1.Hardoim, P. R. et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).Article
Google Scholar
2.Zhang, H. W., Song, Y. C. & Tan, R. X. Biology and chemistry of endophytes. Nat. Prod. Rep. 23, 753–771 (2006).CAS
Article
Google Scholar
3.Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R. & Berg, G. The microbiome of medicinal plants: Diversity and importance for plant growth, quality and health. Front. Microbiol. 4, 400 (2013).Article
Google Scholar
4.Soto, M. J., Domínguez-Ferreras, A., Pérez-Mendoza, D., Sanjuán, J. & Olivares, J. Mutualism versus pathogenesis: The give-and-take in plant–bacteria interactions. Cell. Microbiol. 11, 381–388 (2009).CAS
Article
Google Scholar
5.Leff, J. W., Del Tredici, P., Friedman, W. E. & Fierer, N. Spatial structuring of bacterial communities within individual Ginkgo biloba trees. Environ. Microbiol. 17, 2352–2361. https://doi.org/10.1111/1462-2920.12695 (2015).Article
PubMed
Google Scholar
6.Berg, G., Rybakova, D., Grube, M. & Köberl, M. The plant microbiome explored: Implications for experimental botany. J. Exp. Bot. 67, 995–1002. https://doi.org/10.1093/jxb/erv466 (2016).CAS
Article
PubMed
Google Scholar
7.Cregger, M. A. et al. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31. https://doi.org/10.1186/s40168-018-0413-8 (2018).CAS
Article
PubMed
PubMed Central
Google Scholar
8.Wang, Y., Liu, Y., Wu, Q., Yao, X. & Cheng, Z. Rapid and sensitive determination of major active ingredients and toxic components in Ginkgo biloba leaves extract (EGb 761) by a validated UPLC–MS-MS method. J. Chromatogr. Sci. 55, 459–464. https://doi.org/10.1093/chromsci/bmw206 (2017).CAS
Article
PubMed
Google Scholar
9.Mesquita, T. R. R. et al. Cardioprotective action of Ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front. Pharmacol. 8, 220. https://doi.org/10.3389/fphar.2017.00220 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
10.Woelk, H., Arnoldt, K. H., Kieser, M. & Hoerr, R. Ginkgo biloba special extract EGb 761® in generalized anxiety disorder and adjustment disorder with anxious mood: A randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res. 41, 472–480. https://doi.org/10.1016/j.jpsychires.2006.05.004 (2007).CAS
Article
PubMed
Google Scholar
11.Rojas, P., Montes, P., Rojas, C., Serrano-Garcia, N. & Rojas-Castaneda, J. C. Effect of a phytopharmaceutical medicine, Ginko biloba extract 761, in an animal model of Parkinson’s disease: Therapeutic perspectives. Nutrition 28, 1081–1088. https://doi.org/10.1016/j.nut.2012.03.007 (2012).CAS
Article
PubMed
Google Scholar
12.Tan, M.-S. et al. Efficacy and adverse effects of Ginkgo biloba for cognitive impairment and dementia: A systematic review and meta-analysis. J. Alzheimer’s Dis. 43, 589–603 (2015).CAS
Article
Google Scholar
13.Kennedy, D. O., Jackson, P. A., Haskell, C. F. & Scholey, A. B. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum. Psychopharm. Clin. 22, 559–566. https://doi.org/10.1002/hup.885 (2007).Article
Google Scholar
14.Yao, Z.-X., Han, Z., Drieu, K. & Papadopoulos, V. Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J. Nutr. Biochem. 15, 749–756. https://doi.org/10.1016/j.jnutbio.2004.06.008 (2004).CAS
Article
PubMed
Google Scholar
15.Chen, D., Sun, S., Cai, D. & Kong, G. Induction of mitochondrial-dependent apoptosis in T24 cells by a selenium (Se)-containing polysaccharide from Ginkgo biloba L. leaves. Int. J. Biol. Macromol. 101, 126–130 (2017).CAS
Article
Google Scholar
16.Hamdoun, S. & Efferth, T. Ginkgolic acids inhibit migration in breast cancer cells by inhibition of NEMO sumoylation and NF-κB activity. Oncotarget 8, 35103 (2017).Article
Google Scholar
17.Fei, R. et al. Purified polysaccharide from Ginkgo biloba leaves inhibits P-selectin-mediated leucocyte adhesion and inflammation. Acta Pharmacol. Sin. 29, 499–506 (2008).CAS
Article
Google Scholar
18.Mahadevan, S. & Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 73, R14–R19 (2008).CAS
Article
Google Scholar
19.Zimmermann, M., Colciaghi, F., Cattabeni, F. & Di Luca, M. Ginkgo biloba extract: From molecular mechanisms to the treatment of Alzheimer’s disease. Cell. Mol. Biol. 48, 613–623 (2002).CAS
PubMed
Google Scholar
20.van Beek, T. A. & Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 1216, 2002–2032 (2009).Article
Google Scholar
21.Lu, X. et al. Combining metabolic profiling and gene expression analysis to reveal the biosynthesis site and transport of ginkgolides in Ginkgo biloba L.. Front. Plant Sci. 8, 872. https://doi.org/10.3389/fpls.2017.00872 (2017).Article
PubMed
PubMed Central
Google Scholar
22.Mancuso, C. & Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 107, 362–372 (2017).CAS
Article
Google Scholar
23.Karmazyn, M., Moey, M. & Gan, X. T. Therapeutic potential of Ginseng in the management of cardiovascular disorders. Drugs 71, 1989–2008. https://doi.org/10.2165/11594300-000000000-00000 (2011).CAS
Article
PubMed
Google Scholar
24.Predy, G. N. et al. Efficacy of an extract of North American ginseng containing poly-furanosyl-pyranosyl-saccharides for preventing upper respiratory tract infections: A randomized controlled trial. Can. Med. Assoc. J. 173, 1043–1048. https://doi.org/10.1503/cmaj.1041470 (2005).Article
Google Scholar
25.Yuan, C.-S., Wang, C.-Z., Wicks, S. M. & Qi, L.-W. Chemical and pharmacological studies of saponins with a focus on American ginseng. J. Ginseng Res. 34, 160 (2010).CAS
Article
Google Scholar
26.Yang, W.-Z., Hu, Y., Wu, W.-Y., Ye, M. & Guo, D.-A. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry 106, 7–24. https://doi.org/10.1016/j.phytochem.2014.07.012 (2014).CAS
Article
PubMed
Google Scholar
27.Solieri, L., Dakal, T. C. & Giudici, P. Next-generation sequencing and its potential impact on food microbial genomics. Ann. Microbiol. 63, 21–37 (2013).CAS
Article
Google Scholar
28.Ercolini, D. High-throughput sequencing and metagenomics: Moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79, 3148–3155 (2013).CAS
Article
Google Scholar
29.Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31 (2010).CAS
Article
Google Scholar
30.Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: Genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).CAS
Article
Google Scholar
31.Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405, 381–396. https://doi.org/10.1007/s11104-015-2495-4 (2016).CAS
Article
Google Scholar
32.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol 10, 828–840. https://doi.org/10.1038/nrmicro2910 (2012).CAS
Article
PubMed
Google Scholar
33.Dasgupta, M. G. et al. Diversity of bacterial endophyte in Eucalyptus clones and their implications in water stress tolerance. Microbiol. Res. 241, 126579. https://doi.org/10.1016/j.micres.2020.126579 (2020).CAS
Article
PubMed
Google Scholar
34.Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390. https://doi.org/10.1038/ismej.2011.192 (2012).CAS
Article
PubMed
Google Scholar
35.Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W. & Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677. https://doi.org/10.1128/aem.70.5.2667-2677.2004 (2004).CAS
Article
PubMed
PubMed Central
Google Scholar
36.Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. Isme J. 6, 1812–1822. https://doi.org/10.1038/ismej.2012.32 (2012).CAS
Article
PubMed
PubMed Central
Google Scholar
37.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95. https://doi.org/10.1038/nature11336 (2012).ADS
CAS
Article
PubMed
Google Scholar
38.Kielak, A. M., Cipriano, M. A. P. & Kuramae, E. E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 198, 987–993. https://doi.org/10.1007/s00203-016-1260-2 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
39.Fuerst, J. A. & Sagulenko, E. Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol 9, 403–413. https://doi.org/10.1038/nrmicro2578 (2011).CAS
Article
PubMed
Google Scholar
40.Wiegand, S., Jogler, M. & Jogler, C. On the maverick planctomycetes. FEMS Microbiol. Rev. 42, 739–760. https://doi.org/10.1093/femsre/fuy029 (2018).CAS
Article
PubMed
Google Scholar
41.Kim, H. et al. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736. https://doi.org/10.1111/j.1365-2672.1998.00586.x (1998).Article
Google Scholar
42.Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. 106, 16428–16433. https://doi.org/10.1073/pnas.0905240106 (2009).ADS
Article
PubMed
Google Scholar
43.Kampfer, P., Busse, H. J., McInroy, J. A. & Glaeser, S. P. Sphingomonas zeae sp nov., isolated from the stem of Zea mays. Int. J. Syst. Evol. Microbiol. 65, 2542–2548. https://doi.org/10.1099/ijs.0.000298 (2015).CAS
Article
PubMed
Google Scholar
44.Xie, C.-H. & Yokota, A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56, 889–893. https://doi.org/10.1099/ijs.0.64056-0 (2006).CAS
Article
PubMed
Google Scholar
45.Videira, S. S., De Araujo, J. L. S., Da Silva Rodrigues, L., Baldani, V. L. D. & Baldani, J. I. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol. Lett. 293, 11–19. https://doi.org/10.1111/j.1574-6968.2008.01475.x (2009).CAS
Article
PubMed
Google Scholar
46.Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210. https://doi.org/10.1128/aem.00133-11 (2011).CAS
Article
PubMed
PubMed Central
Google Scholar
47.Khan, A. L. et al. Bacterial endophyte Sphingomonas sp LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 52, 689–695. https://doi.org/10.1007/s12275-014-4002-7 (2014).CAS
Article
PubMed
Google Scholar
48.Asaf, S., Numan, M., Khan, A. L. & Al-Harrasi, A. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 40, 138–152. https://doi.org/10.1080/07388551.2019.1709793 (2020).CAS
Article
PubMed
Google Scholar
49.Ali, A. et al. Biotransformation of benzoin by Sphingomonas sp. LK11 and ameliorative effects on growth of Cucumis sativus. Arch. Microbiol. 201, 591–601. https://doi.org/10.1007/s00203-019-01623-1 (2019).CAS
Article
PubMed
Google Scholar
50.Chhetri, G., Kim, J., Kim, I., Kim, H. & Seo, T. Hymenobacter setariae sp. nov., isolated from the ubiquitous weedy grass Setaria viridis. Int. J. Syst. Evol. Microbiol. 70, 3724–3730. https://doi.org/10.1099/ijsem.0.004226 (2020).CAS
Article
PubMed
Google Scholar
51.Dai, Y. et al. Wheat-associated microbiota and their correlation with stripe rust reaction. J. Appl. Microbiol. 128, 544–555. https://doi.org/10.1111/jam.14486 (2020).CAS
Article
PubMed
Google Scholar
52.Buczolits, S. et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp nov. Int. J. Syst. Evol. Microbiol. 52, 445–456. https://doi.org/10.1099/00207713-52-2-445 (2002).CAS
Article
PubMed
Google Scholar
53.Su, S. Y. et al. Hymenobacter kanuolensis sp nov., a novel radiation-resistant bacterium. Int. J. Syst. Evol. Microbiol. 64, 2108–2112. https://doi.org/10.1099/ijs.0.051680-0 (2014).CAS
Article
PubMed
Google Scholar
54.Dimitrijevic, S. et al. Plant growth-promoting bacteria elevate the nutritional and functional properties of black cumin and flaxseed fixed oil. J. Sci. Food Agric. 98, 1584–1590. https://doi.org/10.1002/jsfa.8631 (2018).CAS
Article
PubMed
Google Scholar
55.Yang, R. X., Fan, X. J., Cai, X. Q. & Hu, F. P. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper phytophthora blight. Biol. Control 85, 59–67. https://doi.org/10.1016/j.biocontrol.2014.09.013 (2015).Article
Google Scholar
56.Islam, M. N., Choi, J. & Baek, K. H. Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. Foodborne Pathog. Dis. 16, 661–670. https://doi.org/10.1089/fpd.2018.2496 (2019).CAS
Article
PubMed
Google Scholar
57.Datta, S. et al. Endophytic bacteria in xenobiotic degradation In Microbial endophytes (eds. Kumar, A. & Singh, V. K.) 125–156 (Woodhead Publishing, 2020).58.Newmaster, S. G., Grguric, M., Shanmughanandhan, D., Ramalingam, S. & Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 11, 222 (2013).Article
Google Scholar
59.Gao, Z. et al. Derivative technology of DNA barcoding (Nucleotide Signature and SNP Double Peak methods) detects adulterants and substitution in Chinese patent medicines. Sci. Rep. 7, 5858. https://doi.org/10.1038/s41598-017-05892-y (2017).ADS
CAS
Article
PubMed
PubMed Central
Google Scholar
60.Ichim, M. C. & de Boer, H. J. A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements. Front. Pharmacol. https://doi.org/10.3389/fphar.2020.612071 (2021).Article
PubMed
PubMed Central
Google Scholar
61.Dhivya, S. et al. Validated identity test method for Ginkgo biloba NHPs using DNA-based species-specific hydrolysis PCR probe. J. AOAC Int. 102, 1779–1786. https://doi.org/10.5740/jaoacint.18-0319 (2019).CAS
Article
PubMed
Google Scholar
62.Singh, A., Bajpai, V., Srivastava, M., Arya, K. R. & Kumar, B. Rapid screening and distribution of bioactive compounds in different parts of Berberis petiolaris using direct analysis in real time mass spectrometry. J. Pharm. Anal. 5, 332–335 (2015).CAS
Article
Google Scholar
63.Kim, H. K., Choi, Y. H. & Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 5, 536 (2010).CAS
Article
Google Scholar
64.Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS
CAS
Article
Google Scholar
65.Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).CAS
Article
Google Scholar
66.Illumina. 16S Metagenomic Sequencing Library Preparation. Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System (Part 15044223 Rev. B). (2013), Accessed 07-2017, available at https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.67.Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821. https://doi.org/10.1038/s41596-019-0264-1 (2020).CAS
Article
PubMed
Google Scholar
68.Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188. https://doi.org/10.1093/nar/gkx295 (2017).CAS
Article
PubMed
PubMed Central
Google Scholar
69.Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 9, 488. https://doi.org/10.1186/1471-2164-9-488 (2008).CAS
Article
Google Scholar
70.vegan: Community Ecology Package v. 2.5-6 (2019), available at https://cran.r-project.org/web/packages/vegan/index.html71.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS
Article
PubMed
PubMed Central
Google Scholar More