Enzyme promiscuity in natural environments: alkaline phosphatase in the ocean
1.Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s biogeochemical cycles. Science. 2008;320:1034–9.CAS
PubMed
Article
PubMed Central
Google Scholar
2.Arnosti C. Microbial extracellular enzymes and the marine carbon cycle. Ann Rev Mar Sci. 2011;3:401–25.PubMed
Article
PubMed Central
Google Scholar
3.Arnosti C, Bell C, Moorhead DL, Sinsabaugh RL, Steen AD, Stromberger M, et al. Extracellular enzymes in terrestrial, freshwater, and marine environments: perspectives on system variability and common research needs. Biogeochemistry. 2013;117:5–21.Article
CAS
Google Scholar
4.Moorhead DL, Rinkes ZL, Sinsabaugh RL, Weintraub MN. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models. Front Microbiol. 2013;4:223.CAS
PubMed
PubMed Central
Article
Google Scholar
5.Li M, Gao Y, Qian W-J, Shi L, Liu Y, Nelson WC, et al. Targeted quantification of functional enzyme dynamics in environmental samples for microbially mediated biogeochemical processes. Environ Microbiol Rep. 2017;9:512–21.CAS
PubMed
Article
PubMed Central
Google Scholar
6.Song H-S, Thomas DG, Stegen JC, Li M, Liu C, Song X, et al. Regulation-structured dynamic metabolic model provides a potential mechanism for delayed enzyme response in denitrification process. Front Microbiol. 2017;8:1866.PubMed
PubMed Central
Article
Google Scholar
7.Khersonsky O, Tawfik DS. Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem. 2010;79:471–505.CAS
PubMed
Article
PubMed Central
Google Scholar
8.Baier F, Copp JN, Tokuriki N. Evolution of enzyme superfamilies: comprehensive exploration of sequence-function relationships. Biochemistry. 2016;55:6375–88.CAS
PubMed
Article
PubMed Central
Google Scholar
9.Sebastián M, Niell FX. Alkaline phosphatase activity in marine oligotrophic environments: implications of single-substrate addition assays for potential activity estimations. Mar Ecol Prog Ser. 2004;277:285–90.Article
Google Scholar
10.Catrina I, O’Brien PJ, Purcell J, Nikolic-Hughes I, Zalatan JG, et al. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction. J Am Chem Soc. 2007;129:5760–5.CAS
PubMed
PubMed Central
Article
Google Scholar
11.Sunden F, AlSadhan I, Lyubimov AY, Ressl S, Wiersma-Koch H, Borland J, et al. Mechanistic and evolutionary insights from comparative enzymology of phosphomonoesterases and phosphodiesterases across the alkaline phosphatase superfamily. J Am Chem Soc. 2016;138:14273–87.CAS
PubMed
PubMed Central
Article
Google Scholar
12.Yang K, Metcalf WW. A new activity for an old enzyme: Escherichia coli bacterial alkaline phosphatase is a phosphite-dependent hydrogenase. Proc Natl Acad Sci USA. 2004;101:7919–24.CAS
PubMed
Article
PubMed Central
Google Scholar
13.Copley SD. Shining a light on enzyme promiscuity. Curr Opin Struct Biol. 2017;47:167–75.CAS
PubMed
Article
PubMed Central
Google Scholar
14.Steen AD, Vazin JP, Hagen SM, Mulligan KH, Wilhelm SW. Substrate specificity of aquatic extracellular peptidases assessed by competitive inhibition assays using synthetic substrates. Aquat Micro Ecol. 2015;75:271–81.Article
Google Scholar
15.Ivars-Martínez E, D’Auria G, RodrÍGuez-Valera F, SÁNchez-Porro C, Ventosa A, et al. Biogeography of the ubiquitous marine bacterium Alteromonas macleodii determined by multilocus sequence analysis. Mol Ecol. 2008;17:4092–106.PubMed
Article
CAS
PubMed Central
Google Scholar
16.Tada Y, Taniguchi A, Nagao I, Miki T, Uematsu M, Tsuda A, et al. Differing growth responses of major phylogenetic groups of marine bacteria to natural phytoplankton blooms in the western North Pacific Ocean. Appl Environ Microbiol. 2011;77:4055–65.CAS
PubMed
PubMed Central
Article
Google Scholar
17.Schubert M, Lindgreen S, Orlando L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes. 2016;9:88.PubMed
PubMed Central
Article
Google Scholar
18.Li D, Liu C, Luo R, Sadakane K, Lam T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.CAS
PubMed
Article
PubMed Central
Google Scholar
19.Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119.Article
CAS
Google Scholar
20.Bushnell B. “BBMap: a fast, accurate, splice-aware aligner,” in Proceedings of the 9th Annual Genomics of Energy & Environment Meeting. Walnut Creek, CA, USA; 2014.21.Scholz J, Besir H, Strasser C, Suppmann S. A new method to customize protein expression vectors for fast, efficient and background free parallel cloning. BMC Biotechnol. 2013;13:12.CAS
PubMed
PubMed Central
Article
Google Scholar
22.McLoughlin SY, Jackson C, Liu JW, Ollis DL. Growth of Escherichia coli coexpressing phosphotriesterase and glycerophosphodiester phosphodiesterase, using paraoxon as the sole phosphorus source. Appl Environ Microbiol. 2004;70:404–12.CAS
PubMed
PubMed Central
Article
Google Scholar
23.Britton J, Dyer RP, Majumdar S, Raston CL, Weiss GA. Ten-minute protein purification and surface tethering for continuous-flow biocatalysis. Angew Chem Int Ed Engl. 2017;56:2296–301.CAS
PubMed
PubMed Central
Article
Google Scholar
24.Ortiz-Tena JG, Rühmann B, Sieber V. Colorimetric determination of sulfate via an enzyme cascade for high-throughput detection of sulfatase activity. Anal Chem. 2018;90:2526–33.CAS
PubMed
Article
PubMed Central
Google Scholar
25.Huitema C, Horsman G. Analyzing enzyme kinetic data using the powerful statistical capabilities of R. 2018. http://biorxiv.org/content/10.1101/316588v1.26.Rainer SF. Soft-bottom benthic communities in Otago Harbour and Blueskin Bay, New Zealand. New Zealand Oceanographic Institute Memoir 80; 1981.27.Grove SL, Probert PK. Sediment macrobenthos of upper Otago Harbour, New Zealand. New Zeal J Mar Fresh. 1999;33:469–80.28.Hoppe HG. Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser. 1983;11:299–308.CAS
Article
Google Scholar
29.Yamaguchi T, Sato M, Hashihama F, Ehama M, Shiozaki T, Takahashi K, et al. Basin‐scale variations in labile dissolved phosphoric monoesters and diesters in the central North Pacific Ocean. J Geophys Res Oceans. 2019;124:3058–72.CAS
Article
Google Scholar
30.Baltar F, Lundin D, Palovaara J, Lekunberri I, Reinthaler T, Herndl GJ, et al. Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic. Front Microbiol. 2016;7:1670.PubMed
PubMed Central
Article
Google Scholar
31.Yamaguchi H, Arisaka H, Seki M, Adachi M, Kimura K, Tomaru Y. Phosphotriesterase activity in marine bacteria of the genera Phaeobacter, Ruegeria, and Thalassospira. Int Biodeter Biodegr. 2016;115:186–91.CAS
Article
Google Scholar
32.Davidi D, Noor E, Liebermeister W, Bar-Even A, Flamholz A, Tummler K, et al. Global characterization of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proc Natl Acad Sci USA. 2016;113:3401–6.CAS
PubMed
Article
PubMed Central
Google Scholar
33.Paytan A, Cade-Menum BJ, McLaughlin K, Faul KL. Selective phosphorus regeneration of sinking marine particles: evidence from 31P-NMR. Mar Chem. 2003;82:55–70.CAS
Article
Google Scholar
34.Wu J, Wang P, Wang Y. Cytotoxic and mutagenic properties of alkyl phosphotriester lesions in Escherichia coli cells. Nucleic Acids Res. 2018;46:4013–21.CAS
PubMed
PubMed Central
Article
Google Scholar
35.McCarthy JG, Edington BV, Schendel PF. Inducible repair of phosphotriesters in Escherichia coli. Proc Natl Acad Sci USA. 1983;80:7380–4.CAS
PubMed
Article
PubMed Central
Google Scholar
36.Helbert W. Marine polysaccharide sulfatases. Front Mar Sci. 2017;4:6.Article
Google Scholar
37.Wegner CE, Richter-Heitmann T, Klindworth A, Klockow C, Richter M, Achstetter T, et al. Expression of sulfatases in Rhodopirellula baltica and the diversity of sulfatases in the genus Rhodopirellula. Mar Genomics. 2013;9:51–61.PubMed
Article
PubMed Central
Google Scholar
38.Canfield DE, Farquhar J. Animal evolution, bioturbation, and the sulfate concentration of the oceans. Proc Natl Acad Sci USA. 2009;106:8123–7.CAS
PubMed
Article
PubMed Central
Google Scholar
39.Luo HW, Benner R, Long RA, Hu JJ. Subcellular localization of marine bacterial alkaline phosphatases. Proc Nat Acad Sci USA. 2009;106:21219–23.CAS
PubMed
Article
PubMed Central
Google Scholar
40.Wu J-R, Shien J-H, Shieh HK, Hu C-C, Gong S-R, Chen L-Y, et al. Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. FEMS Microbiol Lett. 2007;267:113–20.CAS
PubMed
Article
PubMed Central
Google Scholar
41.Kageyama H, Tripathi K, Rai AK, Cha-um S, Waditee-Sirisattha R, Takabe T. An alkaline phosphatase/phosphodiesterase, PhoD, induced by salt stress and secreted out of the cells of Aphanothece halophytica, a halotolerant cyanobacterium. Appl Environ Micro. 2011;77:5178–83.CAS
Article
Google Scholar
42.Rodriguez F, Lillington J, Johnson S, Timmel CR, Lea SM, Berks BC. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J Biol Chem. 2014;289:30889–99.CAS
PubMed
PubMed Central
Article
Google Scholar
43.Noskova Y, Likhatskaya G, Terentieva N, Son O, Tekutyeva L, Balabanova L. A novel alkaline phosphatase/phosphodiesterase, CamPhoD, from marine bacterium Cobetia amphilecti KMM 296. Mar Drugs. 2019;17:657.CAS
PubMed Central
Article
Google Scholar
44.Dyhrman ST, Ammerman JW, Van, Mooy BAS. Microbes and the marine phosphorus cycle. Oceanography. 2007;20:110–6.Article
Google Scholar
45.Larson TJ, Ehrmann M, Boos W. Periplasmic glycerophosphodiester phosphodiesterase of Escherichia coli, a new enzyme of the glp regulon. J Biol Chem. 1983;258:5428–32.CAS
PubMed
Article
PubMed Central
Google Scholar
46.van Veen HW. Phosphate transport in prokaryotes: molecules, mediators and mechanisms. Antonie Van Leeuwenhoek. 1997;72:299–315.PubMed
Article
PubMed Central
Google Scholar
47.Parthasarathy S, Parapatla H, Nandavaram A, Palmer T, Siddavattam D. Organophosphate hydrolase is a lipoprotein and interacts with Pi-specific transport system to facilitate growth of Brevundimonas diminuta using op insecticide as source of phosphate. J Biol Chem. 2016;291:7774–85.CAS
PubMed
PubMed Central
Article
Google Scholar
48.Hong T, Kong A, Lam J, Young L. Periplasmic alkaline phosphatase activity and abundance in Escherichia coli B23 and C29 during exponential and stationary phase. J Exp Microbiol Immunol. 2007;11:8–13.
Google Scholar
49.Baltar F, Arístegui J, Gasol J, Yokokawa T, Herndl GJ. Bacterial versus archaeal origin of extracellular enzymatic activity in the Northeast Atlantic deep waters. Micro Ecol. 2013;65:277–88.CAS
Article
Google Scholar
50.Thomson B, Wenley J, Currie K, Hepburn C, Herndl GJ, Baltar F. Resolving the paradox: continuous cell-free alkaline phosphatase activity despite high phosphate concentrations. Mar Chem. 2019;214:103671.CAS
Article
Google Scholar
51.Lei L, Cherukuri KP, Alcolombri U, Meltzer D, Tawfik DS. The dimethylsulfoniopropionate (DMSP) lyase and lyase-like cupin family consists of bona fide DMSP lyases as well as other enzymes with unknown function. Biochemistry. 2018;57:3364–77.CAS
PubMed
Article
PubMed Central
Google Scholar
52.Ferla MP, Brewster JL, Hall KR, Evans GB, Patrick WM. Primordial‐like enzymes from bacteria with reduced genomes. Primordial-like enzymes from bacteria with reduced genomes. Mol Microbiol. 2017;105:508–24.CAS
PubMed
Article
PubMed Central
Google Scholar More