Germination response to water availability in populations of Festuca pallescens along a Patagonian rainfall gradient based on hydrotime model parameters
1.Zárate, M. A. & Tripaldi, A. The aeolian system of central Argentina. Aeolian Res. 3, 401–417 (2012).ADS
Article
Google Scholar
2.Chapin III, F. S. Functional role of growth forms in ecosystem and global processes. In Scaling Physiology Process (ed. Ehleringer J. R. & Field C. B.) 287–312. (Elsevier Inc., 1993). https://doi.org/10.1016/C2009-0-03319-4.
Google Scholar
3.Jump, A. S., Mátyás, C. & Peñuelas, J. The altitude-for-latitude disparity in the rangeretractions of woody species. Trends Ecol. Evol. (Amst.) 24, 694–701. https://doi.org/10.1016/j.tree.2009.06.007 (2009).Article
Google Scholar
4.Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).Article
Google Scholar
5.O’Connor, T. Local extinction in perennial grasslands: A life-history approach. Am. Nat. 137, 753–773 (1991).Article
Google Scholar
6.Rotundo, J. L., Aguiar, M. R. & Benech-Arnold, R. Understanding erratic seedling emergence in perennial grasses using physiological models and field experimentation. Plant Ecol. 216, 143–156 (2015).Article
Google Scholar
7.Duncan, C., Schultz, N. L., Good, M. K., Lewandrowski, W. & Cook, S. The risk-takers and-avoiders: Germination sensitivity to water stress in an arid zone with unpredictable rainfall. AoB Plants. 11(6), plz066 (2019).PubMed
PubMed Central
Article
Google Scholar
8.Pendleton, B. & Meyer, S. Habitat-correlated variation in blackbrush (Coleogyne ramosissima: Rosaceae) seed germination response. J. Arid Environ. 59, 229–243 (2004).ADS
Article
Google Scholar
9.Chamorro, D. et al. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biol. 19(1), 23–31 (2017).PubMed
Article
CAS
PubMed Central
Google Scholar
10.Bewley, J. D. & Black, M. Seeds. In Seeds. (ed. Bewley, J. D. & Black, M.) 1–33. https://doi.org/10.1007/978-1-4899-1002-8. eBook ISBN978-1-4899-1002-8 (Springer, Boston, MA, 1994).
Google Scholar
11.Bradford, K. J. Water relations in seed germination. In Seed Development and Germination (eds Kigel, J. & Galili, G.) 351–396 (Marcel Dekker Inc, 1995).
Google Scholar
12.Batlla, D. & Benech-Arnold, R. L. The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci. Res. 16(1), 47–59 (2006).Article
CAS
Google Scholar
13.Luna, B. & Chamorro, D. Germination sensitivity to water stress of eight Cistaceae species from the Western Mediterranean. Seed Sci. Res. 26(2), 101 (2016).Article
Google Scholar
14.Bradford, K. J. Threshold models applied to seed germination ecology. New Phytol. 165, 338–341 (2005).PubMed
Article
PubMed Central
Google Scholar
15.Garcia-Huidobro, J., Monteith, J. & Squire, G. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. J. Exp. Bot. 33, 288–296 (1982).Article
Google Scholar
16.Bradford, K. J. A water relations analysis of seed germination rates. Plant Physiol. 94, 840–849 (1990).PubMed
PubMed Central
Article
CAS
Google Scholar
17.Bradford, K. J. & Still, D. W. Applications of hydrotime analysis in seed testing. Seed Technol. 26(1), 75–85 (2004).
Google Scholar
18.Gummerson, R. J. The effect of constant temperature and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37, 729–741 (1986).Article
Google Scholar
19.Bradford, K. J. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50, 248–260 (2002).Article
CAS
Google Scholar
20.Batlla, D. & Agostinelli, A. M. Thermal regulation of secondary dormancy induction in Polygonum aviculare seeds: A quantitative analysis using the hydrotime model. Seed Sci. Res. 27(3), 231–242 (2017).Article
CAS
Google Scholar
21.Farahinia, P., Sadat-Noori, S. A., Mortazavian, M. M., Soltani, E. & Foghi, B. Hydrotime model analysis of Trachyspermum ammi (L.) Sprague seed germination. J. Appl. Res. Med. Aroma. 5, 88–91 (2017).
Google Scholar
22.Wang, R., Bai, Y. & Tanino, K. Germination of winterfat (Eurotia lanata (Pursh) Moq.) seeds at reduced water potentials: Testing assumptions of hydrothermal time model. Environ. Exp. Bot. 53(1), 49–683 (2005).Article
Google Scholar
23.Alvarado, V. & Bradford, K. J. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25(8), 1061–1069 (2002).Article
Google Scholar
24.Bakhshandeh, E. & Gholamhossieni, M. Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. J. Plant Growth Regul. 38(4), 1402–1411 (2019).Article
CAS
Google Scholar
25.Bakhshandeh, E. & Jamali, M. Population-based threshold models: A reliable tool for describing aged seeds response of rapeseed under salinity and water stress. Environ. Exp. Bot. 176, 104077 (2020).Article
CAS
Google Scholar
26.Leva, P. E. Variación regional de las características agroecológicas y genéticas de Bromus pictus y Poa ligularis en estepas patagónicas (Universidad Nacional de Buenos Aires, 2010).
Google Scholar
27.Palazzesi, L., Barreda, V. & Prieto, A. Análisis evolutivo de la vegetación cenozoica en las provincias de Chubut y Santa Cruz (Argentina) con especial atención en las comunidades herbáceo-arbustivas. Revista del Museo Argentino de Ciencias Naturales nueva serie 5(2), 151–161 (2014).
Google Scholar
28.León, R. J., Bran, D., Collantes, M., Paruelo, J. M. & Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecol. Austral. 8, 125–144 (1998).
Google Scholar
29.Villalba, R. et al. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim. Change. 59(1), 177–232 (2003).Article
Google Scholar
30.Godagnone, R., Bran, D. Inventario integrado de los recursos de la Provincia de Río Negro. (INTA, Argentina, Río Negro, 2009).
Google Scholar
31.Soriano, A. La vegetación del Chubut. Revista Argentina de Agronomía. 17, 30–66 (1950).
Google Scholar
32.Bertiller, M. B. & Coronato, F. Seed bank patterns of Festuca pallescens in semiarid Patagonia (Argentina): A possible limit to bunch reestablishment. Biodivers. Conserv. 3(1), 57–67 (1994).Article
Google Scholar
33.Defossé, G., Bertiller, M. & Robberecht, R. Germination characteristics of Festuca pallescens, a Patagonian bunchgrass with reclamation potential. Seed Sci. Technol. (Switzerland). 23(3), 715–723 (1995).
Google Scholar
34.Bertiller, M. B., Elissalde, N. O., Rostagno, C. M. & Defossé, G. E. Environmental patterns and plant distribution along a precipitation gradient in western Patagonia. J. Arid Environ. 29, 85–97 (1993).Article
Google Scholar
35.Bran, D., Ayesa, J., López, C. Regiones ecológicas de Río Negro. Comunicación Técnica No 59. (INTA, EEA Bariloche, 2000).
Google Scholar
36.Oliva, G. et al. Monitoring drylands: The MARAS system. J. Arid Environ. 161, 55–63 (2019).ADS
Article
Google Scholar
37.López, A. S., Marchelli, P., Batlla, D., López, D. R. & Arana, M. V. Seed responses to temperature indicate different germination strategies among Festuca pallescens populations from semi-arid environments in North Patagonia. Agric. For. Meteorol. 272, 81–90 (2019).ADS
Article
Google Scholar
38.Gaitán, J. J. et al. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecol. Indic. 34, 181–191 (2013).Article
Google Scholar
39.Moore, R. P. Tetrazolium tests for diagnosing causes for seed weaknesses and for predicting and understanding performance. In Proceedings of the Association of Official Seed Analysts. Association of Official Seed Analysts, vol. 56, 70–73. https://www.jstor.org/stable/23432057 (1966).40.Michel, B. E. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72(1), 66–70 (1983).PubMed
PubMed Central
Article
CAS
Google Scholar
41.Di Rienzo, J. A., et al. InfoStat versión 2020 & Centro de Transferencia InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.42.Volis, S., Mendlinger, S. & Ward, D. Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133(2), 131–138 (2002).ADS
PubMed
Article
PubMed Central
Google Scholar
43.Krichen, K., Mariem, H. B. & Chaieb, M. Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. S. Afr. J. Bot. 94, 210–217 (2014).Article
Google Scholar
44.Petrů, M. & Tielbörger, K. Germination behaviour of annual plants under changing climatic conditions: Separating local and regional environmental effects. Oecologia 155(4), 717–728 (2008).ADS
PubMed
Article
PubMed Central
Google Scholar
45.Cavallaro, V. et al. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol. Eng. 95, 557–566 (2016).Article
Google Scholar
46.Tognetti, P. M., Mazia, N. & Ibáñez, G. Seed local adaptation and seedling plasticity account for Gleditsia triacanthos tree invasion across biomes. Ann. Bot. 124(2), 307–318 (2019).PubMed
PubMed Central
Article
Google Scholar
47.Allen, P. S., Meyer, S. E. & Khan, M. A. Hydrothermal time as a tool in comparative germination studies. In Seed biology: advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999. (ed. Black, M., Bradford, J. K. & Vazquez-Ramos, J.) 401–410. https://doi.org/10.1079/9780851994048.0401 (2000).48.Hu, X. W., Fan, Y., Baskin, C. C., Baskin, J. M. & Wang, Y. R. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am. J. Bot. 102(5), 649–660 (2015).PubMed
Article
PubMed Central
Google Scholar
49.Ramírez-Tobías, H., Peña-Valdivia, C., Trejo, C., Aguirre, J. & Vaquera, H. Seed germination of Agave species as influenced by substrate water potential. Biol. Res. 47, 1–9 (2014).Article
CAS
Google Scholar
50.Couso, L. Mecanismos de tolerancia a sequía y sus efectos sobre la habilidad competitiva de pastos de la estepa patagónica (Universidad Nacional de Buenos Aires, 2011).
Google Scholar
51.López, D. R. Una aproximación Estructural-Funcional 1 del Modelo de Estados y Transiciones para el estudio de la dinámica de la vegetación en estepas de Patagonia norte (Universidad Nacional del Comahue, San Carlos de Bariloche, 2011).
Google Scholar
52.Leva, P. E., Aguiar, M. R. & Premoli, A. C. Latitudinal variation of genecological traits in native grasses of Patagonian rangelands. Aust. J. Bot. 61(6), 475–485 (2013).Article
Google Scholar
53.López, D. R. & Cavallero, L. The role of nurse functional types in seedling recruitment dynamics of alternative states in rangelands. Acta Oecol. 79, 70–80 (2017).ADS
Article
Google Scholar
54.Coronato, F. R. & Bertiller, M. B. Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia. J. Arid Environ. 34(1), 1–9 (1996).ADS
Article
Google Scholar
55.Coronato, F. R. & Bertiller, B. Climatic controls of soil moisture dynamics in an arid steppe of northern Patagonia, Argentina. Arid Land Res. Manag. 11, 277–288 (1997).
Google Scholar
56.Heber, U., Santarius, K. A. Water stress during freezing. In Water and Plant Life. Ecological Studies (Analysis and Synthesis), vol. 19 (eds. Lange, O. L. et al.) 253–257. https://doi.org/10.1007/978-3-642-66429-8_16 (Springer, Berlin, Heidelberg, 1976).57.López, A. S., López, D. R., Caballe, G., Siffredi, G. L. & Marchelli, P. Local adaptation along a sharp rainfall gradient occurs in a native Patagonian grass, Festuca pallescens, regardless of extensive gene flow. Environ. Exp. Bot. 171, 103933 (2020).Article
CAS
Google Scholar
58.López, A. S., Azpilicueta, M. M., López, D. R., Siffredi, G. L. & Marchelli, P. Phylogenetic relationships and intraspecific diversity of a North Patagonian Fescue: Evidence of differentiation and interspecific introgression at peripheral populations. Folia Geobot. 53, 115–131. https://doi.org/10.1007/s12224-017-9304-1 (2018).Article
Google Scholar
59.Smith, S., Riley, E., Tiss, J. & Fendenhein, D. Geographical variation in predictive seedling emergence in a perennial desert grass. J. Ecol. 88, 139–149 (2000).Article
Google Scholar
60.Bohara, H. et al. Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil Tillage Res. 189, 44–51 (2019).Article
Google Scholar More