More stories

  • in

    Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria

    Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).Article 
    CAS 

    Google Scholar 
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).Article 
    CAS 

    Google Scholar 
    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).Article 
    CAS 

    Google Scholar 
    Mayali, X. Metabolic interactions between bacteria and phytoplankton. Front. Microbiol. 9, 727 (2018).Article 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98 (2015).Article 
    CAS 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453 (2015).Article 
    CAS 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).Article 
    CAS 

    Google Scholar 
    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).Article 

    Google Scholar 
    Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystems 345–360 (Springer, 1984).Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C., Syit, D. A., Grossart, H.-P. & Ullrich, M. S. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78, 6900–6907 (2012).Article 
    CAS 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).Article 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).Article 
    CAS 

    Google Scholar 
    Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).Article 
    CAS 

    Google Scholar 
    Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).Article 
    CAS 

    Google Scholar 
    Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).Article 
    CAS 

    Google Scholar 
    Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).Article 
    CAS 

    Google Scholar 
    Aharonovich, D. & Sher, D. Transcriptional response of Prochlorococcus to co-culture with a marine Alteromonas: differences between strains and the involvement of putative infochemicals. ISME J. 10, 2892–2906 (2016).Article 
    CAS 

    Google Scholar 
    Jackson, G. A. Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32, 1253–1266 (1987).Article 
    CAS 

    Google Scholar 
    Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).Article 

    Google Scholar 
    Al-Wahaib, D., Al-Bader, D., Al-Shaikh Abdou, D. K., Eliyas, M. & Radwan, S. S. Consistent occurrence of hydrocarbonoclastic Marinobacter strains in various cultures of picocyanobacteria from the Arabian Gulf: promising associations for biodegradation of marine oil pollution. J. Mol. Microbiol. Biotechnol. 26, 261–268 (2016).CAS 

    Google Scholar 
    Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).Article 

    Google Scholar 
    Gärdes, A. et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 3, 97–107 (2010).Article 

    Google Scholar 
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).Article 
    CAS 

    Google Scholar 
    Wawrik, B., Callaghan, A. V. & Bronk, D. A. Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670 (2009).Article 
    CAS 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).Article 
    CAS 

    Google Scholar 
    Raina, J.-B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022).Article 
    CAS 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).Article 
    CAS 

    Google Scholar 
    Myklestad, S. M. in Marine Chemistry (ed. Wangersky, P. J.) 111–148 (Springer Berlin Heidelberg, 2000).Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020).Article 
    CAS 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).Article 
    CAS 

    Google Scholar 
    Buitenhuis, E. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Raina, J.-B. et al. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7, bio032524 (2018).Article 

    Google Scholar 
    Giardina, M. et al. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9, 2847 (2018).Article 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).Article 

    Google Scholar 
    Guillard, R. R. L. in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Walter, L. S. & Matoira, H. C.) 29–60 (Springer US, 1975).Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H.-P. & Ullrich, M. S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evolut. Microbiol. 62, 124–128 (2012).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C. et al. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 87, 176–183 (2011).Article 
    CAS 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).Article 
    CAS 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 

    Google Scholar 
    Hillion, F., Kilburn, M., Hoppe, P., Messenger, S. & Weber, P. K. The effect of QSA on S, C, O and Si isotopic ratio measurements. Geochim. Cosmochim. Acta 72, A377 (2008).
    Google Scholar 
    Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).Article 
    CAS 

    Google Scholar 
    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).Article 
    CAS 

    Google Scholar 
    Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. JoVE https://doi.org/10.3791/61062 (2020).Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
    Google Scholar 
    Xie, L., Lu, C. & Wu, X.-L. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108, 766–774 (2015).Article 
    CAS 

    Google Scholar 
    Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).Article 
    CAS 

    Google Scholar 
    Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).Article 
    CAS 

    Google Scholar 
    Yamashita, Y. & Tanoue, E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 82, 145–160 (2003).Article 
    CAS 

    Google Scholar 
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).Article 
    CAS 

    Google Scholar 
    Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11, 307–311 (1966).Article 

    Google Scholar  More

  • in

    Integrated biochar solutions can achieve carbon-neutral staple crop production

    Martin-Roberts, E. et al. Carbon capture and storage at the end of a lost decade. One Earth 4, 1569–1584 (2021).Article 
    ADS 

    Google Scholar 
    Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).Article 
    ADS 

    Google Scholar 
    Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).CAS 

    Google Scholar 
    Third National Communication of Climate Change in the People’s Republic of China (Ministry of Ecology and Environment of the People’s Republic of China, 2018).Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, B. et al. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2, 570–577 (2021).Article 

    Google Scholar 
    Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Res. 234, 47–54 (2019).Article 

    Google Scholar 
    Shang, Z. et al. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Change Biol. 27, 4657–4670 (2021).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917–1925 (2016).Article 
    ADS 

    Google Scholar 
    Ju, X. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, B. et al. Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resour. Conserv. Recycl. 186, 106576 (2022).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 12, 5919–5932 (2018).Article 

    Google Scholar 
    Zhao, Y. et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change guidelines. Glob. Biogeochemical Cycles 23, GB2002 (2009).Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Z. et al. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials. Environ. Pollut. 284, 117176 (2021).Article 
    CAS 

    Google Scholar 
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L., Wang, S. & Yan, X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric. Ecosyst. Environ. 197, 118–127 (2014).Article 

    Google Scholar 
    Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y. et al. Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth 3, 176–186 (2020).Article 
    ADS 

    Google Scholar 
    Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).Article 
    ADS 

    Google Scholar 
    Jeffery, S., Verheijen, F. G., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016).Article 
    CAS 

    Google Scholar 
    Schmidt, H. P. et al. Biochar in agriculture – a systematic review of 26 global meta-analyses. GCB Bioenergy 13, 1708–1730 (2021).Article 
    CAS 

    Google Scholar 
    Cayuela, M. L. et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci. Rep. 3, 1732 (2013).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Glob. Change Biol. 25, 2077–2093 (2019).Article 
    ADS 

    Google Scholar 
    He, X. et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746–756 (2018).Article 
    CAS 

    Google Scholar 
    Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).Ritchie, H., Roser, M. & Rosado, P. CO2 and Greenhouse Gas Emissions (Our World in Data, 2020); https://ourworldindata.org/co2-and-other-greenhouse-gas-emissionsLiu, Y. et al. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: a meta-analysis. Sci. Total Environ. 830, 154792 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y., Reilly, E. C., Jungers, J. M., Chen, J. & Smith, T. M. Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth 1, 434–445 (2019).Article 
    ADS 

    Google Scholar 
    Weller, S. et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycling Agroecosyst. 101, 37–53 (2015).Article 
    CAS 

    Google Scholar 
    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lee, X. J., Ong, H. C., Gan, Y. Y., Chen, W. H. & Mahlia, T. M. I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 210, 112707 (2020).Article 
    CAS 

    Google Scholar 
    Nevzorova, T. & Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strategy Rev. 26, 100414 (2019).Article 

    Google Scholar 
    Xia, S. et al. Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technol. 270, 189–197 (2018).Article 
    CAS 

    Google Scholar 
    Liu, Z., Niu, W., Chu, H., Zhou, T. & Niu, Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13, 3429–3446 (2018).Article 
    CAS 

    Google Scholar 
    Hengeveld, E. J., Bekkering, J., van Gemert, W. J. T. & Broekhuis, A. A. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids. Biomass Bioenergy 86, 43–52 (2016).Article 

    Google Scholar 
    Ansari, S. H. et al. Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power. Environ. Pollut. 266, 115103 (2020).Article 
    CAS 

    Google Scholar 
    Yang, S. I., Wu, M. S. & Hsu, T. C. Spray combustion characteristics of kerosene/bio-oil part I: experimental study. Energy 119, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4, 1752–1763 (2022).Article 
    ADS 

    Google Scholar 
    Gu, B. et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Technol. 46, 9420–9427 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L. et al. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 13, 4569–4579 (2016).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 

    Google Scholar 
    Sabatini, F. M. et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 13, 4683 (2022).ADS 
    CAS 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).CAS 

    Google Scholar 
    Garnier, E., Navas, M.-L. & Grigulis, K. Plant functional diversity. Organism traits, community structure, and ecosystem properties (Oxford University Press, Oxford, New York, NY, 2016).Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 92, 1156–1173 (2017).
    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 

    Google Scholar 
    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. 111, 740–745 (2014).ADS 
    CAS 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 

    Google Scholar 
    Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A. 113, 230–235 (2016).ADS 

    Google Scholar 
    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS 
    CAS 

    Google Scholar 
    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).ADS 

    Google Scholar 
    Bruelheide, H. et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    Google Scholar 
    Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10, 415–425 (2019).
    Google Scholar 
    Guerin, G. R. et al. Environmental associations of abundance-weighted functional traits in Australian plant communities. Basic Appl. Ecol. 58, 98–109 (2021).
    Google Scholar 
    Walter, H. Vegetation of the earth and ecological systems of the geo-biosphere (Springer-Verlag, Berlin, Germany, 1985).Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
    Google Scholar 
    Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).
    Google Scholar 
    Cubino, J. P. et al. The leaf economic and plant size spectra of European forest understory vegetation. Ecography 44, 1311–1324 (2021).
    Google Scholar 
    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).
    Google Scholar 
    Herben, T., Klimešová, J. & Chytrý, M. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Funct. Ecol. 32, 799–808 (2018).
    Google Scholar 
    Linder, H. P. et al. Biotic modifiers, environmental modulation and species distribution models. J. Biogeogr. 39, 2179–2190 (2012).
    Google Scholar 
    Gross, N. et al. Linking individual response to biotic interactions with community structure: a trait-based framework. Funct. Ecol. 23, 1167–1178 (2009).
    Google Scholar 
    Ordonez, A. & Svenning, J.-C. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Sci. Rep. 7, 42988 (2017).ADS 
    CAS 

    Google Scholar 
    Kemppinen, J. et al. Consistent trait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 5, 458–467 (2021).
    Google Scholar 
    Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).
    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. EnviDat, https://doi.org/10.16904/envidat.228 (2018).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change. Biol. 26, 119–188 (2020).ADS 

    Google Scholar 
    Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2010).
    Google Scholar 
    Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency, European Topic Centre on Nature Protection and Biodiversity, 2004.Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675 (2020).
    Google Scholar 
    Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).
    Google Scholar 
    Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).ADS 

    Google Scholar 
    Fang, J. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, 81 (2005).
    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl. Acad. Sci. U.S.A. 114, E10937–E10946 (2017).ADS 
    CAS 

    Google Scholar 
    Gong, H. & Gao, J. Soil and climatic drivers of plant SLA (specific leaf area). Glob. Ecol. Conserv. 20, e00696 (2019).
    Google Scholar 
    Laughlin, D. C. et al. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 5, 1–12 (2021).
    Google Scholar 
    Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).ADS 
    CAS 

    Google Scholar 
    Ding, J., Travers, S. K. & Eldridge, D. J. Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. J. Veg. Sci. 32, e13095 (2021).
    Google Scholar 
    Falster, D. S. & Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 18, 337–343 (2003).
    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).ADS 
    CAS 

    Google Scholar 
    McLachlan, A. & Brown, A. C. Coastal Dune Ecosystems and Dune/Beach Interactions. In The Ecology of Sandy Shores (Elsevier), 251–271 (2006).Cui, E., Weng, E., Yan, E. & Xia, J. Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 11, 1–9 (2020).ADS 

    Google Scholar 
    Cain, S. A. Life-Forms and Phytoclimate. Bot. Rev. 16, 1–32 (1950).
    Google Scholar 
    Yu, S. et al. Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry. Biogeosciences 18, 655–667 (2021).ADS 

    Google Scholar 
    Murray, B. R., Brown, A. H. D., Dickman, C. R. & Crowther, M. S. Geographical gradients in seed mass in relation to climate. J. Biogeogr. 31, 379–388 (2004).
    Google Scholar 
    Metz, J. et al. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 98, 697–704 (2010).
    Google Scholar 
    Tao, S., Guo, Q., Li, C., Wang, Z. & Fang, J. Global patterns and determinants of forest canopy height. Ecology 97, 3265–3270 (2016).
    Google Scholar 
    Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).
    Google Scholar 
    Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970 (2020).ADS 
    CAS 

    Google Scholar 
    Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).
    Google Scholar 
    Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
    Google Scholar 
    Shan, H. et al. Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization (Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012).Chytrý, M. et al. EUNIS-ESy, version 2021-06-01, https://doi.org/10.5281/zenodo.4812736 (2021).Wood, S. N., Pya, N. & Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).MathSciNet 
    CAS 

    Google Scholar 
    Wood, S. N. Generalized Additive Models. An Introduction with R, Second Edition (CRC Press, Portland, Oregon, USA, 2017).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).
    Google Scholar 
    R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means; R package version 1.6.2-1 (2021).Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).ADS 

    Google Scholar 
    Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modelling; R package version 1.3-3 (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).Kambach, S. Habitat-specificity of climate-trait relationships in plant communities across Europe. github.com/StephanKambach, version 1.0; https://doi.org/10.5281/zenodo.7404176 (2022).Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Google Scholar 
    Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).
    Google Scholar 
    Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).ADS 

    Google Scholar 
    Saatkamp, A. et al. A research agenda for seed-trait functional ecology. N. Phytol. 221, 1764–1775 (2019).
    Google Scholar 
    Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine‐root trait variation. J. Ecol. 105, 1182–1196 (2017).
    Google Scholar 
    Weigelt, A. et al. An integrated framework of plant form and function: The belowground perspective. N. Phytol. 232, 42–59 (2021).
    Google Scholar  More

  • in

    Intra-individual variation of hen movements is associated with later keel bone fractures in a quasi-commercial aviary

    Rufener, C. et al. Keel bone fractures are associated with individual mobility of laying hens in an aviary system. Appl. Anim. Behav. Sci. 217, 48–56 (2019).
    Google Scholar 
    Rentsch, A. K., Rufener, C. B., Spadavecchia, C., Stratmann, A. & Toscano, M. J. Laying hen’s mobility is impaired by keel bone fractures and does not improve with paracetamol treatment. Appl. Anim. Behav. Sci. 216, 19–25 (2019).
    Google Scholar 
    Rodriguez-Aurrekoetxea, A. & Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. Poult. Sci. 95, 2503–2513 (2016).CAS 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).
    Google Scholar 
    Campbell, D. L. M., Talk, A. C., Loh, Z. A., Dyall, T. R. & Lee, C. Spatial cognition and range use in free-range laying hens. Animals 8, 26 (2018).
    Google Scholar 
    de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A. & van de Koppel, J. Lévy walks evolve through interaction between movement and environmental complexity. Science 1979(332), 1551–1553 (2011).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. B Biol. Sci. 365, 4099–4106 (2010).CAS 

    Google Scholar 
    Ihwagi, F. W. et al. Poaching lowers elephant path tortuosity: Implications for conservation. J. Wildl. Manag. 83, 1022–1031 (2019).
    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    Matthews, S. G., Miller, A. L., Plötz, T. & Kyriazakis, I. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Berger-Tal, O. & Saltz, D. Using the movement patterns of reintroduced animals to improve reintroduction success. Curr. Zool. 60, 515–526 (2014).
    Google Scholar 
    Stuber, E. F., Carlson, B. S. & Jesmer, B. R. Spatial personalities: A meta-analysis of consistent individual differences in spatial behavior. Behav. Ecol. https://doi.org/10.1093/BEHECO/ARAB147 (2022).Article 

    Google Scholar 
    Sirovnik, J., Würbel, H. & Toscano, M. J. Feeder space affects access to the feeder, aggression, and feed conversion in laying hens in an aviary system. Appl. Anim. Behav. Sci. 198, 75–82 (2018).
    Google Scholar 
    Sirovnik, J., Voelkl, B., Keeling, L. J., Würbel, H. & Toscano, M. J. Breakdown of the ideal free distribution under conditions of severe and low competition. Behav. Ecol. Sociobiol. 75, 1–11 (2021).
    Google Scholar 
    Becot, L., Bedere, N., Burlot, T., Coton, J. & le Roy, P. Nest acceptance, clutch, and oviposition traits are promising selection criteria to improve egg production in cage-free system. PLoS ONE 16, e0251037 (2021).CAS 

    Google Scholar 
    Thompson, M. J., Evans, J. C., Parsons, S. & Morand-Ferron, J. Urbanization and individual differences in exploration and plasticity. Behav. Ecol. 29, 1415–1425 (2018).
    Google Scholar 
    Stamps, J. & Groothuis, T. G. G. The development of animal personality: Relevance, concepts and perspectives. Biol. Rev. 85, 301–325 (2010).
    Google Scholar 
    Salinas-Melgoza, A., Salinas-Melgoza, V. & Wright, T. F. Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol. Conserv. 159, 303–312 (2013).
    Google Scholar 
    Stamps, J. A., Briffa, M. & Biro, P. A. Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim. Behav. 83, 1325–1334 (2012).
    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Biro, P. A. & Adriaenssens, B. Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. Am. Nat. 182, 621–629 (2013).
    Google Scholar 
    Henriksen, R. et al. Intra-individual behavioural variability: A trait under genetic control. Int. J. Mol. Sci. 21, 8069 (2020).CAS 

    Google Scholar 
    Rufener, C. et al. Finding hens in a haystack: Consistency of movement patterns within and across individual laying hens maintained in large groups. Sci. Rep. 8, (2018).Campbell, D. L. M., Karcher, D. M. & Siegford, J. M. Location tracking of individual laying hens housed in aviaries with different litter substrates. Appl. Anim. Behav. 184, 74–79 (2016).
    Google Scholar 
    Weeks, C. A. & Nicol, C. J. Behavioural needs, priorities and preferences of laying hens. Worlds Poult. Sci. J. 62, 296–307 (2006).
    Google Scholar 
    Hartcher, K. M. & Jones, B. The welfare of layer hens in cage and cage-free housing systems. Worlds Poult. Sci. J. 73, 767–782 (2017).
    Google Scholar 
    Zeltner, E. & Hirt, H. Effect of artificial structuring on the use of laying hen runs in a free-range system. Br. Poult. Sci. 44, 533–537 (2010).
    Google Scholar 
    Stratmann, A. et al. Modification of aviary design reduces incidence of falls, collisions and keel bone damage in laying hens. Appl. Anim. Behav. Sci. 165, 112–123 (2015).
    Google Scholar 
    Vandekerchove, D., Herdt, P., Laevens, H. & Pasmans, F. Colibacillosis in caged layer hens: Characteristics of the disease and the aetiological agent. Avian Pathol. 33, 117–125 (2004).CAS 

    Google Scholar 
    Montalcini, C. M., Voelkl, B., Gómez, Y., Gantner, M. & Toscano, M. J. Evaluation of an active LF tracking system and data processing methods for livestock precision farming in the poultry sector. Sensors 22, 659 (2022).ADS 

    Google Scholar 
    Revelle, W. Procedures for psychological, psychometric, and personality research. (2021).Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
    Google Scholar 
    Rufener, C., Baur, S., Stratmann, A. & Toscano, M. J. A reliable method to assess keel bone fractures in laying hens from radiographs using a tagged visual analogue scale. Front. Vet. Sci. 5, 124 (2018).
    Google Scholar 
    Tauson, R., Kjaer, J., Maria, G. A., Cepero, R. & Holm, K.-E. The creation of a common scoring system for the integument and health of laying hens: Applied scoring of integument and health in laying hens. Final report Health from the Laywell project. https://www.laywel.eu/web/pdf/deliverables%2031-33%20health.pdf (2005).Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, (2020).Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 85, 935–956 (2010).
    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J Stat Softw 67, (2015).Cleasby, I. R., Nakagawa, S. & Schielzeth, H. Quantifying the predictability of behaviour: Statistical approaches for the study of between-individual variation in the within-individual variance. Methods Ecol. Evol. 6, 27–37 (2015).
    Google Scholar 
    Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).
    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).
    Google Scholar 
    Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).ADS 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).
    Google Scholar 
    Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, (2022).Moinard, C. et al. Accuracy of laying hens in jumping upwards and downwards between perches in different light environments. Appl. Anim. Behav. Sci. 85, 77–92 (2004).
    Google Scholar 
    Baur, S., Rufener, C., Toscano, M. J. & Geissbühler, U. Radiographic evaluation of keel bone damage in laying hens—Morphologic and temporal observations in a longitudinal study. Front. Vet. Sci. 1, 129 (2020).
    Google Scholar 
    Cordiner, L. S. & Savory, C. J. Use of perches and nestboxes by laying hens in relation to social status, based on examination of consistency of ranking orders and frequency of interaction. Appl. Anim. Behav. Sci. 71, 305–317 (2001).
    Google Scholar 
    Rufener, C. & Makagon, M. M. Keel bone fractures in laying hens: A systematic review of prevalence across age, housing systems, and strains. J. Anim. Sci. 98, S36–S51 (2020).
    Google Scholar 
    Nasr, M. A. F., Nicol, C. J., Wilkins, L. & Murrell, J. C. The effects of two non-steroidal anti-inflammatory drugs on the mobility of laying hens with keel bone fractures. Vet. Anaesth. Analg. 42, 197–204 (2015).CAS 

    Google Scholar 
    Nasr, M., Murrell, J., Wilkins, L. J. & Nicol, C. J. The effect of keel fractures on egg-production parameters, mobility and behaviour in individual laying hens. Anim. Welf. 21, 127–135 (2012).CAS 

    Google Scholar 
    Koolhaas, J. M. & van Reenen, C. G. Animal behavior and well-being symposium: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. J. Anim. Sci. 94, 2284–2296 (2016).CAS 

    Google Scholar 
    Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 365, 4021 (2010).
    Google Scholar 
    Koolhaas, J. M., de Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31, 307–321 (2010).CAS 

    Google Scholar 
    Finkemeier, M.-A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures, and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).
    Google Scholar 
    Martin, J. G. A., Pirotta, E., Petelle, M. B. & Blumstein, D. T. Genetic basis of between-individual and within-individual variance of docility. J. Evol. Biol. 30, 796–805 (2017).CAS 

    Google Scholar 
    Prentice, P. M., Houslay, T. M., Martin, J. G. A. & Wilson, A. J. Genetic variance for behavioural ‘predictability’ of stress response. J. Evol. Biol. 33, 642–652 (2020).
    Google Scholar  More

  • in

    A report card approach to describe temporal and spatial trends in parameters for coastal seagrass habitats

    Costanza, R. et al. Twenty years of ecosystem services: How far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16. https://doi.org/10.1016/j.ecoser.2017.09.008 (2017).Article 

    Google Scholar 
    Harwell, M. A. et al. Conceptual framework for assessing ecosystem health. Integr. Environ. Assess. Manag. 15, 544–564. https://doi.org/10.1002/ieam.4152 (2019).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Roca, G. et al. Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecol. Ind. 63, 310–323. https://doi.org/10.1016/j.ecolind.2015.12.007 (2016).Article 

    Google Scholar 
    Westgate, M. J., Likens, G. E. & Lindenmayer, D. B. Adaptive management of biological systems: A review. Biol. Cons. 158, 128–139. https://doi.org/10.1016/j.biocon.2012.08.016 (2013).Article 

    Google Scholar 
    Logan, M. et al. Ecosystem health report cards: An overview of frameworks and analytical methodologies. Ecol. Indic. 113, 105834. https://doi.org/10.1016/j.ecolind.2019.105834 (2020).Article 

    Google Scholar 
    Dennison, W. C., Lookingbill, T. R., Carruthers, T. J., Hawkey, J. M. & Carter, S. L. An eye-opening approach to developing and communicating integrated environmental assessments. Front. Ecol. Environ. 5, 307–314. https://doi.org/10.1890/1540-9295(2007)5[307:AEATDA]2.0.CO;2 (2007).Article 

    Google Scholar 
    Harwell, M. A. et al. A framework for an ecosystem integrity report card: examples from south Florida show how an ecosystem report card links societal values and scientific information. Bioscience 49, 543–556. https://doi.org/10.2307/1313475 (1999).Article 

    Google Scholar 
    Collier, C. J. et al. An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay. Environ. Sustain. Indic. 7, 100042. https://doi.org/10.1016/j.indic.2020.100042 (2020).Article 

    Google Scholar 
    Coles, R. G. et al. Seagrass: Ecology, Uses and Threats (Nova Science Publishers, Inc., 2011).
    Google Scholar 
    Grech, A. et al. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ. Res. Lett. 7, 024006. https://doi.org/10.1088/1748-9326/7/2/024006 (2012).Article 
    ADS 

    Google Scholar 
    Lambert, V. M. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2021.112494 (2021).Article 

    Google Scholar 
    Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Model. Softw. 130, 104717. https://doi.org/10.1016/j.envsoft.2020.104717 (2020).Article 

    Google Scholar 
    Chartrand, K. M., Szabó, M., Sinutok, S., Rasheed, M. A. & Ralph, P. J. Living at the margins: The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts. Mar. Environ. Res. 136, 126–138. https://doi.org/10.1016/j.marenvres.2018.02.006 (2018).Article 
    CAS 

    Google Scholar 
    Chartrand, K., Bryant, C., Carter, A., Ralph, P. & Rasheed, M. Light thresholds to prevent dredging impacts on the Great Barrier Reef seagrass, Zostera muelleri spp. capricorni. Front. Mar. Sci. 3, 17. https://doi.org/10.3389/fmars.2016.00106 (2016).Article 

    Google Scholar 
    Abal, E. & Dennison, W. Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Mar. Freshwater Res. 47, 763–771. https://doi.org/10.1071/MF9960763 (1996).Article 
    CAS 

    Google Scholar 
    Dennison, W. et al. Assessing water quality with submersed aquatic vegetation: Habitat requirements as barometers of Chesapeake Bay health. Bioscience 43, 86–94. https://doi.org/10.2307/1311969 (1993).Article 

    Google Scholar 
    Carter, A. B., Collier, C., Coles, R., Lawrence, E. & Rasheed, M. A. Community-specific, “desired” states for seagrasses through cycles of loss and recovery. J. Environ. Manag. 314, 115059. https://doi.org/10.1016/j.jenvman.2022.115059 (2022).Article 

    Google Scholar 
    Kaldy, J. E., Brown, C. A. & Pacella, S. R. Carbon limitation in response to nutrient loading in an eelgrass mesocosm: Influence of water residence time. Mar. Ecol. Prog. Ser. 689, 1–17. https://doi.org/10.3354/meps14061 (2022).Article 
    CAS 

    Google Scholar 
    Carter, A. B. et al. A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area. Sci. Rep. https://doi.org/10.1038/s41598-021-01471-4 (2021).Article 

    Google Scholar 
    Kenworthy, W. J., Wyllie-Echeverria, S., Coles, R. G., Pergent, G. & Pergent-Martini, C. Seagrasses: Biology, Ecology and Conservation 595–623 (Springer, 2006).
    Google Scholar 
    Hayes, M. A. et al. The differential importance of deep and shallow seagrass to nekton assemblages of the great barrier reef. Diversity 12, 292. https://doi.org/10.3390/d12080292 (2020).Article 

    Google Scholar 
    Marsh, H., O’Shea, T. J. & Reynolds, J. E. III. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).Book 

    Google Scholar 
    Scott, A. L. et al. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Front. Plant Sci. 9, 1–10. https://doi.org/10.3389/fpls.2018.00127 (2018).Article 

    Google Scholar 
    York, P. H., Macreadie, P. I. & Rasheed, M. A. Blue carbon stocks of Great Barrier Reef deep-water seagrasses. Biol. Lett. 14, 20180529. https://doi.org/10.1098/rsbl.2018.0529 (2018).Article 
    CAS 

    Google Scholar 
    Unsworth, R. K., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46. https://doi.org/10.1016/j.marpolbul.2015.08.016 (2015).Article 
    CAS 

    Google Scholar 
    Madden, C. J., Rudnick, D. T., McDonald, A. A., Cunniff, K. M. & Fourqurean, J. W. Ecological indicators for assessing and communicating seagrass status and trends in Florida Bay. Ecol. Ind. 9, S68–S82. https://doi.org/10.1016/j.ecolind.2009.02.004 (2009).Article 
    CAS 

    Google Scholar 
    York, P. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: Annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167. https://doi.org/10.1038/srep13167 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Rasheed, M. A., McKenna, S. A., Carter, A. B. & Coles, R. G. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 83, 491–499. https://doi.org/10.1016/j.marpolbul.2014.02.013 (2014).Article 
    CAS 

    Google Scholar 
    Smith, T., Chartrand, K., Wells, J., Carter, A. & Rasheed, M. Seagrasses in Port Curtis and Rodds Bay 2019 Annual long-term monitoring and whole port survey. 71, https://www.tropwater.com/wp-content/uploads/2022/10/20-64-Annual-Seagrass-monitoring-in-Port-Curtis-and-Rodds-Bay-2019.pdf (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/64, James Cook University, Cairns, 2020).Ruaro, R., Gubiani, E. A., Hughes, R. M. & Mormul, R. P. Global trends and challenges in multimetric indices of biological condition. Ecol. Indic. 110, 105862. https://doi.org/10.1016/j.ecolind.2019.105862 (2020).Article 

    Google Scholar 
    Kilminster, K. et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534, 97–109. https://doi.org/10.1016/j.scitotenv.2015.04.061 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Collier, C. J., Chartrand, K., Honchin, C., Fletcher, A. & Rasheed, M. Light thresholds for seagrasses of the GBR: a synthesis and guiding document. Including knowledge gaps and future priorities. 41, http://nesptropical.edu.au/wp-content/uploads/2016/05/NESP-TWQ-3.3-FINAL-REPORTa.pdf (Report to the National Environmental Science Programme, Cairns, 2016).Bryant, C., Jarvis, J. C., York, P. & Rasheed, M. Gladstone Healthy Harbour Partnership Pilot Report Card; ISP011: Seagrass., 74, https://researchonline.jcu.edu.au/44549/ (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 14/53, James Cook University, Cairns, 2014).McIntosh, E. J. et al. Designing report cards for aquatic health with a whole-of-system approach: Gladstone Harbour in the Great Barrier Reef. Ecol. Ind. 102, 623–632. https://doi.org/10.1016/j.ecolind.2019.03.012 (2019).Article 

    Google Scholar 
    Birch, W. & Birch, M. Succession and pattern of tropical intertidal seagrasses in Cockle Bay, Queensland, Australia: A decade of observations. Aquat. Bot. 19, 343–367. https://doi.org/10.1016/0304-3770(84)90048-2 (1984).Article 

    Google Scholar 
    Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: The role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45. https://doi.org/10.1016/j.jembe.2004.03.022 (2004).Article 

    Google Scholar 
    Christiaen, B., Lehrter, J., Goff, J. & Cebrian, J. Functional implications of changes in seagrass species composition in two shallow coastal lagoons. Mar. Ecol. Prog. Ser. 557, 11. https://doi.org/10.3354/meps11847 (2016).Article 

    Google Scholar 
    Hyndes, G. A., Kendrick, A. J., MacArthur, L. D. & Stewart, E. Differences in the species- and size-composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure. Mar. Biol. 142, 1195–1206. https://doi.org/10.1007/s00227-003-1010-2 (2003).Article 

    Google Scholar 
    Ray, B. R., Johnson, M. W., Cammarata, K. & Smee, D. L. Changes in seagrass species composition in Northwestern Gulf of Mexico Estuaries: Effects on associated seagrass Fauna. PLoS ONE 9, e107751. https://doi.org/10.1371/journal.pone.0107751 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 11. https://doi.org/10.1016/j.coastaleng.2013.11.005 (2014).Article 

    Google Scholar 
    Lavery, P. S., Mateo, M. -Á., Serrano, O. & Rozaimi, M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8, e73748. https://doi.org/10.1371/journal.pone.0073748 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Coles, R. G. et al. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuar. Coast. Shelf Sci. 153, A1–A12. https://doi.org/10.1016/j.ecss.2014.07.020 (2015).Article 
    ADS 

    Google Scholar 
    Smith, T. M., Reason, C., McKenna, S. & Rasheed, M. A. Seagrasses in Port Curtis and Rodds Bay 2020. Annual long-term monitoring. 54, https://www.dropbox.com/s/f5yb6bjjpbvc1f2/21%2016%20Smith%20et%20al%202021%20Annual%20Seagrass%20monitoring%20in%20Port%20Curtis%20and%20Rodds%20Bay%202020_Final%20version.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/16, James Cook University, Cairns, 2021).Windle, J., Rolfe, J. & Pascoe, S. Assessing recreational benefits as an economic indicator for an industrial harbour report card. Ecol. Ind. 80, 224–231. https://doi.org/10.1016/j.ecolind.2017.05.036 (2017).Article 

    Google Scholar 
    Scott, A. & Rasheed, M. A. Port of Karumba long-term annual seagrass monitoring 2020. 28, https://www.dropbox.com/s/fwtys67ljssbp9t/21%2005%20Scott%20%26%20Rasheed%202021%20FINAL%202020%20Karumba%20Long-term%20seagrass%20monitoring%20report%20low%20res.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/05, James Cook University, Cairns, 2021).
    Google Scholar 
    Smith, T., Reason, C., McKenna, S. & Rasheed, M. Port of Weipa long‐term seagrass monitoring program, 2000 ‐ 2020. 49, https://www.dropbox.com/s/ghqy3bmn9p8jbsi/20%2058%20Smith%20et%20al%202020%20Port%20of%20Weipa%20Annual%20Long%20Term%20Seagrass%20Monitoring%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/58, James Cook University, Cairns, 2020).Reason, C. L., Smith, T. M. & Rasheed, M. A. Seagrass habitat of Cairns Harbour and Trinity Inlet: Cairns Shipping Development Program and Annual Monitoring Report 2020. 54, https://www.dropbox.com/s/m7xtrytjjip3a42/21%2009%20Final_Cairns%20Harbour%20Seagrass%20Monitoring%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/09, James Cook University, Cairns, 2021).Reason, C. L., York, P. H. & Rasheed, M. A. Seagrass habitat of Mourilyan Harbour: Annual monitoring report – 2020. 36, https://www.dropbox.com/s/kg3toxmlifh62tg/21%2010%20Mourilyan%20Harbour%20seagrass%20monitoring%20report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/10, James Cook University, Cairns, 2021).McKenna, S., Wilkinson, J., Chartrand, K. & Van De Wetering, C. Port of Townsville Seagrass Monitoring Program: 2020. 62, https://www.dropbox.com/s/n8nsx8ts93fgr36/21%2014%20Final%20POTL%20Annual%20Seagrass%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/14, James Cook University, Cairns, 2021).McKenna, S. A., van de Wetering, C., Wilkinson, J. & Rasheed, M. A. Port of Abbot Point long-term seagrass monitoring program: 2020. 35, https://www.dropbox.com/s/l5a5l7pkikcjrfb/21%2025%20McKenna%20et%20al%20Port%20of%20Abbot%20Point%20Long-term%20seagrass%20Monitoring%20report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/25, James Cook University, Cairns, 2021).York, P. H. & Rasheed, M. A. Annual Seagrass Monitoring in the Mackay-Hay Point Region – 2020. 42, https://www.dropbox.com/s/u45yezm3984lw1a/21%2020%20Hay%20Point%20and%20Mackay%20Seagrass%20Final%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/20, James Cook University, Cairns, 2021).van de Wetering, C., Carter, A. B. & Rasheed, M. A. Mackay-Whitsunday-Isaac Seagrass Monitoring 2017–2020: Marine Inshore South Zone. 30, https://researchonline.jcu.edu.au/70923/ (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/06, James Cook University, Cairns, 2021).Carter, A. B. et al. Torres Strait Seagrass 2021 Report Card. 76, https://researchonline.jcu.edu.au/70797/ (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/13, James Cook University, Cairns, 2021).Gladstone Ports Corporation. Port of Gladstone. https://www.gpcl.com.au/port-of-gladstone (2022).Sawynok, B., Venables, B. & Pinto, U. Incorporating a fish recruitment indicator into a health report card: A case study from Gladstone Harbour, Australia. Ecol. Indic. 115, 106329. https://doi.org/10.1016/j.ecolind.2020.106329 (2020).Article 

    Google Scholar 
    Pascoe, S. et al. Developing a social, cultural and economic report card for a regional industrial harbour. PLoS ONE 11, e0148271. https://doi.org/10.1371/journal.pone.0148271 (2016).Article 
    CAS 

    Google Scholar 
    Chartrand, K. M., Bryant, C. V., Sozou, A., Ralph, P. J. & Rasheed, M. A. Final Report: Deep‐water seagrass dynamics ‐ Light requirements, seasonal change and mechanisms of recruitment. 67, https://www.dropbox.com/sh/mo8dcq1322qv5c3/AAAgu3lEnJsLgxdawXaOltu-a/2017?dl=0&preview=17+16+Final+Report+Deep-water+seagrass+dynamics.pdf&subfolder_nav_tracking=1 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 17/16, James Cook University, Cairns, 2017).Kirkman, H. Decline of seagrass in northern areas of Moreton Bay, Queensland. Aquat. Bot. 5, 63–76. https://doi.org/10.1016/0304-3770(78)90047-5 (1978).Article 

    Google Scholar 
    Mellors, J. E. An evaluation of a rapid visual technique for estimating seagrass biomass. Aquat. Bot. 42, 67–73. https://doi.org/10.1016/0304-3770(91)90106-F (1991).Article 

    Google Scholar 
    Emmer, I. et al. Methodology for tidal wetland and seagrass restoration VM0033, version 2.0. https://verra.org/wp-content/uploads/2018/03/VM0033-Methodology-for-Tidal-Wetland-and-Seagrass-Restoration-v2.0-30Sep21-1.pdf (2021). More

  • in

    Agricultural spider decline: long-term trends under constant management conditions

    Waters, C. N. et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 351, 137. https://doi.org/10.1126/science.aad2622 (2016).Article 
    CAS 

    Google Scholar 
    Thomas, J. A. & Morris, M. G. Patterns, mechanisms and rates of extinction among invertebrates in the United Kingdom. Phil. Trans. R. Soc. Lond. B 344, 47–54 (1994).Article 
    ADS 

    Google Scholar 
    Thomas, J. A. et al. Comparative losses of british butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881. https://doi.org/10.1126/science.1095046 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420. https://doi.org/10.1126/science.aax9931 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, 21. https://doi.org/10.1371/journal.pone.0185809 (2017).Article 
    CAS 

    Google Scholar 
    Barmentlo, S. H. et al. Experimental evidence for neonicotinoid driven decline in aquatic emerging insects. Proc. Natl. Acad. Sci. USA 118, 8. https://doi.org/10.1073/pnas.2105692118j1of8 (2021).Article 

    Google Scholar 
    Ehlers, B. K., Bataillon, T. & Damgaard, C. F. Ongoing decline in insect-pollinated plants across Danish grasslands. Biol. Lett. 17, 20210493. https://doi.org/10.1098/rsbl.2021.0493 (2021).Article 

    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674. https://doi.org/10.1038/s41586-019-1684-3 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426. https://doi.org/10.1016/j.biocon.2020.108426 (2020).Article 

    Google Scholar 
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 6. https://doi.org/10.1016/j.biocon.2019.108327 (2020).Article 

    Google Scholar 
    Jactel, H. et al. Insect decline: immediate action is needed. C. R. Biol. 343, 267–293. https://doi.org/10.5802/crbiol.37 (2020).Article 

    Google Scholar 
    Owens, A. C. S. et al. Light pollution is a driver of insect declines. Biol. Conserv. 241, 9. https://doi.org/10.1016/j.biocon.2019.108259 (2020).Article 

    Google Scholar 
    Sanchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27. https://doi.org/10.1016/j.biocon.2019.01.020 (2019).Article 

    Google Scholar 
    Michalko, R., Pekar, S. & Entling, M. H. An updated perspective on spiders as generalist predators in biological control. Oecologia https://doi.org/10.1007/s00442-018-4313-1 (2018).Article 

    Google Scholar 
    Nyffeler, M., Sterling, W. & Dean, D. How spiders make a living. Environ. Entomol. 23, 1357–1367 (1994).Article 

    Google Scholar 
    Branco, V. V. & Cardoso, P. An expert-based assessment of global threats and conservation measures for spiders. Glob. Ecol. Conserv. 24, 15. https://doi.org/10.1016/j.gecco.2020.e01290 (2020).Article 

    Google Scholar 
    Gobbi, M., Fontaneto, D. & De Bernardi, F. Influence of climate changes on animal communities in space and time: The case of spider assemblages along an alpine glacier foreland. Glob. Change Biol. 12, 1985–1992. https://doi.org/10.1111/j.1365-2486.2006.01236.x (2006).Article 
    ADS 

    Google Scholar 
    Mammola, S., Goodacre, S. L. & Isaia, M. Climate change may drive cave spiders to extinction. Ecography 41, 233–243. https://doi.org/10.1111/ecog.02902 (2018).Article 

    Google Scholar 
    Potapov, A. M. et al. Functional losses in ground spider communities due to habitat structure degradation under tropical land-use change. Ecology 101, e02957. https://doi.org/10.1002/ecy.2957 (2020).Article 

    Google Scholar 
    Kormann, U. et al. Local and landscape management drive trait-mediated biodiversity of nine taxa on small grassland fragments. Divers. Distrib. 21, 1204–1217. https://doi.org/10.1111/ddi.12324 (2015).Article 

    Google Scholar 
    Hogg, B. N. & Daane, K. M. Ecosystem services in the face of invasion: the persistence of native and nonnative spiders in an agricultural landscape. Ecol. Appl. 21, 565–576. https://doi.org/10.1890/10-0496.1 (2011).Article 

    Google Scholar 
    Galle, R., Happe, A. K., Baillod, A. B., Tscharntke, T. & Batary, P. Landscape configuration, organic management, and within-field position drive functional diversity of spiders and carabids. J. Appl. Ecol. 56, 63–72. https://doi.org/10.1111/1365-2664.13257 (2019).Article 

    Google Scholar 
    Pekár, S. Spiders (Araneae) in the pesticide world: An ecotoxicological review. Pest. Manage. Sci. 68, 1438–1446. https://doi.org/10.1002/ps.3397 (2012).Article 
    CAS 

    Google Scholar 
    Bommarco, R., Miranda, F., Bylund, H. & Bjorkman, C. Insecticides suppress natural enemies and increase pest damage in cabbage. J. Econ. Entomol. 104, 782–791. https://doi.org/10.1603/ec10444 (2011).Article 
    CAS 

    Google Scholar 
    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nature Ecol. Evol. 4, 384–392. https://doi.org/10.1038/s41559-020-1111-z (2020).Article 

    Google Scholar 
    Rix, M. G. et al. Where have all the spiders gone? The decline of a poorly known invertebrate fauna in the agricultural and arid zones of southern Australia. Austral Entomol. 56, 14–22. https://doi.org/10.1111/aen.12258 (2017).Article 

    Google Scholar 
    Nyffeler, M. & Bonte, D. Where have all the spiders gone? Observations of a dramatic population density decline in the once very abundant garden spider, Araneus diadematus (Araneae: Araneidae), in the Swiss Midland. Insects 11, 12. https://doi.org/10.3390/insects11040248 (2020).Article 

    Google Scholar 
    Bowden, J. J., Hansen, O. L. P., Olsen, K., Schmidt, N. M. & Høye, T. T. Drivers of inter-annual variation and long-term change in High-Arctic spider species abundances. Polar Biol. 41, 1635–1649. https://doi.org/10.1007/s00300-018-2351-0 (2018).Article 

    Google Scholar 
    Samu, F., Németh, J. & Kiss, B. Assessment of the efficiency of a hand-held suction device for sampling spiders: Improved density estimation or oversampling?. Ann. Appl. Biol. 130, 371–378. https://doi.org/10.1111/j.1744-7348.1997.tb06840.x (1997).Article 

    Google Scholar 
    Nentwig, W. et al. Spiders of Europe. Version 07.2022. https://www.araneae.nmbe.ch (2022).Heimer, S. & Nentwig, W. Spinnen Mitteleuropas (Paul Parey, 1991).
    Google Scholar 
    Samu, F. & Szinetár, C. On the nature of agrobiont spiders. J. Arachnol. 30, 389–402. https://doi.org/10.1636/0161-8202(2002)030[0389:Otnoas]2.0.Co;2 (2002).Article 

    Google Scholar 
    Buchar, J. & Růžička, V. Catalogue of Spiders of the Czech Republic (Peres, 2002).
    Google Scholar 
    Samu, F. A general data model for databases in experimental animal ecology. Acta Zool. Acad. Sci. Hung. 45, 273–290 (1999).
    Google Scholar 
    Laliberté, E., Legendre, P. & Shipley, B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. R package version 1.0–12. (2014).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 
    MATH 

    Google Scholar 
    Vegan. Community Ecology Package. R package Version 2.5–6. The Comprehensive R Archive Network (2019).ter Braak, C. J. F. & Smilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.1x. (Microcomputer Power, 2018).McRae, L., Deinet, S. & Freeman, R. The diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator. PLoS ONE 12, e0169156. https://doi.org/10.1371/journal.pone.0169156 (2017).Article 
    CAS 

    Google Scholar 
    Toju, H. & Baba, Y. G. DNA metabarcoding of spiders, insects, and springtails for exploring potential linkage between above- and below-ground food webs. Zool. Lett. 4, 12. https://doi.org/10.1186/s40851-018-0088-9 (2018).Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406. https://doi.org/10.1126/science.1251817 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. USA 115, E10397–E10406. https://doi.org/10.1073/pnas.1722477115 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Harwood, J. D., Sunderland, K. D. & Symondson, W. O. C. Monoclonal antibodies reveal the potential of the tetragnathid spider Pachygnatha degeeri (Araneae: Tetragnathidae) as an aphid predator. Bull. Entomol. Res. 95, 161–167. https://doi.org/10.1079/BER2004346 (2005).Article 
    CAS 

    Google Scholar 
    Samu, F., Beleznai, O. & Tholt, G. A potential spider natural enemy against virus vector leafhoppers in agricultural mosaic landscapes: Corroborating ecological and behavioral evidence. Biol. Control. 67, 390–396. https://doi.org/10.1016/j.biocontrol.2013.08.016 (2013).Article 

    Google Scholar 
    Biteniekyté, M. & Relys, V. Epigeic spider communities of a peat bog and adjacent habitats. Rev. Iber. Aracnol. 15, 81–87 (2008).
    Google Scholar 
    Michalko, R., Kosulic, O., Hula, V. & Surovcova, K. Niche differentiation of two sibling wolf spider species, Pardosa lugubris and Pardosa alacris, along a canopy openness gradient. J. Arachnol. 44, 46–51 (2016).Article 

    Google Scholar 
    Nyffeler, M. & Birkhofer, K. An estimated 400–800 million tons of prey are annually killed by the global spider community. Naturwissenschaften 104, 30. https://doi.org/10.1007/s00114-017-1440-1 (2017).Article 
    CAS 

    Google Scholar 
    Sohlström, E. H. et al. Future climate and land-use intensification modify arthropod community structure. Agric. Ecosyst. Environ. 327, 107830. https://doi.org/10.1016/j.agee.2021.107830 (2022).Article 
    CAS 

    Google Scholar 
    Sallé, A. et al. Climate change alters temperate forest canopies and indirectly reshapes arthropod communities. Front. For. Glob. Change 4, 710854 (2021).Article 

    Google Scholar 
    Høye, T. T. et al. Nonlinear trends in abundance and diversity and complex responses to climate change in Arctic arthropods. Proc. Natl. Acas. Sci. USA 118, e2002557117 (2021).Article 

    Google Scholar 
    Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. Landscape perspectives on agricultural intensification and biodiversity: Ecosystem service management. Ecol. Lett. 8, 857–874. https://doi.org/10.1111/j.1461-0248.2005.00782.x (2005).Article 

    Google Scholar 
    Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G. & Tscharntke, T. Does conservation on farmland contribute to halting the biodiversity decline?. Trends Ecol. Evol. 26, 474–481. https://doi.org/10.1016/j.tree.2011.05.009 (2011).Article 

    Google Scholar 
    Swinbank, A. The European Union’s Common Agricultural Policy (CAP) The New Palgrave Dictionary of Economics 1–9 (Palgrave Macmillan, 2016).
    Google Scholar 
    Wissinger, S. Cyclic colonization in predictably ephemeral habitats: A template for biological control in annual crop systems. Biol. Control 10, 4–15 (1997).Article 

    Google Scholar 
    Samu, F., Szita, É. & Botos, E. Short- and longer-term colonization of alfalfa by spiders: A case study into the succession of perennial fields. In European Arachnology 2008 (eds Nentwig, W. et al.) 153–163 (Natural History Museum, 2010).
    Google Scholar 
    Samu, F., Horváth, A., Neidert, D., Botos, E. & Szita, É. Metacommunities of spiders in grassland habitat fragments of an agricultural landscape. Basic Appl. Ecol. 31, 92–103. https://doi.org/10.1016/j.baae.2018.07.009 (2018).Article 

    Google Scholar  More

  • in

    Asynchrony in coral community structure contributes to reef-scale community stability

    Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).
    Google Scholar 
    Elahi, R. et al. Recent trends in local-scale marine biodiversity reflect community structure and human impacts. Curr. Biol. 25, 1938–1943 (2015).CAS 

    Google Scholar 
    Harley, C. D. G. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).ADS 
    CAS 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919–925 (2013).ADS 

    Google Scholar 
    Bellwood, D. R., Hughes, T. P., Folke, C. & Nyström, M. Confronting the coral reef crisis. Nature 429, 827–833 (2004).ADS 
    CAS 

    Google Scholar 
    Moreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).ADS 
    CAS 

    Google Scholar 
    Newman, E. A. Disturbance ecology in the Anthropocene. Front. Ecol. Evol. 7, 147 (2019).
    Google Scholar 
    Mittelbach, G. G. et al. What is the observed relationship between species richness and productivity?. Ecology 82, 2381–2396 (2001).
    Google Scholar 
    van Nes, E. H. & Scheffer, M. Implications of spatial heterogeneity for catastrophic regime shifts in ecosystems. Ecology 86, 1797–1807 (2005).
    Google Scholar 
    Tylianakis, J. M. et al. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. Plos Biol. 6, e122 (2008).
    Google Scholar 
    Loreau, M. et al. In Metacommunities: Spatial Dynamics and Ecological Communities (eds Holyoak, M. et al.) (The University of Chicago Press, 2005).
    Google Scholar 
    Loreau, M. From Populations to Ecosystems (Princeton University Press, 2010). https://doi.org/10.1515/9781400834167.vii.Book 

    Google Scholar 
    Moreira, E. F., Boscolo, D. & Viana, B. F. Spatial heterogeneity regulates plant-pollinator networks across multiple landscape scales. PLoS ONE 10, e0123628 (2015).
    Google Scholar 
    Costanza, J. K., Moody, A. & Peet, R. K. Multi-scale environmental heterogeneity as a predictor of plant species richness. Landsc. Ecol. 26, 851–864 (2011).
    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 

    Google Scholar 
    Nyström, M., Graham, N. A. J., Lokrantz, J. & Norström, A. V. Capturing the cornerstones of coral reef resilience: Linking theory to practice. Coral Reefs 27, 795–809 (2008).ADS 

    Google Scholar 
    Virah-Sawmy, M., Gillson, L. & Willis, K. J. How does spatial heterogeneity influence resilience to climatic changes? Ecological dynamics in southeast Madagascar. Ecol. Monogr. 79, 557–574 (2009).
    Google Scholar 
    Wilson, D. S. Complex interactions in metacommunities, with implications for biodiversity and higher levels of selection. Ecology 73, 1984–2000 (1992).
    Google Scholar 
    Leibold, M. A. et al. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613 (2004).
    Google Scholar 
    Briggs, C. J. & Hoopes, M. F. Stabilizing effects in spatial parasitoid–host and predator–prey models: A review. Theor. Popul. Biol. 65, 299–315 (2004).MATH 

    Google Scholar 
    Wang, S., Haegeman, B. & Loreau, M. Dispersal and metapopulation stability. PeerJ 3, e1295 (2015).
    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Loreau, M., Mouquet, N. & Gonzalez, A. Biodiversity as spatial insurance in heterogeneous landscapes. Proc. Natl. Acad. Sci. 100, 12765–12770 (2003).ADS 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. 96, 1463–1468 (1999).ADS 
    CAS 

    Google Scholar 
    Bouvier, T. et al. Contrasted effects of diversity and immigration on ecological insurance in marine bacterioplankton communities. PLoS ONE 7, e37620 (2012).ADS 
    CAS 

    Google Scholar 
    Hammond, M., Loreau, M., Mazancourt, C. & Kolasa, J. Disentangling local, metapopulation, and cross-community sources of stabilization and asynchrony in metacommunities. Ecosphere 11, e03078 (2020).
    Google Scholar 
    Lamy, T., Legendre, P., Chancerelle, Y., Siu, G. & Claudet, J. Understanding the spatio-temporal response of coral reef fish communities to natural disturbances: Insights from beta-diversity decomposition. PLoS ONE 10, e0138696 (2015).
    Google Scholar 
    Lamy, T. et al. Species insurance trumps spatial insurance in stabilizing biomass of a marine macroalgal metacommunity. Ecology 100, e02719 (2019).
    Google Scholar 
    Stier, A. C., Shelton, A. O., Samhouri, J. F., Feist, B. E. & Levin, P. S. Fishing, environment, and the erosion of a population portfolio. Ecosphere https://doi.org/10.1002/ecs2.3283 (2020).Article 

    Google Scholar 
    Burgess, S. C. et al. Beyond connectivity: How empirical methods can quantify population persistence to improve marine protected-area design. Ecol. Appl. 24, 257–270 (2014).
    Google Scholar 
    Saenz-Agudelo, P., Jones, G. P., Thorrold, S. R. & Planes, S. Connectivity dominates larval replenishment in a coastal reef fish metapopulation. Proc. R. Soc. B Biol. Sci. 278, 2954–2961 (2011).
    Google Scholar 
    Wood, S., Paris, C. B., Ridgwell, A. & Hendy, E. J. Modelling dispersal and connectivity of broadcast spawning corals at the global scale. Glob. Ecol. Biogeogr. 23, 1–11 (2014).
    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: From concept to measurement and application. Biol. Rev. https://doi.org/10.1111/brv.12756 (2021).Article 

    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: Towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).
    Google Scholar 
    Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).
    Google Scholar 
    Loreau, M. & de Mazancourt, C. Species synchrony and its drivers: Neutral and nonneutral community dynamics in fluctuating environments. Am. Nat. 172, E48–E66 (2008).
    Google Scholar 
    Loreau, M. & Mazancourt, C. Biodiversity and ecosystem stability: A synthesis of underlying mechanisms. Ecol. Lett. 16, 106–115 (2013).
    Google Scholar 
    Gross, K. et al. Species richness and the temporal stability of biomass production: A new analysis of recent biodiversity experiments. Am. Nat. 183, 1–12 (2014).
    Google Scholar 
    Sullaway, G. H., Shelton, A. O. & Samhouri, J. F. Synchrony erodes spatial portfolios of an anadromous fish and alters availability for resource users. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13575 (2021).Article 

    Google Scholar 
    Adjeroud, M., Augustin, D., Galzin, R. & Salvat, B. Natural disturbances and interannual variability of coral reef communities on the outer slope of Tiahura (Moorea, French Polynesia): 1991 to 1997. Mar. Ecol. Prog. Ser. 237, 121–131 (2002).ADS 

    Google Scholar 
    Adjeroud, M. et al. Recurrent disturbances, recovery trajectories, and resilience of coral assemblages on a South Central Pacific reef. Coral Reefs 28, 775–780 (2009).ADS 

    Google Scholar 
    Pratchett, M. S., Trapon, M., Berumen, M. L. & Chong-Seng, K. Recent Disturbances Augment Community Shifts in Coral Assemblages in Moorea, French Polynesia (SpringerLink, 2011). https://doi.org/10.1007/s00338-010-0678-2.Book 

    Google Scholar 
    Kayal, M. et al. Predator crown-of-thorns starfish (Acanthaster planci) outbreak, mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS ONE 7, e47363 (2012).ADS 
    CAS 

    Google Scholar 
    McWilliam, M., Pratchett, M. S., Hoogenboom, M. O. & Hughes, T. P. Deficits in functional trait diversity following recovery on coral reefs. Proc. R. Soc. B 287, 20192628 (2020).
    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 

    Google Scholar 
    Penin, L., Adjeroud, M., Schrimm, M. & Lenihan, H. S. High spatial variability in coral bleaching around Moorea (French Polynesia): Patterns across locations and water depths. C. R. Biol. 330, 171–181 (2007).
    Google Scholar 
    Adam, T. C. et al. Herbivory, connectivity, and ecosystem resilience: Response of a coral reef to a large-scale perturbation. PLoS ONE 6, e23717 (2011).ADS 
    CAS 

    Google Scholar 
    Edmunds, P. et al. Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar. Ecol. Prog. Ser. 608, 297–306 (2019).ADS 

    Google Scholar 
    Pérez-Rosales, G. et al. Documenting decadal disturbance dynamics reveals archipelago-specific recovery and compositional change on Polynesian reefs. Mar. Pollut. Bull. 170, 112659 (2021).
    Google Scholar 
    Bruno, J. F. & Selig, E. R. Regional decline of coral cover in the Indo-Pacific: Timing, extent, and subregional comparisons. PLoS ONE 2, e711 (2007).ADS 

    Google Scholar 
    Jackson, J. B. C. et al. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland (2014)Edmunds, P. J. Implications of high rates of sexual recruitment in driving rapid reef recovery in Mo’orea, French Polynesia. Sci. Rep. 8, 16615 (2018).ADS 

    Google Scholar 
    Burgess, S. C., Johnston, E. C., Wyatt, A. S. J., Leichter, J. J. & Edmunds, P. J. Response diversity in corals: Hidden differences in bleaching mortality among cryptic Pocillopora species. Ecology https://doi.org/10.1002/ecy.3324 (2021).Article 

    Google Scholar 
    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci. Rep. 8, 7338 (2018).ADS 

    Google Scholar 
    Guest, J. R. et al. A framework for identifying and characterising coral reef “oases” against a backdrop of degradation. J. Appl. Ecol. 55, 2865–2875 (2018).
    Google Scholar 
    Hench, J. L., Leichter, J. J. & Monismith, S. G. Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol. Oceanogr. 53, 2681–2694 (2008).ADS 

    Google Scholar 
    Barry, J. P. & Dayton, P. K. Ecological heterogeneity. Ecol. Stud. https://doi.org/10.1007/978-1-4612-3062-5_14 (1991).Article 

    Google Scholar 
    Edmunds, P. & Bruno, J. The importance of sampling scale in ecology: Kilometer-wide variation in coral reef communities. Mar. Ecol. Prog. Ser. 143, 165–171 (1996).ADS 

    Google Scholar 
    Lough, J. M., Anderson, K. D. & Hughes, T. P. Increasing thermal stress for tropical coral reefs: 1871–2017. Sci. Rep. 8, 6079 (2018).ADS 
    CAS 

    Google Scholar 
    van Oppen, M. J. H. & Lough, J. M. Coral bleaching, patterns, processes, causes and consequences. Ecol. Stud. https://doi.org/10.1007/978-3-319-75393-5_14 (2018).Article 

    Google Scholar 
    Monismith, S. G. Hydrodynamics of coral reefs. Annu. Rev. Fluid Mech. 39, 37–55 (2007).ADS 
    MATH 

    Google Scholar 
    Edmunds P. Of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Long-term Population and Community Dynamics: Corals, ongoing since 2005. knb-lter-mcr.4.33 https://doi.org/10.6073/pasta/1f05f1f52a2759dc096da9c24e88b1e8 (2020).Cowles, J. et al. Resilience: insights from the U.S. Long-term ecological research network. Ecosphere 12, e03434 (2021).
    Google Scholar 
    Beijbom, O. et al. Towards automated annotation of benthic survey images: Variability of human experts and operational modes of automation. PLoS ONE 10, e0130312 (2015).
    Google Scholar 
    Veron, J. E. N. Corals of the world, v. 1–3. Australian Institute of Marine Science (2000)Washburn, L of Moorea Coral Reef LTER. MCR LTER: Coral Reef: Ocean Currents and Biogeochemistry: salinity, temperature and current at CTD and ADCP mooring FOR01 from 2004 ongoing. knb-lter-mcr.30.36doi:10.6073/pasta/124d19950c5234bf1937661989dcced7 (2021).Safaie, A. et al. High frequency temperature variability reduces the risk of coral bleaching. Nat. Commun. 9, 1671 (2018).ADS 

    Google Scholar 
    Dean, R. G. & Dalrymple, R. A. Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering Vol. 2 (World Scientific, 1991).
    Google Scholar 
    Carroll, A., Harrison, P. & Adjeroud, M. Sexual reproduction of Acropora reef corals at Moorea, French Polynesia. Coral Reefs 25, 93–97 (2006).ADS 

    Google Scholar 
    Han, X., Adam, T. C., Schmitt, R. J., Brooks, A. J. & Holbrook, S. J. Response of herbivore functional groups to sequential perturbations in Moorea, French Polynesia. Coral Reefs 35, 999–1009 (2016).ADS 

    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Austral Ecol. 18, 117–143 (1993).
    Google Scholar 
    Clarke, K. R., Somerfield, P. J. & Chapman, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J. Exp. Mar. Biol. Ecol. 330, 55–80 (2006).
    Google Scholar 
    RStudio Team. RStudio: Integrated development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/ (2021).Oksanen J. et al. vegan: Community ecology package. R package version 2.5–7. https://CRAN.R-project.org/package=vegan (2020).Wickham, et al. Welcome to the Tidyverse. J. Open Source Softw. 4(43), 1686. https://doi.org/10.21105/joss.01686 (2019).Article 
    ADS 

    Google Scholar 
    Corlett, R. T. The Anthropocene concept in ecology and conservation. Trends Ecol. Evol. 30, 36–41 (2015).
    Google Scholar 
    Williams, G. J. et al. Coral reef ecology in the Anthropocene. Funct. Ecol. 33, 1014–1022 (2019).
    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 

    Google Scholar 
    Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B Biol. Sci. 365, 2019–2024 (2010).
    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).ADS 
    CAS 

    Google Scholar 
    Grman, E., Lau, J. A., Schoolmaster, D. R. & Gross, K. L. Mechanisms contributing to stability in ecosystem function depend on the environmental context. Ecol. Lett. 13, 1400–1410 (2010).
    Google Scholar 
    Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).ADS 
    CAS 

    Google Scholar 
    Doak, D. F. et al. The statistical inevitability of stability-diversity relationships in community ecology. Am. Nat. 151, 264–276 (1998).CAS 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: Patterns and processes. Ecol. Lett. 12, 443–451 (2009).
    Google Scholar 
    Connell, J. H. Diversity in tropical rain forests and coral reefs author. Science 199, 1302–1310 (1978).ADS 
    CAS 

    Google Scholar 
    Plaisance, L., Caley, M. J., Brainard, R. E. & Knowlton, N. The diversity of coral reefs: What are we missing?. PLoS ONE 6, e25026 (2011).ADS 
    CAS 

    Google Scholar 
    Williams, G. J. et al. Biophysical drivers of coral trophic depth zonation. Mar. Biol. 165, 60 (2018).
    Google Scholar 
    Moritz, C. et al. Long-term monitoring of benthic communities reveals spatial determinants of disturbance and recovery dynamics on coral reefs. Mar. Ecol. Prog. Ser. 672, 141–152 (2021).ADS 

    Google Scholar 
    Dietzel, A. et al. The spatial footprint and patchiness of large scale disturbances on coral reefs. Global Change Biol. 27, 4825–4838 (2021).CAS 

    Google Scholar 
    Leichter, J. et al. Biological and physical interactions on a tropical island coral reef: Transport and retention processes on Moorea, French Polynesia. Oceanography 26, 52–63 (2011).
    Google Scholar 
    Porter, J. W. et al. Population trends among Jamaican reef corals. Nature 294, 249–250 (1981).ADS 

    Google Scholar 
    Graham, N. A. J., Jennings, S., MacNeil, M. A., Mouillot, D. & Wilson, S. K. Predicting climate-driven regime shifts versus rebound potential in coral reefs. Nature 518, 94–97 (2015).ADS 
    CAS 

    Google Scholar 
    Whittaker, R. H. & Levin, S. A. The role of mosaic phenomena in natural communities. Theor. Popul. Biol. 12, 117–139 (1977).CAS 

    Google Scholar 
    Karlson, R. H. & Hurd, L. E. Disturbance, coral reef communities, and changing ecological paradigms. Coral Reefs 12, 117–125 (1993).ADS 

    Google Scholar 
    Stoddart, D. R. Effects of Hurricane Hattie on the British Honduras reefs and cays, October 30–31, 1961. Atoll Res. Bull. 95, 1–142 (1963).
    Google Scholar 
    Witman, J. D. Physical disturbance and community structure of exposed and protected reefs: A case study from St. John U.S. Virgin Islands. Integr. Comp. Biol. 32, 641–654 (1992).
    Google Scholar 
    Thorson, J. T., Scheuerell, M. D., Olden, J. D. & Schindler, D. E. Spatial heterogeneity contributes more to portfolio effects than species variability in bottom-associated marine fishes. Proc. R. Soc. B 285, 20180915 (2018).
    Google Scholar 
    Mellin, C., MacNeil, M. A., Cheal, A. J., Emslie, M. J. & Caley, M. J. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).
    Google Scholar 
    Beyer, H. L. et al. Risk-sensitive planning for conserving coral reefs under rapid climate change. Conserv. Lett. 11, e12587 (2018).
    Google Scholar 
    Harrison, H. B., Bode, M., Williamson, D. H., Berumen, M. L. & Jones, G. P. A connectivity portfolio effect stabilizes marine reserve performance. Proc. Natl. Acad. Sci. 117, 25595–25600 (2020).ADS 
    CAS 

    Google Scholar 
    Walter, J. A. et al. The spatial synchrony of species richness and its relationship to ecosystem stability. Ecology https://doi.org/10.1002/ecy.3486 (2021).Article 

    Google Scholar 
    Wang, S., Lamy, T., Hallett, L. M. & Loreau, M. Stability and synchrony across ecological hierarchies in heterogeneous metacommunities: Linking theory to data. Ecography 42, 1200–1211 (2019).
    Google Scholar 
    Catano, C. P., Fristoe, T. S., LaManna, J. A. & Myers, J. A. Local species diversity, β-diversity and climate influence the regional stability of bird biomass across North America. Proc. R. Soc. B 287, 20192520 (2020).
    Google Scholar 
    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity–stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).
    Google Scholar 
    Downing, A. L., Brown, B. L. & Leibold, M. A. Multiple diversity–stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95, 173–184 (2014).
    Google Scholar 
    Moran, P. The statistical analysis of the Canadian Lynx cycle. Aust. J. Zool. 1, 291–298 (1953).
    Google Scholar 
    Townsend, D. L. & Gouhier, T. C. Spatial and interspecific differences in recruitment decouple synchrony and stability in trophic metacommunities. Theor. Ecol. 12, 319–327 (2019).
    Google Scholar 
    Yeager, M. E., Gouhier, T. C. & Hughes, A. R. Predicting the stability of multitrophic communities in a variable world. Ecology 101, e02992 (2020).
    Google Scholar 
    Hughes, T. P. et al. Emergent properties in the responses of tropical corals to recurrent climate extremes. Curr. Biol. https://doi.org/10.1016/j.cub.2021.10.046 (2021).Article 

    Google Scholar 
    Jackson, J. B. C. Morphological strategies of sessile animals. In Biology and Systematics of Colonial Organisms (eds Larwood, G. & Rosen, B. R.) 499–555 (Academic, 1979).
    Google Scholar 
    Sammarco, P. W. & Andrews, J. C. Localized dispersal and recruitment in Great Barrier Reef Corals: The helix experiment. Science 239, 1422–1424 (1988).ADS 
    CAS 

    Google Scholar 
    Edmunds, P. J. Unusually high coral recruitment during the 2016 El Niño in Mo’orea, French Polynesia. PLoS ONE 12, e0185167 (2017).
    Google Scholar 
    Bull, G. Distribution and abundance of coral plankton. Coral Reefs 4, 197–200 (1986).ADS 

    Google Scholar 
    Hodgson, G. Abundance and distribution of planktonic coral larvae in Kaneohe Bay, Oahu, Hawaii. Mar. Ecol. Prog. Ser. 26, 61–71 (1985).ADS 

    Google Scholar 
    Edmunds, P. J. Vital rates of small reef corals are associated with variation in climate. Limnol. Oceanogr. 66, 901–913 (2021).ADS 

    Google Scholar  More

  • in

    Benthic biota of Chilean fjords and channels in 25 years of cruises of the National Oceanographic Committee

    The data were recorded under the DarwinCore standard55,56 in a matrix named “Benthic biota of CIMAR-Fiordos and Southern Ice Field Cruises”58. The occurrence dataset contains direct basic information (description, scope [temporal, geographic and taxonomic], methodology, bibliography, contacts, data description, GBIF registration and citation), project details, metrics (taxonomy and occurrences classification), activity (citations and download events) and download options. The following data fields were occupied:Column 1: “occurrenceID” (single indicator of the biological record indicating the cruise and correlative record).Column 2: “basisOfRecord” (“PreservedSpecimen” for occurrence records with catalogue number of scientific collection, “MaterialCitation” for any literature record).Column 3: “institutionCode” (The acronym in use by the institution having custody of the sample or information referred to in the record).Column 4: “collectionCode” (The name of the cruise).Column 5: “catalogNumber” (The repository number in museums or correlative number).Column 6: “type” (All records entered as “text”).Column 7: “language” (Spanish, English or both).Column 8: “institutionID” (The identifier for the institution having custody of the sample or information referred to in the record).Column 9: “collectionID” (The identifier for the collection or dataset from which the record was derived).Column 10: “datasetID” (The code “CONA-benthic-biota-database” for entire database).Column 11: “recordedBy” (Author/s who recorded the original occurrence [publication source]).Column 12: “individualCount” (Number of individuals recorded).Column 13: “associatedReferences” (Publication source [report and/or paper/s] for each record).Column 14: “samplingProtocol” (The sampling gear for each record).Column 15: “eventDate” (The date-time or interval during which the record occurred).Column 16: “eventRemarks” (Comments or notes about the event).Column 17: “continent” (Location).Column 18: “country” (Location).Column 19: “countryCode” (The standard code for the country in which the location occurs).Column 20: “stateProvince” (Location, refers to the Administrative Region of Chile).Column 21: “county” (Location, refers to the Administrative Province of Chile).Column 22: “municipality” (Location, refers to the Administrative Commune of Chile).Column 23: “locality” (The specific name of the place).Column 24: “verbatimLocality” (The original textual description of the place).Column 25: “verbatimDepth” (The original description of the depth).Column 26: “minimumDepthInMeters” (The shallowest depth of a range of depths).Column 27: “maximumDepthInMeters” (The deepest depth of a range of depths).Column 28: “locationRemarks” (The name of the sample station of the cruise).Column 29: “verbatimLatitude” (The verbatim original latitude of the location).Column 30: “verbatimLongitude” (The verbatim original longitude of the location).Column 31: “verbatimCoordinateSystem” (The coordinate format for the “verbatimLatitude” and “verbatimLongitude” or the “verbatimCoordinates” of the location).Column 32: “verbatimSRS” (The spatial reference system [SRS] upon which coordinates given in “verbatimLatitude” and “verbatimLongitude” are based)Column 33: “decimalLatitude” (The geographic latitude in decimal degrees).Column 34: “decimalLongitude” (The geographic longitude in decimal degrees).Column 35: “geodeticDatum” (The spatial reference system [SRS] upon which the geographic coordinates given in “decimalLatitude” and “decimalLongitude” was based).Column 36: “coordinateUncertaintyInMeters” (The horizontal distance from the given “decimalLatitude” and “decimalLongitude” describing the smallest circle containing the whole of the location).Column 37: “georeferenceRemarks” (Notes about the spatial description determination).Column 38: “identifiedBy” (Responsible for recording the original occurrence [publication source]).Column 39: “dateIdentified” (The date-time or interval during which the identification occurred.)Column 40: “identificationQualifier” (A taxonomic determination [e.g., “sp.”, “cf.”]).Column 41: “scientificNameID” (An identifier for the nomenclatural details of a scientific name).Column 42: “scientificName” (The name of species or taxon of the occurrence record).Column 43: “kingdom” (The scientific name of the kingdom in which the taxon is classified).Column 44: “phylum” (The scientific name of the phylum or division in which the taxon is classified).Column 45: “class” (The scientific name of the class in which the taxon is classified).Column 46: “order” (The scientific name of the order in which the taxon is classified).Column 47: “family” (The scientific name of the family in which the taxon is classified).Column 48: “genus” (The scientific name of the genus in which the taxon is classified).Column 49: “subgenus” (The scientific name of the subgenus in which the taxon is classified).Column 50: “specificEpithet” (The name of the first or species epithet of the “scientificName”).Column 51: “infraspecificEpithet” (The name of the lowest or terminal infraspecific epithet of the “scientificName”).Column 52: “taxonRank” (The taxonomic rank of the most specific name in the “scientificName”).Column 53: “scientificNameAuthorship” (The authorship information for the “scientificName” formatted according to the conventions of the applicable nomenclatural Code).Column 54: “verbatimIdentification” (A string representing the taxonomic identification as it appeared in the original record).The information sources (see Fig. 2b) provided a total of 107 publications (22 cruise reports and 85 scientific papers; see Fig. 2c). Nineteen of the 22 cruise reports reviewed provided species occurrence records8,28,29,30,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46, one provided qualitative or descriptive data, with no recorded occurrences31, and two did not provide information on benthic biota (CIMAR-9 and −23 cruises). Of all the scientific papers reviewed, 74 provided records of species occurrences (Table 2), while 11 did not provide any record, as they were data without occurrences of geographically referenced species or with descriptive or qualitative information: Foraminifera59,60,61,62, Annelida63,64,65,66, Fishes67, Mollusca68 and Echinodermata69. The phyla with the highest number of publications were the following: Annelida (present in 18 reports and 21 papers), Mollusca (in 14 and 20), Arthropoda (in 10 and 18), Echinodermata (in 10 and 9), Chordata (in 10 and 9) and Foraminifera (in 4 and 10).Table 2 Publications with >100 occurrences, indicating the main recorded taxa.Full size tableThe information registry includes data on occurrences and number of individuals for 8,854 records (files in the database), representing 1,225 species (Fig. 3). The main taxa in terms of occurrence and number of species were Annelida (mainly Polychaeta), Foraminifera, Mollusca and Arthopoda (mainly Crustacea), together accumulating ~70% of total occurrences and ~73% of the total species (Fig. 3). The large number of recorded occurrences of Myzozoa (10%) should be highlighted, which, however, only represent about 32 species. Echinodermata represented ~8% of occurrences and 7% of species.Fig. 3Occurrences and total species by taxon, considering large taxonomic groups of the benthic biota recorded in the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences and species are represented in parentheses.Full size imageThe cruises with the highest number of occurrences were CIMAR-2 (with 1,424), followed by CIMAR-8 (1,040) and CIMAR-16 (813) (Fig. 4). Three dominant taxonomic groups were recorded in most cruises, except for cruises CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 (Fig. 4). The cruises with the highest number of species recorded were CIMAR-2 (with 335), CIMAR-3 (328) and CIMAR-8 (323) (Fig. 5). Three or fewer dominant taxonomic groups were recorded only in the CIMAR-1, CIMAR-4, CIMAR-17, CIMAR-18 and CIMAR-24 cruises (Fig. 5).Fig. 4Total occurrences and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of occurrences per dominant taxon are represented in parentheses.Full size imageFig. 5Total species and percentages per dominant taxon recorded in each of the CIMAR 1 to 25 and CDHS-1995 cruises. The absolute values of species per dominant taxon are represented in parentheses.Full size imageThe latitudinal bands 42°S and 45°S are those with the highest number of occurrences (Fig. 6), while the 56°S and 46°S bands had the fewest. The highest number of species was recorded in the 52°S and 50°S latitudinal bands, while, as with the occurrences, the lowest values corresponded to the 56°S and 46°S latitudinal bands (Fig. 6).Fig. 6Occurrences and number of species recorded by latitudinal band from the CIMAR 1 to 25 and CDHS-1995 cruises. SEP: South-eastern Pacific.Full size image More