A natural constant predicts survival to maximum age
1.Bailey, D. L., Humm, J. L., Todd-Pokropek, A. & van Aswegen, A. Nuclear Medicine Physics: A Handbook for Teachers and Students. International Atomic Energy Agency (International Atomic Energy Agency, 2014).2.McGraw-Hill. McGraw-Hill encyclopedia of science & technology. (McGraw-Hill, 2007).3.Medawar, P. B. An unsolved problem of biology. in The uniqueness of the individual (ed. Medawar, P. B.) 44–70 (Basic Books, Inc., 1952).4.Leike, A. Demonstration of the exponential decay law using beer froth. Eur. J. Phys. 23, 21–26 (2002).Article
Google Scholar
5.Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).Article
Google Scholar
6.Vetter, E. F. Estimation of natural mortality in fish stocks: a review. Fish. Bull. 86, 25–43 (1988).
Google Scholar
7.Gosselin, J., Zedrosser, A., Swenson, J. E. & Pelletier, F. The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proc. R. Soc. B Biol. Sci. 282, 1–9 (2015).8.Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban . Urban Green. 2, 139–147 (2004).Article
Google Scholar
9.Hoenig, J. M. et al. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate. ICES J. Mar. Sci. 73, 2453–2467 (2016).Article
Google Scholar
10.Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance. (Pearson Education Limited, 2014).11.Myers, R. A., Bowen, K. G. & Barrowman, N. J. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56, 2404–2419 (1999).
Google Scholar
12.Simpfendorfer, C. A., Bonfil, R. & Latour, R. J. Mortality estimation. in. FAO Fish. Tech. Pap. 474, 127 (2005).
Google Scholar
13.Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).Article
Google Scholar
14.IUCN. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Geographical 14, 1–113 (2019).15.Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. B Biol. Sci. 360, 13–20 (2005).Article
Google Scholar
16.Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. U. S. A. 116, 9658–9664 (2019).CAS
PubMed
PubMed Central
Article
Google Scholar
17.Gavrilov, L. & Gavrilova, N. The biology of life span: a quantitative approach. (Harwood Academic Publishers, 1991).18.Sekharan, K. Estimates of the stocks of oil sardine and mackerel in the present fishing grounds off the West coast of India. Indian J. Fish. 21, 177–182 (1974).
Google Scholar
19.Alagaraja, K. Simple methods for estimation of parameters for assessing exploited fish stocks. Indian J. Fish. 31, 177–208 (1984).
Google Scholar
20.Cadima, E. L. Fish stock assessment manual. FAO Fish. Tech. Pap. 393, 161 (2003).
Google Scholar
21.Hewitt, D. A. & Hoenig, J. M. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 103, 433–437 (2005).
Google Scholar
22.Dureuil, M. et al. Unified natural mortality estimation for teleosts and elasmobranchs. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13704 (accepted).23.Litzgus, J. D. Sex differences in longevity in the spotted turtle (Clemmys guttata). Copeia 2, 281–288 (2006).Article
Google Scholar
24.Calder, W. A. III Body size, mortality, and longevity. J. Theor. Biol. 102, 135–144 (1983).PubMed
Article
PubMed Central
Google Scholar
25.Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872 (1972).Article
Google Scholar
26.Holt, S. J. A note on the relation between the mortality rate and the duration of life in an exploited fish population. Int. Comm. Northwest Atl. Fish. Res. Bull. 2, 73–75 (1965).
Google Scholar
27.Hoenig, J. M. Should natural mortality estimators based on maximum age also consider sample size? Trans. Am. Fish. Soc. 146, 136–146 (2017).Article
Google Scholar
28.Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).Article
Google Scholar
29.Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).CAS
PubMed
Article
PubMed Central
Google Scholar
30.Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence: late survival sacrificed for reproduction. Philos. Trans. R. Soc. Lond., B 332, 15–24 (1991).CAS
Article
Google Scholar
32.Froese, R. & Pauly, D. FishBase. World Wide Web Electronic Publication (2019). Available at: www.fishbase.org. (accessed: 6th February 2018)33.I. C. E. S. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel). in Report of the ICES Advisory Committee, 2019. ICES Advice 2019, her.27.3a47d 11 (2019).34.Caswell, H. & Shyu, E. Senescence, selection gradients and mortality. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 56–82 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.00435.Promislow, D. E. L. Senescence in natural populations of mammals: a comparative study. Evolution 45, 1869–1887 (1991).PubMed
Article
PubMed Central
Google Scholar
36.Sibly, R. M., Collett, D., Promislow, D. E. L., Peacock, D. J. & Harvey, P. H. Mortality rates of mammals. J. Zool. 243, 1–12 (1997).Article
Google Scholar
37.Blumstein, D. T. & Møller, A. P. Is sociality associated with high longevity in North American birds? Biol. Lett. 4, 146–148 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
38.Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed
Article
PubMed Central
Google Scholar
39.Salguero-Gómez, R. & Jones, O. R.. Life history trade-offs modulate the speed of senescence. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 403–421 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.02040.Hoekstra, L. A., Schwartz, T. S., Sparkman, A. M., Miller, D. A. W. & Bronikowski, A. M. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. 34, 38–54 (2020).PubMed
Article
PubMed Central
Google Scholar
41.Bonduriansky, R. & Brassil, C. E. Rapid and costly ageing in wild male flies. Nature 420, 377 (2002).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).Article
Google Scholar
43.Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).Article
Google Scholar
44.Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
45.Ruby, J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. Elife 7, 1–18 (2018).Article
Google Scholar
46.Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958–960 (1997).CAS
Article
Google Scholar
47.Cooke, G. M., Tonkins, B. M. & Mather, J. A. Care and Enrichment for Captive Cephalopods. in The Welfare of Invertebrate Animals (eds. Carere, C. & Mather, J.). 179–208 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-13947-6_848.Baudisch, A. et al. The pace and shape of senescence in angiosperms. J. Ecol. 101, 596–606 (2013).Article
Google Scholar
49.Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS One 13, 1–18 (2018).Article
CAS
Google Scholar
50.Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825).
Google Scholar
51.Makeham, W. M. On the law of mortality and the construction of annuity tables. Assur. Mag. J. Inst. Actuar. 8, 301–310 (1860).Article
Google Scholar
52.Finch, C. E. & Pike, M. C. Maximum life span predictions from the Gompertz mortality model. J. Gerontol. Biol. Sci. 51A, 183–194 (1996).Article
Google Scholar
53.Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K. & Ghalambor, D. E. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431, 1095–1099 (2004).CAS
PubMed
Article
PubMed Central
Google Scholar
54.Kirkwood, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).Article
Google Scholar
55.Gavrilov, L. A. & Gavrilova, N. S. New trend in old-age mortality: gompertzialization of mortality trajectory. Gerontology 65, 451–457 (2019).PubMed
PubMed Central
Article
Google Scholar
56.Ohsumi, S. Interspecies relationships among some biological parameters in cetaceans and estimation of the natural mortality coefficient of the Southern Hemisphere minke whale. Rep. Int. Whal. Comm. 29, 397–406 (1979).
Google Scholar
57.Mizroch, S. A. On the relationship between mortality rate and length in baleen whales. Rep. Int. Whal. Comm. 35, 505–510 (1985).
Google Scholar More