1.Díaz, R. J. Overview of hypoxia around the world. J. Environ. Qual. 30, 275–281 (2001).PubMed
Article
PubMed Central
Google Scholar
2.Laffoley, D. & Baxter, J. M. (eds) Ocean deoxygenation: Everyone’s problem. Causes, impacts, consequences and solutions (IUCN, International Union for Conservation of Nature, 2019).
Google Scholar
3.Booth, J. A. T. et al. Patterns and potential drivers of declining oxygen content along the southern California coast. Limnol. Oceanogr. 59, 1127–1138 (2014).ADS
CAS
Article
Google Scholar
4.Gilbert, D., Rabalais, N. N., Díaz, R. J. & Zhang, J. Evidence for greater oxygen decline rates in the coastal ocean than in the open ocean. Biogeosciences 7, 2283–2296 (2010).ADS
CAS
Article
Google Scholar
5.Altieri, A. H. & Gedan, K. B. Climate change and dead zones. Glob. Change Biol. 21, 1395–1406 (2015).ADS
Article
Google Scholar
6.Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science (80-) 359, eaam7240 (2018).Article
CAS
Google Scholar
7.Keeling, R. E., Körtzinger, A. & Gruber, N. Ocean deoxygenation in a warming world. Ann. Rev. Mar. Sci. 2, 199–229 (2010).PubMed
Article
PubMed Central
Google Scholar
8.Levin, L. A. & Breitburg, D. L. Linking coasts and seas to address ocean deoxygenation. Nat. Clim. Change 5, 401–403 (2015).ADS
Article
Google Scholar
9.Rabalais, N. N., Turner, R. E., Díaz, R. J. & Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528–1537 (2009).Article
Google Scholar
10.Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science (80-) 321, 926–929 (2008).ADS
CAS
Article
Google Scholar
11.Hofmann, A. F., Peltzer, E. T., Walz, P. M. & Brewer, P. G. Hypoxia by degrees: Establishing definitions for a changing ocean. Deep Res. Part I Oceanogr. Res. Pap. 58, 1212–1226 (2011).ADS
CAS
Article
Google Scholar
12.Rabalais, N. N. et al. Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7, 585–619 (2010).ADS
CAS
Article
Google Scholar
13.Vaquer-Sunyer, R. & Duarte, C. M. Thresholds of hypoxia for marine biodiversity. Proc. Natl. Acad. Sci. 105, 15452–15457 (2008).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
14.Altieri, A. H. et al. Tropical dead zones and mass mortalities on coral reefs. Proc. Natl. Acad. Sci. U. S. A. 114, 3660–3665 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
15.Grantham, B. A. et al. Upwelling-driven nearshore hypoxia signals ecosystem and oceanographic changes in the northeast Pacific. Nature 429, 749–754 (2004).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
16.Kim, T. W., Barry, J. P. & Micheli, F. The effects of intermittent exposure to low-pH and low-oxygen conditions on survival and growth of juvenile red abalone. Biogeosciences 10, 7255–7262 (2013).ADS
Article
Google Scholar
17.Kolesar, S. E., Breitburg, D. L., Purcell, J. E. & Decker, M. B. Effects of hypoxia on Mnemiopsis leidyi, ichthyoplankton and copepods: Clearance rates and vertical habitat overlap. Mar. Ecol. Prog. Ser. 411, 173–188 (2010).ADS
CAS
Article
Google Scholar
18.Low, N. H. N. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).ADS
CAS
Article
Google Scholar
19.Thomas, P. & Saydur Rahman, M. Extensive reproductive disruption, ovarian masculinization and aromatase suppression in Atlantic croaker in the northern Gulf of Mexico hypoxic zone. Proc. R. Soc. B Biol. Sci. 279, 28–38 (2011).Article
CAS
Google Scholar
20.Breitburg, D. Effects of hypoxia, and the balance between hypoxia and enrichment, on coastal fishes and fisheries. Estuaries 25, 767–781 (2002).Article
Google Scholar
21.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article
Google Scholar
22.Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science (80-) 315, 95–97 (2007).ADS
Article
CAS
Google Scholar
23.Vaquer-Sunyer, R. & Duarte, C. M. Temperature effects on oxygen thresholds for hypoxia in marine benthic organisms. Glob. Change Biol. 17, 1788–1797 (2011).ADS
Article
Google Scholar
24.Breitburg, D. L., Hondorp, D. W., Davias, L. A. & Diaz, R. J. Hypoxia, nitrogen, and fisheries: Integrating effects across local and global landscapes. Ann. Rev. Mar. Sci. 1, 329–349 (2009).PubMed
Article
PubMed Central
Google Scholar
25.Booth, J. A. T. et al. Natural intrusions of hypoxic, low pH water into nearshore marine environments on the California coast. Cont. Shelf. Res. 45, 108–115 (2012).ADS
Article
Google Scholar
26.Walter, R. K., Woodson, C. B., Leary, P. R. & Monismith, S. G. Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability. J. Geophys. Res. Ocean 119, 3517–3534 (2014).ADS
Article
Google Scholar
27.Boch, C. A. et al. Local oceanographic variability influences the performance of juvenile abalone under climate change. Sci. Rep. 8, 1–12 (2018).CAS
Article
Google Scholar
28.DiMarco, S. F., Chapman, P., Walker, N. & Hetland, R. D. Does local topography control hypoxia on the eastern Texas–Louisiana shelf?. J. Mar. Syst. 80, 25–35 (2010).Article
Google Scholar
29.Leary, P. R. et al. “Internal tide pools” prolong kelp forest hypoxic events. Limnol. Oceanogr. 62, 2864–2878 (2017).ADS
CAS
Article
Google Scholar
30.Walter, R. K., Brock Woodson, C., Arthur, R. S., Fringer, O. B. & Monismith, S. G. Nearshore internal bores and turbulent mixing in southern Monterey Bay. J. Geophys. Res. Ocean 117, 1–13 (2012).
Google Scholar
31.Long, W. C. & Seitz, R. D. Trophic interactions under stress: Hypoxia enhances foraging in an estuarine food web. Mar. Ecol. Prog. Ser. 362, 59–68 (2008).ADS
Article
Google Scholar
32.Kwiatkowski, L. & Orr, J. C. Diverging seasonal extremes for ocean acidification during the twenty-first centuryr. Nat. Clim. Chang. 8, 141–145 (2018).ADS
CAS
Article
Google Scholar
33.Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1–12 (2018).Article
CAS
Google Scholar
34.Woodson, C. B. The fate and impact of internal waves in nearshore ecosystems. Ann. Rev. Mar. Sci. 10, 421–441 (2018).CAS
PubMed
Article
Google Scholar
35.Woodson, C. B. et al. Harnessing marine microclimates for climate change adaptation and marine conservation. Conserv. Lett. 12(2), 1–9 (2018).
Google Scholar
36.Micheli, F. et al. Evidence that marine reserves enhance resilience to climatic impacts. PLoS ONE 7, e40832 (2012).
ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
37.Cox, K. W. California abalones, family haliotidae. Fish. Bull. 118 28–32 (1962).
Google Scholar
38.Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).ADS
CAS
Article
Google Scholar
39.Mayol, E., Ruiz-Halpern, S., Duarte, C. M., Castilla, J. C. & Pelegrí, J. L. Coupled CO2 and O2-driven compromises to marine life in summer along the Chilean sector of the Humboldt Current System. Biogeosciences 9, 1183–1194 (2012).ADS
CAS
Article
Google Scholar
40.Orellana-Cepeda, E., Granados-Machuca, C. & Serrano-Esquer, J. Ceratium furca: One possible cause of mass mortality of cultured Blue-Fin Tuna at Baja California, Mexico. Harmful Algae 2002, 514–516 (2004).
Google Scholar
41.Bograd, S. J. et al. Oxygen declines and the shoaling of the hypoxic boundary in the California Current. Geophys. Res. Lett. 35, 1–6 (2008).Article
CAS
Google Scholar
42.Bernardi, G., Findley, L. & Rocha-Olivares, A. Vicariance and dispersal across Baja California in disjunct marine fish populations. Evolution (N Y) 57, 1599–1609 (2003).
Google Scholar
43.Haupt, A. J., Micheli, F. & Palumbi, S. R. Dispersal at a snail’s pace: Historical processes affect contemporary genetic structure in the exploited wavy top snail (Megastraea undosa). J. Hered. 104, 327–340 (2013).PubMed
Article
PubMed Central
Google Scholar
44.Al Najjar, M. W. Nearshore Processes of a Coastal Island: Physical Dynamics and Ecological Implications (Stanford University, 2019).
Google Scholar
45.Hughes, B. B. et al. Climate mediates hypoxic stress on fish diversity and nursery function at the land-sea interface. Proc. Natl. Acad. Sci. U. S. A. 112, 8025–8030 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
46.Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science (80-) 345, 77–80 (2014).ADS
CAS
Article
Google Scholar
47.Fulton, S. et al. From fishing fish to fishing data: The role of Artisanal Fishers in Conservation and Resource Management in Mexico. In Viability and Sustainability of Small-Scale Fisheries in Latin America and The Caribbean (eds Salas, S. et al.) 151–175 (Springer International Publishing, 2019).
Google Scholar
48.Chang, W., Cheng, J., Allaire, J. J., Xie, Y. & McPherson, J. shiny: Web Application Framework for R. R package version 1.4.0.2. https://cran.r-project.org/package=shiny (2020).49.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).50.Eerkes-Medrano, D., Menge, B. A., Sislak, C. & Langdon, C. J. Contrasting effects of hypoxic conditions on survivorship of planktonic larvae of rocky intertidal invertebrates. Mar. Ecol. Prog. Ser. 478, 139–151 (2013).ADS
Article
Google Scholar
51.Low, N. H. N. & Micheli, F. Short- and long-term impacts of variable hypoxia exposures on kelp forest sea urchins. Sci. Rep. 10, 1–9 (2020).CAS
Article
Google Scholar
52.Bograd, S. J. et al. Phenology of coastal upwelling in the California Current. Geophys. Res. Lett. 36, 1–5 (2009).Article
Google Scholar
53.Nam, S., Kim, H. J. & Send, U. Amplification of hypoxic and acidic events by la Nia conditions on the continental shelf off California. Geophys. Res. Lett. 38, 1–5 (2011).Article
CAS
Google Scholar
54.Rogers-Bennett, L. et al. Dinoflagellate bloom coincides with marine invertebrate mortalities in Northern California. Harmful Algae News 46, 10–11 (2012).
Google Scholar
55.Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–8 (2017).Article
CAS
Google Scholar
56.Montgomery, D. W., Simpson, S. D., Engelhard, G. H., Birchenough, S. N. R. & Wilson, R. W. Rising CO2 enhances hypoxia tolerance in a marine fish. Sci. Rep. 9, 1–10 (2019).CAS
Article
Google Scholar
57.Boch, C. A. et al. Effects of current and future coastal upwelling conditions on the fertilization success of the red abalone (Haliotis rufescens). ICES J. Mar. Sci. 74, 1125–1134 (2017).Article
Google Scholar
58.Gobler, C. J. & Baumann, H. Hypoxia and acidification in marine ecosystems: Coupled dynamics and effects on
ocean life. Biol. Lett. 12, 20150976 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar More