The chosen few—variations in common and rare soil bacteria across biomes
1.Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed
PubMed Central
Article
Google Scholar
2.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed
PubMed Central
Article
Google Scholar
3.Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.CAS
PubMed
PubMed Central
Article
Google Scholar
4.Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK. The contribution of species richness and composition to bacterial services. Nature. 2005;436:1157–60.CAS
PubMed
PubMed Central
Article
Google Scholar
5.Starke R, Capek P, Morais D, Callister SJ, Jehmlich N. The total microbiome functions in bacteria and fungi. J Proteom. 2020;213:1–5.Article
CAS
Google Scholar
6.Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.Article
Google Scholar
7.Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, Heijden van der MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:1–10.CAS
Article
Google Scholar
8.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:1–8.Article
CAS
Google Scholar
9.Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed
Article
PubMed Central
Google Scholar
10.Aanderud ZT, Jones SE, Fierer N, Lennon JT. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Front Microbiol. 2015;6:1–11.Article
Google Scholar
11.Song H-K, Song W, Kim M, Tripathi BM, Kim H, Jablonski P, et al. Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol Ecol. 2017;93:1–13.Article
CAS
Google Scholar
12.Jiao S, Chen W, Wei G. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol. 2017;26:5305–5317.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS
PubMed
Article
PubMed Central
Google Scholar
14.Yu X, Polz MF, Alm EJ. Interactions in self-assembled microbial communities saturate with diversity. ISME J. 2019;13:1602–17.PubMed
PubMed Central
Article
Google Scholar
15.Li P, Liu J, Jiang C, Wu M, Liu M, Li Z. Distinct successions of common and rare bacteria in soil under humic acid amendment—a microcosm study. Front Microbiol. 2019;10:1–14.Article
Google Scholar
16.Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, et al. Global patterns in the biogeography of bacterial taxa. Environ Microbiol. 2011;13:135–44.PubMed
PubMed Central
Article
Google Scholar
17.Bickel S, Chen X, Papritz A, Or D. A hierarchy of environmental covariates control the global biogeography of soil bacterial richness. Sci Rep. 2019;9:1–10.CAS
Article
Google Scholar
18.Clarke RT, Murphy JF. Effects of locally rare taxa on the precision and sensitivity of RIVPACS bioassessment of freshwaters. Freshw Biol. 2006;51:1924–40.Article
Google Scholar
19.Kurm V, Putten WH, van der, Boer W, de, Naus‐Wiezer S, Hol WHG. Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology. 2017;98:555–64.PubMed
Article
PubMed Central
Google Scholar
20.Kurm V, Putten WH, van der, Hol WHG. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PLoS ONE. 2019;14:1–14.Article
CAS
Google Scholar
21.Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.PubMed
PubMed Central
Article
Google Scholar
22.Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez‐Cohen L, et al. Microbial functional diversity: from concepts to applications. Ecol Evol. 2019;9:12000–16.PubMed
PubMed Central
Article
Google Scholar
23.Barberán A, Ramirez KS, Leff JW, Bradford MA, Wall DH, Fierer N. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol Lett. 2014;17:794–802.PubMed
Article
PubMed Central
Google Scholar
24.Dee LE, Cowles J, Isbell F, Pau S, Gaines SD, Reich PB. When do ecosystem services depend on rare species? Trends Ecol Evol. 2019;34:746–58.PubMed
Article
PubMed Central
Google Scholar
25.Pueyo S, He F, Zillio T. The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecol Lett. 2007;10:1017–28.PubMed
PubMed Central
Article
Google Scholar
26.Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.CAS
PubMed
Article
PubMed Central
Google Scholar
27.Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:1–10.
Google Scholar
28.Thompson LR, Jex AR, Campbell AH, Linz AM, Berry A, Williams AE, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS
PubMed
PubMed Central
Article
Google Scholar
29.Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nat Commun. 2020;11:1–9.
Google Scholar
30.Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr. 2013;22:737–49.Article
Google Scholar
31.Serna-Chavez HM, Fierer N, van Bodegom PM. Global drivers and patterns of microbial abundance in soil: global patterns of soil microbial biomass. Glob Ecol Biogeogr. 2013;22:1162–72.Article
Google Scholar
32.Wang G, Or D. A hydration-based biophysical index for the onset of soil microbial coexistence. Sci Rep. 2012;2:1–5.
Google Scholar
33.Li CH, Lee CK. Minimum cross entropy thresholding. Pattern Recognit. 1993;26:617–625.Article
Google Scholar
34.Walt S, van der, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al. scikit-image: image processing in Python. PeerJ. 2014;2:1–18.
Google Scholar
35.Homem-de-Mello T, Rubinstein RY. Estimation of rare event probabilities using cross-entropy. Proc Winter Simul Conf. 2002;1:310–19.Article
Google Scholar
36.Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:1–14.Article
Google Scholar
37.Šťovíček A, Kim M, Or D, Gillor O. Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep. 2017;7:1–9.Article
CAS
Google Scholar
38.Zhao M, Heinsch FA, Nemani RR, Running SW. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ. 2005;95:164–76.Article
Google Scholar
39.Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: new climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.Article
Google Scholar
40.Schoolfield RM, Sharpe PJH, Magnuson CE. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol. 1981;88:719–31.CAS
PubMed
Article
PubMed Central
Google Scholar
41.Beck HE, Wood EF, Pan M, Fisher CK, Miralles DG, van Dijk AIJM, et al. MSWEP V2 Global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc. 2019;100:473–500.Article
Google Scholar
42.Wang G, Or D. Hydration dynamics promote bacterial coexistence on rough surfaces. ISME J. 2013;7:395–404.CAS
PubMed
Article
PubMed Central
Google Scholar
43.Kim M, Or D. Individual-based model of microbial life on hydrated rough soil surfaces. PLoS ONE. 2016;11:1–31.
Google Scholar
44.Hermsen R, Okano H, You C, Werner N, Hwa T. A growth-rate composition formula for the growth of E.coli on co-utilized carbon substrates. Mol Syst Biol. 2015;11:1–6.Article
CAS
Google Scholar
45.García FC, Bestion E, Warfield R, Yvon-Durocher G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci. 2018;115:10989–94.PubMed
Article
CAS
PubMed Central
Google Scholar
46.Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, et al. Water balance creates a threshold in soil pH at the global scale. Nature. 2016;540:567–9.CAS
PubMed
Article
PubMed Central
Google Scholar
47.Treves DS, Xia B, Zhou J, Tiedje JM. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Micro Ecol. 2003;45:20–8.CAS
Article
Google Scholar
48.Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.CAS
PubMed
Article
PubMed Central
Google Scholar
49.Stauffer D. Scaling theory of percolation clusters. Phys Rep. 1979;54:1–74.Article
Google Scholar
50.Scher H, Zallen R. Critical density in percolation processes. J Chem Phys. 1970;53:3759–61.CAS
Article
Google Scholar
51.Hengl T, de Jesus JM, Heuvelink GB, Gonzalez MR, Kilibarda M, Blagotić A, et al. SoilGrids250m: global gridded soil information based on machine learning. PloS ONE. 2017;12:1–40.Article
CAS
Google Scholar
52.Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JBH. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. mBio. 2019;10:1–11.Article
Google Scholar
53.Fisher CK, Mehta P. The transition between the niche and neutral regimes in ecology. Proc Natl Acad Sci. 2014;111:13111–6.CAS
PubMed
Article
PubMed Central
Google Scholar
54.Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.PubMed
Article
PubMed Central
Google Scholar
55.Doud DFR, Bowers RM, Schulz F, Raad MD, Deng K, Tarver A, et al. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME J. 2020;14:659–75.CAS
PubMed
Article
PubMed Central
Google Scholar
56.Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:1–9.Article
CAS
Google Scholar
57.Kaminsky R, Morales SE. Conditionally rare taxa contribute but do not account for changes in soil prokaryotic community structure. Front Microbiol. 2018;9:1–6.Article
Google Scholar
58.Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A. 2004;101:4631–6.CAS
PubMed
PubMed Central
Article
Google Scholar More