1.Maslo, B. & Fefferman, N. H. A case study of bats and white-nose syndrome demonstrating how to model population viability with evolutionary effects. Conserv. Biol. 29, 1176–1185 (2015).PubMed
Article
PubMed Central
Google Scholar
2.Morris, W. F. & Doak, D. F. Quantitative Conservation Biology (Sinauer, Sunderland, 2002).
Google Scholar
3.Liebhold, A. & Bascompte, J. The Allee effect, stochastic dynamics and the eradication of alien species. Ecol. Lett. 6, 133–140 (2003).Article
Google Scholar
4.Stephens, P. A. & Sutherland, W. J. Consequences of the Allee effect for behaviour, ecology and conservation. Trends Ecol. Evol. 14, 401–405 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
5.Nunney, L. & Elam, D. R. Estimating the effective population size of conserved populations. Conserv. Biol. 8, 175–184 (1994).Article
Google Scholar
6.Lande, R. & Barrowclough, G. Effective population size, genetic variation, and their use in population. Viable populations for conservation, 87 (1987).7.Frankham, R. Effective population size/adult population size ratios in wildlife: A review. Genet. Res. 66, 95–107 (1995).Article
Google Scholar
8.Tallmon, D. A., Luikart, G. & Waples, R. S. The alluring simplicity and complex reality of genetic rescue. Trends Ecol. Evol. 19, 489–496 (2004).PubMed
Article
PubMed Central
Google Scholar
9.Whiteley, A. R., Fitzpatrick, S. W., Funk, W. C. & Tallmon, D. A. Genetic rescue to the rescue. Trends Ecol. Evol. 30, 42–49 (2015).PubMed
Article
PubMed Central
Google Scholar
10.Jiao, J., Gilchrist, M. A. & Fefferman, N. H. The impact of host metapopulation structure on short-term evolutionary rescue in the face of a novel pathogenic threat. Glob. Ecol. Conserv. 23, 01174 (2020).
Google Scholar
11.Hanski, I. Metapopulation Ecology (Oxford University Press, Oxford, 1999).
Google Scholar
12.Mortier, F., Jacob, S., Vandegehuchte, M. L. & Bonte, D. Habitat choice stabilizes metapopulation dynamics by enabling ecological specialization. Oikos 128, 529–539 (2019).Article
Google Scholar
13.Jiao, J., Riotte-Lambert, L., Pilyugin, S. S., Gil, M. A. & Osenberg, C. W. Mobility and its sensitivity to fitness differences determine consumer–resource distributions. R. Soc. Open Sci. 7, 200247 (2020).ADS
PubMed
PubMed Central
Article
Google Scholar
14.Anderson, S. C., Moore, J. W., McClure, M. M., Dulvy, N. K. & Cooper, A. B. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25, 559–572 (2015).PubMed
Article
PubMed Central
Google Scholar
15.Case, T. J. Invasion resistance, species build-up and community collapse in metapopulation models with interspecies competition. Biol. J. Lin. Soc. 42, 239–266 (1991).Article
Google Scholar
16.Gyllenberg, M. & Hanski, I. Habitat deterioration, habitat destruction, and metapopulation persistence in a heterogenous landscape. Theor. Popul. Biol. 52, 198–215 (1997).CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
17.Jiao, J., Pilyugin, S. S. & Osenberg, C. W. Random movement of predators can eliminate trophic cascades in marine protected areas. Ecosphere 7, e01421 (2016).Article
Google Scholar
18.Nee, S. & May, R. M. Dynamics of metapopulations: Habitat destruction and competitive coexistence. J. Anim. Ecol. 61, 37–40 (1992).Article
Google Scholar
19.Ying, Y., Chen, Y., Lin, L. & Gao, T. Risks of ignoring fish population spatial structure in fisheries management. Can. J. Fish. Aquat. Sci. 68, 2101–2120 (2011).Article
Google Scholar
20.Hess, G. Disease in metapopulation models: Implications for conservation. Ecology 77, 1617–1632 (1996).Article
Google Scholar
21.Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: Threats to biodiversity and human health. Science 287, 443–449 (2000).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
22.Harding, K. C., Begon, M., Eriksson, A. & Wennberg, B. Increased migration in host–pathogen metapopulations can cause host extinction. J. Theor. Biol. 298, 1–7 (2012).MathSciNet
CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
23.Dowling, A. J., Hill, G. E. & Bonneaud, C. Multiple differences in pathogen-host cell interactions following a bacterial host shift. Sci. Rep. 10, 1–12 (2020).Article
CAS
Google Scholar
24.Kuzmin, I. V. et al. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathog 8, e1002786 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
25.Levine, R. S. et al. Supersuppression: Reservoir competency and timing of mosquito host shifts combine to reduce spillover of West Nile virus. Am. J. Trop. Med. Hyg. 95, 1174–1184 (2016).PubMed
PubMed Central
Article
Google Scholar
26.Langwig, K. E. et al. Context-dependent conservation responses to emerging wildlife diseases. Front. Ecol. Environ. 13, 195–202 (2015).Article
Google Scholar
27.Smith, K. F., Acevedo-Whitehouse, K. & Pedersen, A. B. The role of infectious diseases in biological conservation. Anim. Conserv. 12, 1–12 (2009).Article
Google Scholar
28.Xiao, Y., Tang, B., Wu, J., Cheke, R. A. & Tang, S. Linking key intervention timing to rapid decline of the COVID-19 effective reproductive number to quantify lessons from mainland China. Int. J. Infect. Dis. 97, 296–298 (2020).CAS
PubMed
PubMed Central
Article
Google Scholar
29.Cintrón-Arias, A., Castillo-Chávez, C., Betencourt, L., Lloyd, A. L. & Banks, H. T. The Estimation of the Effective Reproductive Number from Disease Outbreak Data. (North Carolina State University, Center for Research in Scientific Computation, 2008).30.Salpeter, E. E. & Salpeter, S. R. Mathematical model for the epidemiology of tuberculosis, with estimates of the reproductive number and infection-delay function. Am. J. Epidemiol. 147, 398–406 (1998).CAS
PubMed
Article
PubMed Central
Google Scholar
31.Grenfell, B. & Harwood, J. (Meta) population dynamics of infectious diseases. Trends Ecol. Evol. 12, 395–399 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
32.Millard, A. R., Roberts, C. A. & Hughes, S. S. Isotopic evidence for migration in Medieval England: The potential for tracking the introduction of disease. Soc. Biol. Human Affairs. 70, 9–13 (2005).
Google Scholar
33.Chen, M. et al. The introduction of population migration to SEIAR for COVID-19 epidemic modeling with an efficient intervention strategy. Inf. Fusion 64, 252–258 (2020).PubMed
PubMed Central
Article
Google Scholar
34.Reed, K. D., Meece, J. K., Henkel, J. S. & Shukla, S. K. Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clin. Med. Res. 1, 5–12 (2003).PubMed
PubMed Central
Article
Google Scholar
35.Roy, B. & Kirchner, J. Evolutionary dynamics of pathogen resistance and tolerance. Evolution 54, 51–63 (2000).CAS
PubMed
Article
PubMed Central
Google Scholar
36.Bliven, K. A. & Maurelli, A. T. Antivirulence genes: Insights into pathogen evolution through gene loss. Infect. Immun. 80, 4061–4070 (2012).CAS
PubMed
PubMed Central
Article
Google Scholar
37.Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459, 983–986 (2009).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
38.Laine, A. L. Resistance variation within and among host populations in a plant–pathogen metapopulation: Implications for regional pathogen dynamics. J. Ecol. 92, 990–1000 (2004).Article
Google Scholar
39.Thrall, P. H. et al. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecol. Lett. 15, 425–435 (2012).PubMed
PubMed Central
Article
Google Scholar
40.Juhas, M. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 41, 101–108 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
41.Soanes, D. & Richards, T. A. Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52, 583–614 (2014).CAS
PubMed
Article
PubMed Central
Google Scholar
42.Brunham, R. C., Plummer, F. A. & Stephens, R. S. Bacterial antigenic variation, host immune response, and pathogen-host coevolution. Infect. Immun. 61, 2273 (1993).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Sasaki, A. Evolution of antigen drift/switching: Continuously evading pathogens. J. Theor. Biol. 168, 291–308 (1994).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Lange, A. & Ferguson, N. M. Antigenic diversity, transmission mechanisms, and the evolution of pathogens. PLoS Comput. Biol. 5, 1000536 (2009).ADS
MathSciNet
Article
CAS
Google Scholar
45.Alizon, S., Hurford, A., Mideo, N. & Van Baalen, M. Virulence evolution and the trade-off hypothesis: History, current state of affairs and the future. J. Evol. Biol. 22, 245–259 (2009).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Messenger, S. L., Molineux, I. J. & Bull, J. Virulence evolution in a virus obeys a trade off. Proc. R. Soc. Lond. B 266, 397–404 (1999).CAS
Article
Google Scholar
47.Alizon, S., de Roode, J. C. & Michalakis, Y. Multiple infections and the evolution of virulence. Ecol. Lett. 16, 556–567 (2013).PubMed
Article
PubMed Central
Google Scholar
48.Bull, J. J. & Lauring, A. S. Theory and empiricism in virulence evolution. PLoS Pathog 10, e1004387 (2014).49.Gray, M. J. & Chinchar, V. G. Ranaviruses: Lethal Pathogens of Ectothermic Vertebrates (Springer Science+ Business Media, New York, 2015).Book
Google Scholar
50.Dobbelaere, T., Muller, E. M., Gramer, L. J., Holstein, D. M. & Hanert, E. Coupled epidemio-hydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front. Mar. Sci. 7, 1016 (2020).Article
Google Scholar
51.Stoddard, S. T. et al. House-to-house human movement drives dengue virus transmission. Proc. Natl. Acad. Sci. USA 110, 994–999 (2013).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
52.Diekmann, O., Heesterbeek, J. & Roberts, M. G. The construction of next-generation matrices for compartmental epidemic models. J. R. Soc. Interface 7, 873–885 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
53.Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).PubMed
Article
PubMed Central
Google Scholar
54.Anderson, R. M., Anderson, B. & May, R. M. Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, Oxford, 1992).
Google Scholar
55.O’Brien, S. J. et al. Genetic basis for species vulnerability in the cheetah. Science 227, 1428–1434 (1985).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
56.Ingvarsson, P. K. & Lundberg, S. The effect of a vector-borne disease on the dynamics of natural plant populations: A model for Ustilago violacea infection of Lychnis viscaria. J. Ecol. 81, 263–270 (1993).Article
Google Scholar
57.Carlson, S. M., Cunningham, C. J. & Westley, P. A. Evolutionary rescue in a changing world. Trends Ecol. Evol. 29, 521–530 (2014).PubMed
Article
PubMed Central
Google Scholar
58.Gonzalez, A., Ronce, O., Ferriere, R. & Hochberg, M. E. (The Royal Society, 2013).59.Fine, P. E. Herd immunity: History, theory, practice. Epidemiol. Rev. 15, 265–302 (1993).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Fontanet, A. & Cauchemez, S. COVID-19 herd immunity: Where are we?. Nat. Rev. Immunol. 20, 583–584 (2020).PubMed
Article
CAS
PubMed Central
Google Scholar
61.Fine, P., Eames, K. & Heymann, D. L. “Herd immunity”: A rough guide. Clin. Infect. Dis. 52, 911–916 (2011).PubMed
Article
PubMed Central
Google Scholar
62.Barbarossa, M. V. & Röst, G. Immuno-epidemiology of a population structured by immune status: A mathematical study of waning immunity and immune system boosting. J. Math. Biol. 71, 1737–1770 (2015).MathSciNet
CAS
PubMed
MATH
Article
PubMed Central
Google Scholar
63.Hamami, D., Cameron, R., Pollock, K. G. & Shankland, C. Waning immunity is associated with periodic large outbreaks of mumps: A mathematical modeling study of Scottish data. Front. Physiol. 8, 233 (2017).PubMed
PubMed Central
Article
Google Scholar
64.Klepac, P. & Caswell, H. The stage-structured epidemic: Linking disease and demography with a multi-state matrix approach model. Thyroid Res. 4, 301–319 (2011).
Google Scholar
65.Anderson, R. M. & May, R. M. Population biology of infectious diseases: Part I. Nature 280, 361–367 (1979).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
66.Colizza, V. & Vespignani, A. Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations. J. Theor. Biol. 251, 450–467 (2008).MathSciNet
PubMed
MATH
Article
PubMed Central
Google Scholar
67.Stone, C. M., Schwab, S. R., Fonseca, D. M. & Fefferman, N. H. Human movement, cooperation and the effectiveness of coordinated vector control strategies. J. R. Soc. Interface 14, 20170336 (2017).PubMed
PubMed Central
Article
Google Scholar
68.Jiao, J., Pilyugin, S. S., Riotte-Lambert, L. & Osenberg, C. W. Habitat-dependent movement rate can determine the efficacy of marine protected areas. Ecology 99, 2485–2495 (2018).PubMed
Article
PubMed Central
Google Scholar
69.Keeling, M. J., Rohani, P. & Grenfell, B. T. Seasonally forced disease dynamics explored as switching between attractors. Physica D 148, 317–335 (2001).ADS
MATH
Article
Google Scholar More