Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide
1.Myers, J. A. & LaManna, J. A. The promise and pitfalls of beta-diversity in ecology and conservation. J. Veg. Sci. 27, 1081–1083 (2016).Article
Google Scholar
2.Socolar, J. B., Gilroy, J. J., Kunin, W. E. & Edwards, D. P. How should beta-diversity inform biodiversity conservation? Trends Ecol. Evol. 31, 67–80 (2016).PubMed
Article
PubMed Central
Google Scholar
3.Xing, D. L. & He, F. L. Environmental filtering explains a U-shape latitudinal pattern in regional beta-deviation for eastern North American trees. Ecol. Lett. 22, 284–291 (2019).PubMed
Article
PubMed Central
Google Scholar
4.Anderson, M. J. et al. Navigating the multiple meanings of beta diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).ADS
PubMed
Article
PubMed Central
Google Scholar
5.Baselga, A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 19, 134–143 (2010).Article
Google Scholar
6.Menegotto, A., Dambros, C. S. & Netto, S. A. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology 100, e02721 (2019).PubMed
Article
PubMed Central
Google Scholar
7.Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).Article
Google Scholar
8.Hubbell, S. P. The unified neutral theory of biodiversity and biogeography. (Princeton University Press, 2001).9.Nekola, J. C. & White, P. S. The distance decay of similarity in biogeography and ecology. J. Biogeogr. 26, 867–878 (1999).Article
Google Scholar
10.da Silva, P. G., Lobo, J. M., Hensen, M. C., Vaz-de-Mello, F. Z. & Hernandez, M. I. M. Turnover and nestedness in subtropical dung beetle assemblages along an elevational gradient. Divers Distrib. 24, 1277–1290 (2018).Article
Google Scholar
11.Wang, X. G. et al. Ecological drivers of spatial community dissimilarity, species replacement and species nestedness across temperate forests. Glob. Ecol. Biogeogr. 27, 581–592 (2018).Article
Google Scholar
12.McFadden, I. R. et al. Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic beta diversity. Ecol. Lett. 22, 1126–1135 (2019).PubMed
Article
PubMed Central
Google Scholar
13.Qian, H., Chen, S., Mao, L. & Ouyang, Z. Drivers of β‐diversity along latitudinal gradients revisited. Glob. Ecol. Biogeogr. 22, 659–670 (2013).Article
Google Scholar
14.Xu, W. B., Chen, G. K., Liu, C. R. & Ma, K. P. Latitudinal differences in species abundance distributions, rather than spatial aggregation, explain beta-diversity along latitudinal gradients. Glob. Ecol. Biogeogr. 24, 1170–1180 (2015).Article
Google Scholar
15.Kraft, N. J. et al. Disentangling the drivers of β diversity along latitudinal and elevational gradients. Science 333, 1755–1758 (2011).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
16.Griffiths, D. Connectivity and vagility determine beta diversity and nestedness in North American and European freshwater fish. J. Biogeogr. 44, 1723–1733 (2017).Article
Google Scholar
17.Soininen, J., Heino, J. & Wang, J. J. A meta-analysis of nestedness and turnover components of beta diversity across organisms and ecosystems. Glob. Ecol. Biogeogr. 27, 96–109 (2018).Article
Google Scholar
18.LaManna, J. A., Belote, R. T., Burkle, L. A., Catano, C. P. & Myers, J. A. Negative density dependence mediates biodiversity-productivity relationships across scales. Nat. Ecol. Evol. 1, 1107–1115 (2017).PubMed
Article
PubMed Central
Google Scholar
19.van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed
Article
CAS
PubMed Central
Google Scholar
20.Brundrett, M. C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320, 37–77 (2009).CAS
Article
Google Scholar
21.Gibert, A., Tozer, W. & Westoby, M. Plant performance response to eight different types of symbiosis. New Phytol. 222, 526–542 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
22.Veresoglou, S. D., Rillig, M. C. & Johnson, D. Responsiveness of plants to mycorrhiza regulates coexistence. J. Ecol. 106, 1864–1875 (2018).Article
Google Scholar
23.Delavaux, C. S. et al. Mycorrhizal fungi influence global plant biogeography. Nat. Ecol. Evol. 3, 424–429 (2019).PubMed
Article
PubMed Central
Google Scholar
24.Barcelo, M., van Bodegom, P. M. & Soudzilovskaia, N. A. Climate drives the spatial distribution of mycorrhizal host plants in terrestrial ecosystems. J. Ecol. 107, 2564–2573 (2019).Article
Google Scholar
25.Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 571, E8–E8 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
26.Bennett, J. A. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
27.Johnson, D. J., Clay, K. & Phillips, R. P. Mycorrhizal associations and the spatial structure of an old-growth forest community. Oecologia 186, 195–204 (2018).ADS
PubMed
Article
PubMed Central
Google Scholar
28.Hargreaves, A. L., Germain, R. M., Bontrager, M., Persi, J. & Angert, A. L. Local adaptation to biotic interactions: a meta-analysis across latitudes. Am. Nat. 195, 395–411 (2020).PubMed
Article
PubMed Central
Google Scholar
29.Liu, X. B. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).PubMed
Article
PubMed Central
Google Scholar
30.Jacquemyn, H., De Kort, H., Vanden Broeck, A. & Brys, R. Immigrant and extrinsic hybrid seed inviability contribute to reproductive isolation between forest and dune ecotypes of Epipactis helleborine (Orchidaceae). Oikos 127, 73–84 (2018).Article
Google Scholar
31.Osborne, O. G. et al. Arbuscular mycorrhizal fungi promote coexistence and niche divergence of sympatric palm species on a remote oceanic island. New Phytol. 217, 1254–1266 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Myers, J. A. et al. Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecol. Lett. 16, 151–157 (2013).PubMed
Article
PubMed Central
Google Scholar
33.Jankowski, J. E., Ciecka, A. L., Meyer, N. Y. & Rabenold, K. N. Beta diversity along environmental gradients: implications of habitat specialization in tropical montane landscapes. J. Anim. Ecol. 78, 315–327 (2009).PubMed
Article
PubMed Central
Google Scholar
34.McCarthy-Neumann, S. & Ibáñez, I. Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology 93, 2637–2649 (2012).PubMed
Article
PubMed Central
Google Scholar
35.Peay, K. G. The mutualistic niche: mycorrhizal symbiosis and community dynamics. Annu. Rev. Ecol., Evol. Syst. 47, 143–164 (2016).Article
Google Scholar
36.Wang, Z. H., Fang, J. Y., Tang, Z. Y. & Shi, L. Geographical patterns in the beta diversity of China’s woody plants: the influence of space, environment and range size. Ecography 35, 1092–1102 (2012).Article
Google Scholar
37.Liang, M. X. et al. Soil fungal networks maintain local dominance of ectomycorrhizal trees. Nat. Commun. 11, 2636 (2020).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
38.Segnitz, R. M., Russo, S. E., Davies, S. J. & Peay, K. G. Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. Ecology 101, e03083 (2020).39.Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
40.Brundrett, Mark, Murase, Gracia & K, B. Comparative anatomy of roots and mycorrhizae of common Ontario trees. Can. J. Bot. 68, 551–578 (1990).Article
Google Scholar
41.Liu, Y. & He, F. L. Incorporating the disease triangle framework for testing the effect of soil-borne pathogens on tree species diversity. Funct. Ecol. 33, 1211–1222 (2019).MathSciNet
Article
Google Scholar
42.LaManna, J. A. et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science 356, 1389–1392 (2017).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
43.Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
44.Crawford, K. M. et al. When and where plant-soil feedback may promote plant coexistence: a meta-analysis. Ecol. Lett. 22, 1274–1284 (2019).PubMed
PubMed Central
Google Scholar
45.Liu, X. B., Etienne, R. S., Liang, M. X., Wang, Y. F. & Yu, S. X. Experimental evidence for an intraspecific Janzen-Connell effect mediated by soil biota. Ecology 96, 662–671 (2015).PubMed
Article
PubMed Central
Google Scholar
46.Chu, C. J. et al. Direct and indirect effects of climate on richness drive the latitudinal diversity gradient in forest trees. Ecol. Lett. 22, 245–255 (2019).ADS
PubMed
PubMed Central
Google Scholar
47.Gavito, M. E. & Azcon-Aguilar, C. Temperature stress in arbuscular mycorrhizal fungi: a test for adaptation to soil temperature in three isolates of Funneliformis mosseae from different climates. Agr. Food Sci. 21, 2–11 (2012).Article
Google Scholar
48.Hetrick, B. D. & Bloom, J. The influence of temperature on colonization of winter wheat by vesicular-arbuscular mycorrhizal fungi. Mycologia 76, 953–956 (1984).Article
Google Scholar
49.Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).ADS
Article
Google Scholar
50.Condit, R. Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. (Springer-Verlag andRG. Landes Company, 1998).51.Stillhard, J. et al. Stand inventory data from the 10-ha forest research plot in Uholka: 15 yr of primeval beech forest development. Ecology 100, e02845 (2019).PubMed
Article
PubMed Central
Google Scholar
52.Marion, Z. H., Fordyce, J. A. & Fitzpatrick, B. M. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98, 933–939 (2017).PubMed
Article
PubMed Central
Google Scholar
53.Bennett, J. R. & Gilbert, B. Contrasting beta diversity among regions: how do classical and multivariate approaches compare? Glob. Ecol. Biogeogr. 25, 368–377 (2016).Article
Google Scholar
54.Legendre, P. & De Caceres, M. Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecol. Lett. 16, 951–963 (2013).PubMed
Article
PubMed Central
Google Scholar
55.Baselga, A. Separating the two components of abundance-based dissimilarity: balanced changes in abundance vs. abundance gradients. Methods Ecol. Evol. 4, 552–557 (2013).Article
Google Scholar
56.De Cáceres, M. et al. The variation of tree beta diversity across a global network of forest plots. Glob. Ecol. Biogeogr. 21, 1191–1202 (2012).Article
Google Scholar
57.Yen, J. D. L., Fleishman, E., Fogarty, F. & Dobkin, D. S. Relating beta diversity of birds and butterflies in the Great Basin to spatial resolution, environmental variables and trait-based groups. Glob. Ecol. Biogeogr. 28, 328–340 (2019).Article
Google Scholar
58.Craven, D., Knight, T. M., Barton, K. E., Bialic-Murphy, L. & Chase, J. M. Dissecting macroecological and macroevolutionary patterns of forest biodiversity across the Hawaiian archipelago. Proc. Natl Acad. Sci. USA 116, 16436–16441 (2019).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Brundrett, M. & Tedersoo, L. Misdiagnosis of mycorrhizas and inappropriate recycling of data can lead to false conclusions. New Phytol. 221, 18–24 (2019).PubMed
Article
PubMed Central
Google Scholar
60.Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. New Phytol. 227, 955–966 (2020).PubMed
Article
PubMed Central
Google Scholar
61.Furniss, T. J., Larson, A. J. & Lutz, J. A. Reconciling niches and neutrality in a subalpine temperate forest. Ecosphere 8 (2017).62.Jucker, T. et al. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Change Biol. 24, 5243–5258 (2018).ADS
Article
Google Scholar
63.Legendre, P. et al. Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology 90, 663–674 (2009).PubMed
Article
PubMed Central
Google Scholar
64.Robert J., H. raster: Geographic data analysis and modeling. R package version 2.6-7 (2017). .65.Alahuhta, J. et al. Global variation in the beta diversity of lake macrophytes is driven by environmental heterogeneity rather than latitude. J. Biogeogr. 44, 1758–1769 (2017).Article
Google Scholar
66.Cribari-Neto, F. & Zeileis, A. Beta regression in R. J. Stat. Softw. 34, 1–24 (2010).Article
Google Scholar
67.Jump, A. S., Matyas, C. & Penuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 24, 694–701 (2009).PubMed
Article
PubMed Central
Google Scholar
68.Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-2 (2018). .69.Gilbert, B. & Bennett, J. R. Partitioning variation in ecological communities: do the numbers add up? J. Appl Ecol. 47, 1071–1082 (2010).Article
Google Scholar
70.Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH
Article
Google Scholar
71.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019). .72.Baselga, A., Orme, D., Villeger, S., De Bortoli, J. & Leprieur, F. Partitioning beta diversity into turnover and nestedness components. R package version 1.5.0 (2019). .73.Harrell Jr, F. E. & Dupont, C. Hmisc: Harrell miscellaneous. R package version 4.2-3 (2019). .74.Liaw, A. & Wiener, M. Classification and regression by randomForest. R News. 2, 18–22 (2002).
Google Scholar
75.Archer, E. rfPermute: estimate permutation p-values for random forest importance metrics. R package version 2.1.6 (2018). . More