More stories

  • in

    A rapid phenotype change in the pathogen Perkinsus marinus was associated with a historically significant marine disease emergence in the eastern oyster

    1.Lafferty, K. D., Porter, J. W. & Ford, S. E. Are diseases increasing in the ocean?. Annu. Rev. Ecol. Evol. Syst. 35, 31–54 (2004).Article 

    Google Scholar 
    2.Lafferty, K. D. et al. Infectious diseases affect marine fisheries and aquaculture economics. Annu. Rev. Mar. Sci. 7, 471–496 (2015).Article 
    ADS 

    Google Scholar 
    3.Burreson, E. M., Stokes, N. A. & Friedman, C. S. Increased virulence in an introduced pathogen: Haplosporidium nelsoni (MSX) in the eastern oyster Crassostrea virginica. J. Aquat. Anim. Health 12, 1–8 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Elston, R. A., Farley, C. A. & Kent, M. L. Occurrence and significance of bonamiasis in European flat oysters Ostrea edulis in North America. Dis. Aquat. Org. 2, 49–54 (1986).Article 

    Google Scholar 
    5.Enzmann, P.-J., Kurath, G., Fichtner, D. & Bergmann, S. M. Infectious hematopoietic necrosis virus: Monophyletic origin of European isolates from North American genogroup M. Dis. Aquat. Org. 66, 187–195 (2005).CAS 
    Article 

    Google Scholar 
    6.Lightner, D. V. The penaeid shrimp viral pandemics due to IHHNV, WSSV, TSV and YHV: History in the Americas and current status (Proceedings of the 32nd Joint UJNR Aquaculture Panel Symposium, Davis and Santa Barbara, California, USA, 2003).7.Sutherland, K. P., Shaban, S., Joyner, J. L., Porter, J. W. & Lipp, E. K. Human pathogen shown to cause disease in the threatened elkhorn coral Acropora palmata. PLoS ONE 6, e23468 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    8.Chang, P. et al. Herpes-like virus infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Dis. Aquat. Org. 65, 23–27 (2005).Article 

    Google Scholar 
    9.Hooper, C., Hardy-Smith, P. & Handlinger, J. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust. Vet. J. 85, 188–193 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Segarra, A. et al. Detection and description of a particular Ostreid herpesvirus 1 genotype associated with massive mortality outbreaks of Pacific oysters, Crassostrea gigas, in France in 2008. Virus Res. 153, 92–99 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Jenkins, C. et al. Identification and characterisation of an ostreid herpesvirus-1 microvariant (OsHV-1 μ-var) in Crassostrea gigas (Pacific oysters) in Australia. Dis. Aquat. Org. 105, 109–126 (2013).CAS 
    Article 

    Google Scholar 
    12.Mackin, J. G. Oyster disease caused by Dermocystidium marinum and other microorganisms in Louisiana. Pub. Inst. Mar. Sci. Univ. Texas 7, 132–229 (1962).
    Google Scholar 
    13.Andrews, J. D. Epizootiology of the disease caused by the oyster pathogen Perkinsus marinus and its effects on the oyster industry. Am. Fish. Soc. Spec. Pub. 18, 47–63 (1988).
    Google Scholar 
    14.Burreson, E. M. & Andrews, J. D. Unusual intensification of Chesapeake Bay oyster diseases during recent drought conditions. In Proceeding of the Oceans ’88 Conference, Baltimore, Maryland, USA, 1988) 799–802.15.Ford, S. E. Range extension by the oyster parasite Perkinsus marinus into the northeastern United States: Response to climate change?. J. Shellfish Res. 15, 45–56 (1996).
    Google Scholar 
    16.Harvell, C. D. et al. Emerging marine diseases: Climate links and anthropogenic factors. Science 285, 1505–1510 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Burge, C. A. et al. Climate change influences on marine infectious diseases: Implications for management and society. Annu. Rev. Mar. Sci. 6, 249–277 (2014).Article 
    ADS 

    Google Scholar 
    18.Cook, T., Folli, M., Klinck, J., Ford, S. & Miller, J. The relationship between increasing sea-surface temperature and the northward spread of Perkinsus marinus (Dermo) disease epizootics in oysters. Estuar. Coast. Shelf Sci. 46, 587–597 (1998).Article 
    ADS 

    Google Scholar 
    19.Crosby, M. P. & Roberts, C. F. Seasonal infection intensity cycle of the parasite Perkinsus marinus (and an absence of Haplosporidium spp.) in oysters from a South Carolina salt marsh. Dis. Aquat. Org. 9, 149–155 (1990).Article 

    Google Scholar 
    20.Shearman, R. K. & Lentz, S. J. Long-term sea surface temperature variability along the U.S. East Coast. J. Phys. Oceanogr. 40, 1004–1017 (2010).Article 
    ADS 

    Google Scholar 
    21.Ray, S. M. A culture technique for the diagnosis of infections with Dermocystidium marinus Mackin, Owen, and Collier in oysters. Science 116, 360–361 (1952).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    22.Carnegie, R. B., Arzul, I. & Bushek, D. Managing marine mollusc diseases in the context of regional and international commerce: Policy issues and emerging concerns. Phil. Trans. R. Soc. B 371, 20150215 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    23.OIE Infection with Perkinsus marinus. In Manual of Diagnostic Tests for Aquatic Animals 7th edn 526–538 (OIE, Paris, 2016).
    Google Scholar 
    24.Mackin, J. G., Owen, H. M. & Collier, A. Preliminary note on the occurrence of a new protistan parasite, Dermocystidium marinum n sp in Crassostrea virginica (Gmelin). Science 111, 328–329 (1950).25.Perkins, F. O. Ultrastructure of vegetative stages in Labyrinthomyxa marina (Dermocystidium marinum), a commercially significant oyster pathogen. J. Invertebr. Pathol. 13, 199–222 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Gates, D. E., Valletta, J. J., Bonneaud, C. & Recker, M. Quantitative host resistance drives the evolution of increased virulence in an emerging pathogen. J. Evol. Biol. 31, 1704–1714 (2018).PubMed 
    Article 

    Google Scholar 
    27.Moss, J. A., Burreson, E. M. & Reece, K. S. Advanced Perkinsus marinus infections in Crassostrea ariakensis maintained under laboratory conditions. J. Shellfish Res. 25, 65–72 (2006).Article 

    Google Scholar 
    28.Reece, K. S., Bushek, D., Hudson, K. L. & Graves, J. E. Geographic distribution of Perkinsus marinus genetic strains along the Atlantic and Gulf coasts of the USA. Mar. Biol. 139, 1047–1055 (2001).Article 

    Google Scholar 
    29.Thompson, P. C., Rosenthal, B. M. & Hare, M. P. Microsatellite genotypes reveal some long-distance gene flow in Perkinsus marinus, a major pathogen of the eastern oyster, Crassostrea virginica (Gmelin). J. Shellfish Res. 33, 195–206 (2014).Article 

    Google Scholar 
    30.Andrews, J. D. Epizootiology of diseases of oysters (Crassostrea virginica), and parasites of associated organisms in eastern North America. Helgoländer Meeresuntersuchungen 37, 149–166 (1984).Article 

    Google Scholar 
    31.Haven, D. S., Hargis, W. J., Jr. & Kendall, P. C. The oyster industry of Virginia: Its Status, Problems and Promise (VA Institute of Marine Science Special Papers in Marine Science No. 4, 1978).32.Andrews, J. D. Perkinsus marinus = Dermocystidium marinum (“Dermo”) in Virginia, 1950–1980 (VA Institute of Marine Science Data Report No. 16, 1980).33.Hite, J. L. & Cressler, C. E. Resource-driven changes to host population stability alter the evolution of virulence and transmission. Phil. Trans. R. Soc. B 373, 20170087 (2018).PubMed 
    Article 

    Google Scholar 
    34.Rick, T. C. et al. Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery. Proc. Natl. Acad. Sci. USA 113, 6568–6573 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Bushek, D., Ford, S. E. & Chintala, M. M. Comparison of in vitro-cultured and wild-type Perkinsus marinus. III. Fecal elimination and its role in transmission. Dis. Aquat. Org. 51, 217–225 (2002).Article 

    Google Scholar 
    36.Mann, R., Southworth, M., Harding, J. M. & Wesson, J. A. Population studies of the native eastern oyster, Crassostrea virginica (Gmelin, 1791) in the James River, Virginia, USA. J. Shellfish Res. 28, 193–220 (2009).Article 

    Google Scholar 
    37.Andrews, J. D. Oyster mortality studies in Virginia. IV. MSX in James River public seed beds. Proc. Natl. Shellfish. Assoc. 53, 65–84 (1964).
    Google Scholar 
    38.Carnegie, R. B. & Burreson, E. M. Declining impact of an introduced pathogen: Haplosporidium nelsoni in the oyster Crassostrea virginica in Chesapeake Bay. Mar. Ecol. Prog. Ser. 432, 1–15 (2011).Article 
    ADS 

    Google Scholar 
    39.Goedknegt, M. A. et al. Parasites and marine invasions: Ecological and evolutionary perspectives. J. Sea Res. 113, 11–27 (2016).Article 
    ADS 

    Google Scholar 
    40.Kemp, W. M. et al. Eutrophication of Chesapeake Bay: Historical trends and ecological interactions. Mar. Ecol. Prog. Ser. 303, 1–29 (2005).Article 
    ADS 

    Google Scholar 
    41.Ford, S. E. & Bushek, D. Development of resistance to an introduced marine pathogen by a native host. J. Mar. Res. 70, 205–223 (2012).Article 

    Google Scholar 
    42.Bobo, M. Y., Richardson, D. L., Coen, L. D. & Burrell, V. G. A Report on the Protozoan Pathogens Perkinsus marinus (dermo) and Haplosporidium nelsoni (MSX) in South Carolina shellfish populations (Tech. Rep. No. 86, SC Dept. of Natural Resources, 1997).43.Hill, K. M. et al. Observation of a Bonamia sp. infecting the oyster Ostrea stentina in Tunisia, and a consideration of its phylogenetic affinities. J. Invertebr. Pathol. 103, 179–185 (2010).PubMed 
    Article 

    Google Scholar 
    44.Carnegie, R. B. et al. Molecular detection of the oyster parasite Mikrocytos mackini, and a preliminary phylogenetic analysis. Dis. Aquat. Org. 54, 219–227 (2003).CAS 
    Article 

    Google Scholar 
    45.Stokes, N. A. & Burreson, E. M. A sensitive and specific DNA probe for the oyster pathogen Haplosporidium nelsoni. J. Eukaryot. Microbiol. 42, 350–357 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Reece, K. S., Dungan, C. F. & Burreson, E. M. Molecular epizootiology of Perkinsus marinus and P. chesapeaki infections among wild oysters and clams in Chesapeake Bay, USA. Dis. Aquat. Org. 82, 237–248 (2008).CAS 
    Article 

    Google Scholar 
    47.Carnegie, R. B. Status of the Major Oyster Diseases in Virginia, 2009–2012: A Summary of the Annual Oyster Disease Monitoring Program (Virginia Institute of Marine Science, 2013).
    Google Scholar 
    48.Andrews, J. D. & Hewatt, W. G. Oyster mortality studies in Virginia II The fungus disease caused by Dermocystidium marinum in Chesapeake Bay. Ecol. Monogr. 27, 1–26 (1957).Article 

    Google Scholar 
    49.Perkins, F. O. The structure of Perkinsus marinus (Mackin, Owen and Collier, 1950) Levine, 1978 with comments on taxonomy and phylogeny of Perkinsus spp. J. Shellfish Res. 15, 67–87 (1996).
    Google Scholar 
    50.RStudio Team. RStudio: Integrated Development for R. (RStudio, Inc., 2019). http://www.rstudio.com/.51.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). https://www.R-project.org/.52.Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).Article 
    ADS 

    Google Scholar 
    53.Wickham, H. forcats: Tools for Working with Categorical Variables (Factors). R Package Version 0.5.1. https://CRAN.R-project.org/package=forcats (2021).54.Fox, J. & Weisberg, S. An R Companion to Applied Regression 3rd edn. (Sage Publications, 2019).
    Google Scholar 
    55.Zar, J. H. Biostatistical Analysis 3rd edn. (Prentice Hall, 1996).
    Google Scholar 
    56.Ragone, L. M. & Burreson, E. M. Effect of salinity on infection progression and pathogenicity of Perkinsus marinus in the eastern oyster, Crassostrea virginica (Gmelin). J. Shellfish Res. 12, 1–7 (1993).
    Google Scholar 
    57.Chu, F.-L.E., Volety, A. K. & Constantin, G. A comparison of Crassostrea gigas and Crassostrea virginica: Effects of temperature and salinity on susceptibility to the protozoan parasite, Perkinsus marinus. J. Shellfish Res. 15, 375–380 (1996).
    Google Scholar  More

  • in

    A unifying model to estimate thermal tolerance limits in ectotherms across static, dynamic and fluctuating exposures to thermal stress

    Fitting tolerance time versus temperature to build a thermal death time curveThe high coefficients of determination found in the D. melanogaster TDT curves (Fig. 3A) are not uncommon and the exponential relation has consistently been found to provide a good fit of tolerance time vs. temperature in ectotherms3,15,20,22,23,24. Tolerance time vs. temperature data are also well fitted to Arrhenius plots which are based on thermodynamic principles (see for example15,36) and the absence of breakpoints in such plots provides a strong indication (but not direct proof) that the cause of coma/heat failure under the different intensities of acute heat stress is related to the same physiological process regardless whether failure occurs after 10 min or 10 h2,3 (but see “Discussion” section below). Despite the superior theoretical basis of Arrhenius analysis, we proceed with simple linear regressions of log10-transformed tcoma (TDT curve) as this analysis likewise provides a high R2 and is mathematically more straightforward. The physiological cause(s) of ectotherm heat failure are poorly understood37,38 but we argue that they are founded in a common process where heat injury accumulates at a temperature-dependent rate until a species-specific critical dose is attained (area below the curve and above Tc in Fig. 2). Thus, the organism has a fixed amount (dose) of thermally induced stress that it can tolerate before evoking the chosen endpoint. The experienced temperature of the animals then dictates the rate of which this stress is acquired, and accordingly when the endpoint is reached (Fig. 2) It is this reasoning that leads to TDT curves and explains why heat stress can be additive and thus also determines the boundaries of TDT curve modelling.Injury is additive across different stressful assay temperaturesIf heat stress acquired at intense and moderate stress within the span of the TDT curve acts through the same physiological mechanisms or converges to result in the same form of injury, then it is expected that injury is additive at different heat stress intensities. This hypothesis was tested by exposing flies sequentially to two static temperatures (different injury accumulation rates) and observe whether coma occurred as predicted from the summed injury (Fig. 2C). The accumulated heat injury at the two temperatures was found to be additive regardless of the order of temperature exposure (Fig. 3B,C). This finding is consistent with a conceptually similar study using speckled trout which also found strong support for additivity of heat stress at different stressful temperatures13. The exact physiological mechanism of heat injury accumulation is interesting to understand in this perspective, but it is not critical as long as the relation between temperature and injury accumulation rate is known.If injury accumulation is additive irrespective of the order of the heat exposure, we can extend the model to fluctuating temperature conditions. We have previously done this by accurately predicting dynamic CTmax from TDT parameters obtained from static assays for 11 Drosophila species (Fig. 6A, see “Discussion” section below and15). Here we extend this to temperature fluctuations that cannot be described by a simple mathematical ramp function. Specifically, groups of flies were subjected to randomly fluctuating temperatures and the observed tcoma was then compared to tcoma predicted using integration of heat injury based on TDT parameters (Fig. 4). The injury accumulation (Fig. 4C) was calculated by introducing the fluctuating temperature profiles in the associated R-script and the observed and predicted tcoma was found to correlate well (R2  > 0.94) across the 13 groups tested for each sex. These results further support the idea that injury is additive across a range of fluctuating and stressful temperatures and hence that similar physiological perturbations are in play during moderate and intense heat stress. It is important to note that in these experiments, temperatures fluctuated between 34.5 and 42.5 °C and accordingly the flies were never exposed to benign temperatures that could allow repair or hardening (see below).Figure 6adapted from Fig. 4b in15. (B) TDT parameters based on dCTmax from three dynamic tests were used to predict tcoma in static assays. Each point represents an observed vs. predicted value of species- and temperature-specific log10(tcoma). (Inset) Species values of the thermal sensitivity parameter z parameterized from TDT curves based on static assays (x-axis) or dynamic assays (y-axis). The dashed line represents the line of unity in all three panels.Conversion of heat tolerance measures between static and dynamic assays in Drosophila. Data from43. (A) Heat tolerance (dCTmax, d for dynamic assays) plotted against predicted dCTmax derived from species-specific TDT curves created from multiple (9–17) static assays. Data are presented for three different ramping rates (0.05, 0.1 and 0.25 °C min-1). Note that this graph is Full size imageIn conclusion, empirical data (present study;6,13,14,22) support the application of TDT curves to assess heat injury accumulation under fluctuating temperature conditions both in the lab and field for vertebrate and invertebrate ectotherms. Potential applications could be assessment of injury during foraging in extreme and fluctuating environments (e.g. ants in the desert39 or lizards in exposed habitat40) or for other animals experiencing extreme conditions41,42. The associated R-scripts allow assessment of percent lethal damage under such conditions if the model is provided with TDT parameters and information of temperature fluctuations (but see “Discussion” section of model limitations below).Model application for comparison of static versus dynamic dataThere is little consensus on the optimal protocol to assess ectotherm thermal tolerance and many different types of static or dynamic tests have been used to assess heat tolerance. TDT curves represent a mathematical and theoretical approach to reconcile different estimates of tolerance as the derived parameters can subsequently be used to assess heat injury accumulation at different rates (temperatures) and durations13,15,16. Here we provide R-scripts that enable such reconciliation and to demonstrate the ability of the TDT curves to reconcile data from static vs. dynamic assays we used published measurements of heat tolerance for 11 Drosophila species using three dynamic and 9–17 static measurements for each species43. Introducing data from only static assays we derived TDT parameters and subsequently used these to predict dynamic CTmax that were compared to empirically observed CTmax for three ramp rates (Fig. 6A). In a similar analysis, TDT parameters were derived from the three dynamic (ramp) experiments to predict tcoma at different static temperatures which were compared to empirical measures from static assays (Fig. 6B). Both analyses found good correlation between the predicted and observed values regardless whether the TDT curve was parameterized from static or dynamic experiments (Fig. 6). However, predictions from TDT curves based on three dynamic assays were characterised by more variation, particularly when used to assess tolerance time at very short or long durations. Furthermore, D. melanogaster and D. virilis which had the poorest correlation between predicted and observed tcoma in Fig. 6B had values of z from the TDT curves based on dynamic input data that were considerably different from values of z derived from TDT curves based on static assays (Fig. 6B inset). In conclusion TDT curves (and the associated R-scripts) are useful for conversion between static and dynamic assessment of tolerance. The quality of model output depends on the quality and quantity of data used as model input, and in this example the poorer model was parameterized from only three dynamic assays while the stronger model was based on 9–17 static assays (see also “Discussion” section below).Model application for comparison of published dataThermal tolerance is important for defining the fundamental niche of animals1,2,4 and the current anthropogenic changes in climate has reinvigorated the interest in comparative physiology and ecology of thermal limits in ectotherms. Meta-analyses of ectotherm heat tolerance data have provided important physiological, ecological and evolutionary insights5,44,45,46, but such studies are often challenged with comparison of tolerance estimates obtained through very different methodologies.Species tolerance is likely influenced by acclimation, age, sex, diet, etc.47 and also by the endpoint used (onset of spasms, coma, death, etc.27). Nevertheless, we expected heat tolerance of a species to be somewhat constrained45, so here we tested the model by converting literature data for nine species to a single and species-specific estimate of tolerance, sCTmax (1 h), the temperature that causes heat failure in 1 h (Fig. 5). The overwhelming result of this analysis is that TDT parameters are useful to convert static and dynamic heat tolerance measures to a single metric, and accordingly, the TDT model and R-scripts presented here have promising applications for large-scale comparative meta-analyses of ectotherm heat tolerance where a single metric allows for qualified direct comparison of results from different publications and experimental backgrounds. While this is an intriguing and powerful application, we caution that careful consideration should be put into the limitations of this model (see “Discussion” section below).Practical considerations and pitfalls for model interpretationAs shown above it is possible to convert and reconcile different types of heat tolerance measures using TDT parameters and these parameters can also be used to model heat stress under fluctuating field conditions. Modelling and discussion of TDT predictions beyond the boundaries of the input data has recently gained traction (see examples in48,49) but we caution that the potent exponential nature of the TDT curve requires careful consideration as it is both easy and enticing to misuse this model.Input dataThe quality of the model output is dictated by the input used for parameterization. Accordingly, we recommend TDT parameterization using several ( > 5) static experiments that should cover the time and temperature interval of interest, e.g. temperatures resulting in tcoma spanning 10 min to 10 h, thus covering both moderate and intense heat exposure. Such an experimental series can verify TDT curve linearity and allows modelling of temperature impacts across a broad range of temperatures and stress durations13,15,22. It is tempting to use only brief static experiments (high temperatures) for TDT parameterization, but in such cases, we recommend that the resulting TDT curve is only used to describe heat injury accumulation under severe heat stress intensities. Thus, the thermal sensitivity factor z represents a very powerful exponential factor (equivalent to Q10 = 100 to 100,000;15) which should ideally be parametrized over a broad temperature range (see below). We also include a script that allows TDT parametrization from multiple ramping experiments and again we recommend a broad span of ramping rates to cover the time/temperature interval of interest. A drawback of ramping experiments is the relatively large proportion of time spent at benign temperatures where there is no appreciable heat injury accumulation. Thus, dynamic experiments can conveniently use starting temperatures that are close to the temperature where injury accumulation rate surpasses injury repair rate (see “Discussion” section of “true” Tc below, in Supplemental Information and19 for other considerations regarding ramp experiments).A final methodological consideration relates to body-temperature in brief static experiments where the animal will spend a considerable proportion of the experiment in a state of thermal disequilibrium (i.e. it takes time to heat the animal). To avoid this, we recommend direct measurement of body temperature (large animals) or container temperature (small animals), and advise against excessive reliance on data from test temperatures that results in coma in less than 10 min.ExtrapolationMost studies of ectotherm heat tolerance include only a single measure of heat tolerance which is inadequate to parameterize a TDT curve. However, a TDT curve can still be generated from a single measure of tolerance (static or dynamic) if a value of z is assumed (see Supplemental Information). As z differs within species and between phylogenetic groups (Table S115,20), choosing the appropriate value may be difficult and discrepancies between the ‘true’ and assumed z represent a problem that should be approached with care. In Fig. 7A we illustrate this point in a constructed example where a single heat tolerance measurement is sampled from a ‘true’ TDT curve (full line; tcoma = 40 min at 37 °C). Along with this ‘true’ TDT curve we depict the consequences for model predictions if the assumed value of z is misestimated by ± 50%. Extrapolation from the original data point is necessary if an estimate of the temperature that causes coma after 1 h is desired, however due to limited extrapolation (from 40 to 60 min), estimation of sCTmax (1 h) values based on the ‘true’ and z ± 50% are not very different ( 6 h) between heat exposure disrupted additivity, suggesting that injury is repaired at benign temperature50. Injury repair rate is largely understudied but repair rate is generally increasing with temperature51,52,53. It is therefore an intriguing and promising idea to include a temperature-dependent repair function in more advanced modelling of heat injury. Until such repair processes are introduced in the model, we recommend that additivity of heat injury is evaluated critically if it involves periods at temperatures both above and below Tc (i.e. over consecutive days, see also13). An alternative, but not mutually excluding, explanation of increased heat resilience in split-dose experiments relates to the contribution of heat hardening as it is likely that the first heat exposure in a series can induce hardening responses that increase resilience (and thus change the TDT parameters) when a second heat exposure occurs. Such issues of repeated thermal stress have been discussed previously54 but for the purpose of the present study the main conclusion is that simple TDT curve modelling is not applicable to fluctuations bracketing Tc unless this is empirically validated. Future studies could address this issue as inclusion of repair functions would add further promise to the use of TDT curves in modelling of the impacts of temperature fluctuations. More

  • in

    Photoacclimation by phytoplankton determines the distribution of global subsurface chlorophyll maxima in the ocean

    Physical modelThe physical part of the model is a global Oceanic General Circulation Model, Meteorological Research Institute Community Ocean Model version 3 (MRI.COM3)40. The model has horizontal resolutions of 1° in longitude and 0.5° in latitude south of 64° N, and tripolar coordinates are applied north of 64° N. The model is discretized in 51 vertical layers. In the upper 160 m, tracers are calculated at depths of 2.0, 6.5, 12.25, 19.25, 27.5, 37.75, 50.5, 65.5, 82.25, 100.0, 118.2, 137.5, and 157.75 m, and therefore vertical variation in chlorophyll concentration below the grid-scale is not represented in our model. The model was forced with realistic wind stress, surface heat and freshwater fluxes40.Marine ecosystem modelWe developed a marine ecosystem model composed of phytoplankton, zooplankton, nitrate, ammonia, particulate organic nitrogen, dissolved organic nitrogen, dissolved iron (Fed), and particulate iron. Our model is a 3D version of the FlexPFT model27 and is called the FlexPFT-3D model. The main changes of the FlexPFT-3D from original FlexPFT model are the introduction of iron limitation and substitution of the carbon-based phytoplankton biomass in the original with nitrogen-based biomass herein. The iron cycle is based on the nitrogen-, silicon- and iron-regulated Marine Ecosystem Model41 including the process of scavenging and iron input from dust and sediment. Dissolved iron starts from the distribution calculated by the Biological Elemental Cycling model in Misumi et al.42. Nitrate starts from the distribution of World Ocean Database 199843. After the connection of the physical model, a 20 years of historical simulation (1985–2004) is performed. In addition to the standard case with the chlorophyll-specific initial slope of growth versus irradiance, aI, of 0.35 m2 E−1 mol C (g chl)−1, the case studies with aI of 0.5 and 1.0 m2 E−1 mol C (g chl)−1 were implemented. The case studies are calculated from 2003 to 2004, starting from the distributions of biological variables at the end of 2002 in the standard case.Phytoplankton growthThe procedures of numerical integration of phytoplankton concentration are described here. Readers can construct a numerical model using the following equations. The derivations of the following equations from theories are presented by Smith et al.27 (hereafter Smith2016). Values of biological parameters are described in Supplementary Table 1.In accordance with Pahlow’s resource allocation theory28, the FlexPFT model assumes that resources are allocated among structural material, nutrient uptake and, light harvesting (Supplementary Fig. 1a). The fraction of structural material is assumed to be Qs/Q, where Q is the nitrogen cell quota, which is the intracellular nitrogen to carbon ratio (mol N mol C−1), and Qs is the structural cell quota (mol N mol C−1) given as a fixed parameter. The fraction of nutrient uptake is defined as fV (non-dimensional), so that the residual fraction available for light-harvesting is equal to ((1-frac{{Q}_{{rm{s}}}}{Q}-{f}_{{rm{v}}})). Optimal uptake kinetics further sub-divides the resources allocated to nutrient uptake between surface uptake sites (affinity) and enzymes for assimilation (maximum uptake rate), the fraction of which is given by fA and (1 − fA), respectively. Under nutrient-deficient conditions, the number of surface uptake sites (and hence affinity) increases, while enzyme concentration (hence, maximum uptake rate) decreases. The FlexPFT model assumes instantaneous resource allocation, which means that resource allocation tracks temporal environmental change with no lag time. It has elsewhere been demonstrated that an instantaneous acclimation model provides an accurate approximation of a fully dynamic acclimation model44.We assume that acclimation responds to daily-averaged environmental conditions, which are used to calculate the optimal values of fV, fA, and Q as ({f}_{V}^{o}), ({f}_{A}^{o}), and ({Q}^{o}). The optimal values are estimated at the beginning of a day and are retained for the following 24 h. The daily-averaged environmental variables of the seawater temperature, T (°C), intensity of photosynthetically active radiation, I, nitrogen concentration, [N], which is the sum of nitrate and ammonia concentrations, and dissolved iron concentration, [Fed] are defined as (bar{T}), (bar{I}), ([bar{{rm{N}}}]), and ([{overline{{rm{Fe}}}}_{{rm{d}}}]), respectively. Based on the assumption that diurnal variation of temperature and nutrient are very small, T, [N] and [Fed] at the beginning of a day are used as (bar{T}), ([bar{{rm{N}}}]), and ([{overline{{rm{Fe}}}}_{{rm{d}}}]), respectively. For (bar{I}), we use the average in sunshine duration in a day, which is slightly modified from the daily average in Smith2016.Phytoplankton growth rate per unit carbon biomass (day−1), μ, is given by$$mu ={hat{mu }}^{I}left(1-frac{{Q}_{{rm{s}}}}{{Q}^{o}}-{f}_{V}^{o}right)-{zeta }^{N}{f}_{V}^{o}{hat{V}}^{N},$$
    (1)
    where ({hat{mu }}^{I}) is the potential carbon fixation rate per unit carbon biomass (day−1), ({zeta }^{N}) is the energetic respiratory cost of assimilating inorganic nitrogen (0.6 mol C mol N−1), and ({hat{V}}^{N}) is the potential nitrogen uptake rate per unit carbon biomass (mol N mol C−1 day−1). Equation (1) represents the balance of net carbon fixation and respiration costs of nitrogen uptake, which are proportional to the fraction of resource allocation. ({hat{V}}^{N}([bar{{rm{N}}}],,bar{T})) is$${hat{V}}^{N}([bar{{rm{N}}}],bar{T})=frac{{hat{V}}_{0}[bar{{rm{N}}}]}{(frac{{hat{V}}_{0}}{{hat{A}}_{0}})+2sqrt{frac{{hat{V}}_{0}[bar{{rm{N}}}]}{{hat{A}}_{0}}}+[bar{{rm{N}}}]},$$
    (2)
    where ({hat{A}}_{0}) and ({hat{V}}_{0}) are the maximum value of affinity and maximum nitrogen uptake rate.From here, we will explain how the optimized values such as ({f}_{V}^{o}), ({f}_{A}^{o}), and ({Q}^{o}) are calculated. The optimal fraction of resource allocation to affinity, ({f}_{A}^{o}), is given by$${f}_{A}^{o}={[1+sqrt{frac{{hat{A}}_{0}[bar{{rm{N}}}]}{F(bar{T}){hat{V}}_{0}}}]}^{-1},$$
    (3)
    which is derived by substituting Eqs. (18) and (19) in Smith2016 into Eq. (17). (F(bar{T})) is temperature dependence, defined as$$F(bar{T})=exp {-frac{{E}_{a}}{R}[frac{1}{bar{T}+298}-frac{1}{{T}_{{rm{ref}}}+298}],},$$
    (4)
    where Ea is the parameter of the activation energy of 4.8 × 104 J mol−1, R is the gas constant of 8.3145 J (mol K)−1, and Tref is the reference temperature of 20 °C.Optimization for light-harvesting is described below. The potential carbon fixation rate per unit carbon biomass (day−1), ({hat{mu }}^{I},)(day−1), in Eq. (1) is$${hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])={hat{mu }}_{0}frac{[{overline{{rm{Fe}}}}_{{rm{d}}}]}{[{overline{{rm{Fe}}}}_{{rm{d}}}]+{k}_{{rm{Fe}}}}S(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])F(bar{T}),$$
    (5)
    where ({hat{mu }}_{0}) and kFe are the maximum carbon fixation rate and half saturation constant for iron, respectively. S specifies the dependence of light. Defining ({hat{mu }}_{0}^{{rm{limFe}}}={hat{mu }}_{0}frac{[{overline{{rm{Fe}}}}_{{rm{d}}}]}{[{overline{{rm{Fe}}}}_{{rm{d}}}]+{k}_{{rm{Fe}}}}),$${hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])={hat{mu }}_{0}^{{rm{limFe}}}S(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}],)F(bar{T}).,$$
    (6)
    Iron limitation is imposed by substituting ({hat{mu }}_{0}) to ({hat{mu }}_{0}^{{rm{limFe}}}) in all equations in Smith2016. S is defined as$$S(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}],)=1-exp {frac{-{a}_{I}{hat{Theta }}^{o}bar{I}}{{hat{mu }}_{0}^{{rm{limFe}}}F(bar{T})}},$$
    (7)
    where ({a}_{I}) is the chlorophyll-specific initial slope of growth versus irradiance. ({hat{Theta }}^{o}), optimal chloroplast chl:phyC (g chl (mol C)−1), is$${hat{Theta }}^{o} = ; frac{1}{{zeta }^{{rm{chl}}}}+frac{{hat{mu }}_{0}^{{rm{limFe}}}}{{a}_{I}bar{I}}{1-{W}_{0}[(1+frac{{R}_{M}^{{rm{chl}}}}{{L}_{{rm{d}}}{hat{mu }}_{0}^{{rm{limFe}}}})exp (1+frac{{a}_{I}bar{I}}{{zeta }^{{rm{chl}}}{hat{mu }}_{0}^{{rm{limFe}}}}),],},(bar{I} > {I}_{0})\ {hat{Theta }}^{o} = ; 0,(bar{I}le {I}_{0}),$$
    (8)
    where constant parameters ({{rm{zeta }}}^{{rm{chl}}}) and ({R}_{M}^{{rm{chl}}}) are the respiratory cost of photosynthesis (mol C (g chl)−1) and the loss rate of chlorophyll (day−1), respectively. Ld is the fractional day length in 24 h. W0 is the zero-branch of Lambert’s W function. I0 is the threshold irradiance below which the respiratory costs overweight the benefits of producing chlorophyll:$${I}_{0}=frac{{zeta }^{{rm{chl}}}{R}_{M}^{{rm{chl}}}}{{L}_{{rm{d}}}{a}_{I}}.,$$
    (9)
    The optimal fraction of resource allocation to nutrient uptake, ({f}_{V}^{o}), is$${f}_{V}^{o}=frac{{hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}]){Q}_{{rm{s}}}}{{hat{V}}^{N}([bar{{rm{N}}}],bar{T})}[-1+sqrt{{[{Q}_{{rm{s}}}(frac{{hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])}{{hat{V}}^{N}([bar{{rm{N}}}],bar{T})}+{zeta }^{N})]}^{-1}+1},]$$
    (10)
    The optimal nitrogen cell quota, ({Q}^{o}) is$${Q}^{o}={Q}_{{rm{s}}}[1+sqrt{1+{[{Q}_{{rm{s}}}(frac{{hat{mu }}^{I}(bar{I},bar{T},[{overline{{rm{Fe}}}}_{{rm{d}}}])}{{hat{V}}^{N}([bar{{rm{N}}}],bar{T})}+{zeta }^{N})]}^{-1}},]$$
    (11)
    Optimal cellular chl:phyC (g chl (mol C)−1), ({Theta }^{o}), is$${Theta }^{o}=(1-frac{{Q}_{{rm{s}}}}{{Q}^{o}}-{f}_{V}^{o}){hat{Theta }}^{o}$$
    (12)
    which is the multiplication of the fraction of resource allocation to light-harvesting and optimal chloroplast chl:phyC. The cellular chl:phyC and chloroplast chl:phyC in Figs. 1 and 2 are optimal cellular chl:phyC, ({Theta }^{o}), and optimal chloroplast chl:phyC, ({hat{Theta }}^{o}), respectively. The relation in Eq. (12) is displayed in Fig. 1i-n. If we artificially turn off the optimization of resource allocation by applying the constant ({Q}^{o}) and ({f}_{V}^{o}) to the all grid points, optimal cellular chl:phyC (Fig. 1i,j) only depends on optimal chloroplast chl:phyC (Fig. 1k, l), and therefore significant variation of SCM depth across the equatorial, subtropical, and subpolar regions is not reproduced.In the above equations, Eqs. (3), (8), (10), (11), and (12), optimized values related to acclimation processes are obtained and then used in calculating the phytoplankton growth rate. Phytoplankton growth rate per unit carbon biomass (day−1), (mu), in Eq. (1) is calculated at each time step:$$mu (I,T,[{rm{N}}],[{{rm{Fe}}}_{{rm{d}}}])=frac{{hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}]){f}_{V}^{o}(1-{f}_{A}^{o}){hat{V}}_{0}{f}_{A}^{o}{hat{A}}_{0}[{rm{N}}]}{{hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}]){Q}_{0}(1-{f}_{A}^{o}){hat{V}}_{0}+({hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}]){Q}_{0}+{f}_{V}^{o}(1-{f}_{A}^{o}){hat{V}}_{0}){f}_{A}^{o}{hat{A}}_{0}[{rm{N}}]},$$
    (13)
    where ({hat{mu }}^{I}(I,,T,,[{{rm{Fe}}}_{{rm{d}}}])) is obtained by substituting I, T, and [Fed] for (bar{I}), (bar{{rm{T}}}), and ([{overline{{rm{Fe}}}}_{{rm{d}}}]) in Eq. (5), respectively. Note that the model calculates circadian variation in solar irradiance, I, and therefore the phytoplankton growth rate, μ, reaches its maximum at noon local time and is zero during night. On the other hand, phytoplankton optimization is assumed to respond to daily-averaged conditions. The FlexPFT model introduces phytoplankton respiration proportional to chlorophyll content, which is another important originality of Pahlow’s resource allocation theory30,33.The carbon biomass-specific respiratory costs of maintaining chlorophyll, Rchl, is$${R}^{{rm{chl}}}(I,T,[{rm{N}}],[{{rm{Fe}}}_{{rm{d}}}])=({hat{mu }}^{I}(I,T,[{{rm{Fe}}}_{{rm{d}}}])+{R}_{M}^{{rm{chl}}}){{rm{zeta }}}^{{rm{chl}}}{Theta }^{o}.,$$
    (14)
    The growth rate per unit nitrogen biomass, ({mu }_{{rm{N}}}), is equal to that per unit carbon biomass, μ. Instantaneous acclimation assumes that the quota of nitrogen to carbon biomass obtained by phytoplankton growth is equal to the nitrogen quota in a cell: (frac{{mu }_{{rm{N}}}[{{rm{p}}}^{{rm{N}}}]}{mu [{{rm{p}}}^{{rm{C}}}]}={Q}^{o}), where [pC] and [pN] are phytoplankton carbon and nitrogen concentration in a cell, respectively. Since (frac{[{{rm{p}}}^{{rm{N}}}]}{[{{rm{p}}}^{C}]}={Q}^{o}), ({mu }_{{rm{N}}}=mu). When temporal ({Q}^{o}) change occurs, to satisfy the mass conservation, carbon or nitrogen biomass is adjusted with the other fixed. The FlexPFT fixes carbon biomass, while the FlexPFT-3D fixes nitrogen biomass to the temporal ({Q}^{o}) change.The rate of change in the phytoplankton nitrogen concentration, [pN], except for the advection and diffusion terms is given by the following equation:$$frac{partial [{{rm{p}}}^{{rm{N}}}]}{partial t}=mu [{{rm{p}}}^{{rm{N}}}]-({R}^{{rm{chl}}}+{R}^{{rm{cnst}}})[{{rm{p}}}^{{rm{N}}}]-{M}_{{rm{p}}}{[{{rm{p}}}^{{rm{N}}}]}^{2}-({rm{extracellular}},{rm{excretion}})-({rm{grazing}}),$$
    (15)
    where Rcnst and Mp are the coefficient of respiration not related to chlorophyll concentration and mortality rate coefficient, respectively. The extracellular excretion is$$({rm{extracellular}},{rm{excretion}})={gamma }_{{rm{ex}}}[(mu -{R}^{{rm{chl}}})[{{rm{p}}}^{{rm{N}}}]],$$
    (16)
    where ({gamma }_{{rm{ex}}}) is the coefficient of extracellular excretion. The grazing term is represented by$$({rm{grazing}})={G}_{20deg }F(T)[{{rm{z}}}^{{rm{N}}}]frac{{[{{rm{p}}}^{{rm{N}}}]}^{{a}_{{rm{H}}}}}{{({k}_{{rm{H}}})}^{{a}_{{rm{H}}}}+{[{{rm{p}}}^{{rm{N}}}]}^{{a}_{{rm{H}}}}},$$
    (17)
    where G20deg is the maximum grazing rate at 20 °C, and [zN] is zooplankton concentration. Temperature dependency, F(T), is obtained by substituting T for (bar{T}) in Eq. (4). ({a}_{{rm{H}}}) is the parameter controlling Holling-type grazing, which takes a value from 1 to 2. kH is the grazing coefficient in Holling-type grazing.Once [pN] is calculated, phytoplankton carbon concentration (mol C L−1), and chlorophyll concentration (g chl L−1) are uniquely determined in an environmental condition, without prognostic calculation. Therefore, an instantaneous acclimation model can represent stoichiometric flexibility with lower computational costs compared with a dynamic acclimation model44.Model validationThe spatial pattern of simulated annually mean chlorophyll at the ocean surface agrees with that of satellite observation45 (Supplementary Fig. 3). The model reproduced the contrast of the surface chlorophyll concentration between subtropical and subpolar regions, although simulated surface chlorophyll concentration in subtropical regions is lower than that of the observation partly due to the lack of nitrogen fixers. Nitrogen fixation is estimated to support about 30–50% of carbon export in subtropical regions46,47. Simulated surface chlorophyll distribution in the Pacific equatorial region is close to the observed.Our model properly simulates the meridional distribution of nitrate compared with that of observations48 (Supplementary Fig. 4). The simulated horizontal distribution of primary production is consistent with that estimated by satellite data9,49 (Supplementary Fig. 5), although simulated primary production is underestimated in subtropical regions, associated with the underestimation of surface chlorophyll in these regions (Supplementary Fig. 3). More

  • in

    The extracellular contractile injection system is enriched in environmental microbes and associates with numerous toxins

    eCIS are encoded by 1.9% and 1.2% of sequenced bacteria and archaea, respectively, with a highly biased taxonomic distributionFirst, we were interested in identifying all eCIS loci in a large genomic dataset. We compiled a set of 64,756 microbial isolate genomes retrieved from Integrated Microbial Genomes (Supplementary Data 1)16. To identify core component homologs from known systems, we searched for genes with known eCIS-associated pfam annotations (Supplementary Table 1). To supplement this, we also annotated homologous genes ourselves by searching using the Hidden Markov Model (HMM) profiles from a recent publication1,17. We defined putative eCIS operons as gene cassettes that included these multiple eCIS core genes in close proximity and were not bacteriophage, T6SS, or R-type pyocins (Supplementary Table 1, Methods). Overall, we identified eCIS operons encoded in 1230 (1.9%) bacteria and 19 (1.2%) archaea from our genomic repository (Supplementary Data 2–3). We identified two core genes, Afp8 and Afp11, that co-occur in eCIS operons across 98.7% of loci and used their protein sequences to construct an eCIS phylogenetic gene tree (Fig. 1a, Supplementary Figs. 2–3, Supplementary Data 4). Afp8 and Afp11 alone resulted in phylogenetically similar trees (Supplementary Fig. 4) and the trees agree with eCIS division into subtype I and II that were defined in a previous eCIS analysis17 (Supplementary Fig. 5). eCIS is scattered across the prokaryotic diversity with presence in 14 bacterial phyla and one archaeal phylum. The incongruence between this tree and the genomic phylogeny suggests that eCIS undergo HGT frequently, as was proposed before1,17. The previously experimentally characterized eCISs are located within a narrow clade on the eCIS tree, pointing to the possibility that other eCIS particles may play more diverse ecological roles (Fig. 1a, Supplementary Fig. 2).Fig. 1: Taxonomic Distribution of eCIS-encoding microbes.a A phylogenetic tree of eCIS across the microbial world. eCIS core genes Afp8 and Afp11 from each operon were concatenated, aligned, and used to construct the phylogenetic tree. The Domain and Phylum corresponding to each leaf are indicated in the inner and outer rings, respectively. Scaffolds encoding eCIS that have been predicted to be plasmids using Deeplasmid were marked with black triangles. Previously experimentally investigated eCIS are marked on their respective leaves (2 o’clock). Within the tree MACS, AFP, and PVC are abbreviations for Metamorphosis-associated Contractile Structures, Antifeeding Prophage, and Photorhabdus Virulence Cassettes. b eCIS distribution in different genera. We calculated the eCIS distribution across genera using a Fisher exact test. The Odds Ratio represents the enrichment or depletion magnitude, with hotter colors representing enrichment, and colder colors representing depletion. Calculated p values were corrected for multiple testing using FDR to yield minus log10 q values, shown in shades of gray. Only selected Genera are shown. Source data are provided in Supplementary Data 1–2,5–6.Full size imageNext, we looked for genetic mechanisms that may mediate the eCIS HGT. Using Deeplasmid, a new plasmid prediction tool that we developed18, we identified that 7.6% of eCIS are likely plasmid-borne (Fig. 1a and Supplementary Fig. 6, Supplementary Data 5, Methods). In other cases, we found a clear signature of eCIS operon integration into a specific bacterial chromosome (Supplementary Fig. 7). For example, we identified a likely homologous recombination event between identical tRNA genes, a classical integration site19 (Supplementary Fig. 7b). These genomic integration events and the plasmid-borne eCIS operons shed light on the mechanisms through which eCIS loci have been horizontally propagated in microbial genomes.eCIS displays a highly biased taxonomic distributionGiven the propensity of eCIS to transfer between microbes as phylogenetically distant as bacteria and archaea, we were surprised by its scarcity in microbial genomes. We tested if eCIS loci are homogeneously distributed across microbial taxa and found that eCIS are mostly constrained to particular taxa (Fig. 1b, Supplementary Data 6). Strikingly, we found that it is present in 100% (18/18) of Photorhabdus genomes in our dataset (Fisher exact test, odds ratio = infinity, q value = 2.97e−28), 89% of sequenced Chitinophaga (odds ratio = 276, q value = 1.69e−35), 86% of sequenced Dickeya (odds ratio = 211, q value = 3.78e−18), and 69% of sequenced Algoriphagus (odds ratio = 73, q value = 1.99e−24). These genera are known as environmental microbes; Photorhabdus is a commensal of entomopathogenic nematodes20, Chitinophaga is a soil microbe and a fungal endosymbiont21, Dickeya is a plant and pea aphid pathogen22,23, and Algoriphagus is an aquatic or terrestrial microbe24,25,26,27,28. In contrast, eCIS is strongly depleted from the most cultured and sequenced genera of Gram-positive and negative human pathogens, including Staphylococcus, Escherichia, Salmonella, Streptococcus, Acinetobacter, and Klebsiella. Strikingly, within these genera, for which our repository had 18,355 genomes, eCIS was totally absent (odds ratio = 0, q value ≤ 3.86E-16 for each one of these genera), suggesting a very potent purifying selection acting against eCIS integration into these microbial genomes, despite the eCIS operons’ tendency for extensive lateral transfer and its presence in other host-associated systems. Interestingly, 146 genomes, mostly from Photorhabdus, Dickeya, Actinokineospora, Streptomyces, Algoriphagus, Chitinophaga, Flavobacterium, and Calothrix genera, were found to contain more than one eCIS operon, ranging from 2 to 5 copies per genomes (Supplementary Data 7).eCIS presence is highly correlated with specific ecosystems, microbial lifestyles, and microbial hostsGiven the strong eCIS taxonomic bias we identified, we were curious to know if we could further associate eCIS with specific ecological features. To this end, we retrieved metadata available for all sequenced genomes in our repository (Methods). These traits include the microbial isolation site, ecosystem and habitat, microbial lifestyle and physiology, and the organisms hosting the microbes (Supplementary Data 8). We calculated the correlation of eCIS presence with certain microbial traits to identify significant enrichment and depletion patterns. This was done using a naïve enrichment test (Fisher exact test) together with a phylogeny-aware test, Scoary29, which is used to correct for the phylogenetic bias of the isolate genomes. Using this test we quantify to what extent the eCIS presence in a genome correlates with a certain trait, independently of the microbial phylogeny (Fig. 2, Supplementary Fig. 8). Notably, eCIS is positively correlated with terrestrial and aquatic environments, such as soil, sediments, lakes, and coasts, but is depleted from food production venues. In terms of microbial lifestyle and physiology, eCISs are enriched in environmental microbes, mostly symbiotic, and are depleted from pathogens (the vast majority of which were isolated from humans). eCISs are enriched in aerobic microbes that dwell in mild and cold temperatures. In general, the eCIS-encoding microbes tend to associate with terrestrial hosts including insects, nematodes, annelids, protists, fungi, and plants, and in aquatic hosts such as fish, sponges, and molluscs. Intriguingly, we detected a strong depletion from bacteria that were isolated from birds and mammals, including humans. We did find some eCIS isolated from bacteria associated with humans, but sparse and statistically depleted (Supplementary Fig. 8). Looking closer we also see that the operon is depleted from all tissues in which the human microbiome is abundant: oral and digestive systems, skin, and the urogenital tract. However, we detected a mild eCIS enrichment in the human gut commensal Bacteroides (Fig. 1b) and Parabacteroidetes genera. Bacteroides was recently reported by the Shikuma group as being eCIS-rich30.Fig. 2: eCIS-encoding microbes’ lifestyle and isolation.A Fisher exact test combined with a modified version of Scoary was used to perform a phylogeny-aware analysis of eCIS-encoding microbes’ metadata. The Odds Ratio represents the enrichment or depletion magnitude, with hotter colors representing enrichment, and colder colors representing depletion. The negative log10 of the q-values, shown in shades of gray, are corrected for multiple hypothesis testing. One q-value corresponds to the statistical significance of a two-sided Fisher exact test, and the other represents the same for the Scoary pairwise comparison test. Source Data are provided in Supplementary Data 8.Full size imageWe also see that eCIS is clearly associated with larger bacterial genomes in five bacterial phyla (Supplementary Fig. 9), although small genome endosymbionts are found to contain eCIS as well, for example, the Candidatus Regiella insecticola LSR1, which harbours an eCIS even though its genome size is ~2 Mbps and it contains 10 is defined “Core”, 4–10 is “Shell”, More

  • in

    Lifetime stability of social traits in bottlenose dolphins

    1.Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Sinn, D. L., Apiolaza, L. A. & Moltschaniwskyj, N. A. Heritability and fitness-related consequences of squid personality traits. J. Evol. Biol. 19, 1437–1447 (2006).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Dochtermann, N. A., Schwab, T. & Sih, A. The contribution of additive genetic variation to personality variation: heritability of personality. Proc. R. Soc. B Biol. Sci. 282, 20142201 (2015).Article 

    Google Scholar 
    4.Hensley, N. M., Cook, T. C., Lang, M., Petelle, M. B. & Blumstein, D. T. Personality and habitat segregation in giant sea anemones (Condylactis gigantea). J. Exp. Mar. Biol. Ecol. 426–427, 1–4 (2012).Article 

    Google Scholar 
    5.Holtmann, B., Santos, E. S. A., Lara, C. E. & Nakagawa, S. Personality-matching habitat choice, rather than behavioural plasticity, is a likely driver of a phenotype‒environment covariance. Proc. R. Soc. B Biol. Sci. 284, 20170943 (2017).6.Boyer, N., Réale, D., Marmet, J., Pisanu, B. & Chapuis, J.-L. Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. J. Anim. Ecol. 79, 538–547 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Schindler, D. E. et al. Population diversity and the portfolio effect in an exploited species. Nature 465, 609–612 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Cockrem, J. F. Corticosterone responses and personality in birds: Individual variation and the ability to cope with environmental changes due to climate change. Gen. Comp. Endocrinol. 190, 156–163 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Villegas‐Ríos, D., Réale, D., Freitas, C., Moland, E. & Olsen, E. M. Personalities influence spatial responses to environmental fluctuations in wild fish. J. Anim. Ecol. 87, 1309–1319 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Trnka, A., Požgayová, M., Samaš, P. & Honza, M. Repeatability of host female and male aggression towards a brood parasite. Ethology 119, 907–917 (2013).Article 

    Google Scholar 
    11.Bohn, S. J. et al. Personality predicts ectoparasite abundance in an asocial sciurid. Ethology 123, 761–771 (2017).Article 

    Google Scholar 
    12.Ballew, N. G., Mittelbach, G. G. & Scribner, K. T. Fitness consequences of boldness in juvenile and adult largemouth bass. Am. Nat. 189, 396–406 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Seyfarth, R. M., Silk, J. B. & Cheney, D. L. Variation in personality and fitness in wild female baboons. Proc. Natl Acad. Sci. 109, 16980–16985 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Twiss, S. D., Cairns, C., Culloch, R. M., Richards, S. A. & Pomeroy, P. P. Variation in female grey seal (Halichoerus grypus) reproductive performance correlates to proactive-reactive behavioural types. PLoS ONE 7, e49598 (2012).15.Sinn, D. L., Gosling, S. D. & Moltschaniwskyj, N. A. Development of shy/bold behaviour in squid: context-specific phenotypes associated with developmental plasticity. Anim. Behav. 75, 433–442 (2008).Article 

    Google Scholar 
    16.Monceau, K. et al. Larval personality does not predict adult personality in a holometabolous insect. Biol. J. Linn. Soc. 120, 869–878 (2017).Article 

    Google Scholar 
    17.Wilson, A. D. M. & Krause, J. Personality and metamorphosis: is behavioral variation consistent across ontogenetic niche shifts? Behav. Ecol. 23, 1316–1323 (2012).Article 

    Google Scholar 
    18.Brodin, T. Behavioral syndrome over the boundaries of life—carryovers from larvae to adult damselfly. Behav. Ecol. 20, 30–37 (2009).Article 

    Google Scholar 
    19.Cabrera, D., Nilsson, J. R. & Griffen, B. D. The development of animal personality across ontogeny: a cross-species review. Anim. Behav. 173, 137–144 (2021).Article 

    Google Scholar 
    20.Brommer, J. E. & Class, B. The importance of genotype-by-age interactions for the development of repeatable behavior and correlated behaviors over lifetime. Front. Zool. 12, S2 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    21.Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: a meta-analysis. Anim. Behav. 77, 771–783 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.López, B. D. When personality matters: personality and social structure in wild bottlenose dolphins, Tursiops truncatus. Anim. Behav. 163, 73–84 (2020).Article 

    Google Scholar 
    23.Yoshida, K. C. S., Meter, P. E. V. & Holekamp, K. E. Variation among free-living spotted hyenas in three personality traits. Behaviour 153, 1665–1722 (2016).Article 

    Google Scholar 
    24.Kulahci, I. G., Ghazanfar, A. A. & Rubenstein, D. I. Consistent individual variation across interaction networks indicates social personalities in lemurs. Anim. Behav. 136, 217–226 (2018).Article 

    Google Scholar 
    25.Dingemanse, N. J., Both, C., Drent, P. J. & Tinbergen, J. M. Fitness consequences of avian personalities in a fluctuating environment. Proc. R. Soc. Lond. B Biol. Sci. 271, 847–852 (2004).Article 

    Google Scholar 
    26.Polverino, G., Cigliano, C., Nakayama, S. & Mehner, T. Emergence and development of personality over the ontogeny of fish in absence of environmental stress factors. Behav. Ecol. Sociobiol. 70, 2027–2037 (2016).Article 

    Google Scholar 
    27.Gyuris, E., Feró, O. & Barta, Z. Personality traits across ontogeny in firebugs, Pyrrhocoris apterus. Anim. Behav. 84, 103–109 (2012).Article 

    Google Scholar 
    28.Stanley, C. R., Mettke-Hofmann, C. & Preziosi, R. F. Personality in the cockroach Diploptera punctata: Evidence for stability across developmental stages despite age effects on boldness. PLOS ONE 12, e0176564 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    29.Stamps, J. & Groothuis, T. G. G. The development of animal personality: relevance, concepts and perspectives. Biol. Rev. 85, 301–325 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Groothuis, T. G. G. & Trillmich, F. Unfolding personalities: the importance of studying ontogeny. Dev. Psychobiol. 53, 641–655 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Wuerz, Y. & Krüger, O. Personality over ontogeny in zebra finches: long-term repeatable traits but unstable behavioural syndromes. Front. Zool. 12, S9 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Petelle, M. B., McCoy, D. E., Alejandro, V., Martin, J. G. A. & Blumstein, D. T. Development of boldness and docility in yellow-bellied marmots. Anim. Behav. 86, 1147–1154 (2013).Article 

    Google Scholar 
    33.Urszán, T. J., Török, J., Hettyey, A., Garamszegi, L. Z. & Herczeg, G. Behavioural consistency and life history of Rana dalmatina tadpoles. Oecologia 178, 129–140 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Suomi, S. J., Novak, M. A. & Well, A. Aging in rhesus monkeys: Different windows on behavioral continuity and change. Dev. Psychol. 32, 1116 (1996).Article 

    Google Scholar 
    35.Réale, D., Reader, S. M., Sol, D., McDougall, P. T. & Dingemanse, N. J. Integrating animal temperament within ecology and evolution. Biol. Rev. 82, 291–318 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Cote, J. & Clobert, J. Social personalities influence natal dispersal in a lizard. Proc. R. Soc. B Biol. Sci. 274, 383–390 (2007).CAS 
    Article 

    Google Scholar 
    37.Johnson, J. C. & Sih, A. Precopulatory sexual cannibalism in fishing spiders (Dolomedes triton): a role for behavioral syndromes. Behav. Ecol. Sociobiol. 58, 390–396 (2005).Article 

    Google Scholar 
    38.Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Brent, L. J. N. et al. Genetic origins of social networks in rhesus macaques. Sci. Rep. 3, 1042 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    40.Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M. L. & Brent, L. J. N. Deconstructing sociality: the types of social connections that predict longevity in a group-living primate. Proc. R. Soc. B Biol. Sci. 286, 20191991 (2019).Article 

    Google Scholar 
    41.Stanton, M. A. & Mann, J. Early social networks predict survival in wild bottlenose dolphins. PLoS ONE 7, e47508 (2012).42.Silk, J. B., Alberts, S. C. & Altmann, J. Social relationships among adult female baboons (Papio cynocephalus) II. Variation in the quality and stability of social bonds. Behav. Ecol. Sociobiol. 61, 197–204 (2006).Article 

    Google Scholar 
    43.Seyfarth, R. M. & Cheney, D. L. The evolutionary origins of friendship. Annu. Rev. Psychol. 63, 153–177 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    44.Aplin, L. M. et al. Consistent individual differences in the social phenotypes of wild great tits, Parus major. Anim. Behav. 108, 117–127 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Wilson, A. D. M., Krause, S., Dingemanse, N. J. & Krause, J. Network position: a key component in the characterization of social personality types. Behav. Ecol. Sociobiol. 67, 163–173 (2013).Article 

    Google Scholar 
    46.Formica, V., Wood, C., Cook, P. & Brodie, E. Consistency of animal social networks after disturbance. Behav. Ecol. 28, 85–93 (2017).Article 

    Google Scholar 
    47.Rankin, R. W. et al. The role of weighted and topological network information to understand animal social networks: a null model approach. Anim. Behav. 113, 215–228 (2016).Article 

    Google Scholar 
    48.Strickland, K. & Frère, C. H. Predictable males and unpredictable females: repeatability of sociability in eastern water dragons. Behav. Ecol. 29, 236–243 (2018).Article 

    Google Scholar 
    49.Karniski, C., Krzyszczyk, E. & Mann, J. Senescence impacts reproduction and maternal investment in bottlenose dolphins. Proc. R. Soc. B Biol. Sci. 285, 20181123 (2018).Article 

    Google Scholar 
    50.Mann, J. Maternal Care and Offspring Development in Odontocetes. In: Ethology and Behavioral Ecology of Odontocetes (ed. Würsig, B.) 95–116 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-030-16663-2_5.51.Stanton, M. A. & Mann, J. Shark Bay Bottlenose Dolphins: A Case Study for Defining and Measuring Sociality. In: Primates and Cetaceans: Field Research and Conservation of Complex Mammalian Societies (eds. Yamagiwa, J. & Karczmarski, L.) 115–126 (Springer, 2014). https://doi.org/10.1007/978-4-431-54523-1_6.52.Frère, C. H. et al. Social and genetic interactions drive fitness variation in a free-living dolphin population. Proc. Natl Acad. Sci. 107, 19949–19954 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Frère, C. H. et al. Home range overlap, matrilineal and biparental kinship drive female associations in bottlenose dolphins. Anim. Behav. 80, 481–486 (2010).Article 

    Google Scholar 
    54.Tsai, Y.-J. J. & Mann, J. Dispersal, philopatry, and the role of fission-fusion dynamics in bottlenose dolphins. Mar. Mammal. Sci. 29, 261–279 (2013).Article 

    Google Scholar 
    55.Galezo, A. A., Krzyszczyk, E. & Mann, J. Sexual segregation in Indo-Pacific bottlenose dolphins is driven by female avoidance of males. Behav. Ecol. 29, 377–386 (2018).Article 

    Google Scholar 
    56.Smith, J. E., Memenis, S. K. & Holekamp, K. E. Rank-related partner choice in the fission–fusion society of the spotted hyena (Crocuta crocuta). Behav. Ecol. Sociobiol. 61, 753–765 (2007).Article 

    Google Scholar 
    57.Connor, R. C., Smolker, R. A. & Richards, A. F. Two levels of alliance formation among male bottlenose dolphins (Tursiops sp.). Proc. Natl Acad. Sci. 89, 987–990 (1992).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Smolker, R. A., Richards, A. F., Connor, R. C. & Pepper, J. W. Sex differences in patterns of association among indian ocean bottlenose dolphins. Behaviour 123, 38–69 (1992).Article 

    Google Scholar 
    59.Gibson, Q. A. & Mann, J. The size, composition and function of wild bottlenose dolphin (Tursiops sp.) mother–calf groups in Shark Bay, Australia. Anim. Behav. 76, 389–405 (2008).Article 

    Google Scholar 
    60.Mann, J., Stanton, M. A., Patterson, E. M., Bienenstock, E. J. & Singh, L. O. Social networks reveal cultural. Behav. tool.-using dolphins. Nat. Commun. 3, 980 (2012).
    Google Scholar 
    61.Wolak, M. E., Fairbairn, D. J. & Paulsen, Y. R. Guidelines for estimating repeatability. Methods Ecol. Evol. 3, 129–137 (2012).Article 

    Google Scholar 
    62.Villemereuil, P., de, Gimenez, O. & Doligez, B. Comparing parent–offspring regression with frequentist and Bayesian animal models to estimate heritability in wild populations: a simulation study for Gaussian and binary traits. Methods Ecol. Evol. 4, 260–275 (2013).Article 

    Google Scholar 
    63.Mann, J. Establishing trust: Sociosexual behaviour among Indian Ocean bottlenose dolphins and the development of male-male bonds. In Homosexual Behaviour in Animals: An Evolutionary Perspective (eds Vasey, P. & Sommer, V.) Chapter 4, pp. 107–130 (Cambridge University Press, 2006).64.Carter, K. D., Seddon, J. M., Frère, C. H., Carter, J. K. & Goldizen, A. W. Fission–fusion dynamics in wild giraffes may be driven by kinship, spatial overlap and individual social preferences. Anim. Behav. 85, 385–394 (2013).Article 

    Google Scholar 
    65.Murphy, D., Mumby, H. S. & Henley, M. D. Age differences in the temporal stability of a male African elephant (Loxodonta africana) social network. Behav. Ecol. 31, 21–31 (2020).
    Google Scholar 
    66.Bruck, J. N. Decades-long social memory in bottlenose dolphins. Proc. R. Soc. B Biol. Sci. 280, 20131726 (2013).Article 

    Google Scholar 
    67.Lukas, D. & Clutton‐Brock, T. Social complexity and kinship in animal societies. Ecol. Lett. 21, 1129–1134 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    68.Schradin, C. Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120346 (2013).Article 

    Google Scholar 
    69.Kappeler, P. M. & van Schaik, C. P. Evolution of primate social systems. Int. J. Primatol. 23, 707–740 (2002).Article 

    Google Scholar 
    70.Roberts, B. W. & DelVecchio, W. F. The rank-order consistency of personality traits from childhood to old age: a quantitative review of longitudinal studies. Psychol. Bull. 126, 3–25 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    71.Terracciano, A., Costa, P. T. & McCrae, R. R. Personality plasticity after age 30. Pers. Soc. Psychol. Bull. 32, 999–1009 (2006).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    72.Costa, P. T., McCrae, R. R. & Löckenhoff, C. E. Personality across the life span. Annu. Rev. Psychol. 70, 423–448 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    73.Harris, M. A. Personality stability from age 14 to age 77 years. Psychol. Aging 31, 862 (2016).74.Trochet, A. et al. Evolution of sex-biased dispersal. Q. Rev. Biol. 91, 297–320 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Turner, J. W., Bills, P. S. & Holekamp, K. E. Ontogenetic change in determinants of social network position in the spotted hyena. Behav. Ecol. Sociobiol. 72, 10 (2018).Article 

    Google Scholar 
    76.Brent, L. J. et al. Personality traits in rhesus macaques (Macaca mulatta) are heritable but do not predict reproductive output. Int. J. Primatol. 35, 188–209 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.Koski, S. E. Social personality traits in chimpanzees: temporal stability and structure of behaviourally assessed personality traits in three captive populations. Behav. Ecol. Sociobiol. 65, 2161–2174 (2011).Article 

    Google Scholar 
    78.Mann, J. & Sargeant, B. Like mother, like calf: The ontogeny of foraging traditions in wild Indian Ocean bottlenose dolphins (Tursiops sp.). In The Biology of Traditions: Models and Evidence (eds Fragaszy, D. & Perry, S.) pp. 236–266 (Cambridge University Press, 2003).79.Strickland, K., Mann, J., Foroughirad, V., Levengood, A. L. & Frère, C. H. Maternal effects and fitness consequences of individual variation in bottlenose dolphins’ ecological niche. J. Anim. Ecol. n/a, (2021).80.von Merten, S., Zwolak, R. & Rychlik, L. Social personality: a more social shrew species exhibits stronger differences in personality types. Anim. Behav. 127, 125–134 (2017).Article 

    Google Scholar 
    81.Réale, D. et al. Personality and the emergence of the pace-of-life syndrome concept at the population level. Philos. Trans. R. Soc. B Biol. Sci. 365, 4051–4063 (2010).Article 

    Google Scholar 
    82.Hall, M. L. et al. Animal personality and pace-of-life syndromes: do fast-exploring fairy-wrens die young? Front. Ecol. Evol. 3, 28 (2015).83.Wolf, M. & Weissing, F. J. An explanatory framework for adaptive personality differences. Philos. Trans. R. Soc. B Biol. Sci. 365, 3959–3968 (2010).Article 

    Google Scholar 
    84.Dingemanse, N. J. & Wolf, M. Recent models for adaptive personality differences: a review. Philos. Trans. R. Soc. B Biol. Sci. 365, 3947–3958 (2010).Article 

    Google Scholar 
    85.Highfill, L. E. & Kuczaj, S. A. Do bottlenose dolphins (Tursiops truncatus) have distinct and stable personalities? Aquat. Mamm. 33, 380 (2007).Article 

    Google Scholar 
    86.Kuczaj II, S. A., Highfill, L. & Byerly, H. The importance of considering context in the assessment of personality characteristics: evidence from ratings of dolphin personality. Int. J. Comp. Psychol. 25, 309–329 (2012).87.Mann, J., Connor, R. C., Barre, L. M. & Heithaus, M. R. Female reproductive success in bottlenose dolphins (Tursiops sp.): life history, habitat, provisioning, and group-size effects. Behav. Ecol. 11, 210–219 (2000).Article 

    Google Scholar 
    88.Bichell, L. M. V., Krzyszczyk, E., Patterson, E. M. & Mann, J. The reliability of pigment pattern-based identification of wild bottlenose dolphins. Mar. Mammal. Sci. 34, 113–124 (2018).Article 

    Google Scholar 
    89.Krützen, M. et al. A biopsy system for small cetaceans: darting success and wound healing in Tursiops spp. Mar. Mammal. Sci. 18, 863–878 (2002).Article 

    Google Scholar 
    90.Krzyszczyk, E. & Mann, J. Why become speckled? Ontogeny and function of speckling in Shark Bay bottlenose dolphins (Tursiops sp.). Mar. Mammal. Sci. 28, 295–307 (2012).Article 

    Google Scholar 
    91.Karniski, C. et al. A comparison of survey and focal follow methods for estimating individual activity budgets of cetaceans. Mar. Mammal. Sci. 31, 839–852 (2015).Article 

    Google Scholar 
    92.Stanton, M. A. Social networks and fitness consequences of early sociality in wild bottlenose dolphins (Tursiops sp.). (Georgetown University, 2011).93.Singer, J. D., Willett, J. B., Willett, C. W. E. P. J. B. & Willett, J. B. Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence. (Oxford University Press, 2003).94.Hadfield, J. D. MCMC Methods for Multi-Response Generalized Linear Mixed Models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).95.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).96.Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    97.Revelle, W. & Revelle, M. W. Package ‘psych’. Compr. R. Arch. Netw. 337, 338 (2015).
    Google Scholar 
    98.Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    99.Thys, B. et al. Exploration and sociability in a highly gregarious bird are repeatable across seasons and in the long term but are unrelated. Anim. Behav. 123, 339–348 (2017).Article 

    Google Scholar 
    100.McCrae, R. R. et al. Nature over nurture: temperament, personality, and life span development. J. Pers. Soc. Psychol. 78, 173–186 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    101.Lee, K. & Ashton, M. C. Psychometric properties of the HEXACO personality inventory. Multivar. Behav. Res. 39, 329–358 (2004).Article 

    Google Scholar 
    102.McCrae, R. R. & Costa, P. T., Jr The five-factor theory of personality. in Handbook of personality: Theory and research, 3rd ed 159–181 (The Guilford Press, 2008).103.Dominey, W. J. Alternative mating tactics and evolutionarily stable strategies. Am. Zool. 24, 385–396 (1984).Article 

    Google Scholar  More

  • in

    Untangling the influence of biotic and abiotic factors on habitat selection by a tropical rodent

    1.Webster, M. S. Role of predators in the early post-settlement demography of coral-reef fishes. Oecologia 131(1), 52–60 (2002).PubMed 
    Article 
    ADS 

    Google Scholar 
    2.Ward-Fear, G. et al. The ecological and life history correlates of boldness in free-ranging lizards. Ecosphere 9, e02125 (2018).Article 

    Google Scholar 
    3.Hyslop, N. L., Meyers, J. M., Cooper, R. J. & Stevenson, D. J. Effects of body size and sex of Drymarchon couperi (Eastern Indigo Snake) on habitat use, movements, and home range size in Georgia. J. Wildl. Manag. 78, 101–111 (2014).Article 

    Google Scholar 
    4.Roe, J. H., Kish, A. L. & Nacy, J. P. Variation and repeatability of home range in a forest-dwelling terrestrial turtle: implications for prescribed fire in forest management. J. Zool. 310(1), 71–81 (2020).CAS 
    Article 

    Google Scholar 
    5.Campanella, F., Auster, P. J., Taylor, J. C. & Muñoz, R. C. Dynamics of predator–prey habitat use and behavioral interactions over diel periods at sub-tropical reefs. PLoS ONE 14(2), e0211886 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    6.Ruttenberg, B. I. et al. Predator-induced demographic shifts in coral reef fish assemblages. PLoS ONE 6(6), e21062 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Delgado, M. D. M., Bettega, C., Martens, J. & Packert, M. Ecotypic changes of alpine birds to climate change. Sci. Rep. 9, 16082 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    8.He, P., Maldonado-Chaparro, A. A. & Farine, D. R. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav. Ecol. Sociobiol. 73, 9 (2019).Article 

    Google Scholar 
    9.Abramsky, Z., Rosensweig, M. L. & Subach, A. Measuring the benefit of habitat selection. Behav. Ecol. 13, 497–502 (2002).Article 

    Google Scholar 
    10.Rosenzweig, M. L. A theory of habitat selection. Ecology 62(2), 327–335 (1981).Article 

    Google Scholar 
    11.Fieberg, J., Matthiopoulos, J., Hebblewhite, M., Boyce, M. S. & Frair, J. L. Correlation and studies of habitat selection: problem, red herring or opportunity?. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365(1550), 2233–2244 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Manly, B. F., McDonald, L., Thomas, D., McDonald, T. L. & Erickson, W. P. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Springer, 2002).
    Google Scholar 
    13.Aplin, K. P. & Baverstock, P. R. Pale field-rat, Rattus tunneyi. In The Mammals of Australia 3rd edn (Eds. S. van Dyck and R. Strahan. Reed New Holland, 2008).14.B.O.M. Australian Bureau of Meterology. Australian Government, http://www.bom.gov.au/ (Accessed 25 May 2016).15.Thiele, K. R. & Prober, S. M. Assessment of impacts of feral horses (Equus caballus) in the Australian alps, part 1. Report to Australian Alps Liaison committee. https://www.yumpu.com/en/document/read/37598528/assessment-of-impacts-of-feral-horses-australian-alps-national- (1999).16.Ward-Fear, G., Brown, G. P., Pearson, D. J. & Shine, R. An invasive tree facilitates the persistence of native rodents on an overgrazed floodplain in tropical Australia. Austral. Ecol. 42, 385–393 (2017).Article 

    Google Scholar 
    17.Braithwaite, R. W. & Griffiths, A. D. The paradox of Rattus tunneyi: endangerment of a native pest. Wildl. Res. 2, 1–21 (1996).Article 

    Google Scholar 
    18.Clutton-Brock, T. H. Mammalian mating systems. Proc. R. Soc. Lond. B Biol. Sci. 236, 339–372 (1989).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    19.Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. The action plan for Australian Mammals 2012. (Eds. CSIRO; CSIRO Publishing, 2014).20.Young, S. & Hill, B. Threatened species of the Northern Territory: Pale Field-Rat Rattus tunneyi. Online factsheet. (Eds.Department of Land and Resource Management, Northern Territory Government.) https://nt.gov.au/__data/assets/pdf_file/0020/205517/pale-field-rat.pdf (2016).21.IUCN International Union for the Conservation of Nature. https://www.iucnredlist.org/species/19369/115150024#threats ( (Accessed 11 May 2021).22.O’Neill, S., Short, J. & Calver, M. The distribution, habitat preference and population dynamics of the pale field-rat (Rattus tunneyi) at Edel Land, Shark Bay, Western Australia: the role of refuges and refugia in population persistence. Wildl. Res. WR20005; (2021). (In press).23.Tuft, K. et al. Cats are a key threatening factor to the survival of local populations of native small mammals in Australia’s tropical savannas: evidence from translocations trials with Rattus tunneyi. Wildl. Res. (2021). (WR20193; In press).24.Parsons, W. & Cuthbertson, E. Noxious Weeds of Australia (CSIRO Publishing, 1992).
    Google Scholar 
    25.W.A. Government. Chinee apple: declared pest. Online factsheet (Eds. Department of Agriculture and Fisheries WA). https://www.agric.wa.gov.au/declared-plants/chinee-apple-declared-pest (2016).26.Greenhouse, S. W. & Geisser, S. On methods in the analysis of profile data. Psychometrika 24, 95–112 (1959).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    27.Brown, J. S. Patch use as an indicator of habitat preference, predation risk, and competition. Behav. Ecol. Sociobiol. 22, 37–47 (1988).Article 

    Google Scholar 
    28.Charnov, E. L. Optimal foraging, the marginal value theorem. Theor. Popul. Biol. 9, 129–136 (1976).CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    29.Bedoya-Perez, M., Carthey, A. R., Mella, V. A., McArthur, C. & Banks, P. A practical guide to avoid giving up on giving-up densities. Behav. Ecol. Sociobiol. 67(10), 1–13 (2013).Article 

    Google Scholar 
    30.Long, J. L. Introduced Mammals of the World: Their History, Distribution Ad Influence (CSIRO Publishing, 2003).Book 

    Google Scholar 
    31.Kutt, A. S. & Gordon, I. J. Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savvanas. Anim. Conserv. 15(4), 416–425 (2012).Article 

    Google Scholar 
    32.Legge, S., Kennedy, M. S., Lloyd, R., Murphy, S. & Fisher, A. Rapid recovery of mammal fauna in the central Kimberley, northern Australia, following removal of introduced herbivores. Austral. Ecol. 36(7), 791–799 (2011).Article 

    Google Scholar 
    33.Cherubin, R. C., Venn, S. E., Driscoll, D. A., Doherty, T. S. & Ritchie, E. G. Feral horse impacts on threatened plants and animals in sub-alpine and montane environments in Victoria, Australia. Ecol. Manag. Restor. 20, 47–56 (2019).Article 

    Google Scholar 
    34.Schulz, M., Schroder, M. & Green, K. The occurrence of the broad-toothed rat Mastacomys fuscus in relation to feral horse impacts. Ecol. Manag. Restor. 20, 31–36 (2019).Article 

    Google Scholar 
    35.Braithwaite, R. W. & Muller, W. Rainfall, groundwater and refuges: predicting extinctions of Australian tropical mammal species. Aust. J. Ecol. 22, 57–67 (1997).Article 

    Google Scholar 
    36.Short, J., O’Neill, S. & Richards, J. D. Irruption and collapse of a population of pale field-rat (Rattus tunneyi) at Heirisson Prong, Shark Bay, Western Australia. Aust. Mammal. 40, 36–46 (2018).Article 

    Google Scholar 
    37.Shrader, A. M., Brown, J. S., Kerley, G. I. H. & Kotler, B. P. Do free-ranging domestic goats show “landscapes of fear”? Patch use in response to habitat features and predator cues. J. Arid Environ. 72, 1811–1819 (2008).Article 
    ADS 

    Google Scholar 
    38.Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutierrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: a field experiment with a Neotropical rodent. Oikos 74, 259–264 (1995).Article 

    Google Scholar 
    39.Arthur, A. D., Pech, R. P. & Dickman, C. R. Effects of predation and habitat structure on the population dynamics of house mice in large outdoor enclosures. Oikos 108, 562–572 (2005).Article 

    Google Scholar 
    40.Brown, J. S. Vigilance, patch use and habitat selection: foraging under predation risk. Evol. Ecol. Res. 1, 49–71 (1999).
    Google Scholar 
    41.Wheeler, H. C. & Hik, D. S. Giving-up densities and foraging behaviour indicate possible effects of shrub encroachment on arctic ground squirrels. Anim. Behav. 95, 1–8 (2014).Article 

    Google Scholar 
    42.Carthey, A. J. R. & Banks, P. B. Foraging in groups affects giving-up densities: solo foragers quit sooner. Oecologia 178, 707–713. https://doi.org/10.1007/s00442-015-3274-x (2015).Article 
    PubMed 
    ADS 

    Google Scholar 
    43.Frank, A. S. K. et al. Experimental evidence that feral cats cause local extirpation of small mammals in Australia’s tropical savannas. J. Appl. Ecol. 51, 1486–1493 (2014).Article 

    Google Scholar 
    44.Hradsky, B. B., Mildwaters, C., Ritchie, E. G., Christie, F. & Di Stefano, J. Responses of invasive predators and native prey to a prescribed forest fire. J. Mammal. 98(3), 835–847 (2017).Article 

    Google Scholar 
    45.Newsome, A. E. & Corbett, L. K. Outbreaks of rodents in semi-arid and arid Australia: causes, preventions, and evolutionary considerations. In Rodents in Desert Environments (eds Prakash, I. & Gosh, P. K.) 117–153 (Dr W. Junk, 1975).Chapter 

    Google Scholar 
    46.Ims, R. A. Responses in spatial organization and behaviour to manipulations of the food resource in the vole Clethrionomys rufocanus. J. Anim. Ecol. 56, 585–596 (1987).Article 

    Google Scholar 
    47.Ims, R. A. Spatial clumping of sexually receptive females induces space sharing among male voles. Nature 335, 541–543 (1988).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    48.Ims, R. A. Male spacing systems in microtine rodents. Am. Nat. 130, 475–484 (1987).Article 

    Google Scholar 
    49.Crowcroft, P. Territoriality in wild house mice, Mus musculus. J. Mammal. 36, 299–301 (1955).Article 

    Google Scholar 
    50.Wolff, J. O. Rodent Societies : An Ecological and Evolutionary Perspective (The University of Chicago Press, 2007).Book 

    Google Scholar 
    51.Watts, C. H. S. & Aslin, H. J. The Rodents of Australia (Angus & Robertson Publishers, 1981).
    Google Scholar 
    52.Laundre, J. W. et al. The landscape of fear: the missing link to understand top-down and bottom-up controls of prey abundance?. Ecology 95, 1141–1152 (2014).PubMed 
    Article 

    Google Scholar 
    53.Creel, S., Christianson, D., Liley, S. & Winnie, J. A. Jr. Predation risk affects reproductive physiology and demography of elk. Science 315, 960 (2007).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    54.Lande, R. & Barrowclough, G. F. Effective population size, genetic variation and their use in population management. In Viable Populations for Conservation (ed. Soulé, M. E.) 87–123 (Cambridge University Press, 1987).Chapter 

    Google Scholar 
    55.Frankham, R. Genetics and extinction. Biol. Conserv. 126, 131–140 (2005).Article 

    Google Scholar 
    56.Watts, C. H. S. The foods eaten by some Australian rodents (Muridae). Aust. Wildl. Res. 4, 151–157 (1977).Article 

    Google Scholar 
    57.Zavaleta, E. S., Hobbs, R. J. & Mooney, H. A. Viewing invasive species removal in a whole ecosystem context. Trends Ecol. Evol. 16, 454–459 (2001).Article 

    Google Scholar 
    58.Schlaepfer, M. A., Sax, D. F. & Olden, J. D. The potential conservation value of non-native species. Conserv. Biol. 25, 428–437 (2011).PubMed 
    Article 

    Google Scholar 
    59.Utz, R. M., Slater, A., Rosche, H. & Carson, W. P. Do dense layers of invasive plants elevate the foraging intensity of small mammals in temperate deciduous forests? A case study from Pennsylvania, USA. NeoBiota 56, 73–88 (2020).Article 

    Google Scholar 
    60.Crooks, J. A. Assessing invader roles within changing ecosystems: historical and experimental perspectives on an exotic mussel in an urbanized lagoon. Biol. Invasions 3, 23–36 (2001).Article 

    Google Scholar 
    61.Guiden, P. W. & Orrock, J. L. Invasive exotic shrub modifies a classic animal–habitat relationship and alters patterns of vertebrate seed predation. Ecology 98, 321–327 (2017).PubMed 
    Article 

    Google Scholar 
    62.Gorman, D. & Turra, A. The role of mangrove revegetation as a means of restoring macrofaunal communities along degraded coasts. Sci. Total Environ. 566, 223–229 (2016).PubMed 
    Article 
    ADS 
    CAS 

    Google Scholar 
    63.Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46. https://doi.org/10.1111/rec.13035 (2019).Article 

    Google Scholar 
    64.Parreira, B. & Chikhi, L. On some genetic consequences of social structure, mating systmes, dispersal, and sampling. Proc. Natl. Acad. Sci. 112(26), E3318–E3326 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    65.Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar  More

  • in

    Smell of green leaf volatiles attracts white storks to freshly cut meadows

    1.Pyke, G. H., Pulliam, H. R. & Charnov, E. L. Optimal foraging: A selective review of theory and tests. Q. Rev. Biol. 52, 137–154 (1977).Article 

    Google Scholar 
    2.Bernays, E. A. & Wcislo, W. T. Sensory capabilities, information processing, and resource specialization. Q. Rev. Biol. 69, 187–204 (1994).Article 

    Google Scholar 
    3.Løkkeborg, S. Feeding behaviour of cod, Gadus morhua: Activity rhythm and chemically mediated food search. Anim. Behav. 56, 371–378 (1998).Article 

    Google Scholar 
    4.Niesterok, B., Krüger, Y., Wieskotten, S., Dehnhardt, G. & Hanke, W. Hydrodynamic detection and localization of artificial flatfish breathing currents by harbour seals (Phoca vitulina). J. Exp. Biol. 220, 174–185 (2017).Article 

    Google Scholar 
    5.Apfelbach, R., Blanchard, C. D., Blanchard, R. J., Hayes, R. A. & McGregor, I. S. The effects of predator odors in mammalian prey species: A review of field and laboratory studies. Neurosci. Biobehav. Rev. 29, 1123–1144 (2005).Article 

    Google Scholar 
    6.Nevo, O. & Heymann, E. W. Led by the nose: olfaction in primate feeding ecology. Evolutionary Anthropology: Issues, News, and Reviews 24, 137–148 (2015).Article 

    Google Scholar 
    7.Harel, R., Horvitz, N. & Nathan, R. Adult vultures outperform juveniles in challenging thermal soaring conditions. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    8.Amo, L., Galván, I., Tomás, G. & Sanz, J. J. Predator odour recognition and avoidance in a songbird. Funct. Ecol. 22, 289–293 (2008).Article 

    Google Scholar 
    9.Nevitt, G. A. Sensory ecology on the high seas: The odor world of the procellariiform seabirds. J. Exp. Biol. 211, 1706–1713 (2008).Article 

    Google Scholar 
    10.Wenzel, B. M. Olfaction 432–448 (Springer, 1971).Book 

    Google Scholar 
    11.Snyder, G. & Peterson, T. Olfactory sensitivity in the black-billed magpie and in the pigeon. Comp. Biochem. Physiol. A Physiol. 62, 921–925 (1979).Article 

    Google Scholar 
    12.Smith, S. A. & Paselk, R. A. Olfactory sensitivity of the turkey vulture (Cathartes aura) to three carrion-associated odorants. Auk 103, 586–592 (1986).Article 

    Google Scholar 
    13.Buitron, D. & Nuechterlein, G. L. Experiments on olfactory detection of food caches by black-billed magpies. Condor 87, 92–95 (1985).Article 

    Google Scholar 
    14.Rhoads, S. N. The power of scent in the turkey vulture. Am. Nat. 17, 829–833 (1883).Article 

    Google Scholar 
    15.Grigg, N. P. et al. Anatomical evidence for scent guided foraging in the turkey vulture. Sci. Rep. 7, 17408 (2017).ADS 
    Article 

    Google Scholar 
    16.Wetmore, A. The role of olfaction in food location by the turkey vulture (Cathartes aura). Oxford University Press (1965).17.Reynolds, A. M., Cecere, J. G., Paiva, V. H., Ramos, J. A. & Focardi, S. Pelagic seabird flight patterns are consistent with a reliance on olfactory maps for oceanic navigation. Proc. R. Soc. B. Biol. Sci. 282, 20150468 (2015).18.Wallraff, H. G. An amazing discovery: Bird navigation based on olfaction. J. Exp. Biol. 218, 1464–1466 (2015).Article 

    Google Scholar 
    19.Steiger, S. S., Fidler, A. E., Valcu, M. & Kempenaers, B. Avian olfactory receptor gene repertoires: Evidence for a well-developed sense of smell in birds?. Proc. R. Soc. Lond. B Biol. Sci. 275, 2309–2317 (2008).CAS 

    Google Scholar 
    20.Gwinner, H. & Berger, S. Starling males select green nest material by olfaction using experience-independent and experience-dependent cues. Anim. Behav. 75, 971–976 (2008).Article 

    Google Scholar 
    21.Krause, E. T. et al. Advances in the Study of Behavior Vol. 50, 37–85 (Elsevier, 2018).
    Google Scholar 
    22.Bonadonna, F. & Sanz-Aguilar, A. Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Anim. Behav. 84, 509–513 (2012).Article 

    Google Scholar 
    23.Halitschke, R., Stenberg, J. A., Kessler, D., Kessler, A. & Baldwin, I. T. Shared signals–‘alarm calls’ from plants increase apparency to herbivores and their enemies in nature. Ecol. Lett. 11, 24–34 (2008).PubMed 

    Google Scholar 
    24.Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C. & Preston, C. A. Volatile signaling in plant-plant interactions: “Talking trees” in the genomics era. Science 311, 812–815 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Koski, T. M. et al. Do insectivorous birds use volatile organic compounds from plants as olfactory foraging cues? Three experimental tests. Ethology 121, 1131–1144 (2015).Article 

    Google Scholar 
    26.Mäntylä, E., Blande, J. D. & Klemola, T. Does application of methyl jasmonate to birch mimic herbivory and attract insectivorous birds in nature?. Arthropod-Plant Interact. 8, 143–153 (2014).Article 

    Google Scholar 
    27.Gagliardo, A., Ioale, P., Filannino, C. & Wikelski, M. Homing pigeons only navigate in air with intact environmental odours: A test of the olfactory activation Hypothesis with GPS data loggers. PLoS ONE https://doi.org/10.1371/journal.pone.0022385 (2011).28.Gagliardo, A. et al. Oceanic navigation in Cory’s shearwaters: Evidence for a crucial role of olfactory cues for homing after displacement. J. Exp. Biol. 216, 2798–2805. https://doi.org/10.1242/jeb.085738 (2013).Article 
    PubMed 

    Google Scholar 
    29.Holland, R. A. et al. Testing the role of sensory systems in the migratory heading of a songbird. J. Exp. Biol. 212, 4065–4071. https://doi.org/10.1242/jeb.034504 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Wikelski, M. et al. True navigation in migrating gulls requires intact olfactory nerves. Sci. Rep. https://doi.org/10.1038/srep17061 (2015).31.Flack, A., Nagy, M., Fiedler, W., Couzin, I. D. & Wikelski, M. From local collective behavior to global migratory patterns in white storks. Science 360, 911–914. https://doi.org/10.1126/science.aap7781 (2018).ADS 
    Article 
    PubMed 

    Google Scholar 
    32.Klump, G. M., Kretzschmar, E. & Curio, E. The hearing of an avian predator and its avian prey. Behav. Ecol. Sociobiol. 18, 317–323. https://doi.org/10.1007/BF00299662 (1986).Article 

    Google Scholar 
    33.Wei, J. & Kang, L. Roles of (Z)-3-hexenol in plant-insect interactions. Plant Signal. Behav. 6, 369–371 (2011).CAS 
    Article 

    Google Scholar 
    34.Fall, R., Karl, T., Hansel, A., Jordan, A. & Lindinger, W. Volatile organic compounds emitted after leaf wounding: On-line analysis by proton-transfer-reaction mass spectrometry. J. Geophys. Res. Atmos. 104, 15963–15974 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Hansson, B. S. From organism to molecule and back-insect olfaction during 40 years. J. Chem. Ecol. 40, 409 (2014).CAS 
    Article 

    Google Scholar 
    36.Roper, T. J. Olfaction in birds. Adv. Study Behav. 28, 247–247 (1999).Article 

    Google Scholar 
    37.Safi, K., Gagliardo, A., Wikelski, M. & Kranstauber, B. How displaced migratory birds could use volatile atmospheric compounds to find their migratory corridor: A test using a particle dispersion model. Front. Behav. Neurosci. https://doi.org/10.3389/fnbeh.2016.00175 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Gagliardo, A. Forty years of olfactory navigation in birds. J. Exp. Biol. 216, 2165–2171 (2013).Article 

    Google Scholar 
    39.Papi, F. Olfactory navigation in birds. Experientia 46, 352–363 (1990).Article 

    Google Scholar 
    40.Hagelin, J. C. & Jones, I. L. Bird odors and other chemical substances: A defense mechanism or overlooked mode of intraspecific communication?. Auk 124, 741–761 (2007).Article 

    Google Scholar 
    41.Pollonara, E. et al. Olfaction and topography, but not magnetic cues, control navigation in a pelagic seabird: Displacements with shearwaters in the Mediterranean Sea. Sci. Rep. 5, 16486 (2015).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Environmental DNA signatures distinguish between tsunami and storm deposition in overwash sand

    1.Nicholls, R. J. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) Ch. 6 (Cambridge University Press, 2007).2.Gordon, M. et al. in Global Assessment Report on Disaster Risk Reduction Ch. 3 (UNDRR, 2019).3.Dominey-Howes, D. Documentary and geological records of tsunamis in the Aegean Sea region of Greece and their potential value to risk assessment and disaster management. Nat. Hazards 25, 195–224 (2002).Article 

    Google Scholar 
    4.Switzer, A. D., Yu, F., Gouramanis, C., Soria, J. & Pham, T. D. Integrated different records to assess coastal hazards at multi-century timescales. J. Coastal Res. 70, 723–728 (2014).Article 

    Google Scholar 
    5.Jankaew, K. et al. Medieval forewarning of the 2004 Indian Ocean tsunami in Thailand. Nature 455, 1228–1231 (2008).CAS 
    Article 

    Google Scholar 
    6.Liu, K. B. & Fearn, M. L. Reconstruction of prehistoric landfall frequencies of catastrophic hurricanes in northwestern Florida from lake sediment records. Quaternary Res. 54, 238–245 (2000).Article 

    Google Scholar 
    7.Donnelly, J. P. & Woodruff, J. D. Intense hurricane activity over the past 5,000 years controlled by El Nino and the West African monsoon. Nature 447, 465–468 (2007).CAS 
    Article 

    Google Scholar 
    8.Nanayama, F. et al. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424, 660–663 (2003).CAS 
    Article 

    Google Scholar 
    9.Gouramanis, C. et al. High-frequency coastal overwash deposits from Phra Thong Island, Thailand. Sci. Rep. 7, 1–9 (2017).Article 

    Google Scholar 
    10.Nanayama, F. et al. differences between the 1993 Hokkaido-nansei-oki tsunami and the 1959 Miyakojima typhoon at Taisei, southwestern Hokkaido, northern Japan. Sediment. Geol. 135, 255–264 (2000).Article 

    Google Scholar 
    11.Morton, R. A., Gelfenbaum, G. & Jaffe, B. E. Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment. Geol. 200, 184–207 (2007).Article 

    Google Scholar 
    12.Marriner, N. et al. Tsunamis in the geological record: Making waves with a cautionary tale from the Mediterranean. Sci. Adv. 3, e1700485 (2017).Article 

    Google Scholar 
    13.Vött, A. et al. Returning to facts: response to the refusal of tsunami traces in the ancient harbour of Lechaion (Gulf of Corinth, Greece) by ‘non-catastrophists’ – Reaffirmed evidence of harbour destruction by historical earthquakes and tsunamis in AD 69–79 and the 6th cent. AD and a preceding pre-historical event in the early 8th cent. BC. Zeitschriff Geomorphologie 61, 275–302 (2018).14.Shanmugam, G. The tsunamite problem. J. Sediment. Res. 76, 718–730 (2006).Article 

    Google Scholar 
    15.Chagué-Goff, C., Chan, J. C. H., Goff, J. & Gadd, P. Late Holocene record of environmental changes, cyclones and tsunamis in a coastal lake, Mangaia, Cook Islands. Isl. Arc 25, 333–349 (2016).Article 

    Google Scholar 
    16.Pham, D. T. et al. Elemental and mineralogical analysis of marine and coastal sediments from Phra Thong Island, Thailand: Insights into the provenance of coastal hazard deposits. Mar. Geol. 385, 274–292 (2017).CAS 
    Article 

    Google Scholar 
    17.Sawai, Y. et al. Diatom assemblages in tsunami deposits associated with the 2004 Indian Ocean Tsunami at Phra Thong Island, Thailand. Mar. Micropaleontol. 73, 70–79 (2009).Article 

    Google Scholar 
    18.Pilarczyk, J. E. et al. Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms. Palaeogrogr. Palaeocl. 413, 144–157 (2017).Article 

    Google Scholar 
    19.Gouramanis C. in Geological Records of Tsunamis and other Extreme Waves (eds Engel, M., Pilarczyk, J., May, S. M., Brill, D. & Garrett, E.) Ch. 13 (Elsevier, 2020).20.Goff, J., Chagué-Goff, C., Nichol, S., Jaffe, B. & Dominey-Howes, D. Progress in palaeotsunami research. Sediment. Geol. 243, 70–88 (2012).Article 

    Google Scholar 
    21.Asano, R. et al. Changes in bacterial communities in seawater-flooded soil in the four years after the 2011 Tohoku tsunami in Japan. J. Mar. Sci. Eng. 8, 76 (2020).Article 

    Google Scholar 
    22.Atwater, B. F. et al. Extreme waves in the British Virgin Islands during the last centuries before 1500 CE. Geosphere 13, 301–368 (2017).Article 

    Google Scholar 
    23.Jentsch, A. & White, P. A theory of pulse dynamics and disturbance in ecology. Ecology 100, e02734 (2019).Article 

    Google Scholar 
    24.Ramesh, S., Jayaprakashvel, M. & Mathivanan, N. Microbial status in seawater and coastal sediment during pre- and post-tsunami periods in the Bay of Bengal, India. Mar. Ecol. 27, 198–203 (2006).Article 

    Google Scholar 
    25.Nayak, A. K. et al. Post tsunami changes in soil properties of Andaman Islands, India. Environ. Monit. Assess. 170, 185–193 (2010).CAS 
    Article 

    Google Scholar 
    26.Godson, P. S., Chandrasekar, N., Kumar, S. K. & Vimi, P. V. Microbial diversity in coastal sediments during pre- and post-tsunami periods in the south east coast of India. Front. Biol. 9, 161–167 (2014).Article 

    Google Scholar 
    27.Hiraoka, S. et al. Genomic and metagenomics analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami. BMC Genomics 17, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    28.Asano, R. et al. Seawater inundation from the 2011 Tohoku Tsunami continues to strongly affect soil bacterial communities 1 year later. Microb. Ecol. 66, 639–646 (2013).CAS 
    Article 

    Google Scholar 
    29.Somboonna, N. et al. Microbial ecology of Thailand tsunami and non-tsunami affected terrestrials. PLoS ONE 9, e94236 (2014).Article 
    CAS 

    Google Scholar 
    30.Tas, N. et al. Impact of fire on active layer and permafrost microbial communities and metagenomes in an upland Alaskan boreal forest. ISME J 8, 1904–1919 (2014).CAS 
    Article 

    Google Scholar 
    31.Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).Article 

    Google Scholar 
    32.Kawagucci, S. et al. Disturbance of deep-sea environments induced by the M9. 0 Tohoku Earthquake. Sci. Rep. 2, 1–7 (2012).Article 
    CAS 

    Google Scholar 
    33.Morimura, S., Zeng, X., Noboru, N. & Hosono, T. Changes to the microbial communities within groundwater in response to a large crustal earthquake in Kumamoto, southern Japan. J. Hydrol. 581, 124341 (2020).Article 

    Google Scholar 
    34.Olsen, G. J., Lane, D. J., Giovannoni, S. J. & Pace, N. R. Microbial ecology and evolution: a ribosomal RNA approach. Annu. Rev. Microbiol. 40, 337–365 (1986).CAS 
    Article 

    Google Scholar 
    35.Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol. Biol. R 68, 669–685 (2004).CAS 
    Article 

    Google Scholar 
    36.Szczuciński, W. et al. Ancient sedimentary DNA reveals past tsunami deposits. Mar. Geol. 381, 29–33 (2016).Article 
    CAS 

    Google Scholar 
    37.Nealson, K. H. Sediment bacteria: who’s there, what are they doing, and what’s new? Annu. Rev. Earth Pl. Sc 25, 403–434 (1997).CAS 
    Article 

    Google Scholar 
    38.Srinivasalu, S., Karthikeyan, A., Switzer, A. D. & Gouramanis, C. Sedimentological characteristics of tsunami and storm deposits: a modern analogue from Southeast Indian Coast. In Paper Presented at the AOGS-AGU Join Assembly, Singapore, 13–17 September 2012 (2012)39.Switzer, A. D., Srinivasalu, S., Thangadurai, N. & Mohan, V. R. Bedding structures in Indian tsunami deposits provide clues to the dynamics of tsunami inundation. Geol. Soc. Spec. Publ. 361, 61–77 (2012).Article 

    Google Scholar 
    40.Gouramanis, C. et al. Same Same, but different: sedimentological comparison of recent storm and Tsunami deposits from the south-eastern coastline of India. In Paper presented in AGU Fall Meeting (NH21A-3811), San Francisco, California, 15 – 19 December 2014 (2014).41.Fisher, R. A., Corbet, A. S. & Williams, C. B. The relation between the number of species and the number of individuals in a random sample of animal population. J. Anim. Ecol. 12, 42–58 (1943).Article 

    Google Scholar 
    42.Hurlbert, S. H. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577–586 (1971).Article 

    Google Scholar 
    43.Xu, X. et al. Convergence of microbial assimilations of soil carbon, nitrogen, phosphorus, and sulfur in terrestrial ecosystems. Sci. Rep. 5, 1–8 (2020).
    Google Scholar 
    44.Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).Article 

    Google Scholar 
    45.Ranjard, L. et al. Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat. Commun. 4, 1–10 (2013).Article 
    CAS 

    Google Scholar 
    46.Shanmugam, G. Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat. Hazards 63, 5–30 (2012).Article 

    Google Scholar 
    47.Szczuciński, W. et al. Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan – Insights from diatoms, nannoliths and grain size distribution. Sediment. Geol. 282, 40–56 (2012).Article 

    Google Scholar 
    48.Costa, P. J. M. et al. The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits. Geol. Soc. Spec. Publ. 456, 167–190 (2018).Article 

    Google Scholar 
    49.Dominey-Howes, D., Dawson, A. & Smith, D. Late Holocene coastal tectonics at Falasarna, western Crete: a sedimentary study. Geol. Soc. Spec. Publ. 146, 343–352 (1999).Article 

    Google Scholar 
    50.Switzer, A. D. & Jones, B. G. Large-scale washover sedimentation in a freshwater lagoon from the southeast Australian coast: sea-level change, tsunami or exceptionally large storm? Holocene 18, 787–803 (2008).Article 

    Google Scholar 
    51.Waring, B. & Hawkes, C. V. Ecological mechanisms underlying soil bacterial responses to rainfall along a steep natural precipitation gradient. FEMS Microbiol. Ecol. 94, fiy001 (2018).52.Chénard, C. et al. Temporal and spatial dynamics of Bacteria, Archaea and protists in equatorial coastal waters. Sci. Rep. 9, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    53.Saxena, G. et al. Metagenomics reveals the influence of land use and rain on the benthic microbial communities in a tropical urban waterway. mSystems 3, e00136–17 (2018).54.Hadziavdic, K. et al. Characterization of the 18S rRNA gene for designing universal eukaryote specific primers. PloS ONE 9, e87624 (2014).Article 
    CAS 

    Google Scholar 
    55.Mariadassou, M., Pichon, S. & Ebert, D. Microbial ecosystems are dominated by specialist taxa. Ecol. Lett. 18, 974–982 (2015).Article 

    Google Scholar 
    56.Sheth, A., Sanyal, S., Jaiswal, A. & Gandhi, P. Effects of the December 2004 India Ocean Tsunami on the Indian mainland. Earthq. Spectra 22, S435–S473 (2006).Article 

    Google Scholar 
    57.Blot, S. J. & Pye, K. GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf. Proc. Land. 26, 1237–1248 (2001).Article 

    Google Scholar 
    58.Folk, R. L. & Ward, W. C. Brazos river bar: a study in the significance of grain size parameter. J. Sediment. Res. 27, 3–26 (1957).Article 

    Google Scholar 
    59.Sambrook, J., Russell, D., & Sambrook, J. in The Condensed Protocols from Molecular Cloning: A Laboratory Manual (eds Sambrook, J. & Russell, D. W.) (Cold Spring Harbor Laboratory Press, 2006).60.Wilkins, D., Van Sebille, E., Rintoul, S. R., Lauro, F. M. & Cavicchioli, R. Advection shapes Southern Ocean microbial assemblages independent of distance and environment effects. Nat. Commun. 4, 1–7 (2013).Article 
    CAS 

    Google Scholar 
    61.Allen, M. A. & Cavicchioli, R. Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci. Rep. 7, 1–16 (2017).Article 
    CAS 

    Google Scholar 
    62.Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet 17, 10–12 (2011).Article 

    Google Scholar 
    63.Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    64.Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11, 2639–2643 (2017).Article 

    Google Scholar 
    65.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    Article 

    Google Scholar 
    66.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2012).Article 
    CAS 

    Google Scholar 
    67.R Core Team. R: A language and environment for statistical computing. R https://www.R-project.org/ (2017).68.Oksanen, J. et al. vegan: Community Ecology Package. Vienna: R Foundation for Statistical Computing.[Google Scholar]. (2016).69.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral. Ecol. 26, 32–46 (2001).
    Google Scholar 
    70.Anderson, M. & Ter Braa, C. Permutation tests for multi-factorial analysis of variance. J. Stat. Comput. Sim. 73, 85–113 (2003).Article 

    Google Scholar 
    71.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 
    CAS 

    Google Scholar 
    72.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B: Met. 57, 289–300 (1995).
    Google Scholar 
    73.Murtagh, F. & Legendre, P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J. Classif. 31, 274–295 (2014).Article 

    Google Scholar  More