More stories

  • in

    Enzyme promiscuity in natural environments: alkaline phosphatase in the ocean

    1.Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar Sci. 2011;3:401–25.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M, et al. Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry. 2013;117:5–21.Article 
    CAS 

    Google Scholar 
    4.Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Front Microbiol. 2013;4:223.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Li M, Gao Y, Qian W-J, Shi L, Liu Y, Nelson WC, et al. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes. Environ Microbiol Rep. 2017;9:512–21.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Song H-S, Thomas DG, Stegen JC, Li M, Liu C, Song X, et al. Regulation-structured dynamic metabolic model provides a potential mechanism for delayed enzyme response in denitrification process. Front Microbiol. 2017;8:1866.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Khersonsky O, Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010;79:471–505.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Baier F, Copp JN, Tokuriki N. Evolution of enzyme superfamilies: comprehensive exploration of sequence-function relationships. Biochemistry. 2016;55:6375–88.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Sebastián M, Niell FX. Alkaline phosphatase activity in marine oligotrophic environments: implications of single-substrate addition assays for potential activity estimations. Mar Ecol Prog Ser. 2004;277:285–90.Article 

    Google Scholar 
    10.Catrina I, O’Brien PJ, Purcell J, Nikolic-Hughes I, Zalatan JG, et al. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. J Am Chem Soc. 2007;129:5760–5.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Sunden F, AlSadhan I, Lyubimov AY, Ressl S, Wiersma-Koch H, Borland J, et al. Mechanistic and evolutionary insights from comparative enzymology of phosphomonoesterases and phosphodiesterases across the alkaline phosphatase superfamily. J Am Chem Soc. 2016;138:14273–87.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Yang K, Metcalf WW. A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc Natl Acad Sci USA. 2004;101:7919–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Copley SD. Shining a light on enzyme promiscuity. Curr Opin Struct Biol. 2017;47:167–75.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Steen AD, Vazin JP, Hagen SM, Mulligan KH, Wilhelm SW. Substrate specificity of aquatic extracellular peptidases assessed by competitive inhibition assays using synthetic substrates. Aquat Micro Ecol. 2015;75:271–81.Article 

    Google Scholar 
    15.Ivars-Martínez E, D’Auria G, RodrÍGuez-Valera F, SÁNchez-Porro C, Ventosa A, et al. Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis. Mol Ecol. 2008;17:4092–106.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    16.Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A, et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol. 2011;77:4055–65.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:88.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Li D, Liu C, Luo R, Sadakane K, Lam T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article 
    CAS 

    Google Scholar 
    20.Bushnell B. “BBMap: a fast, accurate, splice-aware aligner,” in Proceedings of the 9th Annual Genomics of Energy & Environment Meeting. Walnut Creek, CA, USA; 2014.21.Scholz J, Besir H, Strasser C, Suppmann S. A new method to customize protein expression vectors for fast, efficient and background free parallel cloning. BMC Biotechnol. 2013;13:12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.McLoughlin SY, Jackson C, Liu JW, Ollis DL. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl Environ Microbiol. 2004;70:404–12.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Britton J, Dyer RP, Majumdar S, Raston CL, Weiss GA. Ten-minute protein purification and surface tethering for continuous-flow biocatalysis. Angew Chem Int Ed Engl. 2017;56:2296–301.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Ortiz-Tena JG, Rühmann B, Sieber V. Colorimetric determination of sulfate via an enzyme cascade for high-throughput detection of sulfatase activity. Anal Chem. 2018;90:2526–33.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Huitema C, Horsman G. Analyzing enzyme kinetic data using the powerful statistical capabilities of R. 2018. http://biorxiv.org/content/10.1101/316588v1.26.Rainer SF. Soft-bottom benthic communities in Otago Harbour and Blueskin Bay, New Zealand. New Zealand Oceanographic Institute Memoir 80; 1981.27.Grove SL, Probert PK. Sediment macrobenthos of upper Otago Harbour, New Zealand. New Zeal J Mar Fresh. 1999;33:469–80.28.Hoppe HG. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser. 1983;11:299–308.CAS 
    Article 

    Google Scholar 
    29.Yamaguchi T, Sato M, Hashihama F, Ehama M, Shiozaki T, Takahashi K, et al. Basin‐scale variations in labile dissolved phosphoric monoesters and diesters in the central North Pacific Ocean. J Geophys Res Oceans. 2019;124:3058–72.CAS 
    Article 

    Google Scholar 
    30.Baltar F, Lundin D, Palovaara J, Lekunberri I, Reinthaler T, Herndl GJ, et al. Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic. Front Microbiol. 2016;7:1670.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Yamaguchi H, Arisaka H, Seki M, Adachi M, Kimura K, Tomaru Y. Phosphotriesterase activity in marine bacteria of the genera Phaeobacter, Ruegeria, and Thalassospira. Int Biodeter Biodegr. 2016;115:186–91.CAS 
    Article 

    Google Scholar 
    32.Davidi D, Noor E, Liebermeister W, Bar-Even A, Flamholz A, Tummler K, et al. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proc Natl Acad Sci USA. 2016;113:3401–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Paytan A, Cade-Menum BJ, McLaughlin K, Faul KL. Selective phosphorus regeneration of sinking marine particles: evidence from 31P-NMR. Mar Chem. 2003;82:55–70.CAS 
    Article 

    Google Scholar 
    34.Wu J, Wang P, Wang Y. Cytotoxic and mutagenic properties of alkyl phosphotriester lesions in Escherichia coli cells. Nucleic Acids Res. 2018;46:4013–21.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.McCarthy JG, Edington BV, Schendel PF. Inducible repair of phosphotriesters in Escherichia coli. Proc Natl Acad Sci USA. 1983;80:7380–4.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Helbert W. Marine polysaccharide sulfatases. Front Mar Sci. 2017;4:6.Article 

    Google Scholar 
    37.Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, et al. Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics. 2013;9:51–61.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Canfield DE, Farquhar J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA. 2009;106:8123–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Luo HW, Benner R, Long RA, Hu JJ. Subcellular localization of marine bacterial alkaline phosphatases. Proc Nat Acad Sci USA. 2009;106:21219–23.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Wu J-R, Shien J-H, Shieh HK, Hu C-C, Gong S-R, Chen L-Y, et al. Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. FEMS Microbiol Lett. 2007;267:113–20.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Kageyama H, Tripathi K, Rai AK, Cha-um S, Waditee-Sirisattha R, Takabe T. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Micro. 2011;77:5178–83.CAS 
    Article 

    Google Scholar 
    42.Rodriguez F, Lillington J, Johnson S, Timmel CR, Lea SM, Berks BC. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J Biol Chem. 2014;289:30889–99.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Noskova Y, Likhatskaya G, Terentieva N, Son O, Tekutyeva L, Balabanova L. A novel alkaline phosphatase/phosphodiesterase, CamPhoD, from marine bacterium Cobetia amphilecti KMM 296. Mar Drugs. 2019;17:657.CAS 
    PubMed Central 
    Article 

    Google Scholar 
    44.Dyhrman ST, Ammerman JW, Van, Mooy BAS. Microbes and the marine phosphorus cycle. Oceanography. 2007;20:110–6.Article 

    Google Scholar 
    45.Larson TJ, Ehrmann M, Boos W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem. 1983;258:5428–32.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.van Veen HW. Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek. 1997;72:299–315.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Parthasarathy S, Parapatla H, Nandavaram A, Palmer T, Siddavattam D. Organophosphate hydrolase is a lipoprotein and interacts with Pi-specific transport system to facilitate growth of Brevundimonas diminuta using op insecticide as source of phosphate. J Biol Chem. 2016;291:7774–85.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hong T, Kong A, Lam J, Young L. Periplasmic alkaline phosphatase activity and abundance in Escherichia coli B23 and C29 during exponential and stationary phase. J Exp Microbiol Immunol. 2007;11:8–13.
    Google Scholar 
    49.Baltar F, Arístegui J, Gasol J, Yokokawa T, Herndl GJ. Bacterial versus archaeal origin of extracellular enzymatic activity in the Northeast Atlantic deep waters. Micro Ecol. 2013;65:277–88.CAS 
    Article 

    Google Scholar 
    50.Thomson B, Wenley J, Currie K, Hepburn C, Herndl GJ, Baltar F. Resolving the paradox: continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar Chem. 2019;214:103671.CAS 
    Article 

    Google Scholar 
    51.Lei L, Cherukuri KP, Alcolombri U, Meltzer D, Tawfik DS. The dimethylsulfoniopropionate (DMSP) lyase and lyase-like cupin family consists of bona fide DMSP lyases as well as other enzymes with unknown function. Biochemistry. 2018;57:3364–77.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Ferla MP, Brewster JL, Hall KR, Evans GB, Patrick WM. Primordial‐like enzymes from bacteria with reduced genomes. Primordial-like enzymes from bacteria with reduced genomes. Mol Microbiol. 2017;105:508–24.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Impact of a tropical forest blowdown on aboveground carbon balance

    Study siteThis study was conducted at La Selva Biological Station, located in the lowland Atlantic forest of Costa Rica (10°26′ N, 83°59′ W). The mean annual temperature is 26 °C; mean annual precipitation is 4 m and all months have mean precipitation  > 100 mm39. La Selva has undulating topography, with elevation varying between 10 and 140 m above sea level. La Selva Biological Station includes multiple land uses; our analysis includes 103.5 hectares of forest, comprising 33.0 ha of old-growth forest and 70.5 ha of forests with past human disturbance (secondary forests, abandoned agroforestry, abandoned plantation, selectively-logged forests); here, we refer to all areas with past human disturbance as “secondary forests”. This study area does not include the full extent of old-growth or secondary forests at La Selva—we focused our drone data collection on this area because it contained the most severe apparent disturbance from the blowdown. Forests with past human disturbance have been naturally regenerating for a range of time (since 1955–1988); we excluded secondary forests with regeneration starting after 1988.Lidar dataWe use two airborne lidar datasets to quantify dynamics in canopy structure and ACD. Data were collected in 2009 and 2019 (Supplementary Table 2). Data from 2009 were collected by a fixed-wing aircraft over the entire reserve; data from 2019 were collected using the Brown Platform for Autonomous Remote Sensing40. We focused on an area 1.4 km2 in size that includes the region of most severe damage from the blowdown (Supplementary Fig. 1). Both lidar sensors were discrete-return systems. To minimize variation in lidar height estimates from variable laser beam divergence and detector characteristics, we only used data from first returns for all analyses. For the 2019 drone-based lidar with higher native point density and a wider scan angle range40, we limited our analysis to lidar returns with scan angle ± 15 degrees and randomly subsampled data to a homogenous resolution of 10 pts m−2. Previous research demonstrates that lidar data collected above densities of 1 pts m−2 have similar predictive power for determining many forest properties (including tree height, tree density, and basal area)41; both lidar datasets in this study are above this density threshold. All lidar data were projected using EPSG 32,616.For all lidar data, we calculated height above ground using a digital terrain model (DTM) created from lidar data collected in 2006 and validated using 4184 independent measurements within the old-growth forest (intercept =  − 0.406, slope = 0.999, r2 = 0.994, RMSE = 1.85 m; Supplementary Table 2)42. We verified that the horizontal geolocation accuracy with  More

  • in

    1H NMR based metabolic profiling distinguishes the differential impact of capture techniques on wild bighorn sheep

    Examining the serum metabolome profiles of bighorn sheep captured by the three primary techniques used to capture wild ungulates revealed significant changes in polar metabolite levels between the different animal groups, and trends that persisted throughout the analyses when directly comparing, in a pairwise fashion, specific capture techniques. Results from PLS-DA modeling and analysis of the top 15 metabolites that contribute most (VIP  > 1.2) to the separation of the three capture groups revealed that amino acid levels of tryptophan, valine, isoleucine, phenylalanine, and proline were highest in animals captured by dart, with intermediate levels in animals capture using dropnets, and lowest in animals captured using the helicopter method (Fig. 3A). One-way ANOVA analyses identified additional amino acids that displayed similar decreasing level trends from dart to dropnet to helicopter capture (dart  > drop net  > helicopter) methods, and included arginine, asparagine, aspartate, cysteine, glutamate, and glutamine, glycine, histidine, leucine, lysine, serine, and tyrosine (Fig. 4). These metabolite level changes suggest a shift in amino acid metabolism, and a potentially higher catabolism of these compounds as a function of increasingly more energetically intense and possibly more stressful capture methods such as helicopter capture.Of these amino acids, aspartate, glycine, and glutamate function as precursors for neurotransmitter synthesis, and may therefore be valuable indicators of the capture techniques’ impacts on animal health and changes to their physiological state. Glutamate is a fundamental component of nitrogen excretion in the urea cycle, and its lower serum levels in animals captured by helicopter support the idea of altered metabolite flow through the urea cycle. In addition to these patterns, decreasing levels of aspartate were observed in samples of dropnet and helicopter captured animals compared to the levels found in the dart-captured animals. The change regarding urea cycle alterations also manifested itself in differential serum urea levels, with fold changes (FC) between the groups decreasing significantly with capture techniques, with a mean FC difference of 1.4 for the dart-captured group, 0.26 for the dropnet-captured group, and − 0.3 for the helicopter-captured animals (Supplementary Table S2). As urea recycling is a prominent feature of ruminant metabolism and urea flux can rapidly change, the urea concentration changes observed between the three capture techniques support an impact on urea cycle intermediates29. While the trend of an overall decrease in urea cycle intermediates parallels a similar trend in amino acid concentrations, the extent to which amino acid metabolism is linked to changes in urea cycle activity is difficult to evaluate due to the nature of nitrogen recycling in the rumen of these ruminants.Other metabolites found in significantly higher concentrations in the serum samples of dart-captured animals compared to the two other techniques included: formate, glucose, 3-hydroxybutyrate, dimethylamine, carnitine (Fig. 3A). Propionate, which was observed to be higher in the dart and dropnet captured animals than that of helicopter captured animals (Fig. 4) is of interest, as it is the main precursor for glucose synthesis in the liver of ruminants30, and potentially reflect a higher dependence of ruminants on gluconeogenesis due to the almost complete conversion of available dietary carbohydrates to volatile fatty acids in the rumen31. As animal capture via nets increases physical activity as the animals struggle to free themselves from entanglement, generally resulting in longer times animals are under physical restraint, as well as the increased physical exertion and stress as they attempt to flee the pursuing helicopter, the observed decrease in serum propionate levels may reflect increased needs to generate glucose de novo via gluconeogenesis.This interpretation of the metabolite data is reinforced by the observation of significantly elevated levels of O-acetylcarnitine in the drop net and helicopter net gun animal capture groups compared to the darted animals (Fig. 4). As an important element of the carnitine/acyl-carnitine shuttle and import of fatty acids into the mitochondria for β-oxidation, acyl-carnitine is a major contributor to the flow of acyl groups into the TCA cycle, and a robust indicator of cardiac output and, by extension, TCA cycle activity levels in mammals32. Additional metabolites that displayed distinctly increasing trends based on capture method (dart  More

  • in

    Cities as hot stepping stones for tree migration

    1.Willis, K. J. & Petrokofsky, G. The natural capital of city trees. Science 356, 374–376 (2017).CAS 

    Google Scholar 
    2.Fontaine, L. C. & Larson, B. M. H. The right tree at the right place? Exploring urban foresters’ perceptions of assisted migration. Urban For. Urban Green. 18, 221–227 (2016).
    Google Scholar 
    3.Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
    Google Scholar 
    4.Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).CAS 

    Google Scholar 
    5.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 
    6.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 

    Google Scholar 
    7.Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).
    Google Scholar 
    8.Rehfeldt, G. E., Crookston, N. L., Warwell, M. V. & Evans, J. S. Empirical analyses of plant‐climate relationships for the Western United States. Int. J. Plant Sci. 167, 1123–1150 (2006).
    Google Scholar 
    9.Tomiolo, S. & Ward, D. Species migrations and range shifts: a synthesis of causes and consequences. Perspect. Plant Ecol. Evol. Syst. 33, 62–77 (2018).
    Google Scholar 
    10.Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 111, 723–727 (2014).CAS 

    Google Scholar 
    11.Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).
    Google Scholar 
    12.Walther, G. R. et al. Palms tracking climate change. Glob. Ecol. Biogeogr. 16, 801–809 (2007).
    Google Scholar 
    13.Miller, K. M. & McGill, B. J. Land use and life history limit migration capacity of eastern tree species. Glob. Ecol. Biogeogr. 27, 57–67 (2018).
    Google Scholar 
    14.Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Chang. 6, 1104–1109 (2016).
    Google Scholar 
    15.Lazarus, E. D. & McGill, B. J. Pushing the pace of tree species migration. PLoS ONE 9, e105380 (2014).
    Google Scholar 
    16.Cunze, S., Heydel, F. & Tackenberg, O. Are plant species able to keep pace with the rapidly changing climate? PLoS ONE 8, e67909 (2013).CAS 

    Google Scholar 
    17.Gray, L. K. & Hamann, A. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 117, 289–303 (2013).
    Google Scholar 
    18.Petit, R. J., Hu, F. S. & Dick, C. W. Forests of the past: a window to future changes. Science 320, 1450–1452 (2008).CAS 

    Google Scholar 
    19.Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).CAS 

    Google Scholar 
    20.Mosblech, N. A. S., Bush, M. B. & van Woesik, R. On metapopulations and microrefugia: Palaeoecological insights. J. Biogeogr. 38, 419–429 (2011).
    Google Scholar 
    21.Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).CAS 

    Google Scholar 
    22.Hu, F. S., Hampe, A. & Petit, R. J. Paleoecology meets genetics: deciphering past vegetational dynamics. Front. Ecol. Environ. 7, 371–379 (2009).
    Google Scholar 
    23.Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).CAS 

    Google Scholar 
    24.Snell, R. S. & Cowling, S. A. Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. J. Biogeogr. 42, 1677–1688 (2015).
    Google Scholar 
    25.Lopez, J. Single planting creates expanding naturalized population of quercus palustris far from its native range limit. Rhodora 120, 143–153 (2018).
    Google Scholar 
    26.Varquez, A. C. G. & Kanda, M. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). npj Clim. Atmos. Sci. 1, 32 (2018).
    Google Scholar 
    27.Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).
    Google Scholar 
    28.Rizwan, A. M., Dennis, L. Y. C. & Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120–128 (2008).CAS 

    Google Scholar 
    29.Parker, D. E. Urban heat island effects on estimates of observed climate change. WIREs Clim. Change 1, 123–133 (2010).
    Google Scholar 
    30.Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).CAS 

    Google Scholar 
    31.IPCC. Global Warming of 1.5 °C (World Meteorological Organization, 2018).32.George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665 (2007).CAS 

    Google Scholar 
    33.Dallimer, M., Tang, Z., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).
    Google Scholar 
    34.Dahlhausen, J., Rötzer, T., Biber, P., Uhl, E. & Pretzsch, H. Urban climate modifies tree growth in Berlin. Int. J. Biometeorol. 62, 795–808 (2018).
    Google Scholar 
    35.Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 7, 15403 (2017).
    Google Scholar 
    36.Searle, S. Y. et al. Urban environment of New York city promotes growth in northern red oak seedlings. Tree Physiol. 32, 389–400 (2012).
    Google Scholar 
    37.McLachlan, J. S., Clark, J. S. & Manos, P. S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098 (2005).
    Google Scholar 
    38.Chakraborty, T. & Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280 (2019).
    Google Scholar 
    39.Wang, K., Sun, J., Cheng, G. & Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet plateau. J. Mt. Sci. 8, 808–816 (2011).
    Google Scholar 
    40.Kendal, D., Williams, N. S. G. & Williams, K. J. H. A cultivated environment: exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst. 15, 637–652 (2012).
    Google Scholar 
    41.Almas, A. D. & Conway, T. M. The role of native species in urban forest planning and practice: a case study of Carolinian Canada. Urban For. Urban Green. 17, 54–62 (2016).
    Google Scholar 
    42.Galera, H. & Sudnik-Wócikowska, B. Central European botanic gardens as centres of dispersal of alien plants. Acta Soc. Bot. Pol. 79, 147–156 (2010).
    Google Scholar 
    43.Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
    Google Scholar 
    44.Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).
    Google Scholar 
    45.Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 33, 115–133 (2007).
    Google Scholar 
    46.Zipper, S. C. et al. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environ. Res. Lett. 11, 054023 (2016).
    Google Scholar 
    47.Woodall, C. W., Nowak, D. J., Liknes, G. C. & Westfall, J. A. Assessing the potential for urban trees to facilitate forest tree migration in the eastern United States. For. Ecol. Manage. 259, 1447–1454 (2010).
    Google Scholar 
    48.Horta, M. B. et al. Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making. Urban Ecosyst. 21, 1097–1111 (2018).
    Google Scholar 
    49.Marris, E. Forestry: planting the forest of the future. Nature 459, 906–908 (2009).CAS 

    Google Scholar 
    50.Harvey, B. et al. Climate Change Communication and Social Learning—Review and Strategy Development for CCAFS (CCAFS, 2012)51.Farrell, C., Szota, C. & Arndt, S. K. Urban plantings: ‘Living laboratories’ for climate change response. Trends Plant Sci. 20, 597–599 (2015).CAS 

    Google Scholar 
    52.Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).CAS 

    Google Scholar 
    53.Hodgson, J. A., Thomas, C. D., Dytham, C., Travis, J. M. J. & Cornell, S. J. The speed of range shifts in fragmented landscapes. PLoS ONE 7, e47141 (2012).CAS 

    Google Scholar 
    54.Han, Q. & Keeffe, G. Mapping the flow of forest migration through the city under climate change. Urban Plan. 4, 139–151 (2019).
    Google Scholar 
    55.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar  More

  • in

    A novel system for intensive Diadema antillarum propagation as a step towards population enhancement

    1.Hughes, T. P., Reed, D. C. & Boyle, M. J. Herbivory on coral reefs: community structure following mass mortalities of sea urchins. J. Exp. Mar. Biol. Ecol. 113, 39–59 (1987).Article 

    Google Scholar 
    2.Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs (Global Coral Reef Monitoring Network, IUCN, 2014).
    Google Scholar 
    3.Goldberg, J. & Wilkinson, C. Global threats to coral reefs: coral bleaching, global climate change, disease, predator plagues, and invasive species. Status Coral Reefs World 2004(1), 67–92 (2004).
    Google Scholar 
    4.Abelson, A. et al. Upgrading marine ecosystem restoration using ecological-social concepts. Bioscience 66, 156–163 (2016).PubMed 
    Article 

    Google Scholar 
    5.Conservation International. Economic values of coral reefs, mangroves, and seagrasses: A global compilation. Center for Applied Biodiversity Science, Conservation International (2008).6.Rocha, J., Peixe, L., Gomes, N. C. M. & Calado, R. Cnidarians as a source of new marine bioactive compounds—an overview of the last decade and future steps for bioprospecting. Mar. Drugs 9, 1860–1886 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Storlazzi, C. D. et al. Rigorously Valuing the Role of U. S. Coral Reefs in Coastal Hazard Risk Reduction. No. 2019–1027. US Geological Survey (2019).8.Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Possingham, H. P., Bode, M. & Klein, C. J. Optimal conservation outcomes require both restoration and protection. PLoS Biol. 13, e1002052 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Duarte, C. M. et al. Rebuilding marine life. Nature 580, 39–51 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Greenstein, B. J., Curran, H. A. & Pandolfi, J. M. Shifting ecological baselines and the demise of Acropora cervicornis in the western North Atlantic and Caribbean Province: a pleistocene perspective. Coral Reefs 17, 249–261 (1998).Article 

    Google Scholar 
    12.Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    13.Osinga, R. et al. The biology and economics of coral growth. Mar. Biotechnol. 13, 658–671 (2011).CAS 
    Article 

    Google Scholar 
    14.Leal, M. C., Ferrier-Pagès, C., Petersen, D. & Osinga, R. Coral aquaculture: applying scientific knowledge to ex situ production. Rev. Aquac. 8, 136–153 (2016).Article 

    Google Scholar 
    15.Lirman, D. & Schopmeyer, S. Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ 2016, e2597 (2016).Article 

    Google Scholar 
    16.Barton, J. A., Willis, B. L. & Hutson, K. S. Coral propagation: a review of techniques for ornamental trade and reef restoration. Rev. Aquac. 9, 238–256 (2017).Article 

    Google Scholar 
    17.Boström-Einarsson, L. et al. Coral restoration—a systematic review of current methods, successes, failures and future directions. PLoS ONE 15, e0226631 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Rinkevich, B. Restoration strategies for coral reefs damaged by recreational activities: the use of sexual and asexual recruits. Restor. Ecol. 3, 241–251 (1995).Article 

    Google Scholar 
    19.Young, C. N., Schopmeyer, S. A. & Lirman, D. A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and western Atlantic. Bull. Mar. Sci. 88, 1075–1098 (2012).Article 

    Google Scholar 
    20.Rinkevich, B. Rebuilding coral reefs: does active reef restoration lead to sustainable reefs?. Curr. Opin. Environ. Sustain. 7, 28–36 (2014).Article 

    Google Scholar 
    21.Patterson, J. T. The growing role of aquaculture in ecosystem restoration. Restor. Ecol. 27, 938–941 (2019).Article 

    Google Scholar 
    22.Schopmeyer, S. A. et al. In situ coral nurseries serve as genetic repositories for coral reef restoration after an extreme cold-water event. Restor. Ecol. 20, 696–703 (2012).Article 

    Google Scholar 
    23.Miller, M. W., Kerr, K. & Williams, D. E. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement. PeerJ 2016, e2523 (2016).Article 

    Google Scholar 
    24.Ware, M. et al. Survivorship and growth in staghorn coral (Acropora cervicornis) outplanting projects in the Florida Keys National Marine Sanctuary. PLoS ONE 15, e0231817 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Ogden, J. Carbonate-sediment production by parrot fish and sea urchins on Caribbean reefs: reef biota. Stud. Geol. 4, 281–288 (1977).CAS 

    Google Scholar 
    26.Sammarco, P. W. Echinoid grazing as a structuring force in coral communities: whole reef manipulations. J. Exp. Mar. Biol. Ecol. 61, 31–55 (1982).Article 

    Google Scholar 
    27.Foster, S. A. The relative impacts of grazing by Caribbean coral reef fishes and Diadema: effects of habitat and surge. J. Exp. Mar. Biol. Ecol. 105, 1–20 (1987).Article 

    Google Scholar 
    28.Ogden, J. C. & Lobel, P. S. The role of herbivorous fishes and urchins in coral reef communities. Environ. Biol. Fishes 3, 49–63 (1978).Article 

    Google Scholar 
    29.Perry, C. T. et al. Changing dynamics of Caribbean reef carbonate budgets: emergence of reef bioeroders as critical controls on present and future reef growth potential. Proc. R. Soc. B Biol. Sci. 281, 20142018 (2014).Article 

    Google Scholar 
    30.Precht, L. & Precht, W. The sea urchin Diadema antillarum—keystone herbivore or redundant species?. PeerJ PrePrints 3, e1565v1 (2015).
    Google Scholar 
    31.Hughes, T. P., Graham, N. A. J., Jackson, J. B. C., Mumby, P. J. & Steneck, R. S. Rising to the challenge of sustaining coral reef resilience. Trends Ecol. Evol. 25, 633–642 (2010).PubMed 
    Article 

    Google Scholar 
    32.Lessios, H. A. The Great Diadema antillarum die-off: 30 years later. Ann. Rev. Mar. Sci. 8, 267–283 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Lessios, H. A., Glynn, P. W. & Robertson, D. R. Mass mortalities of coral reef organisms. Science 222, 715 (1983).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Lessios, H. A., Robertson, D. R. & Cubit, J. D. Spread of Diadema mass mortality through the Caribbean. Science 226, 335–337 (1984).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Lessios, H. A. et al. Mass mortality of Diadema antillarum on the Caribbean coast of Panama. Coral Reefs 3, 173–182 (1984).ADS 
    Article 

    Google Scholar 
    36.Bak, R., Carpay, M. & de Ruyter van Steveninck, E. Densities of the sea urchin Diadema antillarum before and after mass mortalities on the coral reefs of Curagao. Mar. Ecol. Prog. Ser. 17, 105–108 (1984).ADS 
    Article 

    Google Scholar 
    37.Hughes, T. P. Mass mortality of the echinoid Diadema antillarum Philippi in Jamaica. Bull. Mar. Sci. 36, 377–384 (1985).
    Google Scholar 
    38.Hunte, W., Côté, I. & Tomascik, T. On the dynamics of the mass mortality of Diadema antillarum in Barbados. Coral Reefs 4, 135–139 (1986).ADS 
    Article 

    Google Scholar 
    39.Lessios, H. A. Mass mortality of Diadema antillarum in the Caribbean: what have we learned?. Annu. Rev. Ecol. Syst. 19, 371–393 (1988).Article 

    Google Scholar 
    40.Carpenter, R. C. Mass mortality of a Caribbean sea urchin: immediate effects on community metabolism and other herbivores. Proc. Natl. Acad. Sci. 85, 511–514 (1988).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Carpenter, R. C. Mass mortality of Diadema antillarum—II. Effects on population densities and grazing intensity of parrotfishes and surgeonfishes. Mar. Biol. 104, 79–86 (1990).Article 

    Google Scholar 
    42.Carpenter, R. C. Mass mortality of Diadema antillarum—I. Long-term effects on sea urchin population-dynamics and coral reef algal communities. Mar. Biol. 104, 67–77 (1990).Article 

    Google Scholar 
    43.Levitan, D. R. Algal-urchin biomass responses following mass mortality of Diadema antillarum Philippi at Saint John, U.S. Virgin Islands. J. Exp. Mar. Biol. Ecol. 119, 167–178 (1988).Article 

    Google Scholar 
    44.Lessios, H. A. Diadema antillarum 10 years after mass mortality: still rare, despite help from a competitor. Proc. R. Soc. B Biol. Sci. 259, 331–337 (1995).ADS 
    Article 

    Google Scholar 
    45.Miller, R. J., Adams, A. J., Ogden, N. B., Ogden, J. C. & Ebersole, J. P. Diadema antillarum 17 years after mass mortality: is recovery beginning on St. Croix?. Coral Reefs 22, 181–187 (2003).Article 

    Google Scholar 
    46.National Marine Fisheries Service. Recovery plan for elkhorn coral (Acropora palmata) and staghorn corals (A. cervicornis). National Oceanic and Atmospheric Administration (2015).47.Rogers, A. & Lorenzen, K. Does slow and variable recovery of Diadema antillarum on Caribbean fore-reefs reflect density-dependent habitat selection?. Front. Mar. Sci. 3, 63 (2016).Article 

    Google Scholar 
    48.Eckert, G. Larval development, growth and morphology of the sea urchin Diadema antillarum. Bull. Mar. Sci. 63, 443–451 (1998).
    Google Scholar 
    49.Leber, K. et al. Developing restoration methods to aid in recovery of a key herbivore, Diadema antillarum, on Florida coral reefs. Mote Marine Laboratory Technical Report No. 1347 (2009).50.Moe, M. Breeding the West Indian sea egg: Tripneustes ventricosus. CORAL Mag. 11, 80–94 (2014).
    Google Scholar 
    51.Harrold, C., Lisin, S., Light, K. H. & Tudor, S. Isolating settlement from recruitment of sea urchins. J. Exp. Mar. Biol. Ecol. 147, 81–94 (1991).Article 

    Google Scholar 
    52.Lambert, D. M. & Harris, L. G. Larval settlement of the green sea urchin, Strongylocentrotus droebachiensis, in the southern Gulf of Maine. Invertebr. Biol. 119, 403–409 (2005).Article 

    Google Scholar 
    53.McBride, S. C. Sea urchin aquaculture. Am. Fish. Soc. Symp. 2005, 179–208 (2005).
    Google Scholar 
    54.Mos, B., Cowden, K. L., Nielsen, S. J. & Dworjanyn, S. A. Do cues matter? Highly inductive settlement cues don’t ensure high post-settlement survival in sea urchin aquaculture. PLoS ONE 6, e28054 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Bielmyer, G. K., Brix, K. V., Capo, T. R. & Grosell, M. The effects of metals on embryo-larval and adult life stages of the sea urchin, Diadema antillarum. Aquat. Toxicol. 74, 254–263 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Nadella, S. R. et al. Toxicity of lead and zinc to developing mussel and sea urchin embryos: critical tissue residues and effects of dissolved organic matter and salinity. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 158, 72–83 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Dautov, S. S. & Dautova, T. N. The larvae of Diadema setosum (Leske, 1778) (Camarodonta: Diadematidae) from South China Sea. Invertebr. Reprod. Dev. 60, 290–296 (2016).Article 

    Google Scholar 
    58.Huggett, M. J., King, C. K., Williamson, J. E. & Steinberg, P. D. Larval development and metamorphosis of the Australian diadematid sea urchin Centrostephanus rodgersii. Invertebr. Reprod. Dev. 47, 197–204 (2005).Article 

    Google Scholar 
    59.Dautov, S. S. The embryological and larval development of the sea urchin Diadema savignyi (Audouin, 1809) (Diadematoida: Diadematidae) from the South China Sea. Mar. Biol. Res. 16, 166–176 (2020).Article 

    Google Scholar 
    60.Harris, L. G. & Eddy, S. D. Sea urchin ecology and biology. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 1–24 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch1.
    Google Scholar 
    61.Westbrook, C. E. et al. Survivorship and feeding preferences among size classes of outplanted sea urchins, Tripneustes gratilla, and possible use as biocontrol for invasive alien algae. PeerJ 2015, e1235 (2015).Article 

    Google Scholar 
    62.Neilson, B. J., Wall, C. B., Mancini, F. T. & Gewecke, C. A. Herbivore biocontrol and manual removal successfully reduce invasive macroalgae on coral reefs. PeerJ 2018, e5332 (2018).Article 

    Google Scholar 
    63.Palmer, L. The shedding reaction in Arbacia punctulata. Physiol. Zool. 10, 352–367 (1937).CAS 
    Article 

    Google Scholar 
    64.Hammer, H., Powell, M. & Watts, S. Species Profile: Sea Urchins of the Southern Region 1–6 (Southern Regional Aquaculture Center, 2013).
    Google Scholar 
    65.Luis, O., Delgado, F. & Gago, J. Year-round captive spawning performance of the sea urchin Paracentrotus lividus: relevance for the use of its larvae as live feed. Aquat. Liv. Resour. 18, 45–54 (2005).Article 

    Google Scholar 
    66.Gago, J. & Luís, O. J. Comparison of spawning induction techniques on Paracentrotus lividus (Echinodermata: Echinoidea) broodstock. Aquacult. Int. 19, 181–191 (2011).Article 

    Google Scholar 
    67.Watts, S. A., Lawrence, A. L. & Lawrence, J. M. Nutrition. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 155–169 (Elsevier, 2013).
    Google Scholar 
    68.Walker, C. W. & Lesser, M. P. Manipulation of food and photoperiod promotes out-of-season gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis implications for aquaculture. Mar. Biol. 132, 663–676 (1998).Article 

    Google Scholar 
    69.Pearse, J. S., Eernisse, D. J., Pearse, V. B. & Beauchamp, K. A. Photoperiodic regulation of gametogenesis in sea stars, with evidence for an annual calendar independent of fixed daylength. Integr. Comp. Biol. 26, 417–431 (1986).
    Google Scholar 
    70.Lorenzen, K., Leber, K. M. & Blankenship, H. L. Responsible approach to marine stock enhancement: an update. Rev. Fish. Sci. 18, 189–210 (2010).Article 

    Google Scholar 
    71.Chandler, L. M., Walters, L. J., Sharp, W. C. & Hoffman, E. A. Genetic structure of natural and broodstock populations of the long-spined sea urchin, Diadema antillarum, throughout the Florida Keys. Bull. Mar. Sci. 93, 881–889 (2017).Article 

    Google Scholar 
    72.Tringali, M. D. et al. Genetic Policy for the Release of Finfishes in Florida. Florida Fish and Wildlife Conservation Commission (2007).73.Lorenzen, K. Understanding and managing enhancements: why fisheries scientists should care. J. Fish Biol. 85, 1807–1829 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    74.Pearce, C. M., Daggett, T. L. & Robinson, S. M. C. Optimizing prepared feed ration for gonad production of the green sea urchin Strongylocentrotus droebachiensis. J. World Aquac. Soc. 33, 268–277 (2002).Article 

    Google Scholar 
    75.Hammer, H. S. et al. Effect of feed protein and carbohydrate levels on feed intake, growth, and gonad production of the sea urchin, Lytechinus variegatus. J. World Aquac. Soc. 43, 145–158 (2012).Article 

    Google Scholar 
    76.Carboni, S., Hughes, A. D., Atack, T., Tocher, D. R. & Migaud, H. Influence of broodstock diet on somatic growth, fecundity, gonad carotenoids and larval survival of sea urchin. Aquac. Res. 46, 969–976 (2015).CAS 
    Article 

    Google Scholar 
    77.Liu, H. et al. The effect of diet type on growth and fatty acid composition of the sea urchin larvae, II. Psammechinus miliaris (Gmelin). Aquaculture 264, 263–278 (2007).CAS 
    Article 

    Google Scholar 
    78.Brundu, G. et al. Effects of on-demand feeding on sea urchin larvae (Paracentrotus lividus; Lamarck, 1816), development, survival and microalgae utilization. Aquac. Res. 48, 1550–1560 (2017).Article 

    Google Scholar 
    79.Capo, T., Boyd, A. E., Miller, M. W., Sukrhaj, N. C. & Szmant, A. Non-invasive Spawning of Captive Diadema antillarum (Philippi) Under Photo-Thermal Control (CRC Press, 2003).
    Google Scholar 
    80.Reuter, K. E. & Levitan, D. R. Influence of sperm and phytoplankton on spawning in the echinoid Lytechinus variegatus. Biol. Bull. 219, 198–206 (2010).PubMed 
    Article 

    Google Scholar 
    81.Muthiga, N. A. & McClanahan, T. R. Diadema. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 257–274 (Elsevier, 2013).
    Google Scholar 
    82.Lewis, J. B. Growth and breeding in the tropical echinoid Diadema antillarum Philippi. Bull. Mar. Sci. 16, 151–158 (1966).
    Google Scholar 
    83.Bauer, J. C. Growth, aggregation, and maturation in the echinoid, Diadema antillarum. Bull. Mar. Sci. 26, 273–277 (1976).ADS 

    Google Scholar 
    84.Iliffe, T. M. & Pearse, J. S. Annual and lunar reproductive rhythms of the sea urchin, Diadema antillarum (Philippi) in Bermuda. Int. J. Invertebr. Reprod. 5, 139–148 (1982).Article 

    Google Scholar 
    85.Randall, J. E., Schroeder, R. E. & Starck, W. A. I. Notes on the biology of the echinoid Diadema antillarum. Caribb. J. Sci. 1, 421–433. https://doi.org/10.1126/science.1.10.263 (1964).Article 

    Google Scholar 
    86.Lessios, H. A. Reproductive periodicity of the echinoids Diadema and Echinometra on the two coasts of Panama. J. Exp. Mar. Biol. Ecol. 50, 47–61 (1981).Article 

    Google Scholar 
    87.Levitan, D. R. Asynchronous spawning and aggregative behavior in the sea urchin Diadema antillarum (Philippi). Direct 76, 181–186 (1988).
    Google Scholar 
    88.Hodin, J. et al. Culturing echinoderm larvae through metamorphosis. Methods Cell Biol. 150, 125–169 (2019).PubMed 
    Article 

    Google Scholar 
    89.Metaxas, A. Larval ecology of echinoids. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 69–81 (Elsevier, 2013).
    Google Scholar 
    90.Grünbaum, D. & Strathmann, R. R. Form, performance and trade-offs in swimming and stability of armed larvae. J. Mar. Res. 61, 659–691 (2003).Article 

    Google Scholar 
    91.Williamson, J. E. Sea urchin aquaculture in Australia. In Echinoderm Aquaculture (eds Brown, N. P. & Eddy, S. D.) 225–243 (Wiley, 2015). https://doi.org/10.1002/9781119005810.ch10.
    Google Scholar 
    92.Swanson, R. L. et al. Dissolved histamine: a potential habitat marker promoting settlement and metamorphosis in sea urchin larvae. Mar. Biol. 159, 915–925 (2012).CAS 
    Article 

    Google Scholar 
    93.Mos, B., Byrne, M. & Dworjanyn, S. A. Effects of low and high pH on sea urchin settlement, implications for the use of alkali to counter the impacts of acidification. Aquaculture 528, 735618 (2020).CAS 
    Article 

    Google Scholar 
    94.Radenac, G., Fichet, D. & Miramand, P. Bioaccumulation and toxicity of four dissolved metals in Paracentrotus lividus sea-urchin embryo. Mar. Environ. Res. 51, 151–166 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Phillips, B. M. et al. Toxicity of cadmium–copper–nickel–zinc mixtures to larval purple sea urchins (Strongylocentrotus purpuratus). Bull. Environ. Contam. Toxicol. 70, 592–599 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    96.USEPA. Ambient Water Quality Criteria for Silver. U.S. Environmental Protection Agency (1980).97.USEPA. Draft Update of Ambient Water Quality Criteria for Copper. U.S. Environmental Protection Agency (2003).98.Martins, C. I. M., Pistrin, M. G., Ende, S. S. W., Eding, E. H. & Verreth, J. A. J. The accumulation of substances in recirculating aquaculture systems (RAS) affects embryonic and larval development in common carp Cyprinus carpio. Aquaculture 291, 65–73 (2009).Article 

    Google Scholar 
    99.Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    100.Seixas, P., Coutinho, P., Ferreira, M. & Otero, A. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J. Exp. Mar. Biol. Ecol. 381, 1–9 (2009).Article 

    Google Scholar 
    101.Bendich, A. Recent advances in clinical research involving carotenoids. Pure Appl. Chem. 66, 1017–1024 (1994).CAS 
    Article 

    Google Scholar 
    102.Krinsky, N. I. The antioxidant and biological properties of the carotenoids. Ann. N. Y. Acad. Sci. 854, 443–447 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    103.Kelly, M. S. & Symonds, R. C. Carotenoids in sea urchins. In Sea Urchins: Biology and Ecology Vol. 38 (ed. Lawrence, J. M.) 171–177 (Elsevier, 2013).
    Google Scholar 
    104.Cárcamo, P. F., Candia, A. I. & Chaparro, O. R. Larval development and metamorphosis in the sea urchin Loxechinus albus (Echinodermata: Echinoidea): effects of diet type and feeding frequency. Aquaculture 249, 375–386 (2005).Article 

    Google Scholar 
    105.Carboni, S. et al. Evaluation of flow through culture technique for commercial production of sea urchin (Paracentrotus lividus) larvae. Aquac. Res. 45, 768–772 (2014).Article 

    Google Scholar 
    106.Takahashi, Y., Itoh, K., Ishii, M., Suzuki, M. & Itabashi, Y. Induction of larval settlement and metamorphosis of the sea urchin Strongylocentrotus intermedius by glycoglycerolipids from the green alga Ulvella lens. Mar. Biol. 140, 763–771 (2002).CAS 
    Article 

    Google Scholar 
    107.Gaylord, B., Hodin, J. & Ferner, M. C. Turbulent shear spurs settlement in larval sea urchins. Proc. Natl. Acad. Sci. U. S. A. 110, 6901–6906 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    108.Gosselin, L. A. & Qian, P. Y. Juvenile mortality in benthic marine invertebrates. Mar. Ecol. Prog. Ser. 146, 265–282 (1997).ADS 
    Article 

    Google Scholar 
    109.Miller, B. A. & Emlet, R. B. Development of newly metamorphosed juvenile sea urchins (Strongylocentrotus franciscanus and S. purpuratus): morphology, the effects of temperature and larval food ration, and a method for determining age. J. Exp. Mar. Biol. Ecol. 235, 67–90 (1999).Article 

    Google Scholar 
    110.Byrne, M., Sewell, M. A. & Prowse, T. A. A. Nutritional ecology of sea urchin larvae: influence of endogenous and exogenous nutrition on echinopluteal growth and phenotypic plasticity in Tripneustes gratilla. Funct. Ecol. 22, 643–648 (2008).Article 

    Google Scholar 
    111.Feehan, C. J., Brown, M. S., Sharp, W. C., Lauzon-Guay, J.-S. & Adams, D. K. Fertilization limitation of Diadema antillarum on coral reefs in the Florida Keys. Ecology 97, 1897–1904 (2016).PubMed 
    Article 

    Google Scholar 
    112.Miller, M. W., Kramer, K. L., Williams, S. M., Johnston, L. & Szmant, A. M. Assessment of current rates of Diadema antillarum larval settlement. Coral Reefs 28, 511–515 (2009).ADS 
    Article 

    Google Scholar 
    113.Vermeij, M. J. A., Debrot, A. O., van der Hal, N., Bakker, J. & Bak, R. P. M. Increased recruitment rates indicate recovering populations of the sea urchin Diadema antillarum on Curaçao. Bull. Mar. Sci. 86, 719–725 (2010).
    Google Scholar 
    114.Miller, R. J., Adams, A. J., Ebersole, J. P. & Ruiz, E. Evidence for positive density-dependent effects in recovering Diadema antillarum populations. J. Exp. Mar. Biol. Ecol. 349, 215–222 (2007).Article 

    Google Scholar 
    115.Hunte, W. & Younglao, D. Recruitment and population recovery of Diadema antillarum (Echinodermata; Echinoidea) in Barbados. Mar. Ecol. Prog. Ser. 45, 109–119 (1988).ADS 
    Article 

    Google Scholar 
    116.Weil, E., Losada, F. & Bone, D. Spatial variations in density and size of the echinoid Diadema antillarum Philippi on some Venezuelan coral reefs. Bijdragen tot de Dierkunde 54, 73–82 (1984).Article 

    Google Scholar 
    117.Lee, S. C. Habitat complexity and consumer-mediated positive feedbacks on a Caribbean coral reef. Oikos 112, 442–447 (2006).Article 

    Google Scholar 
    118.Feehan, C. J. & Scheibling, R. E. Effects of sea urchin disease on coastal marine ecosystems. Mar. Biol. 161, 1467–1485 (2014).CAS 
    Article 

    Google Scholar 
    119.Dame, E. A. Assessing the effect of artificial habitat structure on translocation of the long-spined sea urchin, Diadema antillarum, in Curaçao (Netherlands Antilles). Bull. Mar. Sci. 82, 247–254 (2008).ADS 

    Google Scholar 
    120.Sharp, W. Assessing the use of artificial structures to enhance the survival rates of long-spined sea uchins on the reef tract of the Florida Keys. Florida Fish and Wildlife Conservation Commission (2014).121.Rogers, A. & Lorenzen, K. Recovery of Diadema antillarum and the potential for active rebuilding measures: modelling population dynamics. In Proceedings of the 11th International Coral Reef Symposium 7–11 (2008).122.Creswell, R. L. Developing echinoderm culture for consumption and stock enhancement in the Caribbean. FAO Fish. Aquac. Proc. 19, 141–145 (2011).
    Google Scholar  More

  • in

    Poor prey quality is compensated by higher provisioning effort in passerine birds

    1.Wright, J., Both, C., Cotton, P. A. & Bryant, D. Quality vs. quantity: energetic and nutritional trade-offs in parental provisioning. J. Anim. Ecol. 67, 620–634 (1998).Article 

    Google Scholar 
    2.Naef-Daenzer, B. & Keller, L. F. The foraging performance of great and blue tits (Parus major and P. caeruleus) in relation to caterpillar development, and its consequences for nestling growth and fledging weight. J. Anim. Ecol. 68, 708–718 (1999).Article 

    Google Scholar 
    3.Perrins, C. M. & McCleery, R. H. The effect of fledging mass on the lives of Great Tits Parus major. Ardea 89, 142 (2001).
    Google Scholar 
    4.van Oort, H. & Otter, K. A. Natal nutrition and the habitat distributions of male and female black-capped chickadees. Can. J. Zool. 83, 1495–1501 (2005).Article 

    Google Scholar 
    5.Metcalfe, N. B. & Monaghan, P. Growth versus lifespan: Perspectives from evolutionary ecology. Exp. Gerontol. 38, 935–940 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Tinbergen, J. M. & Boerlijst, M. C. Nestling weight and survival in individual great tits (Parus major). J. Anim. Ecol. 59, 1113 (1990).Article 

    Google Scholar 
    7.Perrins, C. M. Tits and their caterpillar food supply. Ibis (Lond. 1859). 133, 49–54 (1991).Article 

    Google Scholar 
    8.Schwagmeyer, P. L. & Mock, D. W. Parental provisioning and offspring fitness: size matters. Anim. Behav. 75, 291–298 (2008).Article 

    Google Scholar 
    9.Naef-Daenzer, L., Naef-Daenzer, B. & Nager, R. G. Prey selection and foraging performance of breeding Great Tits Parus major in relation to food availability. J. Avian Biol. 31, 206–214 (2000).Article 

    Google Scholar 
    10.Williams, T. D. Physiological Adaptations for Breeding in Birds (Princeton University Press, Princeton, 2012).Book 

    Google Scholar 
    11.Williams, T. D. & Fowler, M. A. Individual variation in workload during parental care: can we detect a physiological signature of quality or cost of reproduction?. J. Ornithol. 156, 441–451 (2015).Article 

    Google Scholar 
    12.Dawson, R. D. & Bortolotti, G. R. Parental effort of American kestrels: the role of variation in brood size. Can. J. Zool. 81, 852–860 (2003).Article 

    Google Scholar 
    13.Ringsby, T. H., Berge, T., Saether, B. E. & Jensen, H. Reproductive success and individual variation in feeding frequency of House Sparrows (Passer domesticus). J. Ornithol. 150, 469–481 (2009).Article 

    Google Scholar 
    14.Mariette, M. M. et al. Using an Electronic Monitoring System to Link Offspring Provisioning and Foraging Behavior of a Wild Passerine. Auk 128, 26–35 (2011).Article 

    Google Scholar 
    15.García-Navas, V., Ferrer, E. S. & Sanz, J. J. Prey selectivity and parental feeding rates of Blue Tits Cyanistes caeruleus in relation to nestling age. Bird Study 59, 236–242 (2012).Article 

    Google Scholar 
    16.Lifjeld, J. T. et al. Effects of energy costs on the optimal diet: an experiment with pied flycatchers Ficedula hypoleuca feeding nestlings. Ornis Scand. 19, 111–118 (1988).Article 

    Google Scholar 
    17.Love, O. P. & Williams, T. D. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness. Am. Nat. 172, 135–149 (2008).Article 

    Google Scholar 
    18.Stodola, K. W. et al. Relative influence of male and female care in determining nestling mass in a migratory songbird. J. Avian Biol. 41, 515–522 (2010).Article 

    Google Scholar 
    19.Mägi, M. et al. Low reproductive success of great tits in the preferred habitat: a role of food low reproductive success of great tits in the preferred habitat: a role of food availability. Ecoscience 16, 145–157 (2009).Article 

    Google Scholar 
    20.Fowler, M. A. & Williams, T. D. Individual variation in parental workload and breeding productivity in female European starlings: Is the effort worth it?. Ecol. Evol. 5, 3585–3599 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Cornelius Ruhs, E., Vézina, F., Walker, M. A. & Karasov, W. H. Who pays the bill? The effects of altered brood size on parental and nestling physiology. J. Ornithol. 161, 275–288 (2019).Article 

    Google Scholar 
    22.Bridge, E. S. & Bonter, D. N. A low-cost radio frequency identification device for ornithological research. J. Field. Ornithol. 82, 52–59 (2011).Article 

    Google Scholar 
    23.Major, R. E. Stomach flushing of an insectivorous bird: an assessment of differential digestibility of prey and the risk to birds. Aust. Wildl. Res. 17, 647–657 (1990).ADS 
    Article 

    Google Scholar 
    24.Harris, M. P. & Wanless, S. The diet of shags phalacrocorax aristotelis during the chick-rearing period assessed by three methods. Bird Study 40, 135–139 (1993).Article 

    Google Scholar 
    25.Sánchez-Bayo, F., Ward, R. & Beasley, H. A new technique to measure bird’s dietary exposure to pesticides. Anal. Chim. Acta 399, 173–183 (1999).Article 

    Google Scholar 
    26.Tsipoura, N. & Burger, J. Shorebird diet during spring migration stopover on Delaware Bay. Condor 101, 635–644 (1999).Article 

    Google Scholar 
    27.Neves, V. C., Bolton, M. & Monteiro, L. R. Validation of the water offloading technique for diet assessment: an experimental study with Cory’s shearwaters (Calonectris diomedea). J. Ornithol. 147, 474–478 (2006).Article 

    Google Scholar 
    28.Goldsworthy, B., Young, M. J., Seddon, P. J. & van Heezik, Y. Stomach flushing does not affect apparent adult survival, chick hatching, or fledging success in yellow-eyed penguins (Megadyptes antipodes). Biol. Conserv. 196, 115–123 (2016).Article 

    Google Scholar 
    29.Vézina, F., Love, O. P., Lessard, M. & Williams, T. D. Shifts in metabolic demands in growing altricial nestlings illustrate context-specific relationships between basal metabolic rate and body composition. Physiol. Biochem. Zool. 82, 248–257 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Malmqvist, B. & Sjöström, P. The microdistribution of some lotic insect predators in relation to their prey and to abiotic factors. Freshw. Biol. 14, 649–656 (1984).Article 

    Google Scholar 
    31.van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451 (1995).Article 

    Google Scholar 
    32.Bale, J. S. Insects and low temperatures: From molecular biology to distributions and abundance. Philos. Trans. R. Soc. B Biol. Sci. 357, 849–862 (2002).CAS 
    Article 

    Google Scholar 
    33.Hansson, L. A. et al. Experimental evidence for a mismatch between insect emergence and waterfowl hatching under increased spring temperatures. Ecosphere 5, 1–9 (2014).Article 

    Google Scholar 
    34.Bates, D., Maechler, M., Bolker, B., & Walker, S. Lme4: Linear Mixed-Effects Models Using Eigen and S4. R package version 1.1–21. http://CRAN.R-project.org/package=lme4 (2019)35.Hothorn, T., Zeilis, A., Farebrother, R.W., Cummins, C., Millo, G. & Mitchell, D. lmtest: Testing linear regression models. R package version 0.9–37. http://CRAN.R-project.org/package=lmtest (2019)36.Kuznetsova, A., Brockoff, P.B., & R. H. Christensen. LmerTest: Tests for Random and Fixed Effects for Linear Mixed Effect Models (lmer objects of lme4 package). R package version 2.0-3. https://CRANR-projectorg/package=lmerTest (2019)37.Lenth, R. V., Singmann, H., Love, J., Buerkner. P. & Herve, M. emmeans: Estimated marginal means. R package version 1.4.6. https://cran.r-project.org/web/packages/emmeans/index.html (2019)38.Ricklefs, R. E. Preliminary models for growth rates in altricial birds. Ecology 50, 1031–1039 (1969).Article 

    Google Scholar 
    39.Drent, R. H. & Daan, S. The prudent parent: energetic adjustments in avian breeding. Ardea 68, 225–252 (1980).
    Google Scholar 
    40.Killpack, T. L. & Karasov, W. H. Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period. J. Exp. Biol. 215, 1806–1815 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Verboven, N. & Visser, M. E. Seasonal variation in local recruitment of great tits: the importance of being early. Oikos 81, 511 (1998).Article 

    Google Scholar 
    42.Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B Biol. Sci. 270, 367–372 (2003).Article 

    Google Scholar 
    43.Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.García-navas, V. & Sanz, J. J. Seasonal decline in provisioning effort and nestling mass of Blue Tits Cyanistes caeruleus: Experimental support for the parent quality hypothesis. Ibis (Lond. 1859). 153, 59–69 (2011).Article 

    Google Scholar 
    45.García-Navas, V. & Sanz, J. J. The importance of a main dish: Nestling diet and foraging behaviour in Mediterranean blue tits in relation to prey phenology. Oecologia 165, 639–649 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Boyce, M. S. & Perrins, C. M. Optimizing great tit clutch size in a fluctuating environment. Ecology 68, 142–153 (1987).Article 

    Google Scholar 
    47.Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. 40, 135–145 (2009).Article 

    Google Scholar 
    48.Stalwick, J. A. & Wiebe, K. L. Delivery rates and prey use of mountain bluebirds in grassland and clear-cut habitats. Avian Conserv. Ecol. 14, 1–11 (2019).
    Google Scholar 
    49.Kadin, M., Olsson, O., Hentati-Sundberg, J., Ehrning, E. W. & Blenckner, T. Common Guillemot Uria aalge parents adjust provisioning rates to compensate for low food quality. Ibis (Lond. 1859). 158, 167–178 (2016).Article 

    Google Scholar 
    50.Stauss, M. J., Burkhardt, J. F. & Tomiuk, J. Foraging flight distances as a measure of parental effort in blue tits Parus caeruleus differ with environmental conditions. J. Avian Biol. 36, 47–56 (2005).Article 

    Google Scholar 
    51.Killpack, T. L., Tie, D. N. & Karasov, W. H. Compensatory growth in nestling Zebra Finches impacts body composition but not adaptive immune function. Auk 131, 396–406 (2014).Article 

    Google Scholar 
    52.Geluso, K. & Hayes, J. P. Effects of dietary quality on basal metabolic rate and internal morphology of European starlings (Sturnus vulgaris). Physiol. Biochem. Zool. Ecol. Evol. Approaches 72, 189–197 (1999).CAS 
    Article 

    Google Scholar 
    53.Williams, J. B. & Tieleman, B. I. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures. J. Exp. Biol. 203, 3153–3159 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Barceló, G., Love, O. P. & Vézina, F. Uncoupling basal and summit metabolic rates in white-throated Sparrows: digestive demand drives maintenance costs, but changes in muscle mass are not needed to improve thermogenic capacity. Physiol. Biochem. Zool. 90, 153–165 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Cotton, P. A., Kacelnik, A. & Wright, J. Chick begging as a signal: are nestlings honest?. Behav. Ecol. 7, 178–182 (1996).Article 

    Google Scholar 
    56.Royle, N. J., Hartley, I. R. & Parker, G. A. Begging for control: when are offspring solicitation behaviours honest?. Trends Ecol. Evol. 17, 434–440 (2002).Article 

    Google Scholar 
    57.Kilner, R. & Johnstone, R. A. Begging the question: are offspring solicitation behaviours signals of need?. Tree 12, 11–15 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Macnair, M. R. & Parker, G. A. Models of parent-offspring conflict III. Intra-brood conflict. Anim. Behav. 27, 1202–1209 (1979).Article 

    Google Scholar 
    59.Hamer, K. C., Lynnes, A. S. & Hill, J. K. Parent-offspring interactions in food provisioning of Manx shearwaters: Implications for nestling obesity. Anim. Behav. 57, 627–631 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Godfray, H. C. J. & Johnstone, R. A. Begging and bleating: the evolution of parent-offspring signalling. Philos. Trans. R. Soc. B Biol. Sci. 355, 1581–1591 (2000).CAS 
    Article 

    Google Scholar 
    61.Leonard, M. L. & Horn, A. G. Acoustic signalling of hunger and thermal state by nestling tree swallows. Anim. Behav. 61, 87–93 (2001).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Leonard, M. L. & Horn, A. G. Ambient noise and the design of begging signals. Proc. Biol. Sci. 272, 651–656 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    63.Sacchi, R., Saino, N. & Galeotti, P. Features of begging calls reveal general condition and need of food of barn swallow (Hirundo rustica) nestlings. Behav. Ecol. 13, 268–273 (2002).Article 

    Google Scholar 
    64.Marques, P. A. M., Vicente, L. & Márquez, R. Iberian azure-winged magpie cyanopica (cyana) cooki nestlings begging calls: call characterization and hunger signalling. Bioacoustics 18, 133–149 (2008).Article 

    Google Scholar 
    65.Marques, P. A. M., Vicente, L. & Márquez, R. Nestling begging call structure and bout variation honestly signal need but not condition in Spanish sparrows. Zool. Stud. 48, 587–595 (2009).
    Google Scholar 
    66.Klenova, A. V. Chick begging calls reflect degree of hunger in three auk species (Charadriiformes: Alcidae). PLoS ONE 10, 4–6 (2015).Article 
    CAS 

    Google Scholar 
    67.Williams, T. D. Physiology, activity and costs of parental care in birds. J. Exp. Biol. 221, 1–8 (2018).Article 

    Google Scholar  More

  • in

    Coexistence holes characterize the assembly and disassembly of multispecies systems

    1.Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).
    Google Scholar 
    2.Tylianakis, J. M., Martínez-García, L. B., Richardson, S. J., Peltzer, D. A. & Dickie, I. A. Symmetric assembly and disassembly processes in an ecological network. Ecol. Lett. 21, 896–904 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    3.Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Vellend, M. The Theory of Ecological Communities (MPB-57) (Princeton Univ. Press, 2016).5.Hutchinson, G. E. Homage to Santa Rosalia or why are there so many kinds of animals? Am. Nat. 93, 145–159 (1959).
    Google Scholar 
    6.Tilman, D. Resource Competition and Community Structure (Princeton Univ. Press, 1982).7.Barbier, M., Arnoldi, J.-F., Bunin, G. & Loreau, M. Generic assembly patterns in complex ecological communities. Proc. Natl Acad. Sci. USA 115, 2156–2161 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Serván, C. A., Capitán, J. A., Grilli, J., Morrison, K. E. & Allesina, S. Coexistence of many species in random ecosystems. Nat. Ecol. Evol. 2, 1237–1242 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    9.MacArthur, R. Species packing and competitive equilibrium for many species. Theor. Popul. Biol. 1, 1–11 (1970).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Medeiros, L. P., Boege, K., del Val, E., Zaldivar-Riverón, A. & Saavedra, S. Observed ecological communities are formed by species combinations that are among the most likely to persist under changing environments. Am. Nat. https://doi.org/10.1086/711663 (2020).11.Barabás, G., D’Andrea, R. & Stump, S. M. Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303 (2018).
    Google Scholar 
    12.Grainger, T. N. & Gilbert, J. M. L. B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 34, 925–935 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    13.Alberch, P. The logic of monsters: evidence for internal constraint in development and evolution. Geobios 22, 21–57 (1989).
    Google Scholar 
    14.Clements, F. E. Nature and structure of the climax. J. Ecol. 24, 252–284 (1936).
    Google Scholar 
    15.Odum, E. P. & Barrett, G. W. Fundamentals of Ecology 5th edn (Thomson Brooks/Cole, 2005).16.Friedman, J., Higgins, L. M. & Gore, J. Community structure follows simple assembly rules in microbial microcosms. Nat. Ecol. Evol. 1, 0109 (2017).
    Google Scholar 
    17.Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
    Google Scholar 
    18.Drake, J. A. Community-assembly mechanics and the structure of an experimental species ensemble. Am. Nat. 137, 1–26 (1991).
    Google Scholar 
    19.Warren, P. H., Law, R. & Weatherby, A. J. Mapping the assembly of protist communities in microcosms. Ecology 84, 1001–1011 (2003).
    Google Scholar 
    20.Schreiber, S. J. & Rittenhouse, S. From simple rules to cycling in community assembly. Oikos 105, 349–358 (2004).
    Google Scholar 
    21.Chase, J. M. & Leibold, M. A. Ecological Niches: Linking Classical and Contemporary Approaches (Univ. Chicago Press, 2003).22.Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    23.Moore, R., Robinson, W., Lovette, I. & Robinson, T. Experimental evidence for extreme dispersal limitation in tropical forest birds. Ecol. Lett. 11, 960–968 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Maherali, H. & Klironomos, J. N. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316, 1746–1748 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Serván, C. & Allesina, S. Tractable models of ecological assembly. Ecol. Lett. 24, 1029–1037 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    26.Rosindell, J., Hubbell, S. P. & Etienne, R. S. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26, 340–348 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    27.Case, T. J. Surprising behavior from a familiar model and implications for competition theory. Am. Nat. 146, 961–966 (1995).
    Google Scholar 
    28.Saavedra, S. et al. A structural approach for understanding multispecies coexistence. Ecol. Monogr. 87, 470–486 (2017).
    Google Scholar 
    29.Tilman, D. Resources: a graphical-mechanistic approach to competition and predation. Am. Nat. 116, 362–393 (1980).
    Google Scholar 
    30.May, R. M. & Leonard, W. J. Nonlinear aspects of competition between three species. SIAM J. Appl. Math. 29, 243–253 (1975).
    Google Scholar 
    31.Dean, A. M. A simple model of mutualism. Am. Nat. 121, 409–417 (1983).
    Google Scholar 
    32.Song, C., Ahn, S. V., Rohr, R. P. & Saavedra, S. Towards a probabilistic understanding about the context-dependency of species interactions. Trends Ecol. Evol. 35, 384–396 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    33.Saavedra, S., Medeiros, L. P. & AlAdwani, M. Structural forecasting of species persistence under changing environments. Ecol. Lett. https://doi.org/10.1111/ele.13582 (2020).34.Law, R. & Blackford, J. C. Self-assembling food webs: a global viewpoint of coexistence of species in Lotka–Volterra communities. Ecology 73, 567–578 (1992).
    Google Scholar 
    35.Sigmuiud, K. Darwin’s ‘circles of complexity’: assembling ecological communities. Complexity 1, 40–44 (1995).
    Google Scholar 
    36.Law, R. & Morton, R. D. Permanence and the assembly of ecological communities. Ecology 77, 762–775 (1996).
    Google Scholar 
    37.Wilson, J. B., Spijkerman, E. & Huisman, J. Is there really insufficient support for Tilman’s R* concept? A comment on Miller et al. Am. Nat. 169, 700–706 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    38.May, R. M. Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Cenci, S., Song, C. & Saavedra, S. Rethinking the importance of the structure of ecological networks under an environment-dependent framework. Ecol. Evol. 8, 6852–6859 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    40.O’Dwyer, J. P. Whence Lotka-Volterra? Theor. Ecol. 11, 441–452 (2018).
    Google Scholar 
    41.Levine, J. M., Bascompte, J., Adler, P. B. & Allesina, S.Beyond pairwise mechanisms of species coexistence in complex communities. Nature 546, 56–64 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Vandermeer, J. H. The competitive structure of communities: an experimental approach with protozoa. Ecology 50, 362–371 (1969).
    Google Scholar 
    43.Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    44.Venturelli, O. S. et al. Deciphering microbial interactions in synthetic human gut microbiome communities. Mol. Syst. Biol. 14, e8157 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    45.Bucci, V. et al. MDSINE: Microbial Dynamical Systems Inference Engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    46.Turelli, M. A reexamination of stability in randomly varying versus deterministic environments with comments on the stochastic theory of limiting similarity. Theor. Popul. Biol. 13, 244–267 (1978).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).48.Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).
    Google Scholar 
    49.Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Grilli, J., Rogers, T. & Allesina, S. Modularity and stability in ecological communities. Nat. Commun. 7, 12031 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Hoek, T. A. et al. Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS Biol. 14, e1002540 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    52.Case, T. J. An Illustrated Guide to Theoretical Ecology (Oxford Univ. Press, 2000).53.Freedman, H. & So, J.-H. Global stability and persistence of simple food chains. Math. Biosci. 76, 69–86 (1985).
    Google Scholar 
    54.Posfai, A., Taillefumier, T. & Wingreen, N. S. Metabolic trade-offs promote diversity in a model ecosystem. Phys. Rev. Lett. 118, 028103 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    55.Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl Acad. Sci. USA 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Kehe, J. et al. Massively parallel screening of synthetic microbial communities. Proc. Natl Acad. Sci. USA 116, 12804–12809 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    57.Xiao, Y. et al. Mapping the ecological networks of microbial communities. Nat. Commun. 8, 2042 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    58.AlAdwani, M. & Saavedra, S. Is the addition of higher-order interactions in ecological models increasing the understanding of ecological dynamics? Math. Biosci. 315, 108222 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    59.Weibel, C. A. in History of Topology (ed. James, I.) 797–836 (North-Holland, 1999).60.Carlsson, G. Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009).
    Google Scholar 
    61.Rabadán, R. & Blumberg, A. J. Topological Data Analysis for Genomics and Evolution: Topology in Biology (Cambridge Univ. Press, 2019).62.Sizemore, A. E., Phillips-Cremins, J. E., Ghrist, R. & Bassett, D. S. The importance of the whole: topological data analysis for the network neuroscientist. Netw. Neurosci. 3, 656–673 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    63.Sugihara, G. Graph theory, homology and food webs. In Proc. Symposia in Applied Mathematics 30, 83–101 (American Mathematical Society, 1984).64.Singh, G., Mémoli, F. & Carlsson, G. E. Topological methods for the analysis of high dimensional data sets and 3D object recognition. In Symposium on Point Based Graphics 91–100 (The Eurographics Association, 2007).65.Giusti, C., Ghrist, R. & Bassett, D. S. Two’s company, three (or more) is a simplex. J. Comput. Neurosci. 41, 1–14 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    66.Bauer, U. Ripser: efficient computation of Vietoris–Rips persistence barcodes. Preprint at https://arxiv.org/abs/1908.02518 (2019).67.Fort, H. On predicting species yields in multispecies communities: quantifying the accuracy of the linear Lotka–Volterra generalized model. Ecol. Model. 387, 154–162 (2018).
    Google Scholar 
    68.Halty, V., Valdés, M., Tejera, M., Picasso, V. & Fort, H. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations. Ecol. Appl. 27, 2277–2289 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    69.Tabi, A. et al. Species multidimensional effects explain idiosyncratic responses of communities to environmental change. Nat. Ecol. Evol. 4, 1036–1043 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    70.Jansen, W. A permanence theorem for replicator and Lotka–Volterra systems. J. Math. Biol. 25, 411–422 (1987).
    Google Scholar 
    71.Schreiber, S. J. Criteria for Cr robust permanence. J. Differ. Equ. 162, 400–426 (2000).
    Google Scholar 
    72.Angulo, M. T., Moreno, J. A., Lippner, G., Barabási, A.-L. & Liu, Y.-Y. Fundamental limitations of network reconstruction from temporal data. J. R. Soc. Interface 14, 20160966 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Differential gene expression indicates modulated responses to chronic and intermittent hypoxia in corallivorous fireworms (Hermodice carunculata)

    1.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. 114, 3660–3665 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Lehrter, J. C., Ko, D. S., Lowe, L. L. & Penta, B. Predicted effects of climate change on northern Gulf of Mexico hypoxia. In Modeling coastal hypoxia 173–214 (Springer, 2017).3.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eaam7240 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    4.Nelson, H. R. & Altieri, A. H. Oxygen: The universal currency on coral reefs. Coral Reefs 38, 177–198 (2019).ADS 
    Article 

    Google Scholar 
    5.Hughes, D. J. et al. Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Change 10, 1–12 (2020).ADS 
    Article 

    Google Scholar 
    6.Murphy, J. W. & Richmond, R. H. Changes to coral health and metabolic activity under oxygen deprivation. PeerJ 4, e1956 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Harborne, A. R., Rogers, A., Bozec, Y.-M. & Mumby, P. J. Multiple stressors and the functioning of coral reefs. Ann. Rev. Mar. Sci. 9, 5.1-5.24 (2017).Article 

    Google Scholar 
    8.Van Oppen, M. J. et al. Shifting paradigms in restoration of the world’s coral reefs. Glob. Change Biol. 23, 3437–3448 (2017).ADS 
    Article 

    Google Scholar 
    9.Montagna, P. A. & Ritter, C. Direct and indirect effects of hypoxia on benthos in Corpus Christi Bay, Texas, USA. J. Exp. Mar. Biol. Ecol. 330, 119–131 (2006).CAS 
    Article 

    Google Scholar 
    10.Pollock, M., Clarke, L. & Dubé, M. The effects of hypoxia on fishes: from ecological relevance to physiological effects. Environ. Rev. 15, 1–14 (2007).CAS 
    Article 

    Google Scholar 
    11.Seitz, R. D., Dauer, D. M., Llansó, R. J. & Long, W. C. Broad-scale effects of hypoxia on benthic community structure in Chesapeake Bay, USA. J. Exp. Mar. Biol. Ecol. 381, S4–S12 (2009).Article 

    Google Scholar 
    12.Diaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Ann. Rev. 33, 245–203 (1995).
    Google Scholar 
    13.Dean, T. L. & Richardson, J. Responses of seven species of native freshwater fish and a shrimp to low levels of dissolved oxygen. NZ J. Mar. Freshw. Res. 33, 99–106 (1999).Article 

    Google Scholar 
    14.Wannamaker, C. M. & Rice, J. A. Effects of hypoxia on movements and behavior of selected estuarine organisms from the southeastern United States. J. Exp. Mar. Biol. Ecol. 249, 145–163 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Richardson, J., Williams, E. K. & Hickey, C. W. Avoidance behaviour of freshwater fish and shrimp exposed to ammonia and low dissolved oxygen separately and in combination. NZ J. Mar. Freshwat. Res. 35, 625–633 (2001).Article 

    Google Scholar 
    16.McAllen, R., Davenport, J., Bredendieck, K. & Dunne, D. Seasonal structuring of a benthic community exposed to regular hypoxic events. J. Exp. Mar. Biol. Ecol. 368, 67–74 (2009).Article 

    Google Scholar 
    17.Ogino, T. & Toyohara, H. Identification of possible hypoxia sensor for behavioral responses in a marine annelid. Capitella teleta. Biol. Open 8, bio37630 (2019).
    Google Scholar 
    18.Lenihan, H. S. & Peterson, C. H. How habitat degradation through fishery disturbance enhances impacts of hypoxia on oyster reefs. Ecol. Appl. 8, 128–140 (1998).Article 

    Google Scholar 
    19.Li, F.-G., Chen, J., Jiang, X.-Y. & Zou, S.-M. Transcriptome analysis of blunt snout bream (Megalobrama amblycephala) reveals putative differential expression genes related to growth and hypoxia. PLoS ONE 10, e0142801 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    20.Sahlmann, A., Wolf, R., Holth, T. F., Titelman, J. & Hylland, K. Baseline and oxidative DNA damage in marine invertebrates. J. Toxicol. Environ. Health A 80, 807–819 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Zoccola, D. et al. Structural and functional analysis of coral Hypoxia Inducible Factor. PLoS ONE 12, e0186262 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Díaz, R. J. & Rosenberg, R. Marine benthic hypoxia: A review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanogr. Mar. Biol. Annu. Rev. 33, 245–303 (1995).
    Google Scholar 
    23.Bodamer, B. L. & Bridgeman, T. B. Experimental dead zones: two designs for creating oxygen gradients in aquatic ecological studies. Limnol. Oceanogr. Methods 12, 441–454 (2014).CAS 
    Article 

    Google Scholar 
    24.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457. https://doi.org/10.1073/pnas.0803833105 (2008).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Branco, P. et al. Potamodromous fish movements under multiple stressors: Connectivity reduction and oxygen depletion. Sci. Total Environ. 572, 520–525 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hayes, D. S., Branco, P., Santos, J. M. & Ferreira, T. Oxygen depletion affects kinematics and shoaling cohesion of cyprinid fish. Water 11, 642 (2019).CAS 
    Article 

    Google Scholar 
    27.Grimes, C. J., Capps, C., Petersen, L. H. & Schulze, A. Oxygen consumption during and post hypoxia exposure in bearded fireworms (Annelida: Amphinomidae). J. Comp. Physiol. B 190, 681–689 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    28.Semenza, G. L. Hypoxia-inducible factor 1 (HIF-1) pathway. Sci. Stke 407, 1–3 (2007).29.Taylor, C. T. & McElwain, J. C. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology 25, 272–279 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Wang, G. L., Jiang, B.-H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. 92, 5510–5514 (1995).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Kaelin, W. G. Jr. & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Marques, I. J. et al. Transcriptome analysis of the response to chronic constant hypoxia in zebrafish hearts. J. Comp. Physiol. B. 178, 77–92 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Schulze, A., Grimes, C. J. & Rudek, T. E. Tough, armed and omnivorous: Hermodice carunculata (Annelida: Amphinomidae) is prepared for ecological challenges. J. Mar. Biol. Assoc. UK. 97,1–6 (2017).34.Witman, J. D. Effects of predation by the fireworm Hermodice carunculata on milleporid hydrocorals. Bull. Mar. Sci. 42, 446–458 (1988).
    Google Scholar 
    35.Vreeland, H. & Lasker, H. Selective feeding of the polychaete Hermodice carunculata Pallas on Caribbean gorgonians. J. Exp. Mar. Biol. Ecol. 129, 265–277 (1989).Article 

    Google Scholar 
    36.Vargas-Ángel, B., Thomas, J. D. & Hoke, S. M. High-latitude Acropora cervicornis thickets off Fort Lauderdale, Florida, USA. Coral Reefs 22, 465–473 (2003).Article 

    Google Scholar 
    37.Miller, M., Marmet, C., Cameron, C. & Williams, D. Prevalence, consequences, and mitigation of fireworm predation on endangered staghorn coral. Mar. Ecol. Prog. Ser. 516, 187–194 (2014).ADS 
    Article 

    Google Scholar 
    38.Lucey, N. M., Collins, M. & Collin, R. Oxygen‐mediated plasticity confers hypoxia tolerance in a corallivorous polychaete. Ecol. Evol. 10, 1145–1157 (2019).39.Grimes, C. J., Paiva, P. C., Petersen, L. H. & Schulze, A. Rapid plastic responses to chronic hypoxia in the bearded fireworm, Hermodice carunculata (Annelida: Amphinomidae). Mar. Biol. https://doi.org/10.1007/s00227-020-03756-0 (2020).Article 

    Google Scholar 
    40.Yáñez-Rivera, B. & Salazar-Vallejo, S. I. Revision of Hermodice Kinberg, 1857 (Polychaeta: Amphinomidae). Sci. Mar. 75, 251–262 (2011).Article 

    Google Scholar 
    41.Ahrens, J. B. et al. The curious case of Hermodice carunculata (Annelida: Amphinomidae): Evidence for genetic homogeneity throughout the Atlantic Ocean and adjacent basins. Mol. Ecol. 22, 2280–2291 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gorr, T. A., Cahn, J. D., Yamagata, H. & Bunn, H. F. Hypoxia-induced synthesis of hemoglobin in the crustacean Daphnia magna is hypoxia-inducible factor-dependent. J. Biol. Chem. 279, 36038–36047 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Li, T. & Brouwer, M. Hypoxia-inducible factor, gsHIF, of the grass shrimp Palaemonetes pugio: Molecular characterization and response to hypoxia. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 147, 11–19 (2007).Article 
    CAS 

    Google Scholar 
    44.Soñanez-Organis, J. G. et al. Molecular characterization of hypoxia inducible factor-1 (HIF-1) from the white shrimp Litopenaeus vannamei and tissue-specific expression under hypoxia. Comp. Biochem. Physiol. C: Toxicol. Pharmacol. 150, 395–405 (2009).
    Google Scholar 
    45.Wei, L. et al. Comparative studies of hemolymph physiology response and HIF-1 expression in different strains of Litopenaeus vannamei under acute hypoxia. Chemosphere 153, 198–204 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Giannetto, A. et al. Hypoxia-inducible factor α and Hif-prolyl hydroxylase characterization and gene expression in short-time air-exposed Mytilus galloprovincialis. Mar. Biotechnol. 17, 768–781 (2015).CAS 
    Article 

    Google Scholar 
    47.Philipp, E. E. et al. Gene expression and physiological changes of different populations of the long-lived bivalve Arctica islandica under low oxygen conditions. PLoS ONE 7, e44621 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Sussarellu, R., Fabioux, C., Le Moullac, G., Fleury, E. & Moraga, D. Transcriptomic response of the Pacific oyster Crassostrea gigas to hypoxia. Mar. Genom. 3, 133–143 (2010).Article 

    Google Scholar 
    49.Woo, S. et al. Expressions of oxidative stress-related genes and antioxidant enzyme activities in Mytilus galloprovincialis (Bivalvia, Mollusca) exposed to hypoxia. Zool. Stud. 52, 15 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    50.Burgeot, T. et al. Oyster summer morality risks associated with environmental stress. Summer Mortality of Pacific Oyster Crassostrea Gigas. The Morest Project. Éd. Ifremer/Quæ, 107–151 (2008).51.David, E., Tanguy, A., Pichavant, K. & Moraga, D. Response of the Pacific oyster Crassostrea gigas to hypoxia exposure under experimental conditions. FEBS J. 272, 5635–5652 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hourdez, S. et al. Gas transfer system in Alvinella pompejana (Annelida polychaeta, Terebellida): Functional properties of intracellular and extracellular hemoglobins. Physiol. Biochem. Zool. 73, 365–373 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Boutet, I., Jollivet, D., Shillito, B., Moraga, D. & Tanguy, A. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature. BMC Genom. 10, 222 (2009).Article 
    CAS 

    Google Scholar 
    54.Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    55.Huggett, J. & Griffiths, C. Some relationships between elevation, physico-chemical variables and biota of intertidal rock pools. Mar. Ecol. Prog. Ser. 29, 189–197 (1986).ADS 
    Article 

    Google Scholar 
    56.Kinsey, D. & Kinsey, E. Diurnal changes in oxygen content of the water over the coral reef platform at Heron I. Mar. Freshw. Res. 18, 23–34 (1967).Article 

    Google Scholar 
    57.Helly, J. J. & Levin, L. A. Global distribution of naturally occurring marine hypoxia on continental margins. Deep Sea Res. Part I 51, 1159–1168 (2004).CAS 
    Article 

    Google Scholar 
    58.Levin, L. A., Gage, J. D., Martin, C. & Lamont, P. A. Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep Sea Res. Part II 47, 189–226 (2000).ADS 
    Article 

    Google Scholar 
    59.Gallardo, V. et al. Macrobenthic zonation caused by the oxygen minimum zone on the shelf and slope off central Chile. Deep Sea Res. Part II 51, 2475–2490 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Gooday, A. et al. Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep Sea Res. Part II 56, 488–502 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    61.Prabhakar, N. R. & Semenza, G. L. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol. Rev. 92, 967–1003 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Du, S. N., Mahalingam, S., Borowiec, B. G. & Scott, G. R. Mitochondrial physiology and reactive oxygen species production are altered by hypoxia acclimation in killifish (Fundulus heteroclitus). J. Exp. Biol. 219, 1130–1138 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    63.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research 4, 1–19 (2015).68.Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).CAS 
    Article 

    Google Scholar 
    69.Conesa, A., Nueda, M. J., Ferrer, A. & Talón, M. maSigPro: A method to identify significantly differential expression profiles in time-course microarray experiments. Bioinformatics 22, 1096–1102 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Nueda, M.J., Tarazona, S., & Conesa, A. Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series. Bioinformatics, 30, 2598–2602. https://doi.org/10.1093/bioinformatics/btu333 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    71.OmicsBox. Bioinformatics Made Easy, BioBam Bioinformatics. https://www.biobam.com/omicsbox (2019).72.Costa-Paiva, E. M., Schrago, C. G., Coates, C. J. & Halanych, K. M. Discovery of novel hemocyanin-like genes in Metazoans. Biol. Bull. 235, 134–151 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Kanaoka, Y. & Urade, Y. Hematopoietic prostaglandin D synthase. Prostaglandins Leukot. Essent. Fatty Acids 69, 163–167 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Altun, M. et al. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia. J. Biol. Chem. 287, 1962–1969 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ogawa, M. et al. 17β-estradiol represses myogenic differentiation by increasing ubiquitin-specific peptidase 19 through estrogen receptor α. J. Biol. Chem. 286, 41455–41465 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    76.Isaacs, J. S. et al. Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1α-degradative pathway. J. Biol. Chem. 277, 29936–29944 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Nallapalli, R. K. et al. Targeting filamin A reduces K-RAS–induced lung adenocarcinomas and endothelial response to tumor growth in mice. Mol. Cancer 11, 1–11 (2012).Article 
    CAS 

    Google Scholar 
    78.Feng, Y. et al. Filamin A (FLNA) is required for cell–cell contact in vascular development and cardiac morphogenesis. Proc. Natl. Acad. Sci. 103, 19836–19841 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Muñoz-Chápuli, R. Evolution of angiogenesis. Int. J. Dev. Biol. 55, 345–351 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    80.Kim, S., Lee, M. & Choi, Y. K. The role of a neurovascular signaling pathway involving hypoxia-inducible factor and notch in the function of the central nervous system. Biomol. Ther. 28, 45 (2020).Article 

    Google Scholar 
    81.Nie, H., Wang, H., Jiang, K. & Yan, X. Transcriptome analysis reveals differential immune related genes expression in Ruditapes philippinarum under hypoxia stress: potential HIF and NF-κB crosstalk in immune responses in clam. BMC Genom. 21, 1–16 (2020).Article 
    CAS 

    Google Scholar  More