical and environmental applications of sustainable nanocomposites containing nanofillers. In Sustainable Polymer Composites and Nanocomposites, (eds Inamuddin et al.) 727–757 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-05399-4_25Dekamin, M. G. et al. Alginic acid: A highly efficient renewable and heterogeneous biopolymeric catalyst for one-pot synthesis of the Hantzsch 1,4-dihydropyridines. RSC Adv. 4, 56658–56664. https://doi.org/10.1039/C4RA11801D (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ilkhanizadeh, S., Khalafy, J. & Dekamin, M. G. Sodium alginate: A biopolymeric catalyst for the synthesis of novel and known polysubstituted pyrano[3,2-c]chromenes. Int. J. Biol. Macromol. 140, 605–613. https://doi.org/10.1016/j.ijbiomac.2019.08.154 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dekamin, M. G. et al. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol. 108, 1273–1280. https://doi.org/10.1016/j.ijbiomac.2017.11.050 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rostami, N., Dekamin, M. G. & Valiey, E. Chitosan-EDTA-cellulose bio-based network: A recyclable multifunctional organocatalyst for green and expeditious synthesis of Hantzsch esters. Carbohydr. Polym. Technol. Appl. 5, 100279. https://doi.org/10.1016/j.carpta.2022.100279 (2023).Article 
    CAS 

    Google Scholar 
    Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S. & Escaleira, L. A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hill, W. J. & Hunter, W. G. A review of response surface methodology: A literature survey. Technometrics 8, 571–590. https://doi.org/10.1080/00401706.1966.10490404 (1966).Article 
    MathSciNet 

    Google Scholar 
    Hamidi, F. et al. Acid red 18 removal from aqueous solution by nanocrystalline granular ferric hydroxide (GFH); optimization by response surface methodology & genetic-algorithm. Sci. Rep. 12, 1–15 (2022).Article 

    Google Scholar 
    Han, X.-X. et al. Syntheses of novel halogen-free Brønsted–Lewis acidic ionic liquid catalysts and their applications for synthesis of methyl caprylate. Green Chem. 17, 499–508 (2015).Article 
    CAS 

    Google Scholar 
    Rehman, K. et al. Operational parameters optimization for remediation of crude oil-polluted water in floating treatment wetlands using response surface methodology. Sci. Rep. 12, 1–11 (2022).Article 

    Google Scholar 
    Kamari, S., Ghorbani, F. & Sanati, A. M. Adsorptive removal of lead from aqueous solutions by amine–functionalized magMCM-41 as a low–cost nanocomposite prepared from rice husk: Modeling and optimization by response surface methodology. Sustain. Chem. Pharm. 13, 100153. https://doi.org/10.1016/j.scp.2019.100153 (2019).Article 

    Google Scholar 
    Sanati, A. M., Kamari, S. & Ghorbani, F. Application of response surface methodology for optimization of cadmium adsorption from aqueous solutions by Fe3O4@SiO2@APTMS core–shell magnetic nanohybrid. Surf. Interfaces 17, 100374. https://doi.org/10.1016/j.surfin.2019.100374 (2019).Article 
    CAS 

    Google Scholar 
    Guner, S. G. & Dericioglu, A. Nacre-mimetic epoxy matrix composites reinforced by two-dimensional glass reinforcements. RSC Adv. 6, 33184–33196 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Shao, Y., Zhao, H.-P. & Feng, X.-Q. Optimal characteristic nanosizes of mineral bridges in mollusk nacre. RSC Adv. 4, 32451–32456 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Jaji, A. Z. et al. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery. Nanotechnol. Sci. Appl. 10, 23 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Çam, M. & Aaby, K. Optimization of extraction of apple pomace phenolics with water by response surface methodology. J. Agric. Food Chem. 58, 9103–9111 (2010).Article 
    PubMed 

    Google Scholar 
    Iwuchukwu, I. J. et al. Optimization of photosynthetic hydrogen yield from platinized photosystem I complexes using response surface methodology. Int. J. Hydrog. Energy 36, 11684–11692 (2011).Article 
    CAS 

    Google Scholar 
    Hu, C. et al. Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. Appl. Catal. A 253, 389–396 (2003).Article 
    CAS 

    Google Scholar 
    Noda, L. K., de Almeida, R. M., Probst, L. F. D. & Gonçalves, N. S. Characterization of sulfated TiO2 prepared by the sol–gel method and its catalytic activity in the n-hexane isomerization reaction. J. Mol. Catal. A Chem. 225, 39–46 (2005).Article 
    CAS 

    Google Scholar 
    Jalali-Heravi, M., Parastar, H. & Ebrahimi-Najafabadi, H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography–mass spectrometry analysis. J. Chromatogr. A 1216, 6088–6097 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sendzikiene, E., Sinkuniene, D., Kazanceva, I. & Kazancev, K. Optimization of low quality rapeseed oil transesterification with butanol by applying the response surface methodology. Renew. Energy 87, 266–272 (2016).Article 
    CAS 

    Google Scholar 
    Das, R., Sarkar, S. & Bhattacharjee, C. Photocatalytic degradation of chlorhexidine—a chemical assessment and prediction of optimal condition by response surface methodology. J. Water Process Eng. 2, 79–86 (2014).Article 

    Google Scholar 
    Nandiwale, K. Y., Galande, N. D. & Bokade, V. V. Process optimization by response surface methodology for transesterification of renewable ethyl acetate to butyl acetate biofuel additive over borated USY zeolite. RSC Adv. 5, 17109–17116 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Soltani, R. D. C. & Safari, M. Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: Response surface methodological optimization. Ultrason. Sonochem. 32, 181–190 (2016).Article 

    Google Scholar 
    Tan, K. T., Lee, K. T. & Mohamed, A. R. A glycerol-free process to produce biodiesel by supercritical methyl acetate technology: An optimization study via response surface methodology. Biores. Technol. 101, 965–969 (2010).Article 
    CAS 

    Google Scholar 
    Nagaraju, N., Peeran, M. & Prasad, D. Synthesis of isoamyl acetate usin NaX and NaY zeolites as catalysts. React. Kinet. Catal. Lett. 61, 155–160 (1997).Article 
    CAS 

    Google Scholar 
    Pizzio, L. R. & Blanco, M. N. Isoamyl acetate production catalyzed by H3PW12O40 on their partially substituted Cs or K salts. Appl. Catal. A 255, 265–277 (2003).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Karimi, Z. & Farahmand, M. Tetraethylammonium 2-(N-hydroxycarbamoyl)benzoate: A powerful bifunctional metal-free catalyst for efficient and rapid cyanosilylation of carbonyl compounds under mild conditions. Catal. Sci. Technol. 2, 1375–1381. https://doi.org/10.1039/C2CY20037F (2012).Article 
    CAS 

    Google Scholar 
    Dekamin, M. G., Sagheb-Asl, S. & Reza Naimi-Jamal, M. An expeditious synthesis of cyanohydrin trimethylsilyl ethers using tetraethylammonium 2-(carbamoyl)benzoate as a bifunctional organocatalyst. Tetrahedron Lett. 50, 4063–4066. https://doi.org/10.1016/j.tetlet.2009.04.090 (2009).Article 
    CAS 

    Google Scholar 
    Alirezvani, Z., Dekamin, M. G. & Valiey, E. New hydrogen-bond-enriched 1,3,5-tris(2-hydroxyethyl) isocyanurate covalently functionalized MCM-41: An efficient and recoverable hybrid catalyst for convenient synthesis of acridinedione derivatives. ACS Omega 4, 20618–20633. https://doi.org/10.1021/acsomega.9b02755 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Population genetic structure of a recent insect invasion: a gall midge, Asynapta groverae (Diptera: Cecidomyiidae) in South Korea since the first outbreak in 2008

    Hobbs, R. J. (ed.) Invasive Species in a Changing World (Island press, 2000).
    Google Scholar 
    Marbuah, G., Gren, I. M. & McKie, B. Economics of harmful invasive species: A review. Diversity 6, 500–523. https://doi.org/10.3390/d6030500 (2014).Article 

    Google Scholar 
    Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265. https://doi.org/10.1073/pnas.1602480113 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    David, P. et al. Impacts of invasive species on food webs: A review of empirical data. Adv. Ecol. Res. 56, 1–60. https://doi.org/10.1016/bs.aecr.2016.10.001 (2017).Article 

    Google Scholar 
    Roy, H. E. et al. Developing a list of invasive alien species likely to threaten biodiversity and ecosystems in the European Union. Glob. Change Biol. 25, 1032–1048. https://doi.org/10.1111/gcb.14527 (2019).Article 
    ADS 

    Google Scholar 
    Walther, G. R. et al. Alien species in a warmer world: Risks and opportunities. Trends Ecol. Evol. 24, 686–693. https://doi.org/10.1016/j.tree.2009.06.008 (2009).Article 
    PubMed 

    Google Scholar 
    Peyton, J. et al. Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biol. Invasions 21, 2107–2125. https://doi.org/10.1007/s10530-019-01961-7 (2019).Article 

    Google Scholar 
    Meyerson, L. A. & Mooney, H. A. Invasive alien species in an era of globalization. Front. Ecol. Environ. 5, 199–208. https://doi.org/10.1890/1540-9295(2007)5[199:IASIAE]2.0.CO;2 (2007).Article 

    Google Scholar 
    Hulme, P. E. Trade, transport and trouble: Managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18. https://doi.org/10.1111/j.1365-2664.2008.01600.x (2009).Article 

    Google Scholar 
    Lodge, D. M. Biol Invasions: Lessons for ecology. Trends Ecol. Evol. 8, 133–137. https://doi.org/10.1016/0169-5347(93)90025-K (1993).Article 
    CAS 
    PubMed 

    Google Scholar 
    Keller, S. R. & Taylor, D. R. History, chance and adaptation during biological invasion: Separating stochastic phenotypic evolution from response to selection. Ecol. Lett. 11, 852–866. https://doi.org/10.1111/j.1461-0248.2008.01188.x (2008).Article 
    PubMed 

    Google Scholar 
    Ham, D., Kim, W. G., Lee, H., Choi, D. S. & Bae, Y. J. New Korean record of the mycophagous gall midge Asynapta groverae (Diptera: Cecidomyiidae) with its outbreak situation and ecological notes. Newsl. Entomol. Soc. Korea. 11, 25–30 (2018) (in Korean).
    Google Scholar 
    Grover, P. Studies on gall-midges from India XXXIV. On the study of Indian Porricondylini. Cecidologia Indica 6, 1–38 (1971).
    Google Scholar 
    Jiang, Y. X. & Bu, W. J. A newly recorded gall midge genus (Diptera, Cecidomyiidae) with a species, Asynapta groverae Jiang et Bu, nom. Nov. from China. Acta. Zootax. Sinica. 29, 786–789 (2004).
    Google Scholar 
    Bae, Y. J. Research report on the outbreak of the cecidomyiids (Diptera: Cecidomyiidae) from the Well-county apartment area in Songdo, Incheon. Incheon Metropolitan Development Corporation, Incheon 171 (2009) (in Korean).Ham, D. & Bae, Y. J. Description of immature stages of Asynapta groverae (Diptera: Cecidomyiidae). Bull. Entomol. Res. 34, 103–107 (2018).
    Google Scholar 
    Gagné, R. J. & Jaschhof, M. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th Edition, Digital, 121–124 (2021).Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Mater. Des. 187, 108397. https://doi.org/10.1016/j.matdes.2019.108397 (2020).Article 
    CAS 

    Google Scholar 
    Ross, K. G. & Shoemaker, D. D. Estimation of the number of founders of an invasive pest insect population: The fire ant Solenopsis invicta in the USA. Proc. R. Soc. B-Biol. Sci. 275, 2231–2240. https://doi.org/10.1098/rspb.2008.0412 (2008).Article 

    Google Scholar 
    Brandt, M., Van Wlgenburg, E. & Tsutsui, N. D. Global-scale analyses of chemical ecology and population genetics in the invasive Argentine ant. Mol. Ecol. 18, 997–1005. https://doi.org/10.1111/j.1365-294X.2008.04056.x (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Amouroux, P., Normand, F., Nibouche, S. & Delatte, H. Invasive mango blossom gall midge, Procontarinia mangiferae (Felt) (Diptera: Cecidomyiidae) in Reunion Island: Ecological plasticity, permanent and structured populations. Biol. Invasions 15, 1677–1693. https://doi.org/10.1007/s10530-012-0400-0 (2013).Article 

    Google Scholar 
    Horst, C. P. & Lau, J. A. Genetic variation in invasive species response to direct and indirect species interactions. Biol. Invasions 17, 651–659. https://doi.org/10.1007/s10530-014-0756-4 (2015).Article 

    Google Scholar 
    Nei, M., Maruyama, T. & Chakraborty, R. The bottleneck effect and genetic variability in populations. Evolution 29, 1–10. https://doi.org/10.2307/2407137 (1975).Article 
    PubMed 

    Google Scholar 
    Tsutsui, N. D. & Suarez, A. V. The colony structure and population biology of invasive ants. Conserv. Biol. 17, 48–58. https://doi.org/10.1046/j.1523-1739.2003.02018.x (2003).Article 

    Google Scholar 
    Freeland, J. Molecular markers in ecology. In (eds Freeland, J., Pertersen, S. & Kirk, H.) Oxford 31–62 (2011).Tsutsui, N. D., Suarez, A. V., Holway, D. A. & Case, T. J. Reduced genetic variation and the success of an invasive species. PNAS 97, 5948–5953. https://doi.org/10.1073/pnas.100110397 (2000).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davis, M. A. Invasion Biology (Oxford University Press, 2009).
    Google Scholar 
    Yao, Y. X. et al. Genetic variation may have promoted the successful colonization of the invasive gall midge, Obolodiplosis robiniae, in China. Front. Genet. 11, 387. https://doi.org/10.3389/fgene.2020.00387 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, R. N. & Starks, P. T. A surprising level of genetic diversity in an invasive wasp: Polistes dominulus in the northeastern United States. Ann. Entomol. Soc. Am. 97, 732–737. https://doi.org/10.1603/0013-8746(2004)097[0732:ASLOGD]2.0.CO;2 (2004).Article 

    Google Scholar 
    Roderick, G. K. Geographic structure of insect populations: Gene flow, phylogeography, and their uses. Annu. Rev. Entomol. 41, 325–352. https://doi.org/10.1146/annurev.en.41.010196.001545 (1996).Article 
    CAS 
    PubMed 

    Google Scholar 
    Puillandre, N. et al. Genetic bottleneck in invasive species: The potato tuber moth adds to the list. Biol. Invasions 10, 319–333. https://doi.org/10.1007/s10530-007-9132-y (2008).Article 

    Google Scholar 
    Zhan, A., Macisaac, H. J. & Cristescu, M. E. Invasion genetics of the Ciona intestinalis species complex: From regional endemism to global homogeneity. Mol. Ecol. 19, 4678–4694. https://doi.org/10.1111/j.1365-294X.2010.04837.x (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mallez, S. et al. Worldwide invasion routes of the pinewood nematode: What can we infer from population genetics analyses?. Biol. Invasions 17(4), 1199–1213. https://doi.org/10.1007/s10530-014-0788-9 (2015).Article 

    Google Scholar 
    Tsutsui, N. D. & Case, T. J. Population genetics and colony structure of the Argentine ant (Linepithema humile) in its native and introduced ranges. Evolution 55, 976–985. https://doi.org/10.1111/j.0014-3820.2001.tb00614.x (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kim, H., Hoelmer, K. A. & Lee, S. Population genetics of the soybean aphid in North America and East Asia: Test for introduction between native and introduced populations. Biol. Invasions 19, 597–614. https://doi.org/10.1007/s10530-016-1299-7 (2017).Article 

    Google Scholar 
    Chen, M. H. & Dorn, S. Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull. Entomol. Res. 100, 75–85 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zygouridis, N. E., Augustinos, A. A., Zalom, F. G. & Mathiopoulos, K. D. Analysis of olive fly invasion in California based on microsatellite markers. Heredity 102, 402–412. https://doi.org/10.1038/hdy.2008.125 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lesieur, V. et al. The rapid spread of Leptoglossus occidentalis in Europe: A bridgehead invasion. J. Pest Sci. 92, 189–200. https://doi.org/10.1007/s10340-018-0993-x (2019).Article 

    Google Scholar 
    Mutitu, E. K. et al. Reconstructing early routes of invasion of the bronze bug Thaumastocoris peregrinus (Hemiptera: Thaumastocoridae): Cities as bridgeheads for global pest invasions. Biol. Invasions 22, 2325–2338. https://doi.org/10.1007/s10530-020-02258-w (2020).Article 

    Google Scholar 
    Peccoud, J. et al. Host range expansion of an introduced insect pest through multiple colonizations of specialized clones. Mol. Ecol. 17(21), 4608–4618. https://doi.org/10.1111/j.1365-294X.2008.03949.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Eyer, P. A., Moran, M. N., Blumenfeld, A. J. & Vargo, E. L. Development of a set of microsatellite markers to investigate sexually antagonistic selection in the invasive ant Nylanderia fulva. Insects 12, 643. https://doi.org/10.3390/insects12070643 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schauer, B., Bong, J., Popp, C., Obermaier, E. & Feldhaar, H. Dispersal limitation of saproxylic insects in a managed forest? A population genetics approach. Basic Appl. Ecol. 32, 26–38. https://doi.org/10.1016/j.baae.2018.01.005 (2018).Article 

    Google Scholar 
    Bereczki, J., Póliska, S., Váradi, A. & Tóth, J. P. Incipient sympatric speciation via host race formation in Phengaris arion (Lepidoptera: Lycaenidae). Org. Divers. Evol. 20, 63–76. https://doi.org/10.1007/s13127-019-00418-y (2020).Article 

    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Microsatellites for ecologists: A practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x (2006).Article 
    PubMed 

    Google Scholar 
    Miah, G. et al. A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int. J. Mol. Sci. 14, 22499–22528. https://doi.org/10.3390/ijms141122499 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloyd, C. J., Norton, A. P., Hufbauer, R. A., Bogdanowicz, S. M. & Nissen, S. J. Microsatellite isolation from the gall midge Spurgia capitigena (Diptera: Cecidomyiidae), a biological control agent of leafy spurge. Mol. Ecol. Notes 4, 605–607. https://doi.org/10.1111/j.1471-8286.2004.00751.x (2004).Article 
    CAS 

    Google Scholar 
    Bentur, J. S. et al. Isolation and characterization of microsatellite loci in the Asian rice gall midge (Orseolia oryzae) (Diptera: Cecidomyiidae). Int. J. Mol. Sci. 12, 755–772. https://doi.org/10.3390/ijms12010755 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hinomoto, N., Higaki, T., Abe, J., Yamane, M. & Yano, E. Development and characterization of 21 polymorphic microsatellite loci in the aphidophagous gall midge, Aphidoletes aphidimyza (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 47, 165–171. https://doi.org/10.1007/s13355-012-0104-z (2012).Article 
    CAS 

    Google Scholar 
    Mezghani-Khemakhem, M. et al. Development of new polymorphic microsatellite loci for the barley stem gall midge, Mayetiola hordei (Diptera: Cecidomyiidae) from an Enriched Library. Int. J. Mol. Sci. 13, 14446–14450. https://doi.org/10.3390/ijms131114446 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, H. et al. Development and characterization of 12 microsatellite loci from the blueberry gall midge Dasineura oxycoccana (Diptera: Cecidomyiidae). Appl. Entomol. Zool. 50, 415–418. https://doi.org/10.1007/s13355-015-0335-x (2015).Article 

    Google Scholar 
    Benzécri, J. P. Construction d’une classification ascendante hiérarchique par la recherche en chaîne des voisins réciproques. Cahiers de l’analyse des données. 7, 209–218 (1982).MATH 

    Google Scholar 
    Simberloff, D. Invasive species. In Conservation Biology for all (eds Sodhi, N. S. & Ehrlich, P. R.) 131–152 (Oxford University Press, 2010).Chapter 

    Google Scholar 
    Keum, E. et al. Morphological, genetic and symptomatic identification of an invasive jujube pest in Korea, Dasineura jujubifolia Jiao & Bu (Diptera: Cecidomyiidae). J. Asia Pac. Entomol. 101935, 2002. https://doi.org/10.1016/j.aspen.2022.101935 (2022).Article 

    Google Scholar 
    Jaschhof, M. & Jaschhof, C. New and rarely found species of asynaptine Porricondylinae (Diptera: Cecidomyiidae) in northern Europe. Zootaxa https://doi.org/10.12651/JSR.2019.8.2.238 (2019).Article 
    PubMed 

    Google Scholar 
    Yuxia, J. & Wenjun, B. A newly recorded gall midge genus (Diptera, cecidomyiidae) with a species, Asynapta groverae Jiang et bu. nom. Nov. from China. Dong wu fen lei xue bao = Acta Zootaxonomica Sinica 29, 786–789 (2004).
    Google Scholar 
    Mamaev, M. & Krivosheina, N. P. The Larvae of the Gall Miges (CRC Press, 1992).
    Google Scholar 
    Dorchin, N., Harris, K. M. & Stireman, J. O. III. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): Systematics, evolution of feeding modes and diversification rates. Mol. Phylogenet. Evol. 140, 106602. https://doi.org/10.1016/j.ympev.2019.106602 (2019).Article 
    PubMed 

    Google Scholar 
    Gilpin, M. E. Minimal viable populations: Processes of species extinction. Conserv. Biol. Sci. Scarcity Divers. (1986).Frankham, R., Ballou, J. D. & Briscoe, D. A. Introduction to Conservation Genetics (Cambridge University Press, 2002).Book 

    Google Scholar 
    Hedrick, P. W. Genetic polymorphism in heterogeneous environments: The age of genomics. Annu. Rev. Ecol. Syst. 37, 67–93. https://doi.org/10.1146/annurev.ecolsys.37.091305.110132 (2006).Article 

    Google Scholar 
    Kolbe, J. J. et al. Genetic variation increases during biological invasion by a Cuban lizard. Nature 431, 177–181. https://doi.org/10.1038/nature02807 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frankham, R. Resolving the genetic paradox in invasive species. Heredity 94, 385–385. https://doi.org/10.1038/sj.hdy.6800634 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332. https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 (2001).Article 

    Google Scholar 
    Wagner, N. P. Parthenogenesis in the larva of insects. Sci. Mem. Kasan Univ. 1, 25–111 (1862) (in Russian).
    Google Scholar 
    Meinert, F. Miastor metraloas: yderlige oplysning om den af Prof. Nic. Wagner nyligt beskneune insektlarva, som formerer sig ved spinedannelse. Naturhistorisk Tidsskrqt R3(3), 37–43 (1864).
    Google Scholar 
    Wyatt, I. J. Pupal paedogenesis in the Cecidomyiidae (Diptera). II. Proceedings of the Royal Entomological Society of London. J. Entomol. Ser. A-Gen. 38, 136–144. https://doi.org/10.1111/j.1365-3032.1963.tb00768.x (1963).Article 

    Google Scholar 
    Wyatt, I. J. Immature stages of Lestremiinae (Diptera: Cecidomyiidae) infesting cultivated mushrooms. Trans. R. Entomol. Soc. Lond. 116, 15–27. https://doi.org/10.1111/j.1365-2311.1964.tb00823.x (1964).Article 

    Google Scholar 
    Panelius, I. J. A revision of the European gall midges of the subfamily Porricondylinae (Diptera: Itonididae). Acta Zool. Fenn. 13, 1–157 (1965).
    Google Scholar 
    Schüpbach, P. M. & Camenzind, R. Germ cell lineage and follicle formation in paedogenetic development of Mycophila speyeri Barnes (Diptera: Cecidomyiidae). Int. J. Insect Morphol. Embryol. 12, 211–223. https://doi.org/10.1016/0020-7322(83)90018-1 (1983).Article 

    Google Scholar 
    Sikora, T., Jaschhof, M., Mantič, M., Kaspřák, D. & Ševčík, J. Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool. J. Linn. Soc. 185, 98–110. https://doi.org/10.1093/zoolinnean/zly029 (2019).Article 

    Google Scholar 
    Gould, S. J. Ontogeny and Phylogeny (Harvard University Press, 1985).
    Google Scholar 
    Went, D. F. Paedogenesis in the dipteran insect Heteropeza pygmaea: An interpretation. Int. J. Invertebr. Reprod. 1, 21–30. https://doi.org/10.1080/01651269.1979.10553296 (1979).Article 

    Google Scholar 
    Hodin, J. & Riddiford, L. M. Parallel alterations in the timing of ovarian ecdysone receptor and ultraspiracle expression characterize the independent evolution of larval reproduction in two species of gall midges (Diptera: Cecidomyiidae). Dev. Genes Evol. 210, 358–372. https://doi.org/10.1007/s004270000079 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olfert, O., Elliott, R. H. & Hartley, S. In Ecological Impacts of Non-native Invertebrates and Fungi on Terrestrial Ecosystems (eds Langor, D. W. & Sweeney, J.) 127–133 (Springer, 2008). https://doi.org/10.1007/978-1-4020-9680-8_9.Chapter 

    Google Scholar 
    Miao, J. et al. Long-distance wind-borne dispersal of Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) in Northern China. J. Insect Behav. 26, 120–129. https://doi.org/10.1007/s10905-012-9346-4 (2013).Article 

    Google Scholar 
    Hao, Y. N. et al. Flight performance of the orange wheat blossom midge (Diptera: Cecidomyiidae). J. Econ. Entomol. 106, 2043–2047. https://doi.org/10.1603/EC13218 (2013).Article 
    PubMed 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Luo, R. et al. SOAPdenovo2: An empirically improved memory-efficient short-read de novo assembler. GigaScience 1, 2047-217X-1–18. https://doi.org/10.1186/2047-217X-1-18 (2012).Article 

    Google Scholar 
    Jiang, H., Lei, R., Ding, S. W. & Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 1–12. https://doi.org/10.1186/1471-2105-15-182 (2014).Article 
    CAS 

    Google Scholar 
    Beier, S., Thiel, T., Münch, T., Scholz, U. & Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 33, 2583–2585. https://doi.org/10.1093/bioinformatics/btx198 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rozen, S. & Skaletsky, H. Primer3 on the WWW for general users and for biologist programmers. In Bioinformatics Methods and Protocols. Methods in Molecular Biology™ Vol. 132 (eds Misener, S. & Krawetz, S. A.) (Humana Press, 2000). https://doi.org/10.1385/1-59259-192-2:365.Chapter 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).Article 
    PubMed 

    Google Scholar 
    Petit, R. J., Mousadik, A. E. & Pons, O. Identifying populations for conservation on the basis of genetic markers. Conserv. Biol. 12, 844–855. https://doi.org/10.1111/j.1523-1739.1998.96489.x (1998).Article 

    Google Scholar 
    Teacher, A. G. F. & Griffiths, D. J. HapStar: Automated haplotype network layout and visualization. Mol. Ecol. Resour. 11, 151–153. https://doi.org/10.1111/j.1755-0998.2010.02890.x (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rousset, F. Genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x (2008).Article 
    PubMed 

    Google Scholar 
    Goudet, J. FSTAT, a program to estimate and test gene diversity and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm (2001).Van Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICROCHECKER v. 2.2.3. (2006).Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Belkhir, K., Borsa, P., Chikhi, L., Raufaste, N. & Bonhomme, F. GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Montpellier, France: Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II (2004). More

  • in

    Post-whaling shift in mating tactics in male humpback whales

    Study area and general observationsFour datasets, equating to four post-whaling timeframes, were used for this study: 1997 (32 years post-whaling), 2003/2004 (38/39 years post-whaling), 2008 (43 years post-whaling) and 2014/2015 (49/50 years post-whaling). Data collection for each timeframe occurred during the annual migration of humpback whales, from breeding grounds in the Great Barrier Reef, to feeding grounds in the Antarctic Ocean. The study site was located off the coast of Peregian Beach (north of Brisbane, in Queensland, Australia), which was approximately one-third of the way along their return migration route. Here, humpback whales were still exhibiting breeding behaviours, such as singing, males joining females as escorts, and males forming competitive groups around a central female. Field work took place in September and October of each year. Generally, the number of migrating groups increased per day to peak during late September and early October. Numbers then gradually fell until the end of the migration.For this study, a group was defined as cluster of whales within approximately 100 m of each other that were diving and surfacing together (as estimated by the land-based visual observers). Groups were constantly changing membership with animals joining and splitting from the group and tend to move at different speeds, and in different directions, whilst making general progress southwards. Groups, unless joining together, were separated by at least 2 km, meaning it was relatively easy to keep a separate track of each group (see below).Acoustic recordings were made from three to five hydrophone buoys moored in 18–28 m of water and arranged in a line or T-shaped array (Fig. 6). Each hydrophone buoy consisted of a surface buoy containing a custom-built pre-amplifier (+20 dB gain) and 41B sonobuoy VHF radio transmitter. A High Tech HTI-96-MIN hydrophone with built-in +40 dB pre-amplifier was suspended approximately 1 m above each buoy’s mooring. Signals were received onshore at a base station 1.5 to 2.5 km away using a directional Yagi antenna and type 8101, four-channel sonobuoy receiver. Singing whales were located by cross-correlating the same song sound arriving at the different hydrophones to determine time-of-arrival differences. These differences, together with an accurate knowledge of the positions of the hydrophones, were then used to determine the most likely location of the singer. Singers generally move slowly and calculating an acoustic position approximately every 10 min produced a detailed track of the singer.Fig. 6: Outline of the study site including the range of visual observations and the position of the acoustic tracking array.Illustrating the study site at Peregian Beach, north of Brisbane, east coast of Australia. The map indicates the position of the land-based station (Emu Mountain) and the acoustic base station along with the position of the 5-buoy hydrophone array. The outline designates the study area. Whales moved in a southerly direction through the area daily. Whale icons illustrate acoustically tracked singing whales (circled in blue) and visually tracked presumed males (black), females (orange), and calves (small black). The 5 km social circle radius for a focal singing (blue circle) and a non-singing (black circle) male are also illustrated. The map is taken from “Google Earth” with permission to print without the need to submit a request (Brand Resource Center | Products and Services – Geo Guidelines (about.google)).Full size imageMigrating groups were tracked visually (7am to 5pm, weather permitting) from a land-based elevated survey point, Emu Mountain (73 m elevation). A theodolite (Leica TM 1100) was used in conjunction with a notebook computer running Cyclopes software (E. Kniest, Univ. Newcastle, Australia) to track the groups in real-time and note group behaviours. The field of view was approximately 20 km in a north/south direction and 10 km offshore (Fig. 6). Humpback whale groups were observed ad libitum and tracked by teams of five people. When whale groups surfaced, the observers called the sighted behaviour, compass bearing, and angle from the group to the horizon (in reticules). Each observation included group identification letter, the time, group size and composition, whether a calf was present, direction of travel, and group location, either by using a binocular reticular measurement or a theodolite measurement. Joining and splitting animals were also noted. A join was defined as one of more animals actively moving towards a group to surface within 100 m and then match the group surfacing times. Examples of this include an individual singing or non-singing whale actively moving towards, and then joining, another individual or group of whales. If more animals subsequently moved in and joined the group, this was termed an additional join to that group. These additionally joined group usually comprised of a female-calf and more than one male escort, or three or more adults, with additional joiners highly likely to be male (21,25,26, supplementary results). On rare occasions a singing whale remained in one place but was joined by another individual. This was termed an additional join given there was no evidence the singer actively moved to join this animal. However, the rarity of these occurrences meant the allocation of this behaviour to additional join, rather than join, had no influence on the results.Some of the migrating animals were biopsied during the day for post-field later sexing. Note biopsied animals were sometimes part of different studies occurring at the field site30,50 and were not necessarily the animals used in this study. However, these biopsy results were used to test assumptions made in this study regarding the sex of joining whales and whales within the observed groups (supplementary results and supplementary note). Weather was noted hourly.Statistics and reproducibilityDefining the proximate effect of male density on individual mating tacticsFor this analysis, a specific period, the 2003/2004 dataset, was chosen as it had the most instances of identified singers and non-singers. Within this timeframe, whales were migrating through the study area at sufficiently low density to avoid confusion. After 2004, it became increasingly difficult to focally follow males.First, for singing males (n = 86), their location within the study area was recorded at the start of singing using the acoustic array. Whilst singing they remained in the same location or meandered slowly within a small area. Non-singing animals that were observed to join a group (n = 31) were assumed to be male (21,25,26,30, supplementary methods and supplementary results). For these joining animals, visual observations were backtracked for 10 to 15 min until they were sighted alone. They were only included in the analysis if they could be definitively backtracked using visual (theodolite) observations, with no opportunity for confusion with other whales in area (i.e., no other whales within 2 km).For each unaccompanied focal male, the number of, and roles, of other presumed males within 5 km radius from the focal whale (Fig. 6) was used as a measure of local male density. The 5 km radius was termed social circle and was chosen as the most likely communication space for their acoustic signals51. For singing focal whales, their social circle was estimated using their location when they began to sing. For non-singing focal males, their social circle was estimated using the backtracked theodolite position to when it was first sighted alone. Next, all groups within the 5 km social circle of the focal whale, along with each group composition (singing animal, lone animal, female and calf pair, female-calf and escort number, adult-only group with the number of adults) were recorded at that timepoint. It was not logistically possible to biopsy and sex all migrating animals, therefore, to estimate the number of males within their social circle several assumptions were made. These assumptions were also tested using a biopsy study carried out in the area (supplementary methods and supplementary results). Female-calf pairs were discounted as it was assumed all adults with a calf were female. It was assumed that female-calf pairs were being escorted by males (21,25,26, supplementary methods and supplementary results). Groups of multiple adults were assumed to be comprised of a likely single female, principal male escort and secondary male escorts or challengers (21,25,26, supplementary methods and supplementary results). Lone animals not involved in any group interactions, and not singing, were given a 70% chance of being male (supplementary note). Animals within adult pairs were given a 70% chance of being male given the likelihood of having a mix of female-male pairs and male-male pairs (21,30, supplementary results and supplementary note).All analysis models were carried out in R (version 3.4.0). The first analysis aimed to determine if the likelihood of first observing the focal individual as a singing or non-singing male was significantly related to local male density, as determined by the number of males within a 5 km radius, termed social circle. Singing whales were allocated a 0 and non-singing whales were allocated a 1. A generalised linear model structure was used, assuming a binomial distribution. Likely males within their social circle were divided into non-singing and singing males (to delineate tactics) and these were included as the two covariates.$${{{{{rm{Singing}}}}}},(0),{{{{{rm{or }}}}}},{{{{{rm{Non}}}}}}{mbox{-}}{{{{{rm{singing}}}}}},(1) sim {{{{{rm{Non}}}}}}{mbox{-}}{{{{{rm{singing}}}}}},{{{{{rm{males}}}}}}, 5,{{{{{rm{km}}}}}}+{{{{{rm{Singing}}}}}},{{{{{rm{whales}}}}}}, 5,{{{{{rm{km}}}}}}$$Each focal male was an independent sample given males were migrating southwards and extremely unlikely to back-track into the study area and therefore be resampled. Significance was set at p  More

  • in

    Late Cenozoic cooling restructured global marine plankton communities

    Jonkers, L., Hillebrand, H. & Kucera, M. Global change drives modern plankton communities away from the pre-industrial state. Nature 570, 372–375 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proc. Natl Acad. Sci. USA 113, 2964–2969 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beaugrand, G., Reid, P. C., Ibanez, F., Lindley, J. A. & Edwards, M. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cheung, W. W., Watson, R. & Pauly, D. Signature of ocean warming in global fisheries catch. Nature 497, 365–368 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herbert-Read, J. E. et al. A global horizon scan of issues impacting marine and coastal biodiversity conservation. Nat. Ecol. Evol. 6, 1262–1270 (2022).Article 
    PubMed 

    Google Scholar 
    Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strack, A., Jonkers, L., Rillo, M. C., Hillebrand, H. & Kucera, M. Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age. Nat. Ecol. Evol. 6, 1871–1880 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mokany, K. & Ferrier, S. Predicting impacts of climate change on biodiversity: a role for semi‐mechanistic community‐level modelling. Divers. Distrib. 17, 374–380 (2011).Article 

    Google Scholar 
    Pörtner, H.-O. et al. eds IPCC: Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2022).Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).Article 
    PubMed 

    Google Scholar 
    Schumm, M. et al. Common latitudinal gradients in functional richness and functional evenness across marine and terrestrial systems. Proc. R. Soc. B 286, 20190745 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 400, 749–753 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Worm, B., Lotze, H. K. & Myers, R. A. Predator diversity hotspots in the blue ocean. Proc. Natl Acad. Sci. USA 100, 9884–9888 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fenton, I. S., Pearson, P. N., Dunkley Jones, T. & Purvis, A. Environmental predictors of diversity in recent planktonic foraminifera as recorded in marine sediments. PLoS ONE 11, e0165522 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhary, C., Saeedi, H. & Costello, M. J. Bimodality of latitudinal gradients in marine species richness. Trends Ecol. Evol. 31, 670–676 (2016).Article 
    PubMed 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rillo, M. C., Miller, C. G., Kučera, M. & Ezard, T. H. G. Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Ecol. Evol. 10, 11579–11590 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, E. Descent into the icehouse. Geology 36, 191–192 (2008).Article 
    ADS 

    Google Scholar 
    Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crame, J. A. Early Cenozoic evolution of the latitudinal diversity gradient. Earth Sci. Rev. 202, 103090 (2020).Article 

    Google Scholar 
    Yasuhara, M. et al. Time machine biology. Oceanography 33, 16–28 (2020).Article 

    Google Scholar 
    Alegret, L., Arreguín-Rodríguez, G. J., Trasviña-Moreno, C. A. & Thomas, E. Turnover and stability in the deep sea: benthic foraminifera as tracers of Paleogene global change. Global Planet. Change 196, 103372 (2021).Article 

    Google Scholar 
    Gaskell, D. E. et al. The latitudinal temperature gradient and its climate dependence as inferred from foraminiferal δ18O over the past 95 million years. Proc. Natl Acad. Sci. USA 119, e2111332119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).Article 
    PubMed 

    Google Scholar 
    Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. R. Soc. B 288, 20210545 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Steinthorsdottir, M. et al. The Miocene: the future of the past. Paleoceanogr. Paleoclimatology 36, e2020PA004037 (2021).Article 

    Google Scholar 
    Brown, R. M., Chalk, T. B., Crocker, A. J., Wilson, P. A. & Foster, G. L. Late Miocene cooling coupled to carbon dioxide with Pleistocene-like climate sensitivity. Nat. Geosci. 15, 664–670 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Guillermic, M., Misra, S., Eagle, R. & Tripati, A. Atmospheric CO2 estimates for the Miocene to Pleistocene based on foraminiferal δ11B at Ocean Drilling Program Sites 806 and 807 in the Western Equatorial Pacific. Clim. Past 18, 183–207 (2022).Article 

    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).Article 
    PubMed 

    Google Scholar 
    Ezard, T. H. G., Aze, T., Pearson, P. N. & Purvis, A. Interplay between changing climate and species’ ecology drives macroevolutionary dynamics. Science 332, 349–351 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Peters, S. E., Kelly, D. C. & Fraass, A. J. Oceanographic controls on the diversity and extinction of planktonic foraminifera. Nature 493, 398–401 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woodhouse, A. et al. Adaptive ecological niche migration does not negate extinction susceptibility. Sci. Rep. 11, 15411 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).Article 
    PubMed 

    Google Scholar 
    Bindoff, N. L. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) (IPCC, Cambridge Univ. Press, 2019).Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).Article 
    PubMed 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. 94, 16–36 (2019).Article 
    PubMed 

    Google Scholar 
    Rojas, A., Calatayud, J., Kowalewski, M., Neuman, M. & Rosvall, M. A multiscale view of the Phanerozoic fossil record reveals the three major biotic transitions. Commun. Biol. 4, 309 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Swain, A., Devereux, M. & Fagan, W. F. Deciphering trophic interactions in a mid-Cambrian assemblage. iScience 24, 102271 (2021).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaw, J. O. et al. Disentangling ecological and taphonomic signals in ancient food webs. Paleobiology 47, 385–401 (2021).Article 

    Google Scholar 
    Swain, A., Maccracken, S., Fagan, W. & Labandeira, C. Understanding the ecology of host plant–insect herbivore interactions in the fossil record through bipartite networks. Paleobiology 48, 239–260 (2022).Article 

    Google Scholar 
    Poisot, T., Canard, E., Mouquet, N. & Hochberg, M. E. A comparative study of ecological specialization estimators. Methods Ecol. Evol. 3, 537–544 (2012).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boscolo-Galazzo, F. and Crichton, K.A. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).Article 
    ADS 

    Google Scholar 
    Keller, G. in The Miocene Ocean: Paleoceanography and Biogeography Vol. 163, 177–196 (Geological Society of America, 1985).Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1584 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willeit, M., Ganopolski, A., Calov, R., Robinson, A. & Maslin, M. The role of CO2 decline for the onset of Northern Hemisphere glaciation. Quat. Sci. Rev. 119, 22–34 (2015).Article 
    ADS 

    Google Scholar 
    Hayashi, T. et al. Latest Pliocene Northern Hemisphere glaciation amplified by intensified Atlantic meridional overturning circulation. Commun. Earth Environ. 1, 25–10 (2020).Article 
    ADS 

    Google Scholar 
    Lam, A. R., Crundwell, M. P., Leckie, R. M., Albanese, J. & Uzel, J. P. Diachroneity rules the mid-latitudes: a test case using late Neogene planktic foraminifera across the Western Pacific. Geosciences 12, 190 (2022).Article 
    ADS 

    Google Scholar 
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Rillo, M. C. et al. On the mismatch in the strength of competition among fossil and modern species of planktonic Foraminifera. Global Ecol. Biogeogr. 28, 1866–1878 (2019).Article 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).Article 
    ADS 

    Google Scholar 
    Monllor-Hurtado, A., Pennino, M. G. & Sanchez-Lizaso, J. L. Shift in tuna catches due to ocean warming. PLoS ONE 12, e0178196 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 
    PubMed 

    Google Scholar 
    Mora, C. et al. Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol. 11, e1001682 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renaudie, J., Lazarus, D.B. & Diver, P. NSB (Neptune Sandbox Berlin): an expanded and improved database of marine planktonic microfossil data and deep-sea stratigraphy. Palaeontol. Electron. 23, p.a11 (2020).
    Google Scholar 
    Pearson, P. N. in Atlas of Oligocene Planktonic Foraminifera (eds Wade, B. S. et al) 415–428 (Cushman Foundation of Foraminiferal Research, 2018).Liow, L. H., Skaug, H. J., Ergon, T. & Schweder, T. Global occurrence trajectories of microfossils: environmental volatility and the rise and fall of individual species. Paleobiology 36, 224–252 (2010).Article 

    Google Scholar 
    Lazarus, D., Weinkauf, M. & Diver, P. Pacman profiling: a simple procedure to identify stratigraphic outliers in high-density deep-sea microfossil data. Paleobiology 38, 144–161 (2012).Article 

    Google Scholar 
    Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the Plio-Pleistocene intensification of Northern Hemisphere glaciations. Preprint at EGUsphere https://doi.org/10.5194/egusphere-2022-844 (2022).Woodhouse, A. et al. Paleoecology and evolutionary response of planktonic foraminifera to the mid-Pliocene Warm Period and Plio-Pleistocene bipolar ice sheet expansion. Biogeosciences 20, 121–139 (2023).Article 
    ADS 

    Google Scholar 
    Dormann, C. F., Fründ, J., Blüthgen, N. & Gruber, B. Indices, graphs and null models: analyzing bipartite ecological networks. Op. Ecol. J. 2, 7–24 (2009).Article 

    Google Scholar 
    Swain, A. et al. Sampling bias and the robustness of ecological metrics for plant-damage-type association networks. Ecology https://doi.org/10.1002/ecy.3922 (2022).Julliard, R., Clavel, J., Devictor, V., Jiguet, F. & Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 9, 1237–1244 (2006).Article 
    PubMed 

    Google Scholar 
    Vaughan, I. P. et al. econullnetr: an R package using null models to analyse the structure of ecological networks and identify resource selection. Methods Ecol. Evol. 9, 728–733 (2018).Article 
    MathSciNet 

    Google Scholar  More

  • in

    Origination of the modern-style diversity gradient 15 million years ago

    Fine, P. V. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 46, 369–392 (2015).Article 

    Google Scholar 
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).Article 
    PubMed 

    Google Scholar 
    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).Article 
    PubMed 

    Google Scholar 
    Willig, M. R., Kaufman, D. M. & Stevens, R. D. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu. Rev. Ecol. Evol. Syst. 34, 273–309 (2003).Article 

    Google Scholar 
    Pontarp, M. et al. The latitudinal diversity gradient: novel understanding through mechanistic eco-evolutionary models. Trends Ecol. Evol. 34, 211–223 (2019).Article 
    PubMed 

    Google Scholar 
    Crame, J. A. Taxonomic diversity gradients through geological time. Divers Distrib. 7, 175–189 (2011).
    Google Scholar 
    Mannion, P. D., Upchurch, P., Benson, R. B. J. & Goswami, A. The latitudinal biodiversity gradient through deep time. Trends Ecol. Evol. 29, 42–50 (2014).Article 
    PubMed 

    Google Scholar 
    Powell, M. G. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Glob. Ecol. Biogeogr. 16, 519–528 (2007).Article 

    Google Scholar 
    Powell, M. G., Beresford, V. P. & Colaianne, B. A. The latitudinal position of peak marine diversity in living and fossil biotas. J. Biogeogr. 39, 1687–1694 (2012).Article 

    Google Scholar 
    Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).Article 
    ADS 

    Google Scholar 
    Beaugrand, G., Rombouts, I. & Kirby, R. R. Towards an understanding of the pattern of biodiversity in the oceans. Glob. Ecol. Biogeogr. 22, 440–449 (2013).Article 

    Google Scholar 
    Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).Article 

    Google Scholar 
    Saupe, E. E. et al. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 3, 1419–1429 (2019).Article 
    PubMed 

    Google Scholar 
    Stehli, F. G., Douglas, R. G. & Newell, N. D. Generation and maintenance of gradients in taxonomic diversity. Science 164, 947–949 (1969).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rutherford, S., D’Hondt, S. & Prell, W. Environmental controls on the geographic distribution of zooplankton diversity. Nature 4000, 749–752 (1999).Article 
    ADS 

    Google Scholar 
    Klopfer, P. H. Environmental determinants of faunal diversity. Am. Nat. 93, 337–342 (1959).Article 

    Google Scholar 
    Haffer, J. & Prance, G. T. Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Amazoniana 16, 579–607 (2001).
    Google Scholar 
    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).
    Google Scholar 
    Williams, C. B. Patterns in the Balance of Nature (Academic Press, 1964).Paine, R. T. Food web complexity and species diversity. Am. Nat. 100, 65–75 (1966).Article 

    Google Scholar 
    Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).Article 

    Google Scholar 
    Currie, D. J. Energy and large-scale patterns of animal and plant species richness. Am. Nat. 137, 27–49 (1991).Article 

    Google Scholar 
    Connell, J. H. & Orias, E. The ecological regulation of species diversity. Am. Nat. 98, 399–414 (1964).Article 

    Google Scholar 
    Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).Fenton, I. S. et al. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera. Phil. Trans. R. Soc. B 371, 20150224 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M. et al. Past and future decline of tropical pelagic biodiversity. Proc. Natl Acad. Sci. USA 117, 12891–12896 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M. & Stoll, D. K. Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecol. Lett. 15, 1174–1179 (2012).Article 
    PubMed 

    Google Scholar 
    Jablonski, D., Roy, K. & Valentine, J. W. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314, 102–106 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yasuhara, M., Tittensor, D. P., Hillebrand, H. & Worm, B. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biol. Rev. 92, 199–215 (2017).Article 
    PubMed 

    Google Scholar 
    Fenton, I. S. et al. Triton, a new species-level database of Cenozoic planktonic foraminiferal occurrences. Sci. Data 8, 160 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yasuhara, M. & Deutsch, C. A. Paleobiology provides glimpses of future ocean. Science 375, 25–26 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yasuhara, M. et al. Time machine biology cross-timescale integration of ecology, evolution, and oceanography. Oceanography 33, 16–28 (2020).Article 

    Google Scholar 
    Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Al-Sabouni, N., Kucera, M. & Schmidt, D. N. Vertical niche separation control of diversity and size disparity in planktonic foraminifera. Mar. Micropaleontol. 63, 75–90 (2007).Article 
    ADS 

    Google Scholar 
    Lowery, C. M., Bown, P. R., Fraass, A. J. & Hull, P. M. Ecological response of plankton to environmental change: thresholds for extinction. Annu. Rev. Earth Planet. Sci. 48, 403–429 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Lear, C. H., Elderfield, H. & Wilson, P. A. Cenozoic deep-sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science 287, 269–272 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weiner, A., Aurahs, R., Kurasawa, A., Kitazato, H. & Kučera, M. Vertical niche partitioning between cryptic sibling species of a cosmopolitan marine planktonic protist. Mol. Ecol. 21, 4063–4073 (2012).Article 
    PubMed 

    Google Scholar 
    Schneider, E. & Kennett, J. P. Segregation and speciation in the Neogene planktonic foraminiferal clade Globoconella. Paleobiology 25, 383–395 (1999).Article 

    Google Scholar 
    Raja, N. B. & Kiessling, W. Out of the extratropics: the evolution of the latitudinal diversity gradient of Cenozoic marine plankton. Proc. Biol. Sci. 288, 20210545 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Allen, A. P. & Gillooly, J. F. Assessing latitudinal gradients in speciation rates and biodiversity at the global scale. Ecol. Lett. 9, 947–954 (2006).Article 
    PubMed 

    Google Scholar 
    Irigoien, X., Huisman, J. & Harris, R. P. Global biodiversity patterns of marine phytoplankton and zooplankton. Nature 429, 863–886 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schiebel, R. & Hemleben, C. Planktic Foraminifers in the Modern Ocean (Springer-Verlag, 2017).Ruddimann, W. F. Recent planktonic foraminifera: dominance and diversity in North Atlantic surface sediments. Science 164, 1164–1167 (1969).Article 
    ADS 

    Google Scholar 
    Bé, A. W. H. & Tolderlund, D. S. in Micropaleontology of Marine Bottom Sediments (eds Funnell, B. M. & Riedel, W. K.) 105–149 (Cambridge Univ. Press, 1971).Sibert, E., Norris, R., Cuevas, J. & Graves, L. Eighty-five million years of Pacific Ocean gyre ecosystem structure: long-term stability marked by punctuated change. Proc. Biol. Sci. 283, 20160189 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Chaudhary, C., Richardson, A. J., Schoeman, D. S. & Costello, M. J. Global warming is causing a more pronounced dip in marine species richness around the equator. Proc. Natl Acad. Sci. USA 118, e2015094118 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worm, B. & Tittensor, D. P. A Theory of Global Biodiversity (Princeton Univ. Press, 2018).Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boscolo-Galazzo, F. et al. Late Neogene evolution of modern deep-dwelling plankton. Biogeosciences 19, 743–762 (2022).Article 
    ADS 

    Google Scholar 
    Aze, T. et al. A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data. Biol. Rev. 86, 900–927 (2011).Article 
    PubMed 

    Google Scholar 
    Matthews, K. J. et al. Global plate boundary evolution and kinematics since the late Paleozoic. Glob. Planet. Change 146, 226–250 (2016).Article 
    ADS 

    Google Scholar 
    Gyldenfeldt, A.-B. V., Carstens, J. & Meincke, J. Estimation of the catchment area of a sediment trap by means of current meters and foraminiferal tests. Deep Sea Res. Part II 47, 1701–1717 (2000).Article 
    ADS 

    Google Scholar 
    Qiu, Z., Doglioli, A. M. & Carlotti, F. Using a Lagrangian model to estimate source regions of particles in sediment traps. Sci. China Earth Sci. 57, 2447–2456 (2014).Article 
    ADS 

    Google Scholar 
    Siegel, D. A. & Deuser, W. G. Trajectories of sinking particles in the Sargasso Sea: modeling of statistical funnels above deep-ocean sediment traps. Deep Sea Res. Part I 44, 1519–1541 (1997).Article 

    Google Scholar 
    Waniek, J., Koeve, W. & Prien, R. D. Trajectories of sinking particles and the catchment areas above sediment traps in the Northeast Atlantic. J. Mar. Res. 58, 983–1006 (2000).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing http://www.R-project.org (R Foundation for Statistical Computing, 2019).Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Marcot, J. D. The fossil record and macroevolutionary history of North American ungulate mammals: standardizing variation in intensity and geography of sampling. Paleobiology 40, 238–255 (2014).Article 

    Google Scholar 
    Gaston, K. J., Williams, P. H., Eggleton, P. & Humphries, C. J. Large scale patterns of biodiversity: spatial variation in family richness. Proc. R. Soc. Lond. B 260, 149–154 (1995).Article 
    ADS 

    Google Scholar 
    Valdes, P. J. et al. The BRIDGE HadCM3 family of climate models: HadCM3@Bristol v1.0. Geosci. Model Dev. 10, 3715–3743 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Cox, P. M. et al. The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim. Dyn. 15, 183–203 (1999).Article 

    Google Scholar 
    Sagoo, N., Valdes, P., Flecker, R. & Gregoire, L. J. The Early Eocene equable climate problem: can perturbations of climate model parameters identify possible solutions? Phil. Trans. R. Soc. A 371, 20130123 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Kiehl, J. T. & Shields, C. A. Sensitivity of the Palaeocene–Eocene thermal maximum climate to cloud properties. Phil. Trans. R. Soc. A 371, 20130093 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Cox, M. D. A Primitive Equation, 3-Dimensional Model of the Ocean. GFDL Ocean Group Technical Report No. 1 (GFDL Princeton Univ., 1984).Collins, M., Tett, S. F. B. & Cooper, C. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 17, 61–81 (2001).Article 

    Google Scholar 
    Farnsworth, A. et al. Climate sensitivity on geological timescales controlled by nonlinear feedbacks and ocean circulation. Geophys. Res. Lett. 46, 9880–9889 (2019).Article 
    ADS 

    Google Scholar 
    Valdes, P. J., Scotese, C. R. & Lunt, D. J. Deep ocean temperatures through time. Clim. Past 17, 1483–1506 (2021).Article 

    Google Scholar 
    Farnsworth, A. et al. Past East Asian monsoon evolution controlled by paleogeography, not CO2. Sci. Adv. 5, eaax1697 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, L. A., Mannion, P. D., Farnsworth, A., Bragg, F. & Lunt, D. J. Climatic and tectonic drivers shaped the tropical distribution of coral reefs. Nat. Commun. 13, 3120 (2022).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scotese, C. R. & Wright, N. PALEOMAP paleodigital elevation models (PaleoDEMS) for the Phanerozoic. Zenodo https://doi.org/10.5281/zenodo.5460860 (2018).Foster, G. L., Royer, D. L. & Lunt, D. J. Future climate forcing potentially without precedent in the last 420 million years. Nat. Commun. 8, 14845 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).Article 
    ADS 
    CAS 

    Google Scholar 
    Farnsworth, A. et al. Paleoclimate model-derived thermal lapse rates: towards increasing precision in paleoaltimetry studies. Earth Planet. Sci. Lett. 564, 116903 (2021).Article 
    CAS 

    Google Scholar 
    Bahcall, J. N., Pinsonneault, M. H. & Basu, S. Solar models: current epoch and time dependences, neutrinos, and helioseismological properties. Astrophys. J. 555, 990–1012 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Hawkins, E. & Sutton, R. The potential to narrow uncertainty in regional climate predictions. Bull. Am. Meteorol. Soc. 90, 1095–1108 (2009).Article 
    ADS 

    Google Scholar 
    Kraus, E. B. & Turner, J. S. A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19, 98–105 (1967).ADS 

    Google Scholar 
    Foreman, S. J. The Ocean Model Report. Unified Model Documentaiton Paper Number 40 (The Met Office, 2005).HH: Statistical Analysis and Data Display: Heiberger and Holland. R package version 3.1-47 (2022).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Bivand, R., Millo, G. & Piras, G. A review of software for spatial econometrics in R. Mathematics 9, 1276 (2021).Article 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Cooper, N. & Purvis, A. Body size evolution in mammals: complexity in tempo and mode. Am. Nat. 175, 727–738 (2010).Article 
    PubMed 

    Google Scholar 
    geosphere: Spherical Trigonometry. R package version 1.5-14 (2021).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-7 (2020).Wade, B. S., Pearson, P. N., Berggren, W. A. & Pälike, H. Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale. Earth Sci. Rev. 104, 111–142 (2011).Article 
    ADS 

    Google Scholar  More

  • in

    Rainfall affects interactions between plant neighbours

    Lebrija-Trejos, E., Hernández, A. & Wright, S. J. Nature https://doi.org/10.1038/s41586-023-05717-1 (2023).Article 

    Google Scholar 
    Chesson, P. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Barabás, G., D’Andrea, R. & Stump, S. M. Ecol. Monogr. 88, 277–303 (2018).Article 

    Google Scholar 
    Broekman, M. J. E. et al. Ecol. Lett. 22, 1957–1975 (2019).Article 
    PubMed 

    Google Scholar 
    Freckleton, R. P. & Lewis, O. T. Proc. R. Soc. B 273, 2909–2916 (2006).Article 
    PubMed 

    Google Scholar 
    Bagchi, R. et al. Nature 506, 85–88 (2014).Article 
    PubMed 

    Google Scholar 
    Chen, L. et al. Science 366, 124–128 (2019).Article 
    PubMed 

    Google Scholar 
    Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. J. Ecol. 108, 1800–1809 (2020).Article 

    Google Scholar 
    Song, X. & Corlett, R. T. Oikos 2022, e08509 (2022).Article 

    Google Scholar 
    Engelbrecht, B. M. J. et al. Nature 447, 80–82 (2007).Article 
    PubMed 

    Google Scholar 
    Krishnadas, M. & Stump, S. M. J. Ecol. 109, 2137–2151 (2021).Article 

    Google Scholar 
    Van Dyke, M. N., Levine, J. M. & Kraft, N. J. B. Nature 611, 507–511 (2022).Article 
    PubMed 

    Google Scholar  More

  • in

    Seasonal variation in the lipid content of Fraser River Chinook Salmon (Oncorhynchus tshawytscha) and its implications for Southern Resident Killer Whale (Orcinus orca) prey quality

    Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215 (1994).Article 

    Google Scholar 
    Fisheries and Oceans Canada. National recovery strategy for northern and southern resident killer whales (Orcinus orca) in Canada [proposed]. vol. Species at (2018).National Marine Fisheries Service. Recovery Plan for Southern Resident Killer Whales (Orcinus orca). (2008).Barrett-Lennard, L. G. & Ellis, G. M. Population Structure and Genetic Variability in Northeastern Pacific Killer Whales: Towards an Assessment of Population Viability. DFO Can. Sci. Advis. Secr. Res. Deocument 2001/065 65 (2001).DFO. Evaluation of the scientific evidence to inform the probability of effectiveness of mitigation measures in reducing shipping-related noise levels received by southern resident killer whales. CSAS Science Advisory Report vol. 2017/041 (2017).Ross, P. S., Ellis, G. M., Ikonomou, M. G. & Addison, R. F. High PCB concentrations in free-ranging Pacific Killer Whales, Orcinus orca: Effects of age, sex and dietary preference. Mar. Pollut. Bull. 40, 504–515 (2000).Article 
    CAS 

    Google Scholar 
    Ward, E. J., Holmes, E. E. & Balcomb, K. C. Quantifying the effects of prey abundance on killer whale reproduction. J. Appl. Ecol. 46, 632–640 (2009).Article 

    Google Scholar 
    Ford, J. K. B., Ellis, G. M., Olesiuk, P. F. & Balcomb, K. C. Linking killer whale survival and prey abundance: Food limitation in the oceans’ apex predator ?. Biol. Lett. 6, 139–142 (2010).Article 
    PubMed 

    Google Scholar 
    Ford, J. K. B. et al. Dietary specialization in two sympatric populations of killer whales (Orcinus orca) in coastal British Columbia and adjacent waters. Can. J. Zool. 76, 1456–1471 (1998).Article 

    Google Scholar 
    Ford, J. K. B., Ellis, G. M. & Olesiuk, P. F. Linking Prey and Population Dynamics Did Food Limitation Cause Recent Declines of RKW in BC, vol. 3848 (2005).O’Neill, S. M., Ylitalo, G. M. & West, J. E. Energy content of Pacific salmon as prey of northern and southern resident killer whales. Endanger. Species Res. 25, 265–281 (2014).Article 

    Google Scholar 
    Ford, J. K. B. & Ellis, G. M. Selective foraging by fish-eating killer whales Orcinus orca in British Columbia. Mar. Ecol. Prog. Ser. 316, 185–199 (2006).Article 
    ADS 

    Google Scholar 
    Jeffrey, K. M., Côté, I. M., Irvine, J. R. & Reynolds, J. D. Changes in body size of Canadian Pacific salmon over six decades. Can. J. Fish. Aquat. Sci. 74, 191–201 (2017).Article 

    Google Scholar 
    Ohlberger, J., Schindler, D. E., Ward, E. J., Walsworth, T. E. & Essington, T. E. Resurgence of an apex marine predator and the decline in prey body size. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1910930116 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohlberger, J., Ward, E. J., Schindler, D. E. & Lewis, B. Demographic changes in Chinook salmon across the Northeast Pacific Ocean. Fish Fish. 19, 533–546 (2018).Article 

    Google Scholar 
    Bigler, B. S., Welch, D. W. & Helle, J. H. A review of size trends among North Pacific salmon (Oncorhynchus spp.). Can. J. Fish. Aquat. Sci. 53, 455–465 (2011).Article 

    Google Scholar 
    Hanson, M. B. et al. Species and stock identification of prey consumed by endangered southern resident killer whales in their summer range. Endanger. Species Res. 11, 69–82 (2010).Article 
    ADS 

    Google Scholar 
    Losee, J. P., Kendall, N. W. & Dufault, A. Changing salmon: An analysis of body mass, abundance, survival, and productivity trends across 45 years in Puget Sound. Fish Fish. 20, 934–951 (2019).Article 

    Google Scholar 
    Riddell, B. et al. Assessment of Status and Factors for Decline of Southern BC Chinook Salmon: Independent Panel’s Report (2013).DFO. Integrated Biological Status of Southern British Columbia Chinook Salmon (Oncorhynchus tshawytscha) Under the Wild Salmon Policy. DFO Can. Sci. Advis. Sec. Sci. Advis. Rep. 2016/042, 15 (2016).
    Google Scholar 
    COSEWIC. COSEWIC assessment and status report on the Chinook Salmon Oncorhynchus tshawytscha, Designatable Units in Southern British Columbia, in Canada. (2019).Pacific Salmon Commission Joint Chinook Technical Committee. Annual Report of Catch and Escapement for 2021. Tcchinook (13)-01 (2021).Quinn, T. P. Behavior and ecology of Pacific Salmon and trout. Fish Fish. 7, 75–76 (2004).
    Google Scholar 
    Brett, J. R. Energetics. In Phsyiological Ecology of Pacific Salmon (eds Groot, C. et al.) 1–68 (UBC Press, 1995).
    Google Scholar 
    Chamberlain, M. W. & Parken, C. Utilizing the Albion test fishery as an in-season predictor of run size of the Fraser River spring and summer age 52 Chinook. DFO Can. Sci. Advis. Sec. Res. Doc. 2012, 42 (2012).
    Google Scholar 
    Schoener, T. W. Theory of feeding strategies. Annu. Rev. Ecol. Syst. 2, 369–404 (1971).Article 

    Google Scholar 
    Williams, R. et al. Competing conservation objectives for predators and prey: Estimating Killer Whale prey requirements for Chinook Salmon. PLoS ONE 6, e26738 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Courtney, K. R., Falke, J. A., Cox, M. K. & Nichols, J. Energetic status of Alaskan Chinook Salmon: Interpopulation comparisons and predictive modeling using bioelectrical impedance analysis. North Am. J. Fish. Manag. https://doi.org/10.1002/nafm.10398 (2019).Article 

    Google Scholar 
    Pothoven, S. A. et al. Reliability of bioelectrical impedance analysis for estimating whole-fish energy density and percent lipids. Trans. Am. Fish. Soc. 137, 1519–1529 (2008).Article 

    Google Scholar 
    Crossin, G. T. & Hinch, S. G. A Nonlethal, rapid method for assessing the somatic energy content of migrating adult pacific salmon. Trans. Am. Fish. Soc. 134, 184–191 (2005).Article 

    Google Scholar 
    Colt, J. & Shearer, K. D. Evaluation of the Use of the Torry Fish Fatmeter to Non-Lethally Estimate Lipid in Adult Salmon (2001).Hanson, K. C., Ostrand, K. G., Gannam, A. L. & Ostrand, S. L. Comparison and validation of nonlethal techniques for estimating condition in Juvenile Salmonids. Trans. Am. Fish. Soc. 139, 1733–1741 (2010).Article 

    Google Scholar 
    Naughton, G., Caudill, C. & Clabough, T. Migration Behavior and Spawning Success of Spring Chinook Salmon in Fall Creek and the North Fork Middle Fork Willamette River: Relationship Among Fate, Fish Condition, and Environmental Factors, 2011. (2012).Folch, J., Lees, M. & Sloane Stanley, G. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226, 497–509 (1957).Article 
    CAS 
    PubMed 

    Google Scholar 
    Post, J. R. & Parkinson, E. A. Energy allocation strategy in young fish: Allometry and survival. Ecology 82, 1040–1051 (2001).Article 

    Google Scholar 
    Arrington, D. A., Davidson, B. K., Winemiller, K. O. & Layman, C. A. Influence of life history and seasonal hydrology on lipid storage in three neotropical fish species. J. Fish Biol. 68, 1347–1361 (2006).Article 
    CAS 

    Google Scholar 
    Holty, B. L. & Ciruna, K. A. Conservation units for Pacific Salmon under the Wild Salmon Policy. DFO Can. Sci. Advis. Sec. Res. Doc 2007/070, 350 (2007).
    Google Scholar 
    PSC. Catch and Escapement of Chinook Under Pacific Salmon Commission Jurisdiction, 2001 (PSC, 2002).
    Google Scholar 
    Waples, R. S., Teel, D. J., Myers, J. M. & Marshall, A. R. Life-history divergence in Chinook Salmon: Historic contingency and parallel evolution. Evolution 58, 386–403 (2004).PubMed 

    Google Scholar 
    Beacham, T. D. et al. Pacific rim population structure of chinook salmon as determined from microsatellite analysis. Trans. Am. Fish. Soc. 135, 1604–1621 (2006).Article 
    CAS 

    Google Scholar 
    Crossin, G. T. et al. Energetics and morphology of sockeye salmon: Effects of upriver migratory distance and elevation. J. Fish Biol. 65, 788–810 (2004).Article 

    Google Scholar 
    MacDonald, B. In-Season Forecasting of Fraser Chinook Salmon Using Genetic Stock Identification of Test Fishery Data By (2016).Parken, C. K., Candy, J. R., Irvine, J. R. & Beacham, T. D. Genetic and coded wire tag results combine to allow more-precise management of a complex Chinook salmon aggregate. North Am. J. Fish. Manag. 28, 328–340 (2008).Article 

    Google Scholar 
    Mann, R., Peery, C., Pinson, A. & Anderson, C. Energy use, migration times, and spawning success of adult spring–summer Chinook salmon returning to spawning areas in the South Fork Salmon River in Central Idaho: 2002–2007. Technical report 2009–4 http://www.cnr.uidaho.edu/uiferl/pdfreports/SFS_Tech_Report_2009-4_Final.pdf (2009).Hearsey, J. W. & Kinziger, A. P. Diversity in sympatric chinook salmon runs: Timing, relative fat content and maturation. Environ. Biol. Fishes 98, 413–423 (2015).Article 

    Google Scholar 
    Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Chang. Biol. 27, 1859–1878 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloret-Lloret, E. et al. Small pelagic fish fitness relates to local environmental conditions and trophic variables. Prog. Oceanogr. 202, 102745 (2022).Article 

    Google Scholar 
    Mesa, M. G. & Magie, C. D. Evaluation of energy expenditure in adult spring Chinook salmon migrating upstream in the Columbia River Basin: An assessment based on sequential proximate analysis. River Res. Appl. 22, 1085–1095 (2006).Article 

    Google Scholar 
    Crossin, G. T., Hinch, S. G., Farrell, A. P., Higgs, D. A. & Healey, M. C. Somatic energy of sockeye salmon Oncorhynchus nerka at the onset of upriver migration: A comparison among ocean climate regimes. Fish. Oceanogr. 13, 345–349 (2004).Article 

    Google Scholar 
    Roni, P. & Quinn, T. P. Geographic variation in size and age of North American Chinook salmon. North Am. J. Fish. Manag. 15, 325–345 (1995).Article 

    Google Scholar 
    Hendry, A. P., Berg, O. K., Quinn, T. P. & Condition, T. P. Condition dependence and adaptation-by-time: Breeding date, life history, and energy allocation within a population of salmon. Oikos 85, 499–514 (1999).Article 

    Google Scholar 
    Hanson, M. B. et al. Endangered predators and endangered prey: Seasonal diet of Southern Resident killer whales. PLoS ONE 16, e0247031 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weitkamp, L. A. Marine distributions of Chinook Salmon from the West Coast of North America determined by coded wire tag recoveries. Trans. Am. Fish. Soc. 139, 147–170 (2010).Article 

    Google Scholar 
    Shields, M. W., Lindell, J. & Woodruff, J. Declining spring usage of core habitat by endangered fish-eating killer whales reflects decreased availability of their primary prey. Pac. Conserv. Biol. 24, 189–193 (2018).Article 

    Google Scholar 
    Brown, G. S. et al. Pre-COSEWIC review of southern British Columbia Chinook Salmon (Oncorhynchus tshawytscha) conservation units Part I: Background. Can. Sci. Advis. Sec. Res. Doc. 2019/11, 67 (2019).
    Google Scholar 
    NOAA Fisheries West Coast & Washington Department of Fish and Wildlife. Southern Resident Killer Whale Priority Chinook Stocks Report. https://www.westcoast.fisheries.noaa.gov/publications/protected_species/marine_mammals/killer_whales/recovery/srkw_priority_chinook_stocks_conceptual_model_report___list_22june2018.pdf (2018).Chalifour, L. et al. Chinook salmon exhibit long-term rearing and early marine growth in the fraser river, british columbia, a large urban estuary. Can. J. Fish. Aquat. Sci. 78, 539–550 (2021).Article 
    CAS 

    Google Scholar 
    Lamperth, J. S., Quinn, T. P. & Zimmerman, M. S. Levels of stored energy but not marine foraging patterns differentiate seasonal ecotypes of wild and hatchery steelhead (Oncorhynchus mykiss) returning to the Kalama river, Washington. Can. J. Fish. Aquat. Sci. 74, 157–167 (2017).Article 
    CAS 

    Google Scholar 
    Von Biela, V. R. et al. Extreme reduction in nutritional value of a key forage fish during the pacific marine heatwave of 2014–2016. Mar. Ecol. Prog. Ser. 613, 171–182 (2019).Article 
    ADS 

    Google Scholar 
    Healey, M. C. Life history of Chinook Salmon (Oncorhynchus tshawytscha). In Pacific Salmon Life Histories (eds Groot, C. & Margolis, L.) 313–393 (University of British Columbia Press, 1991).
    Google Scholar 
    Freshwater, C. et al. An integrated model of seasonal changes in stock composition and abundance with an application to Chinook salmon. PeerJ 9, 1–27 (2021).Article 

    Google Scholar 
    Couture, F., Oldford, G., Christensen, V., Barrett-lennard, L. & Walters, C. Requirements and availability of prey for northeastern pacific southern resident killer whales. PLoS ONE 17, e0270523 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DFO. Government of Canada Takes Action to Address Fraser River Chinook Decline (DFO, 2019).
    Google Scholar 
    Brown, R. F. & Musgrave, M. M. Preliminary Catalogue of Salmon Steams and Escapements of Misson-Harrison Sub District. Fisheries and Marine Service Data Report No. 133 (1979).Manzon, C. I. & Marshall, D. E. Catalogue of salmon streams and spawning escapements of Cariboo subdistrict. Can. Data Rep. Fish. Aquat. Sci. 211, 51 (1980).
    Google Scholar 
    Marshall, D. E. & Manzon, C. I. Catalogue of Salmon Streams and Spawning Escapements of the Prince George Subdistrict (Department of Fisheries and Oceans Fisheries and Marine Services Data Report N0o. 79, 1980).
    Google Scholar 
    Olmsted, W., Whelen, M. & Stewart, R. 1980 Investigations of fall-spawning chinook salmon (Oncorhynchus tshawytscha), Quesnel, blackwater (west road) and cottonwood river drainages, B.C. 34, 131–134 (1981).Brown, R. F., Musgrave, M. M. & Marshall, D. E. Catalogue of salmon streams and spawning escapements for Kamloops sub-district. Fish. Mar. Serv. Data Rep. 151, 226 (1979).
    Google Scholar 
    DFO. Information Document to Assist Development of a Fraser Chinook Management Plan 56 (DFO, 2006).
    Google Scholar 
    Kosakoski, G. T. & Hamilton, R. E. Water Requirements for the Fisheries Resource of the Nicola River, B.C. Can. Manuscr. Rep. Fish. Aquat. Sci. 140 (1982). More

  • in

    Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly

    Insect rearingWT B. dorsalis were collected from Haikou, Hainan province, China, in 2008. They were maintained at the Key Laboratory of Entomology and Pest Control Engineering in Chongqing at 27 ± 1 °C, 70 ± 5% relative humidity, with a 14-h photoperiod. Adult flies were reared on an artificial diet containing honey, sugar, yeast powder, and vitamin C. Newly hatched larvae were transferred to an artificial diet containing corn and wheat germ flour, yeast powder, agar, sugar, sorbic acid, linoleic acid, and filter paper.Behavioral assaysDouble trap lure assays were set up to compare the olfactory preferences of gravid and virgin females in a 20 × 20 × 20 cm transparent cage with evenly distributed holes (diameter = 1.5 mm) on the side walls. The traps were refitted from inverted 50-mL centrifuge tubes and were placed along the diagonal of the cage. The top of each trap was pierced with a 1-mL pipette tip, which was shortened to ensure flies could access the trap from the pipette. For the olfactory preference assay with mango, one trap was loaded with 60 mg mango flesh and the other trap with 20 μL MO in the cap of a 200-μL PCR tube. For the olfactory preference assay with 1-octen-3-ol (≥98%, sigma, USA), one trap was loaded with 20 μL 10% (v/v) 1-octen-3-ol diluted in MO, and the other with 20 μL MO. A cotton ball soaked in water was placed at the center of the cage to provide water for the flies. Groups of 30 female flies were introduced into the cage for each experiment, and each experiment was repeated to provide eight biological replicates. All experiments commenced at 10 am to ensure circadian consistency. The number of flies in each trap was counted every 2 h for 24 h. We compared the preferences of 3-day-old immature females, 15-day-old virgin females, and 15-day-old mated females. The olfactory preference index was calculated using the following formula41: (number of flies in mango/odorant trap – number of flies in control trap)/total number of flies.Oviposition behavior was monitored in a 10 × 10 × 10 cm transparent cage with evenly distributed holes on the side walls as above. A 9-cm Petri dish filled with 1% agar was served as an oviposition substrate, and the mango flesh, 10% (v/v) 1-octen-3-ol or MO were added at opposite edges of the dish. We tested the preference of flies for different substrates: (1) ~60 mg of mango flesh on one edge and 20 μL of MO on the other; (2) 20 μL of 1-octen-3-ol on one edge and 20 μL of MO on the other; (3) ~60 mg mango flesh on one edge and 20 μL of 1-octen-3-ol on the other; and (4) ~60 mg mango flesh plus 20 μL 1-octen-3-ol on one side and ~60 mg of mango flesh plus 20 μL MO on the other. The agar disc was covered in a pierced plastic wrap to mimic fruit skin, encouraging flies extend their ovipositor into the plastic wrap to lay eggs. The agar disc was placed at the center of the cage, and we introduced eight 15-day-old gravid females. Two Sony FDR-AX40 cameras recorded the behavior of the flies for 24 h, one fixed above the cage to record the tracks and the other placed in front of the cage to record the oviposition behavior. Based on the results from double traps luring assays, a 3 h duration (6–9 h) of the videos was selected to analyze the tracks and spent time of all flies in observed area (the surface of Petri dish). The videos were analyzed using EthoVision XT v16 (Noldus Information Technology) to determine the total time of all flies spent on each side in seconds and the total distance of movement in centimeters, and the tracks were visualized in the form of heat maps17. The number of eggs laid by the eight flies in each experiment was counted under a CNOPTEC stereomicroscope, and each experimental group comprised 7–16 replicates.Annotation of B. dorsalis OR genesD. melanogaster amino acid sequences downloaded from the National Center for Biotechnology Information (https://www.ncbi.nlm.nih.gov/) were used as BLASTP queries against the B. dorsalis amino acid database with an identity cut-off of 30%. The candidate OR genes were compared with deep transcriptome data from B. dorsalis antennae42, maxillary palps and proboscis, and other tissues.Cloning of candidate B. dorsalis OR genesHigh-fidelity PrimerSTAR Max DNA polymerase (TaKaRa, Dalian, China) was used to amplify the full open reading frame of BdorOR genes by nested PCR using primers (Supplementary Table 2) designed according to B. dorsalis genome data. Each 25-μL reaction comprised 12.5 μL 2 × PrimerSTAR Max Premix (TaKaRa), 10.5 μL ultrapure water, 1 μL of each primer (10 μM), and 1 μL of the cDNA template. An initial denaturation step at 98 °C for 2 min was followed by 35 cycles of 10 s at 98 °C, 15 s at 55 °C and 90 s at 72 °C, and a final extension step of 10 min at 72 °C. Purified PCR products were transferred to the vector pGEM-T Easy (Promega, Madison, WI) for sequencing (BGI, Beijing, China).Transcriptional profilingTotal RNA was extracted from (i) male and female antennae, maxillary palps, head cuticle (without antenna, maxillary palps, and proboscis), proboscis, legs, wings and ovipositors, and (ii) from the heads of 15-day-old virgin and mated females using TRIzol reagent (Invitrogen, Carlsbad, CA). Genomic DNA was eliminated with RNase-free DNase I (Promega) and first-strand cDNA was synthesized from 1 µg total RNA using the PrimeScript RT reagent kit (TaKaRa). Standard curves were used to evaluate primer efficiency (Supplementary Table 3) with fivefold serial dilutions of cDNA. Quantitative real-time PCR (qRT-PCR) was carried out using a CFX Connect Real-Time System (Bio-Rad, Hercules, CA) in a total reaction volume of 10 µL containing 5 μL SYBR Supermix (Novoprotein, Shanghai, China), 3.9 μL nuclease-free water, 0.5 μL cDNA (~200 ng/μL) and 0.3 μL of the forward and reverse primers (10 μM). We used α-tubulin (GenBank: GU269902) and ribosomal protein S3 (GenBank: XM_011212815) as internal reference genes. Four biological replicates were prepared for each experiment. Relative expression levels were determined using the 2−∆∆Ct method43, and data were analyzed using SPSS v20.0 (IBM).Two-electrode voltage clamp electrophysiological recordingsVerified PCR products representing candidate B. dorsalis OR genes and BdorOrco were transferred to vector pT7Ts for expression in oocytes. The plasmids were linearized for the synthesis of cRNAs using the mMESSAGE mMACHINE T7 Kit (Invitrogen, Lithuania). The purified cRNA was diluted to 2 µg/µL and ~60 ng cRNA was injected into X. laevis oocytes. The oocytes were pre-treated with 1.5 mg/mL collagenase I (GIBCO, Carlsbad, CA) in washing buffer (96 mM NaCl, 5 mM MgCl2, 2 mM KCl, 5 mM HEPES, pH 7.6) for 30–40 min at room temperature before injection. After incubation for 2 days at 18 °C in Ringer’s solution (96 mM NaCl, 5 mM MgCl2, 2 mM KCl, 5 mM HEPES, 0.8 mM CaCl2), the oocytes were exposed to different concentrations of 1-octen-3-ol diluted in Ringer’s solution from a 1 M stock in DMSO. Odorant-induced whole-cell inward currents were recorded from injected oocytes using a two-electrode voltage clamp and an OC-725C amplifier (Warner Instruments, Hamden, CT) at a holding potential of –80 mV. The signal was processed using a low-pass filter at 50 Hz and digitized at 1 kHz. Oocytes injected with nuclease-free water served as a negative control. Data were acquired using a Digidata 1550 A device (Warner Instruments, Hamden, CT) and analyzed using pCLAMP10.5 software (Axon Instruments Inc., Union City, CA).Calcium imaging assayVerified PCR products representing candidate B. dorsalis OR genes and BdorOrco were transferred to vector pcDNA3.1(+) along with an mCherry tag that confers red fluorescence to confirm transfection. High-quality plasmid DNA was prepared using the Qiagen plasmid MIDIprep kit (QIAgen, Düsseldorf, Germany). The B. dorsalis OR and BdorOrco plasmids were co-transfected into HEK 293 cell using TransIT-LT1 transfection reagent (Mirus Bio LLC, Japan) in 96-well plates. The fluorescent dye Fluo-4 AM (Invitrogen) was prepared as a 1 mM stock in DMSO and diluted to 2.5 μM in Hanks’ balanced salt solution (HBSS, Invitrogen, Lithuania) to serve as a calcium indicator. The cell culture medium was removed 24–30 h after transfection and cells were rinsed three times with HBSS before adding Fluo 4-AM and incubating the cells for 1 h in the dark. After three rinses in HBSS, 99 μL of fresh HBSS was added to each well before testing in the dark with 1 μL of diluted 1-octen-3-ol. Fluorescent images were acquired on a laser scanning confocal microscope (Zeiss, Germany). Fluo 4-AM was excited at 488 nm and mCherry at 555 nm. The relative change in fluorescence (ΔF/F0) was used to represent the change in Ca2+, where F0 is the baseline fluorescence and ΔF is the difference between the peak fluorescence induced by 1-octen-3-ol stimulation and the baseline. The healthy and successfully transfected cells (red when excited at 555 nm) were used for analysis. The final concentration of 10−4 M was initially used to screen corresponding ORs, and then to determine the response of screened ORs to stimulation with different concentrations of 1-octen-3-ol. Each concentration of 1-octen-3-ol was tested in triplicate. Concentration–response curves were prepared using GraphPad Prism v8.0 (GraphPad Software).Genome editingThe exon sequences of BdorOR7a-6 and BdorOR13a were predicted using the high-quality B. dorsalis genome assembly. Each gRNA sequence was 20 nucleotides in length plus NGG as the protospacer adjacent motif (PAM). The potential for off-target mutations was evaluated by using CasOT to screen the B. dorsalis genome sequence. Each gRNA was synthesized using the GeneArt Precision gRNA Synthesis Kit (Invitrogen) and purified using the GeneArt gRNA Clean-up Kit (Invitrogen). Embryos were microinjected as previously described20. Purified gRNA and Cas9 protein from the GeneArt Platinum Cas9 Nuclease Kit (Invitrogen) were mixed and diluted to final concentrations of 600 and 500 ng/µL, respectively. Fresh eggs (laid within 20 min) were collected and exposed to 1% sodium hypochlorite for 90 s to soften the chorion. The eggs were fixed on glass slides and injected with the mix of gRNA and Cas9 protein at the posterior pole using an IM-300 device (Narishige, Tokyo, Japan) and needles prepared using a Model P-97 micropipette puller (Sutter Instrument Co, Novato, CA). Eggs were injected with nuclease-free water as a negative control. Injection was completed within 2 h. The injected embryos were cultured in a 27 °C incubator and mortality was recorded during subsequent development.G0 mutants were screened as previously described20. G0 adult survivors were individually backcrossed to WT flies (single pair) to collect G1 offspring. Genomic DNA was extracted from G0 individuals after oviposition using the DNeasy Blood & Tissue Kit (Qiagen). The region surrounding each gRNA target was amplified by PCR using the extracted DNA as a template, the specific primers listed in Supplementary Table 2, and 2 × Taq PCR MasterMix (Biomed, Beijing, China). PCR products were analyzed by capillary electrophoresis using the QIAxcel DNA High Resolution Kit (Qiagen). PCR products differing from the WT alleles were purified and transferred to the vector pGEM-T Easy for sequencing. To confirm the mutation was inherited, genomic DNA was also extracted from one mesothoracic leg of G1 flies using InstaGene Matrix (Bio-Rad, Hercules, CA) and was analyzed as above. To avoid potential off-target mutations, heterozygous G1 mutants were backcrossed to WT flies more than 10 generations before self-crossing to generate homozygous mutant flies.Electroantennogram (EAG) recordingThe antennal responses of 15-day-old B. dorsalis adults to 1-octen-3-ol were determined by EAG recording (Syntech, the Netherlands) as previously reported20. Briefly, antennae were fixed to two electrodes using Spectra 360 electrode gel (Parker, Fairfield, NJ, USA). The signal response was amplified using an IDAC4 device and collected using EAG-2000 software (Syntech). Before each experiment, 1-octen-3-ol and other three volatiles (ethyl tiglate, ethyl acetate, ethyl butyrate) were diluted to 10%, 1% and 0.1% (v/v) with MO to serve as the electrophysiological stimulus, and MO was used as a negative control. A constant air flow (100 mL/min) was produced using a controller (Syntech) to stimulate the antenna. We then placed 10 µL of each dilution or MO onto a piece of filter paper (5 × 1 cm), and the negative control (MO) was applied before and after the diluted odorants to calibrate the response signal. The EAG responses at each concentration were recorded for 15–20 antennae, and each concentration was recorded twice. Each test lasted 1 s, and the interval between tests was 30 s. EAG response data from WT and mutant flies for the diluted odorants were analyzed using Student’s t test with SPSS v20.0.Molecular docking and site-directed mutagenesisThe three dimensional-structures of BdorOR7a-6 and BdorOR13a were modeled using AlphaFold 2.044. The quality and rationality of each protein structure was evaluated online using a PROCHECK Ramachandran plot in SAVES 6.0 (https://saves.mbi.ucla.edu/). AutoDock Vina 1.1.2 was used for docking analysis, and the receptor protein structure and ligand molecular structure were pre-treated using AutoDock 4.2.6. The docking parameters were set according to the protein structure and active sites, and the optimal docking model was selected based on affinity (kcal/mol). Docking models were imported into Pymol and Discovery Studio 2016 Client for analysis and image processing. Based on the molecular docking data, three residues (Asn86 in OR7a-6, Asp320, and Lys323 in OR13a) were replaced with alanine by site-directed mutagenesis45 using the primers listed in Supplementary Table 2. Calcium imaging assays and molecular docking of mutated proteins were then carried out as described above.Statistics reproducibilityAll of the olfactory preference assays, oviposition bioassays, expression profiles analysis, EAG recording assays were analyzed using Student’s t-test (*p  More