More stories

  • in

    Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring

    AnimalsTissue samples for expression analysis were collected on August 24 and September 9 2016 from a population of spring-spawning herring kept in captivity at University of Bergen; the rearing of captive herring was approved by the Norwegian national animal ethics committee (Forsøksdyrutvalget FOTS ID-5072). The tissue samples used for ATAC-sequencing were collected at Hästskär on June 19 2019 from wild spring-spawning Atlantic herring in the Baltic Sea, which do not require ethical permission.Genome scan and genetic diversity at the TSHR locusWe used a 2 × 2 contingency X2 test to estimate the extent of SNP allele frequency differences between seven spring- and seven autumn-spawning herring populations from the Northeast Atlantic (Supplementary Table 2), and thus, identify the major genomic regions associated with seasonal reproduction. The SNP allele frequencies were generated in a previous study16 and were derived from Pool-seq data. For the X2 test, we formed two groups, spring and autumn spawners, and summed the reads supporting the reference and the alternative alleles for the pools included in each group.To characterize genetic diversity at the TSHR locus, we calculated nucleotide diversity (π) and Tajima’s D for the same seven spring- and seven autumn-spawning Atlantic herring populations used in the genome scan (n = ~41–100 per pool) (Supplementary Table 2). The whole-genome re-sequence data of these pools were previously reported by Han et al.16 (for details of the pools used here see Supplementary Table 2). Unbiased nucleotide diversity π and Tajima’s D were calculated for each pool using the program PoPoolation 1.2.236, which accounts for the truncated allele frequency spectrum of pooled data. In brief, a pileup file of chromosome 15 was generated from each pool BAM file using samtools v.1.1037,38. Indels and 5 bp around indels were removed to exclude spurious SNPs due to misalignments around indels. To minimize biases in the π and Tajima’s D calculations, which are sensitive to sequencing errors and coverage fluctuations39, the coverage of each pileup file was subsampled without replacement to a uniform value based on a per-pool coverage distribution (the target coverage corresponded to the 5th percentile of the coverage frequency distribution, which was used as the minimum coverage allowed for an SNP to be included in the analysis) (Supplementary Table 2). We also calculated the diversity parameters but skipping the coverage subsampling step and obtained very similar results with both approaches (Supplementary Fig. 5), thus, we decided to keep working with the subsampled datasets as coverage subsampling is recommended by the software developers36. To exclude spurious SNPs associated with repetitive sequences and copy number variants, we applied a maximum coverage filter equivalent to the per-pool 99th percentile of the coverage frequency distribution (Supplementary Table 2). A minimum base quality of 20, a minimum mapping quality of 20, and a minor allele count of 2 were required to retain high quality SNPs for further analysis. Both, π and Tajima’s D statistics were calculated using a sliding window approach with a window size of 10 kb and a step size of 2 kb (the selected window-step combination offered a good genomic resolution while reducing the noise from single SNPs, after testing windows of 5, 10, 20, 40, 50, and 100 kb for non-overlapping and overlapping windows with a step size equivalent to 20% of the window size). Only windows with a coverage fraction ≥ 0.5 were included in the computations. In addition, we estimated the effective allele frequency difference, or delta allele frequency (dAF), between spring and autumn spawning groups at the TSHR locus using the formula dAF = abs(mean(spring pools)−mean(autumn pools)). For each of the diversity parameters, we assessed whether the mean differences between sets of SNPs within chr 15: 8.85–8.95 Mb (215 SNPs) and outside (214 635 SNPs) the TSHR region were statistically significant among spring- and autumn-spawning groups using a Wilcoxon test. Data postprocessing, statistical tests, and plotting were performed in the R environment40 (for specific parameters used in PoPoolation, see the associated code to this publication).Identification of the 5.2 kb structural variantSequences spanning the entire TSHR gene plus 10 kb upstream and downstream from two reference assemblies, ASM96633v115 and Ch_v2.0.218, were aligned using BLAST41 and the output was subsequently processed with a custom R script40. Repeats were annotated by CENSOR21 for the region harboring the 5.2 kb structural variant. To validate the structural variant, long-range PCR was performed with genomic DNA from two spring- and autumn-spawning Atlantic herring in a 20 μL reaction containing 0.8 mM dNTPs, 0.3 μM each of the forward and reverse 5.2kb-confirm primers (Supplementary Table 1) and 0.75 U PrimeSTAR GXL DNA Polymerase (TaKaRa) following the program: 95 °C for 3 min, 35 cycles of 98 °C for 10 s, 58 °C for 20 s and 68 °C for 2 min 30 s, and a final extension of 10 min at 68 °C.ATAC-seq analysisBSH and brain without BSH were dissected from two spring-spawning herring caught in the Baltic Sea and transported to the lab on dry ice, then kept at –80 °C before nuclei isolation. ATAC-seq libraries were constructed according to the Omni-ATAC protocol with minor modifications42. Briefly, tissue was homogenized in 2 ml homogenization buffer (5 mM CaCl2, 3 mM Mg(Ac)2, 10 mM Tris-HCl (pH = 7.8), 0.017 mM PMSF, 0.17 mM ß-mercaptoethanol, 320 mM Sucrose, 0.1 mM EDTA and 0.1% NP-40) with a Dounce homogenizer on ice. 400 μl suspension was transferred to a 2 ml tube for the density gradient centrifugation with different concentrations of Iodixanol solution. After centrifugation, a 200 μl fraction containing the nuclei band was collected, stained with Trypan blue and counted with a Countess II Automated Cell Counter (Thermo Fisher Scientific). An aliquot of 100,000–200,000 nuclei was used as input in a 50 μl transposition reaction containing 2 X TD buffer and 100 nM assembled Tn5 transposase for a 30-min incubation at 37 °C. Tagmented DNA was purified with a Zymo clean kit (Zymo Research). Purified DNA was used for an initial pre-amplification for 5 cycles, and the additional amplification cycle was determined by qPCR based on the “R vs Cycle Number” plot43. Amplified libraries were purified with a Zymo clean kit again, and library concentrations and qualities were evaluated using the 2200 TapeStation System (Agilent Technologies).ATAC-seq was performed with a MiniSeq High Output Kit (150 cycles) on a MiniSeq instrument (Illumina) and 7–9 million reads were generated for each ATAC-seq library. Quality control, trimming, mapping, and peak calling of the sequenced reads were conducted following the ENCODE ATAC-seq pipeline (https://www.encodeproject.org/atac-seq/). The trimmed reads were aligned to the Atlantic herring reference genome (Ch_v2.0.2)18 with Bowtie244 and the mapping rate was 85–95%. Duplicate reads, reads with low mapping quality and those aligned to the mitochondria genome were removed. The remaining reads (4–5 million) were subjected to peak calling by MACS245, where 22–32 K peaks were called. Sequenced library qualities were further evaluated by calculating the TSS enrichment score and checking the library complexity with the Non-Redundant Fraction (NRF) and PCR Bottlenecking Coefficients (PBC1 and 2). Finally, conserved peaks between two biological replicates were identified by evaluating the irreproducible discovery rate (IDR).Genotyping of six differentiated variants and haplotype analysisAll six genetic variants, including the 5.2 kb structural variant, two non-coding SNPs, two missense SNPs and the copy number variant of C-terminal 22aa repeat, were genotyped in 45 spring-, 67 autumn-spawning Atlantic herring and 13 Pacific herring. TaqMan Custom SNP assays were performed to genotype the four SNPs in 5 μl reactions with a template of 20 ng genomic DNA (ThermoFisher Scientific). Copy number of the C-terminal 22aa repeat was determined by the PCR product size generated with geno22aa primers. Genotyping of the 5.2 kb structural variant was performed in a PCR reaction containing two forward primers (geno5.2kb-1F and geno5.2kb-2F) and one reverse primer (geno5.2kb-R), which generated PCR products with different sizes between spring and autumn spawners. All the primers used for genotyping are listed in Supplementary Table 1.Tissue expression profiles by quantitative PCRTotal RNA was prepared from gonad, heart, spleen, kidney, gills, intestine, hypothalamus and saccus vasculosus (BSH), and brain without BSH (brain) of six adult spring-spawning Atlantic herring using RNeasy Mini Kit (Qiagen). RNA was then reverse transcribed into cDNA with a High-Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific). TaqMan Gene Expression assay (ThermoFisher Scientific) containing 0.3 μM primers and 0.25 μM TaqMan probe (Integrated DNA Technologies) was performed to compare the relative expression levels of TSHR among different tissues. qPCR with SYBR Green chemistry was used for TSHB and DIO2 in a 10 μl reaction of SYBR Green PCR Master Mix (ThermoFisher Scientific) and 0.3 μM primers, with a program composed of an initial denaturation for 10 min at 95 °C followed by 40 cycles of 95 °C for 15 s and 60 °C for 1 min. Ct values were first normalized to the housekeeping gene ACTIN, then the average expression for each gene in the gonad was assumed to be 1 for the subsequent calculation of the relative expression in other tissues.Plasmid constructsThe coding sequence for the herring single-chain TSH (scTSH) was designed following a strategy previously used for mammalian gonadotropins46 that contained an in-frame fusion of the cDNA sequences (5′–3′) of herring TSH beta subunit (NCBI: XM_012836756.1) and alpha subunit (NCBI: XM_012822755.1) linked by six histidines and then the C-terminal peptide of the hCG beta subunit. The designed sequence should generate a protein with a size of 30.6 kDa. Both scTSH and spring herring TSHR cDNA sequences were synthesized in vitro and cloned in the expression vector pcDNA3.1 by Genscript (Leiden, Netherlands). pcDNA3.1 plasmid expressing human TSHR was kindly provided by Drs. Gilbert Vassart and Sabine Costagliola (Université libre de Bruxelles, Belgium). Then, the spring herring TSHR and human TSHR plasmids were used as templates for site-directed mutagenesis to generate constructs coding for different mutant herring or human TSHRs. Plasmids for the dual-luciferase assay, including pGL4.29[luc2P/CRE/Hygro] containing cAMP response elements (CREs) to drive the transcription of luciferase gene luc2P and pRL-TK monitoring the transfection efficiency, were purchased from Promega. Five ng of each plasmid was used to transform the XL1-Blue competent cells (Agilent), plasmid DNA was subsequently extracted from 200 ml overnight culture of a single transformant clone using an EndoFree plasmid Maxi Kit (Qiagen).Cell cultureChinese hamster ovary (CHO) (ATCC CCL-61) and human embryonic kidney 293 (HEK293) (ATCC CRL-1573) cells were maintained in DMEM supplemented with 5% (CHO) or 10% FBS (HEK293), 100 U/ml penicillin, 100 μg/ml streptomycin and 292 μg/ml l-Glutamine (ThermoFisher Scientific) at 37 °C with 5% CO2. Epithelioma Papulosum Cyprini (EPC) cells (ATCC CRL-2872) were cultured in EMEM (Sigma) supplemented with 10% FBS, 100 U/ml penicillin, 100 μg/ml streptomycin, 292 μg/ml l-Glutamine and 1 mM Sodium Pyruvate (ThermoFisher Scientific) at 26 °C with 5% CO2.Production of recombinant herring scTSHCHO cells were transfected with the scTSH expression plasmid using Lipofectamine 3000 (Invitrogen), stable clones were subsequently selected with 500 μg/ml G418 (Invitrogen) and screened for producing scTSH by western blot using a polyclonal antisera against the sea bass alpha subunit47. A positive clone was expanded in 225 cm2 cell culture flasks (Corning) in culture medium containing 5% FBS until confluence, then the cells were maintained in serum-free DMEM for hormone production for 7 days at 25 °C48. After 7 days, culture medium containing scTSH or without (negative control) was centrifuged at 15000 x g for 15 min and concentrated by ultrafiltration using Centricon Plus-70 / Ultracel PL-30 (Merck Millipore Ltd.). Then, western blotting was performed to confirm TSH production. Concentrated medium containing herring scTSH was denatured at 94 °C for 5 min in 0.1% SDS and 50 mM 2-mercaptoethanol, and then treated with 2.5 units of peptide-N-glycosidase F (Roche Diagnostics) at 37 °C for 2 h in 20 mM sodium phosphate with 0.5% Nonidet P-40, pH 7.5. All samples were run in 12% SDS-PAGE in the reducing condition and transferred to a PVDF membrane (Immobilon P; Millipore Corp.), then blocked overnight with 5% skimmed milk at 4 °C. After blocking, the membrane was incubated with polyclonal antisera against the sea bass alpha subunit (dilution 1:2000) for 90 min at room temperature, washed, and then further incubated with 1:25000 goat anti-rabbit immunoglobulin G (IgG) horseradish peroxidase conjugate (Bio-Rad Laboratories) for 60 min at room temperature. Immunodetection was performed by chemiluminescence with a Pierce ECL Plus Western Blotting Substrate kit (ThermoFisher Scientific).Cell surface expressionA Rhotag (MNGTEGPNFYVPFSNKTGVVYEE) was inserted at the N-terminus of herring TSHR for flow cytometry analysis of receptor cell surface expression. Anti-Rhotag polyclonal antibody was kindly provided by Drs. Gilbert Vassart and Sabine Costagliola (Université Libre de Bruxelles, Brussels, Belgium). PBS containing 1% BSA and 0.05% sodium azide was prepared as the flow cytometry (FCM) buffer for the washing and antibody incubation steps. 2.2 × 106 EPC cells were seeded in a 100 mm poly-d-Lysine-treated petri dish the day before transfection. Each dish was transfected with 10 μg TSHR or empty pcDNA3.1 expression plasmid using 20 μl jetPRIME transfection reagent in 500 μl jetPRIME transfection buffer (Polyplus transfection). Cells were harvested 24 h after transfection, then washed once in cold PBS and fixed in 2% PFA for 10 min at room temperature. After fixation, cells were washed three times with FCM buffer, then incubated with anti-Rhotag antibody or FCM buffer (negative control) for 1 h at room temperature. Cells were washed again with FCM buffer three times and stained with Alexa Fluor 488-labeled chicken anti-mouse IgG (H + L) antibody (1:200 dilution, ThermoFisher Scientific) or FCM buffer (negative control) for 45 min in the dark. After the fluorescent staining, cells were washed three times and resuspended in FCM buffer before analysis on a CytoFLEX instrument (Beckman Coulter). A minimum of 100,000 events was recorded for each sample, fluorescence intensities of negative control and cells transfected with empty pcDNA3.1 plasmid were used as the background for gating strategy. Cell surface expression was represented by the mean fluorescence intensity of the positively stained cell population.Dual-luciferase reporter assayEPC or HEK293 cells were plated in a 48-well plate at a density of 1 × 105 cells/well the day before transfection. A total of 250 ng plasmid mixture containing pGL4.29[luc2P/CRE/Hygro], TSHR expression plasmid (or empty pcDNA3.1) and pRL-TK with the ratio of 20:5:1 was prepared to transfect each well of cells using jetPRIME transfection reagent (Polyplus). Medium was replaced by fresh medium containing 10% FBS (TSH-induced condition) or serum-free medium (constitutive activity condition) 4 h after transfection. On day three, cells were treated with serum-free medium containing different dilutions of the concentrated scTSH medium for 4 h (TSH-induced condition) or directly subjected to the luminescence measurement without TSH induction (constitutive activity condition). Luminescence was measured using a Dual-Luciferase Reporter assay (Promega) on an Infinite M200 Microplate Reader (Tecan Group Ltd., Switzerland), and luciferase activity was represented as the ratio of firefly (pGL4.29[luc2P/CRE/Hygro]) to Renilla (pRL-TK) luminescence.5′-RACE to identify the herring DIO2 TSSTotal RNA was prepared from brain of a spring-spawning Atlantic herring using the RNeasy Mini Kit (Qiagen). Six μg of the isolated RNA was used for 5′-RACE with a FirstChoiceTM RLM-RACE Kit (ThermoFisher Scientific). One μl cDNA or Outer RACE PCR product was used as PCR template in a 20 μL reaction containing 0.8 mM dNTPs, 0.3 μM of each forward and reverse primer (Supplementary Table 1) and 0.75 U PrimeSTAR GXL DNA Polymerase (TaKaRa). Amplification was carried out with an initial denaturation of 3 min at 95 °C, followed by 35 cycles of 98 °C for 10 s, 58 °C for 20 s and 68 °C for 40 s, and a final extension of 10 min at 68 °C. The final 5′ RACE product was sequenced at Eurofins Genomics (Ebersberg, Germany).Sequence conservation analysisGenomic sequences covering the TSHR locus were extracted from Ensembl Genome Browser for Atlantic herring and 11 other fish species, including Amazon molly (Poecilia formosa), denticle herring (Denticeps clupeoides), goldfish (Carassius auratus), guppy (Poecilia reticulata), Neolamprologus brichardi, Japanese medaka (Oryzias latipes), northern pike (Esox lucius), orange clownfish (Amphiprion percula), spotted gar (Lepisosteus oculatus), three-spined stickleback (Gasterosteus aculeatus) and spotted green pufferfish (Tetraodon nigroviridis). The extracted sequences were firstly aligned using progressiveCactus49,50, and a subsequent alignment was generated using the hal2maf program from halTools51 with Atlantic herring assembly (Ch_v2.0.2)18 as the co-ordinate backbone. This alignment was used for the downstream phastCons score calculation by running phyloFit24 and phastCons25 from the PHAST package with default parameters. Peaks were called by grouping signals with a minimum phastCons score of 0.2 within 500 bp region.Structure modeling of human and herring TSHRsIn order to explore the possible interactions of the variant residues with other receptor interacting proteins and to study intramolecular interactions, we built a structural homology model for the herring TSHR (herrTSHR) complexed with herring TSH and Gs-protein. The TSHR hinge region that harbors the Q370H substitution and the C-terminus containing the 22aa repeat were excluded from the homology model due to the lack of structural templates for these regions. The homology model was constructed by using the following structural templates of evolutionarily related class A GPCRs: (i) the leucine-rich repeat domain (LRRD) complexed with hormone was modeled based on the solved FSHR LRRD – FSH complex structure (Protein Data Bank (PDB) ID: 4AY9)52,53, this part of model included herring TSHR Cys33 – Asn296 and fragments of the hinge region Gln297 – Thr312 and Ser393 – Ile421; (ii) the available structural complex of β2-adrenoreceptor with Gs-protein (PDB ID: 3SN6)54 was used as the template to model the seven-transmembrane helix domain (7TMD) of herring TSHR in the active conformation; (iii) the extracellular loop 2 (ECL2) was built by using the ECL2 of μ-opioid receptor (PDB ID: 6DDE)55. To prepare the template for herring TSHR modeling, the fused T4-lysozyme and bound ligand of β2-adrenoreceptor were deleted, the ECL1 and ECL3 loops were adjusted manually to the loop length of herring TSHR. Due to the lack of third intracellular loop (ICL3) in the β2-adrenoreceptor structure, amino acid residues of herring TSHR ICL3 were manually added to the template. Since herring TSHR does not have the TMH5 proline, which is highly conserved among all class A GPCRs and responsible for the helical kinks and bulges within this region56, we assumed a rather regular (stretched) helix conformation for the herring TSHR TMH5 and therefore replaced the kinked β2-adrenoreceptor TMH5 template with a regular α-helix. Moreover, the ECL2 template was substituted with μOR ECL2 structure because of its higher sequence similarity with herring TSHR in this region. Finally, amino acid residues of this chimeric 7TMD template and FSHR N-terminus were mutated to the corresponding spring herring TSHR residues and sequence of the heterodimeric FSH ligand was substituted by the herring TSH. All homology models were generated by using SYBYL-X 2.0 (Certara, NJ, US). The 7TMD structure was then fused with FSHR N-terminus at position 421. The assembled complex was subsequently optimized by the energy minimization under constrained backbone atoms (the AMBER F99 force field was used), followed by a 2 ns molecular dynamics simulation (MD) of the side chains. The entire TSHR complex was energetically minimized without any constraints until converging at a termination gradient of 0.05 kcal/mol*Å. Next, for autumn herrTSHR modeling, the spring TSHR sequence was substituted with autumn TSHR sequence. For humTSHR, the spring TSHR sequence was substituted with human TSHR, and the herring TSH ligand was replaced by the bovine TSH sequence. Both complex models were energetically minimized until converging at a termination gradient of 0.05 kcal/mol*Å.To investigate the microenvironment around the L471M mutation at TMH2 position 2.51, local short MD’s of 4 ns on Met4712.51 (spring herrTSHR), Leu471 (autumn herrTSHR) or Phe461 (humTSHR) and its surrounding amino acids were performed. During MD simulations, backbone atoms of the entire complexes as well as all side chains, except residues at positions 1.47, 1.51, 1.54, 2.48, 2.52, and 2.55 that form the hydrophobic patch around position 2.51, were constrained.Statistics and reproducibilityResults were presented as the mean + SD (standard deviation) calculated from at least four biological replicates for each experiment, and at least two independent experiments were conducted for each assay. Unpaired two-tailed Student’s t test was performed to calculate the P-values and means were judged as statistically significant when P ≤ 0.05.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Multi-year presence of humpback whales in the Atlantic sector of the Southern Ocean but not during El Niño

    1.Clapham, P. J. in Encyclopedia of marine mammals 489–492 (Elsevier, 2018).2.Stevick, P. T. et al. A quarter of a world away: female humpback whale moves 10 000 km between breeding areas. Biol. Lett. 7, 299–302 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Nicol, S. et al. Southern Ocean iron fertilization by baleen whales and Antarctic krill. Fish. Fish. 11, 203–209 (2010).Article 

    Google Scholar 
    4.Smetacek, V. & Nicol, S. Polar ocean ecosystems in a changing world. Nature 437, 362–368 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    5.Dunlop, R. A. Potential motivational information encoded within humpback whale non-song vocal sounds. J. Acoustical Soc. Am. 141, 2204–2213 (2017).Article 

    Google Scholar 
    6.Stimpert, A. K., Au, W. W. L., Parks, S. E., Hurst, T. & Wiley, D. N. Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring. J. Acoustical Soc. Am. 129, 476–482 (2011).Article 

    Google Scholar 
    7.Van Opzeeland, I., Van Parijs, S., Kindermann, L., Burkhardt, E. & Boebel, O. Calling in the cold: pervasive acoustic presence of humpback whales (Megaptera novaeangliae) in Antarctic coastal waters. PLoS ONE 8, 1–7 (2013).
    Google Scholar 
    8.Siegel, V. Biology and Ecology of Antarctic Krill. (Springer, 2016).9.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Change 9, 142–147 (2019).Article 

    Google Scholar 
    10.Loeb, V. J., Hofmann, E. E., Klinck, J. M., Holm-Hansen, O. & White, W. B. ENSO and variability of the Antarctic Peninsula pelagic marine ecosystem. Antarctic Sci. https://doi.org/10.1017/s0954102008001636 (2009).11.Loeb, V. J. & Santora, J. A. Climate variability and spatiotemporal dynamics of five Southern Ocean krill species. Prog. Oceanogr. 134, 93–122 (2015).Article 

    Google Scholar 
    12.Bombosch, A. et al. Predictive habitat modelling of humpback (Megaptera novaeangliae) and Antarctic minke (Balaenoptera bonaerensis) whales in the Southern Ocean as a planning tool for seismic surveys. Deep-Sea Res. Part I: Oceanographic Res. Pap. 91, 101–114 (2014).Article 

    Google Scholar 
    13.Brierley, A. S. et al. Antarctic krill under sea ice: elevated abundance in a narrow band just south of ice edge. Science 295, 1890–1892 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    14.Rettig, S. et al. in 1st International Conference and Exhibition on Underwater Acoustics. (eds Papadakis, J. & Bjorno, L.) 1669–1674 (2013).15.Garland, E. C. et al. Humpback whale song on the Southern Ocean feeding grounds: Implications for cultural transmission. PLoS ONE 8, e79422 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Stimpert, A. K., Peavey, L. E., Friedlaender, A. S. & Nowacek, D. P. Humpback whale song and foraging behavior on an Antarctic feeding ground. PLoS ONE 7, e51214 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Filun, D. et al. Frozen verses: Antarctic minke whales (Balaenoptera bonaerensis) call predominantly during austral winter. R. Soc. Open Sci. 7, 192112 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Boebel, O. The Expedition PS89 of the Research Vessel POLARSTERN to the Weddell Sea in 2014/2015. (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, 2015).19.Burkhardt, E. Whale sightings during Polarstern cruise PS96 (ANT-XXXI/2), https://doi.org/10.1594/PANGAEA.923113 (2020).20.Herr, H., Viquerat, S. & Siebert, U. Aerial cetacean survey Southern Ocean 2014/2015, https://doi.org/10.1594/PANGAEA.894938 (2018).21.Herr, H., Viquerat, S. & Siebert, U. Ship based cetacean survey Southern Ocean 2014/2015, https://doi.org/10.1594/PANGAEA.894873 (2018).22.National Oceanic and Atmospheric Administration & Department of Commerce. Climate Prediction Centre (CPC) Oceanic Nino Index (2019).23.Thomisch, K. et al. Spatio-temporal patterns in acoustic presence and distribution of Antarctic blue whales Balaenoptera musculus intermedia in the Weddell Sea. Endanger. Species Res. 30, 239–253 (2016).Article 

    Google Scholar 
    24.Širović, A. et al. Seasonality of blue and fin whale calls and the influence of sea ice in the Western Antarctic Peninsula. Deep Sea Res. Part II: Topical Stud. Oceanogr. 51, 2327–2344 (2004).Article 

    Google Scholar 
    25.Schall, E. et al. Large-scale spatial variabilities in the humpback whale acoustic presence in the Atlantic sector of the Southern Ocean. R. Soc. Open Sci. 7, 201347 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Loeb, V., Hofmann, E. E., Klinck, J. M. & Holm-Hansen, O. Hydrographic control of the marine ecosystem in the South Shetland-Elephant Island and Bransfield Strait region. Deep Sea Res. Part II: Topical Stud. Oceanogr. 57, 519–542 (2010).Article 

    Google Scholar 
    27.Sallée, J.-B., Speer, K. & Rintoul, S. Zonally asymmetric response of the Southern Ocean mixed-layer depth to the Southern Annular Mode. Nat. Geosci. 3, 273–279 (2010).Article 
    CAS 

    Google Scholar 
    28.Kim, Y. S. & Orsi, A. H. On the variability of Antarctic Circumpolar Current fronts inferred from 1992–2011 altimetry. J. Phys. Oceanogr. 44, 3054–3071 (2014).Article 

    Google Scholar 
    29.Yuan, X. ENSO-related impacts on Antarctic sea ice: a synthesis of phenomenon and mechanisms. Antarct. Sci. 16, 415 (2004).Article 

    Google Scholar 
    30.Meredith, M. P., Murphy, E. J., Hawker, E. J., King, J. C. & Wallace, M. I. On the interannual variability of ocean temperatures around South Georgia, Southern Ocean: Forcing by El Niño/Southern Oscillation and the southern annular mode. Deep Sea Res. Part II: Topical Stud. Oceanogr. 55, 2007–2022 (2008).Article 

    Google Scholar 
    31.Lovenduski, N. S. & Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 32, 1–4 (2005).Article 

    Google Scholar 
    32.Craig, A. S., Herman, L. M., Gabriele, C. M. & Pack, A. A. Migratory timing of humpback whales (Megaptera novaeangliae) in the central north Pacific varies with age, sex and reproductive status. Behaviour 140, 981–1001 (2003).Article 

    Google Scholar 
    33.Hofmann, E. E., Klinck, J. M., Locarnini, R. A., Fach, B. & Murphy, E. Krill transport in the Scotia Sea and environs. Antarct. Sci. 10, 406–415 (1998).Article 

    Google Scholar 
    34.Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22 (2010).Article 

    Google Scholar 
    35.Witteveen, B. H., Foy, R. J., Wynne, K. M. & Tremblay, Y. Investigation of foraging habits and prey selection by humpback whales (Megaptera novaeangliae) using acoustic tags and concurrent fish surveys. Mar. Mammal. Sci. 24, 516–534 (2008).Article 

    Google Scholar 
    36.Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234 (1995).CAS 
    Article 

    Google Scholar 
    37.International Whaling Commission. Report on the workshop on the comprehensive assessment of Southern Hemisphere humpback whales. J. Cetacea. Res. Manag. Spec. Issue 3, 1–50 (2011).
    Google Scholar 
    38.Findlay, K. P. et al. Humpback whale “super-groups” – A novel low-latitude feeding behaviour of Southern Hemisphere humpback whales (Megaptera novaeangliae) in the Benguela Upwelling System. PLOS ONE 12, e0172002 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Gridley, T., Silva, M., Wilkinson, C., Seakamela, S. & Elwen, S. H. Song recorded near a super-group of humpback whales on a mid-latitude feeding ground off South Africa. J. Acoustical Soc. Am. 143, EL298–EL304 (2018).CAS 
    Article 

    Google Scholar 
    40.Ross-Marsh, E., Elwen, S., Prinsloo, A., James, B. & Gridley, T. Singing in South Africa: monitoring the occurrence of humpback whale (Megaptera novaeangliae) song near the Western Cape. Bioacoustics, 1–17, https://doi.org/10.1080/09524622.2019.1710254 (2020).41.Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).Article 

    Google Scholar 
    42.Bengtson Nash, S. M. et al. Signals from the south; humpback whales carry messages of Antarctic sea‐ice ecosystem variability. Glob. Change Biol. 24, 1500–1510 (2018).Article 

    Google Scholar 
    43.Baumgartner, M. F. & Mussoline, S. E. A generalized baleen whale call detection and classification system. J. Acoustical Soc. Am. 129, 2889–2902 (2011).Article 

    Google Scholar 
    44.Klinck, H. et al. Long-range underwater vocalizations of the crabeater seal (Lobodon carcinophaga). J. Acoustical Soc. Am. 128, 474–479 (2010).Article 

    Google Scholar 
    45.Risch, D. et al. Mysterious bio-duck sound attributed to the Antarctic minke whale (Balaenoptera bonaerensis). Biol. Lett. 10, 20140175 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Schall, E. & Van Opzeeland, I. Calls produced by Ecotype C killer whales (Orcinus orca) off the Eckstrom iceshelf, Antarctica. Aquat. Mamm. 43, 117–126 (2017).Article 

    Google Scholar 
    47.Van Opzeeland, I. et al. Acoustic ecology of Antarctic pinnipeds. Mar. Ecol. Prog. Ser. 414, 267–291 (2010).Article 

    Google Scholar 
    48.Dunlop, R. A., Cato, D. H. & Noad, M. J. Non-song acoustic communication in migrating humpback whales (Megaptera novaeangliae). Mar. Mammal. Sci. 24, 613–629 (2008).Article 

    Google Scholar 
    49.Schall, E. & El-Gabbas, A. Humpback-whale-acoustic-detection-and-environmental-modelling, https://github.com/elenaschall/Humpback-whale-acoustic-detection-and-environmental-modelling (GitHub, GitHub, 2021).50.Bioacoustics, Research & Program. Raven Pro: Interactive Sound Analysis Software (Version 1.5) http://ravensoundsoftware.com/ (The Cornell Lab of Ornithology, Ithaca, NY, 2014).51.Cavalieri, D., Parkinson, C., Gloersen, P. & Zwally, H. Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, version 1. Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center 10, https://doi.org/10.5067/8GQ8LZQVL0VL (1996).52.Greene, C. A. Daily Antarctic sea ice concentration (2020).53.Marshall, G. J. Trends in the southern annular mode from observations and reanalyses. J. Clim. 16, 4134–4143 (2003).Article 

    Google Scholar 
    54.Marshall, G. & National Center for Atmospheric Research Staff (Eds). The climate data guide: Marshall Southern Annular Mode (SAM) index (Station-based), (2019).55.R Core Team. R: A language and environment for statistical computing, https://www.R-project.org/ (R Foundation for Statistical Computing, Vienna, Austria, 2018)56.National Oceanic and Atmospheric Administration (NOAA) & Climate Prediction Centre (CPC). Oceanic Nino Index (2019).57.Wood, S. N. Generalized additive models: an introduction with R (CRC press, 2017).58.Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. _nlme: Linear and nonlinear mixed effects models. R package version 3.1-145 (R CoreTeam, 2020).59.Hyndman, R. et al. forecast: Forecasting functions for time series and linear models_. R. package version 8.11, http://pkg.robjhyndman.com/forecast (2020)..60.Schall, E. et al. Humpback whale acoustic presence in the Atlantic sector of the Southern Ocean, https://doi.org/10.5061/dryad.ncjsxkss0 (2021).61.Wessel, P. & Smith, W. H. A global, self‐consistent, hierarchical, high‐resolution shoreline database. J. Geophys. Res.: Solid Earth 101, 8741–8743 (1996).Article 

    Google Scholar 
    62.Amante, C. & Eakins, B. W. ETOPO1 arc-minute global relief model: procedures, data sources and analysis, https://doi.org/10.7289/V5C8276M (2009).63.Spreen, G., Kaleschke, L. & Heygster, G. Sea ice remote sensing using AMSR-E 89-GHz channels. J. Geophys Res. Oceans 113, C02S03 (2008).Article 

    Google Scholar  More

  • in

    Antibiotic treatment increases yellowness of carotenoid feather coloration in male greenfinches (Chloris chloris)

    1.Hill, G. E. Plumage coloration is a sexually selected indicator of male quality. Nature 350, 337 (1991).ADS 
    Article 

    Google Scholar 
    2.Cantarero, A., Pérez-Rodríguez, L., Romero-Haro, A. Á., Chastel, O. & Alonso-Alvarez, C. Carotenoid-based coloration predicts both longevity and lifetime fecundity in male birds, but testosterone disrupts signal reliability. PLoS ONE 14, e0221436. https://doi.org/10.1371/journal.pone.0221436 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    3.Zahavi, A. Mate selection—A selection for a handicap. J. Theor. Biol. 53, 205–214 (1975).CAS 
    Article 

    Google Scholar 
    4.Alonso-Alvarez, C. & Galván, I. Free radical exposure creates paler carotenoid-based ornaments: A possible interaction in the expression of black and red traits. PLoS ONE 6 (2011).5.Schantz, T. V., Bensch, S., Grahn, M., Hasselquist, D. & Wittzell, H. Good genes, oxidative stress and condition–dependent sexual signals. Proc. R. Soc. Lond. Ser. B: Biol. Sci. 266, 1–12 (1999).Article 

    Google Scholar 
    6.Tomášek, O. et al. Opposing effects of oxidative challenge and carotenoids on antioxidant status and condition-dependent sexual signalling. Sci. Rep. 6, 23546. https://doi.org/10.1038/srep23546 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Sild, E., Sepp, T., Männiste, M. & Hõrak, P. Carotenoid intake does not affect immune-stimulated oxidative burst in greenfinches. J. Exp. Biol. 214, 3467–3473 (2011).CAS 
    Article 

    Google Scholar 
    8.Mohr, A. E., Girard, M., Rowe, M., McGraw, K. J. & Sweazea, K. L. Varied effects of dietary carotenoid supplementation on oxidative damage in tissues of two waterfowl species. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 231, 67–74. https://doi.org/10.1016/j.cbpb.2019.02.003 (2019).CAS 
    Article 

    Google Scholar 
    9.Costantini, D. & Møller, A. Carotenoids are minor antioxidants for birds. Funct. Ecol. 22, 367–370 (2008).Article 

    Google Scholar 
    10.Simons, M. J. P., Cohen, A. A. & Verhulst, S. What does carotenoid-dependent coloration tell? Plasma carotenoid level signals immunocompetence and oxidative stress state in birds—A meta-analysis. PLoS ONE 7, e43088. https://doi.org/10.1371/journal.pone.0043088 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Hill, G. E. et al. Plumage redness signals mitochondrial function in the house finch. Proc. R. Soc. B 286, 20191354 (2019).CAS 
    Article 

    Google Scholar 
    12.Hill, G. E. Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol. Lett. 14, 625–634 (2011).Article 

    Google Scholar 
    13.del Cerro, S. et al. Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162, 825–835. https://doi.org/10.1007/s00442-009-1510-y (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    14.Hõrak, P. et al. How coccidian parasites affect health and appearance of greenfinches. J. Anim. Ecol. 73, 935–947 (2004).Article 

    Google Scholar 
    15.Weaver, R. J., Santos, E. S., Tucker, A. M., Wilson, A. E. & Hill, G. E. Carotenoid metabolism strengthens the link between feather coloration and individual quality. Nat. Commun. 9, 73 (2018).ADS 
    Article 

    Google Scholar 
    16.Tyczkowski, J. K., Hamilton, P. B. & Ruff, M. D. Altered metabolism of carotenoids during pale-bird syndrome in chickens infected with Eimeria acervulina. Poult. Sci. 70, 2074–2081. https://doi.org/10.3382/ps.0702074 (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Joyner, L. et al. Amino-acid malabsorption and intestinal leakage of plasma-proteins in young chicks infected with Eimeria acervulina. Avian Pathol. 4, 17–33 (1975).CAS 
    PubMed 

    Google Scholar 
    18.Sharma, V. & Fernando, M. Effect of Eimeria acervulina infection on nutrient retention with special reference to fat malabsorption in chickens. Can. J. Comp. Med. 39, 146 (1975).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    19.Pout, D. D. Villous atrophy and coccidiosis. Nature 213, 306–307 (1967).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Sanches, A. W. D. et al. Basal and infectious enteritis in broilers under the I See inside methodology: A chronological evaluation. Front. Vet. Sci. 6, 512. https://doi.org/10.3389/fvets.2019.00512 (2020).Article 
    PubMed 

    Google Scholar 
    21.Russell, J. Jr. & Ruff, M. Eimeria spp.: Influence of coccidia on digestion (amylolytic activity) in broiler chickens. Exp. Parasitol. 45, 234–240 (1978).Article 

    Google Scholar 
    22.Kouwenhoven, B. & van der Horst, C. J. Disturbed intestinal absorption of vitamin A and carotenes and the effect of a low pH during Eimeria acervulina infection in the domestic fowl (Gallus domesticus). Z. Parasitenkd. 38, 152–161 (1972).CAS 
    Article 

    Google Scholar 
    23.Ruff, M. D. & Fuller, H. L. Some mechanisms of reduction of carotenoid levels in chickens infected with Eimeria acervulina or E. tenella. J. Nutr. 105, 1447–1456 (1975).CAS 
    Article 

    Google Scholar 
    24.Swayne, D. E., Getzy, D., Slemons, R. D., Bocetti, C. & Kramer, L. Coccidiosis as a cause of transmural lymphocytic enteritis and mortality in captive Nashville warblers (Vermivora ruficapilla). J. Wildl. Dis. 27, 615–620 (1991).CAS 
    Article 

    Google Scholar 
    25.Gosbell, M. C., Olaogun, O. M., Luk, K. & Noormohammadi, A. H. Investigation of systemic isosporosis outbreaks in an aviary of greenfinch (Carduelis chloris) and goldfinch (Carduelis carduelis) and a possible link with local wild sparrows (Passer domesticus). Aust. Vet. J. 98, 338–344 (2020).CAS 
    Article 

    Google Scholar 
    26.Baeta, R., Faivre, B., Motreuil, S., Gaillard, M. & Moreau, J. Carotenoid trade-off between parasitic resistance and sexual display: An experimental study in the blackbird (Turdus merula). Proc. R. Soc. B Biol. Sci. 275, 427–434 (2008).CAS 
    Article 

    Google Scholar 
    27.Amin, A., Bilic, I., Liebhart, D. & Hess, M. Trichomonads in birds—A review. Parasitology 141, 733–747 (2014).Article 

    Google Scholar 
    28.Robinson, R. A. et al. Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5 (2010).29.Chavatte, J.-M. et al. An outbreak of trichomonosis in European greenfinches Chloris chloris and European goldfinches Carduelis carduelis wintering in Northern France. Parasite 26, 21–21. https://doi.org/10.1051/parasite/2019022 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    30.Huyghebaert, G., Ducatelle, R. & Immerseel, F. V. An update on alternatives to antimicrobial growth promoters for broilers. Vet. J. 187, 182–188. https://doi.org/10.1016/j.tvjl.2010.03.003 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Singer, R. S. & Hofacre, C. L. Potential impacts of antibiotic use in poultry production. Avian Dis. 50, 161–172, 112 (2006).Article 

    Google Scholar 
    32.Miles, R. D., Butcher, G. D., Henry, P. R. & Littell, R. C. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology1. Poult. Sci. 85, 476–485. https://doi.org/10.1093/ps/85.3.476 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Oh, S., Lillehoj, H. S., Lee, Y., Bravo, D. & Lillehoj, E. P. Dietary antibiotic growth promoters down-regulate intestinal inflammatory cytokine expression in chickens challenged with LPS or co-infected with Eimeria maxima and Clostridium perfringens. Front. Vet. Sci. https://doi.org/10.3389/fvets.2019.00420 (2019).Article 
    PubMed 

    Google Scholar 
    34.Meitern, R., Lind, M. A., Karu, U. & Hõrak, P. Simple and noninvasive method for assessment of digestive efficiency: Validation of fecal steatocrit in greenfinch coccidiosis model. Ecol. Evol. 6, 8756–8763 (2016).Article 

    Google Scholar 
    35.Surai, P., Speake, B. & Sparks, N. Carotenoids in avian nutrition and embryonic development. 1. Absorption, availability and levels in plasma and egg yolk. J. Poultry Sci. 38, 1–27 (2001).CAS 
    Article 

    Google Scholar 
    36.Madonia, C., Hutton, P., Giraudeau, M. & Sepp, T. Carotenoid coloration is related to fat digestion efficiency in a wild bird. Sci. Nat. 104, 96. https://doi.org/10.1007/s00114-017-1516-y (2017).CAS 
    Article 

    Google Scholar 
    37.Hõrak, P. & Männiste, M. Viability selection affects black but not yellow plumage colour in greenfinches. Oecologia 180, 23–32 (2016).ADS 
    Article 

    Google Scholar 
    38.Saks, L., McGraw, K. & Hõrak, P. How feather colour reflects its carotenoid content. Funct. Ecol. 17, 555–561 (2003).Article 

    Google Scholar 
    39.Sepp, T. et al. Coccidian infection causes oxidative damage in greenfinches. PLoS ONE 7 (2012).40.Männiste, M. & Hõrak, P. Emerging infectious disease selects for darker plumage coloration in greenfinches. Front. Ecol. Evol. 2, 4 (2014).Article 

    Google Scholar 
    41.Hackstein, J. H. et al. Parasitic apicomplexans harbor a chlorophyll a-D1 complex, the potential target for therapeutic triazines. Parasitol. Res. 81, 207–216 (1995).CAS 
    PubMed 

    Google Scholar 
    42.Krautwald-Junghanns, M.-E., Zebisch, R. & Schmidt, V. Relevance and treatment of coccidiosis in domestic pigeons (Columba livia forma domestica) with particular emphasis on toltrazuril. Journal of Avian Medicine and Surgery, 1–5 (2009).43.Löfmark, S., Edlund, C. & Nord, C. E. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clin. Infect. Dis. 50, S16–S23. https://doi.org/10.1086/647939 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Cramp, S. & Perrins, C. Handbook of the Birds of the Western Palearctic. Volume IV. Terns to Woodpeckers (ed. Cramp, S.), 353–363 (1994).45.Stradi, R., Celentano, G., Rossi, E., Rovati, G. & Pastore, M. Carotenoids in bird plumage—I. The carotenoid pattern in a series of Palearctic Carduelinae. Comp. Biochem. Physiol. Part B: Biochem. Mol. Biol. 110, 131–143 (1995).Article 

    Google Scholar 
    46.Stradi, R. The colour of flight: carotenoids in bird plumages. (Solei Gruppo Editoriale Informatico, 1998).47.McGraw, K., Hill, G., Stradi, R. & Parker, R. The effect of dietary carotenoid access on sexual dichromatism and plumage pigment composition in the American goldfinch. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 131, 261–269 (2002).CAS 
    Article 

    Google Scholar 
    48.Sepp, T., Karu, U., Sild, E., Männiste, M. & Hõrak, P. Effects of carotenoids, immune activation and immune suppression on the intensity of chronic coccidiosis in greenfinches. Exp. Parasitol. 127, 651–657. https://doi.org/10.1016/j.exppara.2010.12.004 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Hõrak, P. et al. Dexamethasone inhibits corticosterone deposition in feathers of greenfinches. Gen. Comp. Endocrinol. 191, 210–214 (2013).Article 

    Google Scholar 
    50.Endler, J. A. On the measurement and classification of colour in studies of animal colour patterns. Biol. J. Lin. Soc. 41, 315–352 (1990).Article 

    Google Scholar 
    51.Lessells, C. & Boag, P. T. Unrepeatable repeatabilities: A common mistake. Auk 104, 116–121 (1987).Article 

    Google Scholar 
    52.Hõrak, P., Saks, L., Karu, U. & Ots, I. Host resistance and parasite virulence in greenfinch coccidiosis. J. Evol. Biol. 19, 277–288 (2006).Article 

    Google Scholar 
    53.Jenni-Eiermann, S. & Jenni, L. Plasma metabolite levels predict individual body-mass changes in a small long-distance migrant, the Garden Warbler. Auk 111, 888–899 (1994).Article 

    Google Scholar 
    54.Saint-Georges-Chaumet, Y. & Edeas, M. Microbiota–mitochondria inter-talk: Consequence for microbiota–host interaction. Pathogens Dis. https://doi.org/10.1093/femspd/ftv096 (2015).Article 

    Google Scholar 
    55.Franco-Obregón, A. & Gilbert, J. A. The microbiome-mitochondrion connection: Common ancestries, common mechanisms, common goals. mSystems https://doi.org/10.1128/mSystems.00018-17 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Paterson, S. The immunology and ecology of co-infection. Mol. Ecol. 22, 2603–2604 (2013).CAS 
    Article 

    Google Scholar 
    57.Quillfeldt, P. et al. Prevalence and genotyping of Trichomonas infections in wild birds in central Germany. PLoS ONE 13, e0200798–e0200798. https://doi.org/10.1371/journal.pone.0200798 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    58.Kinnula, H., Mappes, J. & Sundberg, L.-R. Coinfection outcome in an opportunistic pathogen depends on the inter-strain interactions. BMC Evol. Biol. 17, 77. https://doi.org/10.1186/s12862-017-0922-2 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Gill, H. & Paperna, I. Proliferative visceral Isospora (atoxoplasmosis) with morbid impact on the Israeli sparrow Passer domesticus biblicus Hartert, 1904. Parasitol. Res. 103, 493. https://doi.org/10.1007/s00436-008-0986-4 (2008).Article 
    PubMed 

    Google Scholar 
    60.Shojadoost, B., Vince, A. R. & Prescott, J. F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: A critical review. Vet. Res. 43, 74. https://doi.org/10.1186/1297-9716-43-74 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    61.Williams, R. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 34, 159–180 (2005).CAS 
    Article 

    Google Scholar 
    62.Freeman, C. D., Klutman, N. E. & Lamp, K. C. Metronidazole. Drugs 54, 679–708. https://doi.org/10.2165/00003495-199754050-00003 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Hill, G. E. Energetic constraints on expression of carotenoid-based plumage coloration. J. Avian Biol. 31, 559–566 (2000).Article 

    Google Scholar 
    64.Hill, G. E. Cellular respiration: The nexus of stress, condition, and ornamentation. Integr. Comp. Biol. 54, 645–657 (2014).Article 

    Google Scholar 
    65.Ianiro, G., Tilg, H. & Gasbarrini, A. Antibiotics as deep modulators of gut microbiota: Between good and evil. Gut 65, 1906. https://doi.org/10.1136/gutjnl-2016-312297 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    66.Heiss, C. N. & Olofsson, L. E. Gut microbiota-dependent modulation of energy metabolism. J. Innate Immun. 10, 163–171. https://doi.org/10.1159/000481519 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    67.Lind, M.-A., Hõrak, P., Sepp, T. & Meitern, R. Corticosterone levels correlate in wild-grown and lab-grown feathers in greenfinches (Carduelis chloris) and predict behaviour and survival in captivity. Horm. Behav. 118, 104642 (2020).CAS 
    Article 

    Google Scholar 
    68.Sepp, T., Sild, E. & Horak, P. Hematological condition indexes in greenfinches: Effects of captivity and diurnal variation. Physiol. Biochem. Zool. 83, 276–282 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    Muskrats as a bellwether of a drying delta

    Agent modelingThe agent model for muskrat in the delta was developed using HexSim, an agent-based ecological model that allows for spatially explicit simulation of wildlife population dynamics31,32. The HexSim agent model of muskrat incorporated the entire delta in a modeling grid containing 1717 rows of hexagons by 1760 hexagons per row, for a total of 3,021,920 hexagons. Operating on an annual time step, the model tracked up to 273,310 females annually through their life cycles from 1971 to 2017. Given the computational intensity of the model (a runtime of ~16 h per realization), the number of realizations was limited to thirty after examination of model output for the ensemble. Boxplots showed good agreement across model realizations in the timing and magnitude of population peaks, die-offs, and years of low abundance, as well as normally distributed total population size in the majority of years simulated, suggesting that the central tendencies for total population size, dispersal and productivity maps were adequately captured (Supplementary Fig. 1a).An initial population size for the delta was estimated using an observed muskrat “house” count at a well-studied site, Egg Lake. Records for 1971 show 179 houses, yielding an initial population size of ~448 females at that lake. This estimate was scaled up to a population estimate for the entire delta by accounting for the fraction of critical habitat in the delta occupied by Egg Lake in 1972 (4.88 km2 out of 651.77 km2) to yield an initial population of 59,701 females for the entire delta.Muskrat movement behaviorThe delta model was developed to account for three broad categories of spring movement behaviors for individual muskrat:(i) Local movements during spring dispersal
    To represent the spring shuffle within the home ranges of muskrat at their home lake, an “exploration event” allows every individual to search their local surroundings (up to 500 hexagons, or 1.6 km2), with the goal of establishing a home range. Individuals that succeed establish a home range and finish the movement event. Individuals that are unsuccessful at establishing a home range as a result of local movement engage in long-range dispersal, described in (ii) below. In the spring, muskrat home ranges typically shuffle within a given water body at the onset of breeding12,33. Home range adjustments are typically at the scale of several hundred meters away from previous territory13.

    (ii) Long-range spring dispersal
    For individuals that do not successfully establish a home range with local movements in (i), a long-range dispersal event occurs, and it is parametrized based on literature values for muskrat dispersal rates. Based on the highest values of muskrat emigration rates (not attributed to passive transport via flooding) of 60 km/year, we set a dispersal distance of 1000 hexagons, or about 60 km of travel34. In addition, such dispersal events are constrained by the fact that muskrat movement is more limited on land than on water. Muskrat are typically observed to move over land on the order of miles13,33,35. However, in water they have been observed to travel much further distances irrespective of current; for instance, a single muskrat was observed to travel 50 km “against the current” in 15 days34. We therefore infer that higher reported rates of emigration for muskrat are made up primarily of travel through surface water features, combined with an ability of individual muskrat to travel over land up to 3 km.
    To represent this in the model, we first used the annual water/shoreline/land maps of the delta to generate annual dispersal maps based on a dispersal metric for particular environment categories. For these maps, water and shoreline pixels received a score of 10, and land pixels received a score of zero. This yielded dispersal maps whose hexagons have values of zero when they entirely overlie land pixels, 10 when they entirely overlie water pixels, and values in the range (0,10) for shoreline regions. Then, at each step of muskrat travel along its dispersal path, the difference of the hexagon score from 10 is evaluated and added to that individual’s dispersal penalty. Land hexagons therefore have a resistance of 10, and water hexagons a resistance of 0, with shoreline regions incurring an intermediate resistance between 0 and 10. The resistance values of encountered hexagons are tracked cumulatively for each individual while it disperses. When an individual reaches a resistance threshold of 500, the individual must stop dispersing. This resistance threshold of 500 is equivalent to 3 km of overland travel. So, an individual dispersing with a path entirely over land can go 3 km per year from their prior home range, but if their dispersal is entirely through water, then there is a travel limit of 60 km in a year.
    During long-range spring dispersal, individuals follow a constrained random walk to find a suitable place to settle. When selecting the adjacent hexagon to explore, individuals prefer hexagons with values between 2 and 10 (shoreline and water hexagons) at the expense of hexagons with values between 0 and 1 (land or mostly land hexagons), and they are influenced by their prior direction of travel with autocorrelation of 50%. At the completion of their long-range dispersal, individuals repeat the local movement exploration event to search for a suitable location to settle within their newly discovered home range. Individuals that do not succeed are removed from the simulation, representing death because they did not successfully establish a home range after long-range dispersal and succumbed to predation or starvation, or representing that they have migrated out of the delta.

    (iii) Enhanced dispersal due to flooding
    In years of known, large-scale flooding in the delta (1972, 1974, 1996, 1997 and 2014), a flood dispersal event is applied to simulate the effects of flooding on muskrat dispersal. A dispersal map is applied in which all hexagons in the delta have a value of 10, such that there is no resistance penalty for movement (a resistance value of 0) and the resistance threshold described in (ii) is never reached. When determining the range of distances for dispersal of muskrat due to floodwaters, we drew on literature values. While some muskrat remain in the water and disperse during flooding, yielding emigration rates of up to 120 km/year, others find refuge in trees or on rafts that are swept into trees and move no further34,36,37. To represent this range of outcomes, the distribution of path lengths was assigned a log-normal distribution, with a mode of 10 hexagons (600 m) and a median of 100 hexagons (6 km). Due to the ability of muskrat to swim up-current over tens of kilometers, this log-normal distribution functions independently of current34. This yields a distribution in which half of affected muskrat remain within six kilometers of their home ranges, while others may move tens of kilometers away. After the flood-induced dispersal movement event is complete, individuals undertake an exploration event as defined in (i) using the habitat map for that year, which represents the habitat available for home range establishment after floodwaters have receded.
    Additional parameters for the Dispersal event are:. Repulsion from hexagons with values between 0 and 1 (land or mostly land hexagons); Attraction to hexagons with values between 2 and 10 (shoreline and water hexagons), with a Multiplier of 5; and Percent Auto-Correlation of 50% with a Trend Period of 3 hexagons.
    Source-sink mappingModel output was mapped to evaluate the spatial distribution of sources, areas of high quality habitat serving as net contributors to the total muskrat population in the delta, and sinks, areas of low quality habitat serving as net detractors from the total muskrat population in the delta38. Mapping population dynamics in this way allows us to visualize the population dynamic effects of a spatially heterogeneous landscape. The location and intensity of sources and sinks were mapped at selected years to test our hypothesis that the delta’s flood regime drives interannual changes in the spatial distribution of source-sink dynamics of the muskrat metapopulation.Productivity, defined as the total number of births minus deaths in each area, was used as a simple measure of source and sink quality on the landscape (Fig. 3)39. We mapped productivity across the delta for three pairs of years, each associated with a population increase following a flood and subsequent die-off: (1971–1972) and (1975–1976), (1996–1997) and (1998–1999), (2014–2015) and (2016–2017) (Fig. 3). The years were selected based on results of realizations from thirty model simulations (Fig. 1c). Maps show the source or sink ensemble average values over those thirty modeled realizations.Source-sink mapping was carried out in HexSim using a set of simulation processes: the patch map, individual locations updater function, and productivity report modeling framework tools, as well as the build hexmap hexagons, clip hexmap, renumber patches, and map productivity report utilities developed by Nathan Schumaker40. Once in each year of the simulation, the model’s muskrat population was sampled within areas of regular tessellations comprised of hexagonally shaped areas with radii of 5 hexagons each. This sampling was executed in the model by recording birth and death statistics within each area.Dispersal flux mappingDispersal flux, the number of individuals passing through a given location per year, was mapped as the difference in values for the two years in which genetics data were collected, 2015 and 2016 (Fig. 2b). This was done by first exporting hexagon-based dispersal flux tallies for all thirty realizations in the years 2015 and 2016. Then, the mean value of dispersal flux across all 30 realizations was calculated to produce a single average dispersal flux map for each year. Finally, the difference between these two maps was calculated to yield the difference map showing locations of increased, decreased, or unchanged dispersal flux shown in Fig. 2b.Genetic analysisSample collectionMuskrat tissue samples for this study consisted of More

  • in

    Contrasting responses of above- and belowground diversity to multiple components of land-use intensity

    1.Kleijn, D. et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. Lond. B Biol. Sci. 276, 903–909 (2009).2.Ollerton, J., Erenler, H., Edwards, M. & Crockett, R. Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science 346, 1360–1362 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Stanton, R. L., Morrissey, C. A. & Clark, R. G. Analysis of trends and agricultural drivers of farmland bird declines in North America: a review. Agric. Ecosyst. Environ. 254, 244–254 (2018).Article 

    Google Scholar 
    4.Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Change Biol. 25, 1941–1956 (2019).ADS 
    Article 

    Google Scholar 
    5.Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 288–291 (2016).7.Le Provost, G. et al. Land-use history impacts functional diversity across multiple trophic groups. Proc. Natl Acad. Sci. USA 117, 1573–1579 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    8.Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. Basic Appl. Ecol. 11, 97–105 (2010).CAS 
    Article 

    Google Scholar 
    9.Rajaniemi, T. K. Why does fertilization reduce plant species diversity? Testing three competition-based hypotheses. J. Ecol. 90, 316–324 (2002).Article 

    Google Scholar 
    10.Zeng, J. et al. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol. Biochem. 92, 41–49 (2016).CAS 
    Article 

    Google Scholar 
    11.Suding, K. N. et al. Functional-and abundance-based mechanisms explain diversity loss due to N fertilization. Proc. Natl Acad. Sci. USA 102, 4387–4392 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Perović, D. et al. Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. J. Appl. Ecol. 52, 505–513 (2015).Article 

    Google Scholar 
    13.Redlich, S., Martin, E. A., Wende, B. & Steffan-Dewenter, I. Landscape heterogeneity rather than crop diversity mediates bird diversity in agricultural landscapes. PLoS ONE 13, e0200438 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    14.Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    15.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    16.Gonthier, D. J. et al. Biodiversity conservation in agriculture requires a multi-scale approach. Proc. R. Soc. Lond. B Biol. Sci. 281, 20141358 (2014).
    Google Scholar 
    17.Leibold, M. A. et al. The metacommunity concept: a framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).Article 

    Google Scholar 
    18.Chase, J. M. & Myers, J. A. Disentangling the importance of ecological niches from stochastic processes across scales. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 2351–2363 (2011).PubMed 
    Article 

    Google Scholar 
    19.Thompson, P. L. et al. A process-based metacommunity framework linking local and regional scale community ecology. Ecol. Lett. 23, 1314–1329 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Gravel, D., Canham, C. D., Beaudet, M. & Messier, C. Reconciling niche and neutrality: the continuum hypothesis. Ecol. Lett. 9, 399–409 (2006).PubMed 
    Article 

    Google Scholar 
    21.Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).PubMed 
    Article 

    Google Scholar 
    22.Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article 

    Google Scholar 
    23.Blitzer, E. J. et al. Spillover of functionally important organisms between managed and natural habitats. Agric. Ecosyst. Environ. 146, 34–43 (2012).Article 

    Google Scholar 
    24.Birkhofer, K. et al. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities. J. Anim. Ecol. 86, 511–520 (2017).PubMed 
    Article 

    Google Scholar 
    25.de Graaff, M.-A., Hornslein, N., Throop, H. L., Kardol, P. & van Diepen, L. T. A. Effects of agricultural intensification on soil biodiversity and implications for ecosystem functioning: a meta-analysis. Adv. Agron. 155, 1–44 (2019).Article 

    Google Scholar 
    26.De Deyn, G. B. & Van der Putten, W. H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 20, 625–633 (2005).PubMed 
    Article 

    Google Scholar 
    27.Field, R. et al. Spatial species-richness gradients across scales: a meta-analysis. J. Biogeogr. 36, 132–147 (2009).Article 

    Google Scholar 
    28.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    29.Gossner, M. M. et al. Land-use intensification causes multitrophic homogenization of grassland communities. Nature 540, 266–269 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the anthropocene. Curr. Biol. 29, R1036–R1044 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Tsiafouli, M. A. et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 21, 973–985 (2015).ADS 
    Article 

    Google Scholar 
    32.George, P. B. L. et al. Divergent national-scale trends of microbial and animal biodiversity revealed across diverse temperate soil ecosystems. Nat. Commun. 10, 1107 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Sirami, C. et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl Acad. Sci. USA 116, 16442–16447 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Dauber, J. et al. Local vs. landscape controls on diversity: a test using surface-dwelling soil macroinvertebrates of differing mobility. Glob. Ecol. Biogeogr. 14, 213–221 (2005).Article 

    Google Scholar 
    36.Cadotte, M. W. & Fukami, T. Dispersal, spatial scale, and species diversity in a hierarchically structured experimental landscape. Ecol. Lett. 8, 548–557 (2005).PubMed 
    Article 

    Google Scholar 
    37.Grilli, G. et al. Fungal diversity at fragmented landscapes: synthesis and future perspectives. Curr. Opin. Microbiol. 37, 161–165 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Fenchel, T. O. M. & Finlay, B. J. The ubiquity of small species: patterns of local and global diversity. Bioscience 54, 777–784 (2004).Article 

    Google Scholar 
    39.Postma-Blaauw, M. B., Goede, R. G. M., de, Bloem, J., Faber, J. H. & Brussaard, L. Soil biota community structure and abundance under agricultural intensification and extensification. Ecology 91, 460–473 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Boeraeve, M., Honnay, O. & Jacquemyn, H. Local abiotic conditions are more important than landscape context for structuring arbuscular mycorrhizal fungal communities in the roots of a forest herb. Oecologia 190, 149–157 (2019).ADS 
    PubMed 
    Article 

    Google Scholar 
    41.Meyer, A. et al. Different land use intensities in grassland ecosystems drive ecology of microbial communities involved in nitrogen turnover in soil. PLoS ONE 8, e73536 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Thomson, B. C. et al. Soil conditions and land use intensification effects on soil microbial communities across a range of European field sites. Soil Biol. Biochem. 88, 403–413 (2015).CAS 
    Article 

    Google Scholar 
    43.Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).Article 

    Google Scholar 
    44.Chaudhary, V. B., Nolimal, S., Sosa-Hernández, M. A., Egan, C. & Kastens, J. Trait-based aerial dispersal of arbuscular mycorrhizal fungi. N. Phytol. 228, 238–252 (2020).CAS 
    Article 

    Google Scholar 
    45.Vannette, R. L., Leopold, D. R. & Fukami, T. Forest area and connectivity influence root-associated fungal communities in a fragmented landscape. Ecology 97, 2374–2383 (2016).PubMed 
    Article 

    Google Scholar 
    46.Purschke, O. et al. Interactive effects of landscape history and current management on dispersal trait diversity in grassland plant communities. J. Ecol. 102, 437–446 (2014).PubMed 
    Article 

    Google Scholar 
    47.Thiel, N. et al. Airborne bacterial emission fluxes from manure-fertilized agricultural soil. Microb. Biotechnol. 13, 1631–1647 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Adl, S. M., Coleman, D. C. & Read, F. Slow recovery of soil biodiversity in sandy loam soils of Georgia after 25 years of no-tillage management. Agric. Ecosyst. Environ. 114, 323–334 (2006).Article 

    Google Scholar 
    49.Fischer, M. et al. Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories. Basic Appl. Ecol. 11, 473–485 (2010).Article 

    Google Scholar 
    50.Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Blüthgen, N. et al. A quantitative index of land-use intensity in grasslands: integrating mowing, grazing and fertilization. Basic Appl. Ecol. 13, 207–220 (2012).Article 

    Google Scholar 
    52.Kéfi, S. et al. More than a meal… integrating non-feeding interactions into food webs. Ecol. Lett. 15, 291–300 (2012).PubMed 
    Article 

    Google Scholar 
    53.Birkhofer, K. et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE 7, e43292 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Xue, P.-P., Carrillo, Y., Pino, V., Minasny, B. & McBratney, A. B. Soil properties drive microbial community structure in a large scale transect in South Eastern Australia. Sci. Rep. 8, 11725 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    55.Löbel, S., Dengler, J. & Hobohm, C. Species richness of vascular plants, bryophytes and lichens in dry grasslands: The effects of environment, landscape structure and competition. Folia Geobot. 41, 377–393 (2006).Article 

    Google Scholar 
    56.Myers, M. C., Mason, J. T., Hoksch, B. J., Cambardella, C. A. & Pfrimmer, J. D. Birds and butterflies respond to soil-induced habitat heterogeneity in experimental plantings of tallgrass prairie species managed as agroenergy crops in Iowa, USA. J. Appl. Ecol. 52, 1176–1187 (2015).Article 

    Google Scholar 
    57.Moeslund, J. E. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers. Conserv. 22, 2151–2166 (2013).Article 

    Google Scholar 
    58.Ågren, A. M., Lidberg, W., Strömgren, M., Ogilvie, J. & Arp, P. A. Evaluating digital terrain indices for soil wetness mapping–a Swedish case study. Hydrol. Earth Syst. Sci. 18, 3623–3634 (2014).ADS 
    Article 

    Google Scholar 
    59.Vogt, J. et al. Eleven years’ data of grassland management in Germany. Biodivers. Data J. 7, e36387 (2019).PubMed 
    Article 

    Google Scholar 
    60.Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).Article 

    Google Scholar 
    61.Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl Acad. Sci. USA 100, 12765–12770 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    62.Morris, M. G. The effects of structure and its dynamics on the ecology and conservation of arthropods in British grasslands. Biol. Conserv. 95, 129–142 (2000).Article 

    Google Scholar 
    63.Socher, S. A. et al. Direct and productivity-mediated indirect effects of fertilization, mowing and grazing on grassland species richness. J. Ecol. 100, 1391–1399 (2012).Article 

    Google Scholar 
    64.Simons, N. K. et al. Resource-mediated indirect effects of grassland management on arthropod diversity. PLoS ONE 9, e107033 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    65.Harpole, W. S. et al. Addition of multiple limiting resources reduces grassland diversity. Nature 537, 93 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Pöyry, J. et al. Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator of the vertebrate grazing intensity and successional age. Oikos 115, 401–412 (2006).Article 

    Google Scholar 
    67.Uchida, K. & Ushimaru, A. Biodiversity declines due to abandonment and intensification of agricultural lands: patterns and mechanisms. Ecol. Monogr. 84, 637–658 (2014).Article 

    Google Scholar 
    68.Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R. & Dowd, S. E. Distinct soil bacterial communities revealed under a diversely managed agroecosystem. PLoS ONE 7, e40338 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Poulsen, P. H. B. et al. Effects of fertilization with urban and agricultural organic wastes in a field trial—Prokaryotic diversity investigated by pyrosequencing. Soil Biol. Biochem. 57, 784–793 (2013).CAS 
    Article 

    Google Scholar 
    70.Filazzola, A. et al. The effects of livestock grazing on biodiversity are multi-trophic: a meta-analysis. Ecol. Lett. 23, 1298–1309 (2020).PubMed 
    Article 

    Google Scholar 
    71.Hooper, D. U. et al. Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks. Bioscience 50, 1049–1061 (2000).Article 

    Google Scholar 
    72.López-Jamar, J., Casas, F., Díaz, M. & Morales, M. B. Local differences in habitat selection by Great Bustards Otis tarda in changing agricultural landscapes: implications for farmland bird conservation. Bird Conserv. Int. 21, 328–341 (2011).Article 

    Google Scholar 
    73.Boeraeve, M. et al. The impact of spatial isolation and local habitat conditions on colonization of recent forest stands by ectomycorrhizal fungi. Forest Ecol. Manag. 429, 84–92 (2018).Article 

    Google Scholar 
    74.Fiore-Donno, A. M., Richter-Heitmann, T. & Bonkowski, M. Contrasting responses of protistan plant parasites and phagotrophs to ecosystems, land management and soil properties. Front. Microbiol. 11, 1823 (2020).PubMed 
    Article 

    Google Scholar 
    75.Diekötter, T., Wamser, S., Wolters, V. & Birkhofer, K. Landscape and management effects on structure and function of soil arthropod communities in winter wheat. Agric. Ecosyst. Environ. 137, 108–112 (2010).Article 

    Google Scholar 
    76.Decaëns, T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 19, 287–302 (2010).Article 

    Google Scholar 
    77.Hanson, C. A., Fuhrman, J. A., Horner-Devine, M. C. & Martiny, J. B. H. Beyond biogeographic patterns: processes shaping the microbial landscape. Nat. Rev. Microbiol. 10, 497–506 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Thakur, M. P. et al. Towards an integrative understanding of soil biodiversity. Biol. Rev. 95, 350–364 (2020).PubMed 
    Article 

    Google Scholar 
    79.Peay, K., Garbelotto, M. & Bruns, T. Evidence of dispersal limitation in soil microorganisms: isolation reduces species richness on mycorrhizal tree islands. Ecology 91, 3631–3640 (2010).PubMed 
    Article 

    Google Scholar 
    80.van der Putten, W. H. Climate change, aboveground-belowground interactions, and species’ range shifts. Annu. Rev. Ecol. Evol. Syst. 43, 365–383 (2012).Article 

    Google Scholar 
    81.Wubs, E. R. J., Putten, W. H., van der, Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. Nat. Plants 2, 1–5 (2016).Article 

    Google Scholar 
    82.Bünemann, E. K., Schwenke, G. D. & Van Zwieten, L. Impact of agricultural inputs on soil organisms—a review. Soil Res. 44, 379–406 (2006).Article 

    Google Scholar 
    83.Cameron, E. K. et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 33, 1187–1192 (2019).PubMed 
    Article 

    Google Scholar 
    84.Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Guerra, C. A. et al. Blind spots in global soil biodiversity and ecosystem function research. Nat. Commun. 11, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    86.Kleijn, D. & Sutherland, W. J. How effective are European agri-environment schemes in conserving and promoting biodiversity? J. Appl. Ecol. 40, 947–969 (2003).Article 

    Google Scholar 
    87.Bender, S. F., Wagg, C. & van der Heijden, M. G. An underground revolution: biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 31, 440–452 (2016).PubMed 
    Article 

    Google Scholar 
    88.Gessler, P. E., Moore, I. D., McKenzie, N. J. & Ryan, P. J. Soil-landscape modelling and spatial prediction of soil attributes. Int. J. Geogr. Inf. Syst. 9, 421–432 (1995).Article 

    Google Scholar 
    89.Sørensen, R., Zinko, U. & Seibert, J. On the calculation of the topographic wetness index: evaluation of different methods based on field observations. Hydrol. Earth Syst. Sci. 10, 101–112 (2006).ADS 
    Article 

    Google Scholar 
    90.Ostrowski, A., Lorenzen, K., Petzold, E. & Schindler, S. Land use intensity index (LUI) calculation tool of the Biodiversity Exploratories project for grassland survey data from three different regions in Germany since 2006, BEXIS 2 module. (Zenodo, 2020).91.Koleff, P., Gaston, K. J. & Lennon, J. J. Measuring beta diversity for presence–absence data. J. Anim. Ecol. 72, 367–382 (2003).Article 

    Google Scholar 
    92.Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. Ecol. Lett. 18, 85–95 (2015).PubMed 
    Article 

    Google Scholar 
    93.Ulrich, W. et al. Climate and soil attributes determine plant species turnover in global drylands. J. Biogeogr. 41, 2307–2319 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Shoffner, A., Wilson, A. M., Tang, W. & Gagné, S. A. The relative effects of forest amount, forest configuration, and urban matrix quality on forest breeding birds. Sci. Rep. 8, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    95.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed 
    Article 

    Google Scholar 
    96.R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).97.Ricci, B. et al. The influence of landscape on insect pest dynamics: a case study in southeastern France. Landsc. Ecol. 24, 337–349 (2009).Article 

    Google Scholar 
    98.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    99.Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647 (2005).Article 

    Google Scholar 
    100.Gross, N. et al. Functional trait diversity maximizes ecosystem multifunctionality. Nat. Ecol. Evol. 1, 0132 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    101.Le Bagousse-Pinguet, Y. et al. Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 116, 8419–8424 (2019).PubMed 
    Article 
    CAS 

    Google Scholar  More

  • in

    The global impact of wild pigs (Sus scrofa) on terrestrial biodiversity

    1.Vos, J. M. D., Joppa, L. N., Gittleman, J. L., Stephens, P. R. & Pimm, S. L. Estimating the normal background rate of species extinction. Conserv. Biol. 29, 452–462 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 20, 110 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Ehrenfeld, J. G. Ecosystem consequences of biological invasions. Annu. Rev. Ecol. Evol. Syst. 41, 59–80 (2010).Article 

    Google Scholar 
    4.Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. PNAS 113, 11261–11265 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.IUCN. The IUCN Red List of Threatened Species. Version 2017-3 . Available at https://www.iucnredlist.org/en (2018). Accessed 18 May 2018.6.Doherty, T. S. et al. The global impacts of domestic dogs on threatened vertebrates. Biol. Conserv. 210, 56–59 (2017).Article 

    Google Scholar 
    7.Medina, F. M. et al. A global review of the impacts of invasive cats on island endangered vertebrates. Glob. Change Biol. 17, 3503–3510 (2011).ADS 
    Article 

    Google Scholar 
    8.Jones, H. P. et al. Severity of the effects of invasive rats on seabirds: A global review. Conserv. Biol. 22, 16–26 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. Consequences associated with the recent range expansion of nonnative feral swine. Bioscience 64, 291–299 (2014).Article 

    Google Scholar 
    10.Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).ADS 
    Article 

    Google Scholar 
    11.McClure, M. L., Burdett, C. L., Farnsworth, M. L., Sweeney, S. J. & Miller, R. S. A globally-distributed alien invasive species poses risks to United States imperiled species. Sci. Rep. 8, 5331 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    12.Lowe, S. M., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN). First published as special lift-out in Aliens, vol. 12 (2000).13.Barrios-Garcia, M. N. & Ballari, S. A. Impact of wild boar (Sus scrofa) in its introduced and native range: A review. Biol. Invasions 14, 2283–2300 (2012).Article 

    Google Scholar 
    14.Challies, C. N. Feral pigs (Sus scrofa) on Auckland Island: Status, and effects on vegetation and nesting sea birds. N. Zeal. J. Zool. 2, 479–490 (1975).Article 

    Google Scholar 
    15.Coblentz, B. E. & Baber, D. W. Biology and control of feral pigs on Isla Santiago, Galapagos, Ecuador. J. Appl. Ecol. 24, 403–418 (1987).Article 

    Google Scholar 
    16.Jolley, D. B. et al. Estimate of herpetofauna depredation by a population of wild pigs. J. Mammal. 91, 519–524 (2010).Article 

    Google Scholar 
    17.Cole, R. J. & Litton, C. M. Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biol. Invasions 16, 125–140 (2014).Article 

    Google Scholar 
    18.MacFarland, C. G., Villa, J. & Toro, B. The Galápagos giant tortoises (Geochelone elephantopus) Part I: Status of the surviving populations. Biol. Conserv. 6, 118–133 (1974).Article 

    Google Scholar 
    19.Semiadi, G. & Meijaard, E. Declining populations of the Javan warty pig Sus verrucosus. Oryx 40, 50–56 (2006).Article 

    Google Scholar 
    20.Desbiez, A. L. J., Santos, S. A., Keuroghlian, A. & Bodmer, R. E. Niche partitioning among White-Lipped Peccaries (Tayassu pecari), Collared Peccaries (Pecari tajacu), and Feral Pigs (Sus scrofa). J. Mamm. 90, 119–128 (2009).Article 

    Google Scholar 
    21.Focardi, S., Capizzi, D. & Monetti, D. Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean woodland. J. Zool. 250, 329–334 (2000).Article 

    Google Scholar 
    22.Gortázar, C., Ferroglio, E., Höfle, U., Frölich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241 (2007).Article 

    Google Scholar 
    23.Mitchell, J., Dorney, W., Mayer, R. & McIlroy, J. Ecological impacts of feral pig diggings in north Queensland rainforests. Wildl. Res. 34, 603–608 (2008).Article 

    Google Scholar 
    24.Ballari, S. A. & Barrios-García, M. N. A review of wild boar Sus scrofa diet and factors affecting food selection in native and introduced ranges. Mamm. Rev. 44, 124–134 (2014).Article 

    Google Scholar 
    25.Massei, G. & Genov, P. The environmental impact of wild boar. Galemys: Boletín informativo de la Sociedad Española para la conservación y estudio de los mamíferos 16(1), 135–145 (2004) (ISSN 1137-8700).
    Google Scholar 
    26.Nuñez, M. A., Bailey, J. K. & Schweitzer, J. A. Population, community and ecosystem effects of exotic herbivores: A growing global concern. Biol. Invasions 12, 297–301 (2010).Article 

    Google Scholar 
    27.Spear, D. & Chown, S. L. Non-indigenous ungulates as a threat to biodiversity. J. Zool. 279, 1–17 (2009).Article 

    Google Scholar 
    28.Bracke, M. B. M. Review of wallowing in pigs: Description of the behaviour and its motivational basis. Appl. Anim. Behav. Sci. 132, 1–13 (2011).Article 

    Google Scholar 
    29.Campbell, T. A. & Long, D. B. Feral swine damage and damage management in forested ecosystems. For. Ecol. Manag. 257, 2319–2326 (2009).Article 

    Google Scholar 
    30.Tulloch, V. J. et al. Why do we map threats? Linking threat mapping with actions to make better conservation decisions. Front. Ecol. Environ. 13, 91–99 (2015).Article 

    Google Scholar 
    31.Nogales, M. et al. Feral cats and biodiversity conservation: The urgent prioritization of island management. Bioscience 63, 804–810 (2013).Article 

    Google Scholar 
    32.Jones, H. P. et al. Invasive mammal eradication on islands results in substantial conservation gains. PNAS 113, 4033–4038 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).34.Bland, L. M., Collen, B., Orme, C. D. L. & Bielby, J. Predicting the conservation status of data-deficient species. Conserv. Biol. 29, 250–259 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).36.Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.5. https://CRAN.R-project.org/package=dplyr (2019).37.Böhm, M. et al. The conservation status of the world’s reptiles. Biol. Conserv. 157, 372–385 (2013).Article 

    Google Scholar 
    38.Keith, D. A. et al. The IUCN red list of ecosystems: Motivations, challenges, and applications. Conserv. Lett. 8, 214–226 (2015).Article 

    Google Scholar 
    39.Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Anim. Conserv. Forum 4, 307–318 (2001).Article 

    Google Scholar 
    40.Brummitt, N. A. et al. Green plants in the red: A baseline global assessment for the IUCN sampled red list index for plants. PLoS One 10, e0135152 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Joppa, L. N., Roberts, D. L., Myers, N. & Pimm, S. L. Biodiversity hotspots house most undiscovered plant species. Proc. Natl. Acad. Sci. 108, 13171–13176 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Bland, L. M. & Böhm, M. Overcoming data deficiency in reptiles. Biol. Conserv. 204, 16–22 (2016).Article 

    Google Scholar 
    43.Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Denslow, J. S. Weeds in paradise: Thoughts on the invasibility of tropical islands. Ann. Mo. Bot. Gard. 90, 119–127 (2003).Article 

    Google Scholar 
    45.Desurmont, G. A., Donoghue, M. J., Clement, W. L. & Agrawal, A. A. Evolutionary history predicts plant defense against an invasive pest. PNAS 108, 7070–7074 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Parker, J. D., Burkepile, D. E. & Hay, M. E. Opposing effects of native and exotic herbivores on plant invasions. Science 311, 1459–1461 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Banks, P. B. & Dickman, C. R. Alien predation and the effects of multiple levels of prey naiveté. Trends Ecol. Evol. 22, 229–230 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Courchamp, F., Chapuis, J.-L. & Pascal, M. Mammal invaders on islands: Impact, control and control impact. Biol. Rev. 78, 347–383 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Richards, S. J., McDonald, K. R. & Alford, R. A. Declines in populations of Australia’s endemic tropical rainforest frogs. Pac. Conserv. Biol. 1, 66–77 (1994).Article 

    Google Scholar 
    51.Simberloff, D. How common are invasion-induced ecosystem impacts?. Biol. Invasions 13, 1255–1268 (2011).Article 

    Google Scholar 
    52.Bellard, C., Genovesi, P. & Jeschke, J. M. Global patterns in threats to vertebrates by biological invasions. Proc. R. Soc. B Biol. Sci. 283, 20152454 (2016).Article 

    Google Scholar 
    53.de Brooke, M. L., Hilton, G. M. & Martins, T. L. F. Prioritizing the world’s islands for vertebrate-eradication programmes. Anim. Conserv. 10, 380–390 (2007).Article 

    Google Scholar 
    54.Cruz, F., Josh Donlan, C., Campbell, K. & Carrion, V. Conservation action in the Galàpagos: Feral pig (Sus scrofa) eradication from Santiago Island. Biol. Conserv. 121, 473–478 (2005).Article 

    Google Scholar 
    55.Ramsey, D. S. L., Parkes, J. & Morrison, S. A. Quantifying eradication success: The removal of feral pigs from Santa Cruz Island, California. Conserv. Biol. 23, 449–459 (2009).PubMed 
    Article 

    Google Scholar 
    56.Donlan, C. J. et al. Recovery of the Galápagos rail (Laterallus spilonotus) following the removal of invasive mammals. Biol. Conserv. 138, 520–524 (2007).Article 

    Google Scholar 
    57.Gürtler, R. E., Martín Izquierdo, V., Gil, G., Cavicchia, M. & Maranta, A. Coping with wild boar in a conservation area: Impacts of a 10-year management control program in north-eastern Argentina. Biol. Invasions 19, 11–24 (2017).Article 

    Google Scholar 
    58.Weeks, P. & Packard, J. Feral Hogs: Invasive species or nature’s bounty?. Hum. Organ. 68, 280–292 (2009).Article 

    Google Scholar 
    59.Lavelle, M. J. et al. Evaluation of fences for containing feral swine under simulated depopulation conditions. J. Wildl. Manag. 75, 1200–1208 (2011).Article 

    Google Scholar 
    60.McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS One 10, e0133771 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    61.Amendolia, S., Lombardini, M., Pierucci, P. & Meriggi, A. Seasonal spatial ecology of the wild boar in a peri-urban area. Mamm. Res. https://doi.org/10.1007/s13364-019-00422-9 (2019).Article 

    Google Scholar 
    62.Risch, D. R., Ringma, J., Honarvar, S. & Price, M. R. A comparison of abundance and distribution model outputs using camera traps and sign surveys for feral pigs. Pac. Conserv. Biol. https://doi.org/10.1071/PC20032 (2020).Article 

    Google Scholar 
    63.Database of Island Invasive Species Eradications. http://diise.islandconservation.org/. (2018). Accessed 3 October 2018 More

  • in

    Alterations in gut microbiota linked to provenance, sex, and chronic wasting disease in white-tailed deer (Odocoileus virginianus)

    1.Haley, N. J. & Hoover, E. A. Chronic wasting disease of cervids: current knowledge and future perspectives. Annu. Rev. Anim. Biosci. 3, 305–325 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Hannaoui, S., Schatzl, H. M. & Gilch, S. Chronic wasting disease: emerging prions and their potential risk. PLoS Pathog. 13, e1006619 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    3.United States Geological Survey. Expanding Distribution of Chronic Wasting Disease. https://www.usgs.gov/centers/nwhc/science/expanding-distribution-chronic-wasting-disease?qt-science_center_objects=0#qt-science_center_objects (2021).4.Benestad, S. L., Mitchell, G., Simmons, M., Ytrehus, B. & Vikøren, T. First case of chronic wasting disease in Europe in a Norwegian free-ranging reindeer. Vet. Res. 47, 1–7 (2016).Article 

    Google Scholar 
    5.Gough, K. C. & Maddison, B. C. Prion transmission: prion excretion and occurrence in the environment. Prion 4, 275–282 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Donaldson, D. S., Sehgal, A., Rios, D., Williams, I. R. & Mabbott, N. A. Increased abundance of m cells in the gut epithelium dramatically enhances oral prion disease susceptibility. PLoS Pathog. 12, e1006075 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    7.Press, C. M., Heggebø, R. & Espenes, A. Involvement of gut-associated lymphoid tissue of ruminants in the spread of transmissible spongiform encephalopathies. Adv. Drug Deliv. Rev. 56, 885–899 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Corr, S. C., Gahan, C. C. G. M. & Hill, C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. FEMS Immunol. Med. Microbiol. 52, 2–12 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Mabbott, N. A., Donaldson, D. S., Ohno, H., Williams, I. R. & Mahajan, A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol. 6, 666–677 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Maignien, T., Lasmézas, C. I., Beringue, V., Dormont, D. & Deslys, J. P. Pathogenesis of the oral route of infection of mice with scrapie and bovine spongiform encephalopathy agents. J. Gen. Virol. 80(Pt 11), 3035–3042 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Bennett, K. M. et al. Induction of colonic m cells during intestinal inflammation. Am. J. Pathol. 186, 1166–1179 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Donaldson, D. S. & Mabbott, N. A. The influence of the commensal and pathogenic gut microbiota on prion disease pathogenesis. J. Gen. Virol. 97, 1725–1738 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Terahara, K. et al. Comprehensive gene expression profiling of peyer’s patch m cells, villous m-like cells, and intestinal epithelial cells. J. Immunol. 180, 7840–7846 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Sigurdson, C. J. et al. Bacterial colitis increases susceptibility to oral prion disease. J. Infect. Dis. 199, 243–252 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Tahoun, A. et al. Salmonella transforms follicle-associated epithelial cells into m cells to promote intestinal invasion. Cell Host Microb. 12, 645–656 (2012).CAS 
    Article 

    Google Scholar 
    16.Kamada, N., Chen, G. Y., Inohara, N. & Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 14, 685–690 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    18.Ogbonnaya, E. S. et al. Adult hippocampal neurogenesis is regulated by the microbiome. Biol. Psychiatr. 78, e7-9 (2015).Article 

    Google Scholar 
    19.Heijtz, R. D. et al. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. U. S. A. 108, 3047–3052 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18, 965–977 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Fung, T. C., Olson, C. A. & Hsiao, E. Y. Interactions between the microbiota, immune and nervous systems in health and disease. Nat. Neurosci. 20, 145–155 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Chu, Y. & Kordower, J. H. The prion hypothesis of Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 15, 28 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    23.Goedert, M. Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 349, 1255555 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    24.Herva, M. E. & Spillantini, M. G. Parkinson’s disease as a member of prion-like disorders. Virus Res. 207, 38–46 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Tan, J. M. M., Wong, E. S. P. & Lim, K.-L. Protein misfolding and aggregation in Parkinson’s disease. Antioxid. Redox Signal. 11, 2119–2134 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Weickenmeier, J., Jucker, M., Goriely, A. & Kuhl, E. A physics-based model explains the prion-like features of neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis. J. Mech. Phys. Solids 124, 264–281 (2019).ADS 
    Article 

    Google Scholar 
    27.Olanow, C. W. & Brundin, P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder?. Mov. Disord. 28, 31–40 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.D’Argenio, V. & Sarnataro, D. Microbiome influence in the pathogenesis of prion and Alzheimer’s diseases. Int. J. Mol. Sci. 20, 4704 (2019).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Kang, D.-W. et al. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome 5, 10 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Rowin, J., Xia, Y., Jung, B. & Sun, J. Gut inflammation and dysbiosis in human motor neuron disease. Physiol. Rep. 5, e13443 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469-1480.e12 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Vogt, N. M. et al. Gut microbiome alterations in Alzheimer’s disease. Sci. Rep. 7, 13537 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    33.Lev, M., Raine, C. S. & Levenson, S. M. Enhanced survival of germfree mice after infection with irradiated scrapie brain. Experientia 27, 1358–1359 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Wade, W. F., Dees, C., German, T. L. & Marsh, R. F. Effect of bacterial flora and mouse genotype (euthymic or athymic) on scrapie pathogenesis. J. Leukoc. Biol. 40, 525–532 (1986).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bradford, B. M., Tetlow, L. & Mabbott, N. A. Prion disease pathogenesis in the absence of the commensal microbiota. J. Gen. Virol. 98, 1943–1952 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Guan, Y. et al. Comparison of the gut microbiota composition between wild and captive sika deer (Cervus nippon hortulorum) from feces by high-throughput sequencing. AMB Express 7, 212 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    37.USDA APHIS|Cervids: Chronic Wasting Disease. https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/animal-disease-information/cervid/cervids-cwd/cervid-cwd (2020).38.Keane, D. P. et al. Chronic wasting disease in a Wisconsin white-tailed deer farm. J. Vet. Diagn. Invest. 20, 698–703 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Ethanol Precipitation Protocol—MRC Holland Technical Support. https://support.mrcholland.com/kb/articles/ethanol-precipitation-protocol.40.Apprill, A. & Parada, A. E. 16S Illumina amplicon protocol: Earth microbiome project. http://press.igsb.anl.gov/earthmicrobiome/protocols-and-standards/16s/.41.Boylen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 

    Google Scholar 
    42.Yilmaz, P. et al. The SILVA and ‘all-species living tree project (LTP)’ taxonomic frameworks. Nucl. Acids Res. https://doi.org/10.1093/nar/gkt1209 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucl. Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Callahan, B. J. et al. DADA2: High resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Min, B. R., Gurung, N., Shange, R. & Solaiman, S. Potential role of rumen microbiota in altering average daily gain and feed efficiency in meat goats fed simple and mixed pastures using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 97, 3523–3534 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Clayton, J. B. et al. Associations between nutrition, gut microbiome, and health in a novel nonhuman primate model. Sci. Rep. 8, 11159 (2018).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Moeller, A. H. et al. Social behavior shapes the chimpanzee pan-microbiome. Sci. Adv. 2, e1500997 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    49.Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    50.Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 9, 18781 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Delgado, M. L. et al. Intestinal microbial community dynamics of white-tailed deer (Odocoileus virginianus) in an agroecosystem. Microb. Ecol. 74, 496–506 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Rothschild, D. et al. Environment dominates over host genetics in shaping human gut microbiota. Nature 555, 210–215 (2018).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Rogers, L. L., Mooty, J. J. & Dawson, D. Foods of White-Tailed Deer in the Upper Great Lakes Region: A Review (North Central Forest Experiment Station, Forest Service, U.S. Dept. of Agriculture, 1981).Book 

    Google Scholar 
    55.Gibson, K. M. et al. Gut microbiome differences between wild and captive black rhinoceros—implications for rhino health. Sci. Rep. 9, 7570 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    56.Guo, W. et al. Comparative study of gut microbiota in wild and captive giant pandas (Ailuropoda melanoleuca). Genes (Basel) 10, 827 (2019).CAS 
    Article 

    Google Scholar 
    57.Hale, V. L. et al. Gut microbiota in wild and captive Guizhou snub-nosed monkeys, Rhinopithecus brelichi. Am. J. Primatol. 81, e22989 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Prabhu, V. R., Wasimuddin, W., Kamalakkannan, R., Arjun, M. S. & Nagarajan, M. Consequences of domestication on gut microbiome: A comparative study between wild gaur and domestic mithun. Front. Microbiol. 11, 133 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Clayton, J. B. et al. The gut microbiome of nonhuman primates: Lessons in ecology and evolution. Am. J. Primatol. 80, e22867 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Khafipour, E. et al. Effects of grain feeding on microbiota in the digestive tract of cattle. Anim. Front. 6, 13–19 (2016).Article 

    Google Scholar 
    62.Liu, C. et al. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front. Microbiol. 10, 1116 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Beier, P. Sex differences in quality of white-tailed deer diets. J. Mammal. 68, 323–329 (1987).Article 

    Google Scholar 
    65.Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Yang, X. et al. Seasonal breeding leads to changes for gut microbiota diversity in the wild ground squirrel (Spermophilus dauricus). https://www.researchsquare.com/article/rs-96089/v1 (2020). https://doi.org/10.21203/rs.3.rs-96089/v1.67.Antwis, R. E., Edwards, K. L., Unwin, B., Walker, S. L. & Shultz, S. Rare gut microbiota associated with breeding success, hormone metabolites and ovarian cycle phase in the critically endangered eastern black rhino. Microbiome 7, 27 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Gordon, I. R. Controlled Reproduction in Horses, Deer, and Camelids (Cab International, 1997).
    Google Scholar 
    69.Samuel, M. D. & Storm, D. J. Chronic wasting disease in white-tailed deer: Infection, mortality, and implications for heterogeneous transmission. Ecology 97, 3195–3205 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Miller, M. W., Hobbs, N. T. & Tavener, S. J. Dynamics of prion disease transmission in mule deer. Ecol. Appl. 16, 2208–2214 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Gandy, K. A. O., Zhang, J., Nagarkatti, P. & Nagarkatti, M. The role of gut microbiota in shaping the relapse-remitting and chronic-progressive forms of multiple sclerosis in mouse models. Sci. Rep. 9, 1–17 (2019).CAS 
    Article 

    Google Scholar 
    72.Ebringer, A., Rashid, T., Wilson, C., Boden, R. & Thompson, E. A possible link between multiple sclerosis and Creutzfeldt-Jakob disease based on clinical, genetic, pathological and immunological evidence involving Acinetobacter bacteria. Med. Hypotheses 64, 487–494 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Ricci, S. et al. Impact of supplemental winter feeding on ruminal microbiota of roe deer Capreolus capreolus. wbio 2019, 1–11 (2019).Article 

    Google Scholar 
    74.Sun, C.-H., Liu, H.-Y., Liu, B., Yuan, B.-D. & Lu, C.-H. Analysis of the gut microbiome of wild and captive Père David’s deer. Front. Microbiol. 10, 2331 (2019).PubMed 
    Article 

    Google Scholar 
    75.Barichella, M. et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov. Disord. 34, 396–405 (2019).PubMed 
    Article 

    Google Scholar 
    76.Pietrucci, D. et al. Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat. Disord. 65, 124–130 (2019).PubMed 
    Article 

    Google Scholar 
    77.Radisavljevic, N., Cirstea, M. & Brett Finlay, B. Bottoms up: The role of gut microbiota in brain health. Environ. Microbiol https://doi.org/10.1111/1462-2920.14506 (2018).Article 
    PubMed 

    Google Scholar 
    78.Geirnaert, A. et al. Butyrate-producing bacteria supplemented in vitro to Crohn’s disease patient microbiota increased butyrate production and enhanced intestinal epithelial barrier integrity. Sci. Rep. 7, 11450 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    79.Vacca, M. et al. The controversial role of human gut Lachnospiraceae. Microorganisms 8, 573 (2020).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    80.Zeng, H., Ishaq, S. L., Zhao, F.-Q. & Wright, A.-D.G. Colonic inflammation accompanies an increase of β-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J. Nutr. Biochem. 35, 30–36 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Zhang, T., Li, Q., Cheng, L., Buch, H. & Zhang, F. Akkermansia muciniphila is a promising probiotic. Microb. Biotechnol. 12, 1109–1125 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Zhou, K. Strategies to promote abundance of Akkermansia muciniphila, an emerging probiotics in the gut, evidence from dietary intervention studies. J. Funct. Foods 33, 194–201 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.Ou, Z. et al. Protective effects of Akkermansia muciniphila on cognitive deficits and amyloid pathology in a mouse model of Alzheimer’s disease. Nutr. Diabetes 10, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    84.Cirstea, M., Radisavljevic, N. & Finlay, B. B. Good bug, bad bug: Breaking through microbial stereotypes. Cell Host Microb. 23, 10–13 (2018).CAS 
    Article 

    Google Scholar 
    85.Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. PNAS 114, 10719–10724 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Cekanaviciute, E. et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. PNAS 114, 10713–10718 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    87.Heintz-Buschart, A. et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 33, 88–98 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    88.Hill-Burns, E. M. et al. Parkinson’s disease and PD medications have distinct signatures of the gut microbiome. Mov. Disord. 32, 739–749 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Belzer, C. & de Vos, W. M. Microbes inside—from diversity to function: The case of Akkermansia. ISME J. 6, 1449–1458 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Donaldson, D. S., Pollock, J., Vohra, P., Stevens, M. P. & Mabbott, N. A. Microbial stimulation reverses the age-related decline in M cells in aged mice. iScience 23, 101147 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    91.Ganesh, B. P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS ONE 8, e74963 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    92.Donaldson, D. S. et al. M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Derrien, M., Belzer, C. & de Vos, W. M. Akkermansia muciniphila and its role in regulating host functions. Microb. Pathog. 106, 171–181 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    94.Nagalingam, N. A., Kao, J. Y. & Young, V. B. Microbial ecology of the murine gut associated with the development of DSS-colitis. Inflamm. Bowel Dis. 17, 917–926 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Haley, N. J. et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS ONE 14, e0224342 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    96.Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    97.Wagner Mackenzie, B., Waite, D. W. & Taylor, M. W. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front. Microbiol. 6, 130 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    98.Kawada, Y., Naito, Y., Andoh, A., Ozeki, M. & Inoue, R. Effect of storage and DNA extraction method on 16S rRNA-profiled fecal microbiota in Japanese adults. J. Clin. Biochem. Nutr. 64, 106–111 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    99.Sinha, R. et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomark. Prev. 25, 407–416 (2016).Article 

    Google Scholar  More

  • in

    Approximate Bayesian Computation of radiocarbon and paleoenvironmental record shows population resilience on Rapa Nui (Easter Island)

    1.deMenocal, P. B. & Stringer, C. Climate and the peopling of the world. Nature 538, 49–50 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Pisor, A. C. & Jones, J. H. Human adaptation to climate change: an introduction to the special issue. Am. J. Hum. Biol. n/a, e23530 (2020).3.Rick, T. C. & Sandweiss, D. H. Archaeology, climate, and global change in the Age of Humans. PNAS 117, 8250–8253 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Shennan, S. & Sear, R. Archaeology, demography and life history theory together can help us explain past and present population patterns. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190711 (2021).CAS 
    Article 

    Google Scholar 
    5.Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evolution 5, 273–284 (2021).Article 

    Google Scholar 
    6.Bocquet‐Appel, J. Recent Advances in Paleodemography (Springer, Dordrecht, 2008).7.Chamberlain, A. T. Demography in Archaeology (Cambridge University Press, 2006).8.Drennan, R. D., Berrey, C. A. & Peterson, C. E. Regional Settlement Demography in Archaeology (Eliot Werner Publications, 2015).9.Kintigh, K. W. et al. Grand challenges for archaeology. PNAS 111, 879–880 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Bocquet‐Appel, J. Paleoanthropological traces of a neolithic demographic transition. Curr. Anthropol. 43, 637–650 (2002).Article 

    Google Scholar 
    11.Crema, E. R. & Kobayashi, K. A multi-proxy inference of Jōmon population dynamics using bayesian phase models, residential data, and summed probability distribution of 14C dates. J. Archaeol. Sci. 117, 105136 (2020).Article 

    Google Scholar 
    12.Schmidt, I. et al. Approaching prehistoric demography: proxies, scales and scope of the Cologne Protocol in European contexts. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190714 (2021).Article 

    Google Scholar 
    13.Schiffels, S. & Durbin, R. Inferring human population size and separation history from multiple genome sequences. Nat. Genet. 46, 919–925 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.White, A. J. et al. An evaluation of fecal stanols as indicators of population change at Cahokia, Illinois. J. Archaeol. Sci. 93, 129–134 (2018).CAS 
    Article 

    Google Scholar 
    15.Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nat. Commun. 4, 1–8 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Timpson, A. et al. Reconstructing regional population fluctuations in the European Neolithic using radiocarbon dates: a new case-study using an improved method. J. Archaeol. Sci. 52, 549–557 (2014).Article 

    Google Scholar 
    17.Crema, E. R., Habu, J., Kobayashi, K. & Madella, M. Summed probability distribution of 14 C dates suggests regional divergences in the population dynamics of the jomon period in Eastern Japan. PLoS ONE 11, e0154809 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Crema, E. R., Bevan, A. & Shennan, S. Spatio-temporal approaches to archaeological radiocarbon dates. J. Archaeol. Sci. 87, 1–9 (2017).CAS 
    Article 

    Google Scholar 
    19.Chaput, M. A. & Gajewski, K. Radiocarbon dates as estimates of ancient human population size. Anthropocene 15, 3–12 (2016).Article 

    Google Scholar 
    20.Carleton, W. C. Evaluating Bayesian Radiocarbon‐dated Event Count (REC) models for the study of long‐term human and environmental processes. Journal of Quaternary Science 36, 110–123 (2021).21.Brown, W. A. The past and future of growth rate estimation in demographic temporal frequency analysis: Biodemographic interpretability and the ascendance of dynamic growth models. J. Archaeol. Sci. 80, 96–108 (2017).Article 

    Google Scholar 
    22.Carleton, W. C. & Groucutt, H. S. Sum things are not what they seem: problems with point-wise interpretations and quantitative analyses of proxies based on aggregated radiocarbon dates. Holocene 0959683620981700. https://doi.org/10.1177/0959683620981700 (2020).23.Crema, E. R. & Bevan, A. Inference from large sets of radiocarbon dates: software and methods. Radiocarbon 63, 23–39 (2021).Article 

    Google Scholar 
    24.Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012).Article 

    Google Scholar 
    25.Ward, I. & Larcombe, P. Sedimentary unknowns constrain the current use of frequency analysis of radiocarbon data sets in forming regional models of demographic change. Geoarchaeology 36, 546–570 (2021).Article 

    Google Scholar 
    26.de Souza, J. G. & Riris, P. Delayed demographic transition following the adoption of cultivated plants in the eastern La Plata Basin and Atlantic coast, South America. J. Archaeol. Sci. 125, 105293 (2021).Article 

    Google Scholar 
    27.Fernández-López de Pablo, J. et al. Palaeodemographic modelling supports a population bottleneck during the Pleistocene-Holocene transition in Iberia. Nat. Commun. 10, 1872 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    28.Goldberg, A., Mychajliw, A. M. & Hadly, E. A. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Lima, M. et al. Ecology of the collapse of Rapa Nui society. Proc. R. Soc. B: Biol. Sci. 287, 20200662 (2020).CAS 
    Article 

    Google Scholar 
    30.Prates, L., Politis, G. G. & Perez, S. I. Rapid radiation of humans in South America after the last glacial maximum: a radiocarbon-based study. PLoS ONE 15, e0236023 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Riris, P. Dates as data revisited: a statistical examination of the Peruvian preceramic radiocarbon record. J. Archaeol. Sci. 97, 67–76 (2018).Article 

    Google Scholar 
    32.Riris, P. & Arroyo-Kalin, M. Widespread population decline in South America correlates with mid-Holocene climate change. Sci. Rep. 9, 6850 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Crema, E. R. & Shoda, S. A Bayesian approach for fitting and comparing demographic growth models of radiocarbon dates: A case study on the Jomon-Yayoi transition in Kyushu (Japan). PLOS ONE 16, e0251695 (2021).34.Timpson, A., Barberena, R., Thomas, M. G., Méndez, C. & Manning, K. Directly modelling population dynamics in the South American Arid Diagonal using 14 C dates. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190723 (2021).CAS 
    Article 

    Google Scholar 
    35.Bernabeu Aubán, J., García Puchol, O., Barton, M., McClure, S. & Pardo Gordó, S. Radiocarbon dates, climatic events, and social dynamics during the Early Neolithic in Mediterranean Iberia. Quat. Int. 403, 201–210 (2016).Article 

    Google Scholar 
    36.Bevan, A. et al. Holocene fluctuations in human population demonstrate repeated links to food production and climate. Proc. Natl Acad. Sci. USA 114, E10524–E10531 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Bird, D. et al. A first empirical analysis of population stability in North America using radiocarbon records. Holocene 30, 1345–1359 (2020).ADS 
    Article 

    Google Scholar 
    38.Capuzzo, G., Zanon, M., Corso, M. D., Kirleis, W. & Barceló, J. A. Highly diverse Bronze Age population dynamics in Central-Southern Europe and their response to regional climatic patterns. PLoS ONE 13, e0200709 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.de Souza, J. G. et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 3, 1007–1017 (2019).PubMed 
    Article 

    Google Scholar 
    40.Jørgensen, E. K. The palaeodemographic and environmental dynamics of prehistoric Arctic Norway: an overview of human-climate covariation. Quat. Int. 549, 36–51 (2020).Article 

    Google Scholar 
    41.Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. PNAS 110, 443–447 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Roberts, N. et al. Human responses and non-responses to climatic variations during the last Glacial-Interglacial transition in the eastern Mediterranean. Quat. Sci. Rev. 184, 47–67 (2018).ADS 
    Article 

    Google Scholar 
    43.Wang, C., Lu, H., Zhang, J., Gu, Z. & He, K. Prehistoric demographic fluctuations in China inferred from radiocarbon data and their linkage with climate change over the past 50,000 years. Quat. Sci. Rev. 98, 45–59 (2014).ADS 
    Article 

    Google Scholar 
    44.Warden, L. et al. Climate induced human demographic and cultural change in northern Europe during the mid-Holocene. Sci. Rep. 7, 15251 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    46.Weninger, B., Clare, L., Jöris, O., Jung, R. & Edinborough, K. Quantum theory of radiocarbon calibration. World Archaeol. 47, 543–566 (2015).Article 

    Google Scholar 
    47.Weninger, B. & Edinborough, K. Bayesian 14C-rationality, Heisenberg uncertainty, and Fourier Transform: the beauty of radiocarbon calibration. Doc. Praehist. 47, 536–559 (2020).Article 

    Google Scholar 
    48.Tavaré, S., Balding, D. J., Griffiths, R. C. & Donnelly, P. Inferring coalescence times from DNA sequence data. Genetics 145, 505–518 (1997).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Beaumont, M. A., Zhang, W. & Balding, D. J. Approximate Bayesian computation in population. Genet. Genet. 162, 2025–2035 (2002).
    Google Scholar 
    50.Carrignon, S., Brughmans, T. & Romanowska, I. Tableware trade in the Roman East: exploring cultural and economic transmission with agent-based modelling and approximate Bayesian computation. PLoS ONE 15, e0240414 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Crema, E. R., Edinborough, K., Kerig, T. & Shennan, S. J. An approximate Bayesian computation approach for inferring patterns of cultural evolutionary change. J. Archaeol. Sci. 50, 160–170 (2014).Article 

    Google Scholar 
    52.Crema, E. R., Kandler, A. & Shennan, S. Revealing patterns of cultural transmission from frequency data: equilibrium and non-equilibrium assumptions. Sci. Rep. 6, 39122 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Rubio-Campillo, X. Model selection in historical research using approximate Bayesian computation. PLoS ONE 11, e0146491 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Tsutaya, T., Shimomi, A., Fujisawa, S., Katayama, K. & Yoneda, M. Isotopic evidence of breastfeeding and weaning practices in a hunter–gatherer population during the Late/Final Jomon period in eastern Japan. J. Archaeol. Sci. 76, 70–78 (2016).CAS 
    Article 

    Google Scholar 
    55.Porčić, M. & Nikolić, M. The Approximate Bayesian Computation approach to reconstructing population dynamics and size from settlement data: demography of the Mesolithic-Neolithic transition at Lepenski Vir. Archaeol. Anthropol. Sci. 1–18. https://doi.org/10.1007/s12520-014-0223-2 (2015).56.Porčić, M., Blagojević, T., Pendić, J. & Stefanović, S. The Neolithic Demographic Transition in the Central Balkans: population dynamics reconstruction based on new radiocarbon evidence. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190712 (2021).Article 
    CAS 

    Google Scholar 
    57.DiNapoli, R. J., Rieth, T. M., Lipo, C. P. & Hunt, T. L. A model-based approach to the tempo of “collapse”: The case of Rapa Nui (Easter Island). J. Archaeol. Sci. 116, 105094 (2020).Article 

    Google Scholar 
    58.Hunt, T. L. & Lipo, C. The Archaeology of Rapa Nui (Easter Island). in The Oxford Handbook of Prehistoric Oceania (eds. Cochrane, E. E. & Hunt, T. L.) 416–449 (Oxford University Press, 2018).59.Kirch, P. V. The Evolution of Polynesian Chiefdoms (Cambridge University Press, 1984).60.Ponting, C. A Green History of the World: The Environment and the Collapse of Great Civilizations. (St. Martin’s Press, 1991).61.Boersema, J. J. The Survival of Easter Island: Dwindling Resources and Cultural Resilience (Cambridge University Press, 2015).62.Boersema, J. J. An earthly paradise? Easter Island (Rapa Nui) as seen by the eighteenth-century European explorers. in Cultural and Environmental Change on Rapa Nui (eds. Haoa Cardinali, S. et al.) 157–178 (Routledge, 2018).63.Boersema, J. J. & Huele, R. Pondering the population numbers of Easter Island’s Past. in Easter Island and the Pacific: Cultural and Environmental Dynamics. In Proc 9th International Conference on Easter Island and the Pacific, Held in the Ethnological Museum, Berlin, Germany (eds. Vogt, B. et al.) 83–92 (Rapa Nui Press, 2019).64.Puleston, C. O. et al. Rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 5, 1–14 (2017).Article 

    Google Scholar 
    65.Lipo, C. P., DiNapoli, R. J. & Hunt, T. L. Commentary: rain, sun, soil, and sweat: a consideration of population limits on Rapa Nui (Easter Island) before European Contact. Front. Ecol. Evol. 25, 1–3 (2018).66.Hunt, T. L. Rethinking Easter Island’s ecological catastrophe. J. Archaeol. Sci. 34, 485–502 (2007).Article 

    Google Scholar 
    67.Rull, V. The deforestation of Easter Island. Biol. Rev. 95, 124–141 (2020).Article 

    Google Scholar 
    68.Brandt, G. & Merico, A. The slow demise of Easter Island: insights from a modeling investigation. Front. Ecol. Evol. 13, 1–12 (2015).69.Diamond, J. Collapse: How Societies Choose to Fail or Succeed (Viking, 2005).70.Bahn, P. & Flenley, J. Easter Island, Earth Island: the Enigmas of Rapa Nui (Rowman & Littlefield, 2017).71.Rull, V. Natural and anthropogenic drivers of cultural change on Easter Island: review and new insights. Quat. Sci. Rev. 150, 31–41 (2016).ADS 
    Article 

    Google Scholar 
    72.Cañellas-Boltà, N. et al. Vegetation changes and human settlement of Easter Island during the last millennia: a multiproxy study of the Lake Raraku sediments. Quat. Sci. Rev. 72, 36–48 (2013).ADS 
    Article 

    Google Scholar 
    73.Rull, V. Drought, freshwater availability and cultural resilience on Easter Island (SE Pacific) during the Little Ice Age. Holocene. https://doi.org/10.1177/0959683619895587 (2020).74.Yan, H. et al. A record of the Southern Oscillation Index for the past 2,000 years from precipitation proxies. Nat. Geosci. 4, 611–614 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    75.Mulrooney, M. A. An island-wide assessment of the chronology of settlement and land use on Rapa Nui (Easter Island) based on radiocarbon data. J. Archaeol. Sci. 40, 4377–4399 (2013).Article 

    Google Scholar 
    76.Stevenson, C. M. et al. Variation in Rapa Nui (Easter Island) land use indicates production and population peaks prior to European contact. Proc. Natl Acad. Sci. USA 112, 1025–1030 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. Revisiting warfare, monument destruction, and the ‘Huri Moai’ phase in Rapa Nui (Easter Island) culture history. Journal of Pacific Archaeology 12, 1–24 (2021).78.Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1889–1903 (2013).CAS 
    Article 

    Google Scholar 
    79.Hogg, A. G. et al. SHCal20 Southern Hemisphere calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759–778 (2020).CAS 
    Article 

    Google Scholar 
    80.Bork, H.-R., Mieth, A. & Tschochner, B. Nothing but stones? A review of the extent and technical efforts of prehistoric stone mulching on Rapa Nui. Rapa Nui J. 18, 10–14 (2004).
    Google Scholar 
    81.Ladefoged, T. N. et al. Soil nutrient analysis of Rapa Nui gardening. Archaeol. Ocean. 45, 80–85 (2010).Article 

    Google Scholar 
    82.Ladefoged, T. N., Flaws, A. & Stevenson, C. M. The distribution of rock gardens on Rapa Nui (Easter Island) as determined from satellite imagery. J. Archaeol. Sci. 40, 1203–1212 (2013).Article 

    Google Scholar 
    83.Mieth, A. & Bork, H. R. History, origin and extent of soil erosion on Easter Island (Rapa Nui). Catena 63, 244–260 (2005).Article 

    Google Scholar 
    84.Stevenson, C. M., Jackson, T. L., Mieth, A., Bork, H.-R. & Ladefoged, T. N. Prehistoric and early historic agriculture at Maunga Orito, Easter Island (Rapa Nui), Chile. Antiquity 80, 919–936 (2006).Article 

    Google Scholar 
    85.Wozniak, J. A. Subsistence strategies on Rapa Nui (Easter Island): prehistoric gardening practices on Rapa Nui and how they relate to current farming practices. in Cultural and Environmental Change on Rapa Nui (eds. Haoa-Cardinali, S. et al.) 87–112 (Routledge, 2018).86.Tromp, M. & Dudgeon, J. V. Differentiating dietary and non-dietary microfossils extracted from human dental calculus: the importance of sweet potato to ancient diet on Rapa Nui. J. Archaeol. Sci. 54, 54–63 (2015).Article 

    Google Scholar 
    87.Brosnan, T., Becker, M. W. & Lipo, C. P. Coastal groundwater discharge and the ancient inhabitants of Rapa Nui (Easter Island), Chile. Hydrogeol. J. 27, 519–534 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    88.DiNapoli, R. J. et al. Rapa Nui (Easter Island) monument (ahu) locations explained by freshwater sources. PLoS ONE 14, e0210409 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Hixon, S., DiNapoli, R. J., Lipo, C. P. & Hunt, T. L. The ethnohistory of freshwater use on Rapa Nui (Easter Island, Chile). J. Polynesian Soc. 128, 163–189 (2019).Article 

    Google Scholar 
    90.Brown, A. A. & Crema, E. R. Māori population growth in pre-contact New Zealand: regional population dynamics inferred from summed probability distributions of radiocarbon dates. J. Isl. Coast. Archaeol. 0, 1–19 (2019).
    Google Scholar 
    91.McFadden, C., Walter, R., Buckley, H. & Oxenham, M. F. Temporal trends in the Colonisation of the Pacific: Palaeodemographic Insights. J. World Prehist. https://doi.org/10.1007/s10963-021-09152-w (2021).Article 

    Google Scholar 
    92.Kirch, P. V. & Rallu, J.-L. The Growth and Collapse of Pacific Island Societies: Archaeological and Demographic Perspectives. (University of Hawai’i Press, 2007).93.Jarman, C. L. et al. Diet of the prehistoric population of Rapa Nui (Easter Island, Chile) shows environmental adaptation and resilience. Am. J. Phys. Anthropol. 164, 343–361 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Sherwood, S. C. et al. New excavations in Easter Island’s statue quarry: Soil fertility, site formation and chronology. J. Archaeological Sci. 111, 104994 (2019).Article 

    Google Scholar 
    95.Simpson, D. F. Jr. & Dussubieux, L. A collapsed narrative? Geochemistry and spatial distribution of basalt quarries and fine–grained artifacts reveal communal use of stone on Rapa Nui (Easter Island). J. Archaeol. Sci.: Rep. 18, 370–385 (2018).
    Google Scholar 
    96.Bevan, A. & Crema, E. R. Modifiable reporting unit problems and time series of long-term human activity. Philos. Trans. R. Soc. B: Biol. Sci. 376, 20190726 (2021).CAS 
    Article 

    Google Scholar 
    97.Davies, B., Holdaway, S. J. & Fanning, P. C. Modelling the palimpsest: an exploratory agent-based model of surface archaeological deposit formation in a fluvial arid Australian landscape. Holocene 26, 450–463 (2016).ADS 
    Article 

    Google Scholar 
    98.Commendador, A. S., Dudgeon, J. V., Fuller, B. T. & Finney, B. P. Radiocarbon dating human skeletal material on Rapa Nui: evaluating the effect of uncertainty in marine-derived carbon. Radiocarbon 56, 277–294 (2014).CAS 
    Article 

    Google Scholar 
    99.Stevenson, C. M., Williams, C., Carpenter, E., Hunt, C. S. & Novak, S. W. Architecturally modified caves on Rapa Nui: post-European contact ritual spaces? Rapa Nui J. 32, 1–36 (2019).Article 

    Google Scholar 
    100.Heaton, T. J. et al. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779–820 (2020).CAS 
    Article 

    Google Scholar 
    101.Beck, J. W., Hewitt, L., Burr, G. S., Loret, J. & Hochstetter, F. T. Mata ki te rangi: eyes towards the heavens. in Easter Island: Scientific Exploration Into the World’s Environmental Problems in Microcosm (eds. Loret, J. & Tanacredi, J. T.) 93–112 (Kluwer Academic/Plenum Publishers, 2003).102.Burr, G. S. et al. Modern and Pleistocene reservoir ages inferred from South Pacific corals. Radiocarbon 51, 319–335 (2009).CAS 
    Article 

    Google Scholar 
    103.DiNapoli, R. J. et al. Marine reservoir corrections for the Caribbean demonstrate high intra- and inter-island variability in local reservoir offsets. Quat. Geochronol. 61, 101126 (2021).Article 

    Google Scholar 
    104.Surovell, T. A., Byrd Finley, J., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009).Article 

    Google Scholar 
    105.Sunnåker, M. et al. Approximate Bayesian computation. PLoS Comput. Biol. 9, e1002803 (2013).MathSciNet 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    106.Toni, T., Welch, D., Strelkowa, N., Ipsen, A. & Stumpf, M. P. H. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6, 187–202 (2009).PubMed 
    Article 

    Google Scholar 
    107.Rick, J. W. Dates as data: an examination of the peruvian preceramic radiocarbon record. Am. Antiquity 52, 55–73 (1987).Article 

    Google Scholar 
    108.R Core Team. R: a Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). More