More stories

  • in

    A natural constant predicts survival to maximum age

    1.Bailey, D. L., Humm, J. L., Todd-Pokropek, A. & van Aswegen, A. Nuclear Medicine Physics: A Handbook for Teachers and Students. International Atomic Energy Agency (International Atomic Energy Agency, 2014).2.McGraw-Hill. McGraw-Hill encyclopedia of science & technology. (McGraw-Hill, 2007).3.Medawar, P. B. An unsolved problem of biology. in The uniqueness of the individual (ed. Medawar, P. B.) 44–70 (Basic Books, Inc., 1952).4.Leike, A. Demonstration of the exponential decay law using beer froth. Eur. J. Phys. 23, 21–26 (2002).Article 

    Google Scholar 
    5.Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).Article 

    Google Scholar 
    6.Vetter, E. F. Estimation of natural mortality in fish stocks: a review. Fish. Bull. 86, 25–43 (1988).
    Google Scholar 
    7.Gosselin, J., Zedrosser, A., Swenson, J. E. & Pelletier, F. The relative importance of direct and indirect effects of hunting mortality on the population dynamics of brown bears. Proc. R. Soc. B Biol. Sci. 282, 1–9 (2015).8.Nowak, D. J., Kuroda, M. & Crane, D. E. Tree mortality rates and tree population projections in Baltimore, Maryland, USA. Urban . Urban Green. 2, 139–147 (2004).Article 

    Google Scholar 
    9.Hoenig, J. M. et al. The logic of comparative life history studies for estimating key parameters, with a focus on natural mortality rate. ICES J. Mar. Sci. 73, 2453–2467 (2016).Article 

    Google Scholar 
    10.Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance. (Pearson Education Limited, 2014).11.Myers, R. A., Bowen, K. G. & Barrowman, N. J. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56, 2404–2419 (1999).
    Google Scholar 
    12.Simpfendorfer, C. A., Bonfil, R. & Latour, R. J. Mortality estimation. in. FAO Fish. Tech. Pap. 474, 127 (2005).
    Google Scholar 
    13.Cortés, E. Perspectives on the intrinsic rate of population growth. Methods Ecol. Evol. 7, 1136–1145 (2016).Article 

    Google Scholar 
    14.IUCN. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Geographical 14, 1–113 (2019).15.Myers, R. A. & Worm, B. Extinction, survival or recovery of large predatory fishes. Philos. Trans. R. Soc. B Biol. Sci. 360, 13–20 (2005).Article 

    Google Scholar 
    16.Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl. Acad. Sci. U. S. A. 116, 9658–9664 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Gavrilov, L. & Gavrilova, N. The biology of life span: a quantitative approach. (Harwood Academic Publishers, 1991).18.Sekharan, K. Estimates of the stocks of oil sardine and mackerel in the present fishing grounds off the West coast of India. Indian J. Fish. 21, 177–182 (1974).
    Google Scholar 
    19.Alagaraja, K. Simple methods for estimation of parameters for assessing exploited fish stocks. Indian J. Fish. 31, 177–208 (1984).
    Google Scholar 
    20.Cadima, E. L. Fish stock assessment manual. FAO Fish. Tech. Pap. 393, 161 (2003).
    Google Scholar 
    21.Hewitt, D. A. & Hoenig, J. M. Comparison of two approaches for estimating natural mortality based on longevity. Fish. Bull. 103, 433–437 (2005).
    Google Scholar 
    22.Dureuil, M. et al. Unified natural mortality estimation for teleosts and elasmobranchs. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps13704 (accepted).23.Litzgus, J. D. Sex differences in longevity in the spotted turtle (Clemmys guttata). Copeia 2, 281–288 (2006).Article 

    Google Scholar 
    24.Calder, W. A. III Body size, mortality, and longevity. J. Theor. Biol. 102, 135–144 (1983).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Botkin, D. B., Janak, J. F. & Wallis, J. R. Some ecological consequences of a computer model of forest growth. J. Ecol. 60, 849–872 (1972).Article 

    Google Scholar 
    26.Holt, S. J. A note on the relation between the mortality rate and the duration of life in an exploited fish population. Int. Comm. Northwest Atl. Fish. Res. Bull. 2, 73–75 (1965).
    Google Scholar 
    27.Hoenig, J. M. Should natural mortality estimators based on maximum age also consider sample size? Trans. Am. Fish. Soc. 146, 136–146 (2017).Article 

    Google Scholar 
    28.Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence. Evolution 11, 398–411 (1957).Article 

    Google Scholar 
    29.Hamilton, W. D. The moulding of senescence by natural selection. J. Theor. Biol. 12, 12–45 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Kirkwood, T. B. L. Evolution of ageing. Nature 270, 301–304 (1977).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Kirkwood, T. B. L. & Rose, M. R. Evolution of senescence: late survival sacrificed for reproduction. Philos. Trans. R. Soc. Lond., B 332, 15–24 (1991).CAS 
    Article 

    Google Scholar 
    32.Froese, R. & Pauly, D. FishBase. World Wide Web Electronic Publication (2019). Available at: www.fishbase.org. (accessed: 6th February 2018)33.I. C. E. S. Herring (Clupea harengus) in Subarea 4 and divisions 3.a and 7.d, autumn spawners (North Sea, Skagerrak and Kattegat, eastern English Channel). in Report of the ICES Advisory Committee, 2019. ICES Advice 2019, her.27.3a47d 11 (2019).34.Caswell, H. & Shyu, E. Senescence, selection gradients and mortality. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 56–82 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.00435.Promislow, D. E. L. Senescence in natural populations of mammals: a comparative study. Evolution 45, 1869–1887 (1991).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Sibly, R. M., Collett, D., Promislow, D. E. L., Peacock, D. J. & Harvey, P. H. Mortality rates of mammals. J. Zool. 243, 1–12 (1997).Article 

    Google Scholar 
    37.Blumstein, D. T. & Møller, A. P. Is sociality associated with high longevity in North American birds? Biol. Lett. 4, 146–148 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Nussey, D. H., Froy, H., Lemaitre, J.-F., Gaillard, J.-M. & Austad, S. N. Senescence in natural populations of animals: Widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Salguero-Gómez, R. & Jones, O. R.. Life history trade-offs modulate the speed of senescence. in The Evolution of Senescence in the Tree of Life (eds. Shefferson, R. P., Jones, O. R. & Salguero-Gómez, R.) 403–421 (Cambridge University Press, 2017). https://doi.org/10.1017/9781139939867.02040.Hoekstra, L. A., Schwartz, T. S., Sparkman, A. M., Miller, D. A. W. & Bronikowski, A. M. The untapped potential of reptile biodiversity for understanding how and why animals age. Funct. Ecol. 34, 38–54 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Bonduriansky, R. & Brassil, C. E. Rapid and costly ageing in wild male flies. Nature 420, 377 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Zajitschek, F., Zajitschek, S. & Bonduriansky, R. Senescence in wild insects: Key questions and challenges. Funct. Ecol. 34, 26–37 (2020).Article 

    Google Scholar 
    43.Roach, D. A. & Smith, E. F. Life-history trade-offs and senescence in plants. Funct. Ecol. 34, 17–25 (2020).Article 

    Google Scholar 
    44.Jones, O. R. et al. Diversity of ageing across the tree of life. Nature 505, 169–173 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Ruby, J. G., Smith, M. & Buffenstein, R. Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. Elife 7, 1–18 (2018).Article 

    Google Scholar 
    46.Keller, L. & Genoud, M. Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389, 958–960 (1997).CAS 
    Article 

    Google Scholar 
    47.Cooke, G. M., Tonkins, B. M. & Mather, J. A. Care and Enrichment for Captive Cephalopods. in The Welfare of Invertebrate Animals (eds. Carere, C. & Mather, J.). 179–208 (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-13947-6_848.Baudisch, A. et al. The pace and shape of senescence in angiosperms. J. Ecol. 101, 596–606 (2013).Article 

    Google Scholar 
    49.Halley, J. M., Van Houtan, K. S. & Mantua, N. How survival curves affect populations’ vulnerability to climate change. PLoS One 13, 1–18 (2018).Article 
    CAS 

    Google Scholar 
    50.Gompertz, B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513–583 (1825).
    Google Scholar 
    51.Makeham, W. M. On the law of mortality and the construction of annuity tables. Assur. Mag. J. Inst. Actuar. 8, 301–310 (1860).Article 

    Google Scholar 
    52.Finch, C. E. & Pike, M. C. Maximum life span predictions from the Gompertz mortality model. J. Gerontol. Biol. Sci. 51A, 183–194 (1996).Article 

    Google Scholar 
    53.Reznick, D. N., Bryant, M. J., Roff, D., Ghalambor, C. K. & Ghalambor, D. E. Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431, 1095–1099 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Kirkwood, T. B. L. Deciphering death: a commentary on Gompertz (1825) ‘On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies’. Philos. Trans. R. Soc. B Biol. Sci. 370, 1–8 (2015).Article 

    Google Scholar 
    55.Gavrilov, L. A. & Gavrilova, N. S. New trend in old-age mortality: gompertzialization of mortality trajectory. Gerontology 65, 451–457 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Ohsumi, S. Interspecies relationships among some biological parameters in cetaceans and estimation of the natural mortality coefficient of the Southern Hemisphere minke whale. Rep. Int. Whal. Comm. 29, 397–406 (1979).
    Google Scholar 
    57.Mizroch, S. A. On the relationship between mortality rate and length in baleen whales. Rep. Int. Whal. Comm. 35, 505–510 (1985).
    Google Scholar  More

  • in

    North Atlantic warming over six decades drives decreases in krill abundance with no associated range shift

    1.Astthorsson, O. S. & Palsson, O. K. Predation on euphausiids by cod, Gadus morhua, in winter in Icelandic subarctic waters. Mar. Biol. 96, 327–334 (1987).Article 

    Google Scholar 
    2.MacAulay, M. C., Wishner, K. F. & Daly, K. L. Acoustic scattering from zooplankton and micronekton in relation to a whale feeding site near Georges Bank and Cape Cod. Cont. Shelf Res. 15, 509–537 (1995).Article 

    Google Scholar 
    3.Víkingsson, G. A. Feeding of fin whales (Balaenoptera physalus) off Iceland – diurnal and seasonal variation and possible rates. J. Northwest Atl. Fish. Sci. 22, 77–89 (1997).Article 

    Google Scholar 
    4.Tarling, G. A., Ensor, N. S., Fregin, T., Goodall-Copestake, W. P. & Fretwell, P. An introduction to the biology of Northern krill (Meganyctiphanes norvegica Sars). Adv. Mar. Biol. 57, 1–40 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.McBride, M. M. et al. Krill, climate, and contrasting future scenarios for Arctic and Antarctic fisheries. ICES J. Mar. Sci. 71, 1934–1955 (2014).Article 

    Google Scholar 
    6.Orlova, E.L. et al. Climatic and ecological drivers of euphausiid community structure vary spatially in the Barents Sea: relationships from a long time series (1952–2009). Front. Mar. Sci. 1, 1–13 (2015).Article 

    Google Scholar 
    7.Silva, T. et al. Long-term changes of euphausiids in shelf and oceanic habitats southwest, south and southeast of Iceland. J. Plankton Res. 36, 1262–1278 (2014).Article 

    Google Scholar 
    8.Warner, A. J. & Hays, G. C. Sampling by the Continuous Plankton Recorder Survey. Prog. Oceanogr. 6611, 237–256 (1994).Article 

    Google Scholar 
    9.Williams, R. & Lindley, J. A. Variability in abundance, vertical distribution and ontogenetic migrations of Thysanoessa longicaudata (Crustacea: Euphausiacea) in the north-eastern Atlantic Ocean. Mar. Biol. 69, 321–330 (1982).Article 

    Google Scholar 
    10.Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).Article 

    Google Scholar 
    11.Edwards, M., Beaugrand, G., Helaouët, P., Alheit, J. & Coombs, S. Marine ecosystem response to the Atlantic Multidecadal Oscillation. PLoS ONE 8, e57212 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Harris, V., Edwards, M. & Olhede, S. C. Multidecadal Atlantic climate variability and its impact on marine pelagic communities. J. Mar. Syst. 133, 55–69 (2014).Article 

    Google Scholar 
    14.Beaugrand, G., Edwards, M., Brander, K., Luczak, C. & Ibanez, F. Causes and projections of abrupt climate-driven ecosystem shifts in the North Atlantic. Ecol. Lett. 11, 1157–1168 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Edwards, M., Beaugrand, G., Hays, G. C., Koslow, J. A. & Richardson, A. J. Multi-decadal oceanic ecological datasets and their application in marine policy and management. Trends Ecol. Evol. 25, 602–610 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Harris, V., Olhede, S. C. & Edwards, M. Multidecadal spatial reorganisation of plankton communities in the North East Atlantic. J. Mar. Syst. 142, 16–24 (2015).Article 

    Google Scholar 
    17.Reid, P. C. & Edwards, M. Long-term changes in the pelagos, benthos and fisheries of the North Sea. Senckenbergiana maritima. 32, 107–115 (2001).Article 

    Google Scholar 
    18.Gregory, B., Christophe, L. & Martin, E. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Chang. Biol. 15, 1790–1803 (2009).Article 

    Google Scholar 
    19.Beaugrand, G., Brander, K. M., Alistair Lindley, J., Souissi, S. & Reid, P. C. Plankton effect on cod recruitment in the North Sea. Nature 426, 661–664 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147 (2019).Article 

    Google Scholar 
    22.Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Progr. Ser. 458, 1–19 (2012).Article 

    Google Scholar 
    23.Bograd, S. J., Checkley, D. A. & Wooster, W. S. CalCOFI: a half century of physical, chemical, and biological research in the California Current System. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2349–2353 (2003).Article 

    Google Scholar 
    24.Brinton, E. & Townsend, A. Decadal variability in abundances of the dominant euphausiid species in southern sectors of the California Current. Deep Sea Res. Part II Top. Stud. Oceanogr. 50, 2449–2472 (2003).Article 

    Google Scholar 
    25.Polyakov, I. V. et al. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356, 285–291 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Caesar, A.L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation.Nature 556, 191–196 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Reid, P. C. et al. A biological consequence of reducing Arctic ice cover: arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Glob. Chang. Biol. 13, 1910–1921 (2007).Article 

    Google Scholar 
    28.Burrows, M. et al. Ocean community warming responses explained by thermal affinities and temperature gradients. Nat. Clim. Chang. 9, 959–963 (2019).Article 

    Google Scholar 
    29.Biri, S. & Klein, B. North Atlantic sub‐polar gyre climate index: a new approach. J. Geophys. Res. Ocean. 124, 4222–4237 (2019).Article 

    Google Scholar 
    30.Batten, S. et al. CPR sampling: the technical background, materials and methods, consistency and comparability. Prog. Oceanogr. 58, 193–215 (2003).Article 

    Google Scholar 
    31.Reid, P. C. et al. The Continuous Plankton Recorder: concepts and history, from plankton indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).Article 

    Google Scholar 
    32.Richardson, A. J. et al. Using Continuous Plankton Recorder data. Prog. Oceanogr. 68, 27–74 (2006).Article 

    Google Scholar 
    33.Dalpadado, P., Yamaguchi, A., Ellertsen, B. & Johannessen, S. Trophic interactions of macro-zooplankton (krill and amphipods) in the marginal ice zone of the Barents Sea. Deep. Sea Res. Part II Top. Stud. Oceanogr. 55, 2266–2274 (2008).Article 

    Google Scholar 
    34.Letessier, T. B., Cox, M. J. & Brierley, A. S. Drivers of euphausiid species abundance and numerical abundance in the Atlantic Ocean. Mar. Biol. 156, 2539–2553 (2009).Article 

    Google Scholar 
    35.Lowe, M. R., Lawson, G. L. & Fogarty, M. J. Drivers of euphausiid distribution and abundance in the Northeast U.S. Shelf Large Marine Ecosystem. ICES J. Mar. Sci. 75, 1280–1295 (2018).Article 

    Google Scholar 
    36.Lindley, J. A. Population dynamics and production of euphausiids. I. Thysanoessa longicaudata in the North Atlantic Ocean. Mar. Biol. 46, 121–130 (1978).Article 

    Google Scholar 
    37.Lindley, J. A. Population dynamics and production of euphausiids II. Thysanoessa inermis and T. raschii in the North Sea and American Coastal Waters. Mar. Biol. 59, 225–233 (1980).Article 

    Google Scholar 
    38.Lindley, J. A. Population dynamics and production of euphausiids. Mar. Biol. 71, 1–6 (1982).Article 

    Google Scholar 
    39.Rayner, N. A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108, 4407 (2003).Article 

    Google Scholar 
    40.Edwards, M., Johns, D. G. D., Leterme, S. C. S., Svendsen, E. & Richardson, A. J. A. Regional climate change and harmful algal blooms in the northeast Atlantic. Limnol. Oceanogr. 51, 820–829 (2006).Article 

    Google Scholar 
    41.Hélaouët, P., Beaugrand, G. & Reygondeau, G. Reliability of spatial and temporal patterns of C. finmarchicus inferred from the CPR survey. J. Mar. Syst. 153, 18–24 (2016).Article 

    Google Scholar 
    42.Owens, N. J. P. et al. All plankton sampling systems underestimate abundance: response to “Continuous Plankton Recorder underestimates zooplankton abundance” by J.W. Dippner and M. Krause. J. Mar. Syst. 128, 240–242 (2013).Article 

    Google Scholar 
    43.Jonas, T. D., Walne, A., Beaugrand, G., Gregory, L. & Hays, G. C. The volume of water filtered by a Continuous Plankton Recorder sample: the effect of ship speed. J. Plankton Res. 26, 1499–1506 (2004).Article 

    Google Scholar  More

  • in

    Differential gene expression in Drosophila melanogaster and D. nigrosparsa infected with the same Wolbachia strain

    1.Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. https://doi.org/10.1038/s41576-019-0150-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Gutzwiller, F. et al. Dynamics of Wolbachia pipientis gene expression across the Drosophila melanogaster life cycle. G3 Genes Genomes Genet. 5, 2843–2856 (2015).CAS 

    Google Scholar 
    3.Bennuru, S. et al. Stage-specific transcriptome and proteome analyses of the filarial parasite Onchocerca volvulus and its Wolbachia endosymbiont. MBio 7, e02028-e2116 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Baião, G. C., Schneider, D. I., Miller, W. J. & Klasson, L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genom. 20, 465 (2019).Article 
    CAS 

    Google Scholar 
    5.Werren, J. H., Baldo, L. & Clark, M. E. Wolbachia: Master manipulators of invertebrate biology. Nat. Rev. Microbiol. 6, 741–751 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Zug, R. & Hammerstein, P. Still a host of hosts for Wolbachia: Analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS One 7, e38544 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Sazama, E. J., Bosch, M. J., Shouldis, C. S., Ouellette, S. P. & Wesner, J. S. Incidence of Wolbachia in aquatic insects. Ecol. Evol. 7, 1165–1169 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Detcharoen, M., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Wolbachia megadiversity: 99% of these microorganismic manipulators unknown. FEMS Microbiol. Ecol. 95, fiz151 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Hosokawa, T., Koga, R., Kikuchi, Y., Meng, X. Y. & Fukatsu, T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc. Natl. Acad. Sci. U. S. A. 107, 769–774 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Teixeira, L., Ferreira, Á. & Ashburner, M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6, 2753–2763 (2008).CAS 
    Article 

    Google Scholar 
    11.Hedges, L. M., Brownlie, J. C., O’Neill, S. L. & Johnson, K. N. Wolbachia and virus protection in insects. Science (80-). 322, 702–702 (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    12.Osborne, S. E., Leong, Y. S., O’Neill, S. L. & Johnson, K. N. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans. PLoS Pathog. 5, e1000656 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Cattel, J., Martinez, J., Jiggins, F., Mouton, L. & Gibert, P. Wolbachia-mediated protection against viruses in the invasive pest Drosophila suzukii. Insect Mol. Biol. 25, 595–603 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Ranz, J. M., Castillo-Davis, C. I., Meiklejohn, C. D. & Hartl, D. L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science (80-). 300, 1742–1745 (2003).CAS 
    Article 
    ADS 

    Google Scholar 
    15.Herbert, R. I. & McGraw, E. A. The nature of the immune response in novel Wolbachia-host associations. Symbiosis 74, 225–236 (2018).Article 

    Google Scholar 
    16.Woodford, L. et al. Vector species-specific association between natural Wolbachia infections and avian malaria in black fly populations. Sci. Rep. 8, 4188 (2018).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    17.Huigens, M. E., De Almeida, R. P., Boons, P. A. H., Luck, R. F. & Stouthamer, R. Natural interspecific and intraspecific horizontal transfer of parthenogenesis-inducing Wolbachia in Trichogramma wasps. Proc. R. Soc. B Biol. Sci. 271, 509–515 (2004).CAS 
    Article 

    Google Scholar 
    18.Detcharoen, M., Arthofer, W., Jiggins, F. M., Steiner, F. M. & Schlick-Steiner, B. C. Wolbachia affect behavior and possibly reproductive compatibility but not thermoresistance, fecundity, and morphology in a novel transinfected host, Drosophila nigrosparsa. Ecol. Evol. 10, 4457–4470 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Woolfit, M. et al. Genomic evolution of the pathogenic Wolbachia strain, wMelPop. Genome Biol. Evol. 5, 2189–2204 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Suh, E., Mercer, D. R., Fu, Y. & Dobson, S. L. Pathogenicity of life-shortening Wolbachia in Aedes albopictus after transfer from Drosophila melanogaster. Appl. Environ. Microbiol. 75, 7783–7788 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.McGraw, E. A., Merritt, D. J., Droller, J. N. & O’Neill, S. L. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila. Proc. R. Soc. B Biol. Sci. 268, 2565–2570 (2001).CAS 
    Article 

    Google Scholar 
    22.Xie, J., Vilchez, I. & Mateos, M. Spiroplasma bacteria enhance survival of Drosophila hydei attacked by the parasitic wasp Leptopilina heterotoma. PLoS One 5, e12149 (2010).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    23.Hutchence, K. J., Fischer, B., Paterson, S. & Hurst, G. D. D. How do insects react to novel inherited symbionts? A microarray analysis of Drosophila melanogaster response to the presence of natural and introduced Spiroplasma. Mol. Ecol. 20, 950–958 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.O’Grady, P. M. & DeSalle, R. Phylogeny of the genus Drosophila. Genetics 209, 1–25 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Kellermann, V., Van Heerwaarden, B., Sgrò, C. M. & Hoffmann, A. A. Fundamental evolutionary limits in ecological traits drive Drosophila species distributions. Science (80-). 325, 1244–1246 (2009).CAS 
    Article 
    ADS 

    Google Scholar 
    26.Bächli, G., Viljoen, F., Escher, S. A. & Saura, A. The Drosophilidae (Diptera) of Fennoscandia and Denmark (Brill, 2005).27.Kinzner, M.-C. et al. Life-history traits and physiological limits of the alpine fly Drosophila nigrosparsa (Diptera: Drosophilidae): A comparative study. Ecol. Evol. 8, 2006–2020 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Kinzner, M.-C. et al. Major range loss predicted from lack of heat adaptability in an alpine Drosophila species. Sci. Total Environ. 695, 133753 (2019).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    29.Kinzner, M.-C. et al. Oviposition substrate of the mountain fly Drosophila nigrosparsa (Diptera: Drosophilidae). PLoS One 11, e0165743 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    30.Cicconardi, F. et al. Chemosensory adaptations of the mountain fly Drosophila nigrosparsa (Insecta: Diptera) through genomics’ and structural biology’s lenses. Sci. Rep. 7, 43770 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    31.Tratter Kinzner, M. et al. Is temperature preference in the laboratory ecologically relevant for the field? The case of Drosophila nigrosparsa. Glob. Ecol. Conserv. 18, e00638 (2019).Article 

    Google Scholar 
    32.Arthofer, W. et al. Genomic resources notes accepted 1 August 2014–30 September 2014. Mol. Ecol. Resour. 15, 228–229 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Cicconardi, F., Marcatili, P., Arthofer, W., Schlick-Steiner, B. C. & Steiner, F. M. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation. Mol. Phylogenet. Evol. 112, 230–243 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Verspoor, R. L. & Haddrill, P. R. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations. PLoS One 6, e26318 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    35.Lints, F. A. Size in relation to development-time and egg-density in Drosophila melanogaster. Nature 197, 1128–1130 (1963).Article 
    ADS 

    Google Scholar 
    36.Clemson, A. S., Sgrò, C. M. & Telonis-Scott, M. Thermal plasticity in Drosophila melanogaster populations from eastern Australia: Quantitative traits to transcripts. J. Evol. Biol. 29, 2447–2463 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Morozova, T. V., Anholt, R. H. & Mackay, T. F. Transcriptional response to alcohol exposure in Drosophila melanogaster. Genome Biol. 7, R95 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    38.Elya, C., Zhang, V., Ludington, W. B. & Eisen, M. B. Stable host gene expression in the gut of adult Drosophila melanogaster with different bacterial mono-associations. PLoS One 11, e0167357 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Chrostek, E. et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: A phenotypic and phylogenomic analysis. PLoS Genet. 9, e1003896 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Zhang, B. et al. Comparative transcriptome analysis of chemosensory genes in two sister leaf beetles provides insights into chemosensory speciation. Insect Biochem. Mol. Biol. 79, 108–118 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Gazara, R. K. et al. De novo transcriptome sequencing and comparative analysis of midgut tissues of four non-model insects pertaining to Hemiptera, Coleoptera, Diptera and Lepidoptera. Gene 627, 85–93 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Braig, H. R., Zhou, W., Dobson, S. L. & O’Neill, S. L. Cloning and characterization of a gene encoding the major surface protein of the bacterial endosymbiont Wolbachia pipientis. J. Bacteriol. 180, 2373–2378 (1998).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020), https://www.R-project.org.46.Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 4, 1521 (2016).PubMed Central 
    Article 

    Google Scholar 
    47.Thurmond, J. et al. FlyBase 2.0: The next generation. Nucleic Acids Res. 47, D759–D765 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Hardcastle, T. J. & Kelly, K. A. BaySeq: Empirical Bayesian methods for identifying differential expression in sequence count data. BMC Bioinform. 11, 422 (2010).Article 

    Google Scholar 
    49.Huang, D. W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).Article 
    CAS 

    Google Scholar 
    50.Gaujoux, R. & Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 11, 367 (2010).Article 
    CAS 

    Google Scholar 
    51.Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-6. (2019) https://cran.r-project.org/web/packages/vegan/.52.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    53.Wickham, H. ggplot2. Wiley Interdiscip. Rev. Comput. Stat. 3, 180–185 (2011).54.Wittkopp, P. J. Variable gene expression in eukaryotes: A network perspective. J. Exp. Biol. 210, 1567–1575 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Lin, Y., Chen, Z.-X., Oliver, B. & Harbison, S. T. Microenvironmental gene expression plasticity among individual Drosophila melanogaster. G3 Genes Genomes Genet. 6, 4197–4210 (2016).CAS 

    Google Scholar 
    56.Kristensen, T. N., Sørensen, P., Pedersen, K. S., Kruhøffer, M. & Loeschcke, V. Inbreeding by environmental interactions affect gene expression in Drosophila melanogaster. Genetics 173, 1329–1336 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Dunning, L. T., Dennis, A. B., Sinclair, B. J., Newcomb, R. D. & Buckley, T. R. Divergent transcriptional responses to low temperature among populations of alpine and lowland species of New Zealand stick insects (Micrarchus). Mol. Ecol. 23, 2712–2726 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Lambert, A. J. & Brand, M. D. Reactive oxygen species production by mitochondria. In Mitochondrial DNA. Methods in Molecular Biology (ed. Stuart, J. A.) vol. 554 165–181 (Humana Press, 2009).
    Google Scholar 
    59.Kurz, M. et al. Structural and functional characterization of the oxidoreductase α-DsbA1 from Wolbachia pipientis. Antioxidants Redox Signal. 11, 1485–1500 (2009).CAS 
    Article 

    Google Scholar 
    60.Zug, R. & Hammerstein, P. Wolbachia and the insect immune system: What reactive oxygen species can tell us about the mechanisms of Wolbachia-host interactions. Front. Microbiol. 6, 1201 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Ratzka, C., Gross, R. & Feldhaar, H. Endosymbiont tolerance and control within insect hosts. Insects 3, 553–572 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Pan, X. et al. Wolbachia induces reactive oxygen species (ROS)-dependent activation of the Toll pathway to control dengue virus in the mosquito Aedes aegypti. Proc. Natl. Acad. Sci. U. S. A. 109, E23-31 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Brennan, L. J., Haukedal, J. A., Earle, J. C., Keddie, B. & Harris, H. L. Disruption of redox homeostasis leads to oxidative DNA damage in spermatocytes of Wolbachia-infected Drosophila simulans. Insect Mol. Biol. 21, 510–520 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Blagrove, M. S. C., Arias-Goeta, C., Failloux, A.-B. & Sinkins, S. P. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc. Natl. Acad. Sci. 109, 255–260 (2012).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    65.Andrews, E. S., Crain, P. R., Fu, Y., Howe, D. K. & Dobson, S. L. Reactive oxygen species production and Brugia pahangi survivorship in Aedes polynesiensis with artificial Wolbachia infection types. PLoS Pathog. 8, e1003075 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    66.Oliveira, M. F. et al. Haem detoxification by an insect. Nature 400, 517–518 (1999).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    67.Paiva-Silva, G. O. et al. A heme-degradation pathway in a blood-sucking insect. Proc. Natl. Acad. Sci. U. S. A. 103, 8030–8035 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    68.Levi, S. & Rovida, E. The role of iron in mitochondrial function. Biochim. Biophys. Acta Gen. Subj. 1790, 629–636 (2009).CAS 
    Article 

    Google Scholar 
    69.Kremer, N. et al. Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 5, e1000630 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Kremer, N. et al. Influence of Wolbachia on host gene expression in an obligatory symbiosis. BMC Microbiol. 12, S7 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    71.Peng, Y., Nielsen, J. E., Cunningham, J. P. & McGraw, E. A. Wolbachia infection alters olfactory-cued locomotion in Drosophila spp. Appl. Environ. Microbiol. 74, 3943–3948 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Peng, Y. & Wang, Y. Infection of Wolbachia may improve the olfactory response of Drosophila. Chin. Sci. Bull. 54, 1369–1375 (2009).
    Google Scholar 
    73.Fattouh, N., Cazevieille, C. & Landmann, F. Wolbachia endosymbionts subvert the endoplasmic reticulum to acquire host membranes without triggering ER stress. PLoS Negl. Trop. Dis. 13, e0007218 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Chagas-Moutinho, V. A., Silva, R., de Souza, W. & Motta, M. C. Identification and ultrastructural characterization of the Wolbachia symbiont in Litomosoides chagasfilhoi. Parasit. Vectors 8, 74 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Serbus, L. R., Casper-Lindley, C., Landmann, F. & Sullivan, W. The genetics and cell biology of Wolbachia-host interactions. Annu. Rev. Genet. 42, 683–707 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    76.Ping, Y. et al. Linking Aβ42-induced hyperexcitability to neurodegeneration, learning and motor deficits, and a shorter lifespan in an Alzheimer’s model. PLoS Genet. 11, e1005025 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    77.Ping, Y. et al. Shal/Kv4 channels are required for maintaining excitability during repetitive firing and normal locomotion in Drosophila. PLoS One 6, e16043 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    78.Ping, Y. & Tsunoda, S. Inactivity-induced increase in nAChRs upregulates Shal K+ channels to stabilize synaptic potentials. Nat. Neurosci. 15, 90–97 (2012).CAS 
    Article 

    Google Scholar 
    79.Kim, W. J., Jan, L. Y. & Jan, Y. N. A PDF/NPF neuropeptide signaling circuitry of male Drosophila melanogaster controls rival-induced prolonged mating. Neuron 80, 1190–1205 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    80.King, A. N. et al. A peptidergic circuit links the circadian clock to locomotor activity. Curr. Biol. 27, 1915-1927.e5 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Kim, Y. J., Žitňan, D., Galizia, C. G., Cho, K. H. & Adams, M. E. A command chemical triggers an innate behavior by sequential activation of multiple peptidergic ensembles. Curr. Biol. 16, 1395–1407 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Rapaport, F. et al. Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data. Genome Biol. 14, 3158 (2013).Article 
    CAS 

    Google Scholar 
    83.Kvam, V. M., Liu, P. & Si, Y. A comparison of statistical methods for detecting differentially expressed genes from RNA-seq data. Am. J. Bot. 99, 248–256 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Guo, Y., Li, C. I., Ye, F. & Shyr, Y. Evaluation of read count based RNAseq analysis methods. BMC Genom. 14, S2 (2013).Article 

    Google Scholar  More

  • in

    Energetic context determines the effects of multiple upwelling-associated stressors on sea urchin performance

    1.Krumhansl, K. A. et al. Global patterns of kelp forest change over the past half-century. Proc. Natl. Acad. Sci. USA 113, 13785–13790 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Filbee-Dexter, K. & Scheibling, R. E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol. Prog. Ser. 495, 1–25 (2014).ADS 
    Article 

    Google Scholar 
    3.Steneck, R. S. et al. Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ. Conserv. 29, 436–459 (2002).Article 

    Google Scholar 
    4.Steneck, R. S. Regular sea urchins as drivers of shallow benthic marine community structure. Dev. Aquacult. Fish. Sci. 43, 255–279 (2020).
    Google Scholar 
    5.Rogers-Bennett, L. & Catton, C. A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    6.Pearse, J. S. Ecological role of purple sea urchins. Science 31, 940–941 (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    7.Harrold, C. & Reed, D. C. Food availability, sea urchin grazing, and kelp forest community structure. Ecology 66, 1160–1169 (1985).Article 

    Google Scholar 
    8.Kriegisch, N., Reeves, S. E., Flukes, E. B., Johnson, C. R. & Ling, S. D. Drift-kelp suppresses foraging movement of overgrazing sea urchins. Oecologia 190, 665–677 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Pearse, J. S. & Hines, A. H. Long-term population dynamics of sea urchins in a central California kelp forest: rare recruitment and rapid decline. Mar. Ecol. Prog. Ser. 39, 275–283 (1987).ADS 
    Article 

    Google Scholar 
    10.Watanabe, J. M. & Harrold, C. Destructive grazing by sea urchins Strongylocentrotus spp. in a central California kelp forest: potential roles of recruitment, depth, and predation. Mar. Ecol. Prog. Ser. 71, 125–141 (1991).ADS 
    Article 

    Google Scholar 
    11.Reid, J. et al. The economic value of the recreational red abalone fishery in northern California. Calif. Fish Game 102, 119–130 (2016).
    Google Scholar 
    12.Menge, B. A. & Menge, D. N. Dynamics of coastal meta-ecosystems: the intermittent upwelling hypothesis and a test in rocky intertidal regions. Ecol. Monogr. 83, 283–310 (2013).Article 

    Google Scholar 
    13.Breitburg, D. L., Loher, T., Pacey, C. A. & Gerstein, A. Varying effects of low dissolved oxygen on trophic interactions in an estuarine food web. Ecol. Monogr. 67, 489–507 (1997).Article 

    Google Scholar 
    14.Hauri, C. et al. (2009) Ocean acidification in the California current system. Oceanography 22, 60–71 (2009).Article 

    Google Scholar 
    15.Connell, S. D. & Russell, B. D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: increasing the potential for phase shifts in kelp forests. Proc. R. Soc. B 277, 1409–1415 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Sellers, A. J. et al. Seasonal upwelling reduces herbivore control of tropical rocky intertidal algal communities. Ecology e03335 https://doi.org/10.1002/ecy.3335(2021).17.Moulin, L., Grosjean, P., Leblud, J., Batigny, A. & Dubois, P. Impact of elevated pCO2 on acid-base regulation of the sea urchin Echinometra mathaei and its relation to resistance to ocean acidification: a study in mesocosms. J. Exp. Mar. Biol. Ecol. 457, 97–104 (2014).CAS 
    Article 

    Google Scholar 
    18.Siikavuopio, S. I., Dale, T., Mortensen, A. & Foss, A. Effects of hypoxia on feed intake and gonad growth in the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 266, 112–116 (2007).Article 

    Google Scholar 
    19.Low, H. N. N. The Effects of Upwelling-driven Hypoxia on Sea Urchins in California Current Kelp Forests. PhD dissertation, Stanford University, Stanford, CA (2018).20.Low, N. H. & Micheli, F. Lethal and functional thresholds of hypoxia in two key benthic grazers. Mar. Ecol. Prog. Ser. 594, 165–173 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    21.Low, N. H. & Micheli, F. Short-and long-term impacts of variable hypoxia exposures on kelp forest sea urchins. Sci. Rep. 10, 1–9 (2020).CAS 
    Article 

    Google Scholar 
    22.Huyer, A. Coastal upwelling in the California current system. Prog. Oceanogr. 12, 259–284 (1983).ADS 
    Article 

    Google Scholar 
    23.Frieder, C. A., Nam, S. H., Martz, T. R. & Levin, L. A. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 9, 3917–3930 (2012).24.Feely, R. A. et al. The combined effects of acidification and hypoxia on pH and aragonite saturation in the coastal waters of the California current ecosystem and the northern Gulf of Mexico. Cont. Shelf Res. 152, 50–60 (2018).ADS 
    Article 

    Google Scholar 
    25.Chan, F. et al. Persistent spatial structuring of coastal ocean acidification in the California Current System. Sci. Rep. 7, 1–7 (2017).Article 
    CAS 

    Google Scholar 
    26.Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Feely, R. A. et al. Chemical and biological impacts of ocean acidification along the west coast of North America. Estuar. Coast. Shelf Sci. 183, 260–270 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Iles, A. C. et al. Climate-driven trends and ecological implications of event-scale upwelling in the California Current System. Glob. Change Biol. 18, 783–796 (2012).ADS 
    Article 

    Google Scholar 
    29.CeNCOOS. Real-Time Sensor Feeds of Oceanographic and Atmospheric Models’ Online Tool to Extract Temperature, pH, and Dissolved Oxygen. https://data.cencoos.org (2020).30.Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247, 198–201 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    31.McGregor, H. V., Dima, M., Fischer, H. W. & Mulitza, S. Rapid 20th-century increase in coastal upwelling off northwest Africa. Science 315, 637–639 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Narayan, N., Paul, A., Mulitza, S. & Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 6, 815–823 (2010).ADS 
    Article 

    Google Scholar 
    33.Barton, E. D. D., Field, D. B. B. & Roy, C. Canary current upwelling: more or less?. Prog. Oceanogr. 116, 167–178 (2013).ADS 
    Article 

    Google Scholar 
    34.Mote, P. W. & Mantua, N. J. Coastal upwelling in a warmer future. Geophys. Res. Lett. 29, 2138 (2002).ADS 
    Article 

    Google Scholar 
    35.Bakun, A. et al. Anticipated effects of climate change on coastal upwelling ecosystems. Curr. Clim. Change Rep. 1, 85–93 (2015).Article 

    Google Scholar 
    36.Wang, D., Gouhier, T. C., Menge, B. A. & Ganguly, A. R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518, 390–394 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Snyder, M. A., Sloan, L. C., Diffenbaugh, N. S. & Bell, J. L. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30, 1823 (2003).38.García‐Reyes, M. & Largier, J. Observations of increased wind‐driven coastal upwelling off central California. J. Geophys. Res. Oceans 115, 1–8 (2010).39.Varela, R., Álvarez, I., Santos, F., DeCastro, M. & Gómez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010?. Sci. Rep. 5, 1–15 (2015).40.Varela, R., Lima, F. P., Seabra, R., Meneghesso, C. & Gómez-Gesteira, M. Coastal warming and wind-driven upwelling: a global analysis. Sci. Total Environ. 639, 1501–1511 (2018).41.Abrahams, A., Schlegel, R. W. & Smit, A. J. Variation and change of upwelling dynamics detected in the world’s eastern boundary upwelling systems. Front. Mar. Sci. 8, 626411 (2021).Article 

    Google Scholar 
    42.IPCC Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Vol. 151 (eds Core Writing Team et al.) (IPCC, Geneva, 2014).
    Google Scholar 
    43.Rykaczewski, R. R. & Dunne, J. P. Enhanced nutrient supply to the California Current Ecosystem with global warming and increased stratification in an earth system model. Geophys. Res. Lett. 37, 1-5 (2010).44.Somero, G. N. et al. What changes in the carbonate system, oxygen, and temperature portend for the northeastern Pacific Ocean: a physiological perspective. Bioscience 66, 14–26 (2016).Article 

    Google Scholar 
    45.Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    46.Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Sokolova, I. M., Frederich, M., Bagwe, R., Lannig, G. & Sukhotin, A. A. Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar. Environ. Res. 79, 1–15 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    48.Sokolova, I. M. Energy-limited tolerance to stress as a conceptual framework to integrate the effects of multiple stressors. Integr. Comp. Biol. 53, 597–608 (2013).PubMed 
    Article 

    Google Scholar 
    49.Fitzgerald-Dehoog, L., Browning, J. & Allen, B. J. Food and heat stress in the California mussel: evidence for an energetic trade-off between survival and growth. Biol. Bull. 223, 205–216 (2012).PubMed 
    Article 

    Google Scholar 
    50.Ramajo, L. et al. Food supply confers calcifiers resistance to ocean acidification. Sci. Rep. 6, 19374 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    51.Brown, N. E., Bernhardt, J. R., Anderson, K. M. & Harley, C. D. Increased food supply mitigates ocean acidification effects on calcification but exacerbates effects on growth. Sci. Rep. 8, 1–9 (2018).
    Google Scholar 
    52.Wahle, R. A. & Peckham, S. H. Density-related reproductive trade-offs in the green sea urchin, Strongylocentrotus droebachiensis. Mar. Biol. 134, 127–137 (1999).Article 

    Google Scholar 
    53.Rogers-Bennett, L., Allen, B. L. & Rothaus, D. P. Status and habitat associations of the threatened northern abalone: importance of kelp and coralline algae. Aquat. Conserv. Mar. Freshw. Ecosyst. 21, 573–581 (2011).Article 

    Google Scholar 
    54.Brown, M. B., Edwards, M. S. & Kim, K. Y. Effects of climate change on the physiology of giant kelp, Macrocystis pyrifera, and grazing by purple urchin, Strongylocentrotus purpuratus. Algae 29, 203–215 (2014).CAS 
    Article 

    Google Scholar 
    55.Klinger, T. S. & Lawrence, J. M. Distance perception of food and the effect of food quantity on feeding behavior of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Mar. Freshw. Behav. Physiol. 11, 327–344 (1985).Article 

    Google Scholar 
    56.Trowbridge, C. D. Establishment of the green alga Codium fragile ssp. tomentosoides on New Zealand rocky shores: current distribution and invertebrate grazers. J. Ecol. 83, 949–965 (1995).Article 

    Google Scholar 
    57.Meidel, S. K. & Scheibling, R. E. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166 (1999).Article 

    Google Scholar 
    58.Harianto, J., Nguyen, H. D., Holmes, S. P. & Byrne, M. The effect of warming on mortality, metabolic rate, heat-shock protein response and gonad growth in thermally acclimated sea urchins (Heliocidaris erythrogramma). Mar. Biol. 165, 1–12 (2018).CAS 
    Article 

    Google Scholar 
    59.Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    60.Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
    Article 

    Google Scholar 
    61.Spicer, J. I., Widdicombe, S., Needham, H. R. & Berge, J. A. Impact of CO2-acidified seawater on the extracellular acid-base balance of the northern sea urchin Strongylocentrotus dröebachiensis. J. Exp. Mar. Biol. Ecol. 407, 19–25 (2011).CAS 
    Article 

    Google Scholar 
    62.Catarino, A. I., Bauwens, M. & Dubois, P. Acid–base balance and metabolic response of the sea urchin Paracentrotus lividus to different seawater pH and temperatures. Environ. Sci. Pollut. Res. 19, 2344–2353 (2012).CAS 
    Article 

    Google Scholar 
    63.Rogers-Bennett, L., Bennett, W. A., Fastenau, H. C. & Dewees, C. M. Spatial variation in red sea urchin reproduction and morphology: implications for harvest refugia. Ecol. Appl. 5, 1171–1180 (1995).Article 

    Google Scholar 
    64.Quinn, J. F., Wing, S. R. & Botsford, L. W. Harvest refugia in marine invertebrate fisheries: models and applications to the red sea urchin, Strongylocentrotus franciscanus. Am. Zool. 33, 537–550 (1993).Article 

    Google Scholar 
    65.Eurich, J. G., Selden, R. L. & Warner, R. R. California spiny lobster preference for urchins from kelp forests: implications for urchin barren persistence. Mar. Ecol. Prog. Ser. 498, 217–225 (2014).ADS 
    Article 

    Google Scholar 
    66.Steneck, R. S., Leland, A., McNaught, D. C. & Vavrinec, J. Ecosystem flips, locks, and feedbacks: the lasting effects of fisheries on Maine’s kelp forest ecosystem. Bull. Mar. Sci. 89, 31–55 (2013).Article 

    Google Scholar 
    67.Gerard, V. A. Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar. Biol. 66(1), 27–35 (1982).CAS 
    Article 

    Google Scholar 
    68.Simonson, E. J., Scheibling, R. E. & Metaxas, A. Kelp in hot water: I. Warming seawater temperature induces weakening and loss of kelp tissue. Mar. Ecol. Prog. Ser. 537, 89–104 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    69.Thomsen, M. S. et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. 6, 84 (2019).Article 

    Google Scholar 
    70.O’Donnell, M. J., Hammond, L. M. & Hofmann, G. E. Predicted impact of ocean acidification on a marine invertebrate: elevated CO2 alters response to thermal stress in sea urchin larvae. Mar. Biol. 156, 439–446 (2009).Article 
    CAS 

    Google Scholar 
    71.Dupont, S., Dorey, N., Stumpp, M., Melzner, F. & Thorndyke, M. Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 160, 1835–1843 (2013).CAS 
    Article 

    Google Scholar 
    72.Marcel, E. V. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. B 270, 367–372 (2003).Article 

    Google Scholar 
    73.Parker, L. M., Ross, P. M. & O’Connor, W. A. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar. Biol. 158, 689–697 (2011).Article 

    Google Scholar 
    74.Kroeker, K. J., Kordas, R. L. & Harley, C. D. Embracing interactions in ocean acidification research: confronting multiple stressor scenarios and context dependence. Biol. Lett. 13, 20160802 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    75.Conor, J. J. Gonad growth in the sea urchin, Strongylocentrotus purpuratus (Stimpson) (Echinodermata: Echinoidea) and the assumptions of gonad index methods. J. Exp. Mar. Biol. Ecol. 10, 89–103 (1972).Article 

    Google Scholar 
    76.Bandstra, L., Hales, B. & Takahashi, T. High-frequency measurements of total CO2: method development and first oceanographic observations. Mar. Chem. 100, 24–38 (2006).CAS 
    Article 

    Google Scholar 
    77.Hales, B., Chipman, D. & Takahashi, T. High-frequency measurement of partial pressure and total concentration of carbon dioxide in seawater using microporous hydrophobic membrane contactors. Limnol. Oceanogr. Methods 2, 356–364 (2004).Article 

    Google Scholar 
    78.Lavigne, H., Epitalon, J. M. & Gattuso, J. P. Seacarb: Seawater Carbonate Chemistry with R. R package version 3.0 http://CRAN.R-project.org/package=seacarb (2011).79.Gattuso, J. P., Epitalon, J. M., Lavigne, H. & Orr, J. Seacarb: seawater carbonate chemistry. R package version 3.2.10. http://CRAN.R-project.org/package=seacarb (2018).80.Murie, K. A. & Bourdeau, P. E. Fragmented kelp forest canopies retain their ability to alter local seawater chemistry. Sci. Rep. 10, 1–13 (2020).Article 
    CAS 

    Google Scholar 
    81.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2013). More

  • in

    The land use–food–coronavirus nexus

    1.Jones, B. A. et al. Proc. Natl Acad. Sci. USA 110, 8399–8404 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Chand, A. Nat. Food 1, 528 (2020).Article 

    Google Scholar 
    3.Messmer, T. A. Hum.-Wildl. Interact. 14, 137–140 (2020).
    Google Scholar 
    4.Malik, Y. S. et al. Vet. Quart. 40, 68–76 (2020).CAS 
    Article 

    Google Scholar 
    5.Konda, M., Dodda, B., Konala, V., Naramala, S. & Adapa, S. Cureus 12, e8932 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    6.Lu, R. et al. Lancet 395, 565–574 (2020).CAS 
    Article 

    Google Scholar 
    7.Lam, T. T. et al. Nature 583, 282–285 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    8.Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Trends. Ecol. Evol. 32, 55–67 (2017).Article 

    Google Scholar 
    9.Rulli, M. C., D’Odorico, P., Galli, N. & Hayman, D. T. S. Nat. Food https://doi.org/10.1038/s43016-021-00285-x (2021).10.Ancillotto, L., Santini, L., Ranc, N., Maiorano, L. & Russo, D. Sci. Nat. 103, 15 (2016).CAS 
    Article 

    Google Scholar 
    11.Laurance, W. F. & Williamson, G. B. Conserv. Biol. 15, 1529–1535 (2001).Article 

    Google Scholar 
    12.Chand, A. Nat. Food 2, 137 (2021).Article 

    Google Scholar 
    13.Manning, L. Nat. Food 2, 10 (2021).Article 

    Google Scholar 
    14.Frutos, R., Serra-Cobo, J., Pinault, L., Lopez Roig, M. & Devaux, C. A. Front. Microbiol. 12, 591535 (2021).Article 

    Google Scholar 
    15.Schmiege, D. et al. One Health 10, 100170 (2020).Article 

    Google Scholar 
    16.Afelt, A., Frutos, R. & Devaux, C. Front. Microbiol. 9, 702 (2018).Article 

    Google Scholar  More

  • in

    Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats

    1.Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Rulli, M. C., Santini, M., Hayman, D. T. & D’Odorico, P. The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci. Rep. 7, 41613 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    3.Espinosa, R., Tago, D. & Treich, N. Infectious diseases and meat production. Environ. Resource Econ. 76, 1019–1044 (2020).4.Young, H., Griffin, R. H., Wood, C. L. & Nunn, C. L. Does habitat disturbance increase infectious disease risk for primates? Ecol. Lett. 16, 656–663 (2013).
    Google Scholar 
    5.Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11, 619–632 (2014).
    Google Scholar 
    6.Rohr et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445–456 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    7.Zhou, P. et al. A pnemonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Lam, T. T. et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 583, 282–285 (2020).9.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).ADS 
    CAS 

    Google Scholar 
    10.Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    11.Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 10, 4299 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324 (2018).
    Google Scholar 
    13.Delgado, C., Rosegrant, M., Steinfeld, H., Ehui, S. & Courbois, C. Livestock to 2020: The Next Food Revolution. Food, Agriculture, and the Environment Discussion Paper 28 (International Food Policy Research Institute, 1999).14.Coker, R. et al. Towards a conceptual framework to support one-health research for policy on emerging zoonoses. Lancet Infect. Dis. 11, P326–P331 (2011).
    Google Scholar 
    15.Wu et al. Economic growth, urbanization, globalization, and the risks of emerging infectious diseases in China: a review. Ambio 46, 18–29 (2017).CAS 

    Google Scholar 
    16.Wilkinson, D. A., Marshall, J. C., French, N. P. & Hayman, D. T. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J. R. Soc. Interface 15, 20180403 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    17.Johnson, C. K. et al. Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc. R. Soc. B 287, 20192736 (2020).
    Google Scholar 
    18.Bloomfield, L. S. P., McIntosh, T. L. & Lambin, E. F. Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa. Landsc. Ecol. 35, 985–1000 (2020).
    Google Scholar 
    19.Pulliam, J. R. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2012).
    Google Scholar 
    20.Zhou, P. et al. Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 5556, 255–258 (2018).ADS 

    Google Scholar 
    21.Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Meyer, C. F., Struebig, M. J. & Willig, M. R. in Bats in the Anthropocene: Conservation of Bats in a Changing World (eds Voigt, C.C. & Kingston, T.) 63–103 (Springer, 2016).23.Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Cui, J., Li, F. & Shi, Z. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 17, 181–192 (2019).CAS 

    Google Scholar 
    25.Hul V. et al. A novel SARS-CoV-2 related coronavirus in bats from Cambodia. Preprint at https://doi.org/10.1101/2021.01.26.428212 (2021).26.Murakami, S. et al. Detection and characterization of bat Sarbecovirus phylogenetically related to SARS-CoV-2, Japan. Emerg. Infect. Dis. 26, 3025 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Wacharapluesadee, S. et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun. 12, 972 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    28.Soman Pillai, V., Krishna, G. & Valiya Veettil, M. Nipah virus: past outbreaks and future containment. Viruses. 12, 465 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    29.Weingartl, H. M. et al. Susceptibility of pigs and chickens to SARS coronavirus. Emerg. Infect. Dis. 10, 179–184 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    30.Schlottau, K. et al. SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1, e218–e225 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Munnink, B. B. O. et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371, 172–177 (2021).ADS 

    Google Scholar 
    32.Zhou, L. et al. The re‐emerging of SADS‐CoV infection in pig herds in southern China. Transbound. Emerg. Dis. 66, 2180–2183 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    33.Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).
    Google Scholar 
    34.Chinazzi, M. et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science 368, 395–400 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Yang, Q. et al. Assessing the role of live poultry trade in community-structured transmission of avian influenza in China. Proc. Natl Acad. Sci. USA 117, 5949–5954 (2020).ADS 
    CAS 

    Google Scholar 
    36.D’Odorico, P. et al. The global food–energy–water nexus. Rev. Geophys. 56, 456–531 (2018).
    Google Scholar 
    37.Meyfroidt, P., Lambin, E. F., Erb, K. H. & Hertel, T. W. Globalization of land use: distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 5, 438–444 (2013).
    Google Scholar 
    38.Ning, J. et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. In J. Geogr. Sci. 28, 547–562 (2018).
    Google Scholar 
    39.Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2, 122–129 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    40.Liu, J. et al. Forest fragmentation in China and its effect on biodiversity. Biol. Rev. 94, 1636–1657 (2019).
    Google Scholar 
    41.Whitmee, S. et al. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation–Lancet Commission on planetary health. Lancet 386, 1973–2028 (2015).
    Google Scholar 
    42.Andersen, K. G., Rambaut, A., Lipkin, W. I., Holmes, E. C. & Garry, R. F. The proximal origin of SARS-CoV-2. Nat. Med. 26, 450–452 (2020).CAS 

    Google Scholar 
    43.Dietz, C., Dietz, I., Ivanova, T. & Siemers, B. M. Seasonal and regional scale movements of horseshoe bats (Rhinolophus, Chiroptera: Rhinolophidae) in northern Bulgaria. Nyctalus NF 14, 52–64 (2009).
    Google Scholar 
    44.Wang, J. et al. Seasonal habitat use by greater horseshoe bat Rhinolophus ferrumequinum (Chiroptera: Rhinolophidae) in Changbai Mountain temperate forest, northeast China. Mammalia 74, 257–266 (2010).
    Google Scholar 
    45.Robinson, T. P. et al. Mapping the global distribution of livestock. PLoS ONE 9, e96084 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Teluguntla, P. et al. in Land Resources: Monitoring, Modelling, and Mapping, Remote Sensing Handbook Vol. II (eds Prasad, S. & Thenkabail, P. S.) Ch. 7 (CRC Press Inc, 2014).47.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 

    Google Scholar 
    48.Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data 5, 180227 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    49.Congalton, R. G. et al. NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security-support Analysis Data (GFSAD) @ 30-m: Cropland Extent Validation (GFSAD30VAL) (NASA EOSDIS Land Processes DAAC, 2017); https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30VAL.00150.Nieves, J. J. et al. Annually modelling built-settlements between remotely-sensed observations using relative changes in subnational populations and lights at night. Comput. Environ. Urban Syst. 80, 101444 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    51.Vogt, P., Riitters, K. H., Estreguil, C. J., Kozak, T. G. & Wade, J. D. Wickham mapping spatial patterns with morphological image processing. Landsc. Ecol. 22, 171–177 (2007).
    Google Scholar 
    52.Assuncao, R. M., Neves, M. C., Camara, G. & Da Costa Freitas, C. Efficient regionalisation techniques for socio-economic geographical units using minimum spanning trees. Int. J. Geogr. Inf. Sci. 20, 797–811 (2006).
    Google Scholar  More

  • in

    Accurate detection and quantification of seasonal abundance of American bullfrog (Lithobates catesbeianus) using ddPCR eDNA assays

    1.Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Dudgeon, D. et al. Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).PubMed 
    Article 

    Google Scholar 
    3.Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: Recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).Article 

    Google Scholar 
    4.Invasive Species Specialist Group IUCN guidelines for the prevention of biodiversity loss caused by alien invasive species. https://portals.iucn.org/library/node/12673 (2000).5.Clavero, M. & García-Berthou, E. Invasive species are a leading cause of animal extinction. Trends Ecol. Evol. 20, 110 (2005).PubMed 
    Article 

    Google Scholar 
    6.Hassan, R., Scholes, R. J. & Ash, N. Ecosystems and human well-being: Current state and trends: Findings of the Condition and Trends working group (Millennium Ecosystem Assessment Series) (Island Press, 2005).7.Vitousek, P. M., D’Antonio, C. M., Loope, L. L., Rejmánek, M. & Westbrooks, R. Introduced species: A significant component of human-caused global change. N. Z. J. Ecol. 21, 1–16 (1997).
    Google Scholar 
    8.Mack, R. N. et al. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710 (2000).Article 

    Google Scholar 
    9.Hulme, P. E. Beyond control: Wider implications for the management of biological invasions. J. Appl. Ecol. 43, 835–847 (2006).Article 

    Google Scholar 
    10.Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).Article 

    Google Scholar 
    11.Myers, J. H., Simberloff, D., Kuris, A. M. & Carey, J. R. Eradication revisited: Dealing with exotic species. Trends Ecol. Evol. 15, 316–320 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).Article 

    Google Scholar 
    13.McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species (ed. Thompson, W. L.) 11–42 (Island Press, 2004).
    Google Scholar 
    14.Harvey, C. T., Qureshi, S. A. & MacIsaac, H. J. Detection of a colonizing, aquatic, non-indigenous species. Divers. Distrib. 15, 429–437 (2009).Article 

    Google Scholar 
    15.Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Jerde, C. L., Mahon, A. R., Chadderton, W. L. & Lodge, D. M. “Sight-unseen” detection of rare aquatic species using environmental DNA. Conserv. Lett. 4, 150–157 (2011).Article 

    Google Scholar 
    17.Valentini, A., Pompanon, F. & Taberlet, P. DNA barcoding for ecologists. Trends Ecol. Evol. 24, 110–117 (2009).PubMed 
    Article 

    Google Scholar 
    18.Thomsen, P. F. & Willerslev, E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).Article 

    Google Scholar 
    19.Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M. & Gough, K. C. The detection of aquatic animal species using environmental DNA—A review of eDNA as a survey tool in ecology. J. Appl. Ecol. 51, 1450–1459 (2014).CAS 
    Article 

    Google Scholar 
    20.Brys, R. et al. Monitoring of spatio-temporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA. Mol. Ecol. https://doi.org/10.1111/mec.15742 (2021).Article 

    Google Scholar 
    21.Smart, A. S. et al. Assessing the cost-efficiency of environmental DNA sampling. Methods Ecol. Evol. 7, 1291–1298 (2016).Article 

    Google Scholar 
    22.Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216 (2016).Article 

    Google Scholar 
    23.Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: The example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).Article 

    Google Scholar 
    24.Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 
    Article 

    Google Scholar 
    25.Furlan, E. M., Gleeson, D., Hardy, C. M. & Duncan, R. P. A framework for estimating the sensitivity of eDNA surveys. Mol. Ecol. Resour. 16, 641–654 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Cristescu, M. E. & Hebert, P. D. N. Uses and misuses of environmental DNA in biodiversity science and conservation. Annu. Rev. Ecol. Evol. Syst. 49, 209–230 (2018).Article 

    Google Scholar 
    27.Sepulveda, A. J., Nelson, N. M., Jerde, C. L. & Luikart, G. Are environmental DNA methods ready for aquatic invasive species management?. Trends Ecol. Evol. 35, 668–678 (2020).PubMed 
    Article 

    Google Scholar 
    28.Wilcox, T. M. et al. Robust detection of rare species using environmental DNA: The importance of primer specificity. PLoS One 8, e59520. https://doi.org/10.1371/journal.pone.0059520 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Freeland, J. The importance of molecular markers and primer design when characterizing biodiversity from environmental DNA (eDNA). Genome 60, 358–374 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    30.Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).Article 

    Google Scholar 
    31.Veldhoen, N. et al. Implementation of novel design features for qPCR-based eDNA assessment. PLoS One 11, e0164907. https://doi.org/10.1371/journal.pone.0164907 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Lin, M., Zhang, S. & Yao, M. Effective detection of environmental DNA from the invasive American bullfrog. Biol. Invasions 21, 2255–2268 (2019).Article 

    Google Scholar 
    33.Thalinger, B. et al. A validation scale to determine the readiness of environmental DNA assays for routine species monitoring. Environ. DNA https://doi.org/10.1002/edn3.189 (2021).Article 

    Google Scholar 
    34.Yates, M. C., Fraser, D. J. & Derry, A. M. Meta-analysis supports further refinement of eDNA for monitoring aquatic species-specific abundance in nature. Environ. DNA 1, 5–13 (2019).Article 

    Google Scholar 
    35.Hindson, B. J. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 83, 8604–8610 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Nathan, L. M., Simmons, M., Wegleitner, B. J., Jerde, C. L. & Mahon, A. R. Quantifying environmental DNA signals for aquatic invasive species across multiple detection platforms. Environ. Sci. Technol. 48, 12800–12806 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Doi, H. et al. Use of droplet digital PCR for estimation of fish abundance and biomass in environmental DNA surveys. PLoS One 10, e0122763. https://doi.org/10.1371/journal.pone.0122763 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Brys, R. et al. Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis). J. Fish Biol. https://doi.org/10.1111/jfb.14315 (2020).Article 
    PubMed 

    Google Scholar 
    39.Lacoursière-Roussel, A., Côté, G., Leclerc, V. & Bernatchez, L. Quantifying relative fish abundance with eDNA: A promising tool for fisheries management. J. Appl. Ecol. 53, 1148–1157 (2016).Article 
    CAS 

    Google Scholar 
    40.Doi, H. et al. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 62, 30–39 (2017).CAS 
    Article 

    Google Scholar 
    41.Buxton, A. S., Groombridge, J. J., Zakaria, N. B. & Griffiths, R. A. Seasonal variation in environmental DNA in relation to population size and environmental factors. Sci. Rep. 7, 46294. https://doi.org/10.1038/srep46294 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Takahara, T., Iwai, N., Yasumiba, K. & Takeshi, I. Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across 3 seasons. Freshw. Sci. 39, 18–27 (2020).Article 

    Google Scholar 
    43.Kats, L. B. & Ferrer, R. P. Alien predators and amphibian declines: Review of two decades of science and the transition to conservation. Divers. Distrib. 9, 99–110 (2003).Article 

    Google Scholar 
    44.Martel, A. et al. The novel ‘Candidatus Amphibiichlamydia ranarum’ is highly prevalent in invasive exotic bullfrogs (Lithobates catesbeianus). Environ. Microbiol. Rep. 5, 105–108 (2012).PubMed 
    Article 

    Google Scholar 
    45.Blaustein, A. R. et al. Effects of invasive larval bullfrogs (Rana catesbeiana) on disease transmission, growth and survival in the larvae of native amphibians. Biol. Invasions 22, 1771–1784 (2020).Article 

    Google Scholar 
    46.Lowe, S., Browne, M., Boudjelas, S. & De Poorter, M. 100 of the world’s worst invasive alien species. A selection from the Global Invasive Species Database. Published by The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Commission (SSC) of the World Conservation Union (IUCN), First published as special lift-out in Aliens 12 (2000).47.Adams, M. J. & Pearl, C. A. Problems and opportunities managing invasive bullfrogs: Is there any hope? In Biological Invaders in Waters: Profiles, Distribution and Threats (ed. Gherardi, F.) 679–693 (Springer, Paris, 2007).
    Google Scholar 
    48.Louette, G., Devisscher, S. & Adriaens, T. Combating adult invasive American bullfrog Lithobates catesbeianus. Eur. J. Wildl. Res. 60, 703–706 (2014).Article 

    Google Scholar 
    49.Kamoroff, C. et al. Effective removal of the American bullfrog (Lithobates catesbeianus) on a landscape level: Long term monitoring and removal efforts in Yosemite Valley, Yosemite National Park. Biol Invasions 22, 617–626 (2020).Article 

    Google Scholar 
    50.Jooris, R. Palmt de stierkikker uit Noord-Amerika ook Vlaanderen in?. Natuur. Focus 1, 13–15 (2001).
    Google Scholar 
    51.Adriaens, T., Devisscher, S. & Louette, G. Risk analysis of American bullfrog, Lithobates catesbeianus. Risk analysis report of non-native organisms in Belgium. Rapporten van het Instituut voor Natuur- en Bosonderzoek 41. https://doi.org/10.13140/2.1.2431.5688 (2013).52.Descamps, S. & De Vocht, A. Movements and habitat use of the invasive species Lithobates catesbeianus in the valley of the Grote Nete (Belgium). Belg. J. Zool. 146, 90–100 (2016).
    Google Scholar 
    53.Strickler, K. M., Fremier, A. K. & Goldberg, C. S. Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol. Conserv. 183, 85–92 (2015).Article 

    Google Scholar 
    54.Lefever, S., Pattyn, F., Hellemans, J. & Vandesompele, J. Single-nucleotide polymorphisms and other mismatches reduce performance of quantitative PCR assays. Clin. Chem. 59, 1470–1480 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Erligh, H. A., Gelfand, D. & Sninsky, J. J. Recent advances in the polymerase chain reaction. Science 252, 1643–1651 (1991).ADS 
    Article 

    Google Scholar 
    56.Schrader, C., Schielke, A., Ellerbroek, L. & Johne, R. PCR inhibitors—Occurrence, properties and removal. J. Appl. Microbiol. 113, 1014–1026 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Lievens, A., Jacchia, S., Kagkli, D., Savini, C. & Querci, M. Measuring digital PCR quality: Performance parameters and their optimization. PLoS One 11, e0153317. https://doi.org/10.1371/journal.pone.0153317 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    58.Pecoraro, S. et al. Overview and recommendations for the application of digital PCR. EUR 29673 EN, Publications Office of the European Union. https://doi.org/10.2760/192883 (2019).59.Harper, L. R. et al. Prospects and challenges of environmental DNA (eDNA) monitoring in freshwater ponds. Hydrobiologia 826, 25–41 (2019).CAS 
    Article 

    Google Scholar 
    60.Doi, H. et al. Droplet digital PCR outperforms real-time PCR in the detection of environmental DNA from an invasive fish species. Environ. Sci. Technol. 49, 5601–5608 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Wells, K. D. (ed.) The Ecology and Behavior of Amphibians (The University of Chicago Press, 2007).
    Google Scholar 
    62.Willis, Y. L., Moyle, D. I. & Baskett, T. S. Emergence, breeding, hibernation, movements and transformation of the bullfrog, Rana catesbeiana Missouri. Copeia 1, 30–41 (1956).Article 

    Google Scholar 
    63.Maruyama, A., Nakamura, K., Yamanaka, H., Kondoh, M. & Minamoto, T. The release rate of environmental DNA from juvenile and adult fish. PLoS One 9, e114639. https://doi.org/10.1371/journal.pone.0114639 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Barnes, M. A. et al. Environmental conditions influence eDNA persistence in aquatic systems. Environ. Sci. Technol. 48, 1819–1827 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Lance, R. F. et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag. Biol. Invasions 8, 343–359 (2017).Article 

    Google Scholar 
    66.Hoorfar, J. Practical considerations in design of internal amplification controls for diagnostic PCR assays. J. Clin. Microbiol. 42, 1863–1868 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Devisscher, S. et al. Beheer van de stierkikker in Vlaanderen en Nederland. Rapporten van het Instituut voor Natuur- en Bosonderzoek 52. https://www.researchgate.net/publication/235789235 (2012).68.Bylemans, J. et al. An environmental DNA-based method for monitoring spawning activity: A case study using the endangered Macquarie perch (Macquaria australasica). Methods Ecol. Evol. 8, 646–655 (2017).Article 

    Google Scholar 
    69.Dunn, N., Priestley, V., Herraiz, A., Arnold, R. & Savolainen, V. Behavior and season affect crayfish detection and density inference using environmental DNA. Ecol. Evol. 7, 7777–7785 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    70.Bury, R. B. & Whelan, J. A. Ecology and management of the bullfrog. U.S. Fish and Wildlife Service 155 (1984).71.Gahl, M. K., Calhoun, A. J. K. & Graves, R. Facultative use of seasonal pools by American bullfrogs (Rana catesbeiana). Wetlands 29, 697–703 (2009).Article 

    Google Scholar 
    72.Biek, R., Funk, C., Maxell, B. A. & Mills, L. S. What is missing in amphibian decline research: Insights from ecological sensitivity analysis. Conserv. Biol. 16, 728–734 (2002).Article 

    Google Scholar 
    73.Govindarajulu, P., Altwegg, R. & Anholt, B. R. Matrix model investigation of invasive species control: Bullfrogs on Vancouver Island. Ecol. Appl. 15, 2161–2170 (2005).Article 

    Google Scholar 
    74.Carim, K. J. et al. Environmental DNA sampling informs fish eradication efforts: Case studies and lessons learned. N. Am. J. Fish. 40, 488–508 (2020).Article 

    Google Scholar 
    75.Riaz, T. et al. ecoPrimers: Inference of new DNA barcode markers from whole genome sequence analysis. Nucleic Acids Res. 39, e145. https://doi.org/10.1093/nar/gkr732 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Moyer, G. R., Díaz-Ferguson, E., Hill, J. E. & Shea, C. Assessing environmental DNA detection in controlled lentic systems. PLoS One 9, e103767. https://doi.org/10.1371/journal.pone.0103767 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    77.Turner, C. R. et al. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods Ecol. Evol. 7, 676–684 (2014).Article 

    Google Scholar 
    78.U.S. Fish and Wildlife Service. Quality assurance project plan: eDNA monitoring of bighead and silver carps. https://www.fws.gov/midwest/fisheries/eDNA/documents/QAPP.pdf (2017).79.Spens, J. et al. Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: Advantage of enclosed filter. Methods Ecol. Evol. 8, 635–645 (2017).Article 

    Google Scholar 
    80.RStudio Team (2020) RStudio: Integrated Development Environment for R. RStudio, PBC. http://www.rstudio.com/. More

  • in

    Retrospective methodology to estimate daily infections from deaths (REMEDID) in COVID-19: the Spain case study

    COVID-19 vs. MoMoThe COVID-19 official deaths and MoMo ED time series overlaped for the period from 3 March 2020 to 1 January 2021 for Spain and its 19 regions (Fig. 2). In general, there was good agreement between both datasets, meaning that most of MoMo ED were related to COVID-19 deaths. During the first wave, the most important differences were observed in Spain, Madrid, Cataluña, Castilla-La Mancha, and Castilla y León. Before 22 June in Spain, MoMo ED showed 15,445 accumulated deaths more than the official COVID-19 deaths, which is beyond the error band. That difference comes basically from the four regions with the largest numbers of deaths (Madrid, Cataluña, Castilla-La Mancha, and Castilla y León). Table 1 shows the accumulated values before 22 June, which were used to estimate the CFR for Spain and its 19 regions according to the third phase of the National Seroprevalence Study4,5. For all regions, the CFR estimated from MoMo ED was larger than the CFR estimated from COVID-19 deaths. In particular, Asturias, Canarias, and Murcia were twice as large. Ceuta and Melilla dramatically increased their CFR from MoMo ED, although that may be biased due to their small populations and numbers of deaths.Similarly, the same variables for the period from 23 June to 29 November 2020 are reported in Table 2. In Spain, MoMo ED showed 6173 accumulated deaths more than the official COVID-19 deaths. This difference is a third of the difference observed prior to 22 June; because this is within the error band, there was a significant improvement in the detection of COVID-19 deaths in this period. Figure 2 also shows a general agreement between MoMo ED and official COVID-19 deaths time series after the first wave, with the exception of late July and early August. These differences were due to two heat waves that were responsible for at least 25% of the MoMo ED16.Infections estimated from COVID-19 deathsTo illustrate the delay between official daily infections data and REMEDID estimated daily infections, we applied REMEDID from COVID-19 deaths assuming CFR = 100%. Figure 3 shows the current IO21 and the infections associated with COVID-19 deaths for the first wave. The latter in Spain reached a maximum on 13 March 2020 (Table 3), the day before the national government decreed a state of emergency and national lockdown. Thus, the adopted measures had an immediate effect, which was observed in the official data IO21 7 days later (20 March). This delay is similar to the incubation period (mean 5.78 days2), which could be explained because official infections were reported when symptoms appeared. This delay reached 16 days when we compared with earlier version IO20 (not shown), which highlights the usefulness of the methodology to reinterpret official data from very early stages of the pandemic. On the other hand, the maximum number of deaths was reached on 1 April, which was 19 days after the inferred infection maximum, bringing this delay close to the 20 days expected between infection and death (Figs. 1, 3).Figure 3Official COVID-19 infections and deaths, and estimated infections with case fatality ratio (CFR) of 100% in Spain during the first wave. Left y-axis: COVID-19 daily infections IO21 (blue curve). Right y-axis: COVID-19 deaths (orange curve) and its REMEDID-estimated infections with CFR = 100% (red curve). All curves are for Spain. Thin blue and orange curves are daily data, and thick curves are smoothed by 14-day running mean. Arrows show delays between the maximum of inferred infections and maxima from COVID-19 deaths (orange arrows) and COVID-19 infections (blue arrows). Solid arrows are expected delays, dotted while arrows are observed delays.Full size imageTable 3 Date of first infection for REMEDID estimated daily infections from COVID-19 deaths (IRO) and from MoMo Excess Deaths (ED) (IRM), and for official COVID-19 daily infections released on June 2020 (IO20) and on February 2021 (IO21).Full size tableWe applied REMEDID to the official COVID-19 deaths with the corresponding estimated CFRs (see “Data” section) to obtain the time series of estimated daily infections, hereafter referred to as IRO. Figure 4 shows IRO and the accumulated infections for Spain and its 19 regions. Note that in Spain, IRO are amplified versions of inferred infections in Fig. 3. In Spain, the first infection, according to IRO,, is on 8 January 2020 (Table 3), 43 days before the first infection was officially reported on 20 February 2020 according to IO20. By contrast, IO21 places the first infection on 1 January 2020. Spain reached the maximum number of IRO on 13 March, a day before the state of emergency and lockdown were enforced (Table 4). On 14 March, IO20 = 1832, and IO21 = 7478; however, IRO = 63,727 (CI 95% 60,050–67,403), 35 and 9 times IO20 and IO21, respectively (Table 5). This implies that on that day, IO20 and IO21 only reported 2.9% (CI 95% 2.7–3.1%) and 11.7% (CI 95% 11.1–12.5%) of new infections, respectively. Although detection of infections clearly improved from IO20 to IO21, almost 90% of the infections are still not documented in the peak of the first wave. The situation is similar for the accumulated infections before 22 June 2020, as reported by the National Seroprevalence Study4,5.Figure 4Daily and accumulated infections for official COVID-19 daily infections (IO21), and daily infections estimated from COVID-19 deaths (IRO). Lines are daily infections and refer to the y-axis on the right; bars are accumulated infections and refer to the y-axis on the left. Red lines and cyan bars are official COVID-19 data; orange lines and blue bars are inferred infections with case fatality ratio (CFR) in Table 1. Thin orange lines correspond to the CFR confidence interval.Full size imageTable 4 Date of the most prominent relative maxima, for Spain and the 19 regions, of the REMEDID estimated daily infections from COVID-19 deaths (IRO) and from MoMo excess deaths (ED) (IRM), and official COVID-19 daily infections (IO21).Full size tableTable 5 REMEDID estimated daily infections from COVID-19 deaths (IRO) and from MoMo excess deaths (ED) (IRM) on 14 March, and for official COVID-19 daily infections released on June 2020 (IO20) and released on February 2021 (IO21).Full size tableIn almost all regions, IO20 showed a delay of 1 month or more between the first infection and IRO (Table 3). No delay in IO21 occurred in Islas Baleares, Castilla-León, and Galicia, while in three regions (Cataluña, Madrid, and La Rioja), the first case occurred earlier than the first case of IRO. However, 6 regions had delays of 15 days and other 6 regions had delays of 1 month. According to IRO, all regions except Ceuta and Melilla had some infections in January, but in IO21 only 6 regions had infections in that month. In all scenarios, the first infections were in Madrid and Cataluña.During the first wave, according to IRO most of the regions had maximum daily infections around 14 March. In Madrid, the maximum was reached on 11 March, coinciding with the educational centres closing and an official warning by the regional government (Table 4). Asturias was the last region to reach peak infections (25–26 March). The maximum percentage of documented cases (12.6%, CI 95% 9.2–18.4%) occurred in Asturias on 14 March, but in the other regions, only between 1.2 and 8% of the infections were documented (Table 5).Figure 4 shows how the IO21 and IRO curves of Spain and the 19 different regions fluctuated following the same pattern until the middle of June 2020, but thereafter, they showed different patterns. This reflects the fact that the Spanish government had decreed the control measures for the whole nation until June, but thereafter, each regional government implemented its own control measures. For example, some regions (e.g., Aragón, Islas Baleares, Cantabria, Comunidad Valenciana, Extremadura, Galicia, Murcia, País Vasco, and La Rioja) had two peaks, but others had only one. An apparent maximum on 22 June in Islas Baleares is an artifact produced by the interpolation for transition from the two CFRs. Although beyond the scope of this work, it would be very interesting to investigate the effects of the different control measures implemented on the corresponding IRO for the 19 regions.The Spanish COVID-19s wave reached a maximum of daily infections on 22 October from IRO and on 26 October from IO21. The delay of 4 days is similar to the mean incubation period (5.78 days2). The estimated number of new infections is still larger than the documented cases, but the shapes of the two curves are more similar in the second wave than in the first wave (Fig. S1). The same is true for the 19 regions, most of which had the largest peak around 22–26 October, with the exceptions of Canarias and Madrid, which reached maxima in late August and early September, respectively.Infections from MoMo excess deathsAssuming that MoMo ED accounts for both recorded and non-recorded COVID-19 deaths, negative deaths are meaningless, and they were set to zero. Then, the associated daily infections can be estimated, as in “Infections estimated from COVID-19 deaths” section, with a CFR of 100% from MoMo ED for Spain (Fig. 5). Note two main differences between this time series and that estimated from official COVID-19 deaths: (1) MoMo data present an error band that was inherited by the estimated infections; (2) MoMo ED estimated infections reached a maximum of 1443 (CI 99% 1329–1547), doubling the 776 inferred daily infections from official COVID-19 deaths in Fig. 3. This is because maximum MoMo ED was 1,584 (CI 99% 1468–1686) and maximum COVID-19 official deaths was 828, both estimated from the 14-day running mean time series. The maximum of inferred infections was reached on 13 March, just one day prior to the state of emergency and lockdown. The expected and observed delays with respect to official infections and MoMo ED were similar to those observed for estimated infections from official COVID-19 deaths. Error bounds of the estimated infections in Fig. 5 were computed from the MoMo ED error bounds. However, it should be highlighted that the combination of the error bounds from MoMo ED and the estimated CFRs might lead to unrealistic error estimates. To avoid this, the error estimates in Fig. 6 were estimated from the MoMo ED time series (no error bounds) and the error bounds of the estimated CFRs.Figure 5Official COVID-19 infections, MoMo Excess Deaths (ED), and estimated infections with case fatality ratio (CFR) of 100% in Spain during the first wave. Left y-axis: COVID-19 daily infections IO21 (blue curve). Right y-axis: MoMo ED (orange curve) and its REMEDID-estimated infections with CFR = 100% (red curve). All curves are for Spain. Thin blue and orange curves are daily data, and thick curves are smoothed by 14-days running mean. Dashed curves represent the error estimate of MoMo ED (orange) and inferred infections (red). Arrows show delays between the maximum of inferred infections and maxima from MoMo ED (orange arrows) and COVID-19 infections (blue arrows). Solid arrows are expected delays, dotted while arrows are observed delays.Full size imageFigure 6Daily and accumulated infections for official COVID-19 daily infections (IO21), and daily infections estimated from MoMo Excess Deaths (ED) (IRM). Lines are daily infections and refer to the y-axis on the right; and bars are accumulated infections and refer to the y-axis on the left. Red lines and cyan bars are for official COVID-19 data; and orange lines and blue bars are for inferred infections with case fatality ratio (CFR) in Table 1. Thin orange lines represent the error estimate of inferred infections.Full size imageThe REMEDID was applied to the MoMo ED with the corresponding CFRs (see “Data” section) to obtain the estimated daily infections, which will be referred hereafter as IRM. The IRM were calculated for Spain and its 19 regions and are depicted in Fig. 6, as well as the accumulated IRM. In Spain, the first infection shown by IRM happened on 9 January, with an error estimate from 9 to 10 January, 41 to 42 days before the first documented infection of IO20 on 20 February 2020 (Table 3). The maximum IRM was 77,855 (CI 95% 73,364–82,347) reached on 13 March. On 14 March, IRM showed 14,128 infections more than IRO (Table 5). Notice that the CFR used with MoMo ED data was larger than the one used with official COVID-19 deaths data, which makes this difference even more remarkable, because the larger the CFR the lower the estimated infections. Therefore, if the true CFRs, which are unknown, were used in both cases, IRM would double IRO on 14 March, as happened when a CFR of 100% was used (Figs. 3, 5). Notice that with the CFRs used, the IRM and IRO resulted in the same accumulated infections on 22 June and 29 November, matching the results of the seroprevalence study. Nevertheless, IRM showed 42 times more cases than IO20 and 10 times more than IO21 on 14 March, detection of official cases of only 2.4% (2.2–2.5%) and 9.6% (9.1–10.2%), respectively.Table 3 shows the estimated date of first infection for Spain and by region. Note that the first cases of IRM in Spain were on 9 January and in Aragón, Canarias, and Navarra on 8 January, which is possible because significant excess deaths in a region may not become significant for the whole country. In general, the maxima of daily infections were closer to those on 14 March in IRM than in IRO. During the first wave, all regions showed a single maximum, except for Ceuta, Melilla, and Murcia, which showed two maxima (Fig. 6). In general, the IRM time series in all regions were similar during that period. The official data clearly under-detected infections during the first wave. On 14 March, IRM were comparable to IRO, overlapping CI in all regions, but not in Spain as a whole (Table 5). During the second wave, there was improved detection of cases with differences among regions. More