More stories

  • in

    Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health

    1.Ellis, B. J., Figueredo, A. J., Brumbach, B. H. & Schlomer, G. L. Fundamental dimensions of environmental risk—The impact of harsh versus unpredictable environments on the evolution and development of life history strategies. Hum. Nat. 20, 204–268. https://doi.org/10.1007/s12110-009-9063-7 (2009).Article 
    PubMed 

    Google Scholar 
    2.Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359. https://doi.org/10.1038/346357a0 (1990).ADS 
    Article 

    Google Scholar 
    3.Pianka, E. R. On r- and K-selection. Am. Nat. 104, 592–597. https://doi.org/10.1086/282697 (1970).Article 

    Google Scholar 
    4.Stearns, S. C. Life-history tactics: A review of the ideas. Q. Rev. Biol. 51, 3–47. https://doi.org/10.1086/409052 (1976).CAS 
    Article 
    PubMed 

    Google Scholar 
    5.Flegr, J. Two distinct types of natural selection in turbidostat-like and chemostat-like ecosystems. J. Theor. Biol. 188, 121–126. https://doi.org/10.1006/jtbi.1997.0458 (1997).Article 

    Google Scholar 
    6.Bowyer, R. T., Person, D. K. & Pierce, B. M. Detecting top-down versus bottom-up regulation of ungulates by large carnivores: Implications for conservation of biodiversity. In Large Carnivores and the Conservation of Biodiversity (eds. Ray, J. C et al.) 342–361 (Island Press, 2005).7.Jones, M. E. et al. Life-history change in disease-ravaged Tasmanian devil populations. Proc. Natl. Acad. Sci. USA 105, 10023–10027. https://doi.org/10.1073/pnas.0711236105 (2008).ADS 
    Article 
    PubMed 

    Google Scholar 
    8.Scheele, B. C. et al. Disease-associated change in an amphibian life-history trait. Oecologia 184, 825–833. https://doi.org/10.1007/s00442-017-3911-7 (2017).ADS 
    Article 
    PubMed 

    Google Scholar 
    9.Thornhill, J. A., Jones, J. T. & Kusel, J. R. Increased oviposition and growth in immature Biomphalaria glabrata after exposure to Schistosoma mansoni. Parasitology 93, 443–450. https://doi.org/10.1017/S0031182000081166 (1986).Article 
    PubMed 

    Google Scholar 
    10.Polak, M. & Starmer, W. T. Parasite-induced risk of mortality elevates reproductive effort in male Drosophila. Proc. R. Soc. B 265, 2197–2201. https://doi.org/10.1098/rspb.1998.0559 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Chadwick, W. & Little, T. J. A parasite-mediated life-history shift in Daphnia magna. Proc. R. Soc. B 272, 505–509. https://doi.org/10.1098/rspb.2004.2959 (2005).Article 
    PubMed 

    Google Scholar 
    12.Schwanz, L. E. Chronic parasitic infection alters reproductive output in deer mice. Behav. Ecol. Sociobiol. 62, 1351–1358. https://doi.org/10.1007/s00265-008-0563-y (2008).Article 

    Google Scholar 
    13.Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437. https://doi.org/10.1111/j.1469-7998.1990.tb04316.x (1990).Article 

    Google Scholar 
    14.Hill, K. Life history theory and evolutionary anthropology. Evol. Anthropol. 2, 78–88. https://doi.org/10.1002/evan.1360020303 (1993).CAS 
    Article 

    Google Scholar 
    15.Charlesworth, B. Evolution in Age-Structured Populations 2nd edn. (Cambridge University Press, 1994).Book 

    Google Scholar 
    16.Nettle, D. & Frankenhuis, W. E. Life-history theory in psychology and evolutionary biology: One research programme or two?. Philos. Trans. R. Soc. B 375, 9. https://doi.org/10.1098/rstb.2019.0490 (2020).Article 

    Google Scholar 
    17.Del Giudice, M. Rethinking the fast-slow continuum of individual differences. Evol. Hum. Behav. 41, 536–549. https://doi.org/10.1016/j.evolhumbehav.2020.05.004 (2020).Article 

    Google Scholar 
    18.Lammers, C., Ireland, M., Resnick, M. & Blum, R. Influences on adolescents’ decision to postpone onset of sexual intercourse: A survival analysis of virginity among youths aged 13 to 18 years. J. Adolesc. Health 26, 42–48. https://doi.org/10.1016/s1054-139x(99)00041-5 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    19.Wilson, M. & Daly, M. Life expectancy, economic inequality, homicide, and reproductive timing in Chicago neighbourhoods. BMJ 314, 1271–1274 (1997).CAS 
    Article 

    Google Scholar 
    20.Bereczkei, T. & Csanaky, A. Stressful family environment, mortality, and child socialisation: Life-history strategies among adolescents and adults from unfavourable social circumstances. Int. J. Behav. Dev. 25, 501–508. https://doi.org/10.1080/01650250042000573 (2001).Article 

    Google Scholar 
    21.Nettle, D. Dying young and living fast: Variation in life history across English neighborhoods. Behav. Ecol. 21, 387–395. https://doi.org/10.1093/beheco/arp202 (2010).Article 

    Google Scholar 
    22.Griskevicius, V., Delton, A. W., Robertson, T. E. & Tybur, J. M. Environmental contingency in life history strategies: The influence of mortality and socioeconomic status on reproductive timing. J. Pers. Soc. Psychol. 100, 241–254. https://doi.org/10.1037/a0021082 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Sheppard, P., Pearce, M. S. & Sear, R. How does childhood socioeconomic hardship affect reproductive strategy? Pathways of development. Am. J. Hum. Biol. 28, 356–363. https://doi.org/10.1002/ajhb.22793 (2016).Article 
    PubMed 

    Google Scholar 
    24.Belsky, J., Steinberg, L. & Draper, P. Childhood experience, interpersonal development, and reproductive strategy: An evolutionary theory of socialization. Child Dev. 62, 647–670. https://doi.org/10.1111/j.1467-8624.1991.tb01558.x (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    25.Rickard, I. J., Frankenhuis, W. E. & Nettle, D. Why are childhood family factors associated with timing of maturation? A role for internal prediction. Perspect. Psychol. Sci. 9, 3–15. https://doi.org/10.1177/1745691613513467 (2014).Article 
    PubMed 

    Google Scholar 
    26.Chua, K. J., Lukaszewski, A. W., Grant, D. M. & Sng, O. Human life history strategies: Calibrated to external or internal cues?. Evol. Psychol. 15, 1474704916677342. https://doi.org/10.1177/1474704916677342 (2017).Article 
    PubMed 

    Google Scholar 
    27.Adamo, S. A. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim. Behav. 57, 117–124. https://doi.org/10.1006/anbe.1998.0999 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    28.Giehr, J., Grasse, A. V., Cremer, S., Heinze, J. & Schrempf, A. Ant queens increase their reproductive efforts after pathogen infection. R. Soc. Open Sci. 4, 170547. https://doi.org/10.1098/rsos.170547 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Sorci, G., Clobert, J. & Michalakis, Y. Cost of reproduction and cost of parasitism in the common lizard, Lacerta vivipara. Oikos 76, 121–130. https://doi.org/10.2307/3545754 (1996).Article 

    Google Scholar 
    30.Oppliger, A., Christe, P. & Richner, H. Clutch size and malarial parasites in female great tits. Behav. Ecol. 8, 148–152. https://doi.org/10.1093/beheco/8.2.148 (1997).Article 

    Google Scholar 
    31.Sanz, J. J., Arriero, E., Moreno, J. & Merino, S. Interactions between hemoparasite status and female age in the primary reproductive output of pied flycatchers. Oecologia 126, 339–344. https://doi.org/10.1007/s004420000530 (2001).ADS 
    Article 
    PubMed 

    Google Scholar 
    32.Westendorp, R. G. J. & Kirkwood, T. B. L. Human longevity at the cost of reproductive success. Nature 396, 743–746. https://doi.org/10.1038/25519 (1998).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Thomas, F., Teriokhin, A. T., Renaud, F., De Meeus, T. & Guégan, J. F. Human longevity at the cost of reproductive success: Evidence from global data. J. Evol. Biol. 13, 409–414. https://doi.org/10.1046/j.1420-9101.2000.00190.x (2000).Article 

    Google Scholar 
    34.Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The heritability of life history strategy: The K-factor, covitality, and personality. Soc. Biol. 51, 121–143 (2004).PubMed 

    Google Scholar 
    35.Figueredo, A. J., Vasquez, G., Brumbach, B. H. & Schneider, S. M. R. The K-factor, covitality, and personality—A psychometric test of life history theory. Hum. Nat. 18, 47–73. https://doi.org/10.1007/bf02820846 (2007).Article 
    PubMed 

    Google Scholar 
    36.Hill, S. E., Boehm, G. W. & Prokosch, M. L. Vulnerability to disease as a predictor of faster life history strategies. Adapt. Hum. Behav. Physiol. 2, 116–133. https://doi.org/10.1007/s40750-015-0040-6 (2016).Article 

    Google Scholar 
    37.Uggla, C. & Mace, R. Local ecology influences reproductive timing in Northern Ireland independently of individual wealth. Behav. Ecol. 27, 158–165. https://doi.org/10.1093/beheco/arv133 (2016).Article 

    Google Scholar 
    38.Waynforth, D. Life-history theory, chronic childhood illness and the timing of first reproduction in a British birth cohort. Proc. R. Soc. B 279, 2998–3002. https://doi.org/10.1098/rspb.2012.0220 (2012).Article 
    PubMed 

    Google Scholar 
    39.Mace, R. Evolutionary ecology of human life history. Anim. Behav. 59, 1–10. https://doi.org/10.1006/anbe.1999.1287 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Low, B. S., Simon, C. P. & Anderson, K. G. An evolutionary ecological perspective on demographic transitions: Modeling multiple currencies. Am. J. Hum. Biol. 14, 149–167. https://doi.org/10.1002/ajhb.10043 (2002).Article 
    PubMed 

    Google Scholar 
    41.Galor, O. The demographic transition: Causes and consequences. Cliometrica 6, 1–28. https://doi.org/10.1007/s11698-011-0062-7 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Protsiv, M., Ley, C., Lankester, J., Hastie, T. & Parsonnet, J. Decreasing human body temperature in the United States since the industrial revolution. Elife 9, e49555. https://doi.org/10.7554/eLife.49555 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    43.Novotná, M. et al. Toxoplasma and reaction time: Role of toxoplasmosis in the origin, preservation and geographical distribution of Rh blood group polymorphism. Parasitology 135, 1253–1261. https://doi.org/10.1017/s003118200800485x (2008).Article 
    PubMed 

    Google Scholar 
    44.Flegr, J., Novotná, M., Lindová, J. & Havlíček, J. Neurophysiological effect of the Rh factor. Protective role of the RhD molecule against Toxoplasma-induced impairment of reaction times in women. Neuroendocrinol. Lett. 29, 475–481 (2008).PubMed 

    Google Scholar 
    45.Flegr, J., Preiss, M. & Klose, J. Toxoplasmosis-associated difference in intelligence and personality in men depends on their Rhesus blood group but not ABO blood group. PLoS One 8, e61272. https://doi.org/10.1371/journal.pone.0061272 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Flegr, J., Šebánková, B., Příplatová, L., Chvátalová, V. & Kaňková, Š. Lower performance of Toxoplasma-infected, Rh-negative subjects in the weight holding and hand-grip tests. PLoS One 13, e0200346. https://doi.org/10.1371/journal.pone.0200346 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Flegr, J., Klose, J., Novotná, M., Berenreitterová, M. & Havlíček, J. Increased incidence of traffic accidents in Toxoplasma-infected military drivers and protective effect RhD molecule revealed by a large-scale prospective cohort study. BMC Infect. Dis. https://doi.org/10.1186/1471-2334-9-72 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Flegr, J., Geryk, J., Volný, J., Klose, J. & Černochová, D. Rhesus factor modulation of effects of smoking and age on psychomotor performance, intelligence, personality profile, and health in Czech soldiers. PLoS One 7, e4947810. https://doi.org/10.1371/journal.pone.0049478 (2012).CAS 
    Article 

    Google Scholar 
    49.Flegr, J., Hoffmann, R. & Dammann, M. Worse health status and higher incidence of health disorders in Rhesus negative subjects. PLoS One 10, e0141362. https://doi.org/10.1371/journal.pone.0141362 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Flegr, J. Heterozygote advantage probably maintains Rhesus factor blood group polymorphism: Ecological regression study. PLoS One 11, e0147955. https://doi.org/10.1371/journal.pone.0147955 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    51.Flegr, J., Kuba, R. & Kopecký, R. Rhesus-minus phenotype as a predictor of sexual desire and behavior, wellbeing, mental health, and fecundity. PLoS One 15, e0236134. https://doi.org/10.1371/journal.pone.0236134 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Kaňková, Š., Flegr, J., Toman, J. & Calda, P. Maternal RhD heterozygous genotype is associated with male biased secondary sex ratio. Early Hum. Dev. 140, 104864. https://doi.org/10.1016/j.earlhumdev.2019.104864 (2020).Article 
    PubMed 

    Google Scholar 
    53.Flegr, J. & Dama, M. Does the prevalence of latent toxoplasmosis and frequency of Rhesus-negative subjects correlate with the nationwide rate of traffic accidents?. Folia Parasitol. 61, 485–494 (2014).CAS 
    Article 

    Google Scholar 
    54.Halmin, M. et al. Length of storage of red blood cells and patient survival after blood transfusion: A binational cohort study. Ann. Intern. Med. 166, 248–256. https://doi.org/10.7326/m16-1415 (2017).Article 
    PubMed 

    Google Scholar 
    55.Jacobsen, B. K., Oda, K., Knutsen, S. F. & Fraser, G. E. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: The Adventist Health Study, 1976–88. Int. J. Epidemiol. 38, 245–252. https://doi.org/10.1093/ije/dyn251 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Lakshman, R. et al. Early age at menarche associated with cardiovascular disease and mortality. J. Clin. Endocrinol. Metab. 94, 4953–4960. https://doi.org/10.1210/jc.2009-1789 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Canoy, D. et al. Age at menarche and risks of coronary heart and other vascular diseases in a large UK cohort. Circulation 131, 237–244. https://doi.org/10.1161/circulationaha.114.010070 (2015).Article 
    PubMed 

    Google Scholar 
    58.Macsali, F. et al. Early age at menarche, lung function, and adult asthma. Am. J. Respir. Crit. Care Med. 183, 8–14. https://doi.org/10.1164/rccm.200912-1886OC (2011).Article 
    PubMed 

    Google Scholar 
    59.Stöckl, D. et al. Age at menarche is associated with prediabetes and diabetes in women (aged 32–81 years) from the general population: The KORA F4 Study. Diabetologia 55, 681–688. https://doi.org/10.1007/s00125-011-2410-3 (2012).Article 
    PubMed 

    Google Scholar 
    60.Brinton, L. A., Schairer, C., Hoover, R. N. & Fraumeni, J. F. Menstrual factors and risk of breast cancer. Cancer Investig. 6, 245–254. https://doi.org/10.3109/07357908809080645 (1988).CAS 
    Article 

    Google Scholar 
    61.Kvale, G. & Heuch, I. Menstrual factors and breast cancer risk. Cancer 62, 1625–1631. https://doi.org/10.1002/1097-0142(19881015)62:8%3c1625::aid-cncr2820620828%3e3.0.co;2-k (1988).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Adair, L. S. Size at birth predicts age at menarche. Pediatrics 107, e59. https://doi.org/10.1542/peds.107.4.e59 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    63.Romundstad, P. R. et al. Birth size in relation to age at menarche and adolescent body size: Implications for breast cancer risk. Int. J. Cancer 105, 400–403. https://doi.org/10.1002/ijc.11103 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    64.Sloboda, D. M., Hart, R., Doherty, D. A., Pennell, C. E. & Hickey, M. Age at menarche: Influences of prenatal and postnatal growth. J. Clin. Endocrinol. Metab. 92, 46–50. https://doi.org/10.1210/jc.2006-1378 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    65.Rich-Edwards, J. W. et al. Birth weight and risk of cardiovascular disease in a cohort of women followed up since 1976. BMJ 315, 396–400. https://doi.org/10.1136/bmj.315.7105.396 (1997).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Andersen, A. M. N. & Osler, M. Birth dimensions, parental mortality, and mortality in early adult age: A cohort study of Danish men born in 1953. Int. J. Epidemiol. 33, 92–99. https://doi.org/10.1093/ije/dyg195 (2004).Article 
    PubMed 

    Google Scholar 
    67.Gluckman, P. D. & Hanson, M. A. Evolution, development and timing of puberty. Trends Endocrinol. Metab. 17, 7–12. https://doi.org/10.1016/j.tem.2005.11.006 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Kulin, H. E., Bwibo, N., Mutie, D. & Santner, S. J. The effect of chronic childhood malnutrition on pubertal growth and development. Am. J. Clin. Nutr. 36, 527–536. https://doi.org/10.1093/ajcn/36.3.527 (1982).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Khan, A. D., Schroeder, D. G., Martorell, R., Haas, J. D. & Rivera, J. Early childhood determinants of age at menarche in rural Guatemala. Am. J. Hum. Biol. 8, 717–723. https://doi.org/10.1002/(sici)1520-6300(1996)8:6%3c717::aid-ajhb3%3e3.0.co;2-q (1996).Article 
    PubMed 

    Google Scholar 
    70.Leenstra, T. et al. Prevalence and severity of malnutrition and age at menarche; cross-sectional studies in adolescent schoolgirls in western Kenya. Eur. J. Clin. Nutr. 59, 41–48. https://doi.org/10.1038/sj.ejcn.1602031 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    71.Walker, R. et al. Growth rates and life histories in twenty-two small-scale societies. Am. J. Hum. Biol. 18, 295–311. https://doi.org/10.1002/ajhb.20510 (2006).Article 
    PubMed 

    Google Scholar 
    72.Idler, E. L. & Kasl, S. V. Self-ratings of health: Do they also predict change in functional ability. J. Gerontol. B 50, S344–S353. https://doi.org/10.1093/geronb/50B.6.S344 (1995).CAS 
    Article 

    Google Scholar 
    73.O’Sullivan, L. F. & Byers, E. S. College students’ incorporation of initiator and restrictor roles in sexual dating interactions. J. Sex Res. 29, 435–446. https://doi.org/10.1080/00224499209551658 (1992).Article 

    Google Scholar 
    74.Smith, C. A. Factors associated with early sexual activity among urban adolescents. Soc. Work 42, 334–346. https://doi.org/10.1093/sw/42.4.334 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    75.Mercer, C. H. et al. Changes in sexual attitudes and lifestyles in Britain through the life course and over time: findings from the National Surveys of Sexual Attitudes and Lifestyles (Natsal). Lancet 382, 1781–1794. https://doi.org/10.1016/s0140-6736(13)62035-8 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Kalick, S. M., Zebrowitz, L. A., Langlois, J. H. & Johnson, R. M. Does human facial attractiveness honestly advertise health? Longitudinal data on an evolutionary question. Psychol. Sci. 9, 8–13. https://doi.org/10.1111/1467-9280.00002 (1998).Article 

    Google Scholar 
    77.Jones, B. C. et al. Facial symmetry and judgements of apparent health: Support for a “good genes” explanation of the attractiveness-symmetry relationship. Evol. Hum. Behav. 22, 417–429. https://doi.org/10.1016/s1090-5138(01)00083-6 (2001).Article 

    Google Scholar 
    78.Woodley of Menie, M. A. et al. Slow and steady wins the race: K positively predicts fertility in the USA and Sweden. Evol. Psychol. Sci. 3, 109–117. https://doi.org/10.1007/s40806-016-0077-1 (2017).79.Kington, R., Lillard, L. & Rogowski, J. Reproductive history, socioeconomic status, and self-reported health status of women aged 50 years or older. Am. J. Public Health 87, 33–37. https://doi.org/10.2105/ajph.87.1.33 (1997).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    80.Doblhammer, G. & Oeppen, J. Reproduction and longevity among the British peerage: The effect of frailty and health selection. Proc. R. Soc. B 270, 1541–1547. https://doi.org/10.1098/rspb.2003.2400 (2003).Article 
    PubMed 

    Google Scholar 
    81.Lawlor, D. A. et al. Is the association between parity and coronary heart disease due to biological effects of pregnancy or adverse lifestyle risk factors associated with child-rearing? Findings from the British women’s heart and health study and the British regional heart study. Circulation 107, 1260–1264. https://doi.org/10.1161/01.cir.0000053441.43495.1a (2003).Article 
    PubMed 

    Google Scholar 
    82.Parikh, N. I. et al. Parity and risk of later-life maternal cardiovascular disease. Am. Heart J. 159, 215–221. https://doi.org/10.1016/j.ahj.2009.11.017 (2010).Article 
    PubMed 

    Google Scholar 
    83.Ryan, C. P. et al. Reproduction predicts shorter telomeres and epigenetic age acceleration among young adult women. Sci. Rep. 8, 11100. https://doi.org/10.1038/s41598-018-29486-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    84.Kaňková, Š., Šulc, J. & Flegr, J. Increased pregnancy weight gain in women with latent toxoplasmosis and RhD-positivity protection against this effect. Parasitology 137, 1773–1779. https://doi.org/10.1017/s0031182010000661 (2010).Article 
    PubMed 

    Google Scholar 
    85.Case, A., Fertig, A. & Paxson, C. The lasting impact of childhood health and circumstance. J. Health Econ. 24, 365–389. https://doi.org/10.1016/j.jhealeco.2004.09.008 (2005).Article 
    PubMed 

    Google Scholar 
    86.Kuh, D. J. L. & Wadsworth, M. E. J. Physical health-status at 36 years in a British national birth cohort. Soc. Sci. Med. 37, 905–916. https://doi.org/10.1016/0277-9536(93)90145-t (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    87.Eide, E. R. & Showalter, M. H. Estimating the relation between health and education: What do we know and what do we need to know?. Econ. Educ. Rev. 30, 778–791. https://doi.org/10.1016/j.econedurev.2011.03.009 (2011).Article 

    Google Scholar 
    88.Behrman, J. R. & Rosenzweig, M. R. Returns to birthweight. Rev. Econ. Stat. 86, 586–601. https://doi.org/10.1162/003465304323031139 (2004).Article 

    Google Scholar 
    89.Black, S. E., Devereux, P. J. & Salvanes, K. G. From the cradle to the labor market? The effect of birth weight on adult outcomes. Q. J. Econ. 122, 409–439. https://doi.org/10.1162/qjec.122.1.409 (2007).Article 

    Google Scholar 
    90.Almond, D. Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the post-1940 US population. J. Polit. Econ. 114, 672–712. https://doi.org/10.1086/507154 (2006).Article 

    Google Scholar 
    91.Almond, D., Edlund, L. & Palme, M. Chernobyl’s subclinical legacy: Prenatal exposure to radioactive fallout and school outcomes in Sweden. Q. J. Econ. 124, 1729–1772. https://doi.org/10.1162/qjec.2009.124.4.1729 (2009).Article 
    MATH 

    Google Scholar 
    92.Nilsson, J. P. The Long-Term Effects of Early Childhood Lead Exposure: Evidence from the Phase-Out of Leaded Gasoline. (Uppsala University and Institute for Labor Market Policy Evaluation (IFAU), 2009).93.Bleakley, H. Disease and development: Evidence from hookworm eradication in the American South. Q. J. Econ. 122, 73–117. https://doi.org/10.1162/qjec.121.1.73 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    94.Rees, D. I. & Sabia, J. J. The effect of migraine headache on educational attainment. J. Hum. Resour. 46, 317–332 (2011).
    Google Scholar 
    95.Kessler, R. C., Foster, C. L., Saunders, W. B. & Stang, P. E. Social consequences of psychiatric disorders, I. Educational attainment. Am. J. Psychiatry 152, 1026–1032 (1995).CAS 
    Article 

    Google Scholar 
    96.Miech, R. A., Caspi, A., Moffitt, T. E., Wright, B. R. E. & Silva, P. A. Low socioeconomic status and mental disorders: A longitudinal study of selection and causation during young adulthood. Am. J. Sociol. 104, 1096–1131. https://doi.org/10.1086/210137 (1999).Article 

    Google Scholar 
    97.Flegr, J. & Horáček, J. Negative effects of latent toxoplasmosis on mental health. Front. Psychiatry. https://doi.org/10.3389/fpsyt.2019.01012 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    98.Kopecký, R., Boschetti, S. & Flegr, J. Effect of being religious on wellbeing in a predominantly atheist country: Explorative study on wellbeing, fitness, physical and mental health. PsyArXiv https://doi.org/10.31234/osf.io/3kr6n (2019).99.Flegr, J. & Horáček, J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur. Psychiatry. 40, 82–87. https://doi.org/10.1016/j.eurpsy.2016.09.001 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    100.Cohen, J. Statistical Power Analysis for the Behavioral Sciences. Revised edn. (Academic Press, 1977).101.Armelagos, G. J., Goodman, A. H. & Jacobs, K. H. The origins of agriculture: Population growth during a period of declining health. Popul. Environ. 13, 9–22. https://doi.org/10.1007/bf01256568 (1991).Article 

    Google Scholar 
    102.Lallo, J. W., Armelagos, G. J. & Mensforth, R. P. The role of diet, disease, and physiology in the origin of porotic hyperostosis. Hum. Biol. 49, 471–483 (1977).CAS 
    PubMed 

    Google Scholar 
    103.Goodman, A. H., Armelagos, G. J. & Rose, J. C. Enamel hypoplasias as indicators of stress in three prehistoric populations from Illinois. Hum. Biol. 52, 515–528 (1980).CAS 
    PubMed 

    Google Scholar 
    104.Angel, J. L. Porotic hyperostosis, anemias, malarias, and marshes in the prehistoric Eastern Mediterranean. Science 153, 760–763 (1966).ADS 
    CAS 
    Article 

    Google Scholar 
    105.Eaton, S. B., Eaton, S. B. & Konner, M. J. Paleolithic nutrition revisited: A twelve-year retrospective on its nature and implications. Eur. J. Clin. Nutr. 51, 207–216. https://doi.org/10.1038/sj.ejcn.1600389 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    106.Flegr, J. & Kuba, R. The relation of Toxoplasma infection and sexual attraction to fear, danger, pain, and submissiveness. Evol. Psychol. https://doi.org/10.1177/1474704916659746 (2016).Article 

    Google Scholar 
    107.Penke, L. & Asendorpf, J. B. Beyond global sociosexual orientations: A more differentiated look at sociosexuality and its effects on courtship and romantic relationships. J. Pers. Soc. Psychol. 95, 1113–1135. https://doi.org/10.1037/0022-3514.95.5.1113 (2008).Article 
    PubMed 

    Google Scholar 
    108.Sýkorová, K. & Flegr, J. Dataset to the study ‘Faster life history strategy manifests itself by lower age at menarche, higher sexual desire, and earlier reproduction in people with worse health’. igshare https://doi.org/10.6084/m9.figshare.12100623.v1 (2020).109.R Core Team. R: A language and environment for statistical computing. http://www.R-project.org/ . Accessed September 2018. (2019).110.Rosseel, Y. lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).Article 

    Google Scholar 
    111.Epskamp, S. semPlot: Unified visualizations of structural equation models. Struct. Equ. Model. 22, 474–483. https://doi.org/10.1080/10705511.2014.937847 (2015).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Calcification in free-living coralline algae is strongly influenced by morphology: Implications for susceptibility to ocean acidification

    1.Foster, M. S. Rhodoliths between rocks and soft places. J. Phycol. 37, 659–667. https://doi.org/10.1046/j.1529-8817.2001.00195.x (2001).Article 

    Google Scholar 
    2.Riosmena-Rodríguez, R., Nelson, W. & Aguirre, J. Rhodolith/mäerl beds: A global perspective (Springer, 2017). https://doi.org/10.1007/978-3-319-29315-8.Book 

    Google Scholar 
    3.Nelson, W. A. Calcified macroalgae—critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60, 787–801. https://doi.org/10.1071/MF08335 (2009).CAS 
    Article 

    Google Scholar 
    4.Amado-Filho, G. M. et al. Rhodolith beds are major CaCO3 bio-factories in the tropical South West Atlantic. PLoS ONE 7, e35171. https://doi.org/10.1371/journal.pone.0035171 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    5.Smith, S. V. & Mackenzie, F. T. The role of CaCO3 reactions in the contemporary oceanic CO2 cycle. Aquat. Geochem. 22, 153–175. https://doi.org/10.1007/s10498-015-9282-y (2015).Article 

    Google Scholar 
    6.Amado-Filho, G.M., Bahia, R.G., Pereira-Filho, G.H. & Longo, L.L. South Atlantic rhodolith beds: Latitudinal distribution, species composition, structure and ecosystem functions, threats and conservation status. In Rhodolith/mäerl beds: A global perspective (eds, Riosmena-Rodríguez, R. et al.), Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_12 (2017).7.Carvalho, V. F. et al. Environmental drivers of rhodolith beds and epiphytes community along the South Western Atlantic coast. Mar. Environ. Res. 154, 104827. https://doi.org/10.1016/j.marenvres.2019.104827 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Legrand, E. et al. Species interactions can shift the response of a maerl bed community to ocean acidification and warming. Biogeosciences 14, 5359–5376. https://doi.org/10.5194/bg-14-5359-2017 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Legrand, E. et al. Grazers increase the sensitivity of coralline algae to ocean acidification and warming. J. Sea Res. 148–149, 1–7. https://doi.org/10.1016/j.seares.2019.03.001 (2019).Article 

    Google Scholar 
    10.Legrand, E., Martin, S., Leroux, C. & Riera, P. Using stable isotope analysis to determine the effects of ocean acidification and warming on trophic interactions in a maerl bed community. Mar. Ecol. https://doi.org/10.1111/maec.12612 (2020).Article 

    Google Scholar 
    11.Burdett, H. L., Perna, G., McKay, L., Broomhead, G. & Kamenos, N. A. Community-level sensitivity of a calcifying ecosystem to acute in situ CO2 enrichment. Mar. Ecol. Prog. Ser. 587, 73–80. https://doi.org/10.3354/meps12421 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Sordo, L., Santos, R., Barrote, I. & Silva, J. High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecol. Evol. 8, 4781–4792. https://doi.org/10.1002/ece3.4020 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Sordo, L., Santos, R., Barrote, I. & Silva, J. Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecol. Evol. 9, 11000–11009. https://doi.org/10.1002/ece3.5560 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Qui-Minet, Z. M. et al. Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecol. Evol. 9, 13787–13807. https://doi.org/10.1002/ece3.5802 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Schubert, N. et al. Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients. Sci. Total Environ. 676, 455–468. https://doi.org/10.1016/j.scitotenv.2019.04.280 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    16.Martin, S. & Hall-Spencer, J.M. Effects of ocean warming and acidification on rhodolith/mäerl beds. In Rhodolith/mäerl beds: A global perspective (eds. Riosmena-Rodríguez, R. et al.). Switzerland: Springer International Publishing; https://doi.org/10.1007/978-3-319-29315-8_3 (2017).17.Roleda, M. Y., Boyd, P. W. & Hurd, C. L. Before ocean acidification: calcifier chemistry lessons. J. Phycol. 48(4), 840–843. https://doi.org/10.1111/j.1529-8817.2012.01195.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    18.Dupont, S. & Pörtner, H. O. A snapshot of ocean acidification research. Mar. Biol. 160, 1765–1771. https://doi.org/10.1007/s00227-013-2282-9 (2013).CAS 
    Article 

    Google Scholar 
    19.Cyronak, T., Schulz, K. G. & Jokiel, P. L. The Omega myth: what really drives lower calcification rates in an acidifying ocean. ICES J. Mar. Sci. 73(3), 558–562. https://doi.org/10.1093/icesjms/fsv075 (2016).Article 

    Google Scholar 
    20.Falkenberg, L. J., Dupont, S. & Bellerby, R. G. Approaches to reconsider literature on physiological effects of environmental change: examples from ocean acidification research. Front. Mar. Sci. 5, 453. https://doi.org/10.3389/fmars.2018.00453 (2018).Article 

    Google Scholar 
    21.Cornwall, C. E., Comeau, S. & McCulloch, M. T. Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biol. 23, 4245–4256. https://doi.org/10.1111/gcb.13673 (2017).ADS 
    Article 

    Google Scholar 
    22.Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. Roy. Soc. B 285(1884), 20181168. https://doi.org/10.1098/rspb.2018.1168 (2018).CAS 
    Article 

    Google Scholar 
    23.Comeau, S., Cornwall, C. E., De Carlo, T. M., Krieger, E. & McCulloch, M. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Global Change Biol. 24, 4857–4868. https://doi.org/10.1111/gcb.14379 (2018).ADS 
    Article 

    Google Scholar 
    24.Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-49044-w (2019).Article 

    Google Scholar 
    25.Comeau, S. et al. Resistance to ocean acidification in coral reef taxa is not gained by acclimatization. Nat. Clim. Chang. 9(6), 477–483. https://doi.org/10.1038/s41558-019-0486-9 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    26.Liu, Y. W., Sutton, J. N., Ries, J. B. & Eagle, R. A. Regulation of calcification site pH is a polyphyletic but not always governing response to ocean acidification. Sci. Adv. 6(5), aax1314. https://doi.org/10.1126/sciadv.aax1314 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    27.Donald, H. K., Ries, J. B., Stewart, J. A., Fowell, S. E. & Foster, G. L. Boron isotope sensitivity to seawater pH change in a species of Neogoniolithon coralline red alga. Geochim. Cosmochim. Acta 217, 240–253. https://doi.org/10.1016/j.gca.2017.08.021 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    28.Hofmann, L. C., Schoenrock, K. M. & de Beer, D. Arctic coralline algae elevate surface pH and carbonate in the dark. Front. Plant Sci. 9, 1416. https://doi.org/10.3389/fpls.2018.01416 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Hurd, C. L. et al. Metabolically induced pH fluctuations by some coastal calcifiers exceed projected 22nd century ocean acidification: a mechanism for differential susceptibility. Global Change Biol. 17, 3254–3262. https://doi.org/10.1111/j.1365-2486.2011.02473.x (2011).ADS 
    Article 

    Google Scholar 
    30.Cornwall, C. E. et al. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS ONE 9, e97235. https://doi.org/10.1371/journal.pone.0097235 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    31.Hofmann, L. C., Koch, M. & de Beer, D. Biotic control of surface pH and evidence of light-induced H+ pumping and Ca2+-H+ exchange in a tropical crustose coralline alga. PLoS ONE 1, e0159057. https://doi.org/10.1371/journal.pone.0159057 (2016).CAS 
    Article 

    Google Scholar 
    32.McNicholl, C., Koch, M. S. & Hofmann, L. C. Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: A proposed mechanism to sustain calcification under ocean acidification. J. Exp. Mar. Biol. Ecol. 521, 151208. https://doi.org/10.1016/j.jembe.2019.151208 (2019).Article 

    Google Scholar 
    33.Hurd, C. L. & Pilditch, C. A. Flow-induced morphological variations affect diffusion boundary-layer thickness of Macrocystis pyrifera (Heterokontophyta, Laminariales). J. Phycol. 47, 341–351. https://doi.org/10.1111/j.1529-8817.2011.00958.x (2011).Article 
    PubMed 

    Google Scholar 
    34.Foster, M.S., Amado-Filho, G.M., Kamenos, N.A., Riosmena-Rodríguez, R. & Steller D.L. Rhodoliths and rhodolith beds. In Research and Discoveries: The Revolution of Science Through SCUBA (eds, Lang, M.A. et al.). Washington, D.C, USA: Smithsonian Institution Scholarly Press (2013).35.Melbourne, L. A., Denny, M. W., Harniman, R. L., Rayfield, E. J. & Schmidt, D. N. The importance of wave exposure on the structural integrity of rhodoliths. J. Exp. Mar. Biol. Ecol. 503, 109–119. https://doi.org/10.1016/j.jembe.2017.11.007 (2018).Article 

    Google Scholar 
    36.Farias, J. N., Riosmena-Rodríguez, R., Bouzon, Z., Oliveira, E. C. & Horta, P. A. Lithothamnion superpositum (Corallinales; Rhodophyta): First description for the Western Atlantic or rediscovery of a species?. Phycol. Res. 58, 210–216. https://doi.org/10.1111/j.1440-1835.2010.00581.x (2010).Article 

    Google Scholar 
    37.Vieira-Pinto, T. et al. Lithophyllum species from Brazilian coast: range extension of Lithophyllum margaritae and description of Lithophyllum atlanticum sp. nov. (Corallineales, Corallinophycidae, Rhodophyta). Phytotaxa 190, 355–369. https://doi.org/10.11646/phytotaxa.190.1.21 (2014).Article 

    Google Scholar 
    38.Sissini, M. N. et al. Mesophyllum erubescens (Corallinales, Rhodophyta)-so many species in one epithet. Phytotaxa 190, 299–319. https://doi.org/10.11646/phytotaxa.190.1.18 (2014).Article 

    Google Scholar 
    39.de Beer, D. & Larkum, A. Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant Cell Environ. 24, 1209–1217. https://doi.org/10.1046/j.1365-3040.2001.00772.x (2001).Article 

    Google Scholar 
    40.Hurd, C. L. Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. J. Phycol. 51, 599–605. https://doi.org/10.1111/jpy.12307 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Nash, M. C., Diaz-Pulido, G., Harvey, A. S. & Adey, W. Coralline algal calcification: A morphological and process-based understanding. PLoS ONE 14, e0221396. https://doi.org/10.1371/journal.pone.0221396 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    42.Burdett, H. L., Hennige, S. J., Francis, F. T. Y. & Kamenos, N. A. The photosynthetic characteristics of red coralline algae, determined using pulse amplitude modulation (PAM) fluorometry. Bot. Mar. 5, 499–509. https://doi.org/10.1515/bot-2012-0135 (2012).CAS 
    Article 

    Google Scholar 
    43.Noisette, F., Egilsdottir, H., Davoult, D. & Martin, S. Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. J. Exp. Mar. Biol. Ecol. 448, 179–187. https://doi.org/10.1016/j.jembe.2013.07.006 (2013).CAS 
    Article 

    Google Scholar 
    44.Martin, S., Cohu, S., Vignot, C., Zimmerman, G. & Gattuso, J. P. One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecol. Evol. 3(3), 676–693. https://doi.org/10.1002/ece3.475 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    45.Johnson, M. D., Moriarty, V. W. & Carpenter, R. C. Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS ONE 9(2), e87678. https://doi.org/10.1371/journal.pone.0087678 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    46.Cornwall, C. E. et al. A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nat. Clim. Chang. 10, 143–146. https://doi.org/10.1038/s41558-019-0681-8 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Cornwall, C. E. et al. Diurnal fluctuations in seawater pH influence the response of a calcifying macroalga to ocean acidification. Proc. Roy. Soc. London Series B 280, 20132201. https://doi.org/10.1098/rspb.2013.2201 (2013).CAS 
    Article 

    Google Scholar 
    48.Boyd, P. W. et al. Biological responses to environmental heterogeneity under future ocean conditions. Global Change Biol. 22(8), 2633–2650. https://doi.org/10.1111/gcb.13287 (2016).ADS 
    Article 

    Google Scholar 
    49.Noisette, F. & Hurd, C. Abiotic and biotic interactions in the diffusive boundary layer of kelp blades create a potential refuge from ocean acidification. Funct. Ecol. 32(5), 1329–1342. https://doi.org/10.1111/1365-2435.13067 (2018).Article 

    Google Scholar 
    50.Johnson, M. D. et al. pH variability exacerbates effects of ocean acidification on a Caribbean crustose coralline alga. Front. Mar. Sci. 6, 150. https://doi.org/10.3389/fmars.2019.00150 (2019).Article 

    Google Scholar 
    51.Borowitzka, M. A. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A foliacea. Mar. Biol. 62, 17–23. https://doi.org/10.1007/BF00396947 (1981).CAS 
    Article 

    Google Scholar 
    52.Chisholm, J. R. Calcification by crustose coralline algae on the northern Great Barrier Reef Australia. Limnol. Oceanogr. 45(7), 1476–1484. https://doi.org/10.4319/lo.2000.45.7.1476 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    53.Martin, S., Castets, M.-D. & Clavier, J. Primary production, respiration and calcification of the temperate free-living coralline alga Lithothamnion corallioides. Aquat. Bot. 85, 121–128. https://doi.org/10.1016/j.aquabot.2006.02.005 (2006).CAS 
    Article 

    Google Scholar 
    54.McNicholl, C. et al. Ocean acidification effects on calcification and dissolution in tropical reef macroalgae. Coral Reefs 39, 1635–1647. https://doi.org/10.1007/s00338-020-01991-x (2020).Article 

    Google Scholar 
    55.Kamenos, N. A. et al. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biol. 19, 3621–3628. https://doi.org/10.1111/gcb.12351 (2013).ADS 
    Article 

    Google Scholar 
    56.Vogel, N. et al. Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnol. Oceanogr. 60, 263–275. https://doi.org/10.1002/lno.10021 (2015).ADS 
    Article 

    Google Scholar 
    57.Vogel, N., Meyer, F. W., Wild, C. & Uthicke, S. Decreased light availability can amplify negative impacts of ocean acidification on calcifying coral reef organisms. Mar. Ecol. Prog. Ser. 521, 49–61. https://doi.org/10.3354/meps11088 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    58.McNicholl, C. & Koch, M. S. Irradiance, photosynthesis and elevated pCO2 effects on net calcification in tropical reef macroalgae. J. Exp. Mar. Biol. Ecol. 535, 151489. https://doi.org/10.1016/j.jembe.2020.151489 (2021).Article 

    Google Scholar 
    59.Schoenrock, K. M. et al. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). J. Phycol. 54, 690–702. https://doi.org/10.1111/jpy.12774 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    60.MAArE. Projeto de monitoramento ambiental da Reserva Biológica Marinha do Arvoredo e entorno. Florianópolis, Brazil: ICMBio/UFSC (2017).61.Kaandorp, J. A. & Kübler, J. E. The algorithmic beauty of seaweeds, sponges and corals (Springer, Heidelberg, 2001). https://doi.org/10.1007/978-3-662-04339-4.Book 
    MATH 

    Google Scholar 
    62.Leal, R. N., Bassi, D., Posenato, R. & Amado-Filho, G. M. Tomographic analysis for bioerosion signatures in shallow-water rhodoliths from the Abrolhos Bank Brazil. J. Coast. Res. 279, 306–309. https://doi.org/10.2112/11T-00006.1 (2012).Article 

    Google Scholar 
    63.Teichert, S. Hollow rhodoliths increase Svalbard’s shelf biodiversity. Sci. Rep. 4, 1–5. https://doi.org/10.1038/srep06972 (2014).CAS 
    Article 

    Google Scholar 
    64.Torrano-Silva, B. N., Ferreira, S. G. & Oliveira, M. C. Unveiling privacy: Advances in microtomography of coralline algae. Micron 72, 34–38. https://doi.org/10.1016/j.micron.2015.02.004 (2015).Article 
    PubMed 

    Google Scholar 
    65.Laforsch, C. et al. A precise and non-destructive method to calculate the surface area in living scleractinian corals using x-ray computed tomography and 3D modeling. Coral Reefs 27, 811–820. https://doi.org/10.1007/s00338-008-0405-4 (2008).ADS 
    Article 

    Google Scholar 
    66.Limaye, A. Drishti: a volume exploration and representation tool. In Developments in X-Ray Tomography VIII, San Diego, California, USA: SPIE Proc. 85060X; https://doi.org/10.1117/12.935640 (2012).67.Ahrens, J., Geveci, B. & Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook (eds CD Hansen, CR Johnson) Oxford, UK: Elsevier; https://doi.org/10.1016/B978-012387582-2/50038-1 (2005).68.Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    69.Rueden, C. T. et al. Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529. https://doi.org/10.1186/s12859-017-1934-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    70.Revsbech, N. P. An oxygen microsensor with a guard cathode. Limnol. Oceanogr. 34, 474–478. https://doi.org/10.4319/lo.1989.34.2.0474 (1989).ADS 
    CAS 
    Article 

    Google Scholar 
    71.de Beer, D. et al. A microsensor for carbonate ions suitable for microprofiling in freshwater and saline environments. Limnol. Oceanogr. Methods 6, 532–541. https://doi.org/10.4319/lom.2008.6.532 (2008).Article 

    Google Scholar 
    72.Jørgensen, B. B. & Revsbech, N. P. Diffusive boundary layers and the oxygen uptake of sediments and detritus 1. Limnol. Oceanogr. 30, 111–122. https://doi.org/10.4319/lo.1985.30.1.0111 (1985).ADS 
    Article 

    Google Scholar 
    73.Smith, S.V. & Kinsey, D.W. Calcification and organic carbon metabolism as indicated by carbon dioxide. In Coral Reefs: Research Methods. Monographs on Oceanographic Methodology (eds. Stoddart, D. & Johannes, R.). Paris: UNESCO (1978)74.Hansson, I. & Jagner, D. Evaluation of the accuracy of Gran plots by means of computer calculations: application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Anal. Chim. Acta 75, 363–373. https://doi.org/10.1016/S0003-2670(01)82503-4 (1973).Article 

    Google Scholar 
    75.Bradshaw, A. L., Brewer, P. G., Sharer, D. K. & Williams, R. T. Measurements of total carbon dioxide and alkalinity by potentiometric titration in the GEOSECS program. Earth Planet. Sci. Lett. 55, 99–115. https://doi.org/10.1016/0012-821X(81)90090-X (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Stimson, J. & Kinzie, R. A. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillophora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153, 63–74. https://doi.org/10.1016/S0022-0981(05)80006-1 (1991).Article 

    Google Scholar 
    77.Naumann, M. S., Niggl, W., Laforsch, C., Glaser, C. & Wild, C. Coral surface area quantification-evaluation of established techniques by comparison with computer tomography. Coral Reefs 28, 109–117. https://doi.org/10.1007/s00338-008-0459-3 (2009).ADS 
    Article 

    Google Scholar 
    78.Veal, C. J., Holmes, G., Nunez, M., Hoegh-Guldberg, O. & Osborn, J. A comparative study of methods for surface area and three-dimensional shape measurements of coral skeletons. Limnol. Oceanogr. Methods 8, 241–253. https://doi.org/10.4319/lom.2010.8.241 (2010).Article 

    Google Scholar  More

  • in

    Artificial neural network analysis of microbial diversity in the central and southern Adriatic Sea

    Physico-chemical conditionsSampling was performed at 6 stations representing the physical and chemical characteristics of the investigated area (Supplementary Table S1). Thermohaline properties were the result of horizontal advection of above-average salinities driven by a North Ionian cyclonic gyre controlled by the Adriatic Ionian Bimodal Oscillating System46. September and the whole summer of 2016 was characterized by extremely high temperatures, and precipitation in the climatologic expected range. A cyclone with a cold front followed by a strong Bora wind passed over the Adriatic a week before the cruise, in the period between the 16th and 20th of September 2016. Heat and mass exchange in the air-sea boundary layer were responsible for the characteristic vertical thermohaline profiles measured in late summer. Over the investigated area, the mixed layer depth located between 20 and 25 m was horizontally homogenous. The coldest water mass (temperature 12.94 °C, salinity 38.68) was located at the bottom of Jabuka Pit.Abundance of bacteria, autotrophic picoplankton and AAPBacterial abundances ranged between 0.05 and 0.46 × 106 cell mL−1 in all three areas, with a slightly higher average value in Jabuka Pit (0.31 × 106 cell mL−1). The bacterial abundances were the highest in the upper layers down to the 50 m deep layer and showed a decreasing trend towards the bottom (Supplementary Table S2). The portion of HNA bacteria ranged from 37.8 to 73.12% (on average 51.27%), with the prevalence of HNA over the LNA group below the epipelagic layer.Marine Synechococcus dominated the autotrophic picoplankton community with abundances ranging from 0.08 to 23.86 × 103 cell mL−1. The presence of Prochlorococcus cells was also detected in all samples in a range from a few cells to 1.33 × 103 cell mL−1. Picoeukaryotes also showed a similar range from a few cells to 0.83 × 103 cell mL−1. The highest abundances of picophytoplankton were measured in the upper 50 m, with the exception of the Palagruža Sill (PS) area, where an increase in abundance was observed at 100 m depth. Bacterial production ranged from 0.2 × 104 to 0.36 × 104 cell mL−1 h−1, with increased values in the shallow layers and a mostly uniform vertical distribution in the water column (Supplementary Table S2).AAP bacteria abundance ranged from 0.9 × 103 to 22.3 × 103 cell mL−1, thus constituting 0.42% to 6.83% of the bacteria. Their highest average contribution was observed in the South Adriatic Pit (4.11%), while on the vertical scale, their highest contribution was observed in the upper 20 m of the seawater (see Supplementary Table S2).Relationship between the picoplankton community and environmental parametersBased on biological characteristics (total prokaryotes, Synechococcus, Prochlorococcus, picoeukaryotes, heterotrophic nanoflagellates, aerobic anoxygenic phototrophs, high and low nucleic acid bacteria, bacterial production), we distinguished five picoplanktonic clusters (PIC-BMUs) and then searched for explanations of the observed patterns (Fig. 2A,B). The mean values of biological and physico-chemical parameters for each cluster are shown in Table 1.Figure 2(A) Bar plot representation of biotic (black) and abiotic (grey) parameters for neural gas best-matching units (picoplankton-PIC-BMUs) with relative frequency appearance for each neuron. TP-total prokaryotes, SYN-Synechococcus, PROCHL-Prochlorococcus, PE-picoeukaryotes, HNF-heterotrophic nanoflagellates, AAP-aerobic anoxygenic phototrophs, AAP%-portion of AAP, HNA% percentage of high nucleic acid content bacteria, LNA%-percentage of low nucleic acid content bacteria-LNA%, BP-bacterial production. (B) Water column distribution of Neural gas best-matching units (BMU, labels with numbers, and stained with a different colour for clearance, coloured non-labelled squares shows clarity) for measuring stations (SAP1-3, PS1-2 and JP1). The software MATLAB. version 7.10.0 (R2018). Natick, Massachusetts: The MathWorks Inc. (2018) (https://www.mathworks.com/) was used to generate the figure.Full size imageTable 1 Characteristics of biological (abundances of total prokaryotes-TP, Synechococcus-SYN, Prochlorococcus-PROCHL, picoeukaryotes-PE, heterotrophic nanoflagellates-HNF, aerobic anoxygenic phototrophs(AAP); contributions (%) of AAP, High nucleic acid content bacteria-HNA and Low nucleic acid content bacteria-LNA%; and bacterial production-BP) and environmental factors in the sampling terms assigned to the neural gas clusters.Full size tablePIC-BMU1 described a very rare pattern, found in only two samples from 10 m depth in Palaguža Sill and Jabuka Pit. They were characterised by the highest abundances of total prokaryotes with a dominance of HNA and elevated AAP abundance. These samples were unique in terms of hydrological parameters, as they represented an N-limited environment (TIN  More

  • in

    Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death

    Aivelo T, Norberg A (2018) Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J Anim Ecol 87:438–447PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP (2016) Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol Evol 31:689–699PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Amaral WZ, Lubach GR, Proctor A, Lyte M, Phillips GJ, Coe CL (2017) Social influences on Prevotella and the gut microbiome of young monkeys. Psychosom Med 79:888–897PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amato KR, Sanders GJ, Song SJ, Nute M, Metcalf JL, Thompson LR et al. (2019) Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 13:576–587CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
    Google Scholar 
    Björk JR, Dasari M, Grieneisen L, Archie EA (2019) Primate microbiomes over time: longitudinal answers to standing questions in microbiome research. Am J Primatol 81:e22970PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks JW (2016) Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet Pathol 53:929–940CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS et al. (2019) High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 47:e103CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA et al. (2016) Captivity humanizes the primate microbiome. Proc Natl Acad Sci U S A 113:10376–10381CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dill-McFarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G et al. (2014) Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol 23:4658–4669CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dubois S, Fenwick N, Ryan EA, Baker L, Baker SE, Beausoleil NJ et al. (2017) International consensus principles for ethical wildlife control. Conserv Biol J Soc Conserv Biol 31:753–760Article 

    Google Scholar 
    Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL et al. (2018) Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome 6:190PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ericsson AC, Johnson PJ, Lopes MA, Perry SC, Lanter HR (2016) A microbiological map of the healthy equine gastrointestinal tract. PLoS ONE 11:e0166523PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    García-Amado MA, Michelangeli F, Gueneau P, Perez ME, Domínguez-Bello MG (2007) Bacterial detoxification of saponins in the crop of the avian foregut fermenter Opisthocomus hoazin. J Anim Feed Sci 16:82–85Article 

    Google Scholar 
    Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K et al. (2016) Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 14:2142–2153CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J, Koppova I et al. (2015) Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24:2551–2565CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregorová S, Forejt J (2000) PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol 46:31–41
    Google Scholar 
    Gu S, Chen D, Zhang J-N, Lv X, Wang K, Duan L-P et al. (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8:e74957Heimesaat MM, Boelke S, Fischer A, Haag L-M, Loddenkemper C, Kühl AA et al. (2012) Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PloS ONE 7:e40758CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hird SM (2017) Evolutionary biology needs wild microbiomes. Front Microbiol 8:725Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A et al. (2020) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14:113–124PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL (2018) Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution. Front Microbiol 9:803Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783PubMed 
    PubMed Central 

    Google Scholar 
    Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM (2019) Covariation of diet and gut microbiome in African megafauna. Proc Natl Acad Sci U S A 116:23588–23593CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohl KD, Dearing MD (2016) The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol 7:1165Kohl KD, Luong K, Dearing MD (2015) Validating the use of trap-collected feces for studying the gut microbiota of a small mammal (Neotoma lepida). J Mammal 96:90–93Article 

    Google Scholar 
    Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87:323–330PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE (2015) Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc B Biol Sci 370:20140295Kreisinger J, Čížková D, Vohánka J, Piálek J (2014) Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol 23:5048–5060CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Kropáčková L, Petrželková A, Adámková M, Tomášek O, Martin J-F et al. (2017) Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front Microbiol 8:50Laukaitis CM, Critser ES, Karn RC (1997) Salivary androgen-binding protein (ABP) mediates sexual isolation in Mus musculus. Evol Int J Org Evol 51:2000–2005CAS 
    Article 

    Google Scholar 
    Lawrence K, Lam K, Morgun A, Shulzhenko NLöhr C (2019) Effect of temperature and time on the thanatomicrobiome of the cecum, ileum, kidney, and lung of domestic rabbits. J Vet Diagn Invest 31. https://doi.org/10.1177/1040638719828412Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24Article 

    Google Scholar 
    Li D, Chen H, Mao B, Yang Q, Zhao J, Gu Z et al. (2017) Microbial biogeography and core microbiota of the rat digestive tract. Sci Rep 7:45840PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maslanik T, Tannura K, Mahaffey L, Loughridge AB, Benninson L, Ursell L et al. (2012) Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS ONE 7:e50636CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T et al. (2020) Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. bioRxiv. https://doi.org/10.1101/2020.05.06.078147McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM et al. (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57:690–704PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput Biol 10:e1003531PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Menke S, Meier M, Sommer S (2015) Shifts in the gut microbiome observed in wildlife faecal samples exposed to natural weather conditions: lessons from time-series analyses using next-generation sequencing for application in field studies. Methods Ecol Evol 6:1080–1087Article 

    Google Scholar 
    Miller AW, Oakeson KF, Dale C, Dearing MD (2016) Microbial community transplant results in increased and long-term oxalate degradation. Micro Ecol 72:470–478CAS 
    Article 

    Google Scholar 
    Pafčo B, Čížková D, Kreisinger J, Hasegawa H, Vallo P, Shutt K et al. (2018) Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci Rep 8:5933Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L et al. (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–1010CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal JL, Schmidt CJ, Jordan HR, Benbow ME (2018) A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci Rep 8:5724PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pollock J, Glendinning L, Wisedchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 84:e02627–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
    Google Scholar 
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K et al. (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028.e13CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Round JL, Mazmanian SK (2009) The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2:e01202PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J et al. (2016) The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14:1655–1661CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stalder GL, Pinior B, Zwirzitz B, Loncaric I, Jakupović D, Vetter SG et al. (2019) Gut microbiota of the European Brown Hare (Lepus europaeus). Sci Rep 9:2738CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15:51PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stearns JC, Lynch MDJ, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG et al. (2011) Bacterial biogeography of the human digestive tract. Sci Rep 1:170CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stothart MR, Palme R, Newman AEM (2019) It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc R Soc B Biol Sci 286:20192111Article 

    Google Scholar 
    Suzuki TA, Martins FM, Nachman MW (2019) Altitudinal variation of the gut microbiota in wild house mice. Mol Ecol 28:2378–2390CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Suzuki TA, Nachman MW (2016) Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice (EG Zoetendal, Ed.). PLoS ONE 11:e0163720PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M et al. (2017) Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol 8:391Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B et al. (2020) Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 10:151Tang W, Zhu G, Shi Q, Yang S, Ma T, Mishra SK et al. (2019) Characterizing the microbiota in gastrointestinal tract segments of Rhabdophis subminiatus: dynamic changes and functional predictions. MicrobiologyOpen 8:e789Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B Biol Sci 286:20182448Article 

    Google Scholar 
    Tuomisto S, Karhunen PJ, Pessi T (2013) Time-dependent post mortem changes in the composition of intestinal bacteria using real-time quantitative PCR. Gut Pathog 5:35Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Vasemägi A, Visse M, Kisand V (2017) Effect of Environmental Factors and an Emerging Parasitic Disease on Gut Microbiome of Wild Salmonid Fish. mSphere 2:e00418–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis C (2017) Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol Ecol Resour 18:424–434PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Vlčková K, Shutt-Phillips K, Heistermann M, Pafčo B, Petrželková KJ, Todd A et al. (2018) Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiol Read Engl 164:40–44Article 
    CAS 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M-J, Rosenstiel P et al. (2014) Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A 111:E2703–2710CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warne RW, Kirschman L, Zeglin L (2017) Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr Comp Biol 57:786–794PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M (2015) The gut microbiota of wild mice. PLoS ONE 10:e0134643PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan W, Sun C, Zheng J, Wen C, Ji C, Zhang D et al. (2019) Efficacy of fecal sampling as a gut proxy in the study of chicken gut microbiota. Front Microbiol 10:2126Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM et al. (2015) Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:385–391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zemanova MA (2019) Poor implementation of non-invasive sampling in wildlife genetics studies. Rethink Ecol 4:119–132Article 

    Google Scholar 
    Zemanova MA (2020) Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. Wildl Biol 2020. https://doi.org/10.2981/wlb.00607Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C et al. (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 10:e0117441PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Association between stress and bilateral symmetrical alopecia in free-ranging Formosan macaques in Mt. Longevity, Taiwan

    1.Kimura, T. Systemic alopecia resulting from hyperadrenocorticism in a Japanese monkey. Lab. Primate Newsl. 47, 5–9 (2008).
    Google Scholar 
    2.Novak, M. A. et al. Assessing significant ( > 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, e22547 (2017).Article 
    CAS 

    Google Scholar 
    3.Lutz, C. K., Menard, M. T., Rosenberg, K., Meyer, J. S. & Novak, M. A. Alopecia in rhesus macaques (Macaca mulatta): Association with pregnancy and chronic stress. J. Med. Primatol. 48, 251–256. https://doi.org/10.1111/jmp.12419 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Steinmetz, H. W., Kaumanns, W., Dix, I., Neimeier, K.-A. & Kaup, F.-J. Dermatologic investigation of alopecia in rhesus macaques (Macaca mulatta). J. Zoo. Wildl. Med. 36, 229–239 (2005).PubMed 
    Article 

    Google Scholar 
    5.Lynch, M., Kirkwood, R., Mitchell, A., Duignan, P. & Arnould, J. P. Y. Prevalence and significance of an alopecia syndrome in Australian fur seals (Arctocephalus pusillus doriferus). J. Mammal. 92, 342–351 (2011).Article 

    Google Scholar 
    6.Atwood, T. et al. Prevalence and spatio-temporal variation of an alopecia syndrome in polar bears (Ursus maritimus) of the southern Beaufort Sea. J. Wildl. Dis. 51, 48–59 (2015).PubMed 
    Article 

    Google Scholar 
    7.McCoy, R. H., Murphie, S. L., Szykman Gunther, M. & Murphie, B. L. Influence of hair loss syndrome on black-tailed deer fawn survival. J. Wildl. Manag. 78, 1177–1188. https://doi.org/10.1002/jwmg.772 (2014).Article 

    Google Scholar 
    8.Novak, M. A. et al. Hair loss and hypothalamic–pituitary–adrenocortical axis activity in captive rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 53, 261–266 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Lutz, C. K., Coleman, K., Worlein, J. & Novak, M. A. Hair loss and hair-pulling in rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 52, 454–457 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Swenerton, H. & Hurley, L. S. Zinc deficiency in rhesus and bonnet monkeys, including effects on reproduction. J. Nutr. 110, 575–583 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Lair, S., Crawshaw, G. J., Mehren, K. G. & Perrone, M. A. Diagnosis of hypothyroidism in a western lowland gorilla (Gorilla gorilla gorilla) using human thyroid-stimulating hormone assay. J. Zoo. Wildl. Med. 30, 537–540 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Beardi, B. et al. Alopecia areata in a rhesus monkey (Macaca mulatta). J. Med. Primatol. 36, 124–130. https://doi.org/10.1111/j.1600-0684.2007.00212.x (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Ovadia, S., Wilson, S. R. & Zeiss, C. J. Successful cyclosporine treatment for atopic dermatitis in a rhesus macaque (Macaca mulatta). Comp. Med. 55, 192–196 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Novak, M. A. & Meyer, J. S. Alopecia: Possible causes and treatments, particularly in captive nonhuman primates. Comp. Med. 59, 18–26 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Hadshiew, I. M., Foitzik, K., Arck, P. C. & Paus, R. Burden of hair loss: Stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J. Investig. Dermatol. 123, 455–457 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Moberg, G. P. Biological response to stress: implications for animal welfare in The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (eds Moberg, G. P. & Mench, J. A.) 1–21 (CABI Publishing, 2000).18.Romero, M. L. & Butler, L. K. Endocrinology of stress. Int. J. Comp. Psychol. 20, 89–95 (2007).
    Google Scholar 
    19.Shutt, K., Setchell, J. M. & Heistermann, M. Non-invasive monitoring of physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): Validation of a fecal glucocorticoid assay and methods for practical application in the field. Gen. Comp. Endocrinol. 179, 167–177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Heistermann, M. Non-invasive monitoring of endocrine status in laboratory primates: Methods, guidelines and applications. Adv. Sci. Res. 5, 1–9 (2010).Article 

    Google Scholar 
    21.Murray, C. M., Heintz, M. R., Lonsdorf, E. V., Parr, L. A. & Santymire, R. M. Validation of a field technique and characterization of fecal glucocorticoid metabolite analysis in wild chimpanzees (Pan troglodytes). Am. J. Primatol. 75, 57–64 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Schwarzenberger, F. The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. Int. Zoo. Yearb. 41, 52–74. https://doi.org/10.1111/j.1748-1090.2007.00017.x (2007).Article 

    Google Scholar 
    23.Touma, C. & Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 1046, 54–74. https://doi.org/10.1196/annals.1343.006 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306. https://doi.org/10.1016/j.ygcen.2014.04.022 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S. M. & Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 1040, 162–171 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Teskey-Gerstl, A., Bamberg, E., Steineck, T. & Palme, R. Excretion of corticosteroids in urine and faeces of hares (Lepus europaeus). J. Comp. Physiol. B. 170, 163–168 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: Considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Bahr, N. I., Palme, R., Möhle, U., Hodges, J. K. & Heistermann, M. Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. Gen. Comp. Endocrinol. 117, 427–438. https://doi.org/10.1006/gcen.1999.7431 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Whitten, P. L., Brockman, D. K. & Stavisky, R. C. Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Am. J. Phys. Anthropol. 107, 1–23 (1998).Article 

    Google Scholar 
    30.Heistermann, M., Palme, R. & Ganswindt, A. Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am. J. Primatol. 68, 257–273 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Wheeler, B. C., Tiddi, B., Kalbitzer, U., Visalberghi, E. & Heistermann, M. Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella). Int. J. Primatol. 34, 879–898 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pei, J.-C. et al. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 136 (Construction and Planning Agency. Ministry of the Interior, 2015).33.Hsu, M. J., Kao, C. C. & Agoramoorthy, G. Interactions between visitors and Formosan macaques (Macaca cyclopis) at Shou-Shan Nature Park, Taiwan. Am. J. Primatol. 71, 214–222 (2009).PubMed 
    Article 

    Google Scholar 
    34.Lee, L. L., Wu, H. Y., Chang, S. W., Minna, J. H. & Chakraborty, C. Survey of Current Status of Taiwan Macaques 1–27 (Council of Agriculture, Executive Yuan, 2001).35.Pei, K. C. J., Chen, C. C., Lin, C. N. & Ju, Y. T. The study of population dynamic and health status of Taiwanese macaques in Shanshan National Nature Park., 175 (Shoushan National Nature Park, Construction and Planning Agency, Ministry of the Interior, 2016).36.Bellanca, R. U. et al. A simple alopecia scoring system for use in colony management of laboratory-housed primates. J. Med. Primatol. 43, 153–161 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Whiting, D. A. Histology of the human hair follicle in Hair Growth and Disorders (eds Blume-Peytavi, U. et al.) 107–123 (Springer, 2008).38.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Horenstein, M. G. & Bacheler, C. J. Follicular density and ratios in scarring and nonscarring alopecia. Am. J. Dermatopathol. 35, 818–826 (2013).PubMed 
    Article 

    Google Scholar 
    40.Rangel-Negrín, A., Flores-Escobar, E., Chavira, R., Canales-Espinosa, D. & Dias, P. A. D. Physiological and analytical validations of fecal steroid hormone measures in black howler monkeys. Primates 55, 459–465 (2014).PubMed 
    Article 

    Google Scholar 
    41.Pineda-Galindo, E., Cerda-Molina, A. L., Mayagoitia-Novales, L. & Matamoros-Trejo, G. Biological validations of fecal glucocorticoid, testosterone, and progesterone metabolite measurements in captive stumptail macaques (Macaca arctoides). Int. J. Primatol. 38, 985–1001 (2017).Article 

    Google Scholar 
    42.Palme, R. & Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Int. J. Mammal. Biol. 62, 192–197 (1997).
    Google Scholar 
    43.Braga Goncalves, I. et al. Validation of a fecal glucocorticoid assay to assess adrenocortical activity in meerkats using physiological and biological stimuli. PLoS ONE 11, e0153161. https://doi.org/10.1371/journal.pone.0153161 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Pei, K. J.-C., Lin, C. N. & Chen, C. C. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 133 (Construction and Planning Agency, Ministry of the Interior, R2015).45.Hsu, M. J. & Lin, J.-F. Troop size and structure in free-ranging Formosan macaques (Macaca cyclopis) at Mt. Longevity, Taiwan. Zool. Stud. Taipei 40, 49–60 (2001).
    Google Scholar 
    46.Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    47.Allison, P. D. Multiple Regression: A Primer (Pine Forge Press, 1999).
    Google Scholar 
    48.Dohoo, I., Martin, W. & Stryhn, H. Model-building strategies in Veterinary Epidemiologic Research 553–578 (VER Inc, 2009).49.Bolker, B. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 
    Article 

    Google Scholar 
    50.Ganswindt, A., Palme, R., Heistermann, M., Borragan, S. & Hodges, J. Non-invasive assessment of adrenocortical function in the male African elephant (Loxodonta africana) and its relation to musth. Gen. Comp. Endocrinol. 134, 156–166 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Rimbach, R., Heymann, E. W., Link, A. & Heistermann, M. Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. Gen. Comp. Endocrinol. 191, 13–23 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Novak, M. A. et al. Assessing significant ( > 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, 1–8. https://doi.org/10.1002/ajp.22547 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Bernardez, C., Molina-Ruiz, A. & Requena, L. Histologic features of alopecias–part I: Nonscarring alopecias. Actas Dermosifiliogr. 106, 158–167. https://doi.org/10.1016/j.adengl.2015.01.001 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Luchins, K. R. et al. Application of the diagnostic evaluation for alopecia in traditional veterinary species to laboratory rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 50, 926–938 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Werner, B. & Mulinari-Brenner, F. Clinical and histological challenge in the differential diagnosis of diffuse alopecia: Female androgenetic alopecia, telogen effluvium and alopecia areata-part II. An. Bras. Dermatol. 87, 884–890 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Liyanage, D. & Sinclair, R. Telogen effluvium. Cosmetics 3, 13 (2016).Article 
    CAS 

    Google Scholar 
    57.Alotaibi, M. K. Telogen effluvium: A review. Int. J. Med. Dev. Cties. 3, 797–801. https://doi.org/10.7759/cureus.8320 (2019).Article 

    Google Scholar 
    58.Arck, P. C. et al. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am. J. Pathol. 162, 803–814. https://doi.org/10.1016/S0002-9440(10)63877-1athology (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Horenstein, V.D.-P., Williams, L. E., Brady, A. R., Abee, C. R. & Horenstein, M. G. Age-related diffuse chronic telogen effluvium-type alopecia in female squirrel monkeys (Saimiri boliviensis boliviensis). Comp. Med. 55, 169–174 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    60.Coleman, K. et al. The correlation between alopecia and temperament in rhesus macaques (Macaca mulatta) at four primate facilities. Am. J. Primatol. 79, e22504. https://doi.org/10.1002/ajp.22504 (2017).Article 

    Google Scholar 
    61.Lutz, C. K. et al. Factors influencing alopecia and hair cortisol in rhesus macaques (Macaca mulatta). J. Med. Primatol. 45, 180–188. https://doi.org/10.1111/jmp.12220 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243. https://doi.org/10.1016/j.physbeh.2018.11.021 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Hoffman, C. L. et al. Immune function and HPA axis activity in free-ranging rhesus macaques. Physiol. Behav. 104, 507–514. https://doi.org/10.1016/j.physbeh.2011.05.021 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Marty, P. R., Hodges, K., Heistermann, M., Agil, M. & Engelhardt, A. Is social dispersal stressful? A study in male crested macaques (Macaca nigra). Horm. Behav. 87, 62–68. https://doi.org/10.1016/j.yhbeh.2016.10.018 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Takeshita, R. S. C., Bercovitch, F. B., Kinoshita, K. & Huffman, M. A. Beneficial effect of hot spring bathing on stress levels in Japanese macaques. Primates 59, 215–225. https://doi.org/10.1007/s10329-018-0655-x (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Cheng, H. C. et al. The Red List of Terrestrial Mammals of Taiwan, 2017. 35 (Endemic Species Research Institute, 2017).68.Chang, A.-M., Chen, C.-C. & Huffman, M. A. Entamoeba spp in wild formosan rock macaques (Macaca cyclopis) in an area with frequent human-macaque contact. J. Wildl. Dis. 55, 608–618 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    White-tailed deer S96 prion protein does not support stable in vitro propagation of most common CWD strains

    1.Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Caughey, B. & Chesebro, B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 7, 56–62 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Manson, J. et al. The prion protein gene: A role in mouse embryogenesis?. Development 115, 117–122 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Mathiason, C. K. et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS ONE 4, e5916 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Miller, M. W. & Wild, M. A. Epidemiology of chronic wasting disease in captive white-tailed and mule deer. J. Wildl. Dis. 40, 320–327 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spraker, T. R. et al. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J. Wildl. Dis. 33, 1–6 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Williams, E. S. & Young, S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16, 89–98 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Belt, P. B. et al. Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 76(Pt 3), 509–517 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bossers, A., Schreuder, B. E., Muileman, I. H., Belt, P. B. & Smits, M. A. PrP genotype contributes to determining survival times of sheep with natural scrapie. J. Gen. Virol. 77(Pt 10), 2669–2673 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Goldmann, W. et al. Two alleles of a neural protein gene linked to scrapie in sheep. Proc. Natl. Acad. Sci. USA 87, 2476–2480 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Westaway, D. et al. Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev. 8, 959–969 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Arnold, M. & Ortiz-Pelaez, A. The evolution of the prevalence of classical scrapie in sheep in Great Britain using surveillance data between 2005 and 2012. Prev. Vet. Med. 117, 242–250 (2014).PubMed 
    Article 

    Google Scholar 
    13.Hagenaars, T. J. et al. Scrapie prevalence in sheep of susceptible genotype is declining in a population subject to breeding for resistance. BMC Vet. Res. 6, 25 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Nodelijk, G. et al. Breeding with resistant rams leads to rapid control of classical scrapie in affected sheep flocks. Vet. Res. 42, 5 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Acutis, P. L. et al. Resistance to classical scrapie in experimentally challenged goats carrying mutation K222 of the prion protein gene. Vet. Res. 43, 8 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Barillet, F. et al. Identification of seven haplotypes of the caprine PrP gene at codons 127, 142, 154, 211, 222 and 240 in French Alpine and Saanen breeds and their association with classical scrapie. J. Gen. Virol. 90, 769–776 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Hazards EPoB et al. Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats. EFSA J. 15, e04962 (2017).
    Google Scholar 
    18.Sacchi, P. et al. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats. Vet. Res. 49, 26 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Johnson, C. J. et al. Prion protein polymorphisms affect chronic wasting disease progression. PLoS ONE 6, e17450 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Otero, A. et al. Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP(CWD) deposition in orally infected white-tailed deer. BMC Vet. Res. 15, 50 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Meade-White, K. et al. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein. J. Virol. 81, 4533–4539 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Race, B., Meade-White, K., Miller, M. W., Fox, K. A. & Chesebro, B. In vivo comparison of chronic wasting disease infectivity from deer with variation at prion protein residue 96. J. Virol. 85, 9235–9238 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Miller, M. W. et al. Survival patterns in white-tailed and mule deer after oral inoculation with a standardized, conspecific prion dose. J. Wildl. Dis. 48, 526–529 (2012).PubMed 
    Article 

    Google Scholar 
    24.Duque Velasquez, C. et al. Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J. Biol. Chem. 295, 4985–5001 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Duque Velasquez, C. et al. Deer prion proteins modulate the emergence and adaptation of chronic wasting disease strains. J. Virol. 89, 12362–12373 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Johnson, C., Johnson, J., Clayton, M., McKenzie, D. & Aiken, J. Prion protein gene heterogeneity in free-ranging white-tailed deer within the chronic wasting disease affected region of Wisconsin. J. Wildl. Dis. 39, 576–581 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Johnson, C. et al. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J. Gen. Virol. 87, 2109–2114 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.O’Rourke, K. I. et al. Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J. Gen. Virol. 85, 1339–1346 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Keane, D. P. et al. Chronic wasting disease in a Wisconsin white-tailed deer farm. J. Vet. Diagn. Invest. 20, 698–703 (2008).PubMed 
    Article 

    Google Scholar 
    30.Kelly, A. C. et al. Prion sequence polymorphisms and chronic wasting disease resistance in Illinois white-tailed deer (Odocoileus virginianus). Prion 2, 28–36 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Haley, N. J. et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS ONE 14, e0224342 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Wolfe, L. L. et al. PrPCWD in rectal lymphoid tissue of deer (Odocoileus spp.). J. Gen. Virol. 88, 2078–2082 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Haley, N. J. et al. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsy specimens from white-tailed deer by real-time quaking-induced conversion. J. Clin. Microbiol. 54, 1108–1116 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Angers, R. et al. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. Proc. Natl. Acad. Sci. USA 111, 11169–11174 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Hannaoui, S. et al. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathog. 13, e1006553 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Robinson, S. J., Samuel, M. D., Johnson, C. J., Adams, M. & McKenzie, D. I. Emerging prion disease drives host selection in a wildlife population. Ecol. Appl. 22, 1050–1059 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Raymond, G. J. et al. Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO J. 19, 4425–4430 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Boerner, S., Wagenfuhr, K., Daus, M. L., Thomzig, A. & Beekes, M. Towards further reduction and replacement of animal bioassays in prion research by cell and protein misfolding cyclic amplification assays. Lab. Anim. 47, 106–115 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Gonzalez-Montalban, N. et al. Highly efficient protein misfolding cyclic amplification. PLoS Pathog. 7, e1001277 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Makarava, N., Savtchenko, R., Alexeeva, I., Rohwer, R. G. & Baskakov, I. V. Fast and ultrasensitive method for quantitating prion infectivity titre. Nat. Commun. 3, 741 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Moudjou, M. et al. Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. mBio 5, e00829-13 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Angers, R. C. et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154–1158 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Herbst, A., Velasquez, C. D., Triscott, E., Aiken, J. M. & McKenzie, D. Chronic wasting disease prion strain emergence and host range expansion. Emerg. Infect. Dis. 23, 1598–1600 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Pushie, M. J., Shaykhutdinov, R., Nazyrova, A., Graham, C. & Vogel, H. J. An NMR metabolomics study of elk inoculated with chronic wasting disease. J. Toxicol. Environ. Health A 74, 1476–1492 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Lyon, A. et al. Application of PMCA to screen for prion infection in a human cell line used to produce biological therapeutics. Sci. Rep. 9, 4847 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.LaFauci, G. et al. Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus elaphus nelsoni) PrPC. J. Gen. Virol. 87, 3773–3780 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Abrams, J. et al. Human prion disease mortality rates by occurrence of chronic wasting disease in free-ranging cervids, United States. Prion 14, 182–183 (2018).
    Google Scholar 
    49.Council E. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union L147 (2001).50.Dawson, M., Hoinville, L. J., Hosie, B. D. & Hunter, N. Guidance on the use of PrP genotyping as an aid to the control of clinical scrapie. Scrapie Information Group. Vet. Rec. 142, 623–625 (1998).CAS 
    PubMed 

    Google Scholar 
    51.Baylis, M. et al. Risk of scrapie in British sheep of different prion protein genotype. J. Gen. Virol. 85, 2735–2740 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Hunter, N., Goldmann, W., Smith, G. & Hope, J. The association of a codon 136 PrP gene variant with the occurrence of natural scrapie. Arch. Virol. 137, 171–177 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Saa, P., Castilla, J. & Soto, C. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J. Biol. Chem. 281, 35245–35252 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Johnson, C. J., Aiken, J. M., McKenzie, D., Samuel, M. D. & Pedersen, J. A. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclic amplification with beads (PMCAb). PLoS ONE 7, e35383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Safar, J. G. et al. Prion clearance in bigenic mice. J. Gen. Virol. 86, 2913–2923 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Safar, J. G. et al. Search for a prion-specific nucleic acid. J. Virol. 79, 10796–10806 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Carroll, J. A., Race, B., Williams, K., Striebel, J. & Chesebro, B. Microglia are critical in host defense against prion disease. J. Virol. 92, e00549–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Caplazi, P. A., O’Rourke, K. I. & Baszler, T. V. Resistance to scrapie in PrP ARR/ARQ heterozygous sheep is not caused by preferential allelic use. J. Clin. Pathol. 57, 647–650 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Goldmann, W. PrP genetics in ruminant transmissible spongiform encephalopathies. Vet. Res. 39, 30 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 13079–13084 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Arsac, J. N. et al. Similar biochemical signatures and prion protein genotypes in atypical scrapie and Nor98 cases, France and Norway. Emerg. Infect. Dis. 13, 58–65 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Luhken, G. et al. Epidemiological and genetical differences between classical and atypical scrapie cases. Vet. Res. 38, 65–80 (2007).PubMed 
    Article 

    Google Scholar 
    63.Saunders, G. C., Cawthraw, S., Mountjoy, S. J., Hope, J. & Windl, O. PrP genotypes of atypical scrapie cases in Great Britain. J. Gen. Virol. 87, 3141–3149 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Saline–alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment

    Effects of T. asperellum on salt ion content, sodium adsorption ration, and pH of maize seedlings under saline–alkaline stressAfter applying spore suspensions of T. asperellum at different concentrations, we observed significant increases in the soil contents of Ca2+, Mg2+, and K+ relative to those in the control, whereas, Na+, HCO3−, Cl−, and SO42− contents significantly decreased (Table 1). Thus, increasing T. asperellum spore densities in suspension effectively regulated the soil ion balance in the rhizosphere of maize seedlings, and all ions showed significant differences under treatment T3. Compared with those in the control, T3 significantly reduced the Na+ and HCO3− contents by 19.46% and 35.87% in XY335, and 20.02% and 36.29% in JY417, respectively, with an effect more pronounced than that with treatments T1 and T2. Although the Cl− and SO42− contents were low, their variation patterns were similar to that of HCO3− content. Overall, however, the composition of ions in the rhizosphere of maize seedlings was improved by the T. asperellum treatment.Table 1 Influence of T. asperellum on salt ion content, sodium adsorption ration (SAR), and pH value of maize seedlings rhizosphere soil (± SD).Full size tableAs shown in Table 1, compared with those in the control, T. asperellum treatment significantly reduced the soil pH and SAR values, although with no significant cultivar × treatment interaction effects (P  More

  • in

    Whole-genome resequencing of large yellow croaker (Larimichthys crocea) reveals the population structure and signatures of environmental adaptation

    Whole genome resequencing of large yellow croaker populationsWe collected a total of 198 large yellow croaker individuals (Table S1). Of these, 50 individuals were captured in the Zhoushan Sea (the red dot in Fig. 1a) and 48 individuals had been farmed in Zhoushan (the orange dot in Fig. 1a). A further 38 individuals were captured in the Ningde Sea (the blue dot in Fig. 1a). and 62 individuals had been farmed in Ningde (the green dot in Fig. 1a). We performed whole-genome resequencing of these 198 large yellow croaker individuals. We obtained 1.42 Penta base-pairs of genomic DNA, representing about 11 × sequencing depth of the genome per individual. Raw reads were trimmed and aligned to the genome sequence. After variant calling and filtering, a total of 6,302,244 single nucleotide polymorphisms (SNPs) were identified. Using this SNP information, we performed the following population genomic analyses.Figure 1Population structure and relationship of large yellow croaker. (a) Geographic map indicating the sample origins of the large yellow croaker in this study. The gross appearance of a large yellow croaker individual is shown in the picture. The sampling area is highlighted by the red broken line. The dots of different color stand for different population. The number of individuals is given in parentheses after the population name. The geographical maps were generated by using R packages of maps v3.3.0 (https://cran.r-project.org/web/packages/maps) and mapdata v2.3.0 (https://cran.r-project.org/web/packages/mapdata). (b) PCA plot (PC1 and PC2) showing the genetic structure of the 198 large yellow croaker individuals. The degrees of explained variance is given in parentheses. Colors reflect the geographic regions in (a). (c) UMAP of the 198 large yellow croaker individuals. Colors reflect the geographic regions in (a).Full size imageGenetic population structure of the large yellow croaker individualsIn order to examine the genetic population structure of the large yellow croaker individuals, we performed principal component analysis (PCA). In the first component of the PCA, the Zhoushan farmed population separated from the other three populations (Fig. 1b). In the second component of the PCA, the Zhoushan sea-captured population formed a cluster. Also, the Ningde farmed population formed a cluster. The Ningde sea-captured population had a wider distribution than the other populations. Then, we performed uniform manifold approximation and projection (UMAP), a non-linear dimensionality method (Fig. 1c). The result of UMAP is similar to the result of PCA. UMAP showed that the Zhoushan farmed population formed a distinct cluster, and the Zhoushan sea-captured population and Ningde farmed population formed more scattered clusters. UMAP also showed that the Ningde sea-captured population had a wider distribution than the other populations.The evolutionary history of the individuals was inferred with the neighbour-joining (NJ) tree. The NJ tree contains two large groups (Fig. 2a). The first group was formed by the individuals of the Zhoushan farmed population plus several individuals of the Zhoushan sea-captured population. The other group was formed by the individuals in the other three groups. In this group, individuals of the Zhoushan sea-captured formed a distinct cluster from the individuals of the Ningde sea-captured population and those of the Ningde farmed population. The individuals of the Ningde sea-captured population and those of the Ningde farmed population together formed several small groups.Figure 2Neighbor-joining tree and admixture analysis using whole-genome SNP data. (a) Neighbor-joining tree of the 198 large yellow croaker individuals. The color scheme follows Fig. 1. The scale bar represents pairwise distances between different individuals. (b) Cross-validation error in the admixture analysis. The x-axis represents K values and the y-axis represents the corresponding cross-validation error. The cross-validation error was lowest at K = 3. (c) Admixture plot (K = 2, 3, 4) for the 198 large yellow croaker individuals. Each individual is shown as vertical bar divided into K colors. The color scheme follows Fig. 1. Individuals are arranged by population.Full size imageWe performed unsupervised clustering analysis with ADMIXTURE to evaluate the relatedness of the populations. Cross-validation error was lowest at K = 3, suggesting that the population genetic structure of our samples is best modelled by considering the admixture of the three genetic components (Fig. 2b). The individuals of the Zhoushan farmed population are composed of relatively uniform genetic components (Fig. 2c). The individuals of the Ningde farmed population are composed of genetic components that are also relatively uniform but different from those of the Zhoushan farmed population. Both the individuals of the Zhoushan sea-captured population and those of the Ningde sea-captured population were a mixture of the three genetic components.Trends of effective population sizeWe evaluated the extents of linkage disequilibrium for SNP pairs. The average r2 values of linkage disequilibrium decreased by increasing the marker distance between pairwise SNPs, with a rapidly declining trend observed over the first 500 kb (Fig. 3a). Using this information, we estimated the change of the effective population size over the past 1000 generations (Fig. 3b). All the four populations showed decreasing trends of effective population sizes, suggesting that their genetic diversities remain at a low level.Figure 3Trends of effective population sizes. (a) LD decay (r2) from 0 to 4000 kb for four populations. The x-axis represents marker distances between pairwise SNPs. The y-axis represents r2 values of linkage disequilibrium. (b) Effective population sizes of four populations over the past 1000 generations. All of the four populations showed decreasing trends.Full size imageDetection of putative genes associated with the adaptation to different sea environments of the Zhoushan Sea and Ningde SeaTo identify the genetic markers to differentiate individuals of the Zhoushan sea-captured and Ningde sea-captured, we calculated fixation index (Fst) values for each SNP. We identified total 819 SNPs as genetic markers (Table S2). To identify the genes associated with adaptation to the different living environments between these two regions, we calculated average Fst values in 40 kb windows with 10 kb steps (Fig. 4). We identified 47 regions with significant Fst values. The total size of these regions is 3.6 Mb. The sizes of the significant regions were between 40 kb to 0.31 Mb. These regions contained 88 genes (Table S3). We categorised the functions of these genes based on their gene ontology (GO) term annotations (Table S4). These genes include those involved in muscle structure development (GO:0061061) such as pdlim3a (pdz and lim domain 3). This gene is located in the region from 26,673,301 to 26,662,947 bp on chromosome 10, and is reported to be highly expressed in muscle and involved in the crosslinking of actin filaments15. We identified three upstream variants of this gene which are located at 26,675,034 bp, 26,675,134 bp, and 26,678,221 bp on chromosome 10 (Fig. 4). We also identified one downstream variant located at 26,660,973 bp on chromosome 10. Besides muscle structure development (GO:0061061), there are also some enriched GO terms such as regulation of response to external stimulus (GO:0032101) and cell–cell signalling (GO:0007267).Figure 4Genomic regions associated with regional differentiation of large yellow croaker between Zhoushan sea and Ningde sea. Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Zhoushan sea-captured population and Ningde sea-captured population. The x-axis represents chromosomal positions and the y-axis represents the average Fst values.Full size imageDetection of putative genes under selective sweep between the Zhoushan sea-captured population and farmed populationTo identify the genes under selective sweep in the domestication process, we analysed single Fst values for single SNPs and average Fst values in 40 kb windows with 10 kb steps separately both in the Zhoushan and Ningde regions. Between the Zhoushan sea-captured population and farmed population, we identified 23,862 SNPs with significant Fst values by single SNP analysis (Table S5). In the sliding window analysis, the number of significant regions was 317, and the total size of significant regions was 59 Mb (Fig. 5a). The sizes of significant regions were between 40 kb to 8.1 Mb. These regions contain 1709 genes (Table S6). We identified the strong peak of Fst signal on chromosome 11, which contains 423 genes such as hsp90ab1 (heat shock protein 90 alpha family class B member 1). GO analysis showed that genes involved in the regulation of fatty acid oxidation (GO:0031998), the steroid hormone mediated signalling pathway (GO:0043401), fatty acid metabolic processes (GO:0006631), membrane lipid metabolic processes (GO:0006643), regulation of fatty acid metabolic processes (GO:0019217), and long-chain fatty acid transport (GO:0015909). These GO terms include plenty of lipid metabolism-related genes such as ppara (peroxisome proliferator activated receptor alpha), pnpla2 (Patatin like phospholipase domain containing 2). It is worth mentioning that there were plenty of genes related to carbohydrate derivative metabolic processes (GO:1901135) with differences between the Zhoushan sea-captured population and farmed populations (Table S7). Additionally, a number of the growth relative genes include the developmental growth involved in morphogenesis (GO:0060560). Genes were found related to embryo development ending in birth or egg hatching (GO:0009792). Additionally, 47 genes related immune system development (GO:0002520) were obtained, such as taf3 (tata-box binding protein associated factor 3), irf7 (interferon regulatory factor 7) and rps7 (ribosomal protein s7) (Table S7).Figure 5Genomic regions associated with domestication of large yellow croaker between Zhoushan sea or Ningde sea. (a) Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Zhoushan sea-captured and Zhoushan farmed. (b) Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Ningde sea-captured and Ningde farmed. The x-axis represents chromosomal positions and the y-axis represents the average Fst values.Full size imageMoreover, we found that anxa2a (annexin a2a; from 16,718,332 bp to 16,713,531 bp on chromosome 21) have a splice donor site variant at 16,715,408 bp on chromosome 21. This mutation is located at the fifth intron of anxa2a, and is predicted to lead to a premature truncation. The anxa2a gene encodes a phospholipid-binding protein, and is involved in variety of intracellular processes including endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly16. This batch of samples came from breeding selection for a freeze-resistant population. We identified nine downstream mutations (16,713,395 bp, 16,713,442 bp, 16,713,443 bp, 16,713,593 bp, 16,715,408 bp, 16,715,741 bp, 16,716,027 bp, 16,716,216 bp and 16,717,363 bp on chromosome 21) of ice2 (interactor of little elongation complex ELL subunit 2) gene, which is located in the region from 16,727,361 to 16,718,192 bp on chromosome 21. This gene is involved in cold acclimation and determines freezing tolerance17.Detection of putative genes under selective sweep between the Ningde sea-captured and farmed populationFor the Ningde farmed population, we identified 660 SNPs with significant Fst values (Table S8). In the sliding window analysis, the number of significant regions was 42, and the total size of significant regions was 7.8 Mb (Fig. 5b). The sizes of significant regions were between 40 kb to 2.0 Mb. These regions contain 238 genes (Table S9). GO analysis showed identified genes related to the reproduction process such as female gonad development (GO:0008585), i.e. esr1 (estrogen receptor 1), foxo3 (forkhead box O3); the development of primary female sexual characteristics (GO:0046545) and embryonic appendage morphogenesis (GO:0035113), such as mbnl1 (muscle blind like splicing regulator 1); as well as embryonic limb morphogenesis (GO:0030326) and the response to steroid hormones (GO:0048545). Additionally, genes related to digestive tract development (GO:0048565) were enriched, such as hnf1b (hnf1 homeobox b) (Table S10). As per the results of SNPs with the highest Fst analysis between the Ningde sea-captured and farmed population, we identified a downstream variant of esr1, which is located at 9,103,629 bp on chromosome 11. This gene is located in the region from 9,129,853 and 9,108,464 bp on chromosome 11 and encodes estrogen receptor 1, which plays a critical role in responding to steroid hormones (Fig. 5b). Genes involved in visual system development (GO:0150063) such as prox1 (prospero-related homeobox1), nr2e1 (nuclear receptor subfamily 2 group e member 1) and znf513a (zinc finger protein 513a) were also enriched. The znf513a gene is located in the region from 11,664,515 to 11,657,703 bp on chromosome 11 and has a downstream variant located at 11,652,743 bp on this chromosome (Fig. 5b). More