More stories

  • in

    Whole-genome resequencing of large yellow croaker (Larimichthys crocea) reveals the population structure and signatures of environmental adaptation

    Whole genome resequencing of large yellow croaker populationsWe collected a total of 198 large yellow croaker individuals (Table S1). Of these, 50 individuals were captured in the Zhoushan Sea (the red dot in Fig. 1a) and 48 individuals had been farmed in Zhoushan (the orange dot in Fig. 1a). A further 38 individuals were captured in the Ningde Sea (the blue dot in Fig. 1a). and 62 individuals had been farmed in Ningde (the green dot in Fig. 1a). We performed whole-genome resequencing of these 198 large yellow croaker individuals. We obtained 1.42 Penta base-pairs of genomic DNA, representing about 11 × sequencing depth of the genome per individual. Raw reads were trimmed and aligned to the genome sequence. After variant calling and filtering, a total of 6,302,244 single nucleotide polymorphisms (SNPs) were identified. Using this SNP information, we performed the following population genomic analyses.Figure 1Population structure and relationship of large yellow croaker. (a) Geographic map indicating the sample origins of the large yellow croaker in this study. The gross appearance of a large yellow croaker individual is shown in the picture. The sampling area is highlighted by the red broken line. The dots of different color stand for different population. The number of individuals is given in parentheses after the population name. The geographical maps were generated by using R packages of maps v3.3.0 (https://cran.r-project.org/web/packages/maps) and mapdata v2.3.0 (https://cran.r-project.org/web/packages/mapdata). (b) PCA plot (PC1 and PC2) showing the genetic structure of the 198 large yellow croaker individuals. The degrees of explained variance is given in parentheses. Colors reflect the geographic regions in (a). (c) UMAP of the 198 large yellow croaker individuals. Colors reflect the geographic regions in (a).Full size imageGenetic population structure of the large yellow croaker individualsIn order to examine the genetic population structure of the large yellow croaker individuals, we performed principal component analysis (PCA). In the first component of the PCA, the Zhoushan farmed population separated from the other three populations (Fig. 1b). In the second component of the PCA, the Zhoushan sea-captured population formed a cluster. Also, the Ningde farmed population formed a cluster. The Ningde sea-captured population had a wider distribution than the other populations. Then, we performed uniform manifold approximation and projection (UMAP), a non-linear dimensionality method (Fig. 1c). The result of UMAP is similar to the result of PCA. UMAP showed that the Zhoushan farmed population formed a distinct cluster, and the Zhoushan sea-captured population and Ningde farmed population formed more scattered clusters. UMAP also showed that the Ningde sea-captured population had a wider distribution than the other populations.The evolutionary history of the individuals was inferred with the neighbour-joining (NJ) tree. The NJ tree contains two large groups (Fig. 2a). The first group was formed by the individuals of the Zhoushan farmed population plus several individuals of the Zhoushan sea-captured population. The other group was formed by the individuals in the other three groups. In this group, individuals of the Zhoushan sea-captured formed a distinct cluster from the individuals of the Ningde sea-captured population and those of the Ningde farmed population. The individuals of the Ningde sea-captured population and those of the Ningde farmed population together formed several small groups.Figure 2Neighbor-joining tree and admixture analysis using whole-genome SNP data. (a) Neighbor-joining tree of the 198 large yellow croaker individuals. The color scheme follows Fig. 1. The scale bar represents pairwise distances between different individuals. (b) Cross-validation error in the admixture analysis. The x-axis represents K values and the y-axis represents the corresponding cross-validation error. The cross-validation error was lowest at K = 3. (c) Admixture plot (K = 2, 3, 4) for the 198 large yellow croaker individuals. Each individual is shown as vertical bar divided into K colors. The color scheme follows Fig. 1. Individuals are arranged by population.Full size imageWe performed unsupervised clustering analysis with ADMIXTURE to evaluate the relatedness of the populations. Cross-validation error was lowest at K = 3, suggesting that the population genetic structure of our samples is best modelled by considering the admixture of the three genetic components (Fig. 2b). The individuals of the Zhoushan farmed population are composed of relatively uniform genetic components (Fig. 2c). The individuals of the Ningde farmed population are composed of genetic components that are also relatively uniform but different from those of the Zhoushan farmed population. Both the individuals of the Zhoushan sea-captured population and those of the Ningde sea-captured population were a mixture of the three genetic components.Trends of effective population sizeWe evaluated the extents of linkage disequilibrium for SNP pairs. The average r2 values of linkage disequilibrium decreased by increasing the marker distance between pairwise SNPs, with a rapidly declining trend observed over the first 500 kb (Fig. 3a). Using this information, we estimated the change of the effective population size over the past 1000 generations (Fig. 3b). All the four populations showed decreasing trends of effective population sizes, suggesting that their genetic diversities remain at a low level.Figure 3Trends of effective population sizes. (a) LD decay (r2) from 0 to 4000 kb for four populations. The x-axis represents marker distances between pairwise SNPs. The y-axis represents r2 values of linkage disequilibrium. (b) Effective population sizes of four populations over the past 1000 generations. All of the four populations showed decreasing trends.Full size imageDetection of putative genes associated with the adaptation to different sea environments of the Zhoushan Sea and Ningde SeaTo identify the genetic markers to differentiate individuals of the Zhoushan sea-captured and Ningde sea-captured, we calculated fixation index (Fst) values for each SNP. We identified total 819 SNPs as genetic markers (Table S2). To identify the genes associated with adaptation to the different living environments between these two regions, we calculated average Fst values in 40 kb windows with 10 kb steps (Fig. 4). We identified 47 regions with significant Fst values. The total size of these regions is 3.6 Mb. The sizes of the significant regions were between 40 kb to 0.31 Mb. These regions contained 88 genes (Table S3). We categorised the functions of these genes based on their gene ontology (GO) term annotations (Table S4). These genes include those involved in muscle structure development (GO:0061061) such as pdlim3a (pdz and lim domain 3). This gene is located in the region from 26,673,301 to 26,662,947 bp on chromosome 10, and is reported to be highly expressed in muscle and involved in the crosslinking of actin filaments15. We identified three upstream variants of this gene which are located at 26,675,034 bp, 26,675,134 bp, and 26,678,221 bp on chromosome 10 (Fig. 4). We also identified one downstream variant located at 26,660,973 bp on chromosome 10. Besides muscle structure development (GO:0061061), there are also some enriched GO terms such as regulation of response to external stimulus (GO:0032101) and cell–cell signalling (GO:0007267).Figure 4Genomic regions associated with regional differentiation of large yellow croaker between Zhoushan sea and Ningde sea. Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Zhoushan sea-captured population and Ningde sea-captured population. The x-axis represents chromosomal positions and the y-axis represents the average Fst values.Full size imageDetection of putative genes under selective sweep between the Zhoushan sea-captured population and farmed populationTo identify the genes under selective sweep in the domestication process, we analysed single Fst values for single SNPs and average Fst values in 40 kb windows with 10 kb steps separately both in the Zhoushan and Ningde regions. Between the Zhoushan sea-captured population and farmed population, we identified 23,862 SNPs with significant Fst values by single SNP analysis (Table S5). In the sliding window analysis, the number of significant regions was 317, and the total size of significant regions was 59 Mb (Fig. 5a). The sizes of significant regions were between 40 kb to 8.1 Mb. These regions contain 1709 genes (Table S6). We identified the strong peak of Fst signal on chromosome 11, which contains 423 genes such as hsp90ab1 (heat shock protein 90 alpha family class B member 1). GO analysis showed that genes involved in the regulation of fatty acid oxidation (GO:0031998), the steroid hormone mediated signalling pathway (GO:0043401), fatty acid metabolic processes (GO:0006631), membrane lipid metabolic processes (GO:0006643), regulation of fatty acid metabolic processes (GO:0019217), and long-chain fatty acid transport (GO:0015909). These GO terms include plenty of lipid metabolism-related genes such as ppara (peroxisome proliferator activated receptor alpha), pnpla2 (Patatin like phospholipase domain containing 2). It is worth mentioning that there were plenty of genes related to carbohydrate derivative metabolic processes (GO:1901135) with differences between the Zhoushan sea-captured population and farmed populations (Table S7). Additionally, a number of the growth relative genes include the developmental growth involved in morphogenesis (GO:0060560). Genes were found related to embryo development ending in birth or egg hatching (GO:0009792). Additionally, 47 genes related immune system development (GO:0002520) were obtained, such as taf3 (tata-box binding protein associated factor 3), irf7 (interferon regulatory factor 7) and rps7 (ribosomal protein s7) (Table S7).Figure 5Genomic regions associated with domestication of large yellow croaker between Zhoushan sea or Ningde sea. (a) Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Zhoushan sea-captured and Zhoushan farmed. (b) Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Ningde sea-captured and Ningde farmed. The x-axis represents chromosomal positions and the y-axis represents the average Fst values.Full size imageMoreover, we found that anxa2a (annexin a2a; from 16,718,332 bp to 16,713,531 bp on chromosome 21) have a splice donor site variant at 16,715,408 bp on chromosome 21. This mutation is located at the fifth intron of anxa2a, and is predicted to lead to a premature truncation. The anxa2a gene encodes a phospholipid-binding protein, and is involved in variety of intracellular processes including endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly16. This batch of samples came from breeding selection for a freeze-resistant population. We identified nine downstream mutations (16,713,395 bp, 16,713,442 bp, 16,713,443 bp, 16,713,593 bp, 16,715,408 bp, 16,715,741 bp, 16,716,027 bp, 16,716,216 bp and 16,717,363 bp on chromosome 21) of ice2 (interactor of little elongation complex ELL subunit 2) gene, which is located in the region from 16,727,361 to 16,718,192 bp on chromosome 21. This gene is involved in cold acclimation and determines freezing tolerance17.Detection of putative genes under selective sweep between the Ningde sea-captured and farmed populationFor the Ningde farmed population, we identified 660 SNPs with significant Fst values (Table S8). In the sliding window analysis, the number of significant regions was 42, and the total size of significant regions was 7.8 Mb (Fig. 5b). The sizes of significant regions were between 40 kb to 2.0 Mb. These regions contain 238 genes (Table S9). GO analysis showed identified genes related to the reproduction process such as female gonad development (GO:0008585), i.e. esr1 (estrogen receptor 1), foxo3 (forkhead box O3); the development of primary female sexual characteristics (GO:0046545) and embryonic appendage morphogenesis (GO:0035113), such as mbnl1 (muscle blind like splicing regulator 1); as well as embryonic limb morphogenesis (GO:0030326) and the response to steroid hormones (GO:0048545). Additionally, genes related to digestive tract development (GO:0048565) were enriched, such as hnf1b (hnf1 homeobox b) (Table S10). As per the results of SNPs with the highest Fst analysis between the Ningde sea-captured and farmed population, we identified a downstream variant of esr1, which is located at 9,103,629 bp on chromosome 11. This gene is located in the region from 9,129,853 and 9,108,464 bp on chromosome 11 and encodes estrogen receptor 1, which plays a critical role in responding to steroid hormones (Fig. 5b). Genes involved in visual system development (GO:0150063) such as prox1 (prospero-related homeobox1), nr2e1 (nuclear receptor subfamily 2 group e member 1) and znf513a (zinc finger protein 513a) were also enriched. The znf513a gene is located in the region from 11,664,515 to 11,657,703 bp on chromosome 11 and has a downstream variant located at 11,652,743 bp on this chromosome (Fig. 5b). More

  • in

    Evidence for the importance of land use, site characteristics and vegetation composition for rooting in European Alps

    Study sitesTo obtain a cross-section of land-use types through the Eastern Alps (Fig. 2), rooting samples were taken from Tyrol (Austria) and from South Tyrol and northern Trentino (both in Italy), which include two climatic regions—the central European climatic region in the northern part and the sub-Mediterranean climatic region in the southern part of the research area47. The average annual precipitation at the 13 study sites ranges from 400 to 2000 mm, with maximum rainfall observed from June to July47. Mean annual temperature ranges from 0 °C to 9 °C. Additional climatic variability was added by sampling at elevations from 650 to 2680 m a.s.l. The bedrock in the research area is composed of calcareous sedimentary rock in the northern and southern regions and of crystalline rock in the main chain of the Alps, sometimes with superimposed calcareous isles: Stubai Valley (North Tyrol) is geologically dominated by silicate with transitions to limestone; Ötz Valley, Ziller Valley and Igls/Patsch (all North Tyrol), Passeier Valley, Mühlbach, Matsch, Ritten and Jenesien (South Tyrol) are geologically dominated by silicate; and Leutasch (North Tyrol), St. Vigil and Toblach (both South Tyrol) and Monte Bondone (near Trento) are geologically dominated by limestone. The pH of the topsoil (0–10 cm), which ranges from 3.7 to 7.832, is determined by bedrock and land use48. For more details on the study region, see Supplementary Appendix S1.Figure 2Site, sample number and analyzed land-use types in the Eastern Alps. Study sites: B = Monte Bondone; I = Igls/Patsch; J = Jenesien; L = Leutasch; M = Mühlbach; M2 = Matsch; O = Ötz Valley; P = Passeier Valley; R = Ritten; S = Stubai Valley; T = Toblach; V = St. Vigil; and Z = Ziller Valley. The map was created using ArcGIS 10.2.2 (ESRI Inc.) and edited in Microsoft PowerPoint 365 MSO (Map data: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).Full size imageTo be representative, the most widespread vegetation communities in the 13 study sites for all land-use types (arable land, intensively used hay meadow, lightly managed hay meadow, pasture, agriculturally unused grasslands, and forest) were analyzed (Supplementary Appendix S2). Overall, a total of 171 soil samples were taken, with 15 samples from arable land, 56 samples from intensively used hay meadows, 15 samples from extensively managed hay meadows, 16 samples from lightly stocked pastures, 32 samples from agriculturally unused grasslands, and 37 samples from forests. Meadows that are mown and fertilized with slurry and/or manure at least twice a year were defined as intensively used hay meadows. An extensively managed hay meadow was not fertilized and mown only once a year. Pastures were extensively grazed by cattle and/or sheep (annual average stocking intensity: 0.15–0.4 livestock units (LU) ha−1 year−1) but not mown. As arable land, we defined different crops typical for the region, especially maize and bread cereal crops, as well as vegetables and potatoes. Agriculturally unused grasslands included all grassland areas that were abandoned for at least five years or have never been used for agriculture, such as alpine grasslands. Finally, all permanent deciduous, coniferous or mixed forests were combined into the forest land-use type (thus, no energy forests).Data collection and analysisVegetation and site variables depending on land-use types were used to explain the rooting parameters. As Fig. 1 shows, dependencies between explanatory variables and rooting parameters are not always strictly unidirectional. For example, vegetation composition influences rooting; however, rooting patterns can also influence vegetation composition. We considered as many different dependencies as possible in the applied methods and interpreted discovered statistically significant relationships as associations rather than causal (unidirectional) impacts.Rooting parameters: root mass, root length and rooting depthOverall, 171 rooting samples (Appendices S1 and S2) were taken between 1994 and 2017 in the field with core samplers of 6.8–7.7 cm diameter and a maximum core depth of 70 cm. Before coring, the vegetation was characterized with the standard phytosociological method of Braun-Blanquet49 to directly connect rooting and vegetation characteristics. The size of the vegetation survey areas was determined by the minimal area of a plant community as the area with 90% or more of all plant species within this ecosystem. The survey area ranged between 1 m × 1 m in homogenous meadows and 10 m × 10 m in forests. Even though we chose the rooting survey areas to be homogeneous regarding vegetation composition, it was possible that the rooting measured in the soil cores was affected by species other than those located above the core area due to large heterogeneity within plant communities50. Nevertheless, this error should be negligible.As the data for this analysis were derived from a collection of rooting analyses from different research projects in the past 20 years using the same methodological approach, the number of samples per land-use type and per site was unbalanced (Supplementary Appendix S2). For example, some land-use types were represented only at one site (e.g., all agriculturally unused areas were at site I), while others were represented at three or even more than 10 sites. In addition, the number of samples within each land-use type was also unbalanced: 15 samples for arable land, 32 for agriculturally unused grasslands or 56 samples for intensively used hay meadows. The original data collection included the most common and important plant communities in the project areas except for arable land. Thus, the rooting of the most common crops (maize: n = 3; barley: 3; oat: 3; wheat: 3; and vegetables: 3) was analyzed near Innsbruck in an area specially selected for this purpose.In the laboratory, the soil cores were split into the O-horizon (if present) and mineral soil layers of various thicknesses (0–3 cm, 3–8 cm, 8–13 cm, 13–23 cm, 23–38 cm, 38–53 cm, and  > 53 cm). Root extraction was performed manually with the roots cleared of soil in sieving cascades under running water51. Afterwards, the roots were sorted into three size categories18: (1) very fine roots (diameter between 0 and 1 mm); (2) fine roots (diameter between 1 and 5 mm); and (3) coarse roots (diameter between 5 and 20 mm). Roots of woody species with a diameter larger than 20 mm were not taken into account, as the distribution and diameter of coarse roots (especially trees) in the soil vary greatly spatially; therefore, a single survey cannot be representative of the rooting of an ecosystem50,52. The reason for this classification was due to the different functions of the classes. Very fine roots have a dominant role in the uptake of water and nutrients and may be the main source of stabilized carbon input to soil1. Fine roots are mainly responsible for the transport, anchoring and storage of carbohydrates and are also able to take up water. Coarse roots are important for water transfer and the stabilization of plants. To account for the different specific root lengths (SRLs) of very fine and coarse roots from herbaceous and woody species29, we classified the single samples according to the cover of herbaceous and woody species from the phytosociological surveys into pure grassland samples, mixed grassland samples (dominance of woody species:  50%)18. The conversion of root mass to rooting length was carried out using previously published Eqs. 19 (Table 1). Finally, the maximum depth (RD90%), above which 90% of the total root mass was found, was calculated for each root sample using the equation:$$RD_{90% } = RM_{tot} frac{{arctan left( {frac{{RM_{90% } }}{{RM_{tot} }}} right)}}{{m_{max } }},$$
    (1)
    where RM90% is 90% of the total root mass (kg m-2) and mmax is the maximum slope of the saturation curve. In the same way, the depths above which 50% (RD50%) and 95% (RD95%) of the total root mass occurred were calculated. In forests and in dwarf shrub-rich communities, the rooting depths and distributions could be biased by the fact that the sampling depth was very shallow, which could lead to underestimating the 50%, 90% and 95% rooting depths53. In grassland ecosystems, croplands and in dwarf shrub rich communities, however, the 70 cm sampling depth is sufficient because most roots are within the top 30 cm18.Table 1 Linear functions to calculate the root length on the basis of root dry weight for different vegetation communities: grassland communities (G), mixed grassland communities (M), and dwarf shrub-rich or tree-rich vegetation communities (W). y = root length (mm m-2) and x = root dry mass (g m-2).Full size tableEnvironmental variablesFor every root sample, we collected 79 potential impact variables on rooting, including 19 site variables, six land-use variables and 53 vegetation variables (see Table 2 and Appendices S1, S3 and S4).Table 2 Groups of variables used to explain rooting parameters, including information on the type (V, vegetation variable; S, site variable; and LU, land-use variable), the number of variables of each group (no.) and examples (for details, see Appendices S1, S3 and S4).Full size tableVegetation variablesIn total, 53 vegetation variables were collected and divided a priori into four groups (Table 2, Supplementary Appendix S3). Variables included in the richness group were ‘number of plant species’, ‘number of taxonomic groups’ and ‘functional types’ (after38). All variables that displayed information on the mean species cover, plant cover variance or dominance of species, the Shannon–Wiener and Evenness indices (both after54) and the total vegetation cover were allocated to the community composition group. We calculated the Shannon–Wiener and Evenness indices54 for species composition, functional types and functional traits.The cover of functional types group included variables that provide information on the abundance, dominance and composition of single plant functional types (see Supplementary Appendix S3). Finally, the community-level trait group (see Supplementary Appendix S3) contained leaf, plant height and root traits (effect traits in sensu55) used to assess the relative effects of aboveground and root trait turnover at the community level. They were calculated for each sample using trait values taken from the literature and the measured abundance of each species within the single community (i.e., community weighted mean56). We used mean root density and main rooting depth for the single species57,58,59. The rooting density of the species was classified into sparse, medium dense, dense, and very dense roots59. The mean leaf size and plant height of the species (sources:60,61; http://www.floraweb.de/; own observations) were classified according to the following thresholds. Plant height was divided into small (mean plant height  90 cm) species. Leaf size was classified as small (mean leaf area  70 cm2) species. In accordance with other authors62,63, most plant species showed clear allometric allocation trends between leaves, stems and root biomass for different groups of plant species. In particular, a trend towards a decreased root mass fraction with plant size was detected.Site characteristicsImportant meteorological parameters were measured at eight study sites at a distance of  1%). We investigated whether all these species were summarized into PCA components, i.e., into species groups with similar habitat requirements. Species not included in any component were treated as their own component (however, in our study, all species were included in a component). The multiple correlation coefficient (R2) of each component with the vegetation and site components/variables was computed. A high R2 denotes that the information of the key species is covered by the vegetation and site variables.All technical details and further detailed descriptions of the methods can be found in Supplementary Appendix S13. Statistical analyses were conducted with Stata/MP 13.1 for Windows. More

  • in

    Identification of pathogens in the invasive hornet Vespa velutina and in native Hymenoptera (Apidae, Vespidae) from SW-Europe

    1.Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).PubMed 
    Article 

    Google Scholar 
    2.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).PubMed 
    Article 

    Google Scholar 
    5.Thomas, J. A. et al. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Vanbergen, A. J. & The Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).Article 

    Google Scholar 
    7.Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Stanton, R. L., Morrissey, C. A. & Clark, R. G. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 254, 244–254 (2018).Article 

    Google Scholar 
    9.Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    10.Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Gonzalez-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).PubMed 
    Article 

    Google Scholar 
    12.Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).PubMed 
    Article 

    Google Scholar 
    13.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    14.Essl, F. et al. Drivers of future alien species impacts: An expert-based assessment. Glob. Change Biol. 26, 4880–4893 (2020).ADS 
    Article 

    Google Scholar 
    15.Laurino, D., Lioy, S., Carisio, L., Manino, A. & Porporato, M. Vespa velutina: An alien driver of honey bee colony losses. Diversity 12, 5 (2020).Article 

    Google Scholar 
    16.Monceau, K., Bonnard, O. & Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 87, 1–16 (2013).Article 

    Google Scholar 
    17.Rome, Q. et al. Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range. J. Appl. Entomol. 139, 771–782 (2015).Article 

    Google Scholar 
    18.Monceau, K. & Thiery, D. Vespa velutina nest distribution at a local scale: An 8-year survey of the invasive honeybee predator. Insect Sci. 24, 663–674 (2017).PubMed 
    Article 

    Google Scholar 
    19.Snyder, W. E. & Evans, E. W. Ecological effects of invasive arthropod generalist predators. Annu. Rev. Ecol. Evol. Syst. 37, 95–122 (2006).Article 

    Google Scholar 
    20.Villemant, C. et al. Bilan des travaux (MNHN et IRBI) sur l’invasion en France de Vespa velutina, le frelon asiatique prédateur d’abeilles. In Proceedings of the Journée Scientifique Apicole (eds Barbançon, J.-M. & L’Hostis, M.) 3–12 (ONIRIS-FNOSAD, 2011).
    Google Scholar 
    21.Monceau, K. & Thiery, D. Vespa velutina: Current situation and perspectives (Atti Accademia Nazionale Italiana di Entomologia, 2017).
    Google Scholar 
    22.Requier, F. et al. Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J. Pest Sci. 92, 567–578 (2019).Article 

    Google Scholar 
    23.Rome, Q. et al. Not just honeybees: Predatory habits of Vespa velutina (Hymenoptera: Vespidae) in France. Ann. Soc. Entomol. Fr. (N.S.). 57, 1–11. https://doi.org/10.1080/00379271.2020.1867005 (2021).24.Furst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Maside, X. et al. Population genetics of Nosema apis and Nosema ceranae: One host (Apis mellifera) and two different histories. PLoS One 10, e0145609 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).PubMed 
    Article 

    Google Scholar 
    27.Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. Biol. Sci. 282, 20151371 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    28.Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Gómez-Moracho, T. et al. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. Infect. Genet. Evol. 31, 87–94 (2015).PubMed 
    Article 

    Google Scholar 
    30.Higes, M., Martin, R. & Meana, A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 92, 93–95 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Klee, J. et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 96, 1–10 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Otterstatter, M. C. & Thomson, J. D. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?. PLoS One 3, e2771 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Graystock, P., Goulson, D. & Hughes, W. O. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ravoet, J. et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 130, 21–27 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Bartolomé, C. et al. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J. Invertebr. Pathol. 154, 37–41 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Bartolomé, C. et al. Wide diversity of parasites in Bombus terrestris (Linnaeus, 1758) revealed by a high-throughput sequencing approach. Environ. Microbiol. 23, 478–483 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Meeus, I., Brown, M. J. F., De Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).PubMed 
    Article 

    Google Scholar 
    38.Goulson, D. & Hughes, W. O. H. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 191, 10–19 (2015).Article 

    Google Scholar 
    39.Burdon, J. & Chilvers, G. Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol. 20, 143–166 (1982).Article 

    Google Scholar 
    40.Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Borovkov, K., Day, R. & Rice, T. High host density favors greater virulence: A model of parasite–host dynamics based on multi-type branching processes. J. Math. Biol. 66, 1123–1153 (2013).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    42.Darrouzet, E., Gévar, J. & Dupont, S. A scientific note about a parasitoid that can parasitize the yellow-legged hornet, Vespa velutina nigrithorax, Europe. Apidologie 46, 130–132 (2014).Article 

    Google Scholar 
    43.Villemant, C. et al. Can parasites halt the invader? Mermithid nematodes parasitizing the yellow-legged Asian hornet in France. PeerJ 3, e947 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Poidatz, J., López Plantey, R. & Thiéry, D. Indigenous strains of Beauveria and Metharizium as potential biological control agents against the invasive hornet Vespa velutina. J. Invertebr. Pathol. 153, 180–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Dalmon, A. et al. Viruses in the Invasive Hornet Vespa velutina. Viruses 11, 1041 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    46.Marie-Pierre Chauzat et al. First detections of honey bee pathogens in nest of the Asian hornet (Vespa velutina) collected in France. CIHEAM Watch Letter 33 (2015).47.Mazzei, M. et al. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci. Rep. 9, 10091 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Yañez, O., Zheng, H.-Q., Hu, F. L., Neuman, P. & Dietemann, V. A scientific note on Israeli acute paralysis virus infection of Eastern honeybee Apis cerana and vespine predator Vespa velutina. Apidologie 43, 587–589 (2012).Article 

    Google Scholar 
    49.Li, J. et al. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. 42, 49–61 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Tokarev, Y. S. et al. Redefinition of Nosema pyrausta (Perezia pyraustae Paillot 1927) basing upon ultrastructural and molecular phylogenetic studies. Parasitol. Res. 114, 759–761 (2015).PubMed 
    Article 

    Google Scholar 
    51.Goulson, D., Whitehorn, P. & Fowley, M. Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecol. Entomol. 37, 83–89 (2012).Article 

    Google Scholar 
    52.Plischuk, S., Antúnez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9, 169–173 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Jabal-Uriel, C. et al. Short communication: First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum) from Spain. Span. J. Agric. Res. 15, 3 (2017).Article 

    Google Scholar 
    54.Meana, A. et al. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Span. J. Agric. Res. 15, e0501 (2017).Article 

    Google Scholar 
    55.Cavigli, I. et al. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination. Apidologie 47, 251–266 (2016).PubMed 
    Article 

    Google Scholar 
    56.Bartolomé, C. et al. Longitudinal analysis on parasite diversity in honeybee colonies: New taxa, high frequency of mixed infections and seasonal patterns of variation. Sci. Rep. 10, 10454 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Ravoet, J. et al. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8, e72443 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Arbulo, N. et al. High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J. Invertebr. Pathol. 130, 165–168 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Plischuk, S. et al. Pathogens, parasites, and parasitoids associated with bumble bees (Bombus spp.) from Uruguay. Apidologie 48, 298–310 (2017).Article 

    Google Scholar 
    60.Sinpoo, C., Disayathanoowat, T., Williams, P. H. & Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS One 14, e0213171 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Michalczyk, M., Bancerz-Kisiel, A. & Sokół, R. Lotmaria passim as third parasite gastrointestinal tract of honey bees living in tree trunk. J. Apic. Sci. 64, 143–151 (2020).
    Google Scholar 
    62.Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014).PubMed 
    Article 

    Google Scholar 
    63.Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rose, E. A. F., Harris, R. J. & Glare, T. R. Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. N. Z. J. Zool. 26, 179–190 (1999).Article 

    Google Scholar 
    65.Arca, M. et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, Europe. Biol. Invasions 17, 2357–2371 (2015).Article 

    Google Scholar 
    66.Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS One 10, e0121358 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Adler, L. S. et al. Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Pusceddu, M., Mura, A., Floris, I. & Satta, A. Feeding strategies and intraspecific competition in German yellowjacket (Vespula germanica). PLoS One 13, e0206301 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem. Environ. Biol. Sci. 3, 444–448 (2015).
    Google Scholar 
    71.Barbet-Massin, M. et al. Climate change increases the risk of invasion by the Yellow-legged hornet. Biol. Conserv. 157, 4–10 (2013).Article 

    Google Scholar 
    72.Barbet-Massin, M., Salles, J.-M. & Courchamp, F. The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 55, 11–25 (2020).Article 

    Google Scholar 
    73.Rodríguez-Lado, L. velutina | Visor. Monitorización da distribución de Vespa velutina. http://webs-gis.cesga.es/velutina/ (2017).74.Robinet, C., Suppo, C. & Darrouzet, E. Rapid spread of the invasive yellow-legged hornet in France: The role of human-mediated dispersal and the effects of control measures. J. Appl. Ecol. 54, 205–215 (2017).Article 

    Google Scholar 
    75.Rojas-Nossa, S. V. & Calviño-Cancela, M. The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biol. Invasions 22, 2609–2618 (2020).Article 

    Google Scholar 
    76.Ferreira-Golpe, M., Garcia-Arias, A. I. & Pérez-Fra, M. M. Costes de la lucha contra la especie invasora Vespa velutina soportados por los apicultores en la provincia de A Coruña. in XII Congreso Iberoamericano de Estudios Rurales. Territorios Globales, Ruralidades Diversas 294–297 (2019).77.Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Civitello, D. J. et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. 112, 8667–8671 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Ostfeld, R. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722-728 (2000).80.Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 115, 7979–7984 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLoS Pathog. 9, e1003209 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Farrer, R. A. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. 108, 18732–18736 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    85.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Hutcheson, K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 29, 151–154 (1970).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Cities as hot stepping stones for tree migration

    1.Willis, K. J. & Petrokofsky, G. The natural capital of city trees. Science 356, 374–376 (2017).CAS 

    Google Scholar 
    2.Fontaine, L. C. & Larson, B. M. H. The right tree at the right place? Exploring urban foresters’ perceptions of assisted migration. Urban For. Urban Green. 18, 221–227 (2016).
    Google Scholar 
    3.Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
    Google Scholar 
    4.Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).CAS 

    Google Scholar 
    5.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 
    6.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 

    Google Scholar 
    7.Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).
    Google Scholar 
    8.Rehfeldt, G. E., Crookston, N. L., Warwell, M. V. & Evans, J. S. Empirical analyses of plant‐climate relationships for the Western United States. Int. J. Plant Sci. 167, 1123–1150 (2006).
    Google Scholar 
    9.Tomiolo, S. & Ward, D. Species migrations and range shifts: a synthesis of causes and consequences. Perspect. Plant Ecol. Evol. Syst. 33, 62–77 (2018).
    Google Scholar 
    10.Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 111, 723–727 (2014).CAS 

    Google Scholar 
    11.Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).
    Google Scholar 
    12.Walther, G. R. et al. Palms tracking climate change. Glob. Ecol. Biogeogr. 16, 801–809 (2007).
    Google Scholar 
    13.Miller, K. M. & McGill, B. J. Land use and life history limit migration capacity of eastern tree species. Glob. Ecol. Biogeogr. 27, 57–67 (2018).
    Google Scholar 
    14.Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Chang. 6, 1104–1109 (2016).
    Google Scholar 
    15.Lazarus, E. D. & McGill, B. J. Pushing the pace of tree species migration. PLoS ONE 9, e105380 (2014).
    Google Scholar 
    16.Cunze, S., Heydel, F. & Tackenberg, O. Are plant species able to keep pace with the rapidly changing climate? PLoS ONE 8, e67909 (2013).CAS 

    Google Scholar 
    17.Gray, L. K. & Hamann, A. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 117, 289–303 (2013).
    Google Scholar 
    18.Petit, R. J., Hu, F. S. & Dick, C. W. Forests of the past: a window to future changes. Science 320, 1450–1452 (2008).CAS 

    Google Scholar 
    19.Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).CAS 

    Google Scholar 
    20.Mosblech, N. A. S., Bush, M. B. & van Woesik, R. On metapopulations and microrefugia: Palaeoecological insights. J. Biogeogr. 38, 419–429 (2011).
    Google Scholar 
    21.Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).CAS 

    Google Scholar 
    22.Hu, F. S., Hampe, A. & Petit, R. J. Paleoecology meets genetics: deciphering past vegetational dynamics. Front. Ecol. Environ. 7, 371–379 (2009).
    Google Scholar 
    23.Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).CAS 

    Google Scholar 
    24.Snell, R. S. & Cowling, S. A. Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. J. Biogeogr. 42, 1677–1688 (2015).
    Google Scholar 
    25.Lopez, J. Single planting creates expanding naturalized population of quercus palustris far from its native range limit. Rhodora 120, 143–153 (2018).
    Google Scholar 
    26.Varquez, A. C. G. & Kanda, M. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). npj Clim. Atmos. Sci. 1, 32 (2018).
    Google Scholar 
    27.Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).
    Google Scholar 
    28.Rizwan, A. M., Dennis, L. Y. C. & Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120–128 (2008).CAS 

    Google Scholar 
    29.Parker, D. E. Urban heat island effects on estimates of observed climate change. WIREs Clim. Change 1, 123–133 (2010).
    Google Scholar 
    30.Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).CAS 

    Google Scholar 
    31.IPCC. Global Warming of 1.5 °C (World Meteorological Organization, 2018).32.George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665 (2007).CAS 

    Google Scholar 
    33.Dallimer, M., Tang, Z., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).
    Google Scholar 
    34.Dahlhausen, J., Rötzer, T., Biber, P., Uhl, E. & Pretzsch, H. Urban climate modifies tree growth in Berlin. Int. J. Biometeorol. 62, 795–808 (2018).
    Google Scholar 
    35.Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 7, 15403 (2017).
    Google Scholar 
    36.Searle, S. Y. et al. Urban environment of New York city promotes growth in northern red oak seedlings. Tree Physiol. 32, 389–400 (2012).
    Google Scholar 
    37.McLachlan, J. S., Clark, J. S. & Manos, P. S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098 (2005).
    Google Scholar 
    38.Chakraborty, T. & Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280 (2019).
    Google Scholar 
    39.Wang, K., Sun, J., Cheng, G. & Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet plateau. J. Mt. Sci. 8, 808–816 (2011).
    Google Scholar 
    40.Kendal, D., Williams, N. S. G. & Williams, K. J. H. A cultivated environment: exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst. 15, 637–652 (2012).
    Google Scholar 
    41.Almas, A. D. & Conway, T. M. The role of native species in urban forest planning and practice: a case study of Carolinian Canada. Urban For. Urban Green. 17, 54–62 (2016).
    Google Scholar 
    42.Galera, H. & Sudnik-Wócikowska, B. Central European botanic gardens as centres of dispersal of alien plants. Acta Soc. Bot. Pol. 79, 147–156 (2010).
    Google Scholar 
    43.Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
    Google Scholar 
    44.Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).
    Google Scholar 
    45.Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 33, 115–133 (2007).
    Google Scholar 
    46.Zipper, S. C. et al. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environ. Res. Lett. 11, 054023 (2016).
    Google Scholar 
    47.Woodall, C. W., Nowak, D. J., Liknes, G. C. & Westfall, J. A. Assessing the potential for urban trees to facilitate forest tree migration in the eastern United States. For. Ecol. Manage. 259, 1447–1454 (2010).
    Google Scholar 
    48.Horta, M. B. et al. Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making. Urban Ecosyst. 21, 1097–1111 (2018).
    Google Scholar 
    49.Marris, E. Forestry: planting the forest of the future. Nature 459, 906–908 (2009).CAS 

    Google Scholar 
    50.Harvey, B. et al. Climate Change Communication and Social Learning—Review and Strategy Development for CCAFS (CCAFS, 2012)51.Farrell, C., Szota, C. & Arndt, S. K. Urban plantings: ‘Living laboratories’ for climate change response. Trends Plant Sci. 20, 597–599 (2015).CAS 

    Google Scholar 
    52.Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).CAS 

    Google Scholar 
    53.Hodgson, J. A., Thomas, C. D., Dytham, C., Travis, J. M. J. & Cornell, S. J. The speed of range shifts in fragmented landscapes. PLoS ONE 7, e47141 (2012).CAS 

    Google Scholar 
    54.Han, Q. & Keeffe, G. Mapping the flow of forest migration through the city under climate change. Urban Plan. 4, 139–151 (2019).
    Google Scholar 
    55.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar  More

  • in

    A novel system for intensive Diadema antillarum propagation as a step towards population enhancement

    1.Hughes, T. P., Reed, D. C. & Boyle, M. J. Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J. Exp. Mar. Biol. Ecol. 113, 39–59 (1987).Article 

    Google Scholar 
    2.Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs (Global Coral Reef Monitoring Network, IUCN, 2014).
    Google Scholar 
    3.Goldberg, J. & Wilkinson, C. Global threats to coral reefs: coral bleaching, global climate change, disease, predator plagues, and invasive species. Status Coral Reefs World 2004(1), 67–92 (2004).
    Google Scholar 
    4.Abelson, A. et al. Upgrading marine ecosystem restoration using ecological-social concepts. Bioscience 66, 156–163 (2016).PubMed 
    Article 

    Google Scholar 
    5.Conservation International. Economic values of coral reefs, mangroves, and seagrasses: A global compilation. Center for Applied Biodiversity Science, Conservation International (2008).6.Rocha, J., Peixe, L., Gomes, N. C. M. & Calado, R. Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Storlazzi, C. D. et al. Rigorously Valuing the Role of U. S. Coral Reefs in Coastal Hazard Risk Reduction. No. 2019–1027. US Geological Survey (2019).8.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a pleistocene perspective. Coral Reefs 17, 249–261 (1998).Article 

    Google Scholar 
    12.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Osinga, R. et al. The biology and economics of coral growth. Mar. Biotechnol. 13, 658–671 (2011).CAS 
    Article 

    Google Scholar 
    14.Leal, M. C., Ferrier-Pagès, C., Petersen, D. & Osinga, R. Coral aquaculture: applying scientific knowledge to ex situ production. Rev. Aquac. 8, 136–153 (2016).Article 

    Google Scholar 
    15.Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 2016, e2597 (2016).Article 

    Google Scholar 
    16.Barton, J. A., Willis, B. L. & Hutson, K. S. Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquac. 9, 238–256 (2017).Article 

    Google Scholar 
    17.Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Rinkevich, B. Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor. Ecol. 3, 241–251 (1995).Article 

    Google Scholar 
    19.Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).Article 

    Google Scholar 
    20.Rinkevich, B. Rebuilding coral reefs: does active reef restoration lead to sustainable reefs?. Curr. Opin. Environ. Sustain. 7, 28–36 (2014).Article 

    Google Scholar 
    21.Patterson, J. T. The growing role of aquaculture in ecosystem restoration. Restor. Ecol. 27, 938–941 (2019).Article 

    Google Scholar 
    22.Schopmeyer, S. A. et al. In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703 (2012).Article 

    Google Scholar 
    23.Miller, M. W., Kerr, K. & Williams, D. E. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement. PeerJ 2016, e2523 (2016).Article 

    Google Scholar 
    24.Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Ogden, J. Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs: reef biota. Stud. Geol. 4, 281–288 (1977).CAS 

    Google Scholar 
    26.Sammarco, P. W. Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J. Exp. Mar. Biol. Ecol. 61, 31–55 (1982).Article 

    Google Scholar 
    27.Foster, S. A. The relative impacts of grazing by Caribbean coral reef fishes and Diadema: effects of habitat and surge. J. Exp. Mar. Biol. Ecol. 105, 1–20 (1987).Article 

    Google Scholar 
    28.Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fishes 3, 49–63 (1978).Article 

    Google Scholar 
    29.Perry, C. T. et al. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. B Biol. Sci. 281, 20142018 (2014).Article 

    Google Scholar 
    30.Precht, L. & Precht, W. The sea urchin Diadema antillarum—keystone herbivore or redundant species?. PeerJ PrePrints 3, e1565v1 (2015).
    Google Scholar 
    31.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed 
    Article 

    Google Scholar 
    32.Lessios, H. A. The Great Diadema antillarum die-off: 30 years later. Ann. Rev. Mar. Sci. 8, 267–283 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lessios, H. A., Glynn, P. W. & Robertson, D. R. Mass mortalities of coral reef organisms. Science 222, 715 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science 226, 335–337 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Lessios, H. A. et al. Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3, 173–182 (1984).ADS 
    Article 

    Google Scholar 
    36.Bak, R., Carpay, M. & de Ruyter van Steveninck, E. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curagao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).ADS 
    Article 

    Google Scholar 
    37.Hughes, T. P. Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull. Mar. Sci. 36, 377–384 (1985).
    Google Scholar 
    38.Hunte, W., Côté, I. & Tomascik, T. On the dynamics of the mass mortality of Diadema antillarum in Barbados. Coral Reefs 4, 135–139 (1986).ADS 
    Article 

    Google Scholar 
    39.Lessios, H. A. Mass mortality of Diadema antillarum in the Caribbean: what have we learned?. Annu. Rev. Ecol. Syst. 19, 371–393 (1988).Article 

    Google Scholar 
    40.Carpenter, R. C. Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc. Natl. Acad. Sci. 85, 511–514 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Carpenter, R. C. Mass mortality of Diadema antillarum—II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar. Biol. 104, 79–86 (1990).Article 

    Google Scholar 
    42.Carpenter, R. C. Mass mortality of Diadema antillarum—I. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar. Biol. 104, 67–77 (1990).Article 

    Google Scholar 
    43.Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).Article 

    Google Scholar 
    44.Lessios, H. A. Diadema antillarum 10 years after mass mortality: still rare, despite help from a competitor. Proc. R. Soc. B Biol. Sci. 259, 331–337 (1995).ADS 
    Article 

    Google Scholar 
    45.Miller, R. J., Adams, A. J., Ogden, N. B., Ogden, J. C. & Ebersole, J. P. Diadema antillarum 17 years after mass mortality: is recovery beginning on St. Croix?. Coral Reefs 22, 181–187 (2003).Article 

    Google Scholar 
    46.National Marine Fisheries Service. Recovery plan for elkhorn coral (Acropora palmata) and staghorn corals (A. cervicornis). National Oceanic and Atmospheric Administration (2015).47.Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection?. Front. Mar. Sci. 3, 63 (2016).Article 

    Google Scholar 
    48.Eckert, G. Larval development, growth and morphology of the sea urchin Diadema antillarum. Bull. Mar. Sci. 63, 443–451 (1998).
    Google Scholar 
    49.Leber, K. et al. Developing restoration methods to aid in recovery of a key herbivore, Diadema antillarum, on Florida coral reefs. Mote Marine Laboratory Technical Report No. 1347 (2009).50.Moe, M. Breeding the West Indian sea egg: Tripneustes ventricosus. CORAL Mag. 11, 80–94 (2014).
    Google Scholar 
    51.Harrold, C., Lisin, S., Light, K. H. & Tudor, S. Isolating settlement from recruitment of sea urchins. J. Exp. Mar. Biol. Ecol. 147, 81–94 (1991).Article 

    Google Scholar 
    52.Lambert, D. M. & Harris, L. G. Larval settlement of the green sea urchin, Strongylocentrotus droebachiensis, in the southern Gulf of Maine. Invertebr. Biol. 119, 403–409 (2005).Article 

    Google Scholar 
    53.McBride, S. C. Sea urchin aquaculture. Am. Fish. Soc. Symp. 2005, 179–208 (2005).
    Google Scholar 
    54.Mos, B., Cowden, K. L., Nielsen, S. J. & Dworjanyn, S. A. Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE 6, e28054 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Bielmyer, G. K., Brix, K. V., Capo, T. R. & Grosell, M. The effects of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum. Aquat. Toxicol. 74, 254–263 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Nadella, S. R. et al. Toxicity of lead and zinc to developing mussel and sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 158, 72–83 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Dautov, S. S. & Dautova, T. N. The larvae of Diadema setosum (Leske, 1778) (Camarodonta: Diadematidae) from South China Sea. Invertebr. Reprod. Dev. 60, 290–296 (2016).Article 

    Google Scholar 
    58.Huggett, M. J., King, C. K., Williamson, J. E. & Steinberg, P. D. Larval development and metamorphosis of the Australian diadematid sea urchin Centrostephanus rodgersii. Invertebr. Reprod. Dev. 47, 197–204 (2005).Article 

    Google Scholar 
    59.Dautov, S. S. The embryological and larval development of the sea urchin Diadema savignyi (Audouin, 1809) (Diadematoida: Diadematidae) from the South China Sea. Mar. Biol. Res. 16, 166–176 (2020).Article 

    Google Scholar 
    60.Harris, L. G. & Eddy, S. D. Sea urchin ecology and biology. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 1–24 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch1.
    Google Scholar 
    61.Westbrook, C. E. et al. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae. PeerJ 2015, e1235 (2015).Article 

    Google Scholar 
    62.Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 2018, e5332 (2018).Article 

    Google Scholar 
    63.Palmer, L. The shedding reaction in Arbacia punctulata. Physiol. Zool. 10, 352–367 (1937).CAS 
    Article 

    Google Scholar 
    64.Hammer, H., Powell, M. & Watts, S. Species Profile: Sea Urchins of the Southern Region 1–6 (Southern Regional Aquaculture Center, 2013).
    Google Scholar 
    65.Luis, O., Delgado, F. & Gago, J. Year-round captive spawning performance of the sea urchin Paracentrotus lividus: relevance for the use of its larvae as live feed. Aquat. Liv. Resour. 18, 45–54 (2005).Article 

    Google Scholar 
    66.Gago, J. & Luís, O. J. Comparison of spawning induction techniques on Paracentrotus lividus (Echinodermata: Echinoidea) broodstock. Aquacult. Int. 19, 181–191 (2011).Article 

    Google Scholar 
    67.Watts, S. A., Lawrence, A. L. & Lawrence, J. M. Nutrition. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 155–169 (Elsevier, 2013).
    Google Scholar 
    68.Walker, C. W. & Lesser, M. P. Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis implications for aquaculture. Mar. Biol. 132, 663–676 (1998).Article 

    Google Scholar 
    69.Pearse, J. S., Eernisse, D. J., Pearse, V. B. & Beauchamp, K. A. Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Integr. Comp. Biol. 26, 417–431 (1986).
    Google Scholar 
    70.Lorenzen, K., Leber, K. M. & Blankenship, H. L. Responsible approach to marine stock enhancement: an update. Rev. Fish. Sci. 18, 189–210 (2010).Article 

    Google Scholar 
    71.Chandler, L. M., Walters, L. J., Sharp, W. C. & Hoffman, E. A. Genetic structure of natural and broodstock populations of the long-spined sea urchin, Diadema antillarum, throughout the Florida Keys. Bull. Mar. Sci. 93, 881–889 (2017).Article 

    Google Scholar 
    72.Tringali, M. D. et al. Genetic Policy for the Release of Finfishes in Florida. Florida Fish and Wildlife Conservation Commission (2007).73.Lorenzen, K. Understanding and managing enhancements: why fisheries scientists should care. J. Fish Biol. 85, 1807–1829 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Pearce, C. M., Daggett, T. L. & Robinson, S. M. C. Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. J. World Aquac. Soc. 33, 268–277 (2002).Article 

    Google Scholar 
    75.Hammer, H. S. et al. Effect of feed protein and carbohydrate levels on feed intake, growth, and gonad production of the sea urchin, Lytechinus variegatus. J. World Aquac. Soc. 43, 145–158 (2012).Article 

    Google Scholar 
    76.Carboni, S., Hughes, A. D., Atack, T., Tocher, D. R. & Migaud, H. Influence of broodstock diet on somatic growth, fecundity, gonad carotenoids and larval survival of sea urchin. Aquac. Res. 46, 969–976 (2015).CAS 
    Article 

    Google Scholar 
    77.Liu, H. et al. The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture 264, 263–278 (2007).CAS 
    Article 

    Google Scholar 
    78.Brundu, G. et al. Effects of on-demand feeding on sea urchin larvae (Paracentrotus lividus; Lamarck, 1816), development, survival and microalgae utilization. Aquac. Res. 48, 1550–1560 (2017).Article 

    Google Scholar 
    79.Capo, T., Boyd, A. E., Miller, M. W., Sukrhaj, N. C. & Szmant, A. Non-invasive Spawning of Captive Diadema antillarum (Philippi) Under Photo-Thermal Control (CRC Press, 2003).
    Google Scholar 
    80.Reuter, K. E. & Levitan, D. R. Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus. Biol. Bull. 219, 198–206 (2010).PubMed 
    Article 

    Google Scholar 
    81.Muthiga, N. A. & McClanahan, T. R. Diadema. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 257–274 (Elsevier, 2013).
    Google Scholar 
    82.Lewis, J. B. Growth and breeding in the tropical echinoid Diadema antillarum Philippi. Bull. Mar. Sci. 16, 151–158 (1966).
    Google Scholar 
    83.Bauer, J. C. Growth, aggregation, and maturation in the echinoid, Diadema antillarum. Bull. Mar. Sci. 26, 273–277 (1976).ADS 

    Google Scholar 
    84.Iliffe, T. M. & Pearse, J. S. Annual and lunar reproductive rhythms of the sea urchin, Diadema antillarum (Philippi) in Bermuda. Int. J. Invertebr. Reprod. 5, 139–148 (1982).Article 

    Google Scholar 
    85.Randall, J. E., Schroeder, R. E. & Starck, W. A. I. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 1, 421–433. https://doi.org/10.1126/science.1.10.263 (1964).Article 

    Google Scholar 
    86.Lessios, H. A. Reproductive periodicity of the echinoids Diadema and Echinometra on the two coasts of Panama. J. Exp. Mar. Biol. Ecol. 50, 47–61 (1981).Article 

    Google Scholar 
    87.Levitan, D. R. Asynchronous spawning and aggregative behavior in the sea urchin Diadema antillarum (Philippi). Direct 76, 181–186 (1988).
    Google Scholar 
    88.Hodin, J. et al. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol. 150, 125–169 (2019).PubMed 
    Article 

    Google Scholar 
    89.Metaxas, A. Larval ecology of echinoids. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 69–81 (Elsevier, 2013).
    Google Scholar 
    90.Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).Article 

    Google Scholar 
    91.Williamson, J. E. Sea urchin aquaculture in Australia. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 225–243 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch10.
    Google Scholar 
    92.Swanson, R. L. et al. Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar. Biol. 159, 915–925 (2012).CAS 
    Article 

    Google Scholar 
    93.Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).CAS 
    Article 

    Google Scholar 
    94.Radenac, G., Fichet, D. & Miramand, P. Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar. Environ. Res. 51, 151–166 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Phillips, B. M. et al. Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Bull. Environ. Contam. Toxicol. 70, 592–599 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.USEPA. Ambient Water Quality Criteria for Silver. U.S. Environmental Protection Agency (1980).97.USEPA. Draft Update of Ambient Water Quality Criteria for Copper. U.S. Environmental Protection Agency (2003).98.Martins, C. I. M., Pistrin, M. G., Ende, S. S. W., Eding, E. H. & Verreth, J. A. J. The accumulation of substances in recirculating aquaculture systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio. Aquaculture 291, 65–73 (2009).Article 

    Google Scholar 
    99.Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Seixas, P., Coutinho, P., Ferreira, M. & Otero, A. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J. Exp. Mar. Biol. Ecol. 381, 1–9 (2009).Article 

    Google Scholar 
    101.Bendich, A. Recent advances in clinical research involving carotenoids. Pure Appl. Chem. 66, 1017–1024 (1994).CAS 
    Article 

    Google Scholar 
    102.Krinsky, N. I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci. 854, 443–447 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Kelly, M. S. & Symonds, R. C. Carotenoids in sea urchins. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 171–177 (Elsevier, 2013).
    Google Scholar 
    104.Cárcamo, P. F., Candia, A. I. & Chaparro, O. R. Larval development and metamorphosis in the sea urchin Loxechinus albus (Echinodermata: Echinoidea): effects of diet type and feeding frequency. Aquaculture 249, 375–386 (2005).Article 

    Google Scholar 
    105.Carboni, S. et al. Evaluation of flow through culture technique for commercial production of sea urchin (Paracentrotus lividus) larvae. Aquac. Res. 45, 768–772 (2014).Article 

    Google Scholar 
    106.Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).CAS 
    Article 

    Google Scholar 
    107.Gaylord, B., Hodin, J. & Ferner, M. C. Turbulent shear spurs settlement in larval sea urchins. Proc. Natl. Acad. Sci. U. S. A. 110, 6901–6906 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Gosselin, L. A. & Qian, P. Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146, 265–282 (1997).ADS 
    Article 

    Google Scholar 
    109.Miller, B. A. & Emlet, R. B. Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining age. J. Exp. Mar. Biol. Ecol. 235, 67–90 (1999).Article 

    Google Scholar 
    110.Byrne, M., Sewell, M. A. & Prowse, T. A. A. Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).Article 

    Google Scholar 
    111.Feehan, C. J., Brown, M. S., Sharp, W. C., Lauzon-Guay, J.-S. & Adams, D. K. Fertilization limitation of Diadema antillarum on coral reefs in the Florida Keys. Ecology 97, 1897–1904 (2016).PubMed 
    Article 

    Google Scholar 
    112.Miller, M. W., Kramer, K. L., Williams, S. M., Johnston, L. & Szmant, A. M. Assessment of current rates of Diadema antillarum larval settlement. Coral Reefs 28, 511–515 (2009).ADS 
    Article 

    Google Scholar 
    113.Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).
    Google Scholar 
    114.Miller, R. J., Adams, A. J., Ebersole, J. P. & Ruiz, E. Evidence for positive density-dependent effects in recovering Diadema antillarum populations. J. Exp. Mar. Biol. Ecol. 349, 215–222 (2007).Article 

    Google Scholar 
    115.Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).ADS 
    Article 

    Google Scholar 
    116.Weil, E., Losada, F. & Bone, D. Spatial variations in density and size of the echinoid Diadema antillarum Philippi on some Venezuelan coral reefs. Bijdragen tot de Dierkunde 54, 73–82 (1984).Article 

    Google Scholar 
    117.Lee, S. C. Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef. Oikos 112, 442–447 (2006).Article 

    Google Scholar 
    118.Feehan, C. J. & Scheibling, R. E. Effects of sea urchin disease on coastal marine ecosystems. Mar. Biol. 161, 1467–1485 (2014).CAS 
    Article 

    Google Scholar 
    119.Dame, E. A. Assessing the effect of artificial habitat structure on translocation of the long-spined sea urchin, Diadema antillarum, in Curaçao (Netherlands Antilles). Bull. Mar. Sci. 82, 247–254 (2008).ADS 

    Google Scholar 
    120.Sharp, W. Assessing the use of artificial structures to enhance the survival rates of long-spined sea uchins on the reef tract of the Florida Keys. Florida Fish and Wildlife Conservation Commission (2014).121.Rogers, A. & Lorenzen, K. Recovery of Diadema antillarum and the potential for active rebuilding measures: modelling population dynamics. In Proceedings of the 11th International Coral Reef Symposium 7–11 (2008).122.Creswell, R. L. Developing echinoderm culture for consumption and stock enhancement in the Caribbean. FAO Fish. Aquac. Proc. 19, 141–145 (2011).
    Google Scholar  More

  • in

    Poor prey quality is compensated by higher provisioning effort in passerine birds

    1.Wright, J., Both, C., Cotton, P. A. & Bryant, D. Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning. J. Anim. Ecol. 67, 620–634 (1998).Article 

    Google Scholar 
    2.Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 68, 708–718 (1999).Article 

    Google Scholar 
    3.Perrins, C. M. & McCleery, R. H. The effect of fledging mass on the lives of Great Tits Parus major. Ardea 89, 142 (2001).
    Google Scholar 
    4.van Oort, H. & Otter, K. A. Natal nutrition and the habitat distributions of male and female black-capped chickadees. Can. J. Zool. 83, 1495–1501 (2005).Article 

    Google Scholar 
    5.Metcalfe, N. B. & Monaghan, P. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113 (1990).Article 

    Google Scholar 
    7.Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).Article 

    Google Scholar 
    8.Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).Article 

    Google Scholar 
    9.Naef-Daenzer, L., Naef-Daenzer, B. & Nager, R. G. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214 (2000).Article 

    Google Scholar 
    10.Williams, T. D. Physiological Adaptations for Breeding in Birds (Princeton University Press, Princeton, 2012).Book 

    Google Scholar 
    11.Williams, T. D. & Fowler, M. A. Individual variation in workload during parental care: can we detect a physiological signature of quality or cost of reproduction?. J. Ornithol. 156, 441–451 (2015).Article 

    Google Scholar 
    12.Dawson, R. D. & Bortolotti, G. R. Parental effort of American kestrels: the role of variation in brood size. Can. J. Zool. 81, 852–860 (2003).Article 

    Google Scholar 
    13.Ringsby, T. H., Berge, T., Saether, B. E. & Jensen, H. Reproductive success and individual variation in feeding frequency of House Sparrows (Passer domesticus). J. Ornithol. 150, 469–481 (2009).Article 

    Google Scholar 
    14.Mariette, M. M. et al. Using an Electronic Monitoring System to Link Offspring Provisioning and Foraging Behavior of a Wild Passerine. Auk 128, 26–35 (2011).Article 

    Google Scholar 
    15.García-Navas, V., Ferrer, E. S. & Sanz, J. J. Prey selectivity and parental feeding rates of Blue Tits Cyanistes caeruleus in relation to nestling age. Bird Study 59, 236–242 (2012).Article 

    Google Scholar 
    16.Lifjeld, J. T. et al. Effects of energy costs on the optimal diet: an experiment with pied flycatchers Ficedula hypoleuca feeding nestlings. Ornis Scand. 19, 111–118 (1988).Article 

    Google Scholar 
    17.Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, 135–149 (2008).Article 

    Google Scholar 
    18.Stodola, K. W. et al. Relative influence of male and female care in determining nestling mass in a migratory songbird. J. Avian Biol. 41, 515–522 (2010).Article 

    Google Scholar 
    19.Mägi, M. et al. Low reproductive success of great tits in the preferred habitat: a role of food low reproductive success of great tits in the preferred habitat: a role of food availability. Ecoscience 16, 145–157 (2009).Article 

    Google Scholar 
    20.Fowler, M. A. & Williams, T. D. Individual variation in parental workload and breeding productivity in female European starlings: Is the effort worth it?. Ecol. Evol. 5, 3585–3599 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cornelius Ruhs, E., Vézina, F., Walker, M. A. & Karasov, W. H. Who pays the bill? The effects of altered brood size on parental and nestling physiology. J. Ornithol. 161, 275–288 (2019).Article 

    Google Scholar 
    22.Bridge, E. S. & Bonter, D. N. A low-cost radio frequency identification device for ornithological research. J. Field. Ornithol. 82, 52–59 (2011).Article 

    Google Scholar 
    23.Major, R. E. Stomach flushing of an insectivorous bird: an assessment of differential digestibility of prey and the risk to birds. Aust. Wildl. Res. 17, 647–657 (1990).ADS 
    Article 

    Google Scholar 
    24.Harris, M. P. & Wanless, S. The diet of shags phalacrocorax aristotelis during the chick-rearing period assessed by three methods. Bird Study 40, 135–139 (1993).Article 

    Google Scholar 
    25.Sánchez-Bayo, F., Ward, R. & Beasley, H. A new technique to measure bird’s dietary exposure to pesticides. Anal. Chim. Acta 399, 173–183 (1999).Article 

    Google Scholar 
    26.Tsipoura, N. & Burger, J. Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635–644 (1999).Article 

    Google Scholar 
    27.Neves, V. C., Bolton, M. & Monteiro, L. R. Validation of the water offloading technique for diet assessment: an experimental study with Cory’s shearwaters (Calonectris diomedea). J. Ornithol. 147, 474–478 (2006).Article 

    Google Scholar 
    28.Goldsworthy, B., Young, M. J., Seddon, P. J. & van Heezik, Y. Stomach flushing does not affect apparent adult survival, chick hatching, or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biol. Conserv. 196, 115–123 (2016).Article 

    Google Scholar 
    29.Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Malmqvist, B. & Sjöström, P. The microdistribution of some lotic insect predators in relation to their prey and to abiotic factors. Freshw. Biol. 14, 649–656 (1984).Article 

    Google Scholar 
    31.van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451 (1995).Article 

    Google Scholar 
    32.Bale, J. S. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. B Biol. Sci. 357, 849–862 (2002).CAS 
    Article 

    Google Scholar 
    33.Hansson, L. A. et al. Experimental evidence for a mismatch between insect emergence and waterfowl hatching under increased spring temperatures. Ecosphere 5, 1–9 (2014).Article 

    Google Scholar 
    34.Bates, D., Maechler, M., Bolker, B., & Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R package version 1.1–21. http://CRAN.R-project.org/package=lme4 (2019)35.Hothorn, T., Zeilis, A., Farebrother, R.W., Cummins, C., Millo, G. & Mitchell, D. lmtest: Testing linear regression models. R package version 0.9–37. http://CRAN.R-project.org/package=lmtest (2019)36.Kuznetsova, A., Brockoff, P.B., & R. H. Christensen. LmerTest: Tests for Random and Fixed Effects for Linear Mixed Effect Models (lmer objects of lme4 package). R package version 2.0-3. https://CRANR-projectorg/package=lmerTest (2019)37.Lenth, R. V., Singmann, H., Love, J., Buerkner. P. & Herve, M. emmeans: Estimated marginal means. R package version 1.4.6. https://cran.r-project.org/web/packages/emmeans/index.html (2019)38.Ricklefs, R. E. Preliminary models for growth rates in altricial birds. Ecology 50, 1031–1039 (1969).Article 

    Google Scholar 
    39.Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 
    40.Killpack, T. L. & Karasov, W. H. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J. Exp. Biol. 215, 1806–1815 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Verboven, N. & Visser, M. E. Seasonal variation in local recruitment of great tits: the importance of being early. Oikos 81, 511 (1998).Article 

    Google Scholar 
    42.Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B Biol. Sci. 270, 367–372 (2003).Article 

    Google Scholar 
    43.Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.García-navas, V. & Sanz, J. J. Seasonal decline in provisioning effort and nestling mass of Blue Tits Cyanistes caeruleus: Experimental support for the parent quality hypothesis. Ibis (Lond. 1859). 153, 59–69 (2011).Article 

    Google Scholar 
    45.García-Navas, V. & Sanz, J. J. The importance of a main dish: Nestling diet and foraging behaviour in Mediterranean blue tits in relation to prey phenology. Oecologia 165, 639–649 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).Article 

    Google Scholar 
    47.Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145 (2009).Article 

    Google Scholar 
    48.Stalwick, J. A. & Wiebe, K. L. Delivery rates and prey use of mountain bluebirds in grassland and clear-cut habitats. Avian Conserv. Ecol. 14, 1–11 (2019).
    Google Scholar 
    49.Kadin, M., Olsson, O., Hentati-Sundberg, J., Ehrning, E. W. & Blenckner, T. Common Guillemot Uria aalge parents adjust provisioning rates to compensate for low food quality. Ibis (Lond. 1859). 158, 167–178 (2016).Article 

    Google Scholar 
    50.Stauss, M. J., Burkhardt, J. F. & Tomiuk, J. Foraging flight distances as a measure of parental effort in blue tits Parus caeruleus differ with environmental conditions. J. Avian Biol. 36, 47–56 (2005).Article 

    Google Scholar 
    51.Killpack, T. L., Tie, D. N. & Karasov, W. H. Compensatory growth in nestling Zebra Finches impacts body composition but not adaptive immune function. Auk 131, 396–406 (2014).Article 

    Google Scholar 
    52.Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. Ecol. Evol. Approaches 72, 189–197 (1999).CAS 
    Article 

    Google Scholar 
    53.Williams, J. B. & Tieleman, B. I. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J. Exp. Biol. 203, 3153–3159 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Barceló, G., Love, O. P. & Vézina, F. Uncoupling basal and summit metabolic rates in white-throated Sparrows: digestive demand drives maintenance costs, but changes in muscle mass are not needed to improve thermogenic capacity. Physiol. Biochem. Zool. 90, 153–165 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Cotton, P. A., Kacelnik, A. & Wright, J. Chick begging as a signal: are nestlings honest?. Behav. Ecol. 7, 178–182 (1996).Article 

    Google Scholar 
    56.Royle, N. J., Hartley, I. R. & Parker, G. A. Begging for control: when are offspring solicitation behaviours honest?. Trends Ecol. Evol. 17, 434–440 (2002).Article 

    Google Scholar 
    57.Kilner, R. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Tree 12, 11–15 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Macnair, M. R. & Parker, G. A. Models of parent-offspring conflict III. Intra-brood conflict. Anim. Behav. 27, 1202–1209 (1979).Article 

    Google Scholar 
    59.Hamer, K. C., Lynnes, A. S. & Hill, J. K. Parent-offspring interactions in food provisioning of Manx shearwaters: Implications for nestling obesity. Anim. Behav. 57, 627–631 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: the evolution of parent-offspring signalling. Philos. Trans. R. Soc. B Biol. Sci. 355, 1581–1591 (2000).CAS 
    Article 

    Google Scholar 
    61.Leonard, M. L. & Horn, A. G. Acoustic signalling of hunger and thermal state by nestling tree swallows. Anim. Behav. 61, 87–93 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Leonard, M. L. & Horn, A. G. Ambient noise and the design of begging signals. Proc. Biol. Sci. 272, 651–656 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    63.Sacchi, R., Saino, N. & Galeotti, P. Features of begging calls reveal general condition and need of food of barn swallow (Hirundo rustica) nestlings. Behav. Ecol. 13, 268–273 (2002).Article 

    Google Scholar 
    64.Marques, P. A. M., Vicente, L. & Márquez, R. Iberian azure-winged magpie cyanopica (cyana) cooki nestlings begging calls: call characterization and hunger signalling. Bioacoustics 18, 133–149 (2008).Article 

    Google Scholar 
    65.Marques, P. A. M., Vicente, L. & Márquez, R. Nestling begging call structure and bout variation honestly signal need but not condition in Spanish sparrows. Zool. Stud. 48, 587–595 (2009).
    Google Scholar 
    66.Klenova, A. V. Chick begging calls reflect degree of hunger in three auk species (Charadriiformes: Alcidae). PLoS ONE 10, 4–6 (2015).Article 
    CAS 

    Google Scholar 
    67.Williams, T. D. Physiology, activity and costs of parental care in birds. J. Exp. Biol. 221, 1–8 (2018).Article 

    Google Scholar  More

  • in

    Coexistence holes characterize the assembly and disassembly of multispecies systems

    1.Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
    Google Scholar 
    2.Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    3.Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).5.Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959).
    Google Scholar 
    6.Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).7.Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. Coexistence of many species in random ecosystems. Nat. Ecol. Evol. 2, 1237–1242 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    9.MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Medeiros, L. P., Boege, K., del Val, E., Zaldivar-Riverón, A. & Saavedra, S. Observed ecological communities are formed by species combinations that are among the most likely to persist under changing environments. Am. Nat. https://doi.org/10.1086/711663 (2020).11.Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
    Google Scholar 
    12.Grainger, T. N. & Gilbert, J. M. L. B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    13.Alberch, P. The logic of monsters: evidence for internal constraint in development and evolution. Geobios 22, 21–57 (1989).
    Google Scholar 
    14.Clements, F. E. Nature and structure of the climax. J. Ecol. 24, 252–284 (1936).
    Google Scholar 
    15.Odum, E. P. & Barrett, G. W. Fundamentals of Ecology 5th edn (Thomson Brooks/Cole, 2005).16.Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
    Google Scholar 
    17.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 
    18.Drake, J. A. Community-assembly mechanics and the structure of an experimental species ensemble. Am. Nat. 137, 1–26 (1991).
    Google Scholar 
    19.Warren, P. H., Law, R. & Weatherby, A. J. Mapping the assembly of protist communities in microcosms. Ecology 84, 1001–1011 (2003).
    Google Scholar 
    20.Schreiber, S. J. & Rittenhouse, S. From simple rules to cycling in community assembly. Oikos 105, 349–358 (2004).
    Google Scholar 
    21.Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).22.Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    23.Moore, R., Robinson, W., Lovette, I. & Robinson, T. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Serván, C. & Allesina, S. Tractable models of ecological assembly. Ecol. Lett. 24, 1029–1037 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    26.Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    27.Case, T. J. Surprising behavior from a familiar model and implications for competition theory. Am. Nat. 146, 961–966 (1995).
    Google Scholar 
    28.Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).
    Google Scholar 
    29.Tilman, D. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116, 362–393 (1980).
    Google Scholar 
    30.May, R. M. & Leonard, W. J. Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975).
    Google Scholar 
    31.Dean, A. M. A simple model of mutualism. Am. Nat. 121, 409–417 (1983).
    Google Scholar 
    32.Song, C., Ahn, S. V., Rohr, R. P. & Saavedra, S. Towards a probabilistic understanding about the context-dependency of species interactions. Trends Ecol. Evol. 35, 384–396 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    33.Saavedra, S., Medeiros, L. P. & AlAdwani, M. Structural forecasting of species persistence under changing environments. Ecol. Lett. https://doi.org/10.1111/ele.13582 (2020).34.Law, R. & Blackford, J. C. Self-assembling food webs: a global viewpoint of coexistence of species in Lotka–Volterra communities. Ecology 73, 567–578 (1992).
    Google Scholar 
    35.Sigmuiud, K. Darwin’s ‘circles of complexity’: assembling ecological communities. Complexity 1, 40–44 (1995).
    Google Scholar 
    36.Law, R. & Morton, R. D. Permanence and the assembly of ecological communities. Ecology 77, 762–775 (1996).
    Google Scholar 
    37.Wilson, J. B., Spijkerman, E. & Huisman, J. Is there really insufficient support for Tilman’s R* concept? A comment on Miller et al. Am. Nat. 169, 700–706 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    38.May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cenci, S., Song, C. & Saavedra, S. Rethinking the importance of the structure of ecological networks under an environment-dependent framework. Ecol. Evol. 8, 6852–6859 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    40.O’Dwyer, J. P. Whence Lotka-Volterra? Theor. Ecol. 11, 441–452 (2018).
    Google Scholar 
    41.Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S.Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vandermeer, J. H. The competitive structure of communities: an experimental approach with protozoa. Ecology 50, 362–371 (1969).
    Google Scholar 
    43.Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    44.Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    45.Bucci, V. et al. MDSINE: Microbial Dynamical Systems Inference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    46.Turelli, M. A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theor. Popul. Biol. 13, 244–267 (1978).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).48.Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
    Google Scholar 
    49.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    52.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).53.Freedman, H. & So, J.-H. Global stability and persistence of simple food chains. Math. Biosci. 76, 69–86 (1985).
    Google Scholar 
    54.Posfai, A., Taillefumier, T. & Wingreen, N. S. Metabolic trade-offs promote diversity in a model ecosystem. Phys. Rev. Lett. 118, 028103 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Xiao, Y. et al. Mapping the ecological networks of microbial communities. Nat. Commun. 8, 2042 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    58.AlAdwani, M. & Saavedra, S. Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics? Math. Biosci. 315, 108222 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    59.Weibel, C. A. in History of Topology (ed. James, I.) 797–836 (North-Holland, 1999).60.Carlsson, G. Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009).
    Google Scholar 
    61.Rabadán, R. & Blumberg, A. J. Topological Data Analysis for Genomics and Evolution: Topology in Biology (Cambridge Univ. Press, 2019).62.Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R. & Bassett, D. S. The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3, 656–673 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    63.Sugihara, G. Graph theory, homology and food webs. In Proc. Symposia in Applied Mathematics 30, 83–101 (American Mathematical Society, 1984).64.Singh, G., Mémoli, F. & Carlsson, G. E. Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Symposium on Point Based Graphics 91–100 (The Eurographics Association, 2007).65.Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41, 1–14 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    66.Bauer, U. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Preprint at https://arxiv.org/abs/1908.02518 (2019).67.Fort, H. On predicting species yields in multispecies communities: quantifying the accuracy of the linear Lotka–Volterra generalized model. Ecol. Model. 387, 154–162 (2018).
    Google Scholar 
    68.Halty, V., Valdés, M., Tejera, M., Picasso, V. & Fort, H. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations. Ecol. Appl. 27, 2277–2289 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    69.Tabi, A. et al. Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nat. Ecol. Evol. 4, 1036–1043 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    70.Jansen, W. A permanence theorem for replicator and Lotka–Volterra systems. J. Math. Biol. 25, 411–422 (1987).
    Google Scholar 
    71.Schreiber, S. J. Criteria for Cr robust permanence. J. Differ. Equ. 162, 400–426 (2000).
    Google Scholar 
    72.Angulo, M. T., Moreno, J. A., Lippner, G., Barabási, A.-L. & Liu, Y.-Y. Fundamental limitations of network reconstruction from temporal data. J. R. Soc. Interface 14, 20160966 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Differential gene expression indicates modulated responses to chronic and intermittent hypoxia in corallivorous fireworms (Hermodice carunculata)

    1.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. 114, 3660–3665 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lehrter, J. C., Ko, D. S., Lowe, L. L. & Penta, B. Predicted effects of climate change on northern Gulf of Mexico hypoxia. In Modeling coastal hypoxia 173–214 (Springer, 2017).3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Nelson, H. R. & Altieri, A. H. Oxygen: The universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).ADS 
    Article 

    Google Scholar 
    5.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).ADS 
    Article 

    Google Scholar 
    6.Murphy, J. W. & Richmond, R. H. Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 4, e1956 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Ann. Rev. Mar. Sci. 9, 5.1-5.24 (2017).Article 

    Google Scholar 
    8.Van Oppen, M. J. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).ADS 
    Article 

    Google Scholar 
    9.Montagna, P. A. & Ritter, C. Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, USA. J. Exp. Mar. Biol. Ecol. 330, 119–131 (2006).CAS 
    Article 

    Google Scholar 
    10.Pollock, M., Clarke, L. & Dubé, M. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ. Rev. 15, 1–14 (2007).CAS 
    Article 

    Google Scholar 
    11.Seitz, R. D., Dauer, D. M., Llansó, R. J. & Long, W. C. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. J. Exp. Mar. Biol. Ecol. 381, S4–S12 (2009).Article 

    Google Scholar 
    12.Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 33, 245–203 (1995).
    Google Scholar 
    13.Dean, T. L. & Richardson, J. Responses of seven species of native freshwater fish and a shrimp to low levels of dissolved oxygen. NZ J. Mar. Freshw. Res. 33, 99–106 (1999).Article 

    Google Scholar 
    14.Wannamaker, C. M. & Rice, J. A. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J. Exp. Mar. Biol. Ecol. 249, 145–163 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Richardson, J., Williams, E. K. & Hickey, C. W. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. NZ J. Mar. Freshwat. Res. 35, 625–633 (2001).Article 

    Google Scholar 
    16.McAllen, R., Davenport, J., Bredendieck, K. & Dunne, D. Seasonal structuring of a benthic community exposed to regular hypoxic events. J. Exp. Mar. Biol. Ecol. 368, 67–74 (2009).Article 

    Google Scholar 
    17.Ogino, T. & Toyohara, H. Identification of possible hypoxia sensor for behavioral responses in a marine annelid. Capitella teleta. Biol. Open 8, bio37630 (2019).
    Google Scholar 
    18.Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 8, 128–140 (1998).Article 

    Google Scholar 
    19.Li, F.-G., Chen, J., Jiang, X.-Y. & Zou, S.-M. Transcriptome analysis of blunt snout bream (Megalobrama amblycephala) reveals putative differential expression genes related to growth and hypoxia. PLoS ONE 10, e0142801 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Sahlmann, A., Wolf, R., Holth, T. F., Titelman, J. & Hylland, K. Baseline and oxidative DNA damage in marine invertebrates. J. Toxicol. Environ. Health A 80, 807–819 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Zoccola, D. et al. Structural and functional analysis of coral Hypoxia Inducible Factor. PLoS ONE 12, e0186262 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Díaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995).
    Google Scholar 
    23.Bodamer, B. L. & Bridgeman, T. B. Experimental dead zones: two designs for creating oxygen gradients in aquatic ecological studies. Limnol. Oceanogr. Methods 12, 441–454 (2014).CAS 
    Article 

    Google Scholar 
    24.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457. https://doi.org/10.1073/pnas.0803833105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Branco, P. et al. Potamodromous fish movements under multiple stressors: Connectivity reduction and oxygen depletion. Sci. Total Environ. 572, 520–525 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hayes, D. S., Branco, P., Santos, J. M. & Ferreira, T. Oxygen depletion affects kinematics and shoaling cohesion of cyprinid fish. Water 11, 642 (2019).CAS 
    Article 

    Google Scholar 
    27.Grimes, C. J., Capps, C., Petersen, L. H. & Schulze, A. Oxygen consumption during and post hypoxia exposure in bearded fireworms (Annelida: Amphinomidae). J. Comp. Physiol. B 190, 681–689 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    28.Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. Stke 407, 1–3 (2007).29.Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 92, 5510–5514 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Kaelin, W. G. Jr. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Marques, I. J. et al. Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J. Comp. Physiol. B. 178, 77–92 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schulze, A., Grimes, C. J. & Rudek, T. E. Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges. J. Mar. Biol. Assoc. UK. 97,1–6 (2017).34.Witman, J. D. Effects of predation by the fireworm Hermodice carunculata on milleporid hydrocorals. Bull. Mar. Sci. 42, 446–458 (1988).
    Google Scholar 
    35.Vreeland, H. & Lasker, H. Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. J. Exp. Mar. Biol. Ecol. 129, 265–277 (1989).Article 

    Google Scholar 
    36.Vargas-Ángel, B., Thomas, J. D. & Hoke, S. M. High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22, 465–473 (2003).Article 

    Google Scholar 
    37.Miller, M., Marmet, C., Cameron, C. & Williams, D. Prevalence, consequences, and mitigation of fireworm predation on endangered staghorn coral. Mar. Ecol. Prog. Ser. 516, 187–194 (2014).ADS 
    Article 

    Google Scholar 
    38.Lucey, N. M., Collins, M. & Collin, R. Oxygen‐mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2019).39.Grimes, C. J., Paiva, P. C., Petersen, L. H. & Schulze, A. Rapid plastic responses to chronic hypoxia in the bearded fireworm, Hermodice carunculata (Annelida: Amphinomidae). Mar. Biol. https://doi.org/10.1007/s00227-020-03756-0 (2020).Article 

    Google Scholar 
    40.Yáñez-Rivera, B. & Salazar-Vallejo, S. I. Revision of Hermodice Kinberg, 1857 (Polychaeta: Amphinomidae). Sci. Mar. 75, 251–262 (2011).Article 

    Google Scholar 
    41.Ahrens, J. B. et al. The curious case of Hermodice carunculata (Annelida: Amphinomidae): Evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gorr, T. A., Cahn, J. D., Yamagata, H. & Bunn, H. F. Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. J. Biol. Chem. 279, 36038–36047 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Li, T. & Brouwer, M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: Molecular characterization and response to hypoxia. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 147, 11–19 (2007).Article 
    CAS 

    Google Scholar 
    44.Soñanez-Organis, J. G. et al. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 150, 395–405 (2009).
    Google Scholar 
    45.Wei, L. et al. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia. Chemosphere 153, 198–204 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Giannetto, A. et al. Hypoxia-inducible factor α and Hif-prolyl hydroxylase characterization and gene expression in short-time air-exposed Mytilus galloprovincialis. Mar. Biotechnol. 17, 768–781 (2015).CAS 
    Article 

    Google Scholar 
    47.Philipp, E. E. et al. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions. PLoS ONE 7, e44621 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Sussarellu, R., Fabioux, C., Le Moullac, G., Fleury, E. & Moraga, D. Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia. Mar. Genom. 3, 133–143 (2010).Article 

    Google Scholar 
    49.Woo, S. et al. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool. Stud. 52, 15 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Burgeot, T. et al. Oyster summer morality risks associated with environmental stress. Summer Mortality of Pacific Oyster Crassostrea Gigas. The Morest Project. Éd. Ifremer/Quæ, 107–151 (2008).51.David, E., Tanguy, A., Pichavant, K. & Moraga, D. Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions. FEBS J. 272, 5635–5652 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hourdez, S. et al. Gas transfer system in Alvinella pompejana (Annelida polychaeta, Terebellida): Functional properties of intracellular and extracellular hemoglobins. Physiol. Biochem. Zool. 73, 365–373 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Boutet, I., Jollivet, D., Shillito, B., Moraga, D. & Tanguy, A. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genom. 10, 222 (2009).Article 
    CAS 

    Google Scholar 
    54.Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Huggett, J. & Griffiths, C. Some relationships between elevation, physico-chemical variables and biota of intertidal rock pools. Mar. Ecol. Prog. Ser. 29, 189–197 (1986).ADS 
    Article 

    Google Scholar 
    56.Kinsey, D. & Kinsey, E. Diurnal changes in oxygen content of the water over the coral reef platform at Heron I. Mar. Freshw. Res. 18, 23–34 (1967).Article 

    Google Scholar 
    57.Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I 51, 1159–1168 (2004).CAS 
    Article 

    Google Scholar 
    58.Levin, L. A., Gage, J. D., Martin, C. & Lamont, P. A. Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep Sea Res. Part II 47, 189–226 (2000).ADS 
    Article 

    Google Scholar 
    59.Gallardo, V. et al. Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep Sea Res. Part II 51, 2475–2490 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Gooday, A. et al. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep Sea Res. Part II 56, 488–502 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Prabhakar, N. R. & Semenza, G. L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92, 967–1003 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Du, S. N., Mahalingam, S., Borowiec, B. G. & Scott, G. R. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus). J. Exp. Biol. 219, 1130–1138 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    63.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1–19 (2015).68.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    Article 

    Google Scholar 
    69.Conesa, A., Nueda, M. J., Ferrer, A. & Talón, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 1096–1102 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Nueda, M.J., Tarazona, S., & Conesa, A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics, 30, 2598–2602. https://doi.org/10.1093/bioinformatics/btu333 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.OmicsBox. Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox (2019).72.Costa-Paiva, E. M., Schrago, C. G., Coates, C. J. & Halanych, K. M. Discovery of novel hemocyanin-like genes in Metazoans. Biol. Bull. 235, 134–151 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Kanaoka, Y. & Urade, Y. Hematopoietic prostaglandin D synthase. Prostaglandins Leukot. Essent. Fatty Acids 69, 163–167 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Altun, M. et al. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J. Biol. Chem. 287, 1962–1969 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ogawa, M. et al. 17β-estradiol represses myogenic differentiation by increasing ubiquitin-specific peptidase 19 through estrogen receptor α. J. Biol. Chem. 286, 41455–41465 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Nallapalli, R. K. et al. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol. Cancer 11, 1–11 (2012).Article 
    CAS 

    Google Scholar 
    78.Feng, Y. et al. Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. 103, 19836–19841 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Muñoz-Chápuli, R. Evolution of angiogenesis. Int. J. Dev. Biol. 55, 345–351 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    80.Kim, S., Lee, M. & Choi, Y. K. The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol. Ther. 28, 45 (2020).Article 

    Google Scholar 
    81.Nie, H., Wang, H., Jiang, K. & Yan, X. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genom. 21, 1–16 (2020).Article 
    CAS 

    Google Scholar  More