More stories

  • in

    Experimental validation of small mammal gut microbiota sampling from faeces and from the caecum after death

    Aivelo T, Norberg A (2018) Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J Anim Ecol 87:438–447PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Alberdi A, Aizpurua O, Bohmann K, Zepeda-Mendoza ML, Gilbert MTP (2016) Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol Evol 31:689–699PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Amaral WZ, Lubach GR, Proctor A, Lyte M, Phillips GJ, Coe CL (2017) Social influences on Prevotella and the gut microbiome of young monkeys. Psychosom Med 79:888–897PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Amato KR, Sanders GJ, Song SJ, Nute M, Metcalf JL, Thompson LR et al. (2019) Evolutionary trends in host physiology outweigh dietary niche in structuring primate gut microbiomes. ISME J 13:576–587CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300
    Google Scholar 
    Björk JR, Dasari M, Grieneisen L, Archie EA (2019) Primate microbiomes over time: longitudinal answers to standing questions in microbiome research. Am J Primatol 81:e22970PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks JW (2016) Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet Pathol 53:929–940CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Callahan BJ, Wong J, Heiner C, Oh S, Theriot CM, Gulati AS et al. (2019) High-throughput amplicon sequencing of the full-length 16S rRNA gene with single-nucleotide resolution. Nucleic Acids Res 47:e103CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clayton JB, Vangay P, Huang H, Ward T, Hillmann BM, Al-Ghalith GA et al. (2016) Captivity humanizes the primate microbiome. Proc Natl Acad Sci U S A 113:10376–10381CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107:14691–14696PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dill-McFarland KA, Neil KL, Zeng A, Sprenger RJ, Kurtz CC, Suen G et al. (2014) Hibernation alters the diversity and composition of mucosa-associated bacteria while enhancing antimicrobial defence in the gut of 13-lined ground squirrels. Mol Ecol 23:4658–4669CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dubois S, Fenwick N, Ryan EA, Baker L, Baker SE, Beausoleil NJ et al. (2017) International consensus principles for ethical wildlife control. Conserv Biol J Soc Conserv Biol 31:753–760Article 

    Google Scholar 
    Earl JP, Adappa ND, Krol J, Bhat AS, Balashov S, Ehrlich RL et al. (2018) Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes. Microbiome 6:190PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ericsson AC, Johnson PJ, Lopes MA, Perry SC, Lanter HR (2016) A microbiological map of the healthy equine gastrointestinal tract. PLoS ONE 11:e0166523PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    García-Amado MA, Michelangeli F, Gueneau P, Perez ME, Domínguez-Bello MG (2007) Bacterial detoxification of saponins in the crop of the avian foregut fermenter Opisthocomus hoazin. J Anim Feed Sci 16:82–85Article 

    Google Scholar 
    Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K et al. (2016) Gut microbiome of coexisting BaAka pygmies and Bantu reflects gradients of traditional subsistence patterns. Cell Rep 14:2142–2153CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gomez A, Petrzelkova K, Yeoman CJ, Vlckova K, Mrázek J, Koppova I et al. (2015) Gut microbiome composition and metabolomic profiles of wild western lowland gorillas (Gorilla gorilla gorilla) reflect host ecology. Mol Ecol 24:2551–2565CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Gorvitovskaia A, Holmes SP, Huse SM (2016) Interpreting Prevotella and bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gregorová S, Forejt J (2000) PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies–a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol 46:31–41
    Google Scholar 
    Gu S, Chen D, Zhang J-N, Lv X, Wang K, Duan L-P et al. (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8:e74957Heimesaat MM, Boelke S, Fischer A, Haag L-M, Loddenkemper C, Kühl AA et al. (2012) Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PloS ONE 7:e40758CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hird SM (2017) Evolutionary biology needs wild microbiomes. Front Microbiol 8:725Iljazovic A, Roy U, Gálvez EJC, Lesker TR, Zhao B, Gronow A et al. (2020) Perturbation of the gut microbiome by Prevotella spp. enhances host susceptibility to mucosal inflammation. Mucosal Immunol 14:113–124PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Ingala MR, Simmons NB, Wultsch C, Krampis K, Speer KA, Perkins SL (2018) Comparing microbiome sampling methods in a wild mammal: fecal and intestinal samples record different signals of host ecology, evolution. Front Microbiol 9:803Karasov WH, Douglas AE (2013) Comparative digestive physiology. Compr Physiol 3:741–783PubMed 
    PubMed Central 

    Google Scholar 
    Kartzinel TR, Hsing JC, Musili PM, Brown BRP, Pringle RM (2019) Covariation of diet and gut microbiome in African megafauna. Proc Natl Acad Sci U S A 116:23588–23593CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kohl KD, Dearing MD (2016) The woodrat gut microbiota as an experimental system for understanding microbial metabolism of dietary toxins. Front Microbiol 7:1165Kohl KD, Luong K, Dearing MD (2015) Validating the use of trap-collected feces for studying the gut microbiota of a small mammal (Neotoma lepida). J Mammal 96:90–93Article 

    Google Scholar 
    Kohl KD, Varner J, Wilkening JL, Dearing MD (2018) Gut microbial communities of American pikas (Ochotona princeps): Evidence for phylosymbiosis and adaptations to novel diets. J Anim Ecol 87:323–330PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Bastien G, Hauffe HC, Marchesi J, Perkins SE (2015) Interactions between multiple helminths and the gut microbiota in wild rodents. Philos Trans R Soc B Biol Sci 370:20140295Kreisinger J, Čížková D, Vohánka J, Piálek J (2014) Gastrointestinal microbiota of wild and inbred individuals of two house mouse subspecies assessed using high-throughput parallel pyrosequencing. Mol Ecol 23:5048–5060CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kreisinger J, Kropáčková L, Petrželková A, Adámková M, Tomášek O, Martin J-F et al. (2017) Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front Microbiol 8:50Laukaitis CM, Critser ES, Karn RC (1997) Salivary androgen-binding protein (ABP) mediates sexual isolation in Mus musculus. Evol Int J Org Evol 51:2000–2005CAS 
    Article 

    Google Scholar 
    Lawrence K, Lam K, Morgun A, Shulzhenko NLöhr C (2019) Effect of temperature and time on the thanatomicrobiome of the cecum, ileum, kidney, and lung of domestic rabbits. J Vet Diagn Invest 31. https://doi.org/10.1177/1040638719828412Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24Article 

    Google Scholar 
    Li D, Chen H, Mao B, Yang Q, Zhao J, Gu Z et al. (2017) Microbial biogeography and core microbiota of the rat digestive tract. Sci Rep 7:45840PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Maslanik T, Tannura K, Mahaffey L, Loughridge AB, Benninson L, Ursell L et al. (2012) Commensal bacteria and MAMPs are necessary for stress-induced increases in IL-1β and IL-18 but not IL-6, IL-10 or MCP-1. PLoS ONE 7:e50636CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Matsuo Y, Komiya S, Yasumizu Y, Yasuoka Y, Mizushima K, Takagi T et al. (2020) Full-length 16S rRNA gene amplicon analysis of human gut microbiota using MinIONTM nanopore sequencing confers species-level resolution. bioRxiv. https://doi.org/10.1101/2020.05.06.078147McKenzie VJ, Song SJ, Delsuc F, Prest TL, Oliverio AM, Korpita TM et al. (2017) The effects of captivity on the mammalian gut microbiome. Integr Comp Biol 57:690–704PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McMurdie PJ, Holmes S (2014) Waste not, want not: why rarefying microbiome data is inadmissible. PLOS Comput Biol 10:e1003531PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Menke S, Meier M, Sommer S (2015) Shifts in the gut microbiome observed in wildlife faecal samples exposed to natural weather conditions: lessons from time-series analyses using next-generation sequencing for application in field studies. Methods Ecol Evol 6:1080–1087Article 

    Google Scholar 
    Miller AW, Oakeson KF, Dale C, Dearing MD (2016) Microbial community transplant results in increased and long-term oxalate degradation. Micro Ecol 72:470–478CAS 
    Article 

    Google Scholar 
    Pafčo B, Čížková D, Kreisinger J, Hasegawa H, Vallo P, Shutt K et al. (2018) Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci Rep 8:5933Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L et al. (2014) Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–1010CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pechal JL, Schmidt CJ, Jordan HR, Benbow ME (2018) A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci Rep 8:5724PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Pollock J, Glendinning L, Wisedchanwet T, Watson M (2018) The madness of microbiome: attempting to find consensus “best practice” for 16S microbiome studies. Appl Environ Microbiol 84:e02627–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
    Google Scholar 
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K et al. (2017) Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 171:1015–1028.e13CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Round JL, Mazmanian SK (2009) The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scher JU, Sczesnak A, Longman RS, Segata N, Ubeda C, Bielski C et al. (2013) Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2:e01202PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sommer F, Ståhlman M, Ilkayeva O, Arnemo JM, Kindberg J, Josefsson J et al. (2016) The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep 14:1655–1661CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Stalder GL, Pinior B, Zwirzitz B, Loncaric I, Jakupović D, Vetter SG et al. (2019) Gut microbiota of the European Brown Hare (Lepus europaeus). Sci Rep 9:2738CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stanley D, Geier MS, Chen H, Hughes RJ, Moore RJ (2015) Comparison of fecal and cecal microbiotas reveals qualitative similarities but quantitative differences. BMC Microbiol 15:51PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stearns JC, Lynch MDJ, Senadheera DB, Tenenbaum HC, Goldberg MB, Cvitkovitch DG et al. (2011) Bacterial biogeography of the human digestive tract. Sci Rep 1:170CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stothart MR, Palme R, Newman AEM (2019) It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc R Soc B Biol Sci 286:20192111Article 

    Google Scholar 
    Suzuki TA, Martins FM, Nachman MW (2019) Altitudinal variation of the gut microbiota in wild house mice. Mol Ecol 28:2378–2390CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Suzuki TA, Nachman MW (2016) Spatial heterogeneity of gut microbial composition along the gastrointestinal tract in natural populations of house mice (EG Zoetendal, Ed.). PLoS ONE 11:e0163720PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tanca A, Manghina V, Fraumene C, Palomba A, Abbondio M, Deligios M et al. (2017) Metaproteogenomics reveals taxonomic and functional changes between cecal and fecal microbiota in mouse. Front Microbiol 8:391Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B et al. (2020) Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol 10:151Tang W, Zhu G, Shi Q, Yang S, Ma T, Mishra SK et al. (2019) Characterizing the microbiota in gastrointestinal tract segments of Rhabdophis subminiatus: dynamic changes and functional predictions. MicrobiologyOpen 8:e789Trevelline BK, Fontaine SS, Hartup BK, Kohl KD (2019) Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc R Soc B Biol Sci 286:20182448Article 

    Google Scholar 
    Tuomisto S, Karhunen PJ, Pessi T (2013) Time-dependent post mortem changes in the composition of intestinal bacteria using real-time quantitative PCR. Gut Pathog 5:35Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Vasemägi A, Visse M, Kisand V (2017) Effect of Environmental Factors and an Emerging Parasitic Disease on Gut Microbiome of Wild Salmonid Fish. mSphere 2:e00418–17PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Videvall E, Strandh M, Engelbrecht A, Cloete S, Cornwallis C (2017) Measuring the gut microbiome in birds: Comparison of faecal and cloacal sampling. Mol Ecol Resour 18:424–434PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Vlčková K, Shutt-Phillips K, Heistermann M, Pafčo B, Petrželková KJ, Todd A et al. (2018) Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiol Read Engl 164:40–44Article 
    CAS 

    Google Scholar 
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang J, Linnenbrink M, Künzel S, Fernandes R, Nadeau M-J, Rosenstiel P et al. (2014) Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A 111:E2703–2710CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Warne RW, Kirschman L, Zeglin L (2017) Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr Comp Biol 57:786–794PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M (2015) The gut microbiota of wild mice. PLoS ONE 10:e0134643PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA et al. (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334:105–108CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yan W, Sun C, Zheng J, Wen C, Ji C, Zhang D et al. (2019) Efficacy of fecal sampling as a gut proxy in the study of chicken gut microbiota. Front Microbiol 10:2126Yasuda K, Oh K, Ren B, Tickle TL, Franzosa EA, Wachtman LM et al. (2015) Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 17:385–391CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zemanova MA (2019) Poor implementation of non-invasive sampling in wildlife genetics studies. Rethink Ecol 4:119–132Article 

    Google Scholar 
    Zemanova MA (2020) Towards more compassionate wildlife research through the 3Rs principles: moving from invasive to non-invasive methods. Wildl Biol 2020. https://doi.org/10.2981/wlb.00607Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C et al. (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS ONE 10:e0117441PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Association between stress and bilateral symmetrical alopecia in free-ranging Formosan macaques in Mt. Longevity, Taiwan

    1.Kimura, T. Systemic alopecia resulting from hyperadrenocorticism in a Japanese monkey. Lab. Primate Newsl. 47, 5–9 (2008).
    Google Scholar 
    2.Novak, M. A. et al. Assessing significant ( > 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, e22547 (2017).Article 
    CAS 

    Google Scholar 
    3.Lutz, C. K., Menard, M. T., Rosenberg, K., Meyer, J. S. & Novak, M. A. Alopecia in rhesus macaques (Macaca mulatta): Association with pregnancy and chronic stress. J. Med. Primatol. 48, 251–256. https://doi.org/10.1111/jmp.12419 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    4.Steinmetz, H. W., Kaumanns, W., Dix, I., Neimeier, K.-A. & Kaup, F.-J. Dermatologic investigation of alopecia in rhesus macaques (Macaca mulatta). J. Zoo. Wildl. Med. 36, 229–239 (2005).PubMed 
    Article 

    Google Scholar 
    5.Lynch, M., Kirkwood, R., Mitchell, A., Duignan, P. & Arnould, J. P. Y. Prevalence and significance of an alopecia syndrome in Australian fur seals (Arctocephalus pusillus doriferus). J. Mammal. 92, 342–351 (2011).Article 

    Google Scholar 
    6.Atwood, T. et al. Prevalence and spatio-temporal variation of an alopecia syndrome in polar bears (Ursus maritimus) of the southern Beaufort Sea. J. Wildl. Dis. 51, 48–59 (2015).PubMed 
    Article 

    Google Scholar 
    7.McCoy, R. H., Murphie, S. L., Szykman Gunther, M. & Murphie, B. L. Influence of hair loss syndrome on black-tailed deer fawn survival. J. Wildl. Manag. 78, 1177–1188. https://doi.org/10.1002/jwmg.772 (2014).Article 

    Google Scholar 
    8.Novak, M. A. et al. Hair loss and hypothalamic–pituitary–adrenocortical axis activity in captive rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 53, 261–266 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Lutz, C. K., Coleman, K., Worlein, J. & Novak, M. A. Hair loss and hair-pulling in rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 52, 454–457 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Swenerton, H. & Hurley, L. S. Zinc deficiency in rhesus and bonnet monkeys, including effects on reproduction. J. Nutr. 110, 575–583 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Lair, S., Crawshaw, G. J., Mehren, K. G. & Perrone, M. A. Diagnosis of hypothyroidism in a western lowland gorilla (Gorilla gorilla gorilla) using human thyroid-stimulating hormone assay. J. Zoo. Wildl. Med. 30, 537–540 (1999).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    12.Beardi, B. et al. Alopecia areata in a rhesus monkey (Macaca mulatta). J. Med. Primatol. 36, 124–130. https://doi.org/10.1111/j.1600-0684.2007.00212.x (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    13.Ovadia, S., Wilson, S. R. & Zeiss, C. J. Successful cyclosporine treatment for atopic dermatitis in a rhesus macaque (Macaca mulatta). Comp. Med. 55, 192–196 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Novak, M. A. & Meyer, J. S. Alopecia: Possible causes and treatments, particularly in captive nonhuman primates. Comp. Med. 59, 18–26 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    15.Hadshiew, I. M., Foitzik, K., Arck, P. C. & Paus, R. Burden of hair loss: Stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. J. Investig. Dermatol. 123, 455–457 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Moberg, G. P. Biological response to stress: implications for animal welfare in The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare (eds Moberg, G. P. & Mench, J. A.) 1–21 (CABI Publishing, 2000).18.Romero, M. L. & Butler, L. K. Endocrinology of stress. Int. J. Comp. Psychol. 20, 89–95 (2007).
    Google Scholar 
    19.Shutt, K., Setchell, J. M. & Heistermann, M. Non-invasive monitoring of physiological stress in the Western lowland gorilla (Gorilla gorilla gorilla): Validation of a fecal glucocorticoid assay and methods for practical application in the field. Gen. Comp. Endocrinol. 179, 167–177 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Heistermann, M. Non-invasive monitoring of endocrine status in laboratory primates: Methods, guidelines and applications. Adv. Sci. Res. 5, 1–9 (2010).Article 

    Google Scholar 
    21.Murray, C. M., Heintz, M. R., Lonsdorf, E. V., Parr, L. A. & Santymire, R. M. Validation of a field technique and characterization of fecal glucocorticoid metabolite analysis in wild chimpanzees (Pan troglodytes). Am. J. Primatol. 75, 57–64 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Schwarzenberger, F. The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. Int. Zoo. Yearb. 41, 52–74. https://doi.org/10.1111/j.1748-1090.2007.00017.x (2007).Article 

    Google Scholar 
    23.Touma, C. & Palme, R. Measuring fecal glucocorticoid metabolites in mammals and birds: The importance of validation. Ann. N. Y. Acad. Sci. 1046, 54–74. https://doi.org/10.1196/annals.1343.006 (2005).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    24.Kersey, D. C. & Dehnhard, M. The use of noninvasive and minimally invasive methods in endocrinology for threatened mammalian species conservation. Gen. Comp. Endocrinol. 203, 296–306. https://doi.org/10.1016/j.ygcen.2014.04.022 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    25.Palme, R., Rettenbacher, S., Touma, C., El-Bahr, S. M. & Möstl, E. Stress hormones in mammals and birds: Comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann. N. Y. Acad. Sci. 1040, 162–171 (2005).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Teskey-Gerstl, A., Bamberg, E., Steineck, T. & Palme, R. Excretion of corticosteroids in urine and faeces of hares (Lepus europaeus). J. Comp. Physiol. B. 170, 163–168 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Millspaugh, J. J. & Washburn, B. E. Use of fecal glucocorticoid metabolite measures in conservation biology research: Considerations for application and interpretation. Gen. Comp. Endocrinol. 138, 189–199 (2004).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Bahr, N. I., Palme, R., Möhle, U., Hodges, J. K. & Heistermann, M. Comparative aspects of the metabolism and excretion of cortisol in three individual nonhuman primates. Gen. Comp. Endocrinol. 117, 427–438. https://doi.org/10.1006/gcen.1999.7431 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Whitten, P. L., Brockman, D. K. & Stavisky, R. C. Recent advances in noninvasive techniques to monitor hormone-behavior interactions. Am. J. Phys. Anthropol. 107, 1–23 (1998).Article 

    Google Scholar 
    30.Heistermann, M., Palme, R. & Ganswindt, A. Comparison of different enzymeimmunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am. J. Primatol. 68, 257–273 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Wheeler, B. C., Tiddi, B., Kalbitzer, U., Visalberghi, E. & Heistermann, M. Methodological considerations in the analysis of fecal glucocorticoid metabolites in tufted capuchins (Cebus apella). Int. J. Primatol. 34, 879–898 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Pei, J.-C. et al. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 136 (Construction and Planning Agency. Ministry of the Interior, 2015).33.Hsu, M. J., Kao, C. C. & Agoramoorthy, G. Interactions between visitors and Formosan macaques (Macaca cyclopis) at Shou-Shan Nature Park, Taiwan. Am. J. Primatol. 71, 214–222 (2009).PubMed 
    Article 

    Google Scholar 
    34.Lee, L. L., Wu, H. Y., Chang, S. W., Minna, J. H. & Chakraborty, C. Survey of Current Status of Taiwan Macaques 1–27 (Council of Agriculture, Executive Yuan, 2001).35.Pei, K. C. J., Chen, C. C., Lin, C. N. & Ju, Y. T. The study of population dynamic and health status of Taiwanese macaques in Shanshan National Nature Park., 175 (Shoushan National Nature Park, Construction and Planning Agency, Ministry of the Interior, 2016).36.Bellanca, R. U. et al. A simple alopecia scoring system for use in colony management of laboratory-housed primates. J. Med. Primatol. 43, 153–161 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Whiting, D. A. Histology of the human hair follicle in Hair Growth and Disorders (eds Blume-Peytavi, U. et al.) 107–123 (Springer, 2008).38.Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Horenstein, M. G. & Bacheler, C. J. Follicular density and ratios in scarring and nonscarring alopecia. Am. J. Dermatopathol. 35, 818–826 (2013).PubMed 
    Article 

    Google Scholar 
    40.Rangel-Negrín, A., Flores-Escobar, E., Chavira, R., Canales-Espinosa, D. & Dias, P. A. D. Physiological and analytical validations of fecal steroid hormone measures in black howler monkeys. Primates 55, 459–465 (2014).PubMed 
    Article 

    Google Scholar 
    41.Pineda-Galindo, E., Cerda-Molina, A. L., Mayagoitia-Novales, L. & Matamoros-Trejo, G. Biological validations of fecal glucocorticoid, testosterone, and progesterone metabolite measurements in captive stumptail macaques (Macaca arctoides). Int. J. Primatol. 38, 985–1001 (2017).Article 

    Google Scholar 
    42.Palme, R. & Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Int. J. Mammal. Biol. 62, 192–197 (1997).
    Google Scholar 
    43.Braga Goncalves, I. et al. Validation of a fecal glucocorticoid assay to assess adrenocortical activity in meerkats using physiological and biological stimuli. PLoS ONE 11, e0153161. https://doi.org/10.1371/journal.pone.0153161 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Pei, K. J.-C., Lin, C. N. & Chen, C. C. Disease surveillance, conservation, and management strategies for Taiwanese macaque (Macaca cyclopis) at Shoushan National Nature Park. 133 (Construction and Planning Agency, Ministry of the Interior, R2015).45.Hsu, M. J. & Lin, J.-F. Troop size and structure in free-ranging Formosan macaques (Macaca cyclopis) at Mt. Longevity, Taiwan. Zool. Stud. Taipei 40, 49–60 (2001).
    Google Scholar 
    46.Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).Article 

    Google Scholar 
    47.Allison, P. D. Multiple Regression: A Primer (Pine Forge Press, 1999).
    Google Scholar 
    48.Dohoo, I., Martin, W. & Stryhn, H. Model-building strategies in Veterinary Epidemiologic Research 553–578 (VER Inc, 2009).49.Bolker, B. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 
    Article 

    Google Scholar 
    50.Ganswindt, A., Palme, R., Heistermann, M., Borragan, S. & Hodges, J. Non-invasive assessment of adrenocortical function in the male African elephant (Loxodonta africana) and its relation to musth. Gen. Comp. Endocrinol. 134, 156–166 (2003).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Rimbach, R., Heymann, E. W., Link, A. & Heistermann, M. Validation of an enzyme immunoassay for assessing adrenocortical activity and evaluation of factors that affect levels of fecal glucocorticoid metabolites in two New World primates. Gen. Comp. Endocrinol. 191, 13–23 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Novak, M. A. et al. Assessing significant ( > 30%) alopecia as a possible biomarker for stress in captive rhesus monkeys (Macaca mulatta). Am. J. Primatol. 79, 1–8. https://doi.org/10.1002/ajp.22547 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    53.Bernardez, C., Molina-Ruiz, A. & Requena, L. Histologic features of alopecias–part I: Nonscarring alopecias. Actas Dermosifiliogr. 106, 158–167. https://doi.org/10.1016/j.adengl.2015.01.001 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    54.Luchins, K. R. et al. Application of the diagnostic evaluation for alopecia in traditional veterinary species to laboratory rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci. 50, 926–938 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    55.Werner, B. & Mulinari-Brenner, F. Clinical and histological challenge in the differential diagnosis of diffuse alopecia: Female androgenetic alopecia, telogen effluvium and alopecia areata-part II. An. Bras. Dermatol. 87, 884–890 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Liyanage, D. & Sinclair, R. Telogen effluvium. Cosmetics 3, 13 (2016).Article 
    CAS 

    Google Scholar 
    57.Alotaibi, M. K. Telogen effluvium: A review. Int. J. Med. Dev. Cties. 3, 797–801. https://doi.org/10.7759/cureus.8320 (2019).Article 

    Google Scholar 
    58.Arck, P. C. et al. Stress inhibits hair growth in mice by induction of premature catagen development and deleterious perifollicular inflammatory events via neuropeptide substance P-dependent pathways. Am. J. Pathol. 162, 803–814. https://doi.org/10.1016/S0002-9440(10)63877-1athology (2003).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    59.Horenstein, V.D.-P., Williams, L. E., Brady, A. R., Abee, C. R. & Horenstein, M. G. Age-related diffuse chronic telogen effluvium-type alopecia in female squirrel monkeys (Saimiri boliviensis boliviensis). Comp. Med. 55, 169–174 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    60.Coleman, K. et al. The correlation between alopecia and temperament in rhesus macaques (Macaca mulatta) at four primate facilities. Am. J. Primatol. 79, e22504. https://doi.org/10.1002/ajp.22504 (2017).Article 

    Google Scholar 
    61.Lutz, C. K. et al. Factors influencing alopecia and hair cortisol in rhesus macaques (Macaca mulatta). J. Med. Primatol. 45, 180–188. https://doi.org/10.1111/jmp.12220 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    62.Palme, R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol. Behav. 199, 229–243. https://doi.org/10.1016/j.physbeh.2018.11.021 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    63.Hoffman, C. L. et al. Immune function and HPA axis activity in free-ranging rhesus macaques. Physiol. Behav. 104, 507–514. https://doi.org/10.1016/j.physbeh.2011.05.021 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    64.Marty, P. R., Hodges, K., Heistermann, M., Agil, M. & Engelhardt, A. Is social dispersal stressful? A study in male crested macaques (Macaca nigra). Horm. Behav. 87, 62–68. https://doi.org/10.1016/j.yhbeh.2016.10.018 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    65.Takeshita, R. S. C., Bercovitch, F. B., Kinoshita, K. & Huffman, M. A. Beneficial effect of hot spring bathing on stress levels in Japanese macaques. Primates 59, 215–225. https://doi.org/10.1007/s10329-018-0655-x (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    66.Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Cheng, H. C. et al. The Red List of Terrestrial Mammals of Taiwan, 2017. 35 (Endemic Species Research Institute, 2017).68.Chang, A.-M., Chen, C.-C. & Huffman, M. A. Entamoeba spp in wild formosan rock macaques (Macaca cyclopis) in an area with frequent human-macaque contact. J. Wildl. Dis. 55, 608–618 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    White-tailed deer S96 prion protein does not support stable in vitro propagation of most common CWD strains

    1.Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Caughey, B. & Chesebro, B. Prion protein and the transmissible spongiform encephalopathies. Trends Cell Biol. 7, 56–62 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    3.Manson, J. et al. The prion protein gene: A role in mouse embryogenesis?. Development 115, 117–122 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Mathiason, C. K. et al. Infectious prions in pre-clinical deer and transmission of chronic wasting disease solely by environmental exposure. PLoS ONE 4, e5916 (2009).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    5.Miller, M. W. & Wild, M. A. Epidemiology of chronic wasting disease in captive white-tailed and mule deer. J. Wildl. Dis. 40, 320–327 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Spraker, T. R. et al. Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni) in northcentral Colorado. J. Wildl. Dis. 33, 1–6 (1997).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Williams, E. S. & Young, S. Chronic wasting disease of captive mule deer: a spongiform encephalopathy. J. Wildl. Dis. 16, 89–98 (1980).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Belt, P. B. et al. Identification of five allelic variants of the sheep PrP gene and their association with natural scrapie. J. Gen. Virol. 76(Pt 3), 509–517 (1995).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Bossers, A., Schreuder, B. E., Muileman, I. H., Belt, P. B. & Smits, M. A. PrP genotype contributes to determining survival times of sheep with natural scrapie. J. Gen. Virol. 77(Pt 10), 2669–2673 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Goldmann, W. et al. Two alleles of a neural protein gene linked to scrapie in sheep. Proc. Natl. Acad. Sci. USA 87, 2476–2480 (1990).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Westaway, D. et al. Homozygosity for prion protein alleles encoding glutamine-171 renders sheep susceptible to natural scrapie. Genes Dev. 8, 959–969 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Arnold, M. & Ortiz-Pelaez, A. The evolution of the prevalence of classical scrapie in sheep in Great Britain using surveillance data between 2005 and 2012. Prev. Vet. Med. 117, 242–250 (2014).PubMed 
    Article 

    Google Scholar 
    13.Hagenaars, T. J. et al. Scrapie prevalence in sheep of susceptible genotype is declining in a population subject to breeding for resistance. BMC Vet. Res. 6, 25 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    14.Nodelijk, G. et al. Breeding with resistant rams leads to rapid control of classical scrapie in affected sheep flocks. Vet. Res. 42, 5 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Acutis, P. L. et al. Resistance to classical scrapie in experimentally challenged goats carrying mutation K222 of the prion protein gene. Vet. Res. 43, 8 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    16.Barillet, F. et al. Identification of seven haplotypes of the caprine PrP gene at codons 127, 142, 154, 211, 222 and 240 in French Alpine and Saanen breeds and their association with classical scrapie. J. Gen. Virol. 90, 769–776 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Hazards EPoB et al. Genetic resistance to transmissible spongiform encephalopathies (TSE) in goats. EFSA J. 15, e04962 (2017).
    Google Scholar 
    18.Sacchi, P. et al. Predicting the impact of selection for scrapie resistance on PRNP genotype frequencies in goats. Vet. Res. 49, 26 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Johnson, C. J. et al. Prion protein polymorphisms affect chronic wasting disease progression. PLoS ONE 6, e17450 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    20.Otero, A. et al. Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP(CWD) deposition in orally infected white-tailed deer. BMC Vet. Res. 15, 50 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    21.Meade-White, K. et al. Resistance to chronic wasting disease in transgenic mice expressing a naturally occurring allelic variant of deer prion protein. J. Virol. 81, 4533–4539 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Race, B., Meade-White, K., Miller, M. W., Fox, K. A. & Chesebro, B. In vivo comparison of chronic wasting disease infectivity from deer with variation at prion protein residue 96. J. Virol. 85, 9235–9238 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Miller, M. W. et al. Survival patterns in white-tailed and mule deer after oral inoculation with a standardized, conspecific prion dose. J. Wildl. Dis. 48, 526–529 (2012).PubMed 
    Article 

    Google Scholar 
    24.Duque Velasquez, C. et al. Chronic wasting disease (CWD) prion strains evolve via adaptive diversification of conformers in hosts expressing prion protein polymorphisms. J. Biol. Chem. 295, 4985–5001 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Duque Velasquez, C. et al. Deer prion proteins modulate the emergence and adaptation of chronic wasting disease strains. J. Virol. 89, 12362–12373 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Johnson, C., Johnson, J., Clayton, M., McKenzie, D. & Aiken, J. Prion protein gene heterogeneity in free-ranging white-tailed deer within the chronic wasting disease affected region of Wisconsin. J. Wildl. Dis. 39, 576–581 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    27.Johnson, C. et al. Prion protein polymorphisms in white-tailed deer influence susceptibility to chronic wasting disease. J. Gen. Virol. 87, 2109–2114 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.O’Rourke, K. I. et al. Polymorphisms in the prion precursor functional gene but not the pseudogene are associated with susceptibility to chronic wasting disease in white-tailed deer. J. Gen. Virol. 85, 1339–1346 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    29.Keane, D. P. et al. Chronic wasting disease in a Wisconsin white-tailed deer farm. J. Vet. Diagn. Invest. 20, 698–703 (2008).PubMed 
    Article 

    Google Scholar 
    30.Kelly, A. C. et al. Prion sequence polymorphisms and chronic wasting disease resistance in Illinois white-tailed deer (Odocoileus virginianus). Prion 2, 28–36 (2008).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    31.Haley, N. J. et al. Estimating relative CWD susceptibility and disease progression in farmed white-tailed deer with rare PRNP alleles. PLoS ONE 14, e0224342 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Wolfe, L. L. et al. PrPCWD in rectal lymphoid tissue of deer (Odocoileus spp.). J. Gen. Virol. 88, 2078–2082 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Haley, N. J. et al. Antemortem detection of chronic wasting disease prions in nasal brush collections and rectal biopsy specimens from white-tailed deer by real-time quaking-induced conversion. J. Clin. Microbiol. 54, 1108–1116 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Angers, R. et al. Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. Proc. Natl. Acad. Sci. USA 111, 11169–11174 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Hannaoui, S. et al. Destabilizing polymorphism in cervid prion protein hydrophobic core determines prion conformation and conversion efficiency. PLoS Pathog. 13, e1006553 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    36.Robinson, S. J., Samuel, M. D., Johnson, C. J., Adams, M. & McKenzie, D. I. Emerging prion disease drives host selection in a wildlife population. Ecol. Appl. 22, 1050–1059 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Raymond, G. J. et al. Evidence of a molecular barrier limiting susceptibility of humans, cattle and sheep to chronic wasting disease. EMBO J. 19, 4425–4430 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Boerner, S., Wagenfuhr, K., Daus, M. L., Thomzig, A. & Beekes, M. Towards further reduction and replacement of animal bioassays in prion research by cell and protein misfolding cyclic amplification assays. Lab. Anim. 47, 106–115 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Gonzalez-Montalban, N. et al. Highly efficient protein misfolding cyclic amplification. PLoS Pathog. 7, e1001277 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Makarava, N., Savtchenko, R., Alexeeva, I., Rohwer, R. G. & Baskakov, I. V. Fast and ultrasensitive method for quantitating prion infectivity titre. Nat. Commun. 3, 741 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Moudjou, M. et al. Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. mBio 5, e00829-13 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    42.Angers, R. C. et al. Prion strain mutation determined by prion protein conformational compatibility and primary structure. Science 328, 1154–1158 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Herbst, A., Velasquez, C. D., Triscott, E., Aiken, J. M. & McKenzie, D. Chronic wasting disease prion strain emergence and host range expansion. Emerg. Infect. Dis. 23, 1598–1600 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Pushie, M. J., Shaykhutdinov, R., Nazyrova, A., Graham, C. & Vogel, H. J. An NMR metabolomics study of elk inoculated with chronic wasting disease. J. Toxicol. Environ. Health A 74, 1476–1492 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Castilla, J., Saa, P., Hetz, C. & Soto, C. In vitro generation of infectious scrapie prions. Cell 121, 195–206 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Lyon, A. et al. Application of PMCA to screen for prion infection in a human cell line used to produce biological therapeutics. Sci. Rep. 9, 4847 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    47.LaFauci, G. et al. Passage of chronic wasting disease prion into transgenic mice expressing Rocky Mountain elk (Cervus elaphus nelsoni) PrPC. J. Gen. Virol. 87, 3773–3780 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Abrams, J. et al. Human prion disease mortality rates by occurrence of chronic wasting disease in free-ranging cervids, United States. Prion 14, 182–183 (2018).
    Google Scholar 
    49.Council E. Regulation (EC) No 999/2001 of the European Parliament and of the Council of 22 May 2001 laying down rules for the prevention, control and eradication of certain transmissible spongiform encephalopathies. Off. J. Eur. Union L147 (2001).50.Dawson, M., Hoinville, L. J., Hosie, B. D. & Hunter, N. Guidance on the use of PrP genotyping as an aid to the control of clinical scrapie. Scrapie Information Group. Vet. Rec. 142, 623–625 (1998).CAS 
    PubMed 

    Google Scholar 
    51.Baylis, M. et al. Risk of scrapie in British sheep of different prion protein genotype. J. Gen. Virol. 85, 2735–2740 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Hunter, N., Goldmann, W., Smith, G. & Hope, J. The association of a codon 136 PrP gene variant with the occurrence of natural scrapie. Arch. Virol. 137, 171–177 (1994).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Saa, P., Castilla, J. & Soto, C. Ultra-efficient replication of infectious prions by automated protein misfolding cyclic amplification. J. Biol. Chem. 281, 35245–35252 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Johnson, C. J., Aiken, J. M., McKenzie, D., Samuel, M. D. & Pedersen, J. A. Highly efficient amplification of chronic wasting disease agent by protein misfolding cyclic amplification with beads (PMCAb). PLoS ONE 7, e35383 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Safar, J. G. et al. Prion clearance in bigenic mice. J. Gen. Virol. 86, 2913–2923 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Safar, J. G. et al. Search for a prion-specific nucleic acid. J. Virol. 79, 10796–10806 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    57.Carroll, J. A., Race, B., Williams, K., Striebel, J. & Chesebro, B. Microglia are critical in host defense against prion disease. J. Virol. 92, e00549–18 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Caplazi, P. A., O’Rourke, K. I. & Baszler, T. V. Resistance to scrapie in PrP ARR/ARQ heterozygous sheep is not caused by preferential allelic use. J. Clin. Pathol. 57, 647–650 (2004).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Goldmann, W. PrP genetics in ruminant transmissible spongiform encephalopathies. Vet. Res. 39, 30 (2008).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    60.Perrier, V. et al. Dominant-negative inhibition of prion replication in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 13079–13084 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    61.Arsac, J. N. et al. Similar biochemical signatures and prion protein genotypes in atypical scrapie and Nor98 cases, France and Norway. Emerg. Infect. Dis. 13, 58–65 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Luhken, G. et al. Epidemiological and genetical differences between classical and atypical scrapie cases. Vet. Res. 38, 65–80 (2007).PubMed 
    Article 

    Google Scholar 
    63.Saunders, G. C., Cawthraw, S., Mountjoy, S. J., Hope, J. & Windl, O. PrP genotypes of atypical scrapie cases in Great Britain. J. Gen. Virol. 87, 3141–3149 (2006).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Saline–alkaline stress in growing maize seedlings is alleviated by Trichoderma asperellum through regulation of the soil environment

    Effects of T. asperellum on salt ion content, sodium adsorption ration, and pH of maize seedlings under saline–alkaline stressAfter applying spore suspensions of T. asperellum at different concentrations, we observed significant increases in the soil contents of Ca2+, Mg2+, and K+ relative to those in the control, whereas, Na+, HCO3−, Cl−, and SO42− contents significantly decreased (Table 1). Thus, increasing T. asperellum spore densities in suspension effectively regulated the soil ion balance in the rhizosphere of maize seedlings, and all ions showed significant differences under treatment T3. Compared with those in the control, T3 significantly reduced the Na+ and HCO3− contents by 19.46% and 35.87% in XY335, and 20.02% and 36.29% in JY417, respectively, with an effect more pronounced than that with treatments T1 and T2. Although the Cl− and SO42− contents were low, their variation patterns were similar to that of HCO3− content. Overall, however, the composition of ions in the rhizosphere of maize seedlings was improved by the T. asperellum treatment.Table 1 Influence of T. asperellum on salt ion content, sodium adsorption ration (SAR), and pH value of maize seedlings rhizosphere soil (± SD).Full size tableAs shown in Table 1, compared with those in the control, T. asperellum treatment significantly reduced the soil pH and SAR values, although with no significant cultivar × treatment interaction effects (P  More

  • in

    Whole-genome resequencing of large yellow croaker (Larimichthys crocea) reveals the population structure and signatures of environmental adaptation

    Whole genome resequencing of large yellow croaker populationsWe collected a total of 198 large yellow croaker individuals (Table S1). Of these, 50 individuals were captured in the Zhoushan Sea (the red dot in Fig. 1a) and 48 individuals had been farmed in Zhoushan (the orange dot in Fig. 1a). A further 38 individuals were captured in the Ningde Sea (the blue dot in Fig. 1a). and 62 individuals had been farmed in Ningde (the green dot in Fig. 1a). We performed whole-genome resequencing of these 198 large yellow croaker individuals. We obtained 1.42 Penta base-pairs of genomic DNA, representing about 11 × sequencing depth of the genome per individual. Raw reads were trimmed and aligned to the genome sequence. After variant calling and filtering, a total of 6,302,244 single nucleotide polymorphisms (SNPs) were identified. Using this SNP information, we performed the following population genomic analyses.Figure 1Population structure and relationship of large yellow croaker. (a) Geographic map indicating the sample origins of the large yellow croaker in this study. The gross appearance of a large yellow croaker individual is shown in the picture. The sampling area is highlighted by the red broken line. The dots of different color stand for different population. The number of individuals is given in parentheses after the population name. The geographical maps were generated by using R packages of maps v3.3.0 (https://cran.r-project.org/web/packages/maps) and mapdata v2.3.0 (https://cran.r-project.org/web/packages/mapdata). (b) PCA plot (PC1 and PC2) showing the genetic structure of the 198 large yellow croaker individuals. The degrees of explained variance is given in parentheses. Colors reflect the geographic regions in (a). (c) UMAP of the 198 large yellow croaker individuals. Colors reflect the geographic regions in (a).Full size imageGenetic population structure of the large yellow croaker individualsIn order to examine the genetic population structure of the large yellow croaker individuals, we performed principal component analysis (PCA). In the first component of the PCA, the Zhoushan farmed population separated from the other three populations (Fig. 1b). In the second component of the PCA, the Zhoushan sea-captured population formed a cluster. Also, the Ningde farmed population formed a cluster. The Ningde sea-captured population had a wider distribution than the other populations. Then, we performed uniform manifold approximation and projection (UMAP), a non-linear dimensionality method (Fig. 1c). The result of UMAP is similar to the result of PCA. UMAP showed that the Zhoushan farmed population formed a distinct cluster, and the Zhoushan sea-captured population and Ningde farmed population formed more scattered clusters. UMAP also showed that the Ningde sea-captured population had a wider distribution than the other populations.The evolutionary history of the individuals was inferred with the neighbour-joining (NJ) tree. The NJ tree contains two large groups (Fig. 2a). The first group was formed by the individuals of the Zhoushan farmed population plus several individuals of the Zhoushan sea-captured population. The other group was formed by the individuals in the other three groups. In this group, individuals of the Zhoushan sea-captured formed a distinct cluster from the individuals of the Ningde sea-captured population and those of the Ningde farmed population. The individuals of the Ningde sea-captured population and those of the Ningde farmed population together formed several small groups.Figure 2Neighbor-joining tree and admixture analysis using whole-genome SNP data. (a) Neighbor-joining tree of the 198 large yellow croaker individuals. The color scheme follows Fig. 1. The scale bar represents pairwise distances between different individuals. (b) Cross-validation error in the admixture analysis. The x-axis represents K values and the y-axis represents the corresponding cross-validation error. The cross-validation error was lowest at K = 3. (c) Admixture plot (K = 2, 3, 4) for the 198 large yellow croaker individuals. Each individual is shown as vertical bar divided into K colors. The color scheme follows Fig. 1. Individuals are arranged by population.Full size imageWe performed unsupervised clustering analysis with ADMIXTURE to evaluate the relatedness of the populations. Cross-validation error was lowest at K = 3, suggesting that the population genetic structure of our samples is best modelled by considering the admixture of the three genetic components (Fig. 2b). The individuals of the Zhoushan farmed population are composed of relatively uniform genetic components (Fig. 2c). The individuals of the Ningde farmed population are composed of genetic components that are also relatively uniform but different from those of the Zhoushan farmed population. Both the individuals of the Zhoushan sea-captured population and those of the Ningde sea-captured population were a mixture of the three genetic components.Trends of effective population sizeWe evaluated the extents of linkage disequilibrium for SNP pairs. The average r2 values of linkage disequilibrium decreased by increasing the marker distance between pairwise SNPs, with a rapidly declining trend observed over the first 500 kb (Fig. 3a). Using this information, we estimated the change of the effective population size over the past 1000 generations (Fig. 3b). All the four populations showed decreasing trends of effective population sizes, suggesting that their genetic diversities remain at a low level.Figure 3Trends of effective population sizes. (a) LD decay (r2) from 0 to 4000 kb for four populations. The x-axis represents marker distances between pairwise SNPs. The y-axis represents r2 values of linkage disequilibrium. (b) Effective population sizes of four populations over the past 1000 generations. All of the four populations showed decreasing trends.Full size imageDetection of putative genes associated with the adaptation to different sea environments of the Zhoushan Sea and Ningde SeaTo identify the genetic markers to differentiate individuals of the Zhoushan sea-captured and Ningde sea-captured, we calculated fixation index (Fst) values for each SNP. We identified total 819 SNPs as genetic markers (Table S2). To identify the genes associated with adaptation to the different living environments between these two regions, we calculated average Fst values in 40 kb windows with 10 kb steps (Fig. 4). We identified 47 regions with significant Fst values. The total size of these regions is 3.6 Mb. The sizes of the significant regions were between 40 kb to 0.31 Mb. These regions contained 88 genes (Table S3). We categorised the functions of these genes based on their gene ontology (GO) term annotations (Table S4). These genes include those involved in muscle structure development (GO:0061061) such as pdlim3a (pdz and lim domain 3). This gene is located in the region from 26,673,301 to 26,662,947 bp on chromosome 10, and is reported to be highly expressed in muscle and involved in the crosslinking of actin filaments15. We identified three upstream variants of this gene which are located at 26,675,034 bp, 26,675,134 bp, and 26,678,221 bp on chromosome 10 (Fig. 4). We also identified one downstream variant located at 26,660,973 bp on chromosome 10. Besides muscle structure development (GO:0061061), there are also some enriched GO terms such as regulation of response to external stimulus (GO:0032101) and cell–cell signalling (GO:0007267).Figure 4Genomic regions associated with regional differentiation of large yellow croaker between Zhoushan sea and Ningde sea. Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Zhoushan sea-captured population and Ningde sea-captured population. The x-axis represents chromosomal positions and the y-axis represents the average Fst values.Full size imageDetection of putative genes under selective sweep between the Zhoushan sea-captured population and farmed populationTo identify the genes under selective sweep in the domestication process, we analysed single Fst values for single SNPs and average Fst values in 40 kb windows with 10 kb steps separately both in the Zhoushan and Ningde regions. Between the Zhoushan sea-captured population and farmed population, we identified 23,862 SNPs with significant Fst values by single SNP analysis (Table S5). In the sliding window analysis, the number of significant regions was 317, and the total size of significant regions was 59 Mb (Fig. 5a). The sizes of significant regions were between 40 kb to 8.1 Mb. These regions contain 1709 genes (Table S6). We identified the strong peak of Fst signal on chromosome 11, which contains 423 genes such as hsp90ab1 (heat shock protein 90 alpha family class B member 1). GO analysis showed that genes involved in the regulation of fatty acid oxidation (GO:0031998), the steroid hormone mediated signalling pathway (GO:0043401), fatty acid metabolic processes (GO:0006631), membrane lipid metabolic processes (GO:0006643), regulation of fatty acid metabolic processes (GO:0019217), and long-chain fatty acid transport (GO:0015909). These GO terms include plenty of lipid metabolism-related genes such as ppara (peroxisome proliferator activated receptor alpha), pnpla2 (Patatin like phospholipase domain containing 2). It is worth mentioning that there were plenty of genes related to carbohydrate derivative metabolic processes (GO:1901135) with differences between the Zhoushan sea-captured population and farmed populations (Table S7). Additionally, a number of the growth relative genes include the developmental growth involved in morphogenesis (GO:0060560). Genes were found related to embryo development ending in birth or egg hatching (GO:0009792). Additionally, 47 genes related immune system development (GO:0002520) were obtained, such as taf3 (tata-box binding protein associated factor 3), irf7 (interferon regulatory factor 7) and rps7 (ribosomal protein s7) (Table S7).Figure 5Genomic regions associated with domestication of large yellow croaker between Zhoushan sea or Ningde sea. (a) Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Zhoushan sea-captured and Zhoushan farmed. (b) Manhattan plot for average Fst values in 40 kb windows with 10 kb steps between Ningde sea-captured and Ningde farmed. The x-axis represents chromosomal positions and the y-axis represents the average Fst values.Full size imageMoreover, we found that anxa2a (annexin a2a; from 16,718,332 bp to 16,713,531 bp on chromosome 21) have a splice donor site variant at 16,715,408 bp on chromosome 21. This mutation is located at the fifth intron of anxa2a, and is predicted to lead to a premature truncation. The anxa2a gene encodes a phospholipid-binding protein, and is involved in variety of intracellular processes including endocytosis, exocytosis, membrane domain organisation, actin remodelling, signal transduction, protein assembly16. This batch of samples came from breeding selection for a freeze-resistant population. We identified nine downstream mutations (16,713,395 bp, 16,713,442 bp, 16,713,443 bp, 16,713,593 bp, 16,715,408 bp, 16,715,741 bp, 16,716,027 bp, 16,716,216 bp and 16,717,363 bp on chromosome 21) of ice2 (interactor of little elongation complex ELL subunit 2) gene, which is located in the region from 16,727,361 to 16,718,192 bp on chromosome 21. This gene is involved in cold acclimation and determines freezing tolerance17.Detection of putative genes under selective sweep between the Ningde sea-captured and farmed populationFor the Ningde farmed population, we identified 660 SNPs with significant Fst values (Table S8). In the sliding window analysis, the number of significant regions was 42, and the total size of significant regions was 7.8 Mb (Fig. 5b). The sizes of significant regions were between 40 kb to 2.0 Mb. These regions contain 238 genes (Table S9). GO analysis showed identified genes related to the reproduction process such as female gonad development (GO:0008585), i.e. esr1 (estrogen receptor 1), foxo3 (forkhead box O3); the development of primary female sexual characteristics (GO:0046545) and embryonic appendage morphogenesis (GO:0035113), such as mbnl1 (muscle blind like splicing regulator 1); as well as embryonic limb morphogenesis (GO:0030326) and the response to steroid hormones (GO:0048545). Additionally, genes related to digestive tract development (GO:0048565) were enriched, such as hnf1b (hnf1 homeobox b) (Table S10). As per the results of SNPs with the highest Fst analysis between the Ningde sea-captured and farmed population, we identified a downstream variant of esr1, which is located at 9,103,629 bp on chromosome 11. This gene is located in the region from 9,129,853 and 9,108,464 bp on chromosome 11 and encodes estrogen receptor 1, which plays a critical role in responding to steroid hormones (Fig. 5b). Genes involved in visual system development (GO:0150063) such as prox1 (prospero-related homeobox1), nr2e1 (nuclear receptor subfamily 2 group e member 1) and znf513a (zinc finger protein 513a) were also enriched. The znf513a gene is located in the region from 11,664,515 to 11,657,703 bp on chromosome 11 and has a downstream variant located at 11,652,743 bp on this chromosome (Fig. 5b). More

  • in

    Evidence for the importance of land use, site characteristics and vegetation composition for rooting in European Alps

    Study sitesTo obtain a cross-section of land-use types through the Eastern Alps (Fig. 2), rooting samples were taken from Tyrol (Austria) and from South Tyrol and northern Trentino (both in Italy), which include two climatic regions—the central European climatic region in the northern part and the sub-Mediterranean climatic region in the southern part of the research area47. The average annual precipitation at the 13 study sites ranges from 400 to 2000 mm, with maximum rainfall observed from June to July47. Mean annual temperature ranges from 0 °C to 9 °C. Additional climatic variability was added by sampling at elevations from 650 to 2680 m a.s.l. The bedrock in the research area is composed of calcareous sedimentary rock in the northern and southern regions and of crystalline rock in the main chain of the Alps, sometimes with superimposed calcareous isles: Stubai Valley (North Tyrol) is geologically dominated by silicate with transitions to limestone; Ötz Valley, Ziller Valley and Igls/Patsch (all North Tyrol), Passeier Valley, Mühlbach, Matsch, Ritten and Jenesien (South Tyrol) are geologically dominated by silicate; and Leutasch (North Tyrol), St. Vigil and Toblach (both South Tyrol) and Monte Bondone (near Trento) are geologically dominated by limestone. The pH of the topsoil (0–10 cm), which ranges from 3.7 to 7.832, is determined by bedrock and land use48. For more details on the study region, see Supplementary Appendix S1.Figure 2Site, sample number and analyzed land-use types in the Eastern Alps. Study sites: B = Monte Bondone; I = Igls/Patsch; J = Jenesien; L = Leutasch; M = Mühlbach; M2 = Matsch; O = Ötz Valley; P = Passeier Valley; R = Ritten; S = Stubai Valley; T = Toblach; V = St. Vigil; and Z = Ziller Valley. The map was created using ArcGIS 10.2.2 (ESRI Inc.) and edited in Microsoft PowerPoint 365 MSO (Map data: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community).Full size imageTo be representative, the most widespread vegetation communities in the 13 study sites for all land-use types (arable land, intensively used hay meadow, lightly managed hay meadow, pasture, agriculturally unused grasslands, and forest) were analyzed (Supplementary Appendix S2). Overall, a total of 171 soil samples were taken, with 15 samples from arable land, 56 samples from intensively used hay meadows, 15 samples from extensively managed hay meadows, 16 samples from lightly stocked pastures, 32 samples from agriculturally unused grasslands, and 37 samples from forests. Meadows that are mown and fertilized with slurry and/or manure at least twice a year were defined as intensively used hay meadows. An extensively managed hay meadow was not fertilized and mown only once a year. Pastures were extensively grazed by cattle and/or sheep (annual average stocking intensity: 0.15–0.4 livestock units (LU) ha−1 year−1) but not mown. As arable land, we defined different crops typical for the region, especially maize and bread cereal crops, as well as vegetables and potatoes. Agriculturally unused grasslands included all grassland areas that were abandoned for at least five years or have never been used for agriculture, such as alpine grasslands. Finally, all permanent deciduous, coniferous or mixed forests were combined into the forest land-use type (thus, no energy forests).Data collection and analysisVegetation and site variables depending on land-use types were used to explain the rooting parameters. As Fig. 1 shows, dependencies between explanatory variables and rooting parameters are not always strictly unidirectional. For example, vegetation composition influences rooting; however, rooting patterns can also influence vegetation composition. We considered as many different dependencies as possible in the applied methods and interpreted discovered statistically significant relationships as associations rather than causal (unidirectional) impacts.Rooting parameters: root mass, root length and rooting depthOverall, 171 rooting samples (Appendices S1 and S2) were taken between 1994 and 2017 in the field with core samplers of 6.8–7.7 cm diameter and a maximum core depth of 70 cm. Before coring, the vegetation was characterized with the standard phytosociological method of Braun-Blanquet49 to directly connect rooting and vegetation characteristics. The size of the vegetation survey areas was determined by the minimal area of a plant community as the area with 90% or more of all plant species within this ecosystem. The survey area ranged between 1 m × 1 m in homogenous meadows and 10 m × 10 m in forests. Even though we chose the rooting survey areas to be homogeneous regarding vegetation composition, it was possible that the rooting measured in the soil cores was affected by species other than those located above the core area due to large heterogeneity within plant communities50. Nevertheless, this error should be negligible.As the data for this analysis were derived from a collection of rooting analyses from different research projects in the past 20 years using the same methodological approach, the number of samples per land-use type and per site was unbalanced (Supplementary Appendix S2). For example, some land-use types were represented only at one site (e.g., all agriculturally unused areas were at site I), while others were represented at three or even more than 10 sites. In addition, the number of samples within each land-use type was also unbalanced: 15 samples for arable land, 32 for agriculturally unused grasslands or 56 samples for intensively used hay meadows. The original data collection included the most common and important plant communities in the project areas except for arable land. Thus, the rooting of the most common crops (maize: n = 3; barley: 3; oat: 3; wheat: 3; and vegetables: 3) was analyzed near Innsbruck in an area specially selected for this purpose.In the laboratory, the soil cores were split into the O-horizon (if present) and mineral soil layers of various thicknesses (0–3 cm, 3–8 cm, 8–13 cm, 13–23 cm, 23–38 cm, 38–53 cm, and  > 53 cm). Root extraction was performed manually with the roots cleared of soil in sieving cascades under running water51. Afterwards, the roots were sorted into three size categories18: (1) very fine roots (diameter between 0 and 1 mm); (2) fine roots (diameter between 1 and 5 mm); and (3) coarse roots (diameter between 5 and 20 mm). Roots of woody species with a diameter larger than 20 mm were not taken into account, as the distribution and diameter of coarse roots (especially trees) in the soil vary greatly spatially; therefore, a single survey cannot be representative of the rooting of an ecosystem50,52. The reason for this classification was due to the different functions of the classes. Very fine roots have a dominant role in the uptake of water and nutrients and may be the main source of stabilized carbon input to soil1. Fine roots are mainly responsible for the transport, anchoring and storage of carbohydrates and are also able to take up water. Coarse roots are important for water transfer and the stabilization of plants. To account for the different specific root lengths (SRLs) of very fine and coarse roots from herbaceous and woody species29, we classified the single samples according to the cover of herbaceous and woody species from the phytosociological surveys into pure grassland samples, mixed grassland samples (dominance of woody species:  50%)18. The conversion of root mass to rooting length was carried out using previously published Eqs. 19 (Table 1). Finally, the maximum depth (RD90%), above which 90% of the total root mass was found, was calculated for each root sample using the equation:$$RD_{90% } = RM_{tot} frac{{arctan left( {frac{{RM_{90% } }}{{RM_{tot} }}} right)}}{{m_{max } }},$$
    (1)
    where RM90% is 90% of the total root mass (kg m-2) and mmax is the maximum slope of the saturation curve. In the same way, the depths above which 50% (RD50%) and 95% (RD95%) of the total root mass occurred were calculated. In forests and in dwarf shrub-rich communities, the rooting depths and distributions could be biased by the fact that the sampling depth was very shallow, which could lead to underestimating the 50%, 90% and 95% rooting depths53. In grassland ecosystems, croplands and in dwarf shrub rich communities, however, the 70 cm sampling depth is sufficient because most roots are within the top 30 cm18.Table 1 Linear functions to calculate the root length on the basis of root dry weight for different vegetation communities: grassland communities (G), mixed grassland communities (M), and dwarf shrub-rich or tree-rich vegetation communities (W). y = root length (mm m-2) and x = root dry mass (g m-2).Full size tableEnvironmental variablesFor every root sample, we collected 79 potential impact variables on rooting, including 19 site variables, six land-use variables and 53 vegetation variables (see Table 2 and Appendices S1, S3 and S4).Table 2 Groups of variables used to explain rooting parameters, including information on the type (V, vegetation variable; S, site variable; and LU, land-use variable), the number of variables of each group (no.) and examples (for details, see Appendices S1, S3 and S4).Full size tableVegetation variablesIn total, 53 vegetation variables were collected and divided a priori into four groups (Table 2, Supplementary Appendix S3). Variables included in the richness group were ‘number of plant species’, ‘number of taxonomic groups’ and ‘functional types’ (after38). All variables that displayed information on the mean species cover, plant cover variance or dominance of species, the Shannon–Wiener and Evenness indices (both after54) and the total vegetation cover were allocated to the community composition group. We calculated the Shannon–Wiener and Evenness indices54 for species composition, functional types and functional traits.The cover of functional types group included variables that provide information on the abundance, dominance and composition of single plant functional types (see Supplementary Appendix S3). Finally, the community-level trait group (see Supplementary Appendix S3) contained leaf, plant height and root traits (effect traits in sensu55) used to assess the relative effects of aboveground and root trait turnover at the community level. They were calculated for each sample using trait values taken from the literature and the measured abundance of each species within the single community (i.e., community weighted mean56). We used mean root density and main rooting depth for the single species57,58,59. The rooting density of the species was classified into sparse, medium dense, dense, and very dense roots59. The mean leaf size and plant height of the species (sources:60,61; http://www.floraweb.de/; own observations) were classified according to the following thresholds. Plant height was divided into small (mean plant height  90 cm) species. Leaf size was classified as small (mean leaf area  70 cm2) species. In accordance with other authors62,63, most plant species showed clear allometric allocation trends between leaves, stems and root biomass for different groups of plant species. In particular, a trend towards a decreased root mass fraction with plant size was detected.Site characteristicsImportant meteorological parameters were measured at eight study sites at a distance of  1%). We investigated whether all these species were summarized into PCA components, i.e., into species groups with similar habitat requirements. Species not included in any component were treated as their own component (however, in our study, all species were included in a component). The multiple correlation coefficient (R2) of each component with the vegetation and site components/variables was computed. A high R2 denotes that the information of the key species is covered by the vegetation and site variables.All technical details and further detailed descriptions of the methods can be found in Supplementary Appendix S13. Statistical analyses were conducted with Stata/MP 13.1 for Windows. More

  • in

    Identification of pathogens in the invasive hornet Vespa velutina and in native Hymenoptera (Apidae, Vespidae) from SW-Europe

    1.Habel, J. C. et al. Butterfly community shifts over two centuries. Conserv. Biol. 30, 754–762 (2016).PubMed 
    Article 

    Google Scholar 
    2.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12, e0185809 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    3.Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Inger, R. et al. Common European birds are declining rapidly while less abundant species’ numbers are rising. Ecol. Lett. 18, 28–36 (2015).PubMed 
    Article 

    Google Scholar 
    5.Thomas, J. A. et al. Comparative losses of British butterflies, birds, and plants and the global extinction crisis. Science 303, 1879–1881 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Vanbergen, A. J. & The Insect Pollinators Initiative. Threats to an ecosystem service: Pressures on pollinators. Front. Ecol. Environ. 11, 251–259 (2013).Article 

    Google Scholar 
    7.Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Stanton, R. L., Morrissey, C. A. & Clark, R. G. Analysis of trends and agricultural drivers of farmland bird declines in North America: A review. Agric. Ecosyst. Environ. 254, 244–254 (2018).Article 

    Google Scholar 
    9.Gallai, N., Salles, J.-M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).Article 

    Google Scholar 
    10.Potts, S. G. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Gonzalez-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).PubMed 
    Article 

    Google Scholar 
    12.Banks, N. C., Paini, D. R., Bayliss, K. L. & Hodda, M. The role of global trade and transport network topology in the human-mediated dispersal of alien species. Ecol. Lett. 18, 188–199 (2015).PubMed 
    Article 

    Google Scholar 
    13.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article 

    Google Scholar 
    14.Essl, F. et al. Drivers of future alien species impacts: An expert-based assessment. Glob. Change Biol. 26, 4880–4893 (2020).ADS 
    Article 

    Google Scholar 
    15.Laurino, D., Lioy, S., Carisio, L., Manino, A. & Porporato, M. Vespa velutina: An alien driver of honey bee colony losses. Diversity 12, 5 (2020).Article 

    Google Scholar 
    16.Monceau, K., Bonnard, O. & Thiéry, D. Vespa velutina: A new invasive predator of honeybees in Europe. J. Pest Sci. 87, 1–16 (2013).Article 

    Google Scholar 
    17.Rome, Q. et al. Caste differentiation and seasonal changes in Vespa velutina (Hym.: Vespidae) colonies in its introduced range. J. Appl. Entomol. 139, 771–782 (2015).Article 

    Google Scholar 
    18.Monceau, K. & Thiery, D. Vespa velutina nest distribution at a local scale: An 8-year survey of the invasive honeybee predator. Insect Sci. 24, 663–674 (2017).PubMed 
    Article 

    Google Scholar 
    19.Snyder, W. E. & Evans, E. W. Ecological effects of invasive arthropod generalist predators. Annu. Rev. Ecol. Evol. Syst. 37, 95–122 (2006).Article 

    Google Scholar 
    20.Villemant, C. et al. Bilan des travaux (MNHN et IRBI) sur l’invasion en France de Vespa velutina, le frelon asiatique prédateur d’abeilles. In Proceedings of the Journée Scientifique Apicole (eds Barbançon, J.-M. & L’Hostis, M.) 3–12 (ONIRIS-FNOSAD, 2011).
    Google Scholar 
    21.Monceau, K. & Thiery, D. Vespa velutina: Current situation and perspectives (Atti Accademia Nazionale Italiana di Entomologia, 2017).
    Google Scholar 
    22.Requier, F. et al. Predation of the invasive Asian hornet affects foraging activity and survival probability of honey bees in Western Europe. J. Pest Sci. 92, 567–578 (2019).Article 

    Google Scholar 
    23.Rome, Q. et al. Not just honeybees: Predatory habits of Vespa velutina (Hymenoptera: Vespidae) in France. Ann. Soc. Entomol. Fr. (N.S.). 57, 1–11. https://doi.org/10.1080/00379271.2020.1867005 (2021).24.Furst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Maside, X. et al. Population genetics of Nosema apis and Nosema ceranae: One host (Apis mellifera) and two different histories. PLoS One 10, e0145609 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    26.Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).PubMed 
    Article 

    Google Scholar 
    27.Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. Biol. Sci. 282, 20151371 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    28.Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Gómez-Moracho, T. et al. Recent worldwide expansion of Nosema ceranae (Microsporidia) in Apis mellifera populations inferred from multilocus patterns of genetic variation. Infect. Genet. Evol. 31, 87–94 (2015).PubMed 
    Article 

    Google Scholar 
    30.Higes, M., Martin, R. & Meana, A. Nosema ceranae, a new microsporidian parasite in honeybees in Europe. J. Invertebr. Pathol. 92, 93–95 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Klee, J. et al. Widespread dispersal of the microsporidian Nosema ceranae, an emergent pathogen of the western honey bee, Apis mellifera. J. Invertebr. Pathol. 96, 1–10 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Otterstatter, M. C. & Thomson, J. D. Does pathogen spillover from commercially reared bumble bees threaten wild pollinators?. PLoS One 3, e2771 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Graystock, P., Goulson, D. & Hughes, W. O. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    34.Ravoet, J. et al. Differential diagnosis of the honey bee trypanosomatids Crithidia mellificae and Lotmaria passim. J. Invertebr. Pathol. 130, 21–27 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Bartolomé, C. et al. A new multiplex PCR protocol to detect mixed trypanosomatid infections in species of Apis and Bombus. J. Invertebr. Pathol. 154, 37–41 (2018).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    36.Bartolomé, C. et al. Wide diversity of parasites in Bombus terrestris (Linnaeus, 1758) revealed by a high-throughput sequencing approach. Environ. Microbiol. 23, 478–483 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    37.Meeus, I., Brown, M. J. F., De Graaf, D. C. & Smagghe, G. Effects of invasive parasites on bumble bee declines. Conserv. Biol. 25, 662–671 (2011).PubMed 
    Article 

    Google Scholar 
    38.Goulson, D. & Hughes, W. O. H. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Conserv. 191, 10–19 (2015).Article 

    Google Scholar 
    39.Burdon, J. & Chilvers, G. Host density as a factor in plant disease ecology. Annu. Rev. Phytopathol. 20, 143–166 (1982).Article 

    Google Scholar 
    40.Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520, 542 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    41.Borovkov, K., Day, R. & Rice, T. High host density favors greater virulence: A model of parasite–host dynamics based on multi-type branching processes. J. Math. Biol. 66, 1123–1153 (2013).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    42.Darrouzet, E., Gévar, J. & Dupont, S. A scientific note about a parasitoid that can parasitize the yellow-legged hornet, Vespa velutina nigrithorax, Europe. Apidologie 46, 130–132 (2014).Article 

    Google Scholar 
    43.Villemant, C. et al. Can parasites halt the invader? Mermithid nematodes parasitizing the yellow-legged Asian hornet in France. PeerJ 3, e947 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Poidatz, J., López Plantey, R. & Thiéry, D. Indigenous strains of Beauveria and Metharizium as potential biological control agents against the invasive hornet Vespa velutina. J. Invertebr. Pathol. 153, 180–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Dalmon, A. et al. Viruses in the Invasive Hornet Vespa velutina. Viruses 11, 1041 (2019).CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    46.Marie-Pierre Chauzat et al. First detections of honey bee pathogens in nest of the Asian hornet (Vespa velutina) collected in France. CIHEAM Watch Letter 33 (2015).47.Mazzei, M. et al. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci. Rep. 9, 10091 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    48.Yañez, O., Zheng, H.-Q., Hu, F. L., Neuman, P. & Dietemann, V. A scientific note on Israeli acute paralysis virus infection of Eastern honeybee Apis cerana and vespine predator Vespa velutina. Apidologie 43, 587–589 (2012).Article 

    Google Scholar 
    49.Li, J. et al. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. 42, 49–61 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    50.Tokarev, Y. S. et al. Redefinition of Nosema pyrausta (Perezia pyraustae Paillot 1927) basing upon ultrastructural and molecular phylogenetic studies. Parasitol. Res. 114, 759–761 (2015).PubMed 
    Article 

    Google Scholar 
    51.Goulson, D., Whitehorn, P. & Fowley, M. Influence of urbanisation on the prevalence of protozoan parasites of bumblebees. Ecol. Entomol. 37, 83–89 (2012).Article 

    Google Scholar 
    52.Plischuk, S., Antúnez, K., Haramboure, M., Minardi, G. M. & Lange, C. E. Long-term prevalence of the protists Crithidia bombi and Apicystis bombi and detection of the microsporidium Nosema bombi in invasive bumble bees. Environ. Microbiol. Rep. 9, 169–173 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Jabal-Uriel, C. et al. Short communication: First data on the prevalence and distribution of pathogens in bumblebees (Bombus terrestris and Bombus pascuorum) from Spain. Span. J. Agric. Res. 15, 3 (2017).Article 

    Google Scholar 
    54.Meana, A. et al. Risk factors associated with honey bee colony loss in apiaries in Galicia, NW Spain. Span. J. Agric. Res. 15, e0501 (2017).Article 

    Google Scholar 
    55.Cavigli, I. et al. Pathogen prevalence and abundance in honey bee colonies involved in almond pollination. Apidologie 47, 251–266 (2016).PubMed 
    Article 

    Google Scholar 
    56.Bartolomé, C. et al. Longitudinal analysis on parasite diversity in honeybee colonies: New taxa, high frequency of mixed infections and seasonal patterns of variation. Sci. Rep. 10, 10454 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Ravoet, J. et al. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One 8, e72443 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Arbulo, N. et al. High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. J. Invertebr. Pathol. 130, 165–168 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Plischuk, S. et al. Pathogens, parasites, and parasitoids associated with bumble bees (Bombus spp.) from Uruguay. Apidologie 48, 298–310 (2017).Article 

    Google Scholar 
    60.Sinpoo, C., Disayathanoowat, T., Williams, P. H. & Chantawannakul, P. Prevalence of infection by the microsporidian Nosema spp. in native bumblebees (Bombus spp.) in northern Thailand. PLoS One 14, e0213171 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Michalczyk, M., Bancerz-Kisiel, A. & Sokół, R. Lotmaria passim as third parasite gastrointestinal tract of honey bees living in tree trunk. J. Apic. Sci. 64, 143–151 (2020).
    Google Scholar 
    62.Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014).PubMed 
    Article 

    Google Scholar 
    63.Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Rose, E. A. F., Harris, R. J. & Glare, T. R. Possible pathogens of social wasps (Hymenoptera: Vespidae) and their potential as biological control agents. N. Z. J. Zool. 26, 179–190 (1999).Article 

    Google Scholar 
    65.Arca, M. et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, Europe. Biol. Invasions 17, 2357–2371 (2015).Article 

    Google Scholar 
    66.Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    67.Lester, P. J. et al. No evidence of enemy release in pathogen and microbial communities of common wasps (Vespula vulgaris) in their native and introduced range. PLoS One 10, e0121358 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    68.Adler, L. S. et al. Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Pusceddu, M., Mura, A., Floris, I. & Satta, A. Feeding strategies and intraspecific competition in German yellowjacket (Vespula germanica). PLoS One 13, e0206301 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    70.Ueno, T. Flower-visiting by the invasive hornet Vespa velutina nigrithorax (Hymenoptera: Vespidae). Int. J. Chem. Environ. Biol. Sci. 3, 444–448 (2015).
    Google Scholar 
    71.Barbet-Massin, M. et al. Climate change increases the risk of invasion by the Yellow-legged hornet. Biol. Conserv. 157, 4–10 (2013).Article 

    Google Scholar 
    72.Barbet-Massin, M., Salles, J.-M. & Courchamp, F. The economic cost of control of the invasive yellow-legged Asian hornet. NeoBiota 55, 11–25 (2020).Article 

    Google Scholar 
    73.Rodríguez-Lado, L. velutina | Visor. Monitorización da distribución de Vespa velutina. http://webs-gis.cesga.es/velutina/ (2017).74.Robinet, C., Suppo, C. & Darrouzet, E. Rapid spread of the invasive yellow-legged hornet in France: The role of human-mediated dispersal and the effects of control measures. J. Appl. Ecol. 54, 205–215 (2017).Article 

    Google Scholar 
    75.Rojas-Nossa, S. V. & Calviño-Cancela, M. The invasive hornet Vespa velutina affects pollination of a wild plant through changes in abundance and behaviour of floral visitors. Biol. Invasions 22, 2609–2618 (2020).Article 

    Google Scholar 
    76.Ferreira-Golpe, M., Garcia-Arias, A. I. & Pérez-Fra, M. M. Costes de la lucha contra la especie invasora Vespa velutina soportados por los apicultores en la provincia de A Coruña. in XII Congreso Iberoamericano de Estudios Rurales. Territorios Globales, Ruralidades Diversas 294–297 (2019).77.Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Civitello, D. J. et al. Biodiversity inhibits parasites: Broad evidence for the dilution effect. Proc. Natl. Acad. Sci. 112, 8667–8671 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    79.Ostfeld, R. & Keesing, F. Biodiversity and disease risk: The case of Lyme disease. Conserv. Biol. 14, 722-728 (2000).80.Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl. Acad. Sci. U.S.A. 115, 7979–7984 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Berngruber, T. W., Froissart, R., Choisy, M. & Gandon, S. Evolution of virulence in emerging epidemics. PLoS Pathog. 9, e1003209 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Farrer, R. A. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc. Natl. Acad. Sci. 108, 18732–18736 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    83.Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    85.Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Hutcheson, K. A test for comparing diversities based on the Shannon formula. J. Theor. Biol. 29, 151–154 (1970).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Cities as hot stepping stones for tree migration

    1.Willis, K. J. & Petrokofsky, G. The natural capital of city trees. Science 356, 374–376 (2017).CAS 

    Google Scholar 
    2.Fontaine, L. C. & Larson, B. M. H. The right tree at the right place? Exploring urban foresters’ perceptions of assisted migration. Urban For. Urban Green. 18, 221–227 (2016).
    Google Scholar 
    3.Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).
    Google Scholar 
    4.Nolan, C. et al. Past and future global transformation of terrestrial ecosystems under climate change. Science 361, 920–923 (2018).CAS 

    Google Scholar 
    5.Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
    Google Scholar 
    6.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 

    Google Scholar 
    7.Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).
    Google Scholar 
    8.Rehfeldt, G. E., Crookston, N. L., Warwell, M. V. & Evans, J. S. Empirical analyses of plant‐climate relationships for the Western United States. Int. J. Plant Sci. 167, 1123–1150 (2006).
    Google Scholar 
    9.Tomiolo, S. & Ward, D. Species migrations and range shifts: a synthesis of causes and consequences. Perspect. Plant Ecol. Evol. Syst. 33, 62–77 (2018).
    Google Scholar 
    10.Cavanaugh, K. C. et al. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proc. Natl. Acad. Sci. USA 111, 723–727 (2014).CAS 

    Google Scholar 
    11.Woodall, C. W. et al. An indicator of tree migration in forests of the eastern United States. For. Ecol. Manag. 257, 1434–1444 (2009).
    Google Scholar 
    12.Walther, G. R. et al. Palms tracking climate change. Glob. Ecol. Biogeogr. 16, 801–809 (2007).
    Google Scholar 
    13.Miller, K. M. & McGill, B. J. Land use and life history limit migration capacity of eastern tree species. Glob. Ecol. Biogeogr. 27, 57–67 (2018).
    Google Scholar 
    14.Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Chang. 6, 1104–1109 (2016).
    Google Scholar 
    15.Lazarus, E. D. & McGill, B. J. Pushing the pace of tree species migration. PLoS ONE 9, e105380 (2014).
    Google Scholar 
    16.Cunze, S., Heydel, F. & Tackenberg, O. Are plant species able to keep pace with the rapidly changing climate? PLoS ONE 8, e67909 (2013).CAS 

    Google Scholar 
    17.Gray, L. K. & Hamann, A. Tracking suitable habitat for tree populations under climate change in western North America. Clim. Change 117, 289–303 (2013).
    Google Scholar 
    18.Petit, R. J., Hu, F. S. & Dick, C. W. Forests of the past: a window to future changes. Science 320, 1450–1452 (2008).CAS 

    Google Scholar 
    19.Jackson, S. T. & Weng, C. Late Quaternary extinction of a tree species in eastern North America. Proc. Natl Acad. Sci. USA 96, 13847–13852 (1999).CAS 

    Google Scholar 
    20.Mosblech, N. A. S., Bush, M. B. & van Woesik, R. On metapopulations and microrefugia: Palaeoecological insights. J. Biogeogr. 38, 419–429 (2011).
    Google Scholar 
    21.Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).CAS 

    Google Scholar 
    22.Hu, F. S., Hampe, A. & Petit, R. J. Paleoecology meets genetics: deciphering past vegetational dynamics. Front. Ecol. Environ. 7, 371–379 (2009).
    Google Scholar 
    23.Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).CAS 

    Google Scholar 
    24.Snell, R. S. & Cowling, S. A. Consideration of dispersal processes and northern refugia can improve our understanding of past plant migration rates in North America. J. Biogeogr. 42, 1677–1688 (2015).
    Google Scholar 
    25.Lopez, J. Single planting creates expanding naturalized population of quercus palustris far from its native range limit. Rhodora 120, 143–153 (2018).
    Google Scholar 
    26.Varquez, A. C. G. & Kanda, M. Global urban climatology: a meta-analysis of air temperature trends (1960–2009). npj Clim. Atmos. Sci. 1, 32 (2018).
    Google Scholar 
    27.Stewart, I. D. & Oke, T. R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93, 1879–1900 (2012).
    Google Scholar 
    28.Rizwan, A. M., Dennis, L. Y. C. & Liu, C. A review on the generation, determination and mitigation of Urban Heat Island. J. Environ. Sci. 20, 120–128 (2008).CAS 

    Google Scholar 
    29.Parker, D. E. Urban heat island effects on estimates of observed climate change. WIREs Clim. Change 1, 123–133 (2010).
    Google Scholar 
    30.Peng, S. et al. Surface urban heat island across 419 global big cities. Environ. Sci. Technol. 46, 696–703 (2012).CAS 

    Google Scholar 
    31.IPCC. Global Warming of 1.5 °C (World Meteorological Organization, 2018).32.George, K., Ziska, L. H., Bunce, J. A. & Quebedeaux, B. Elevated atmospheric CO2 concentration and temperature across an urban–rural transect. Atmos. Environ. 41, 7654–7665 (2007).CAS 

    Google Scholar 
    33.Dallimer, M., Tang, Z., Gaston, K. J. & Davies, Z. G. The extent of shifts in vegetation phenology between rural and urban areas within a human-dominated region. Ecol. Evol. 6, 1942–1953 (2016).
    Google Scholar 
    34.Dahlhausen, J., Rötzer, T., Biber, P., Uhl, E. & Pretzsch, H. Urban climate modifies tree growth in Berlin. Int. J. Biometeorol. 62, 795–808 (2018).
    Google Scholar 
    35.Pretzsch, H. et al. Climate change accelerates growth of urban trees in metropolises worldwide. Sci. Rep. 7, 15403 (2017).
    Google Scholar 
    36.Searle, S. Y. et al. Urban environment of New York city promotes growth in northern red oak seedlings. Tree Physiol. 32, 389–400 (2012).
    Google Scholar 
    37.McLachlan, J. S., Clark, J. S. & Manos, P. S. Molecular indicators of tree migration capacity under rapid climate change. Ecology 86, 2088–2098 (2005).
    Google Scholar 
    38.Chakraborty, T. & Lee, X. A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine vegetation control on their spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280 (2019).
    Google Scholar 
    39.Wang, K., Sun, J., Cheng, G. & Jiang, H. Effect of altitude and latitude on surface air temperature across the Qinghai-Tibet plateau. J. Mt. Sci. 8, 808–816 (2011).
    Google Scholar 
    40.Kendal, D., Williams, N. S. G. & Williams, K. J. H. A cultivated environment: exploring the global distribution of plants in gardens, parks and streetscapes. Urban Ecosyst. 15, 637–652 (2012).
    Google Scholar 
    41.Almas, A. D. & Conway, T. M. The role of native species in urban forest planning and practice: a case study of Carolinian Canada. Urban For. Urban Green. 17, 54–62 (2016).
    Google Scholar 
    42.Galera, H. & Sudnik-Wócikowska, B. Central European botanic gardens as centres of dispersal of alien plants. Acta Soc. Bot. Pol. 79, 147–156 (2010).
    Google Scholar 
    43.Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).
    Google Scholar 
    44.Smithers, R. J. et al. Comparing the relative abilities of tree species to cool the urban environment. Urban Ecosyst. 21, 851–862 (2018).
    Google Scholar 
    45.Gill, S. E., Handley, J. F., Ennos, A. R. & Pauleit, S. Adapting cities for climate change: The role of the green infrastructure. Built Environ. 33, 115–133 (2007).
    Google Scholar 
    46.Zipper, S. C. et al. Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environ. Res. Lett. 11, 054023 (2016).
    Google Scholar 
    47.Woodall, C. W., Nowak, D. J., Liknes, G. C. & Westfall, J. A. Assessing the potential for urban trees to facilitate forest tree migration in the eastern United States. For. Ecol. Manage. 259, 1447–1454 (2010).
    Google Scholar 
    48.Horta, M. B. et al. Functional connectivity in urban landscapes promoted by Ramphastos toco (Toco Toucan) and its implications for policy making. Urban Ecosyst. 21, 1097–1111 (2018).
    Google Scholar 
    49.Marris, E. Forestry: planting the forest of the future. Nature 459, 906–908 (2009).CAS 

    Google Scholar 
    50.Harvey, B. et al. Climate Change Communication and Social Learning—Review and Strategy Development for CCAFS (CCAFS, 2012)51.Farrell, C., Szota, C. & Arndt, S. K. Urban plantings: ‘Living laboratories’ for climate change response. Trends Plant Sci. 20, 597–599 (2015).CAS 

    Google Scholar 
    52.Millar, C. I. & Stephenson, N. L. Temperate forest health in an era of emerging megadisturbance. Science 349, 823–826 (2015).CAS 

    Google Scholar 
    53.Hodgson, J. A., Thomas, C. D., Dytham, C., Travis, J. M. J. & Cornell, S. J. The speed of range shifts in fragmented landscapes. PLoS ONE 7, e47141 (2012).CAS 

    Google Scholar 
    54.Han, Q. & Keeffe, G. Mapping the flow of forest migration through the city under climate change. Urban Plan. 4, 139–151 (2019).
    Google Scholar 
    55.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar  More