More stories

  • in

    Offspring survival changes over generations of captive breeding

    1.McGowan, P. J. K., Traylor-Holzer, K. & Leus, K. IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conserv. Lett. 10, 361–366 (2017).Article 

    Google Scholar 
    2.Conde, D. A., Flesness, N., Colchero, F., Jones, O. R. & Scheuerlein, A. An emerging role of zoos to conserve biodiversity. Science 331, 1390–1391 (2011).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lacy, R. C. Conservation Genetics in the Age of Genomics (eds Amato, G., DeSalle, R., Ryder, O. A. & Rosenbaum, H. C.) (Columbia Univ. Press, 2009).4.Frankham, R. Genetic adaptation to captivity in species conservation programs. Mol. Ecol. 17, 325–333 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Jule, K. R., Leaver, L. A. & Lea, S. E. G. The effects of captive experience on reintroduction survival in carnivores: a review and analysis. Biol. Conserv. 141, 355–363 (2008).Article 

    Google Scholar 
    6.Araki, H., Cooper, B. & Blouin, M. S. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318, 100–103 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Lacy, R. C., Alaks, G. & Walsh, A. Evolution of Peromyscus leucopus mice in response to a captive environment. PLOS One 8, e72452 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Milot, E., Perrier, C., Papillon, L., Dodson, J. J. & Bernatchez, L. Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol. Appl. 6, 472–485 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Frankham, R. Where are we in conservation genetics and where do we need to go? Conserv. Genet. 11, 661–663 (2010).Article 

    Google Scholar 
    10.Williams, S. E. & Hoffman, E. A. Minimizing genetic adaptation in captive breeding programs: a review. Biol. Conserv. 142, 2388–2400 (2009).Article 

    Google Scholar 
    11.Christie, M. R., Marine, M. L., Fox, S. E., French, R. A. & Blouin, M. S. A single generation of domestication heritably alters the expression of hundreds of genes. Nat. Commun. 7, 10676 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Farquharson, K. A., Hogg, C. J. & Grueber, C. E. A meta-analysis of birth-origin effects on reproduction in diverse captive environments. Nat. Commun. 9, 1055 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    13.Christie, M. R., Marine, M. L., French, R. A. & Blouin, M. S. Genetic adaptation to captivity can occur in a single generation. Proc. Natl Acad. Sci. USA 109, 238–242 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Matos, M. Maternal effects can inflate rate of adaptation to captivity. Proc. Natl Acad. Sci. USA 109, e2380 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Grueber, C. E., Laws, R. J., Nakagawa, S. & Jamieson, I. G. Inbreeding depression accumulation across life-history stages of the endangered takahe. Conserv. Biol. 24, 1617–1625 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Harrisson, K. A. et al. Lifetime fitness costs of inbreeding and being inbred in a critically endangered bird. Curr. Biol. 29, 2711–2717 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Boakes, E. H., Wang, J. & Amos, W. An investigation of inbreeding depression and purging in captive pedigreed populations. Heredity 98, 172–182 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Kennedy, E. S., Grueber, C. E., Duncan, R. P. & Jamieson, I. G. Severe inbreeding depression and no evidence of purging in an extremely inbred wild species – the Chatham Island black robin. Evolution 68, 987–995 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Frankham, R., Ballou J. D., Briscoe D. A. Introduction to Conservation Genetics 2nd edn, (Cambridge Univ. Press, 2010).20.Hedrick, P. W. & Kalinowski, S. T. Inbreeding depression in conservation biology. Annu. Rev. Ecol. Syst. 31, 139–162 (2000).Article 

    Google Scholar 
    21.Fa, J. E., Gusset, M., Flesness, N. & Conde, D. A. Zoos have yet to unveil their full conservation potential. Anim. Conserv. 17, 97–100 (2014).Article 

    Google Scholar 
    22.Martin, T. E., Lurbiecki, H., Joy, J. B. & Mooers, A. O. Mammal and bird species held in zoos are less endemic and less threatened than their close relatives not held in zoos. Anim. Conserv. 17, 89–96 (2014).Article 

    Google Scholar 
    23.Fisher, D. O. & Owens, I. P. F. The comparative method in conservation biology. Trends Ecol. Evol. 19, 391–398 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    24.Conde, D. A. et al. Data gaps and opportunities for comparative and conservation biology. Proc. Natl Acad. Sci. USA 116, 9658–9664 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Species 360. Zoological Information Management System (ZIMS) http://zims.species360.org (2018).26.Charlesworth, D. & Willis, J. H. The genetics of inbreeding depression. Nat. Rev. Genet. 10, 783–796 (2009).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Packer, C., Tatar, M. & Collins, A. Reproductive cessation in female mammals. Nature 392, 807–811 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Farquharson, K. A., Hogg, C. J. & Grueber, C. E. Pedigree analysis reveals a generational decline in reproductive success of captive Tasmanian devil (Sarcophilus harrisii): implications for captive management of threatened species. J. Hered. 108, 488–495 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Hammerly, S. C., de la Cerda, D. A., Bailey, H. & Johnson, J. A. A pedigree gone bad: increased offspring survival after using DNA-based relatedness to minimize inbreeding in a captive population. Anim. Conserv. 19, 296–303 (2016).Article 

    Google Scholar 
    30.Woodworth, L. M., Montgomery, M. E., Briscoe, D. A. & Frankham, R. Rapid genetic deterioration in captive populations: causes and conservation implications. Conserv. Genet. 3, 277–288 (2002).CAS 
    Article 

    Google Scholar 
    31.Fraser, D. J. et al. Population correlates of rapid captive-induced maladaptation in a wild fish. Evol. Appl. 12, 1305–1317 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Frankham, R. & Loebel, D. A. Modeling problems in conservation genetics using captive Drosophila populations: rapid genetic adaptation to captivity. Zoo. Biol. 11, 333–342 (1992).Article 

    Google Scholar 
    33.Lacy, R. C. Loss of genetic diversity from managed populations: interacting effects of drift, mutation, immigration, selection, and population subdivision. Conserv. Biol. 1, 143–158 (1987).Article 

    Google Scholar 
    34.Mason, G. et al. Plastic animals in cages: behavioural flexibility and responses to captivity. Anim. Behav. 85, 1113–1126 (2013).Article 

    Google Scholar 
    35.Courtney Jones, S. K. & Byrne, P. G. What role does heritability play in transgenerational phenotypic responses to captivity? Implications for managing captive populations. Zoo. Biol. 36, 397–406 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kokko, H. & Jennions, M. D. The Evolution of Parental Care (eds Royle, N. J., Smiseth, P. T. & Kölliker, M.) (Oxford Univ. Press, 2012).37.Grueber, C. E., Hogg, C. J., Ivy, J. A. & Belov, K. Impacts of early viability selection on management of inbreeding and genetic diversity in conservation. Mol. Ecol. 24, 1645–1653 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Wells, J. C. Commentary: paternal and maternal influences on offspring phenotype: the same, only different. Int J. Epidemiol. 43, 772–774 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Calkins, E. S., Fuller, T. K., Asa, C. S., Sievert, P. R. & Coonan, T. J. Factors influencing reproductive success and litter size in captive island foxes. J. Wildl. Manag. 77, 346–351 (2013).Article 

    Google Scholar 
    40.Hogg, C. J. et al. Influence of genetic provenance and birth origin on productivity of the Tasmanian devil insurance population. Conserv. Genet. 16, 1465–1473 (2015).Article 

    Google Scholar 
    41.O’Grady, J. J. et al. Realistic levels of inbreeding depression strongly affect extinction risk in wild populations. Biol. Conserv. 133, 42–51 (2006).Article 

    Google Scholar 
    42.Hoeck, P. E. A., Wolak, M. E., Switzer, R. A., Kuehler, C. M. & Lieberman, A. A. Effects of inbreeding and parental incubation on captive breeding success in Hawaiian crows. Biol. Conserv. 184, 357–364 (2015).Article 

    Google Scholar 
    43.Menotti-Raymond, M. & O’Brien, S. J. Dating the genetic bottleneck of the African cheetah. Proc. Natl Acad. Sci. USA 90, 3172–3176 (1993).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Brüniche-Olsen, A., Jones, M. E., Austin, J. J., Burridge, C. P. & Holland, B. R. Extensive population decline in the Tasmanian devil predates European settlement and devil facial tumour disease. Biol. Lett. 10, 20140619 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Hedrick, P. W. & Fredrickson, R. J. Captive breeding and the reintroduction of Mexican and red wolves. Mol. Ecol. 17, 344–350 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.Hogg, C. J. et al. Founder relationships and conservation management: empirical kinships reveal the effect on breeding programmes when founders are assumed to be unrelated. Anim. Conserv. 22, 348–361 (2019).Article 

    Google Scholar 
    47.Ivy, J. A. & Lacy, R. C. A comparison of strategies for selecting breeding pairs to maximize genetic diversity retention in managed populations. J. Hered. 103, 186–196 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Norman, A. J., Putnam, A. S. & Ivy, J. A. Use of molecular data in zoo and aquarium collection management: benefits, challenges, and best practices. Zoo. Biol. 38, 106–118 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Leberg, P. L. & Firmin, B. D. Role of inbreeding depression and purging in captive breeding and restoration programmes. Mol. Ecol. 17, 334–343 (2008).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Tennenhouse, E. M., Weladji, R. B., Holand, Ø. & Nieminen, M. Timing of reproductive effort differs between young and old dominant male reindeer. Ann. Zool. Fenn. 49, 152–160 (2012). 159.Article 

    Google Scholar 
    51.L’Italien, L. et al. Mating group size and stability in reindeer Rangifer tarandus: the effects of male characteristics, sex ratio and male age structure. Ethology 118, 783–792 (2012).Article 

    Google Scholar 
    52.Imlay, T. L., Steiner, J. C. & Bird, D. M. Age and experience affect the reproductive success of captive Loggerhead Shrike (Lanius ludovicianus) subspecies. Can. J. Zool. 95, 547–554 (2017).Article 

    Google Scholar 
    53.Henry, M. D., Hankerson, S. J., Siani, J. M., French, J. A. & Dietz, J. M. High rates of pregnancy loss by subordinates leads to high reproductive skew in wild golden lion tamarins (Leontopithecus rosalia). Horm. Behav. 63, 675–683 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Descamps, S., Boutin, S., Berteaux, D. & Gaillard, J.-M. Age-specific variation in survival, reproductive success and offspring quality in red squirrels: evidence of senescence. Oikos 117, 1406–1416 (2008).Article 

    Google Scholar 
    55.Ruiz-López, M. J., Espeso, G., Evenson, D. P., Roldan, E. R. S. & Gomendio, M. Paternal levels of DNA damage in spermatozoa and maternal parity influence offspring mortality in an endangered ungulate. Proc. R. Soc. B 277, 2541–2546 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Kellermann, V., Hoffmann, A. A., Overgaard, J., Loeschcke, V. & Sgrò, C. M. Plasticity for desiccation tolerance across Drosophila species is affected by phylogeny and climate in complex ways. Proc. R. Soc. B 285, 20180048 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Mellor, E., McDonald Kinkaid, H. & Mason, G. Phylogenetic comparative methods: harnessing the power of species diversity to investigate welfare issues in captive wild animals. Zoo. Biol. 37, 369–388 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Araki, H., Cooper, B. & Blouin, M. S. Carry-over effect of captive breeding reduces reproductive fitness of wild-born descendants in the wild. Biol. Lett. 5, 621–624 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    60.Christie, M. R., Ford, M. J. & Blouin, M. S. On the reproductive success of early-generation hatchery fish in the wild. Evol. Appl. 7, 883–896 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.González, A., Quevedo, M. Á. & Cuadrado, M. Comparison of reproductive success between parent-reared and hand-reared northern bald ibis Geronticus eremita in captivity during Proyecto Eremita. J. Zoo. Aquar. Res. 8, 246–252 (2020).
    Google Scholar 
    62.Lacy, R. C., Ballou, J. D. & Pollak, J. P. PMx: software package for demographic and genetic analysis and management of pedigreed populations. Methods Ecol. Evol. 3, 433–437 (2012).Article 

    Google Scholar 
    63.Ballou, J. D., Lacy R. C., Pollak J. P. PMx: software for demographic and genetic analysis and mangement of pedigreed populations. Chicago Zoological Society (2010).64.Ballou, J. Genetics and Conservation: a Reference for Managing Wild Animal and Plant Populations (eds Schonewald-Cox, C. M., Chambers, S. M., MacBryde, B., Thomas, W. L.) (The Benjamin/Cummings Publishing Company Inc., 1983).65.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing https://www.R-project.org/ (2018).66.Tacutu, R. et al. Human ageing genomic resources: new and updated databases. Nucleic Acids Res. 46, D1083–D1090 (2017).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    67.Eager, C. D. standardize: tools for standardizing variables for regression in R. https://CRAN.R-project.org/package=standardize (2017).68.Michonneau, F., Brown, J. W. & Winter, D. J. rotl: an R package to interact with the Open Tree of Life data. Methods Ecol. Evol. 7, 1476–1481 (2016).Article 

    Google Scholar 
    69.Hinchliff, C. E. et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc. Natl Acad. Sci. USA 112, 12764–12769 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 48 (2015).Article 

    Google Scholar 
    71.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. https://CRAN.R-project.org/package=DHARMa (2019).72.Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    73.Grueber, C. E., Nakagawa, S., Laws, R. J. & Jamieson, I. G. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Barton, K. MuMIn: multi-model inference. R package https://CRAN.R-project.org/package=MuMIn (2018).75.IUCN. The IUCN Red List of Threatened Species. Version 2020-2 https://www.iucnredlist.org (2020).76.Wright, S. Evolution in Mendelian populations. Genetics 16, 97–159 (1931).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Differential microbial assemblages associated with shikonin-producing Borage species in two distinct soil types

    Metabolic profiling of EP and LE root exudates and root periderm samplesHigh performance liquid chromatography (HPLC) analysis of root exudates and root periderm reported the presence of five bioactive NQs. The identified NQs included shikonin (SK), acetylshikonin (AS); isobutyrylshikonin (IBS); β, β-dimethylacrylshikonin (DMAS); and isovalerylshikonin (IVS) (Fig. 1a–d). This suggests that SK and its derivatives accumulate in the rhizosphere of both EP and LE via root exudation. Though all the five NQs were found to be exuded in the rhizosphere however they varied quantitatively among EP and LE species. LE samples had higher SK and its derivatives production compared to EP (Figs. S5–S6). Our results also displayed quantitative variations in SK and its derivatives production among two soil types (Table 1a,b). However, regardless of variation, SK, AS, DMAS, and IVS were consistently present among all the samples.Figure 1Images and chromatograms representing qualitative and quantitative variation of SK and its derivatives production in root periderm extracts. Chromatograms of root extracts of E. plantagenium (EP) and L.erythrorhizon (LE) specimens grown in Peat potting artificial soil (a) EP.PP, (c) LE.PP; and Natural campus soil (b) EP.NC, (d) LE.NC. Resulting peaks correspond to shikonin (SK), acetylshikonin (AS); isobutylshikonin (IBS); β, β-dimethylacrylshikonin (DMAS); and isovalerylshikonin (IVS). Chromatogram for each sample represents a composite sample of 3–4 individual plants. Figure represents only one replicate for each sample while the rest of the two replicates for each sample with standard chromatogram are provided in Fig. S5.Full size imageTable 1 Quantitative analysis of shikonin and its derivatives via HPLC in (a) root periderm; (b) root exudates samples of E. plantagineum (EP) and L.erythrorhizon (LE).Full size tablePacBio sequence reads statistics and taxonomic profilingAfter quality filtering, removal of chimera, chloroplast and mitochondrial sequences, approximately 165,570 high quality sequences (Tags) were obtained. Tags were clustered into 14,429 microbial operational taxonomic units (OTUs) at a 97% sequence similarity cutoff level (Table S2). All OTUs with species annotation are summarized in Table S3. Taxonomic profiling for taxonomic affiliations revealed Proteobacteria, Bacteroidetes, Planctomycetes, Cyanobacteria, Acidobacteria, and Actinobacteria to be the dominant phyla among all the samples (Fig. S7). These 6 phyla accounted for 70.97–96.61% of the total microbial OTUs. The Proteobacterial microbes mainly belonged to Classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria that accounted for 13.94–40.54% of the total microbes (Table S4).Host plant genetics are the drivers for distinct microbiomeTo identify the effects of host plant genetics on microbial acquisition, microbial community composition of bulk soil was compared with root and rhizospher soils of EP and LE. α-diversity estimates revealed a significantly higher observed species richness (Sobs), and shannon diversity for bulk soil (Fig. 3a,b; Table S5). This indicates that bulk soil serves as a reservoir for microbial acquisition in other rhizo-compartments. At different taxonomic levels, microbes associated with Proteobacteria, Planctomycetes, Bacteroidetes and Cyanobacteria were all present in relatively higher abundance in EP and LE rhizo-compartments compared to bulk soil in two different soil types (Fig. 2a; Table S6). Wilcox test also displayed quantitative variation in microbial acquisition at order level. For example, compared to bulk soil, Flavobacteriales, Sphingomonadales, and Verrucomicrobiales had a relatively higher abundance in EP rhizosphere, while Caulobacterales, and Sphingomonadales were significantly higher in LE rhizosphere (Fig. S8, P  More

  • in

    Niche specificity and functional diversity of the bacterial communities associated with Ginkgo biloba and Panax quinquefolius

    1.Hardoim, P. R. et al. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79, 293–320 (2015).Article 

    Google Scholar 
    2.Zhang, H. W., Song, Y. C. & Tan, R. X. Biology and chemistry of endophytes. Nat. Prod. Rep. 23, 753–771 (2006).CAS 
    Article 

    Google Scholar 
    3.Köberl, M., Schmidt, R., Ramadan, E. M., Bauer, R. & Berg, G. The microbiome of medicinal plants: Diversity and importance for plant growth, quality and health. Front. Microbiol. 4, 400 (2013).Article 

    Google Scholar 
    4.Soto, M. J., Domínguez-Ferreras, A., Pérez-Mendoza, D., Sanjuán, J. & Olivares, J. Mutualism versus pathogenesis: The give-and-take in plant–bacteria interactions. Cell. Microbiol. 11, 381–388 (2009).CAS 
    Article 

    Google Scholar 
    5.Leff, J. W., Del Tredici, P., Friedman, W. E. & Fierer, N. Spatial structuring of bacterial communities within individual Ginkgo biloba trees. Environ. Microbiol. 17, 2352–2361. https://doi.org/10.1111/1462-2920.12695 (2015).Article 
    PubMed 

    Google Scholar 
    6.Berg, G., Rybakova, D., Grube, M. & Köberl, M. The plant microbiome explored: Implications for experimental botany. J. Exp. Bot. 67, 995–1002. https://doi.org/10.1093/jxb/erv466 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    7.Cregger, M. A. et al. The Populus holobiont: Dissecting the effects of plant niches and genotype on the microbiome. Microbiome 6, 31. https://doi.org/10.1186/s40168-018-0413-8 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    8.Wang, Y., Liu, Y., Wu, Q., Yao, X. & Cheng, Z. Rapid and sensitive determination of major active ingredients and toxic components in Ginkgo biloba leaves extract (EGb 761) by a validated UPLC–MS-MS method. J. Chromatogr. Sci. 55, 459–464. https://doi.org/10.1093/chromsci/bmw206 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    9.Mesquita, T. R. R. et al. Cardioprotective action of Ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front. Pharmacol. 8, 220. https://doi.org/10.3389/fphar.2017.00220 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Woelk, H., Arnoldt, K. H., Kieser, M. & Hoerr, R. Ginkgo biloba special extract EGb 761® in generalized anxiety disorder and adjustment disorder with anxious mood: A randomized, double-blind, placebo-controlled trial. J. Psychiatr. Res. 41, 472–480. https://doi.org/10.1016/j.jpsychires.2006.05.004 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    11.Rojas, P., Montes, P., Rojas, C., Serrano-Garcia, N. & Rojas-Castaneda, J. C. Effect of a phytopharmaceutical medicine, Ginko biloba extract 761, in an animal model of Parkinson’s disease: Therapeutic perspectives. Nutrition 28, 1081–1088. https://doi.org/10.1016/j.nut.2012.03.007 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    12.Tan, M.-S. et al. Efficacy and adverse effects of Ginkgo biloba for cognitive impairment and dementia: A systematic review and meta-analysis. J. Alzheimer’s Dis. 43, 589–603 (2015).CAS 
    Article 

    Google Scholar 
    13.Kennedy, D. O., Jackson, P. A., Haskell, C. F. & Scholey, A. B. Modulation of cognitive performance following single doses of 120 mg Ginkgo biloba extract administered to healthy young volunteers. Hum. Psychopharm. Clin. 22, 559–566. https://doi.org/10.1002/hup.885 (2007).Article 

    Google Scholar 
    14.Yao, Z.-X., Han, Z., Drieu, K. & Papadopoulos, V. Ginkgo biloba extract (Egb 761) inhibits β-amyloid production by lowering free cholesterol levels. J. Nutr. Biochem. 15, 749–756. https://doi.org/10.1016/j.jnutbio.2004.06.008 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    15.Chen, D., Sun, S., Cai, D. & Kong, G. Induction of mitochondrial-dependent apoptosis in T24 cells by a selenium (Se)-containing polysaccharide from Ginkgo biloba L. leaves. Int. J. Biol. Macromol. 101, 126–130 (2017).CAS 
    Article 

    Google Scholar 
    16.Hamdoun, S. & Efferth, T. Ginkgolic acids inhibit migration in breast cancer cells by inhibition of NEMO sumoylation and NF-κB activity. Oncotarget 8, 35103 (2017).Article 

    Google Scholar 
    17.Fei, R. et al. Purified polysaccharide from Ginkgo biloba leaves inhibits P-selectin-mediated leucocyte adhesion and inflammation. Acta Pharmacol. Sin. 29, 499–506 (2008).CAS 
    Article 

    Google Scholar 
    18.Mahadevan, S. & Park, Y. Multifaceted therapeutic benefits of Ginkgo biloba L.: Chemistry, efficacy, safety, and uses. J. Food Sci. 73, R14–R19 (2008).CAS 
    Article 

    Google Scholar 
    19.Zimmermann, M., Colciaghi, F., Cattabeni, F. & Di Luca, M. Ginkgo biloba extract: From molecular mechanisms to the treatment of Alzheimer’s disease. Cell. Mol. Biol. 48, 613–623 (2002).CAS 
    PubMed 

    Google Scholar 
    20.van Beek, T. A. & Montoro, P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals. J. Chromatogr. A 1216, 2002–2032 (2009).Article 

    Google Scholar 
    21.Lu, X. et al. Combining metabolic profiling and gene expression analysis to reveal the biosynthesis site and transport of ginkgolides in Ginkgo biloba L.. Front. Plant Sci. 8, 872. https://doi.org/10.3389/fpls.2017.00872 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    22.Mancuso, C. & Santangelo, R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem. Toxicol. 107, 362–372 (2017).CAS 
    Article 

    Google Scholar 
    23.Karmazyn, M., Moey, M. & Gan, X. T. Therapeutic potential of Ginseng in the management of cardiovascular disorders. Drugs 71, 1989–2008. https://doi.org/10.2165/11594300-000000000-00000 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Predy, G. N. et al. Efficacy of an extract of North American ginseng containing poly-furanosyl-pyranosyl-saccharides for preventing upper respiratory tract infections: A randomized controlled trial. Can. Med. Assoc. J. 173, 1043–1048. https://doi.org/10.1503/cmaj.1041470 (2005).Article 

    Google Scholar 
    25.Yuan, C.-S., Wang, C.-Z., Wicks, S. M. & Qi, L.-W. Chemical and pharmacological studies of saponins with a focus on American ginseng. J. Ginseng Res. 34, 160 (2010).CAS 
    Article 

    Google Scholar 
    26.Yang, W.-Z., Hu, Y., Wu, W.-Y., Ye, M. & Guo, D.-A. Saponins in the genus Panax L. (Araliaceae): A systematic review of their chemical diversity. Phytochemistry 106, 7–24. https://doi.org/10.1016/j.phytochem.2014.07.012 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    27.Solieri, L., Dakal, T. C. & Giudici, P. Next-generation sequencing and its potential impact on food microbial genomics. Ann. Microbiol. 63, 21–37 (2013).CAS 
    Article 

    Google Scholar 
    28.Ercolini, D. High-throughput sequencing and metagenomics: Moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79, 3148–3155 (2013).CAS 
    Article 

    Google Scholar 
    29.Metzker, M. L. Sequencing technologies—the next generation. Nat. Rev. Genet. 11, 31 (2010).CAS 
    Article 

    Google Scholar 
    30.Riesenfeld, C. S., Schloss, P. D. & Handelsman, J. Metagenomics: Genomic analysis of microbial communities. Annu. Rev. Genet. 38, 525–552 (2004).CAS 
    Article 

    Google Scholar 
    31.Robinson, R. J. et al. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405, 381–396. https://doi.org/10.1007/s11104-015-2495-4 (2016).CAS 
    Article 

    Google Scholar 
    32.Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol 10, 828–840. https://doi.org/10.1038/nrmicro2910 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Dasgupta, M. G. et al. Diversity of bacterial endophyte in Eucalyptus clones and their implications in water stress tolerance. Microbiol. Res. 241, 126579. https://doi.org/10.1016/j.micres.2020.126579 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    34.Knief, C. et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J. 6, 1378–1390. https://doi.org/10.1038/ismej.2011.192 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    35.Idris, R., Trifonova, R., Puschenreiter, M., Wenzel, W. W. & Sessitsch, A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70, 2667–2677. https://doi.org/10.1128/aem.70.5.2667-2677.2004 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    36.Rastogi, G. et al. Leaf microbiota in an agroecosystem: Spatiotemporal variation in bacterial community composition on field-grown lettuce. Isme J. 6, 1812–1822. https://doi.org/10.1038/ismej.2012.32 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95. https://doi.org/10.1038/nature11336 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    38.Kielak, A. M., Cipriano, M. A. P. & Kuramae, E. E. Acidobacteria strains from subdivision 1 act as plant growth-promoting bacteria. Arch. Microbiol. 198, 987–993. https://doi.org/10.1007/s00203-016-1260-2 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Fuerst, J. A. & Sagulenko, E. Beyond the bacterium: Planctomycetes challenge our concepts of microbial structure and function. Nat. Rev. Microbiol 9, 403–413. https://doi.org/10.1038/nrmicro2578 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    40.Wiegand, S., Jogler, M. & Jogler, C. On the maverick planctomycetes. FEMS Microbiol. Rev. 42, 739–760. https://doi.org/10.1093/femsre/fuy029 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    41.Kim, H. et al. High population of Sphingomonas species on plant surface. J. Appl. Microbiol. 85, 731–736. https://doi.org/10.1111/j.1365-2672.1998.00586.x (1998).Article 

    Google Scholar 
    42.Delmotte, N. et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc. Natl. Acad. Sci. 106, 16428–16433. https://doi.org/10.1073/pnas.0905240106 (2009).ADS 
    Article 
    PubMed 

    Google Scholar 
    43.Kampfer, P., Busse, H. J., McInroy, J. A. & Glaeser, S. P. Sphingomonas zeae sp nov., isolated from the stem of Zea mays. Int. J. Syst. Evol. Microbiol. 65, 2542–2548. https://doi.org/10.1099/ijs.0.000298 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    44.Xie, C.-H. & Yokota, A. Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa. Int. J. Syst. Evol. Microbiol. 56, 889–893. https://doi.org/10.1099/ijs.0.64056-0 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Videira, S. S., De Araujo, J. L. S., Da Silva Rodrigues, L., Baldani, V. L. D. & Baldani, J. I. Occurrence and diversity of nitrogen-fixing Sphingomonas bacteria associated with rice plants grown in Brazil. FEMS Microbiol. Lett. 293, 11–19. https://doi.org/10.1111/j.1574-6968.2008.01475.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    46.Innerebner, G., Knief, C. & Vorholt, J. A. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl. Environ. Microbiol. 77, 3202–3210. https://doi.org/10.1128/aem.00133-11 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    47.Khan, A. L. et al. Bacterial endophyte Sphingomonas sp LK11 produces gibberellins and IAA and promotes tomato plant growth. J. Microbiol. 52, 689–695. https://doi.org/10.1007/s12275-014-4002-7 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Asaf, S., Numan, M., Khan, A. L. & Al-Harrasi, A. Sphingomonas: From diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 40, 138–152. https://doi.org/10.1080/07388551.2019.1709793 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    49.Ali, A. et al. Biotransformation of benzoin by Sphingomonas sp. LK11 and ameliorative effects on growth of Cucumis sativus. Arch. Microbiol. 201, 591–601. https://doi.org/10.1007/s00203-019-01623-1 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    50.Chhetri, G., Kim, J., Kim, I., Kim, H. & Seo, T. Hymenobacter setariae sp. nov., isolated from the ubiquitous weedy grass Setaria viridis. Int. J. Syst. Evol. Microbiol. 70, 3724–3730. https://doi.org/10.1099/ijsem.0.004226 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    51.Dai, Y. et al. Wheat-associated microbiota and their correlation with stripe rust reaction. J. Appl. Microbiol. 128, 544–555. https://doi.org/10.1111/jam.14486 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    52.Buczolits, S. et al. Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp nov. Int. J. Syst. Evol. Microbiol. 52, 445–456. https://doi.org/10.1099/00207713-52-2-445 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    53.Su, S. Y. et al. Hymenobacter kanuolensis sp nov., a novel radiation-resistant bacterium. Int. J. Syst. Evol. Microbiol. 64, 2108–2112. https://doi.org/10.1099/ijs.0.051680-0 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Dimitrijevic, S. et al. Plant growth-promoting bacteria elevate the nutritional and functional properties of black cumin and flaxseed fixed oil. J. Sci. Food Agric. 98, 1584–1590. https://doi.org/10.1002/jsfa.8631 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    55.Yang, R. X., Fan, X. J., Cai, X. Q. & Hu, F. P. The inhibitory mechanisms by mixtures of two endophytic bacterial strains isolated from Ginkgo biloba against pepper phytophthora blight. Biol. Control 85, 59–67. https://doi.org/10.1016/j.biocontrol.2014.09.013 (2015).Article 

    Google Scholar 
    56.Islam, M. N., Choi, J. & Baek, K. H. Control of foodborne pathogenic bacteria by endophytic bacteria isolated from Ginkgo biloba L. Foodborne Pathog. Dis. 16, 661–670. https://doi.org/10.1089/fpd.2018.2496 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    57.Datta, S. et al. Endophytic bacteria in xenobiotic degradation In Microbial endophytes (eds. Kumar, A. & Singh, V. K.) 125–156 (Woodhead Publishing, 2020).58.Newmaster, S. G., Grguric, M., Shanmughanandhan, D., Ramalingam, S. & Ragupathy, S. DNA barcoding detects contamination and substitution in North American herbal products. BMC Med. 11, 222 (2013).Article 

    Google Scholar 
    59.Gao, Z. et al. Derivative technology of DNA barcoding (Nucleotide Signature and SNP Double Peak methods) detects adulterants and substitution in Chinese patent medicines. Sci. Rep. 7, 5858. https://doi.org/10.1038/s41598-017-05892-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Ichim, M. C. & de Boer, H. J. A review of authenticity and authentication of commercial ginseng herbal medicines and food supplements. Front. Pharmacol. https://doi.org/10.3389/fphar.2020.612071 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    61.Dhivya, S. et al. Validated identity test method for Ginkgo biloba NHPs using DNA-based species-specific hydrolysis PCR probe. J. AOAC Int. 102, 1779–1786. https://doi.org/10.5740/jaoacint.18-0319 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    62.Singh, A., Bajpai, V., Srivastava, M., Arya, K. R. & Kumar, B. Rapid screening and distribution of bioactive compounds in different parts of Berberis petiolaris using direct analysis in real time mass spectrometry. J. Pharm. Anal. 5, 332–335 (2015).CAS 
    Article 

    Google Scholar 
    63.Kim, H. K., Choi, Y. H. & Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 5, 536 (2010).CAS 
    Article 

    Google Scholar 
    64.Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    65.Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10, 999–1002 (2013).CAS 
    Article 

    Google Scholar 
    66.Illumina. 16S Metagenomic Sequencing Library Preparation. Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System (Part 15044223 Rev. B). (2013), Accessed 07-2017, available at https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.67.Chong, J., Liu, P., Zhou, G. & Xia, J. Using MicrobiomeAnalyst for comprehensive statistical, functional, and meta-analysis of microbiome data. Nat. Protoc. 15, 799–821. https://doi.org/10.1038/s41596-019-0264-1 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    68.Dhariwal, A. et al. MicrobiomeAnalyst: A web-based tool for comprehensive statistical, visual and meta-analysis of microbiome data. Nucleic Acids Res. 45, W180–W188. https://doi.org/10.1093/nar/gkx295 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    69.Hulsen, T., de Vlieg, J. & Alkema, W. BioVenn—A web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genom. 9, 488. https://doi.org/10.1186/1471-2164-9-488 (2008).CAS 
    Article 

    Google Scholar 
    70.vegan: Community Ecology Package v. 2.5-6 (2019), available at https://cran.r-project.org/web/packages/vegan/index.html71.Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Phosphorus stress induces the synthesis of novel glycolipids in Pseudomonas aeruginosa that confer protection against a last-resort antibiotic

    P. aeruginosa produces novel glycolipids in response to Pi stressTo determine changes in the membrane lipidome in response to P-stress, the model P. aeruginosa strain PAO1 was grown in minimal medium under high (1 mM) or low Pi (50 µM) conditions (Fig. 1a). The latter condition elicited strong alkaline phosphatase activity, measured through the liberation of para-nitrophenol (pNP) from pNPP (Fig. 1b), this being a strong indication that cells were P-stressed. Analysis of membrane lipid profiles using high-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) revealed the presence of several new lipids under Pi stress conditions (Fig. 1c). Thus, during Pi-replete growth (1 mM phosphate), the lipidome is dominated by two glycerophospholipids: PG (eluted at 6.8 min) and PE (eluted at 12.2 min). During Pi-stress a lipid species with mass to charge ratio (m/z) of 623 and 649 were also found, with MS fragmentation resulting in a 131 m/z peak, a diagnostic ion for the amino-acid containing ornithine lipid. This is consistent with previous reports of ornithine lipids in the P. aeruginosa membrane in response to Pi stress [29, 30].Fig. 1: Lipidomics analysis uncovers novel glycolipid formation in Pseudomonas aeruginosa strain PAO1 in response to phosphorus limitation.a Growth of strain PAO1 WT in minimal medium A containing 1 mM phosphate (+Pi, blue) or 50 µM phosphate (−Pi, black) over 12 h. Data are the average of three independent replicates. b Liberation of para-nitrophenol (pNP) from para-nitrophenol phosphate (pNPP) through alkaline phosphatase activity, under Pi-replete (1 mM, black) and Pi-deplete (50 µM, yellow) conditions. Error bars represent the standard deviation of three independent replicates. c Representative chromatograms in negative ionisation mode of the P. aeruginosa lipidome when grown under phosphorus stress (−Pi, black) compared to growth under phosphorus sufficient conditions (+Pi, orange). PG phosphatidylglycerol, PE phosphatidylethanolamine, OL ornithine lipids. Lower panel: extracted ion chromatograms of three new glycolipid species in P. aeruginosa which are only produced during Pi-limitation (black, 1 mM; orange, 50 µM). MGDG monoglucosyldiacylglycerol, GADG glucuronic acid-diacylglycerol and UGL unconfirmed glycolipid. d Mass spectrometry fragmentation spectra of three glycolipid species present under Pi stress in P. aeruginosa, at retention times of 7.7 (m/z 774.7), 8.7 (m/z 786.7) and 9.8 (m/z 788.6) minutes, respectively. Each spectrum depicts an intact lipid mass with an ammonium (NH4+) adduct exhibiting neutral loss of a head group, yielding diacylglycerol (DAG) (595 m/z). Further fragmentation yields monoacylglycerols (MAG) with C16:0 or C18:1 fatty acyl chains.Full size imageFurther to ornithine lipids, three unknown lipids eluting at 7.7, 8.7 and 9.8 min, were only present under Pi stress conditions (Fig. 1c). Using several rounds of MS fragmentation (MSn), with a quadrupole ion trap MS, fragmentation patterns characteristic of glycolipids were found for all three peaks. For each peak of interest, the most predominant lipid masses of 774.7, 786.8 and 788.6 m/z were analysed by MSn in positive ionisation mode (Fig. 1d). In each case, an initial head group was lost leaving a significant signal of 595.6 m/z, the mass of the glycolipid building block diacylglycerol (DAG). Further fragmentation leads to the loss of either fatty acyl chain from DAG, leaving monoacylglycerols of 313.2 and 339.3 m/z. Two monoacylglycerols with different masses are produced as a result of the original lipid containing 16:0 and 18:1 fatty acids (313.2 and 339.3 m/z monoacylglycerols, respectively). To further elucidate the identity of the peaks, a search for a neutral loss of a polar head group was carried out. Thus, the intact masses of 774.7 and 788.6 m/z in positive ionisation mode leads to the loss of a head group of −179 and −193 m/z, which corresponds to a hexose- and a glucuronate- group, respectively (Fig. 1d), suggesting the occurrence of novel monoglucosyldiacylglycerol (MGDG) and glucuronic acid diacylglycerol (GADG) glycolipids in P. aeruginosa. The third glycolipid peak at 8.7 min remains an unknown lipid with intact mass of 786.8 m/z (hereafter designated as a putative unknown glycolipid, UGL). Together, these data confirm the production of new glycolipids in P. aeruginosa in response to Pi stress.Comparative proteomics uncover the lipid renovation pathway in P. aeruginosa
    To determine the proteomic response of P. aeruginosa to phosphorus limitation, and identify the genes involved in glycolipid formation, strain PAO1 was cultivated under high and low Pi conditions for 8 h and the cellular proteome then analysed. A total of 2844 proteins were detected, 175 of which were found to be differentially regulated by Pi availability (Fig. 2a, Table S1). In line with previous transcriptomic studies of strain PAO1 [18], major phosphorus acquisition mechanisms were highly expressed under Pi stress conditions, e.g. the Pi-specific transporter PstSCAB, the two-component regulator PhoBR (Table S1) [31].Fig. 2: Comparative multi-omic analyses for the identification of the PlcP-Agt pathway responsible for glycolipid formation in Pseudomonas aeruginosa strain PAO1.a Volcano plot depicting differentially expressed proteins when comparing Pi-replete and Pi-deplete conditions. Significantly upregulated proteins when under Pi stress are shown in red (left), and those that are significantly upregulated when Pi is sufficient are in green (right). Significance was accepted when the false discovery rate (FDR) was More

  • in

    Phantom rivers filter birds and bats by acoustic niche

    IACUC approval: all work described below was approved by the Boise State Institutional Animal Care and Use Committee: AC15-021.Site layoutWe selected 20 sites, across five drainages, within the Pioneer Mountains of Idaho—matched for elevation and riparian habitat. We split these 20 sites into 10 noise playback sites, and 10 control sites (Fig. 1A; S1). The control sites ranged from quiet, slow-moving streams to relatively loud whitewater torrents. Noise playback sites, on the other hand, were relatively quiet (not whitewater) sites, where we broadcast loud whitewater river recordings with speaker arrays hung from towers (Fig. S1; S2; S3; S4; see supplementary information for more details on noise file creation, playback equipment, and experimental setup). At five of the noise playback sites we broadcast normal river noise (hereafter referred to as ‘river noise’ sites), and at the other five noise sites we broadcast spectrally-altered river recordings (hereafter referred to as “shifted noise” sites).Our field sites were oriented along the riparian zone, with data collection occurring at three primary locations within each site (Fig. S1): (1) roughly in the middle of the speaker tower systems, (2) at a shorter distance from the middle location (mean: 198.2 ± 54.5 m SD; range: 117.6–384.5 m), and (3) and a longer distance from the middle location (in the opposite direction from the nearer location; mean: 312.7 ± 64.7 m SD; range: 249.1–479.6 m). Thus, sites were approximately 510.9 ± 98.3 m long (range: 374.7–850.6 m), along the riparian corridor. All control sites were, at minimum, 1 km apart along the riparian corridor from any noise site, to maintain acoustic independence (see Fig. 1A; S1).Data collectionBirds
    We conducted three-minute avian point counts between one half hour before sunrise and 6 h after sunrise (roughly 0530–1130 h). During the project, we conducted 1330 point-counts from 28 May to 20 July 2017 and 1639 point-count events occurred from 7 May to 24 July in 2018.
    Caterpillar deploymentWe deployed a total of 720 clay caterpillars throughout the 2018 breeding season. Forty caterpillars were glued to stems and branches of trees between 1 and 2.5 m high at each site (Fig. S8). Twenty caterpillars surrounded the middle point count location at each site (a set of 10 were placed upstream, and another set of 10 were placed downstream starting from the middle ARU location), while the other twenty were at upstream and downstream sampling locations (10 each at upstream and downstream locations). We placed each caterpillar along the riparian corridor, at least 1 m apart from each other30. See Supplementary information for details on caterpillar predation scoring.Bird trait analysisWe performed a trait-based analysis to understand the mechanistic patterns of bird distributions in our study paradigm. Avian vocal frequencies and body mass were collected from Hu and Cardoso 2009, Cardoso 2014, and Francis 201516,31,32. When multiple sources contained data, the values were averaged. There were a few cases where none of those sources contained a vocal frequency or mass measurement for species of interest. Thus, representative songs were downloaded from the Macaulay Library of the Cornell Lab of Ornithology based on recording quality and geographical relevance (MacGillivray’s warbler: ML42249; dusky flycatcher: ML534684; red-naped sapsuckers: ML6956), and analyzed with Avisoft SASLab Pro to obtain a peak frequency measure. Mass measurements for these ‘missing’ birds were taken from the ‘All about birds’ webpage of the Cornell Lab of Ornithology.BatsMeasuring and identifying bat callsWe measured bat activity using Song Meter 3 (hereafter “SM3”) recording units (Wildlife Acoustics Inc., Massachusetts, USA) equipped with a single SMU (Wildlife Acoustics Inc.) ultrasonic microphone. One recording unit was used at each site and we pseudo-randomly rotated the unit between the three point-count locations so that each location was monitored for at least 21 days. We mounted microphones on metal conduit at a height of ~3 m, oriented perpendicular to the ground and facing away from the stream to optimize recording conditions (Fig. S9; S10; see Supplementary information for more information).Robotic insectsWe used a modified version of Lazure and Fenton’s26 apparatus to present bats with a fluttering target (Fig. S12). This consisted of a 3 cm2 piece of masking tape affixed to a metal rod [30.48 cm length × 3.25 mm diameter], which itself was connected to a 12-volt brushed DC motor (AndyMark 9015 12 V, AndyMark Inc., Kokomo, IN, USA). The no-load revolution speed of these motors (267 Hz) falls within the range of wingbeat frequency measured in Chironomidae27,33, a group that is an important food source for many North American bat species34.We attached each motor to a tripod made of PVC piping and positioned the tripod such that the target was approximately 1.2 m above the ground. Each motor was powered by a 12 V battery (35Ah AGM; DURA12-35C, Duracell) which was controlled by a programmable 12 V timer (CN101, FAVOLCANO) to automatically start and stop the motor each night. The rotors were powered for 2 h following sunset.Prey-sound speaker playbackWe created a playlist composed of several insect acoustic cues to present gleaning bats: a beetle (Tenebrio molitor) walking on dried grass, a cricket (Acheta domesticus) walking on leaves, mealworm larvae (Tenebrio molitor) on leaves, fall field cricket (Gryllus pennsylvanicus) calls, and fork-tailed bush katydid (Scudderia furcata) calls. The cricket and katydid calls were sourced from the Macaulay Library (ML527360 and ML107505, respectively).Experimental setup for bat foraging testsMost sites received two rotors (Fig. S12) and two speakers (Fig. S13): one of each at the center of the site, and one of each at approximately 125 m from the center of the site (in opposite directions in order to have tests in a range of acoustic environments), placed roughly 10 m from the edge of the riparian zone. Rotors and speakers at the center locations were separated by at least 50 m. The exception to this setup were the four positive control (loud whitewater river) sites, which only received a single rotor and speaker separated by 50 m because of logistical difficulties of accessing those sites. We paired each rotor and speaker with an SM2BAT + bat detector equipped with an SMX-US microphone (Wildlife Acoustics Inc.)35, using tripods to elevate the microphones approximately 1 m off the ground and ~1 m from the speaker/rotor. We programmed the bat detectors with a gain of 36 dB and a trigger level of 18 dB to limit recordings to bats that were passing within the immediate vicinity. To allow for a comparison of activity between speakers and rotors, bat activity was only considered for the first two hours following sunset.Bat trait analysisWe collected bat foraging behavior and peak echolocation frequency information to use as predictors in a phylogenetically controlled trait analysis (Tables S8; S13). We based our behavioral foraging classifications on the categories of Ratcliffe et al.36 and followed the classifications of Gordon et al.37 where possible, and others38,39,40,41,42,43 where necessary. We extracted peak echolocation frequency from the 2017 and 2018 SM3 field recordings and employed two controls to decrease variability in call parameters potentially introduced via this method. First, we selected only recordings made on control sites in 2017 and 2018 (n = 740,848 calls), as echolocation call characteristics may be affected by local acoustic environments (e.g., Bunkley et al.)22. Secondly, we averaged all call parameters per species per hour at each site to decrease the possible effects of few individuals driving measurements. This resulted in 9538 species-hours of recordings, which themselves were averaged per species (Table S13).Quantifying environmental variablesWe used long-term monitoring of the acoustic environment (via Roland R05 recorders) to calculate daily sound pressure level (L50 dBA) and median frequency (kHz) values for each location (see supplementary information for details on quantification of all predictor variables).Sound pressure level (SPL)We converted 106,769 h of long-term ARU recordings into daily-averaged median sound pressure levels (L50; measured as dBA rel. 20 µPa) see refs. 13,44 using custom software ‘AUDIO2NVSPL’ and ‘Acoustic Monitoring Toolbox’ (Damon Joyce, Natural Sounds and Night Skies Division, National Park Service).Acoustic environment spectrumWe used custom software45 in the programming language R and the package ‘FFmpeg’ in command prompt to convert 106,769 h of long-term recordings into 71,282 individual 3-minute files starting each hour of the day (Fig. S5). Thus 24, 3-min files were created per acoustic recording location per day (one for every hour). We then used the packages “tuneR” and “seewave” to read in and measure the median frequency of sound files, respectively45,46,47. These hourly metrics were then averaged by date to create a daily metric.StatisticsAll models of abundance, activity, and foraging transects were generalized linear mixed effects models (glmm) in R48 using the package ‘lme4’49,50 or ‘glmmTMB’51. All distribution families were selected based on theoretical sampling processes of the data, models were checked for collinearity (VIF scores)52, and model fits were visually checked with residual plots (see supplemental R code)53.Bird abundance and bat activity
    Model predictors and covariates
    Both bird and bat models had the following variables in a glmm: site and bird/bat species were random effects terms and sound pressure level (dBA L50), sound spectrum (median frequency), the interaction between sound pressure level and spectrum, elevation, percent riparian vegetation, ordinal date (and a quadratic version of this), and year as fixed effects. While year is sometimes used as a random-effect term, it is suggested to be used as a fixed effect if fewer than five levels exist for that factor, as variance estimates become imprecise54,55. Additionally, moon phase was a fixed effect in the bat models56, while spectral overlap (the absolute difference between sound spectrum and bird species vocalization frequencies) and the interaction between sound pressure level and spectral overlap were fixed effects in bird models.
    We attempted to fit both sound pressure level and spectrum as having random slopes for each species, yet both bat and bird models would not converge with such complex model structure. Thus, we followed group models with individual species models (see Supplementary information).

    Model family distribution and link function
    For both bird and bat counts, we used a negative binomial distribution with a log link, rather than a Poisson distribution, because data were over-dispersed. We plotted variance-mean relationships and residuals of multiple models to select the appropriate variance structure, and compared these with AIC to select the best-fitting distribution (see R script for further justification of these methods)54.

    Individual species models
    Individual species models were parameterized the same as above (except without the species term). All 12 bat species (see Tables S6; S10) and 26 of the most common birds (see Tables S2; S9) were modeled individually to be able to interpret model parameter estimates, with complex interactions, for each species.
    Clay caterpillar predationWe modeled caterpillar predation with a glmm (binomial family; logit link function), using the number of individual scorers as weights in the model. Like the bird abundance model, we used site as a random effect and sound pressure level (dBA L50), spectral frequency (median), elevation, percent riparian vegetation, ordinal date, and year as fixed effects (Table S4). Additionally, the predicted number of birds at a site were modeled as fixed effects to control for varying amounts of foraging birds on the landscape.Robotic moths and prey-sound speakersRobotic moth and prey-sound speaker models were parameterized exactly the same as the overall bat activity model. That is, the model was fit with a negative binomial family (log link) with site and species as random effects and sound pressure level (dBA L50), sound spectrum (median frequency), the interaction between sound pressure level and spectrum, moon phase, elevation, percent riparian vegetation, ordinal date (and a quadratic version of this), and year as fixed effects. Additionally, the predicted number of bats at a site were modeled as fixed effects to control for varying amounts of foraging bats on the landscape.Trait analysesWe performed trait analyses with phylogenetic generalized least squares (PGLS) to control for relatedness while predicting species responses to noise12. We performed PGLS analyses with the gls function in the R package nlme57, and accounted for error in the response variable with a fixed-variance weighting function of one divided by the square root of the standard error of the response estimate58,59. We accounted for phylogenetic structure by estimating Pagel’s λ60. When λ estimates fell outside of the zero to 1 range, we fixed λ at the nearest boundary. For bird models, we used a pruned consensus tree from a recent class-wide phylogeny61. For bats, we used a pruned mammalian tree62. We used initial global models with all traits as variables that explained the responses to sound pressure level (SPL; birds and bats), spectral overlap with birdsong (birds), background frequency (bats), and the interaction between SPL and each measure of frequency (birds and bats). We then used AIC model selection63 to choose top models in explaining these patterns. Models with dAIC ≤4 are included in Table S3 (birds) and Table S8 (bats), and the top model is interpreted in the main text.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    The pest kill rate of thirteen natural enemies as aggregate evaluation criterion of their biological control potential of Tuta absoluta

    1.Malthus, T. An Essay on the Principle of Population (J. Johnson Publisher, London, 1798).
    Google Scholar 
    2.Nicholson, A. J. The balance of animal populations. J. Anim. Ecol. 2(1), 132–588 (1933).Article 

    Google Scholar 
    3.Andrewartha, H. G. & Birch, L. C. The distribution and abundance of animals (University of Chicago Press, 1954).
    Google Scholar 
    4.Turchin, P. Complex Population Dynamics: A Theoretical/Empirical Synthesis. Monographs in Population Biology Vol. 35 (Princeton University Press, 2003).MATH 

    Google Scholar 
    5.Bellows, T. S. & Hassell, M. P. Theories and mechanisms of natural population regulation. In Handbook of Biological Control (eds Bellows, T. S. & Fisher, T. W.) 17–44 (Academic Press, 1999).
    Google Scholar 
    6.Cock, M. J. W. et al. Do new access and benefit sharing procedures under the convention on biological diversity threaten the future of biological control?. Biocontrol 55, 199–218. https://doi.org/10.1007/s10526-009-9234-9 (2010).Article 

    Google Scholar 
    7.Biondi, A., Guedes, R. N. C., Wan, F. H. & Desneux, N. Ecology, worldwide spread, and management of the invasive South American tomato pinworm, Tuta absoluta: past, present, and future. Annu. Rev. Entomol. 63, 239–258. https://doi.org/10.1146/annurev-ento-031616-034933 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    8.Ferracini, C. et al. Natural enemies of Tuta absoluta in the Mediterranean basin, Europe and South America. Biocontrol Sci. Technol. 29, 578–609. https://doi.org/10.1080/09583157.2019.1572711 (2019).Article 

    Google Scholar 
    9.Guedes, N.C., Picanco M. Tuta absoluta in South America: pest status, management & insecticide resistance. Proceedings of the EPPO/IOBC/FAO/NEPPO Joint International Symposium on Management of Tuta absoluta (tomato borer). Agadir, Marocco, Nov. 16–18, 2011, 15–16 (2011).10.Urbaneja, A., Monton, H. & Mollá, O. Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J. Appl. Entomol. 133, 292–296 (2009).Article 

    Google Scholar 
    11.Parra, J. R. P. & Zucchi, R. A. Trichogramma in Brazil: feasibility of use after 20 years of research. Neotrop. Entomol. 33, 271–281 (2004).Article 

    Google Scholar 
    12.Pérez-Hedo, M. & Urbaneja, A. The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In Advances in Insect Control and Resistance Management (eds Horowitz, A. R. & Ishaaya, I.) 121–138 (Springer, Dordrecht, 2016).
    Google Scholar 
    13.Mollá, O., Biondi, A., Alonso-Valiente, M. & Urbaneja, A. A comparative life history study of two mirid bugs preying on Tuta absoluta and Ephestia kuehniella eggs on tomato crops: implications for biological control. Biocontrol 59, 175–183. https://doi.org/10.1007/s10526-013-9553-8 (2014).Article 

    Google Scholar 
    14.Bajonero, J.G. Tuta absoluta (Meyrick, 1917) (Lepidoptera: Gelechiidae): adequação de uma dieta artificial e avaliação do seu controle biológico com Trichogramma pretiosum Riley em tomateiro. PhD Thesis, Universidade de São Paulo Escola Superior de Agricultura “Luiz de Queiroz”, Piracicaba, Sao Paolo, Brazil, p. 87 (2016).15.Calvo, F. J., Lorente, M. J., Stansly, P. A. & Belda, J. E. Pre-plant release of Nesidiocoris tenuis and supplementary tactics for control of Tuta absoluta and Bemisia tabaci in greenhouse tomato. Entomol. Exp. Appl. 143, 111–119 (2012).Article 

    Google Scholar 
    16.van Lenteren, J. C. et al. Pest kill rate as aggregate evaluation criterion to rank biological control agents: a case study with Neotropical predators of Tuta absoluta on tomato. Bull. Entomol. Res. 109, 812–820. https://doi.org/10.1017/S0007485319000130 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Tommasini, M. G., van Lenteren, J. C. & Burgio, G. Biological traits and predation capacity of four Orius species on two prey species. Bull. Insectol. 57, 79–94 (2004).
    Google Scholar 
    18.van Lenteren, J. C. Ecology: Cool Science, But Does It Help? 44 (Wageningen University, Wageningen, 2010).
    Google Scholar 
    19.Biondi, A., Desneux, N., Amiens-Desneux, E., Siscaro, G. & Zappalà, L. Biology and developmental strategies of the Palaearctic parasitoid Bracon nigricans (Hymenoptera: Braconidae) on the Neotropical moth Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 106, 1638–1647 (2013).Article 

    Google Scholar 
    20.Bin, F., Vinson, S. B. Efficacy assessment in egg parasitoids (Hymenoptera): proposal for a unified terminology. In Trichogramma and other egg Parasitoids (eds. Wajnberg E. & Vinson S.B.). Proceedings 3rd International Symposium, San Antonio, Texas, pp. 175–179 (1990).21.Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64, 259–276. https://doi.org/10.1146/annurev-ento-011118-111753 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    22.Chailleux, A., Droui, A., Bearez, P. & Desneux, N. Survival of a specialist natural enemy experiencing resource competition with an omnivorous predator when sharing the invasive prey Tuta absoluta. Ecol. Evol. 7, 8329–8337 (2017).Article 

    Google Scholar 
    23.Han, P. et al. Bottom-up efects of irrigation, fertilization and plant resistance on Tuta absoluta: implications for Integrated Pest Management. J. Pest Sci. 92, 1359–1370. https://doi.org/10.1007/s10340-018-1066-x (2019).Article 

    Google Scholar 
    24.Calvo, F. J., Bolckmans, K. & Belda, J. E. Release rate for a pre-plant application of Nesidiocoris tenuis for Bemisia tabaci control in tomato. Biocontrol 57, 809–817 (2012).Article 

    Google Scholar 
    25.van Lenteren, J. C., Bueno, V. H. P., Calvo, F. J., Calixto, A. M. & Montes, F. C. Comparative effectiveness and injury to tomato plants of three Neotropical mirid predators of Tuta absoluta (Lepidoptera: Gelechiidae). J. Econ. Entomol. 111, 1080–1086. https://doi.org/10.1093/jee/toy057 (2018).Article 
    PubMed 

    Google Scholar 
    26.Calvo, F. J., Soriano, J. D., Stansly, P. A. & Belda, J. E. Can the parasitoid Necremnus tutae (Hymenoptera: Eulophidae) improve existing biological control of the tomato leafminer Tuta aboluta (Lepidoptera: Gelechiidae). Bull. Entomol. Res. 406, 502–511. https://doi.org/10.1017/S0007485316000183 (2016).CAS 
    Article 

    Google Scholar 
    27.Crisol-Marinez, E. & van der Blom, J. Necremnus tutae (Hymenoptera, Eulophidae) is widespread and efficiently controls Tuta absoluta in tomato greenhouses in SE Spain. IOBC/WPRS Bull. 147, 22–29 (2019).
    Google Scholar 
    28.Castañé, C., van der Blom, J. & Nicot, P. C. Tomatoes. In Integrated Pest And Disease Management In Greenhouse Crops (eds Gullino, M. L. et al.) 487–511 (Springer, Switzerland, 2020). https://doi.org/10.1007/978-3-030-22304-5_17.
    Google Scholar 
    29.Knapp, M., Palevsky, E. & Rapisarda, C. Insect and mite pests. In Integrated Pest and Disease Management in Greenhouse Crops (eds Gullino, M. L. et al.) 101–144 (Springer, Switzerland, 2020). https://doi.org/10.1007/978-3-030-22304-5_17.
    Google Scholar 
    30.van Lenteren, J. C., Alomar, O., Ravensberg, W. J. & Urbaneja, A. Biological control agents for control of pests in greenhouses. In Integrated Pest And Disease Management In Greenhouse Crops (eds Gullino, M. L. et al.) 409–440 (Springer, Switzerland, 2020).
    Google Scholar 
    31.Pratissoli, D. & de Carvalho, J.D. Guia de Campo: Pragas da Cultura do Tomateiro. Alegre, ES: NUDEMAFI, Centro de Ciências Agrárias, UFES, 35pp. (Série Técnica/NUDEMAFI, ISSN 2359-4179; 1) (2015).32.Bodino, N., Ferracini, C. & Tavella, L. Functional response and age-specific foraging behaviour of Necremnus tutae and N. cosmopterix, native natural enemies of the invasive pest Tuta absoluta in Mediterranean area. J. Pest Sci. 92, 1467–1478. https://doi.org/10.1007/s10340-018-1025-6 (2019).Article 

    Google Scholar 
    33.Pérez-Hedo, M., Riahi, C. & Urbaneja, A. Use of zoophytophagous mirid bugs in horticultural crops: current challenges and future perspectives. Pest Manag. Sci. 77, 33–42 (2021).Article 

    Google Scholar 
    34.Wheeler, A. G. Jr. & Krimmel, B. A. Mirid (Hemiptera: Heteroptera) specialists of sticky plants: adaptations, interactions and ecological implications. Annu. Rev. Entomol. 60, 393–414 (2015).CAS 
    Article 

    Google Scholar 
    35.Bueno, V. H. P., Lins, J. C., Silva, D. B. & van Lenteren, J. C. Is predation of Tuta absoluta by three Neotropical mirid predators affected by tomato lines with different densities in glandular trichomes?. Arthropod-Plant Int. 13, 41–48. https://doi.org/10.1007/s11829-018-9658-1 (2019).Article 

    Google Scholar 
    36.Pérez-Hedo, M., Arias-Sanguino, A. M. & Urbaneja, A. Induced tomato plant resistance against Tetranychus urticae triggered by the phytophagy of Nesidiocoris tenuis. Front. Plant Sci. 9, 1419. https://doi.org/10.3389/fpls.2018.01419 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    37.Barra-Bucarei, L., Devotto Moreno, L. & Iglesis, A. F. Biological control in Chile. In Biological Control in Latin America and the Caribbean: Its Rich History and Bright Future (eds van Lenteren, J. C. et al.) 108–123 (CAB International, Wallingford, 2020).
    Google Scholar 
    38.López, S. N., OrozcoMuñoz, A., Andorno, A. V., Cuello, E. M. & Cagnotti, C. L. Predatory capacity of Tupiocoris cucurbitaceus (Hemiptera Miridae) on several pests of tomato. Bull. Insectol. 72, 201–205 (2019).
    Google Scholar 
    39.Fauvel, G., Malausa, J. C. & Kaspar, B. Etude en laboratoire des principales caracteristiques biologiques de Macrolophus caliginosus (Heteroptera: Miridae). Entomophaga 32, 529–543 (1987).Article 

    Google Scholar 
    40.Mollá, O., Montón, H., Vanaclocha, P., Beitia, F. & Urbaneja, A. Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. IOBC/WPRS Bull. 49, 203–208 (2009).
    Google Scholar 
    41.Sánchez, J. A., Lacasa, A., Arnó, J., Castañé, C. & Alomar, O. Life history parameters for Nesidiocoris tenuis (Reuter) (Het., Miridae) under different temperature regimes. J. Appl. Entomol. 133, 125–132. https://doi.org/10.1111/j.1439-0418.2008.01342.x (2009).Article 

    Google Scholar 
    42.Sánchez, J. A., La-Spina, M. & Lacasa, A. Numerical response of Nesidiocoris tenuis (Hemiptera: Miridae) preying on Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops. Eur. J. Entomol. 11, 387–395 (2014).Article 

    Google Scholar 
    43.Arnó, J. et al. Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC/WPRS Bull. 49, 203–208 (2009).
    Google Scholar 
    44.Mahdavi, T. S., Madadi, H. & Biondi, A. Predation and reproduction of the generalist predator Nabis pseudoferus preying on Tuta absoluta. Entomol. Exp. Appl. 168, 732–741. https://doi.org/10.1111/eea.12975 (2020).Article 

    Google Scholar 
    45.Salas Gervassio, N. G., Aquino, D., Vallina, C., Biondi, A. & Luna, M. G. A re-examination of Tuta absoluta parasitoids in South America for optimized biological control. J. Pest Sci. 92, 1343–1357. https://doi.org/10.1007/s10340-018-01078-1 (2019).Article 

    Google Scholar 
    46.Idriss, G. E. A., Mohamed, S. A., Khamis, F., Du Plessis, H. & Ekesi, S. Biology and performance of two indigenous larval parasitoids on Tuta absoluta (Lepidoptera: Gelechiidae) in Sudan. Biocontrol Sci. Technol. 28, 614–628. https://doi.org/10.1080/09583157.2018.1477117 (2018).Article 

    Google Scholar 
    47.Cagnotti, C. L., Riquelme Virgala, M., Botto, E. N. & López, S. N. Dispersion and persistence of Trichogrammatoidea bactrae (Nagaraja) over Tuta absoluta (Meyrick), in tomato greenhouses. Neotrop. Entomol. 47, 553–559. https://doi.org/10.1007/s13744-017-0573-4 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Pratissoli, D. Bioecologia de Trichogramma pretiosum Riley, 1879, nas traças, Scrobipalpuloides absoluta (Meyrick, 1917) e Phthorimaea operculella (Zeller, 1873), em tomateiro. Piracicaba: Doutorado – Escola Superior de Agricultura “Luiz de Queiroz”/USP, p. 153 (1995).49.Pratissoli, D. & Parra, J. R. P. Fertility life table of Trichogramma pretiosum (Hym., Trichogrammatidae) in eggs of Tuta absoluta and Phthorimaea operculella (Lep., Gelechiidae) at different temperatures. J. Appl. Entomol. 124, 339–342 (2000).Article 

    Google Scholar 
    50.Riquelme Virgala, M. B. & Botto, E. N. Estudios biológicos de Trichogrammatoidea bactrae Nagaraja (Hymenoptera: Trichogrammatidae), parasitoide de huevos de Tuta absoluta Meyrick (Lepidoptera: Gelechiidae). Neotrop. Entomol. 36, 612–617 (2010).Article 

    Google Scholar 
    51.Aigbedion-Atalor, P.O, Abuelgasim Mohamed, S., Hill, M.P., Zalucki, M.P., Azrag, A.G.A., Srinivasan, R. & Ekesi, S. Host stage preference and performance of Dolichogenidea gelechiidivoris (Hymenoptera: Braconidae), a candidate for classical biological control of Tuta absoluta in Africa. Biol. Control. Preprint at https://doi.org/https://doi.org/10.1016/j.biocontrol.2020.104215 (2020).52.Guleria, P., Sharma, P. L., Verma, S. C. & Chandel, R. S. Life history traits and host-killing rate of Neochrysocharis formosa on Tuta absoluta. Biocontrol 65, 401–411. https://doi.org/10.1007/s10526-020-10016-z (2020).CAS 
    Article 

    Google Scholar 
    53.Calvo, F. J., Soriano, J. D., Bolckmans, K. & Belda, J. E. Host instar suitability and life-history parameters under different temperature regimes of Necremnus artynes on Tuta absoluta. Biocontrol Sci. Technol. 23, 803–815 (2013).Article 

    Google Scholar 
    54.Nieves, E. L., Pereyra, P. C., Luna, M. G., Medone, P. & Sánchez, N. E. Laboratory population parameters and field impact of the larval endoparasitoid Pseudapanteles dignus (Hymenoptera: Braconidae) on its host Tuta absoluta (Lepidoptera: Gelechiidae) in tomato crops in Argentina. J. Econ. Entomol. 108, 1553–1559 (2015).Article 

    Google Scholar 
    55.Luna, M. G., Wada, V. & Sánchez, N. E. Biology of Dineulophus phtorimaeae (Hymenoptera: Eulophidae), and field interaction with Pseudapanteles dignus (Hymenoptera: Braconidae), larval parasitoids of Tuta absoluta (Lepidoptera: Gelechiidae) in tomato. Ann. Entomol. Soc. Am. 106, 936–942 (2010).Article 

    Google Scholar 
    56.Savino, V., Coviella, C. E. & Luna, M. G. Reproductive biology and functional response of Dineulophus phtorimaeae a natural enemy of the tomato moth Tuta absoluta. J. Insect Sci. 12, 1–14 (2012).Article 

    Google Scholar 
    57.Birch, L. C. The intrinsic rate of natural increase of an insect population. J. Anim. Ecol. 17, 15–26 (1948).Article 

    Google Scholar 
    58.Lotka, A. J. Relation between birth rates and death rates. Science 26, 21–22 (1907).ADS 
    CAS 
    Article 

    Google Scholar 
    59.Lotka, A. J. & Sharpe, F. R. A problem in age distribution. Philos. Mag. 6(21), 339–345 (1911).MATH 

    Google Scholar 
    60.Dalgaard, P. Introductory Statistics With R 2nd edn. (Springer, New York, 2008).Book 

    Google Scholar  More

  • in

    Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin

    1.Ryther, J. H. The Sargasso Sea. Sci. Am. 194, 98–108 (1956).ADS 
    Article 

    Google Scholar 
    2.Littler, D. S. & Littler, M. M. Caribbean Reef Plants (Offshore Graphics, 2000).3.Winge, O. The Sargasso Sea, Its Boundaries and Vegetation In Report of the Danish Oceanographic Expedition, Vol. III, 1908–1910, (Copenhagen: Andr. Fred. Hòst and Sòn) 34 pp. Miscellaneous Paper Number 2. (1923).4.Parr, A. E. Quantitative observations on the pelagic Sargassum vegetation of the western North Atlantic. Bull. Bingham Oceanogr. Collect. 6, 1–94 (1939).
    Google Scholar 
    5.Lapointe, B. E. A comparison of nutrient-limited productivity in Sargassum natans from neritic vs. oceanic waters of the western North Atlantic Ocean. Limnol. Oceanogr. 40, 625–633 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    6.Lapointe, B. E., West, L. E., Sutton, T. T. & Hu, C. Ryther revisited: nutrient excretions by fishes enhance productivity of pelagic Sargassum in the western North Atlantic Ocean. J. Exp. Mar. Biol. Ecol. 458, 46–56 (2014).CAS 
    Article 

    Google Scholar 
    7.Gower, J., Hu, C., Borstad, G. & King, S. Ocean color satellites show extensive lines of floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 44, 3619–3625 (2006).ADS 
    Article 

    Google Scholar 
    8.Williams, A., Feagin, R. & Stafford, A. W. Environmental impacts of beach raking of Sargassum spp. on Galveston Island, TX. Shore Beach 76, 63–69 (2008).
    Google Scholar 
    9.Moritsugu, K. Tampa Bay Times (Times Publishing Company, 1991).10.Turner, R. E. & Rabalais, N. N. Coastal eutrophication near the Mississippi river delta. Nature 368, 619–621 (1994).ADS 
    Article 

    Google Scholar 
    11.Gower, J. F. R. & King, S. A. Distribution of floating Sargassum in the Gulf of Mexico and the Atlantic Ocean mapped using MERIS. Int. J. Remote Sens. 32, 1917–1929 (2011).ADS 
    Article 

    Google Scholar 
    12.Johnson, D. R., Ko, D. S., Franks, J. S., Moreno, P. & Sanchez-Rubio, G. The Sargassum invasion of the Eastern Caribbean and dynamics of the Equatorial North Atlantic. In Proceedings of the 65th Annual Gulf and Caribbean Fisheries Institute Conference pp. 102–103 (2013). http://aquaticcommons.org/21444/1/GCFI_65-17.pdf.13.Gower, J., Young, E. & King, S. Satellite images suggest a new Sargassum source region in 2011. Remote Sens. Lett. 4, 764–773 (2013).Article 

    Google Scholar 
    14.Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269–102269 (2020).Article 

    Google Scholar 
    15.Wang, M. et al. The great Atlantic Sargassum belt. Science 364, 83–87 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Djakouré, S., Araujo, M., Hounsou-Gbo, A., Noriega, C. & Bourlès, B. On the potential causes of the recent Pelagic Sargassum blooms events in the tropical North Atlantic Ocean. Biogeosci. Discuss. https://doi.org/10.5194/bg-2017-346 (2017).17.Oviatt, C. A., Huizenga, K., Rogers, C. S. & Miller, W. J. What nutrient sources support anomalous growth and the recent Sargassum mass stranding on Caribbean beaches? A review. Mar. Pollut. Bull. 145, 517–525 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.McGillicuddy, D. J., Jr, Anderson, L. A., Doney, S. C. & Maltrud, M. E. Eddy‐driven sources and sinks of nutrients in the upper ocean: results from a 0.1 resolution model of the North Atlantic. Global Biogeochem. Cycles 17, 1035 (2003).19.Barkley, A. E. et al. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl Acad. Sci. USA 116, 16216–16221 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Qi, L., Hu, C., Xing, Q. & Shang, S. Long-term trend of Ulva prolifera blooms in the western Yellow Sea. Harmful Algae 58, 35–44 (2016).PubMed 
    Article 

    Google Scholar 
    21.Qi, L., Hu, C., Wang, M., Shang, S. & Wilson, C. Floating algae blooms in the East China Sea. Geophys. Res. Lett. 44, 501–511,509 (2017).Article 
    CAS 

    Google Scholar 
    22.Smetacek, V. & Zingone, A. Green and golden seaweed tides on the rise. Nature 504, 84–88 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    23.Van Tussenbroek, B. I. et al. Severe impacts of brown tides caused by Sargassum spp. on near-shore Caribbean seagrass communities. Mar. Pollut. Bull. 122, 272–281 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    24.Alvarez-Filip, L., Estrada-Saldívar, N., Pérez-Cervantes, E., Molina-Hernández, A. & González-Barrios, F. J. A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ 7, e8069–e8069 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Cabanillas-Terán, N., Hernández-Arana, H. A., Ruiz-Zárate, M.-Á., Vega-Zepeda, A. & Sanchez-Gonzalez, A. Sargassum blooms in the Caribbean alter the trophic structure of the sea urchin Diadema antillarum. PeerJ 7, e7589–e7589 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Maurer, A. S., De Neef, E. & Stapleton, S. Sargassum accumulation may spell trouble for nesting sea turtles. Front. Ecol. Environ. 13, 394–395 (2015).Article 

    Google Scholar 
    27.Webster, R. K. & Linton, T. Development and implementation of Sargassum early advisory system (SEAS). Shore Beach 81, 1–1 (2013).
    Google Scholar 
    28.Resiere, D. et al. Sargassum seaweed on Caribbean islands: an international public health concern. Lancet 392, 2691–2691 (2018).Article 

    Google Scholar 
    29.Glibert, P. et al. The role of in the global proliferation of harmful algal blooms: new perspectives and approaches. Oceanography 18, 196–207 (2005).
    Google Scholar 
    30.Glibert, P. M. Eutrophication, harmful algae and biodiversity — Challenging paradigms in a world of complex nutrient changes. Mar. Pollut. Bull. 124, 591–606 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 6223 https://doi.org/10.1126/science.1259855 (2015).32.Ryther, J. H. The ecology of phytoplankton blooms in Moriches bay and Great South bay, Long Island, New York. Biol. Bull. 106, 198–209 (1954).Article 

    Google Scholar 
    33.Ryther, J. H. & Dunstan, W. M. Nitrogen, Phosphorus, and Eutrophication in the coastal marine environment. Science 171, 1008 LP-1013 (1971).Article 

    Google Scholar 
    34.Howarth, R. W. & Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364–376 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Oelsner, G. P. & Stets, E. G. Recent trends in nutrient and sediment loading to coastal areas of the conterminous U.S.: insights and global context. Sci. Total Environ. 654, 1225–1240 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Lapointe, B. E., Littler, M. M. & Littler, D. S. A comparison of nutrient-limited productivity in macroalgae from a Caribbean barrier reef and from a mangrove ecosystem. Aquat. Bot. 28, 243–255 (1987).Article 

    Google Scholar 
    39.Culliney, J. L. Measurements of reactive phosphorus associated with pelagic Sargassum in the Northwest Sargasso Sea1. Limnol. Oceanogr. 15, 304–305 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    40.Schaffelke, B. Particulate organic matter as an alternative nutrient source for tropical Sargassum species (Fucales, Phaeophyceae). J. Phycol. 35, 1150–1157 (1999).CAS 
    Article 

    Google Scholar 
    41.Vonk, J. A., Middelburg, J. J., Stapel, J. & Bouma, T. J. Dissolved organic nitrogen uptake by seagrasses. Limnol. Oceanogr. 53, 542–548 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    42.Han, T., Qi, Z., Huang, H., Liao, X. & Zhang, W. Nitrogen uptake and growth responses of seedlings of the brown seaweed Sargassum hemiphyllum under controlled culture conditions. J. Appl. Phycol. 30, 507–515 (2018).CAS 
    Article 

    Google Scholar 
    43.Fujita, R., Wheeler, P. & Edwards, R. Assessment of macroalgal nitrogen limitation in a seasonal upwelling region. Mar. Ecol. Prog. Ser. 53, 293–303 (1989).ADS 
    Article 

    Google Scholar 
    44.Prospero, J. M. et al. in Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. H.) (Springer, 1996).45.Howarth, R. W. Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8, 14–20 (2008).CAS 
    Article 

    Google Scholar 
    46.Rockström, J. & Karlberg, L. The quadruple squeeze: defining the safe operating space for freshwater use to achieve a triply green revolution in the Anthropocene. Ambio 39, 257–265 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Hanisak, M. D. & Samuel, M. A. Twelfth International Seaweed Symposium (Springer, 1986).48.Rabalais, N. N. et al. Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuar. Coasts 30, 753–772 (2007).CAS 
    Article 

    Google Scholar 
    49.Tian, H. et al. Long-term trajectory of nitrogen loading and delivery from Mississippi river basin to the Gulf of Mexico. Glob. Biogeochem. Cycles 34, e2019GB006475–e002019GB006475 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Lapointe, B. E., Brewton, R. A., Herren, L. W., Porter, J. W. & Hu, C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe Key, Florida Keys, USA: a 3-decade study. Mar. Biol. 166, 108–108 (2019).Article 
    CAS 

    Google Scholar 
    51.Lapointe, B. E., Barile, P. J. & Littler, M. M. & Littler, D. S. Macroalgal blooms on southeast Florida coral reefs: II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4, 1106–1122 (2005).CAS 
    Article 

    Google Scholar 
    52.Dunn, D. E. Trends in Nutrient Inflows to the Gulf of Mexico from Streams Draining the Conterminous United States, 1972-93. Report No. 96-4113 (Austin, TX, 1996).53.Turner, R. E. & Rabalais, N. N. Changes in Mississippi River water quality this century: implications for coastal food webs. Bioscience 41, 140–147 (1991).Article 

    Google Scholar 
    54.Rabalais, N. N. et al. Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19, 386–407 (1996).CAS 
    Article 

    Google Scholar 
    55.Weber, S. C. et al. Amazon River influence on nitrogen fixation and export production in the western tropical North Atlantic. Limnol. Oceanogr. 62, 618–631 (2017).ADS 
    Article 

    Google Scholar 
    56.Ryther, J. H., Menzel, D. W. & Corwin, N. Influence of Amazon River outflow on ecology of Western Tropical Atlantic. I. Hydrography and nutrient chemistry. J. Mar. Res. 25, 69–69 (1967).
    Google Scholar 
    57.Subramaniam, A. et al. Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean. Proc. Natl Acad. Sci.USA 105, 10460 LP–10410465 (2008).ADS 
    Article 

    Google Scholar 
    58.Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785–eaat8785 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Howarth, R. W. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen Cycling in the North Atlantic Ocean and its Watersheds (ed. Robert, W. Howarth) (Springer, Dordrecht, 1996). https://doi.org/10.1007/978-94-009-1776-7_3.60.Galloway, J. N. et al. Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry (ed. Robert, W. Howarth) 35, 181–226 (Springer, 1996).61.Gower, J. & King, S. Satellite images show the movement of floating Sargassum in the Gulf of Mexico and Atlantic Ocean. Nat. Preced. https://doi.org/10.1038/npre.2008.1894.1 (2008).62.Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).CAS 
    Article 

    Google Scholar 
    63.Zimmerman, R. C. & Kremer, J. N. Episodic nutrient supply to a kelp forest ecosystem in Southern California. J. Mar. Res. 42, 591–604 (1984).Article 

    Google Scholar 
    64.Kain, J. M. The seasons in the subtidal. Br. Phycol. J. 24, 203–215 (1989).Article 

    Google Scholar 
    65.Dorado, S., Rooker, J. R., Wissel, B. & Quigg, A. Isotope baseline shifts in pelagic food webs of the Gulf of Mexico. Mar. Ecol. Prog. Ser. 464, 37–49 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    66.Kendall, C., Elliott, E. M. & Wankel, S. D. Wiley Online Books 375-449 (2007).67.Altieri, K. E., Hastings, M. G., Peters, A. J., Oleynik, S. & Sigman, D. M. Isotopic evidence for a marine ammonium source in rainwater at Bermuda. Glob. Biogeochem. Cycles 28, 1066–1080 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    68.Bateman, A. S. & Kelly, S. D. Fertilizer nitrogen isotope signatures. Isotopes Environ. Health Stud. 43, 237–247 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Knapp, A. N., DiFiore, P. J., Deutsch, C., Sigman, D. M. & Lipschultz, F. Nitrate isotopic composition between Bermuda and Puerto Rico: implications for N2 fixation in the Atlantic Ocean. Global Biogeochem. Cycles 22, GB3014 https://doi.org/10.1029/2007GB003107 (2008).70.Knapp, A. N., Sigman, D. M. & Lipschultz, F. N isotopic composition of dissolved organic nitrogen and nitrate at the Bermuda Atlantic Time-series Study site. Global Biogeochem. Cycles 19, GB1018 https://doi.org/10.1029/2004GB002320 (2005).71.Montoya, J. P. Nitrogen stable isotopes in marine environments. Nitrogen Mar. Environ. 2, 1277–1302 (2008).Article 

    Google Scholar 
    72.Wissel, B. & Fry, B. Sources of particulate organic matter in the Mississippi River, USA. Large Rivers 15 105–118 (2003).73.Zaia Alves, G. H., Hoeinghaus, D. J., Manetta, G. I. & Benedito, E. Dry season limnological conditions and basin geology exhibit complex relationships with δ13C and δ15N of carbon sources in four Neotropical floodplains. PLoS ONE 12, e0174499 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    74.Smith, N. P. Upwelling in Atlantic shelf waters of South Florida. Florida Scientist 45, 125–138 (1982).75.Atkinson, L. P., O’Malley, P. G., Yoder, J. A. & Paffenhöfer, G. A. The effect of summertime shelf break upwelling on nutrient flux in southeastern United States continental shelf waters. J. Mar. Res. 42, 969–993 (1984).Article 

    Google Scholar 
    76.Subramaniam, A., Mahaffey, C., Johns, W. & Mahowald, N. Equatorial upwelling enhances nitrogen fixation in the Atlantic Ocean. Geophys. Res. Lett. 40, 1766–1771 (2013).ADS 
    Article 

    Google Scholar 
    77.Carpenter, E. J. Nitrogen fixation by a blue-green epiphyte on Pelagic Sargassum. Science 178, 1207–1209 (1972).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Phlips, E. J., Willis, M. & Verchick, A. Aspects of nitrogen fixation in Sargassum communities off the coast of Florida. J. Exp. Mar. Biol. Ecol. 102, 99–119 (1986).CAS 
    Article 

    Google Scholar 
    79.Subramaniam, A., Montoya, J. P., Foster, R. A. & Capone, D. G. Nitrogen fixation in the eastern equatorial Atlantic: who and how much? European Geosciences Union General Assembly 11, 10156–10156 (2009).80.Carpenter, E. J. et al. Extensive bloom of a N2-fixing diatom/cyanobacterial association in the tropical Atlantic Ocean. Mar. Ecol. Prog. Ser. 185, 273–283 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    81.Zubkova, M., Boschetti, L., Abatzoglou, J. T. & Giglio, L. Changes in fire activity in Africa from 2002 to 2016 and their potential drivers. Geophys. Res. Lett. 46, 7643–7653 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Baker, A. R., French, M. & Linge, K. L. Trends in aerosol nutrient solubility along a west–east transect of the Saharan dust plume. Geophys. Res. Lett. 33 L07805, https://doi.org/10.1029/2005GL024764 (2006).83.Baker, A. R., Jickells, T. D., Witt, M. & Linge, K. L. Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Mar. Chem. 98, 43–58 (2006).CAS 
    Article 

    Google Scholar 
    84.Shelley, R. U., Morton, P. L. & Landing, W. M. Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects. Deep Sea Res. Part II Top. Stud. Oceanogr. 116, 262–272 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    85.Giglio, L., Schroeder, W. & Justice, C. O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 178, 31–41 (2016).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Giglio, L., Descloitres, J., Justice, C. O. & Kaufman, Y. J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 87, 273–282 (2003).ADS 
    Article 

    Google Scholar 
    87.Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J. & Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmos. Chem. Phys. 6, 957–974 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    88.Roberts, G., Wooster, M. J. & Lagoudakis, E. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 6, 849–866 (2009).ADS 
    Article 

    Google Scholar 
    89.Baker, A. R. & Jickells, T. D. Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Prog. Oceanogr. 158, 41–51 (2017).ADS 
    Article 

    Google Scholar 
    90.Chance, R., Jickells, T. D. & Baker, A. R. Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Mar. Chem. 177, 45–56 (2015).CAS 
    Article 

    Google Scholar 
    91.Myriokefalitakis, S., Nenes, A., Baker, A. R., Mihalopoulos, N. & Kanakidou, M. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study. Biogeosciences 13, 6519–6543 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Kanakidou, M., Myriokefalitakis, S. & Tsigaridis, K. Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients. Environ. Res. Lett. 13, 063004 (2018).93.Rosenzweig, M. L. Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    94.McCann, K. S. et al. Landscape modification and nutrient‐driven instability at a distance. Ecol. Lett. 24, 398–414 (2021).PubMed 
    Article 

    Google Scholar 
    95.Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282, 401–450 (1982).ADS 
    CAS 
    Article 

    Google Scholar 
    96.Fanning, K. A. Nutrient provinces in the sea: concentration ratios, reaction rate ratios, and ideal covariation. J. Geophys. Res. Oceans 97, 5693–5712 (1992).ADS 
    Article 

    Google Scholar 
    97.Ammerman, J. W., Hood, R. R., Case, D. A. & Cotner, J. B. Phosphorus deficiency in the Atlantic: an emerging paradigm in oceanography. Eos, Trans. Am. Geophys. Union 84, 165–170 (2003).ADS 
    Article 

    Google Scholar 
    98.Lomas, M. W., Bonachela, J. A., Levin, S. A. & Martiny, A. C. Impact of ocean phytoplankton diversity on phosphate uptake. Proc. Natl Acad. Sci. USA 111, 17540–17545 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Richey, J. E. et al. (ORNL Distributed Active Archive Center, 2008).100.Cochonneau, G. et al. The environmental observation and research project, ORE HYBAM, and the rivers of the Amazon basin. In Climate Variability and Change—Hydrological Impacts (eds Demuth, S. et al.) vol. 308, 44–50 (2006). More

  • in

    Genome-wide SNPs redefines species boundaries and conservation units in the freshwater mussel genus Cyprogenia of North America

    1.Frankham, R. Challenges and opportunities of genetic approaches to biological conservation. Biol. Conserv. 143, 1919–1927 (2010).Article 

    Google Scholar 
    2.Goldstein, P. Z., Desalle, R., Amato, G. & Vogler, A. P. Conservation genetics at the species boundary. Conserv. Biol. 14, 120–131 (2000).Article 

    Google Scholar 
    3.Isaac, N. J. B., Mallet, J. & Mace, G. M. Taxonomic inflation: Its influence on macroecology and conservation. Trends Ecol. Evol. 19, 464–469 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Lydeard, C. et al. The global decline of nonmarine mollusks. Bioscience 54, 321–330 (2004).Article 

    Google Scholar 
    5.Haag, W. R. & Williams, J. D. Biodiversity on the brink: An assessment of conservation strategies for North American freshwater mussels. Hydrobiologia 735, 45–60 (2014).Article 

    Google Scholar 
    6.Ricciardi, A. & Rasmussen, J. Extinction rates of North American freshwater fauna. Conserv. Biol. 13, 1220–1222 (1999).7.Spooner, D. E. & Vaughn, C. C. Context-dependent effects of freshwater mussels on stream benthic communities. Freshw. Biol. 51, 1016–1024 (2006).CAS 
    Article 

    Google Scholar 
    8.Vaughn, C. C., Spooner, D. E. & Galbraith, H. S. Contex-dependent species identity effects within a functional group of filter-feeding bivalves. Ecology 88, 1654–1662 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Vaughn, C. C., Nichols, S. J. & Spooner, D. E. Community and foodweb ecology of freshwater mussels. J. N. Am. Benthol. Soc. 27, 409–423 (2008).Article 

    Google Scholar 
    10.McMahon, R. F. Ecology and Classification of North American Freshwater Invertebrates (Academic Press, 1991).
    Google Scholar 
    11.Watters, G. T. Unionids, fishes, and the species-area curve. J. Biogeogr. 19, 481–490 (1992).Article 

    Google Scholar 
    12.Haag, W. R. & Warren, M. L. Host fishes and reproductive biology of 6 freshwater mussel species from the Mobile Basin, USA. J. N. Am. Benthol. Soc. 16, 576–585 (1997).Article 

    Google Scholar 
    13.Eckert, N. L. Reproductive biology and host requirement differences among isolated populations of Cyprogenia aberti (Conrad, 1850). MS Thesis, Southwest Missouri State University, Springfield (2003).14.Barnhart, M. C., Haag, W. R. & Roston, W. N. Adaptations to host infection and larval parasitism in Unionoida. J. N. Am. Benthol. Soc. 27, 370–394 (2008).Article 

    Google Scholar 
    15.Rogers, S. O., Watson, B. T. & Neves, R. J. Life history and population biology of the endangered tan riffleshell (Epioblasma florentina walkeri) (Bivalvia: Unionidae). J. N. Am. Benthol. Soc. 20, 582–594 (2001).Article 

    Google Scholar 
    16.Burr, B. M. & Mayden, R. L. Phylogenetics and North American freshwater fishes. In: Systematics, Historical Ecology, and North American Freshwater Fishes. (Stanford University Press, 1992).17.Oesch, R. D. Missouri Naiades: A Guide to the Mussels of Missouri (Missouri Department of Conservation, 1995).
    Google Scholar 
    18.Harris, J. L. et al. Unionoida (Mollusca: Margaritiferidae, Unionidae) in Arkansas, third status review. J. Ark. Acad. Sci. 63, 50–86 (2009).
    Google Scholar 
    19.Obermeyer, B. K. Recovery plan for four freshwater mussels in southeast Kansas: Neosho mucket (Lampsilis rafinesqueana), Ouachita kidneyshell (Ptychobranchus occidentalis), rabbitsfoot (Quadrula cylindrica cylindrica), and western fanshell (Cyprogenia aberti). Kansas Department of Parks and Wildlife (2000).20.Serb, J. M. Discovery of genetically distinct sympatric lineages in the freshwater mussel Cyprogenia aberti (Bivalvia: Unionidae). J. Molluscan Stud. 72, 425–434 (2006).Article 

    Google Scholar 
    21.Grobler, J. P., Jones, J. W., Johnson, N. A., Neves, R. J. & Hallerman, E. M. Homogeneity at nuclear microsatellite loci masks mitochondrial haplotype diversity in the endangered fanshell pearlymussel (Cyprogenia stegaria). J. Hered. 102, 196–206 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.Serb, J. M. & Barnhart, M. C. Congruence and conflict between molecular and reproductive characters when assessing biological diversity in the Western Fanshell Cyprogenia aberti (Bivalvia, Unionidae)1. Ann. Missouri Bot. Gard. 95, 248–261 (2008).Article 

    Google Scholar 
    23.Chong, J. P., Harris, J. L. & Roe, K. J. Incongruence between mtDNA and nuclear data in the freshwater mussel genus Cyprogenia (Bivalvia: Unionidae) and its impact on species delineation. Ecol. Evol. 6, 2439–2452 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Hohenlohe, P. A. et al. Population genomics of parallel adaptation in threespine stickleback using sequenced RAD tags. PLoS Genet. 6, e1000862 (2010).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    25.Leaché, A. D., Fujita, M. K., Minin, V. N. & Bouckaert, R. R. Species delimitation using genome-wide SNP Data. Syst. Biol. 63, 534–542 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Bruneaux, M. et al. Molecular evolutionary and population genomic analysis of the nine-spined stickleback using a modified restriction-site-associated DNA tag approach. Mol. Ecol. 22, 565–582 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Wagner, C. et al. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol. 22, 787–798 (2013).28.Larson, W. A. et al. Genotyping by sequencing resolves shallow population structure to inform conservation of Chinook salmon (Oncorhynchus tshawytscha). Evol. Appl. 7, 355–369 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Lee, S.-R., Jo, Y.-S., Park, C.-H., Friedman, J. M. & Olson, M. S. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States. Mol. Ecol. 27, 636–646 (2017).Article 
    CAS 

    Google Scholar 
    30.Massatti, R., Reznicek, A. A. & Knowles, L. L. Utilizing RADseq data for phylogenetic analysis of challenging taxonomic groups: A case study in carex sect. Racemosae. Am. J. Bot. 103, 337–347 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Razkin, O. et al. Species limits, interspecific hybridization and phylogeny in the cryptic land snail complex Pyramidula: The power of RADseq data. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2016.05.002 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Rubin, B. E. R., Ree, R. H. & Moreau, C. S. Inferring phylogenies from RAD sequence data. PLoS ONE 7, e33394 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Takahashi, T., Nagata, N. & Sota, T. Application of RAD-based phylogenetics to complex relationships among variously related taxa in a species flock. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2014.07.016 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    34.Boucher, F. C., Casazza, G., Szövényi, P. & Conti, E. Sequence capture using RAD probes clarifies phylogenetic relationships and species boundaries in Primula sect. Auricula. Mol. Phylogenet. Evol. https://doi.org/10.1016/j.ympev.2016.08.003 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Combosch, D. J., Lemer, S., Ward, P. D., Landman, N. H. & Giribet, G. Genomic signatures of evolution in Nautilus—An endangered living fossil. Mol. Ecol. 26, 5923–5938 (2017).PubMed 
    Article 

    Google Scholar 
    36.Cruaud, A. et al. Empirical assessment of RAD sequencing for interspecific phylogeny. Mol. Biol. Evol. 31, 1272–1274 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Eaton, D. A. R. & Ree, R. H. Inferring phylogeny and introgression using RADseq data: An example from flowering plants (Pedicularis: Orobanchaceae). Syst. Biol. 62, 689–706 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Emerson, K. J. et al. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. USA 107, 16196–16200 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Herrera, S. & Shank, T. M. RAD sequencing enables unprecedented phylogenetic resolution and objective species delimitation in recalcitrant divergent taxa. Mol. Phylogenet. Evol. 100, 70–79 (2016).PubMed 
    Article 

    Google Scholar 
    40.Hipp, A. L. et al. A framework phylogeny of the American Oak Clade based on sequenced RAD data. PLoS ONE 9, e93975 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Jones, J. C., Fan, S., Franchini, P., Schartl, M. & Meyer, A. The evolutionary history of Xiphophorus fish and their sexually selected sword: A genome-wide approach using restriction site-associated DNA sequencing. Mol. Ecol. 22, 2986–3001 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Funk, W. C. et al. Adaptive divergence despite strong genetic drift: Genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis). Mol. Ecol. 25, 2176–2194 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Taberlet, P. & Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 68, 41–55 (1999).Article 

    Google Scholar 
    44.Palsbøll, P. J., Bérubé, M. & Allendorf, F. W. Identification of management units using population genetic data. Trends Ecol. Evol. 22, 11–16 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Gibbs, J., Jr. Hunter, M. & Sterling, E. Population genetics: Diversity within versus diversity among populations. In: Problem-Solving in Conservation Biology and Wildlife Management: Exercises for Class, Field, and Laboratory 29–35 (Blackwell Publishing Ltd., 2008). https://doi.org/10.1002/9781444319576.ch4.46.Berendzen, P. B., Simons, A. M., Wood, R. M., Dowling, T. E. & Secor, C. L. Recovering cryptic diversity and ancient drainage patterns in eastern North America: Historical biogeography of the Notropis rubellus species group (Teleostei: Cypriniformes). Mol. Phylogenet. Evol. 46, 721–737 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Ray, J. M., Wood, R. M. & Simons, A. M. Phylogeography and post-glacial colonization patterns of the rainbow darter, Etheostoma caeruleum (Teleostei: Percidae). J. Biogeogr. 33, 1550–1558 (2006).Article 

    Google Scholar 
    48.Strange, R. M. & Burr, B. M. Intraspecific phylogeography of North American highland fishes: A test of the pleistocene vicariance hypothesis. Evolution (N. Y.) 51, 885–897 (1997).
    Google Scholar 
    49.Pflieger, W. L. A distributional study of missouri fishes. Univ. Kans. Publ. Mus. Nat. Hist. 20 (1971).50.Thornbury, W. D. Regional geomorphology of the United States. J. Geol. 73, 815–816 (1965).Article 

    Google Scholar 
    51.Mayden, R. Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Syst. Zool. 37, 329–355 (1988).52.Echelle, A. A., Echelle, A. F., Smith, M. H. & Hill, L. G. Analysis of genic continuity in a headwater fish, Etheostoma radiosum (Percidae). Copeia 1975, 197–204 (1975).Article 

    Google Scholar 
    53.Haponski, A. E., Bollin, T. L., Jedlicka, M. A. & Stepien, C. A. Landscape genetic patterns of the rainbow darter Etheostoma caeruleum: A catchment analysis of mitochondrial DNA sequences and nuclear microsatellites. J. Fish Biol. 75, 2244–2268 (2010).Article 
    CAS 

    Google Scholar 
    54.Turner, T. F. & Trexler, J. C. Ecological and historical associations of gene flow in darters (Teleostei: Percidae). Evolution (N. Y.) 52, 1781–1801 (1998).
    Google Scholar 
    55.Turner, T. F., Trexler, J. C., Kuhn, D. N. & Robison, H. W. Life-history variation and comparative phylogeography of darters (Pisces: Percidae) From the North American Central Highlands. Evolution (N. Y.) 50, 2023–2036 (1996).
    Google Scholar 
    56.Cross, F., Mayden, R. & Stewart, J. Fishes in the Western Mississippi Drainage. The Zoogeography of North American Freshwater Fishes (Wiley, 1986).
    Google Scholar 
    57.Barnhart, M. C. Reproduction and Fish Host of the Western Fanshell, Cyprogenia aberti (Conrad 1850) (Kansas Department of Wildlife and Parks, 1997).
    Google Scholar 
    58.Inoue, K., Monroe, E. M., Elderkin, C. L. & Berg, D. J. Phylogeographic and population genetic analyses reveal Pleistocene isolation followed by high gene flow in a wide ranging, but endangered, freshwater mussel. Heredity (Edinb). 112, 282–290 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Catchen, J. M., Amores, A., Hohenlohe, P. A., Cresko, W. A. & Postlethwait, J. H. Stacks: Building and genotyping Loci de novo from short-read sequences. G3 Genes Genomes Genet. 1, 171–182 (2011).CAS 

    Google Scholar 
    60.Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: an analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for De Novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7, e37135 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Mastretta-Yanes, A. et al. Restriction site-associated DNA sequencing, genotyping error estimation and de novo assembly optimization for population genetic inference. Mol. Ecol. Resour. 15, 28–41 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Meirmans, P. G. & Van Tienderen, P. H. Genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol. Ecol. Notes 4, 792–794 (2004).Article 

    Google Scholar 
    64.Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution (N. Y.) 38, 1358–1370 (1984).CAS 

    Google Scholar 
    65.Raymond, M. & Rousset, F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    66.Excoffier, L., Smouse, P. E. & Quattro, J. M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479–491 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria. Available online at https://www.R-project.org/ (2018).69.Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).70.Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.Earl, D. A. & Vonholdt, B. M. Structure Harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    73.Rosenberg, N. A. distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 4, 137–138 (2004).Article 

    Google Scholar 
    74.Minh, B., Nguyen, M.-A. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    Article 

    Google Scholar 
    76.Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A. & Roychoudhury, A. Inferring species trees directly from biallelic genetic markers: Bypassing gene trees in a full coalescent analysis. Mol. Biol. Evol. 29, 1917–1932 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    78.Bouckaert, R. et al. BEAST 2: A software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, 1–6 (2014).Article 
    CAS 

    Google Scholar 
    79.Kass, R. E. & Raftery, A. E. kass1995BayesFactors. J. Am. Stat. Assoc. 90, 773–795 (1995).Article 

    Google Scholar 
    80.Cornuet, J.-M. et al. DIYABC v2.0: A software to make approximate Bayesian computation inferences about population history using single nucleotide polymorphism, DNA sequence and microsatellite data. Bioinformatics 30, 1187–1189 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    81.Cabrera, A. A. & Palsbøll, P. J. Inferring past demographic changes from contemporary genetic data: A simulation-based evaluation of the ABC methods implemented in diyabc. Mol. Ecol. Resour. 17, e94–e110 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    82.Jones, J. W. & Neves, R. J. Life history and propagation of the endangered fanshell pearlymussel, Cyprogenia stegaria Rafinesque (Bivalvia: Unionidae) The University of Chicago Press on behalf of the Society for F. J. N. Am. Benthol. Soc. 21, 76–88 (2002).Article 

    Google Scholar  More