More stories

  • in

    Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide

    1.Myers, J. A. & LaManna, J. A. The promise and pitfalls of beta-diversity in ecology and conservation. J. Veg. Sci. 27, 1081–1083 (2016).Article 

    Google Scholar 
    2.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Xing, D. L. & He, F. L. Environmental filtering explains a U-shape latitudinal pattern in regional beta-deviation for eastern North American trees. Ecol. Lett. 22, 284–291 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Anderson, M. J. et al. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article 

    Google Scholar 
    6.Menegotto, A., Dambros, C. S. & Netto, S. A. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology 100, e02721 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article 

    Google Scholar 
    8.Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).9.Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).Article 

    Google Scholar 
    10.da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernandez, M. I. M. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers Distrib. 24, 1277–1290 (2018).Article 

    Google Scholar 
    11.Wang, X. G. et al. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Glob. Ecol. Biogeogr. 27, 581–592 (2018).Article 

    Google Scholar 
    12.McFadden, I. R. et al. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic beta diversity. Ecol. Lett. 22, 1126–1135 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Qian, H., Chen, S., Mao, L. & Ouyang, Z. Drivers of β‐diversity along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 22, 659–670 (2013).Article 

    Google Scholar 
    14.Xu, W. B., Chen, G. K., Liu, C. R. & Ma, K. P. Latitudinal differences in species abundance distributions, rather than spatial aggregation, explain beta-diversity along latitudinal gradients. Glob. Ecol. Biogeogr. 24, 1170–1180 (2015).Article 

    Google Scholar 
    15.Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Griffiths, D. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish. J. Biogeogr. 44, 1723–1733 (2017).Article 

    Google Scholar 
    17.Soininen, J., Heino, J. & Wang, J. J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article 

    Google Scholar 
    18.LaManna, J. A., Belote, R. T., Burkle, L. A., Catano, C. P. & Myers, J. A. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat. Ecol. Evol. 1, 1107–1115 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    20.Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).CAS 
    Article 

    Google Scholar 
    21.Gibert, A., Tozer, W. & Westoby, M. Plant performance response to eight different types of symbiosis. New Phytol. 222, 526–542 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Veresoglou, S. D., Rillig, M. C. & Johnson, D. Responsiveness of plants to mycorrhiza regulates coexistence. J. Ecol. 106, 1864–1875 (2018).Article 

    Google Scholar 
    23.Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424–429 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Barcelo, M., van Bodegom, P. M. & Soudzilovskaia, N. A. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J. Ecol. 107, 2564–2573 (2019).Article 

    Google Scholar 
    25.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 571, E8–E8 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Johnson, D. J., Clay, K. & Phillips, R. P. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia 186, 195–204 (2018).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Hargreaves, A. L., Germain, R. M., Bontrager, M., Persi, J. & Angert, A. L. Local adaptation to biotic interactions: a meta-analysis across latitudes. Am. Nat. 195, 395–411 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Liu, X. B. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Jacquemyn, H., De Kort, H., Vanden Broeck, A. & Brys, R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine (Orchidaceae). Oikos 127, 73–84 (2018).Article 

    Google Scholar 
    31.Osborne, O. G. et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytol. 217, 1254–1266 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.McCarthy-Neumann, S. & Ibáñez, I. Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology 93, 2637–2649 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Peay, K. G. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol., Evol. Syst. 47, 143–164 (2016).Article 

    Google Scholar 
    36.Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Shi, L. Geographical patterns in the beta diversity of China’s woody plants: the influence of space, environment and range size. Ecography 35, 1092–1102 (2012).Article 

    Google Scholar 
    37.Liang, M. X. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Segnitz, R. M., Russo, S. E., Davies, S. J. & Peay, K. G. Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology 101, e03083 (2020).39.Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    40.Brundrett, Mark, Murase, Gracia & K, B. Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can. J. Bot. 68, 551–578 (1990).Article 

    Google Scholar 
    41.Liu, Y. & He, F. L. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Funct. Ecol. 33, 1211–1222 (2019).MathSciNet 
    Article 

    Google Scholar 
    42.LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 1274–1284 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    45.Liu, X. B., Etienne, R. S., Liang, M. X., Wang, Y. F. & Yu, S. X. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology 96, 662–671 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Chu, C. J. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Gavito, M. E. & Azcon-Aguilar, C. Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agr. Food Sci. 21, 2–11 (2012).Article 

    Google Scholar 
    48.Hetrick, B. D. & Bloom, J. The influence of temperature on colonization of winter wheat by vesicular-arbuscular mycorrhizal fungi. Mycologia 76, 953–956 (1984).Article 

    Google Scholar 
    49.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).ADS 
    Article 

    Google Scholar 
    50.Condit, R. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. (Springer-Verlag andRG. Landes Company, 1998).51.Stillhard, J. et al. Stand inventory data from the 10-ha forest research plot in Uholka: 15 yr of primeval beech forest development. Ecology 100, e02845 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.Bennett, J. R. & Gilbert, B. Contrasting beta diversity among regions: how do classical and multivariate approaches compare? Glob. Ecol. Biogeogr. 25, 368–377 (2016).Article 

    Google Scholar 
    54.Legendre, P. & De Caceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).Article 

    Google Scholar 
    56.De Cáceres, M. et al. The variation of tree beta diversity across a global network of forest plots. Glob. Ecol. Biogeogr. 21, 1191–1202 (2012).Article 

    Google Scholar 
    57.Yen, J. D. L., Fleishman, E., Fogarty, F. & Dobkin, D. S. Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and trait-based groups. Glob. Ecol. Biogeogr. 28, 328–340 (2019).Article 

    Google Scholar 
    58.Craven, D., Knight, T. M., Barton, K. E., Bialic-Murphy, L. & Chase, J. M. Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proc. Natl Acad. Sci. USA 116, 16436–16441 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Brundrett, M. & Tedersoo, L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 221, 18–24 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 227, 955–966 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    61.Furniss, T. J., Larson, A. J. & Lutz, J. A. Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere 8 (2017).62.Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).ADS 
    Article 

    Google Scholar 
    63.Legendre, P. et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90, 663–674 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Robert J., H. raster: Geographic data analysis and modeling. R package version 2.6-7 (2017). .65.Alahuhta, J. et al. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758–1769 (2017).Article 

    Google Scholar 
    66.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw. 34, 1–24 (2010).Article 

    Google Scholar 
    67.Jump, A. S., Matyas, C. & Penuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24, 694–701 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2 (2018). .69.Gilbert, B. & Bennett, J. R. Partitioning variation in ecological communities: do the numbers add up? J. Appl Ecol. 47, 1071–1082 (2010).Article 

    Google Scholar 
    70.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 
    Article 

    Google Scholar 
    71.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). .72.Baselga, A., Orme, D., Villeger, S., De Bortoli, J. & Leprieur, F. Partitioning beta diversity into turnover and nestedness components. R package version 1.5.0 (2019). .73.Harrell Jr, F. E. & Dupont, C. Hmisc: Harrell miscellaneous. R package version 4.2-3 (2019). .74.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. 2, 18–22 (2002).
    Google Scholar 
    75.Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 2.1.6 (2018). . More

  • in

    Impact of diesel and biodiesel contamination on soil microbial community activity and structure

    1.Mnif, I., Sahnoun, R. & Ellouz-Chaabouni, S. Application of bacterial biosurfactants for enhanced removal and biodegradation of diesel oil. Process Saf. Environ. Prot. 109, 72–81 (2017).CAS 
    Article 

    Google Scholar 
    2.Abioye, O. P. Biological remediation of hydrocarbon and heavy metals contaminated soil. In Soil Contamination (ed. Pascucci, S.) 127–142 (InTech Europe, 2011).
    Google Scholar 
    3.Zarinkamar, F., Reypour, F. & Soleimanpour, S. Effect of diesel fuel contaminated soil on the germination and the growth of Festuca arundinacea. Res. J. Chem. Environ. Sci. 1, 37–41 (2013).
    Google Scholar 
    4.Ashnani, M. H. M., Johari, A., Hashim, H. & Hasani, E. A source of renewable energy in Malaysia, why biodiesel? Renew. Sustain. Energy Rev. 35, 244–257 (2014).Article 

    Google Scholar 
    5.Bücker, F. et al. Impact of biodiesel on biodeterioration of stored Brazilian diesel oil. Int. Biodeterior. Biodegrad. 65, 172–178 (2011).Article 
    CAS 

    Google Scholar 
    6.Hawrot-Paw, M. & Izwikow, M. Ecotoxicologial effects of biodiesel in the soil. J. Ecol. Eng. 16, 34–39 (2015).Article 

    Google Scholar 
    7.Restrepo-Flórez, J.-M., Bassi, A., Rehmann, L. & Thompson, M. R. Effect of biodiesel addition on microbial community structure in a simulated fuel storage system. Bioresour. Technol. 147, 456–463 (2013).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    8.Silva, G. S. et al. Biodegradability of soy biodiesel in microcosm experiments using soil from the Atlantic Rain Forest. Appl. Soil Ecol. 55, 27–35 (2012).Article 

    Google Scholar 
    9.Prosser, J. I. Dispersing misconceptions and identifying opportunities for the use of ‘omics’ in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–446 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Hawrot-Paw, M. & Martynus, M. The influence of diesel fuel and biodiesel on soil microbial biomass. Pol. J. Environ. Stud. 20, 497–501 (2011).CAS 

    Google Scholar 
    11.Lahel, A. et al. Effect of process parameters on the bioremediation of diesel contaminated soil by mixed microbial consortia. Int. Biodeterior. Biodegrad. 113, 375 (2016).CAS 
    Article 

    Google Scholar 
    12.Nwankwegu, A. S., Orji, M. U. & Onwosi, C. O. Studies on organic and in-organic biostimulants in bioremediation of diesel-contaminated arable soil. Chemosphere 162, 148–156 (2016).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Woźniak-Karczewska, M. et al. Effect of bioaugmentation on long-term biodegradation of diesel/biodiesel blends in soil microcosms. Sci. Total Environ. 671, 948–958 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    14.Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, D633–D639 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Lapinskiene, A., Martinkus, P. & Rebzdaite, V. Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ. Pollut. 142, 432–437 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Schiewer, S. & Horel, A. Biodiesel addition influences biodegradation rates of fresh and artificially weathered diesel fuel in Alaskan sand. J. Cold Reg. Eng. 31, 1–14 (2017).Article 

    Google Scholar 
    17.Schreier, C. G., Walker, W. J., Burns, J. & Wilkenfeld, R. Total organic carbon as a screening method for petroleum hydrocarbons. Chemosphere 39, 503–510 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Nimmo, M. Carbon. In Encyclopedia of Analytical Science (eds Worsfold, P. & Alan Townshend, C. P.) 453–457 (Elsevier, 2005).
    Google Scholar 
    19.Margesin, R. & Schinner, F. Bioremediation of diesel-oil-contaminated alpine soils at low temperatures. Appl. Microbiol. Biotechnol. 47, 462–468 (1997).CAS 
    Article 

    Google Scholar 
    20.Møller, J., Winther, P., Lund, B., Kirkebjerg, K. & Westermann, P. Bioventing of diesel oil-contaminated soil: Comparison of degradation rates in soil based on actual oil concentration and on respirometric data. J. Ind. Microbiol. 16, 110–116 (1996).Article 

    Google Scholar 
    21.Nakatsu, C. H. Microbial processes: Community analysis. Ref. Modul. Earth Syst. Environ. Sci. https://doi.org/10.1016/B978-0-12-409548-9.05218-0 (2013).Article 

    Google Scholar 
    22.Margesin, R., Hämmerle, M. & Tscherko, D. Microbial activity and community composition during bioremediation of diesel-oil-contaminated soil: Effects of hydrocarbon concentration, fertilizers, and incubation time. Microb. Ecol. 53, 259–269 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Owsianiak, M. et al. Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: Effect of the type of blend and the addition of biosurfactants. Bioresour. Technol. 100, 1497–1500 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Quideau, S. A. et al. Extraction and analysis of microbial phospholipid fatty acids in soils. J. Vis. Exp. https://doi.org/10.3791/54360 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Frostegård, Å., Tunlid, A. & Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1–5 (2010).
    Google Scholar 
    26.Ruess, L. & Chamberlain, P. M. The fat that matters: Soil food web analysis using fatty acids and their carbon stable isotope signature. Soil Biol. Biochem. 42, 1898–1910 (2010).CAS 
    Article 

    Google Scholar 
    27.Davila, S. et al. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166, 41–62 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    28.Sutton, N. B. et al. Impact of long-term diesel contamination on soil microbial cummunity structure. Appl. Environ. Microbiol. 79, 619–630 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Kersters, K., Vos, P. D. E., Gillis, M., Swings, J. & Vandamme, P. Introduction to the Proteobacteria. In The Prokaryotes: A Handbook on the Biology of Bacteria (eds Dworkin, M. et al.) 3–37 (Springer, 2006).
    Google Scholar 
    30.Bell, T. H. et al. Predictable bacterial composition and hydrocarbon degradation in Arctic soils following diesel and nutrient disturbance. ISME J. 7, 1200–1210 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Brzeszcz, J. & Kaszycki, P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility. Biodegradation 29, 359–407 (2018).PubMed 
    Article 

    Google Scholar 
    32.Elumalai, P. et al. Role of thermophilic bacteria (Bacillus and, Geobacillus) on crude oil degradation and biocorrosion in oil reservoir environment. 3Biotech 9, 79 (2019).
    Google Scholar 
    33.Mitter, E. K., de Freitas, J. R. & Germida, J. J. Bacterial root microbiome of plants growing in oil sands reclamation covers. Front. Microbiol. https://doi.org/10.3389/fmicb.2017.00849 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Bundy, J. G., Paton, G. I. & Campbell, C. D. Microbial communities in different soil types do not converge after diesel contamination. J. Appl. Microbiol. 92, 276–288 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Korenblum, E., Souza, D. B., Penna, M. & Seldin, L. Molecular analysis of the bacterial communities in crude oil Samples from two Brazilian offshore petroleum platforms. Int. J. Microbiol. 2012, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    36.Kim, T. J., Lee, E. Y., Kim, Y. J., Cho, K. S. & Ryu, H. W. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A–12. World J. Microbiol. Biotechnol. 19, 411–417 (2003).CAS 
    Article 

    Google Scholar 
    37.Revathy, T., Jayasri, M. A. & Suthindhiran, K. Biodegradation of PAHs by Burkholderia sp. VITRSB1 isolated from marine sediments. Scientifica (Cairo) 2015, 1–9 (2015).
    Google Scholar 
    38.Ramos, D. T., da Silva, M. L. B., Nossa, C. W., Alvarez, P. J. J. & Corseuil, H. X. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20). Biodegradation 25, 681–691 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Whyte, L. G. et al. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531. Appl. Environ. Microbiol. 68, 5933–5942 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Lee, M., Kim, M. K., Singleton, I., Goodfellow, M. & Lee, S.-T. Enhanced biodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. J. Appl. Microbiol. 100, 325–333 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Bateman, J. N., Speer, B., Feduik, L. & Hartline, R. A. Naphthalene association and uptake in Pseudomonas putida. J. Bacteriol. 166, 155–161 (1986).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    42.Rentz, J. A., Alvarez, P. J. J. & Schnoor, J. L. Repression of Pseudomonas putida phenanthrene-degrading activity by plant root extracts and exudates. Environ. Microbiol. 6, 574–583 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Shukor, M. Y. et al. Isolation and characterization of Pseudomonas diesel-degrading strain from Antartica. J. Environ. Biol. 30, 1–6 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Meyer, D. D. et al. Bioremediation strategies for diesel and biodiesel in oxisol from southern Brazil. Int. Biodeterior. Biodegrad. 95, 356–363 (2014).CAS 
    Article 

    Google Scholar 
    45.Taccari, M., Milanovic, V., Comitini, F., Casucci, C. & Ciani, M. Effects of biostimulation and bioaugmentation on diesel removal and bacterial community. Int. Biodeterior. Biodegrad. 66, 39–46 (2012).CAS 
    Article 

    Google Scholar 
    46.Fosso-Kankeu, E. et al. Adaptation behaviour of bacterial species and impact on the biodegradation of biodiesel-diesel. Braz. J. Chem. Eng. 34, 469–480 (2017).CAS 
    Article 

    Google Scholar 
    47.Lutz, G., Chavarría, M., Arias, M. L. & Mata-Segreda, J. F. Microbial degradation of palm (Elaeis guineensis) biodiesel. Rev. Biol. Trop. 54, 59–63 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Holmes, A. J. et al. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol. Ecol. 33, 111–120 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Wollherr, A. et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE 6, 1–12 (2011).
    Google Scholar 
    50.Crampon, M., Bodilis, J. & Portet-Koltalo, F. Linking initial soil bacterial diversity and polycyclic aromatic hydrocarbons (PAHs) degradation potential. J. Hazard. Mater. 359, 500–509 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Wang, L., Li, F., Zhan, Y. & Zhu, L. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil. Environ. Sci. Pollut. Res. 23, 14451–14461 (2016).CAS 
    Article 

    Google Scholar 
    52.van Beilen, J. B., Kingma, J. & Witholt, B. Substrate specificity of the alkane hydroxylase system of Pseudomonas oleovorans GPo1. Enzyme Microb. Technol. 16, 904–911 (1994).Article 

    Google Scholar 
    53.Mukherjee, A. et al. Bioinformatic approaches including predictive metagenomic profiling reveal characteristics of bacterial response to petroleum hydrocarbon contamination in diverse environments. Sci. Rep. 7, 1108 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    54.Ono, K., Nozaki, M. & Hayaishi, O. Purification and some properties of protocatechuate 4,5-dioxygenase. Biochim. Biophys. Acta Enzymol. 220, 224–238 (1970).CAS 
    Article 

    Google Scholar 
    55.Fung, H. K. H. et al. Biochemical and biophysical characterisation of haloalkane dehalogenases DmrA and DmrB in Mycobacterium strain JS60 and their role in growth on haloalkanes. Mol. Microbiol. 97, 439–453 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Kang, Y.-S. & Park, W. Protection against diesel oil toxicity by sodium chloride-induced exopolysaccharides in Acinetobacter sp. strain DR1. J. Biosci. Bioeng. 109, 118–123 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Ramadass, K., Megharaj, M., Venkateswarlu, K. & Naidu, R. Ecotoxicity of measured concentrations of soil-applied diesel: Effects on earthworm survival, dehydrogenase, urease and nitrification activities. Appl. Soil Ecol. 119, 1–7 (2017).Article 

    Google Scholar 
    58.Moreno, R. & Rojo, F. Enzymes for aerobic degradation of alkanes in bacteria. In Aerobic Utilization of Hydrocarbons, Oils and Lipids (ed. Rojo, F.) 1–25 (Springer, 2017).
    Google Scholar 
    59.Mitter, E. K., de Freitas, J. R. & Germida, J. J. Hydrocarbon-degrading genes in root endophytic communities on oil sands reclamation covers. Int. J. Phytoremediat. 22, 703–712 (2020).CAS 
    Article 

    Google Scholar 
    60.Mitter, E. K., Kataoka, R., de Freitas, J. R. & Germida, J. J. Potential use of endophytic root bacteria and host plants to degrade hydrocarbons. Int. J. Phytoremediat. 21, 928–938 (2019).CAS 
    Article 

    Google Scholar 
    61.Rojo, F. Degradation of alkanes by bacteria: Minireview. Environ. Microbiol. 11, 2477–2490 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Dincer, K. Lower emissions from biodiesel combustion. Energy Sources A Recov. Util. Environ. Eff. 30, 963–968 (2008).CAS 
    Article 

    Google Scholar 
    63.Miri, M., Bambai, B., Tabandeh, F., Sadeghizadeh, M. & Kamali, N. Production of a recombinant alkane hydroxylase (AlkB2) from Alcanivorax borkumensis. Biotechnol. Lett. 32, 497–502 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Schomburg, D. & Stephan, D. Rubredoxin-NAD+ reductase. In Enzyme Handbook (eds Schomburg, D. & Stephan, D.) 917–920 (Springer, 1994).
    Google Scholar 
    65.Eggink, G., Engel, H., Vriend, G., Terpstra, P. & Witholt, B. Rubredoxin reductase of Pseudomonas oleovorans. J. Mol. Biol. 212, 135–142 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Hagelueken, G. et al. Crystal structure of the electron transfer complex rubredoxin rubredoxin reductase of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. 104, 12276–12281 (2007).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    67.Lyu, Y., Zheng, W., Zheng, T. & Tian, Y. Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS ONE 9, e101438 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Wang, J. et al. Comparative genomics of degradative Novosphingobium strains with special reference to microcystin-degrading Novosphingobium sp. THN1. Front. Microbiol. 9, 1–17 (2018).Article 

    Google Scholar 
    69.Dhillon, G. S., Amichev, B. Y., de Freitas, J. R. & van Rees, K. Accurate and precise measurement of organic carbon content in carbonate-rich soils. Commun. Soil Sci. Plant Anal. 3624, 2707–2720 (2015).Article 
    CAS 

    Google Scholar 
    70.McKeague, J. A. Manual on SOIL sampling and Methods of Analysis (Canadian Society of Soil Science, 1978).
    Google Scholar 
    71.Laverty, D. H. & Bollo-Kamara, A. Recommended Methods of Soil Analysis for Canadian Prairie Agricultural Soils (Alberta Agriculture, 1988).
    Google Scholar 
    72.Qian, P., Schoenaru, J. J. & Karamanos, R. E. Simultaneous extraction of available phosphorus and potassium with a new soil test: A modification of Kelowna extraction. Commun. Soil Sci. Plant Anal. 25, 627–635 (1994).CAS 
    Article 

    Google Scholar 
    73.Anderson, J. P. E. & Domsch, K. H. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biol. Biochem. 10, 215–221 (1978).CAS 
    Article 

    Google Scholar 
    74.de Freitas, J. R., Schoenau, J. J., Boyetchko, S. M. & Cyrenne, S. A. Soil microbial populations, community composition, and activity as affected by repeated applications of hog and cattle manure in eastern Saskatchewan. Can. J. Microbiol. 49, 538–548 (2003).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Ramirez, K. S., Craine, J. M. & Fierer, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Glob. Change Biol. 18, 1918–1927 (2012).ADS 
    Article 

    Google Scholar 
    76.Craine, J. M., Fierer, N. & McLauchlan, K. K. Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat. Geosci. 3, 854–857 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    77.Helgason, B. L., Walley, F. L. & Germida, J. J. Long-term no-till management affects microbial biomass but not community composition in Canadian prairie agroecosytems. Soil Biol. Biochem. 42, 2192–2202 (2010).CAS 
    Article 

    Google Scholar 
    78.Drenovsky, R. E., Elliott, G. N., Graham, K. J. & Scow, K. M. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities. Soil Biol. Biochem. 36, 1793–1800 (2004).CAS 
    Article 

    Google Scholar 
    79.Macdonald, L. M., Paterson, E., Dawson, L. A. & McDonald, A. J. S. Short-term effects of defoliation on the soil microbial community associated with two contrasting Lolium perenne cultivars. Soil Biol. Biochem. 36, 489–498 (2004).CAS 
    Article 

    Google Scholar 
    80.Zelles, L., Bai, Q. Y., Beck, T. & Beese, F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. Soil Biol. Biochem. 24, 317–323 (1992).CAS 
    Article 

    Google Scholar 
    81.Hynes, H. M. & Germida, J. J. Relationship between ammonia oxidizing bacteria and bioavailable nitrogen in harvested forest soils of central Alberta. Soil Biol. Biochem. 46, 18–25 (2012).CAS 
    Article 

    Google Scholar 
    82.McCune, B. & Mefford, M. J. Multivariate analysis of Ecological Data (2011).83.Helgason, B. L., Walley, F. L. & Germida, J. J. No-till soil management increases microbial biomass and alters community profiles in soil aggregates. Appl. Soil Ecol. 46, 390–397 (2010).Article 

    Google Scholar 
    84.McCune, B. & Grace, J. B. Analysis of Ecological Communities (2002).85.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Boylen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. https://doi.org/10.7287/peerj.preprints.27295 (2018).Article 

    Google Scholar 
    87.Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, 1–8 (2011).Article 

    Google Scholar 
    88.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    90.Oksanen, J. et al. Community Ecology Package ‘vegan’ (2020).91.Hamilton, N. ggtern: An Extension to ‘ggplot2’, for the Creation of Ternary Diagrams (2018).92.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    93.Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    94.Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 47, D590–D595 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    95.Parks, D. H. & Beiko, R. G. Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26, 715–721 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Heterogeneity in patterns of helminth infections across populations of mountain gorillas (Gorilla beringei beringei)

    1.Weber, A. W. & Vedder, A. Population dynamics of the Virunga gorillas: 1959–1978. Biol. Conserv. 26, 341–366 (1983).Article 

    Google Scholar 
    2.Granjon, A.-C. et al. Estimating abundance and growth rates in a wild mountain gorilla population. Anim. Conserv. 23, 455–465 (2020).Article 

    Google Scholar 
    3.Gray, M. et al. Virunga Massif Mountain Gorilla Census—2010 Summary Report (IGCP & Partners, 2010).
    Google Scholar 
    4.Gray, M. et al. Genetic census reveals increased but uneven growth of a critically endangered mountain gorilla population. Biol. Conserv. 158, 230–238 (2013).Article 

    Google Scholar 
    5.Robbins, M. M. et al. Extreme conservation leads to recovery of the Virunga mountain gorillas. PLoS One 6, e19788 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Hickey, J. R., Granjon, A.-C. & Vigilant, L. Virunga 2015–2016 Surveys: Monitoring Mountain Gorillas, Other Select Mammals, and Illegal Activities (IGCP & Partners, 2019).
    Google Scholar 
    7.Kalpers, J. et al. Gorillas in the crossfire: Population dynamics of the Virunga mountain gorillas over the past three decades. Oryx 37, 326–337 (2003).Article 

    Google Scholar 
    8.Robbins, M. M., Gray, M., Kagoda, E. & Robbins, A. M. Population dynamics of the Bwindi mountain gorillas. Biol. Conserv. 142, 2886–2895 (2009).Article 

    Google Scholar 
    9.Hickey, J. R., Uzabaho, E. & Akantorana, M. Bwindi-Sarambwe EM 2018 Surveys: Monitoring Mountain Gorillas, Other Select Mammals, and Human Activities 40 (GVTC, IGCP & Partners, 2019).
    Google Scholar 
    10.Roy, J. et al. Challenges in the use of genetic mark-recapture to estimate the population size of Bwindi mountain gorillas (Gorilla beringei beringei). Biol. Conserv. 180, 249–261 (2014).Article 

    Google Scholar 
    11.McNeilage, A. J. Mountain Gorillas in the Virunga Volcanoes: Ecology and Carrying Capacity (University of Bristol, 1995).
    Google Scholar 
    12.Caillaud, D., Ndagijimana, F., Giarrusso, A. J., Vecellio, V. & Stoinski, T. S. Mountain gorilla ranging patterns: Influence of group size and group dynamics. Am. J. Primatol. 76, 730–746 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Caillaud, D. et al. Violent encounters between social units hinder the growth of a high-density mountain gorilla population. Sci. Adv. 6, eaba0724 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Watts, D. P. Causes and consequences of variation in male mountain gorilla life histories and group membership. In Primate Males (ed. Kappeler, P. M.) 169–179 (Cambridge University Press, 2000).
    Google Scholar 
    15.Robbins, M. M., Robbins, A. M., Gerald-Steklis, N. & Steklis, H. D. Socioecological influences on the reproductive success of female mountain gorillas (Gorilla beringei beringei). Behav. Ecol. Sociobiol. 61, 919–931 (2007).Article 

    Google Scholar 
    16.Robbins, A. M. et al. Impact of male Infanticide on the social structure of mountain gorillas. PLoS One 8, e78256 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Grueter, C. C. et al. Quadratic relationships between group size and foraging efficiency in a herbivorous primate. Sci. Rep. 8, 16718 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Eckardt, W., Stoinski, T. S., Rosenbaum, S. & Santymire, R. Social and ecological factors alter stress physiology of Virunga mountain gorillas (Gorilla beringei beringei). Ecol. Evol. 9, 5248–5259 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Harcourt, A. H., Parks, S. A. & Woodroffe, R. Human density as an influence on species/area relationships: Double jeopardy for small African reserves?. Biodivers. Conserv. 10, 1011–1026 (2001).Article 

    Google Scholar 
    20.Citterio, C. V. et al. Abomasal nematode community in an alpine chamois (Rupicapra r. rupicapra) population before and after a die-off. J. Parasitol. 92, 918–927 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Hudson, P. J. Macroparasites: Observed patterns. Ecol. Infect. Dis. Nat. Popul. 20, 144–176 (1995).
    Google Scholar 
    22.Albon, S. D. et al. The role of parasites in the dynamics of a reindeer population. Proc. R. Soc. Lond. B Biol. Sci. 269, 1625–1632 (2002).CAS 
    Article 

    Google Scholar 
    23.Anderson, R. M. & May, R. M. Age-related changes in the rate of disease transmission: Implications for the design of vaccination programmes. Epidemiol. Infect. 94, 365–436 (1985).CAS 

    Google Scholar 
    24.Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E. & Getz, W. M. Superspreading and the effect of individual variation on disease emergence. Nature 438, 355–359 (2005).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Anderson, R. M. & May, R. M. Regulation and stability of host-parasite population interactions: I. Regulatory processes. J. Anim. Ecol. 47, 219–247 (1978).Article 

    Google Scholar 
    26.Arneberg, P., Skorping, A., Grenfell, B. & Read, A. F. Host densities as determinants of abundance in parasite communities. Proc. R. Soc. Lond. B Biol. Sci. 265, 1283–1289 (1998).Article 

    Google Scholar 
    27.Gillespie, T. R. & Chapman, C. A. Forest fragmentation, the decline of an endangered primate, and changes in host–parasite interactions relative to an unfragmented forest. Am. J. Primatol. 70, 222–230 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Mbora, D. N. M. & McPeek, M. A. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J. Anim. Ecol. 78, 210–218 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.dos Santos, C. N. et al. Seasonal dynamics of cyathostomin (Nematoda–Cyathostominae) infective larvae in Brachiaria humidicola grass in tropical southeast Brazil. Vet. Parasitol. 180, 274–278 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Silangwa, S. M. & Todd, A. C. Vertical migration of trichostrongylid larvae on grasses. J. Parasitol. 50, 278–285 (1964).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Callinan, A. P. L. & Westcott, J. M. Vertical distribution of trichostrongylid larvae on herbage and in soil. Int. J. Parasitol. 16, 241–244 (1986).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Crofton, H. D. The ecology of immature phases of trichostrongyle nematodes: II. The effect of climatic factors on the availability of the infective larvae of Trichostrongylus retortaeformis to the host. Parasitology 39, 26–38 (1948).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Zanet, S. et al. Higher risk of gastrointestinal parasite infection at lower elevation suggests possible constraints in the distributional niche of Alpine marmots. PLoS One 12, e0182477 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Derek Scasta, J. Livestock parasite management on high-elevation rangelands: Ecological interactions of climate, habitat, and wildlife. J. Integr. Pest Manag. 6, 20 (2015).Article 

    Google Scholar 
    35.Huffman, M. A., Gotoh, S., Turner, L. A., Hamai, M. & Yoshida, K. Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates 38, 111–125 (1997).Article 

    Google Scholar 
    36.MacIntosh, A. J. J., Hernandez, A. D. & Huffman, M. A. Host age, sex, and reproductive seasonality affect nematode parasitism in wild Japanese macaques. Primates 51, 353–364 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Pafčo, B. et al. Do habituation, host traits and seasonality have an impact on protist and helminth infections of wild western lowland gorillas?. Parasitol. Res. 116, 3401–3410 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Rothman, J. M., Pell, A. N. & Bowman, D. D. Host-parasiteecology of the helminths in mountain gorillas. J. Parasitol. 94, 834–840 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Müller-Graf, C. D. M., Collins, D. A. & Woolhouse, M. E. J. Intestinal parasite burden in five troops of olive baboons (Papio cynocephalus anubis) in Gombe Stream National Park, Tanzania. Parasitology 112, 489–497 (1996).PubMed 
    Article 

    Google Scholar 
    40.Alexander, J. & Stimson, W. H. Sex hormones and the course of parasitic infection. Parasitol. Today 4, 189–193 (1988).Article 

    Google Scholar 
    41.Bundy, D. A. P. Gender-dependent patterns of infections and disease. Parasitol. Today 4, 186–189 (1988).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Zuk, M. Reproductive strategies and disease susceptibility: An evolutionary viewpoint. Parasitol. Today 6, 231–233 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Nunn, C. & Altizer, S. Infectious Diseases in Primates: Behavior (Ecology and Evolution. Oxford University Press, Oxford, 2006).Book 

    Google Scholar 
    44.Wilson, K. et al. Heterogeneities in macroparasite infections: Patterns and processes. In The Ecology of Wildlife Diseases 6–44 (2002).45.Cattadori, I. M., Boag, B., Bjørnstad, O. N., Cornell, S. J. & Hudson, P. J. Peak shift and epidemiology in a seasonal host–nematode system. Proc. R. Soc. B Biol. Sci. 272, 1163–1169 (2005).CAS 
    Article 

    Google Scholar 
    46.Terio, K. A. et al. Oesophagostomiasis in non-human primates of Gombe National Park, Tanzania. Am. J. Primatol. 80, e22572 (2018).Article 

    Google Scholar 
    47.Gillespie, T. R., Nunn, C. L. & Leendertz, F. H. Integrative approaches to the study of primate infectious disease: Implications for biodiversity conservation and global health. Am. J. Phys. Anthropol. 137, 53–69 (2008).Article 

    Google Scholar 
    48.Collett, M. G. et al. Gastric Ollulanus tricuspis infection identified in captive cheetahs (Acinonyx jubatus) with chronic vomiting: Case report. J. S. Afr. Vet. Assoc. 71, 251–255 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    49.Dennis, M. M., Bennett, N. & Ehrhart, E. J. Gastric adenocarcinoma and chronic gastritis in two related Persian cats. Vet. Pathol. 43, 358–362 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Smetana, H. F. & Orihel, T. C. Gastric papillomata in Macaca speciosa induced by Nochtia nochti (Nematoda: Trichostrongyloidea). J. Parasitol. 55, 349–351 (1969).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Nybelin, O. Anoplocephala gorillae n. sp. Ark Zool. 19, 1–3 (1924).
    Google Scholar 
    52.Sleeman, J. M., Meader, L. L., Mudakikwa, A. B., Foster, J. W. & Patton, S. Gastrointestinal parasites of mountain gorillas (Gorilla gorilla beringei) in the Parc National des Volcans, Rwanda. J. Zool. Wildl. Med. 31, 322–328 (2000).CAS 
    Article 

    Google Scholar 
    53.Ashford, R. W., Lawson, H., Butynski, T. M. & Reid, G. D. F. Patterns of intestinal parasitism in the mountain gorilla Gorilla gorilla in the Bwindi-Impenetrable Forest, Uganda. J. Zool. 239, 507–514 (1996).Article 

    Google Scholar 
    54.Kalema-Zikusoka, G., Rothman, J. M. & Fox, M. T. Intestinal parasites and bacteria of mountain gorillas (Gorilla beringei beringei) in Bwindi Impenetrable National Park, Uganda. Primates 46, 59–63 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Owiunji, I, et al. The biodiversity of the Virunga Volcanoes. https://programs.wcs.org/portals/49/media/file/volcanoes_biodiv_survey.pdf (2005).56.Langdale-Brown, I., Osmaston, H. & Wilson, J. G. The Vegetation of Uganda and Its Bearing on Land-Use (Governmentt of Uganda, 1964).
    Google Scholar 
    57.Ashford, R. W., Reid, G. D. F. & Butynski, T. M. The intestinal faunas of man and mountain gorillas in a shared habitat. Ann. Trop. Med. Parasitol. 84, 337–340 (1990).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Shutt, K. et al. Effects of habituation, research and ecotourism on faecal glucocorticoid metabolites in wild western lowland gorillas: Implications for conservation management. Biol. Conserv. 172, 72–79 (2014).Article 

    Google Scholar 
    59.Kayiranga, A. et al. Analysis of climate and topography impacts on the spatial distribution of vegetation in the Virunga Volcanoes Massif of East-Central Africa. Geosciences 7, 17 (2017).ADS 
    Article 

    Google Scholar 
    60.Cousins, D. & Huffman, M. A. Medicinal properties in the diet of gorillas: An ethno-phramacological evaluation. Afr. Stud. Monogr. 23, 65–89 (2002).
    Google Scholar 
    61.Woolhouse, M. E. J. Patterns in parasite epidemiology: The peak shift. Parasitol. Today 14, 428–434 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Hayes, K. S., Bancroft, A. J. & Grencis, R. K. Immune-mediated regulation of chronic intestinal nematode infection. Immunol. Rev. 201, 75–88 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Maizels, R. M. et al. Helminth parasites—masters of regulation. Immunol. Rev. 201, 89–116 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Proudman, C. J., Holmes, M. A., Sheoran, A. S., Edwards, S. E. R. & Trees, A. J. Immunoepidemiology of the equine tapeworm Anoplocephala perfoliata: Age-intensity profile and age-dependency of antibody subtype responses. Parasitology 114, 89–94 (1997).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    65.Gergócs, V., Garamvölgyi, Á., Homoródi, R. & Hufnagel, L. Seasonal change of oribatid mite communities (Acari, Oribatida) in three different types of microhabitats in an oak forest. Appl. Ecol. Environ. Res. 9, 181–195 (2011).Article 

    Google Scholar 
    66.Dobson, A. & Foufopoulos, J. Emerging infectious pathogens of wildlife. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356, 1001–1012 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Xue, Y. et al. Mountain gorilla genomes reveal the impact of long-term population decline and inbreeding. Science 348, 242–245 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Reed, D. H. & Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 17, 230–237 (2003).Article 

    Google Scholar 
    69.Pafčo, B. et al. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci. Rep. 8, 5933 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.McNeilage, A. Diet and habitat use of two mountain gorilla groups in contrasting habitats in the Virunga. In Mountain Gorillas: Three Decades of Research at Karisoke (Cambridge University Press, 2001).
    Google Scholar 
    71.Sinayitutse, E. et al. Daily defecation outputs of mountain gorillas (Gorilla beringei beringei) in the Volcanoes National Park, Rwanda. Primates https://doi.org/10.1007/s10329-020-00874-7 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    72.Burgunder, J. et al. Complexity in behavioural organization and strongylid infection among wild chimpanzees. Anim. Behav. 129, 257–268 (2017).Article 

    Google Scholar 
    73.Chapman, C. A., Speirs, M. L., Gillespie, T. R., Holland, T. & Austad, K. M. Life on the edge: Gastrointestinal parasites from the forest edge and interior primate groups. Am. J. Primatol. 68, 397–409 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Anderson, R. M. & Schad, G. A. Hookworm burdens and faecal egg counts: An analysis of the biological basis of variation. Trans. R. Soc. Trop. Med. Hyg. 79, 812–825 (1985).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Warnick, L. D. Daily variability of equine fecal strongyle egg counts. Cornell Vet. 82, 453–463 (1992).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    76.Tomczuk, K. et al. Comparison of the sensitivity of coprological methods in detecting Anoplocephala perfoliata invasions. Parasitol. Res. 113, 2401–2406 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Williamson, R., Beveridge, I. & Gasser, R. Coprological methods for the diagnosis of Anoplocephala perfoliata infection of the horse. Aust. Vet. J. 76, 618–621 (1998).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    78.Cringoli, G. et al. The Mini-FLOTAC technique for the diagnosis of helminth and protozoan infections in humans and animals. Nat. Protoc. 12, 1723–1732 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Guschanski, K. et al. Counting elusive animals: Comparing field and genetic census of the entire mountain gorilla population of Bwindi Impenetrable National Park, Uganda. Biol. Conserv. 142, 290–300 (2009).Article 

    Google Scholar 
    80.Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 
    Book 

    Google Scholar 
    81.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    82.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).83.Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear models: Overestimated effect sizes and the winner’s curse. Behav. Ecol. Sociobiol. 65, 47–55 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    84.Engqvist, L. The mistreatment of covariate interaction terms in linear model analyses of behavioural and evolutionary ecology studies. Anim. Behav. 70, 20 (2005).Article 

    Google Scholar 
    85.Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, 2007).
    Google Scholar 
    86.Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).Article 

    Google Scholar 
    87.Johnson, J. B. & Omland, K. S. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108 (2004).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    89.Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.17. https://CRAN.R-project.org/package=MuMIn (2020). More

  • in

    Correction: Gulf of Mexico blue hole harbors high levels of novel microbial lineages

    N. V. PatinPresent address: Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USAN. V. PatinPresent address: Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USAN. V. PatinPresent address: Stationed at Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA, USASchool of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USAN. V. Patin & F. J. StewartCenter for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USAN. V. Patin & F. J. StewartBowdoin College, Brunswick, ME, USAZ. A. DietrichHarbor Branch Oceanographic Institute, Florida Atlantic University, Ft. Pierce, FL, USAA. Stancil, M. Quinan & J. S. BecklerMote Marine Laboratory, Sarasota, FL, USAE. R. Hall & J. CulterU.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL, USAC. G. SmithSchool of Earth & Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USAM. TaillefertDepartment of Microbiology & Immunology, Montana State University, Bozeman, MT, USAF. J. Stewart More

  • in

    The chosen few—variations in common and rare soil bacteria across biomes

    1.Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, et al. Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev. 2013;77:342–56.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    2.Jousset A, Bienhold C, Chatzinotas A, Gallien L, Gobet A, Kurm V, et al. Where less may be more: how the rare biosphere pulls ecosystems strings. ISME J. 2017;11:853–62.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Rivett DW, Bell T. Abundance determines the functional role of bacterial phylotypes in complex communities. Nat Microbiol. 2018;3:767–72.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK. The contribution of species richness and composition to bacterial services. Nature. 2005;436:1157–60.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    5.Starke R, Capek P, Morais D, Callister SJ, Jehmlich N. The total microbiome functions in bacteria and fungi. J Proteom. 2020;213:1–5.Article 
    CAS 

    Google Scholar 
    6.Saleem M, Hu J, Jousset A. More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health. Annu Rev Ecol Evol Syst. 2019;50:145–68.Article 

    Google Scholar 
    7.Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, Heijden van der MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:1–10.CAS 
    Article 

    Google Scholar 
    8.Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun. 2016;7:1–8.Article 
    CAS 

    Google Scholar 
    9.Delgado-Baquerizo M, Reich PB, Trivedi C, Eldridge DJ, Abades S, Alfaro FD, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat Ecol Evol. 2020;4:210–20.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Aanderud ZT, Jones SE, Fierer N, Lennon JT. Resuscitation of the rare biosphere contributes to pulses of ecosystem activity. Front Microbiol. 2015;6:1–11.Article 

    Google Scholar 
    11.Song H-K, Song W, Kim M, Tripathi BM, Kim H, Jablonski P, et al. Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol Ecol. 2017;93:1–13.Article 
    CAS 

    Google Scholar 
    12.Jiao S, Chen W, Wei G. Biogeography and ecological diversity patterns of rare and abundant bacteria in oil-contaminated soils. Mol Ecol. 2017;26:5305–5317.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, et al. A global atlas of the dominant bacteria found in soil. Science. 2018;359:320–5.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Yu X, Polz MF, Alm EJ. Interactions in self-assembled microbial communities saturate with diversity. ISME J. 2019;13:1602–17.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Li P, Liu J, Jiang C, Wu M, Liu M, Li Z. Distinct successions of common and rare bacteria in soil under humic acid amendment—a microcosm study. Front Microbiol. 2019;10:1–14.Article 

    Google Scholar 
    16.Nemergut DR, Costello EK, Hamady M, Lozupone C, Jiang L, Schmidt SK, et al. Global patterns in the biogeography of bacterial taxa. Environ Microbiol. 2011;13:135–44.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    17.Bickel S, Chen X, Papritz A, Or D. A hierarchy of environmental covariates control the global biogeography of soil bacterial richness. Sci Rep. 2019;9:1–10.CAS 
    Article 

    Google Scholar 
    18.Clarke RT, Murphy JF. Effects of locally rare taxa on the precision and sensitivity of RIVPACS bioassessment of freshwaters. Freshw Biol. 2006;51:1924–40.Article 

    Google Scholar 
    19.Kurm V, Putten WH, van der, Boer W, de, Naus‐Wiezer S, Hol WHG. Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology. 2017;98:555–64.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Kurm V, Putten WH, van der, Hol WHG. Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PLoS ONE. 2019;14:1–14.Article 
    CAS 

    Google Scholar 
    21.Meyer KM, Memiaghe H, Korte L, Kenfack D, Alonso A, Bohannan BJM. Why do microbes exhibit weak biogeographic patterns? ISME J. 2018;12:1404–13.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Escalas A, Hale L, Voordeckers JW, Yang Y, Firestone MK, Alvarez‐Cohen L, et al. Microbial functional diversity: from concepts to applications. Ecol Evol. 2019;9:12000–16.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Barberán A, Ramirez KS, Leff JW, Bradford MA, Wall DH, Fierer N. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol Lett. 2014;17:794–802.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Dee LE, Cowles J, Isbell F, Pau S, Gaines SD, Reich PB. When do ecosystem services depend on rare species? Trends Ecol Evol. 2019;34:746–58.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Pueyo S, He F, Zillio T. The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecol Lett. 2007;10:1017–28.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–7.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Zhou J, Deng Y, Shen L, Wen C, Yan Q, Ning D, et al. Temperature mediates continental-scale diversity of microbes in forest soils. Nat Commun. 2016;7:1–10.
    Google Scholar 
    28.Thompson LR, Jex AR, Campbell AH, Linz AM, Berry A, Williams AE, et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature. 2017;551:457–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Bickel S, Or D. Soil bacterial diversity mediated by microscale aqueous-phase processes across biomes. Nat Commun. 2020;11:1–9.
    Google Scholar 
    30.Xu X, Thornton PE, Post WM. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Glob Ecol Biogeogr. 2013;22:737–49.Article 

    Google Scholar 
    31.Serna-Chavez HM, Fierer N, van Bodegom PM. Global drivers and patterns of microbial abundance in soil: global patterns of soil microbial biomass. Glob Ecol Biogeogr. 2013;22:1162–72.Article 

    Google Scholar 
    32.Wang G, Or D. A hydration-based biophysical index for the onset of soil microbial coexistence. Sci Rep. 2012;2:1–5.
    Google Scholar 
    33.Li CH, Lee CK. Minimum cross entropy thresholding. Pattern Recognit. 1993;26:617–625.Article 

    Google Scholar 
    34.Walt S, van der, Schönberger JL, Nunez-Iglesias J, Boulogne F, Warner JD, Yager N, et al. scikit-image: image processing in Python. PeerJ. 2014;2:1–18.
    Google Scholar 
    35.Homem-de-Mello T, Rubinstein RY. Estimation of rare event probabilities using cross-entropy. Proc Winter Simul Conf. 2002;1:310–19.Article 

    Google Scholar 
    36.Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome. 2018;6:1–14.Article 

    Google Scholar 
    37.Šťovíček A, Kim M, Or D, Gillor O. Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep. 2017;7:1–9.Article 
    CAS 

    Google Scholar 
    38.Zhao M, Heinsch FA, Nemani RR, Running SW. Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ. 2005;95:164–76.Article 

    Google Scholar 
    39.Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: new climate surfaces for global land areas. Int J Climatol. 2017;37:4302–15.Article 

    Google Scholar 
    40.Schoolfield RM, Sharpe PJH, Magnuson CE. Non-linear regression of biological temperature-dependent rate models based on absolute reaction-rate theory. J Theor Biol. 1981;88:719–31.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Beck HE, Wood EF, Pan M, Fisher CK, Miralles DG, van Dijk AIJM, et al. MSWEP V2 Global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull Am Meteorol Soc. 2019;100:473–500.Article 

    Google Scholar 
    42.Wang G, Or D. Hydration dynamics promote bacterial coexistence on rough surfaces. ISME J. 2013;7:395–404.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Kim M, Or D. Individual-based model of microbial life on hydrated rough soil surfaces. PLoS ONE. 2016;11:1–31.
    Google Scholar 
    44.Hermsen R, Okano H, You C, Werner N, Hwa T. A growth-rate composition formula for the growth of E.coli on co-utilized carbon substrates. Mol Syst Biol. 2015;11:1–6.Article 
    CAS 

    Google Scholar 
    45.García FC, Bestion E, Warfield R, Yvon-Durocher G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc Natl Acad Sci. 2018;115:10989–94.PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    46.Slessarev EW, Lin Y, Bingham NL, Johnson JE, Dai Y, Schimel JP, et al. Water balance creates a threshold in soil pH at the global scale. Nature. 2016;540:567–9.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Treves DS, Xia B, Zhou J, Tiedje JM. A two-species test of the hypothesis that spatial isolation influences microbial diversity in soil. Micro Ecol. 2003;45:20–8.CAS 
    Article 

    Google Scholar 
    48.Campbell BJ, Yu L, Heidelberg JF, Kirchman DL. Activity of abundant and rare bacteria in a coastal ocean. Proc Natl Acad Sci. 2011;108:12776–81.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Stauffer D. Scaling theory of percolation clusters. Phys Rep. 1979;54:1–74.Article 

    Google Scholar 
    50.Scher H, Zallen R. Critical density in percolation processes. J Chem Phys. 1970;53:3759–61.CAS 
    Article 

    Google Scholar 
    51.Hengl T, de Jesus JM, Heuvelink GB, Gonzalez MR, Kilibarda M, Blagotić A, et al. SoilGrids250m: global gridded soil information based on machine learning. PloS ONE. 2017;12:1–40.Article 
    CAS 

    Google Scholar 
    52.Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JBH. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. mBio. 2019;10:1–11.Article 

    Google Scholar 
    53.Fisher CK, Mehta P. The transition between the niche and neutral regimes in ecology. Proc Natl Acad Sci. 2014;111:13111–6.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Doud DFR, Bowers RM, Schulz F, Raad MD, Deng K, Tarver A, et al. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME J. 2020;14:659–75.CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Shade A, Jones SE, Caporaso JG, Handelsman J, Knight R, Fierer N, et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. mBio. 2014;5:1–9.Article 
    CAS 

    Google Scholar 
    57.Kaminsky R, Morales SE. Conditionally rare taxa contribute but do not account for changes in soil prokaryotic community structure. Front Microbiol. 2018;9:1–6.Article 

    Google Scholar 
    58.Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci U S A. 2004;101:4631–6.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster

    1.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B. 267, 739–745 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).Article 

    Google Scholar 
    3.Kimura, M. T. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442–449 (2004).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Gaston, K. J. & Chown, S. L. Elevation and climatic tolerance: A test using dung beetles. Oikos 86, 584–590 (1999).Article 

    Google Scholar 
    5.MacMillan, H. A. Dissecting cause from consequence: a systematic approach to thermal limits. J. Exp. Biol. 222, jeb191593 (2019).6.Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Armstrong, G. A. B., Rodríguez, E. C. & Meldrum Robertson, R. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma. J. Insect Physiol. 58, 1511–1516 (2012).8.Rodgers, C. I., Armstrong, G. A. B. & Robertson, R. M. Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980–990 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 233, 10–16 (2019).10.Koštál, V., Vambera, J. & Bastl, J. On the nature of pre-freeze mortality in insects: Water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509–1521 (2004).PubMed 
    Article 

    Google Scholar 
    11.Zachariassen, K. E., Kristiansen, E. & Pedersen, S. A. Inorganic ions in cold-hardiness. Cryobiology 48, 126–133 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.MacMillan, H. A. & Sinclair, B. J. The role of the gut in insect chilling injury: Cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    13.MacMillan, H. A., Williams, C. M., Staples, J. F. & Sinclair, B. J. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. PNAS 109, 20750–20755 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    14.MacMillan, H. A., Findsen, A., Pedersen, T. H. & Overgaard, J. Cold-induced depolarization of insect muscle: Differing roles of extracellular K+ during acute and chronic chilling. J. Exp. Biol. 217, 2930–2938 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    15.Bayley, J. S., Sørensen, J. G., Moos, M., Koštál, V. & Overgaard, J. Cold-acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R439–R447 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Bayley, J. S. et al. Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect. PNAS 115, E9737–E9744 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Carrington, J., Andersen, M. K., Brzezinski, K. & MacMillan, H. A. Hyperkalemia, not apoptosis, accurately predicts chilling injury in individual locusts. Proc. R. Soc. B. (in press).18.Koštál, V., Yanagimoto, M. & Bastl, J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 143, 171–179 (2006).19.MacMillan, H. A., Baatrup, E. & Overgaard, J. Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proc. R. Soc. B. 282 (2015).20.Garcia, M. J., Littler, A. S., Sriram, A. & Teets, N. M. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 74, 1437–1450 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Gerken, A. R., Mackay, T. F. C. & Morgan, T. J. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. J. Therm. Biol. 59, 77–85 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Colinet, H. & Hoffmann, A. A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84–93 (2012).Article 

    Google Scholar 
    23.MacMillan, H. A., Andersen, J. L., Loeschcke, V. & Overgaard, J. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R823–R831 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Ransberry, V. E., MacMillan, H. A. & Sinclair, B. J. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiol. Biochem. Zool. 84, 553–559 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).Article 

    Google Scholar 
    27.Hoffmann, A. A., Shirriffs, J. & Scott, M. Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct. Ecol. 19, 222–227 (2005).Article 

    Google Scholar 
    28.Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).Article 

    Google Scholar 
    29.Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: Phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).Article 

    Google Scholar 
    30.Gibert, P. & Huey, R. B. Chill-coma temperature in Drosophila: Effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74, 429–434 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Hori, Y. & Kimura, M. T. Relationship between cold stupor and cold tolerance in Drosophila (Diptera: Drosophilidae). Environ. Entomol. 27, 1297–1302 (1998).Article 

    Google Scholar 
    32.Teets, N. M. & Hahn, D. A. Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. J. Evol. Biol. 31, 543–555 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    33.Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).PubMed 
    Article 

    Google Scholar 
    34.Pool, J. E., Braun, D. T. & Lack, J. B. Parallel evolution of cold tolerance within Drosophila melanogaster. Mol. Biol. Evol. 34, 349–360 (2017).CAS 
    PubMed 

    Google Scholar 
    35.Mansourian, S. et al. Wild African Drosophila melanogaster are seasonal specialists on marula fruit. Curr. Biol. 28, 3960-3968.e3 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    36.Pool, J. E. et al. Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genetics 8, e1003080 (2012).37.Baudry, E., Viginier, B. & Veuille, M. Non-African populations of Drosophila melanogaster have a unique origin. Mol. Biol. Evol. 21, 1482–1491 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    38.MacMillan, H. A., Andersen, J. L., Davies, S. A. & Overgaard, J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5, 18607 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Chen, C.-P. & Walker, V. K. Cold-shock and chilling tolerance in Drosophila. J. Insect Physiol. 40, 661–669 (1994).Article 

    Google Scholar 
    40.Hoffmann, A. A. & Watson, M. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142, S93–S113 (1993).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Ørsted, M., Hoffmann, A. A., Rohde, P. D., Sørensen, P. & Kristensen, T. N. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122, 315–325 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Gerken, A. R., Eller, O. C., Hahn, D. A. & Morgan, T. J. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. PNAS 112, 4399–4404 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. & Sinclair, B. J. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gilchrist, G. W., Huey, R. B. & Partridge, L. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol. Zool. 70, 403–414 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Maclean, H. J., Kristensen, T. N., Sørensen, J. G. & Overgaard, J. Laboratory maintenance does not alter ecological and physiological patterns among species: A Drosophila case study. J. Evol. Biol. 31, 530–542 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, jeb169342 (2018).48.Nilson, T. L., Sinclair, B. J. & Roberts, S. P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 52, 1027–1033 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Hazell, S. P. & Bale, J. S. Low temperature thresholds: are chill coma and CTmin synonymous?. J. Insect Physiol. 57, 1085–1089 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Bertram, G. C. L. The low temperature limit of activity of arctic insects. J. Anim. Ecol. 4, 35–42 (1935).Article 

    Google Scholar 
    51.Sinclair, B. J., Coello Alvarado, L. E. & Ferguson, L. V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 53, 180–197 (2015).52.MacMillan, H. A. et al. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. J. Exp. Biol. 221, jeb185884 (2018).53.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). More

  • in

    Microscale tracking of coral-vibrio interactions

    1.Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Rosenberg, E., Kellogg, C. A. & Rohwer, F. L. Coral microbiology. Oceanography 20, 146 (2007).Article 

    Google Scholar 
    3.Rohwer, F. & Youle, M. Coral Reefs in the Microbial Seas (Plaid Press, 2010).4.Haas, A. F. et al. Global microbialization of coral reefs. Nat. Microbiol. 1, 16042 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Roth, E., Jeon, K. & Stacey, G. Homology in endosymbiotic systems: the term ‘symbiosome’. (1988).6.Zvuloni, A. et al. Spatio-temporal transmission patterns of black-band disease in a coral community. PLoS ONE 4, e4993 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    7.Peters, E. C. in Coral Reefs in the Anthropocene 147–178 (Springer Press, 2015).8.Kushmaro, A., Rosenberg, E., Fine, M., Ben Haim, Y. & Loya, Y. Effect of temperature on bleaching of the coral Oculina patagonica by Vibrio AK-1. Mar. Ecol. Prog. Ser. 171, 131–137 (1998).Article 

    Google Scholar 
    9.Ben-Haim, Y. et al. Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis. Int. J. Syst. Evol. Microbiol. 53, 309–315 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Rosenberg, E., Kushmaro, A., Kramarsky-Winter, E., Banin, E. & Yossi, L. The role of microorganisms in coral bleaching. ISME J. 3, 139–146 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Kramarsky-Winter, E., Downs, C., Downs, A. & Loya, Y. Cellular responses in the coral Stylophora pistillata exposed to eutrophication from fish mariculture. Evol. Ecol. Res. 11, 381–401 (2009).
    Google Scholar 
    12.Santos, E. et al. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 5, 1471–1483 (2011).Article 

    Google Scholar 
    13.Ben Haim, Y. & Rosenberg, E. A novel Vibrio sp. pathogen of the coral Pocillopora damicornis. Mar. Biol. 141, 47–55 (2002).14.Vidal-Dupiol, J. et al. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms. BMC Physiol. 9, 14 (2009).15.Zvuloni, A., Artzy-Randrup, Y., Katriel, G., Loya, Y. & Stone, L. Modeling the impact of white-plague coral disease in climate change scenarios. PLoS Comput. Biol. 11, e1004151 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    16.Wright, R. M. et al. Intraspecific differences in molecular stress responses and coral pathobiome contribute to mortality under bacterial challenge in Acropora millepora. Sci. Rep. 7, 2609-017-02685-1 (2017).
    Google Scholar 
    17.Garren, M., Son, K., Tout, J., Seymour, J. R. & Stocker, R. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J. 10, 1363–1372 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Sussman, M. et al. Vibrio zinc-metalloprotease causes photoinactivation of coral endosymbionts and coral tissue lesions. PLoS ONE 4, e4511 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Rosenberg, E. & Kushmaro, A. in Coral Reefs: An Ecosystem in Transition 451–464 (Springer, 2011).20.Bourne, D. et al. Microbial disease and the coral holobiont. Trends Microbiol. 17, 554–562 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Pollock, F. J., Morris, P. J., Willis, B. L. & Bourne, D. G. The urgent need for robust coral disease diagnostics. PLoS Pathog. 7, e1002183 (2011).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    22.Weis, V., Davy, S., Hoegh-Guldberg, O., Rodriguez-Lanetty, M. & Pringle, J. Cell biology in model systems as the key to understanding corals. Trends Ecol. Evol. 23, 369–376 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Work, T. & Meteyer, C. To understand coral disease, look at coral cells. EcoHealth 11, 610–618 (2014).24.Shapiro, O. H., Kramarsky-Winter, E., Gavish, A. R., Stocker, R. & Vardi, A. A coral-on-a-chip microfluidic platform enabling live-imaging microscopy of reef-building corals. Nat. Commun. 7, 10860 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Dunn, A. K., Millikan, D. S., Adin, D. M., Bose, J. L. & Stabb, E. V. New rfp- and pES213-derived tools for analyzing symbiotic Vibrio fischeri reveal patterns of infection and lux expression in situ. Appl. Environ. Microbiol. 72, 802–810 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Sammarco, P. W. Polyp bail-out: an escape response to environmental stress and a new means of reproduction in corals. Mar. Ecol. Prog. Ser. Oldendorf 10, 57–65 (1982).Article 

    Google Scholar 
    27.Work, T. M. & Aeby, G. S. Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific. J. Invertebr. Pathol. 107, 127–131 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Work, T. M. & Aeby, G. S. Systematically describing gross lesions in corals. Dis. Aquat. Org. 70, 155–160 (2006).Article 

    Google Scholar 
    29.Ainsworth, T., Fine, M., Roff, G. & Hoegh-Guldberg, O. Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J. 2, 67–73 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Ainsworth, T. D., Fine, M., Blackall, L. L. & Hoegh-Guldberg, O. Fluorescence in situ hybridization and spectral imaging of coral-associated bacterial communities. Appl. Environ. Microbiol. 72, 3016–3020 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Boyett, H. V., Bourne, D. G. & Willis, B. L. Elevated temperature and light enhance progression and spread of black band disease on staghorn corals of the Great Barrier Reef. Mar. Biol. 151, 1711–1720 (2007).Article 

    Google Scholar 
    32.Gignoux-Wolfsohn, S., Marks, C. J. & Vollmer, S. V. White band disease transmission in the threatened coral, Acropora cervicornis. Sci. Rep. 2, 804 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Kaczmarsky, L. T. Coral disease dynamics in the central Philippines. Dis. Aquat. Org. 69, 9–21 (2006).Article 

    Google Scholar 
    34.Horridge, G. A. The co-ordination of the protective retraction of coral polyps. Philos. Trans. R. Soc. Lond. B Biol. Sci. 240, 495–528 (1957).Article 

    Google Scholar 
    35.Katz, S. M., Pollock, F. J., Bourne, D. G. & Willis, B. L. Crown-of-thorns starfish predation and physical injuries promote brown band disease on corals. Coral Reefs 33, 705–716 (2014).Article 

    Google Scholar 
    36.Shapiro, O. H. et al. Vortical ciliary flows actively enhance mass transport in reef corals. Proc. Natl Acad. Sci. USA 111, 13391–13396 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Gladfelter, E. Circulation of fluids in the gastrovascular system of the reef coral Acropora cervicornis. Biol. Bull. 165, 619–625 (1983).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Patterson, M. R. A chemical engineering view of cnidarian symbioses. Am. Zool. 32, 566–582 (1992).Article 

    Google Scholar 
    39.Lewis, J. & Price, W. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176, 527–544 (1975).Article 

    Google Scholar 
    40.Brown, B. E. & Bythell, J. C. Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser. 296, 291–309 (2005).CAS 
    Article 

    Google Scholar 
    41.Zetsche, E., Baussant, T., Meysman, F. J. & van Oevelen, D. Direct visualization of mucus production by the cold-water coral Lophelia pertusa with digital holographic microscopy. PLoS ONE 11, e0146766 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Lam, E., Kato, N. & Lawton, M. Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411, 848–853 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Chuang, P. S. & Mitarai, S. Signaling pathways in the coral polyp bailout response. Coral Reefs 39, 532–534 (2020).Article 

    Google Scholar 
    44.Kvitt, H. et al. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis. Proc. Natl Acad. Sci. USA 112, 2082–2086 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Garren, M. et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8, 999–1007 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Garren, M. & Azam, F. Corals shed bacteria as a potential mechanism of resilience to organic matter enrichment. ISME J. 6, 1159–1165 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Banin, E., Israely, T., Fine, M., Loya, Y. & Rosenberg, E. Role of endosymbiotic zooxanthellae and coral mucus in the adhesion of the coral-bleaching pathogen Vibrio shiloi to its host. FEMS Microbiol. Lett. 199, 33–37 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Meron, D. et al. Role of flagella in virulence of the coral pathogen Vibrio coralliilyticus. Appl. Environ. Microbiol. 75, 5704–5707 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Certner, R. H., Dwyer, A. M., Patterson, M. R. & Vollmer, S. V. Zooplankton as a potential vector for white band disease transmission in the endangered coral, Acropora cervicornis. PeerJ 5, e3502 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Ushijima, B. et al. Vibrio coralliilyticus strain OCN008 is an etiological agent of acute Montipora white syndrome. Appl. Environ. Microbiol. 80, 2102–2109 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    51.Butler, S. M. & Camilli, A. Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat. Rev. Microbiol. 3, 611 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    52.Stocker, R. The 100 µm length scale in the microbial ocean. Aquat. Microb. Ecol. 76, 189–194 (2015).Article 

    Google Scholar 
    53.Csaszar, N. B. M., Seneca, F. O. & van Oppen, M. J. H. Variation in antioxidant gene expression in the scleractinian coral Acropora millepora under laboratory thermal stress. Mar. Ecol. Prog. Ser. 392, 93–102 (2009).CAS 
    Article 

    Google Scholar 
    54.Agostini, S. et al. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs 31, 147–156 (2012).Article 

    Google Scholar 
    55.Houlbrèque, F., Rodolfo‐Metalpa, R. & Ferrier‐Pagès, C. Heterotrophic nutrition of tropical, temperate and deep‐sea corals. Dis. Coral 150–163 (2015).56.Sorokin, Y. I. Trophical role of bacteria in the ecosystem of the coral reef. Nature 242, 415–417 (1973).Article 

    Google Scholar  More

  • in

    The Finnish Biodiversity Information Facility as a best-practice model for biodiversity data infrastructures

    The contexts of FinBIF’s emergence and developmentBuild-up of impetus and consensusA gradually strengthening drive from different sectors of society led to the eventual realisation of FinBIF as a comprehensively integrated BDDI. The earliest push came from a working group convened by the Ministry of Education and commissioned to analyse and plan the future of natural history museums (NHMs) in Finland. It identified as a goal to establish a national central NHM, one task of which would be to “act as an information centre maintaining an Automated Data Processing (ADP) based national register of collections”26. A subsequent working group commissioned to plan the central NHM concluded that one of the most urgent of the new nation-wide functions was “to create an ADP-based central registry to serve all Finnish natural history museums”27.While the central NHM was established in 1988, the proposed inclusive, national database did not materialise, but separate actors (institutions, projects, research groups) developed a variety of information systems independently. When Finland joined GBIF in 2001, an increased enthusiasm on BD informatics emerged, but significant national funding for GBIF-related activities was not mobilised. However, the demand for national progress grew rapidly with the international development of BD informatics. A project on developing the efficiency of nature conservation made recommendations on IT development, and on collating and opening data through a national solution28. The National Red List29 included recommendations on developing databases for species observations. An action plan on developing species conservation recommended a separate project for overall development of biodiversity data management, which was already close to what FinBIF later came to be30.In 2012, the Finnish Museum of natural History ‘Luomus’ successfully lobbied for a national, cross-sectoral meeting to discuss the way forward in building a national BDDI. This kick-off meeting was convened by the Ministry of the Environment on 7 September 2012. All major organisations that use, hold and/or produce biodiversity data, or fund such activities, were represented (Table 3). Subsequently, the urgency of establishing the national BDDI was re-emphasised in Finland’s Biodiversity Strategy and Action Plan31.Table 3 The organisations represented at the meeting where the establishment of a national BDDI was agreed upon on 7 September 2012.Full size tableCross-sectoral co-creation, collaboration and fundingThe host institution of FinBIF is the Finnish Museum of Natural History’Luomus’, which has led its development and the acquisition of funding, and coordinated the national and international cooperation. However, a wide national collaborative network has been an integral part of FinBIF from the start (Fig. 2), and many organisations from all sectors of society have participated in the development of FinBIF’s services and in data mobilisation. Luomus has convened seven advisory and co-creation groups in which c. 140 specialists have shared their expertise on a voluntary basis to advise policy and service development (Table 4). The wide collaborative network and the all-inclusive business model of FinBIF has helped in attracting funding for its development from many different sources with different funding criteria, such as national and EU-level research infrastructure funding, national funds for developing governance and administration, EU-funding for nature conservation actions, funds for Nordic collaboration in e-infrastructure development, private foundation grants to research and citizen science, and collaborative projects with private companies.Table 4 The expert advisory groups convened by FinBIF for co-creation of content, services, and policies. CMS = collection management system; OMS = observations management system; API = application programming interface; GIS = geographical information system; INSPIRE = infrastructure for spatial information in Europe.Full size tableIT ArchitectureFinBIF’s architecture has four key goals:

    (1)

    To harvest occurrence data from Finland and surrounding areas and share them as one interoperable data mass

    (2)

    To provide a customisable system for recording species observations

    (3)

    To provide a collection management system, and digitisation technologies and workflows for Finnish natural history collections

    (4)

    To compile, maintain, and share master data, including a taxonomic backbone of Finnish species.

    These goals are accomplished by using Service-Oriented Architecture (SOA)32 and by providing over twenty individual background services that interact with each other, mostly using RESTful HTTP APIs (for explanation of REST, see33). These include: (1) A triplestore RDF database34,35 and an API for master data (taxonomy, schema vocabularies, people, collection metadata, image metadata, data download metadata) and collection specimen data; (2) a JavaScript Object Notation (JSON36) storage database and an API of primary occurrence data; (3) a Data Warehouse database, and an extract-transform-load (ETL) process and an API built on top of an HP Vertica database; (4) an Elasticsearch search engine (see https://www.elastic.co/what-is/elasticsearch) and an API for performance-critical access of primary occurrence data and taxonomy data; (5) multimedia services (images, audio storage and conversions); and (6) map services.FinBIF is provided as a service to fulfil the needs of the Finnish biodiversity data community and to share Finnish data to all interested parties. The architecture and complete software of FinBIF cannot be easily adopted by other countries or institutions. However, FinBIF maintains several software libraries that are specifically designed to be reusable by anyone; such as the specimen label generator library, and the powerful form generation tools of the Notebook OMS. Data and services can be used by third party applications via FinBIF’s public API (https://api.laji.fi).Occurrence data architectureFinBIF maintains systems for both primary and secondary occurrence data storage (Fig. 4). A primary data storage is a database or other type of storage where the data are maintained and used for the original purposes and use cases. A secondary data storage holds a copy of the primary data for distribution, analysis, and other derived purposes.Fig. 4Services, processes and data flows of FinBIF (a). The relations of services and processes to data life cycle phases as depicted in Fig. 1. Dashed lines denote planned services (b). Occurrence data flow from FinBIF’s and external actors’ primary sources through FinBIF’s data warehouse to FinBIF’s portal. CMS = Collection Management System, OMS = Observations Management System, DW = data warehouse, ETL = Extract-Transform-Load, API = Application Programming Interface, GIS = Geographical Information System, IAS = Invasive Alien Species, AI = Artificial Intelligence.Full size imageFinBIF has two IT systems for storing and maintaining primary occurrence data: the Kotka CMS for specimen data and the Notebook OMS for observational data (see below for descriptions). FinBIF also co-operates with iNaturalist and maintains iNaturalist Finland.FinBIF’s Data Warehouse harvests occurrence data from primary data sources and stores them as secondary data. The data warehouse transforms primary occurrence data into a single interoperable data mass through various ETL processes. Currently, live updates are received from 34 different data sources using eight different ETL processes. Many more datasets have been loaded using a one-time process. For primary data sources that are not databases or IT systems (for example Excel, MapInfo files), a tool is provided for harmonizing the data into FinBIF format and uploading them to the data warehouse as secondary data. The primary data remain under the ownership and management of the source, where all changes and updates are made. However, FinBIF maintains an annotation system, which stores added information about the occurrence entries (as primary data), for example identifications and quality markings by taxon experts. These annotations are stamped on top of the original data in the data warehouse to provide an enriched version of the data.Each dataset must have metadata that describe, e.g., the name, type and owner of the dataset. In the Data Warehouse, primary occurrence data, annotations, dataset metadata, the taxonomic backbone, and information on locations and people are linked to provide an enriched query service. FinBIF is a visible platform to make data FAIR16, thus increasing the prestige of the shared dataset, but the data sharer also gains through receiving quality feedback about the occurrences from the many taxon experts and volunteers that annotate the data in FinBIF. Based on the annotations, the data can be improved in the primary data source. To make data more interoperable, FinBIF encourages primary data source owners to harmonise their data with FinBIF-maintained master data, by using the same taxonomy and schema vocabularies.The Data Warehouse has two sides: public and private. The public side contains open-access data, some of which have been coarsened because of the sensitivity of the species in question or because of a research embargo, as specified in FinBIF’s data policy (https://laji.fi/en/about/2982; https://laji.fi/en/about/875). In addition, individual observers may hide, e.g., the exact location of their occurrence or their name. The restricted-access side of the Data Warehouse contains uncoarsened data. Some data sources provide a limited version to the public side and a full version to the restricted side. Government officials can access the restricted-use, uncoarsened data via a separate authorities’ portal. Researchers and other users can do so by issuing a data request (see below). Maintaining two versions of the data has required developing unique designs. They do not reveal information about sensitive species, which might endanger their preservation, but still allow joining annotations made on the restricted side so these can be shown also on the public side. Occurrences that need to be coarsened are detached from their original concept and uploaded with a random delay to the public side to make it difficult to discover the exact location from accompanying occurrences. Apart from this delay, the private and public sides are automatically fully synchronised.API and GIS services have been built on top of the Data Warehouse to allow open-access use of the data, both for the public and the restricted side. Most of the occurrence data from Finland go to GBIF via FinBIF. This data transfer is still being developed, and all datasets are not yet automatically copied to GBIF.Master data management architectureA triplestore is used in FinBIF for all small datasets, including taxon data. More specifically, the data are stored according to the RDF35 specification. An RDF Schema defines the allowed properties for each class. FinBIF’s triplestore34 implementation is an Oracle relational database with two tables (resource and statement), which provides the ability to do Structured Query Language (SQL) queries and updates. Doing small, atomic updates is easy, as only a small subset of the triplets can be updated instead of the entire data entity. Maintaining a complete record of history comes without much effort, as it can be done on an individual triplet level.As an example, the FinBIF taxon data model – including adjacent classes such as publication, person, image, and threat assessments – consists of 260 properties. If the data model were stored in a normalized relational database, there would be an estimated 56 tables, which could be difficult to maintain. Thus, in FinBIF, non-relational database solutions are preferred.IdentifiersFinBIF uses a persistent HTTP-URI identifier for all types of real-life and digital objects (specimens, occurrences, taxa, metadata, persons, organisations, information systems, etc.), as recommended by the World Wide Web Consortium37. The identifier takes the user to an ID redirect service, which redirects the user to a page that shows information about the object in human-readable format. For example, specimen identifiers redirect to information about the specimen and taxon identifiers to a page describing the taxon.The redirect service can also provide machine-readable data about the object, if the user (client software) requests that using Accept headers. Supported formats vary based on data types, e.g., for specimens, the system can offer data in RDF + XML38 and JSON-LD (see https://json-ld.org/) formats using CETAF compliant vocabulary (CETAF Specimen Preview Profile CSPP39). This is also compatible with MIDS (Minimum Information about a Digital Specimen40).If partner organisations do not provide HTTP-URI identifiers for their occurrences, FinBIF will use the persistent internal IDs of the data source to generate globally unique URI identifiers. DOI identifiers for data downloads and dataset metadata will be created in the near future.IT solutions in key services and processesFinBIF runs numerous processes to provide a rich set of services (Fig. 4). The IT solutions applied in building key services and in enabling central processes are described below. The order of the descriptions follows the data life cycle phases identified in Fig. 1.Kotka CMSKotka is one of the two primary data management systems of FinBIF. It is designed to fit the needs of different types of collections and can be further adapted when new needs arise.Kotka differs in many ways from traditional CMS solutions. It applies simple and pragmatic approaches. This has helped it grow into a nationally used system despite limited development resources – on average less than one full-time equivalent developer. The aim is to improve collection management efficiency by providing practical tools. Kotka emphasises the quantity of digitised specimens over completeness of the data. It harmonises practices by bringing all types of collections under one system; the types currently covered include zoological, botanical, mycological and palaeontological museum collections, tissue and DNA samples, and botanic garden and microbial living collections.Kotka stores data mostly in a denormalised free text format using a triplestore and a simple hierarchical data model. This allows greater flexibility of use and faster development compared to a normalized relational database. New data fields and structures can be added easily as needs arise. Kotka does some data validation, but quality control is seen as a continuous process and is mostly done after the data have been recorded into the system. The data model is loosely based on the Access to Biological Collection Data (ABCD) standard41, but has been adapted for practical needs.Kotka is a web application. Data can be entered, edited, searched, and exported through a browser-based user interface (UI). However, most users prefer to enter new data in customizable MS-Excel templates, which support the hierarchical data model, and upload these to Kotka. Batch updates can also be done using Excel. Kotka stores all revisions of the data to avoid any data loss due to technical or human error.Kotka supports designing and printing specimen labels9, annotations by external users, and handling accessions, loan transactions, and the Nagoya protocol10.Notebook OMSNotebook is the other primary data management system of FinBIF. It is a web solution for recording opportunistic as well as sampling-event-based species observations. It is being used for systematic monitoring schemes, various citizen science projects, and platforms for species enthusiasts.Notebook’s main software component is LajiForm, which is the engine that renders a given JSON Schema into a web form. LajiForm is a separate, reusable module that is fully independent from other FinBIF systems. Notebook as a whole includes other features embedded in FinBIF, such as adding complex geographical shapes to observation documents, importing data from spreadsheets, and form templates.All Notebook forms use FinBIF’s ontological schema in the JSON36 Schema format. Rendering user-friendly web forms based on a single schema is difficult, because the web form should be asking meaningful questions, instead of just rendering the schema fields according to the form description. Questions should be presented in an interactive manner. For instance, after drawing a geographical location on a map for a potential flying squirrel nesting tree, one would ask “did you see droppings at the nest?”, and answering “yes” would update the document to include a flying squirrel taxon identification with fields “breeding” and “record basis” filled in but not rendered to the form. A simpler form engine without a user interface (UI) customisation layer would just render the fields “taxon”, “breeding” and “record basis”, and the user would have no understanding why there are so many fields to fill in and how they relate to their work or study.Some Notebook forms are complex, e.g., for experienced biology enthusiasts who need a form that is advanced, customisable, and compact. Some forms are simple, e.g., for elementary school children. To tackle this, LajiForm uses a separate schema for the UI that allows everything from simple customisation, such as defining widgets for fields, changing field order or customising field labels, to more complex customisation like transforming the schema object structure, defining conditions when certain fields are shown, or if updating a field should have an effect on other fields. All the functionality is split into a loosely coupled collection of components, which can be either used as standalone components or composed together in order to achieve more advanced customisation. The programming philosophy has drawn inspiration from functional programming, which has been helpful in writing isolated, composable functionality.LajiForm is written with the JavaScript framework ‘React’. LajiForm is built on top of react-jsonschema-form (RJSF), which is an open source JSON schema web form library founded by Mozilla (see https://react-jsonschema-form.readthedocs.io/en/latest/). RJSF handles only simple customization, but it is very flexible in design and allows building extensions with features that are more powerful. Some features and design proposals were submitted to Mozilla – FinBIF is the largest outsider code contributor to RJSF, with a dozen pull requests merged.iNaturalistFiiNaturalist (https://www.inaturalist.org/) is an international observation and citizen science application and platform. The iNaturalist Network is a collection of websites that are localized to national use in c. 10 different countries. FinBIF supports the Finnish network site iNaturalist Finland through translations, instructions, communication, moderation, and user support.Finnish iNaturalist data are automatically synchronized weekly to FinBIF’s data warehouse, where they are available for local use. iNaturalist observations are linked to the observer’s own account in the FinBIF portal, if they have linked their iNaturalist and FinBIF accounts. Both features are important in encouraging observers to use iNaturalist, and to allow it to work seamlessly with other FinBIF services.Taxon EditorFinBIF has developed its own taxon database, ‘Taxon Editor’. It allows taxon specialists to maintain their own, expert-validated view of Finnish species. The aggregation of these is used as a backbone taxonomy for all FinBIF services, and the national checklist of Finnish taxa is extracted from it (see https://laji.fi/en/theme/checklist). Each taxon is given a globally unique persistent HTTP-URI identifier, which refers to the taxon concept, not to the name. The identifier does not change if the taxon concept remains unchanged. Compatibility with checklists from other countries is sought by linking taxon concepts as Linked Data.The taxon specialists (currently c. 60) maintain the taxon data using a web application. All changes made go live every night. The nightly update interval allows the specialists a grace period to make their changes. To maintain the integrity of critical data, such as lists of protected species, limitations to what the specialists can do have been imposed. Changes to critical data are carried out by an administrator.Taxon Editor has special features for linking observations to the taxonomy. These include hidden species aggregates and tools to override how a certain name used in observations is linked to the taxonomy. Misapplied names, however, remain an unresolved problem. Most observations are still recorded using plain names, but it is possible for the observer to pick a taxon concept instead, which is the most precise way. When data are published through the FinBIF portal from other information systems, the data providers can link their observations to FinBIF’s taxon concepts by providing the concept’s identifier. The ability to use taxon concepts as a basis of observations means the concepts have to be maintained over time, a task that may become arduous in the future. For further description of the functionalities of Taxon Editor, see7.Taxon Editor is also used in Red List assessments21. The threat assessment is carried out using the criteria of the International Union for Conservation of Nature (IUCN). FinBIF offers a documentation tool and an archive for the assessment, which is based on the national checklist of Finnish taxa. Information about previous assessments is available in the tool, and the assessor can copy and confirm, e.g., area of occupancy, extent of occurrence, generation length and habitat preferences of a species from the previous assessment. The service offers the possibility to add notes to most of the fields separately and commenting on the assessments by other authorised users. In line with the IUCN instructions, the tool automatically chooses the criteria leading to the highest possible threat category of criteria filled out for the species, although the assessor confirms the final evaluation. In several fields, the tool automatically checks the validity of values entered, e.g., criteria, threat category, length of observation period, causes of threat, and current threat factors. The tool includes necessary fields for backcasting the categories of previous assessments to count the Red List Index42. There is also a possibility to do regional threat assessments. Data are stored to the triplestore34, which archives the history of all changes.Media serviceThe FinBIF media service currently supports receiving, transforming, storing and serving images and audio. For images, the original media is stored, and the service generates a smaller JPEG version to be used in the web. The service also generates different sized thumbnails. Only a handpicked set of Exchangeable image file format (Exif43) metadata is kept, so that the metadata would not leak location information about sensitive species occurrences. For audio, wav and mp3 formats are supported. The original file is processed (cleaned) to prevent any malicious content. Mp3, wav and a spectrogram are generated and stored. Support for the International Image Interoperability Framework (IIIF; https://iiif.io/about/) standard is under planning.Data upload serviceMany occurrence datasets are not yet maintained in modern IT systems or databases, which could use an API to transfer data. FinBIF is able to receive data from Excel and GIS systems as secondary data to its data warehouse. First, metadata are generated about the dataset, and selected users are given access to upload data to that dataset. Then the owner of the data must transform the data to a row/column-based table, i.e., MS-Excel or tab-separated value (TSV) file. Each row has one occurrence and must have an ID that is unique to that dataset. The dataset owner then proceeds to upload the row/column-based file using a Web UI, in which the owner maps the fields and values of their data to FinBIF schema fields and values. Updates are done by re-uploading the entire dataset or only a part of it. Deletions are handled by a specific column that annotates that occurrence as deleted.Taxonomy backendThe taxonomy backend transfers the data created in Taxon Editor to an Elasticsearch search engine on a nightly basis. FinBIF’s API is built on top of the data in Elasticsearch. GBIF’s taxonomic backbone is currently being integrated into FinBIF’s taxonomy for taxa with occurrences but no taxonomy in FinBIF. This allows FinBIF users to browse a taxonomy that is a combination of the FinBIF and GBIF taxonomies. The taxonomy backend could harvest descriptions and images from other sources, but currently these functionalities are disabled because of data quality problems.Collection metadata backendCollection and dataset metadata are maintained primarily using the Kotka CMS, but metadata are also harvested from partner organisations’ metadatabases. The metadata of a collection contain the taxonomic, geographic and temporal coverage of the dataset, as well as information about its quality using a three-level grading: (1) Professional; (2) Expert hobbyist / expert curated; (3) Citizen science / mostly non-curated. Occurrence data can be filtered in the FinBIF data warehouse based on these levels. Each occurrence also has its occurrence-specific quality grading, which is different from the dataset grading. The collection metadata define, e.g., the people who handle data requests, which are done in FinBIF’s restricted data request service.Taxonid.orgFinland and Sweden are piloting, with a subset of taxonomic groups, to connect national checklists using Linked Open Data standards44 and agreed vocabularies. By using HTTP-URI as globally unique, persistent identifiers for taxon concepts45, the service provides both human-readable (Hypertext Markup Language, HTML) and machine-readable (Extensible Markup Language, XML) responses for client requests via a central checklist (http://taxonid.org/). Future steps include linking the national lists with the global reference checklist developed by Catalogue of Life (https://www.catalogueoflife.org/). Currently the service includes only taxonomic information, but the eventual goal is to share information also on genetics, images, and traits, as well as on conservation status and observations, in a standardised way. The work was part of the DeepDive project which was funded by the Nordic e-Infrastructure Collaboration (https://neic.no/deepdive/). The vision is to establish a regional infrastructure network consisting of Nordic and Baltic data centres and information systems, and to provide seamlessly operating regional data services, tools, and virtual laboratories.Application programming interface (API)A fundamental goal of FinBIF is to provide all data in machine-readable formats, so that the data and services can be used by third party applications. This can be accomplished using FinBIF’s public API (https://api.laji.fi). It provides access to all data available in FinBIF. The FinBIF portal is built using solely the public API, which should ensure the API is robust, of high performance, reliable and easy to use.GIS servicesFinBIF aims to share occurrence data in GIS formats (WFS, WMS; see https://www.ogc.org/standards/). These services are currently under construction.Restricted data request serviceThe restricted-use data that FinBIF harbours play a crucial role in, e.g., land-use decisions and conservation. To make these data findable, and conditionally accessible, through the public portal, a Restricted-use Data Request Service (RDRS) has been employed. It allows any user with a valid justification to request access to restricted-use datasets. After selecting the required compilation of data, the user submits a standardised form with the required information. The often multiple data owners receive a notification and a request to log in to the data owners’ section of the portal to scrutinise the request. The owners may discuss the request privately among themselves to facilitate decisions. In case of discrepancy by separate owners, the user who submitted the request may still download the released part of the data.Occurrence annotationFinBIF maintains an annotation system, which allows adding information to all occurrence records in the data warehouse. Any registered user can add comments and mark occurrences as needing verification. Trusted users can be given an expert annotator status, which allows them to have more effect on how the occurrences are shown. Experts can change the identification (taxon) that is displayed by default, grade occurrences based on their quality (verified, unreliable, erroneous), and override other annotations. However, annotations never change the original occurrence, which is always kept available. Data owners can be notified about annotations regarding their data, so that they can check and correct possible errors in the primary data source.R-libraryFinBIF provides an R programming language interface to the FinBIF API. The FinBIF R package makes the publicly available data in FinBIF accessible from within R. Biodiversity information is available on taxonomy and taxon occurrence. Occurrence data can be filtered by taxon, time, location and other variables. The data accessed are conveniently preformatted for subsequent analyses. Documentation and download can be found at https://luomus.github.io/finbif/.Map servicesFinBIF has built a JavaScript map service on top of a popular Leaflet library. It provides import and export in various formats, support for the Finnish national coordinate systems and a legacy coordinate grid layout, which is still widely used as a basis of monitoring schemes, though no longer officially supported by Finland’s geographical authorities. The tool provides a rich collection of national and international map layers that are useful in reporting and evaluating occurrence data. The tool also allows calculating lengths and areas as well as drawing complex geographical shapes (e.g. survey polygons and polylines with buffer areas).AI-based species identificationFinBIF cooperates with projects that utilise machine learning in species identification and data classification. They involve creating (semi-)automated identification pipelines for Finnish fungus species from images, and bat and bird species from audio recordings. FinBIF has provided images of fungi, is building a crowd-sourcing platform on which bird experts can produce training material, and aims to implement the Animal Sound Identifier software46 for building on-line identification services.User authenticationFinBIF provides an authentication and authorisation service that can be used also by third party applications and websites. Separate authentication flows exist for websites and native applications. Users can create one FinBIF account per e-mail address and associate multiple authentication methods and other user identities to their account. For example, users can login with Google or Facebook credentials and associate their iNaturalist, Finnish Wildlife Agency and Finnish Bird Ringing user identities to their FinBIF account. This enables users to see the occurrence data they have entered into various systems as their own occurrences in the FinBIF portal.Servers, service continuity, backup and disaster recoveryFinBIF uses services provided by CSC, the Finnish IT centre for science (https://www.csc.fi) and the University of Helsinki IT department. Both provide FinBIF several OpenStack (https://www.openstack.org/) based virtual servers and an OpenShift (https://www.openshift.com/) cloud platform. FinBIF is not committed to any certain Service Level Agreement (SLA), but its availability is above 95%. All primary data gathered by FinBIF are professionally backed up by the University of Helsinki. CSC IDA (https://www.fairdata.fi/en/ida/) is used to archive larger datasets, such as specimen images. The CSC digital preservation service (https://www.fairdata.fi/en/fairdata-pas/) will be used for long-term archiving.Development methodologiesAgile developmentThe FinBIF in-house ICT team uses a three-level development process. The first level provides capacity to do long-term planning. Epic level requests (entirely new parts of the infrastructure, inclusion of new data sources, new monitoring schemes) are compiled, prioritised and to some degree scheduled using a Trello board. The aim is to open this board for all stakeholders and the public, so that interested parties can track progress and focus of development. This board is maintained in biweekly sessions.The second level is used to direct current focus. A combination of Kanban (see https://www.atlassian.com/agile/kanban) and Scrum47 methodologies is used. Every two weeks the status of ongoing epics is checked, and the epics for the next two weeks are decided. Unlike in Scrum, there is no attempt to estimate or set goals for the sprints. Rather, a Kanban-like free-flowing system is used, where things take as long as they take.The third level is the implementation process for individual epics. Like in Scrum, each epic has a named product owner (PO). The PO communicates with the stakeholders and defines user stories. The development team turns the user stories into smaller tasks, which are maintained in a Pivotal tracker backlog (www.pivotaltracker.com).It is hoped that, in the future, developers from partner organisations could be attracted to participate in the development process.Data acquisition for this paperComparative data for other BDDIsThe data shown in Table 1 and supporting the drawing of Fig. 1 were acquired by searching for information on the public internet portals of the infrastructures between July 2019 and March 2020. The data were then sent to the representatives of the infrastructures for checking and possible corrections. Altogether 27 infrastructures (eight global and 19 national or institutional) were contacted, and answers were received from 23 (six global and 16 national or institutional) infrastructures. The following information was gathered.
    What is:

    The taxonomic coverage of your infra?

    Current number of records?

    Number of species you have information on?

    Does your infrastructure share the following types of data and information:

    Natural history collection data?

    Opportunistic observation data?

    Observation data collected in systematic monitoring schemes?

    Verbal descriptions of species?

    Standardized taxonomic core data?

    DNA-barcodes (or links to BOLD database)?

    Does your infrastructure provide the following kinds of user services:

    Possibility to enter event-based data, meaning several species observations linked together?

    A Collection Management System?

    IUCN red-listing tools?

    Red-list classifications or administrative statuses of species?

    e-lab services? What kind of?

    Is the infrastructure designed to enable:

    Data generation, such as digitization of natural history specimens?

    Collation / aggregation of data?

    Entering observations by citizen science users?

    Annotation of records/identifications?

    FinBIF’s user dataTotal numbers of users and use sessions were acquired from Google Analytics (https://analytics.google.com) for the website laji.fi in its entirety. To determine which traffic belongs to which user, Google Analytics sends a unique identifier associated with each user with each hit. This is accomplished via a Client ID, a unique, randomly generated string that gets stored in the browser’s cookies, so subsequent visits to the same site can be associated with the same user. Using cookies allows identifying unique users across browsing sessions, but it cannot identify unique users across different browsers or devices. Hence, the user numbers presented here are slight overestimates of true numbers of different people using the service. The use sessions are total number of sessions within the given range of dates. A session is the period during which a user is actively engaged with the website. All usage is associated with a session.The number of registered users comes from FinBIF’s own registry. Until the end of 2019, users had to register at the service to be able to download data from laji.fi to their own device. Subsequently, the requirement has been relaxed so that registration is required only to obtain a citable persistent unique HTTP-URI identifier for a downloaded data batch, but non-citeable so-called light downloads can be done without registration. Registration is also required to be able to record data to FinBIF’s primary data management systems and to annotate records at https://laji.fi/.Numbers of data downloads and downloaded data points are logged by FinBIF itself. As of the beginning of 2020, the numbers reported in Fig. 3b include light downloads. More