More stories

  • in

    Observed increasing water constraint on vegetation growth over the last three decades

    1.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    2.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    3.Porporato, A., D’odorico, P., Laio, F., Ridolfi, L. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25, 1335–1348 (2002).Article 
    ADS 

    Google Scholar 
    4.Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evolution 2, 1897 (2018).Article 

    Google Scholar 
    5.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).Article 
    ADS 

    Google Scholar 
    6.Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    7.Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    8.Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    9.Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    10.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. change 6, 791–795 (2016).CAS 
    Article 
    ADS 

    Google Scholar 
    11.Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).Article 
    ADS 

    Google Scholar 
    12.Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. change 9, 73 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    13.Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    14.Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    15.Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    16.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    17.Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    19.Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    20.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324 (2013).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    21.Jiao, W., Wang, L. & McCabe, M. F. Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ. 256, 112313 (2021).Article 
    ADS 

    Google Scholar 
    22.Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    23.Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612–612 (2007).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    24.Chen, T., Werf, G., Jeu, R., Wang, G. & Dolman, A. A global analysis of the impact of drought on net primary productivity. Hydrol. Earth Syst. Sci. 17, 3885 (2013).Article 
    ADS 

    Google Scholar 
    25.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    26.Kreuzwieser, J. & Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell Environ. 37, 2245–2259 (2014).CAS 

    Google Scholar 
    27.Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110 (2018).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    28.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    29.Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    30.Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2012).31.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52 (2013).Article 
    ADS 

    Google Scholar 
    32.Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17 (2013).Article 
    ADS 

    Google Scholar 
    33.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    34.Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).Article 
    ADS 

    Google Scholar 
    35.Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).CAS 
    Article 
    ADS 

    Google Scholar 
    36.Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 1–10 (2020).Article 
    CAS 

    Google Scholar 
    37.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evolution 1, 1438–1445 (2017).Article 

    Google Scholar 
    38.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    39.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article 
    ADS 

    Google Scholar 
    40.Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    41.Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202 (2017).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    42.Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    43.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    44.Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth-Sci. Rev. 196, 102870 (2019).CAS 
    Article 

    Google Scholar 
    45.Cronk, J. K. & Fennessy, M. S. Wetland Plants: Biology and Ecology. (CRC press, 2016).46.Zohaib, M. & Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total Environ. 714, 136719 (2020).47.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    48.Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2020).49.Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    50.Oliveira, P. J., Davin, E. L., Levis, S. & Seneviratne, S. I. Vegetation‐mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Glob. Change Biol. 17, 3453–3467 (2011).Article 
    ADS 

    Google Scholar 
    51.Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article 

    Google Scholar 
    52.Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Article 
    ADS 

    Google Scholar 
    53.Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).Article 
    ADS 

    Google Scholar 
    54.Palmer, W. C. Meteorological Drought. Vol. 30 (Citeseer, 1965).55.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    56.Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).57.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosyst. Environ. 126, 67–80 (2008).Article 

    Google Scholar 
    58.Gruber, A., Scanlon, T., Schalie, R. V. D., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).Article 
    ADS 

    Google Scholar 
    59.Dorigo, W. et al. ESA CCI Soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article 
    ADS 

    Google Scholar 
    60.Wagner, W. et al. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals) 7, 315–321 (2012).61.Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article 

    Google Scholar 
    62.Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article 
    ADS 

    Google Scholar 
    63.Tian, F. et al. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).Article 
    ADS 

    Google Scholar 
    64.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    65.Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article 
    ADS 

    Google Scholar 
    66.Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    67.Wu, D. et al. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 21, 3520–3531 (2015).Article 
    ADS 

    Google Scholar 
    68.Tei, S. & Sugimoto, A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob. Change Biol. 24, 4225–4237 (2018).Article 
    ADS 

    Google Scholar 
    69.Wen, Y. et al. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res.: Biogeosciences 124, 789–806 (2019).Article 
    ADS 

    Google Scholar 
    70.McKee, T. B., Doesken, N. J. & Kleist, J. in Proceedings of the 8th Conference on Applied Climatology. 179-183 (American Meteorological Society Boston, MA).71.Jiao, W., Tian, C., Chang, Q., Novick, K. A. & Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 268, 74–85 (2019).Article 
    ADS 

    Google Scholar  More

  • in

    Changes in soil microbial community and activity caused by application of dimethachlor and linuron

    1.Food and Agriculture Organization of the United Nations. FAOSTAT Database., http://www.fao.org/faostat/en/#home (2020).2.Sharma, A. et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 1, 1446. https://doi.org/10.1007/s42452-019-1485-1 (2019).CAS 
    Article 

    Google Scholar 
    3.Peterson, M. A., Collavo, A., Ovejero, R., Shivrain, V. & Walsh, M. J. The challenge of herbicide resistance around the world: A current summary. Pest. Manag. Sci. 74, 2246–2259. https://doi.org/10.1002/ps.4821 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    4.Landrigan, P. J. & Benbrook, C. GMOs, herbicides, and public health. N. Engl. J. Med. 373, 693–695 (2015).Article 

    Google Scholar 
    5.Horwath, W. R. The role of the soil microbial biomass in cycling nutrients. Microbial biomass: A paradigm shift in terrestrial biogeochemistry. World Sci. 41–66 https://doi.org/10.1142/9781786341310_0002 (2017).6.Meena, R. S. et al. Impact of agrochemicals on soil microbiota and management: A review. Land 9, 34 (2020).Article 

    Google Scholar 
    7.Perucci, P., Vischetti, C. & Battistoni, F. Rimsulfuron in a silty clay loam soil: Effects upon microbiological and biochemical properties under varying microcosm conditions. Soil Biol. Biochem. 31, 195–204 (1999).Article 

    Google Scholar 
    8.Huang, X. et al. Microbial catabolism of chemical herbicides: Microbial resources, metabolic pathways and catabolic genes. Pestic. Biochem. Physiol. 143, 272–297 (2017).CAS 
    Article 

    Google Scholar 
    9.Lewis, K. A., Tzilivakis, J., Warner, D. J. & Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. 22, 1050–1064. https://doi.org/10.1080/10807039.2015.1133242 (2016).CAS 
    Article 

    Google Scholar 
    10.Syngenta. Teridox label, https://www.syngenta.sk/sites/g/files/zhg356/f/etiketa_teridox_500_ec.pdf (2014).11.European Food Safety Authority. Conclusion regarding the peer review of the pesticide risk assessment of the active substance dimethachlor. EFSA J. 6, 169r (2008).
    Google Scholar 
    12.López-Ruiz, R., Romero-González, R., Ortega-Carrasco, E., Martínez Vidal, J. L. & Garrido Frenich, A. Degradation studies of dimethachlor in soils and water by UHPLC-HRMS: Putative elucidation of unknown metabolites. Pest. Manag. Sci. 76, 721–729. https://doi.org/10.1002/ps.5570 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    13.Rasmussen, J., Aamand, J., Rosenberg, P., Jacobsen, O. S. & Sørensen, S. R. Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: Multivariate correlation to simple soil parameters. Pest Manag. Sci. Formerly Pesticide Sci. 61, 829–837 (2005).CAS 
    Article 

    Google Scholar 
    14.European Food Safety Authority. Peer review of the pesticide risk assessment of the active substance linuron. EFSA J. 14, e04518 (2016).
    Google Scholar 
    15.Crouzet, O. et al. Response of soil microbial communities to the herbicide mesotrione: A dose-effect microcosm approach. Soil Biol. Biochem. 42, 193–202. https://doi.org/10.1016/j.soilbio.2009.10.016 (2010).CAS 
    Article 

    Google Scholar 
    16.Latkovic, D. et al. Case study upon foliar application of biofertilizers affecting microbial biomass and enzyme activity in soil and yield related prop. Biology 9, 452 (2020).CAS 
    Article 

    Google Scholar 
    17.Nannipieri, P. et al. Beyond microbial diversity for predicting soil functions: A mini review. Pedosphere 30, 5–17. https://doi.org/10.1016/S1002-0160(19)60824-6 (2020).Article 

    Google Scholar 
    18.Krogh, K. A., Halling-Sørensen, B., Mogensen, B. B. & Vejrup, K. V. Environmental properties and effects of nonionic surfactant adjuvants in pesticides: A review. Chemosphere 50, 871–901. https://doi.org/10.1016/S0045-6535(02)00648-3 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    19.García-Ortega, S., Holliman, P. J. & Jones, D. L. Toxicology and fate of Pestanal® and commercial propetamphos formulations in river and estuarine sediment. Sci. Total Environ. 366, 826–836. https://doi.org/10.1016/j.scitotenv.2005.08.008 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    20.Medo, J., Maková, J., Kovácsová, S., Majerčíková, K. & Javoreková, S. Effect of Dursban 480 EC (chlorpyrifos) and Talstar 10 EC (bifenthrin) on the physiological and genetic diversity of microorganisms in soil. J. Environ. Sci. Health B 50, 871–883 (2015).CAS 
    Article 

    Google Scholar 
    21.Cycoń, M., Piotrowska-Seget, Z. & Kozdrój, J. Dehydrogenase activity as an indicator of different microbial responses to pesticide-treated soils. Chem. Ecol. 26, 243–250. https://doi.org/10.1080/02757540.2010.495062 (2010).CAS 
    Article 

    Google Scholar 
    22.Singh, M. K., Singh, N. K. & Singh, S. P. In Plant Responses to Soil Pollution (eds Singh, P. et al.) 179–194 (Springer Singapore, 2020). https://doi.org/10.1007/978-981-15-4964-9_11Chapter 

    Google Scholar 
    23.Makova, J., Javorekova, S., Medo, J. & Majerčíková, K. Characteristics of microbial biomass carbon and respiration activities in arable soil and pasture grassland soil. J. Cent. Eur. Agric. 12, 0–0 (2011).Article 

    Google Scholar 
    24.Imfeld, G. & Vuilleumier, S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur. J. Soil Biol. 49, 22–30. https://doi.org/10.1016/j.ejsobi.2011.11.010 (2012).CAS 
    Article 

    Google Scholar 
    25.Nguyen, D. B., Rose, M. T., Rose, T. J., Morris, S. G. & van Zwieten, L. Impact of glyphosate on soil microbial biomass and respiration: A meta-analysis. Soil Biol. Biochem. 92, 50–57. https://doi.org/10.1016/j.soilbio.2015.09.014 (2016).CAS 
    Article 

    Google Scholar 
    26.Mesnage, R. & Antoniou, M. N. Ignoring adjuvant toxicity falsifies the safety profile of commercial pesticides. Front Public Health https://doi.org/10.3389/fpubh.2017.00361 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    27.Haney, R., Senseman, S., Krutz, L. & Hons, F. Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate. Biol. Fertil. Soils 35, 35–40. https://doi.org/10.1007/s00374-001-0437-1 (2002).CAS 
    Article 

    Google Scholar 
    28.Ratcliff, A. W., Busse, M. D. & Shestak, C. J. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34, 114–124. https://doi.org/10.1016/j.apsoil.2006.03.002 (2006).Article 

    Google Scholar 
    29.Sofo, A., Scopa, A., Dumontet, S., Mazzatura, A. & Pasquale, V. Toxic effects of four sulphonylureas herbicides on soil microbial biomass. J. Environ. Sci. Health B 47, 653–659. https://doi.org/10.1080/03601234.2012.669205 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    30.Lee, S.-H., Kim, M.-S., Kim, J.-G. & Kim, S.-O. Use of soil enzymes as indicators for contaminated soil monitoring and sustainable management. Sustainability 12, 8209 (2020).CAS 
    Article 

    Google Scholar 
    31.Wolińska, A. & Stępniewska, Z. Dehydrogenase activity in the soil environment. Dehydrogenases 10, 183–210 (2012).
    Google Scholar 
    32.Pozo, C., Salmeron, V., Rodelas, B., Martinez-Toledo, M. V. & Gonzalez-Lopez, J. Effects of the herbicide alachlor on soil microbial activities. Ecotoxicology 3, 4–10. https://doi.org/10.1007/BF00121384 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Sebiomo, A., Ogundero, V. & Bankole, S. Effect of four herbicides on microbial population, soil organic matter and dehydrogenase activity. Afr. J. Biotechnol. 10, 770–778 (2011).CAS 

    Google Scholar 
    34.Pertile, M. et al. Responses of soil microbial biomass and enzyme activity to herbicides imazethapyr and flumioxazin. Sci. Rep. 10, 7694. https://doi.org/10.1038/s41598-020-64648-3 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    35.Dzionek, A., Dzik, J., Wojcieszyńska, D. & Guzik, U. Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts 8, 434 (2018).Article 

    Google Scholar 
    36.Das, P., Pal, R. & Chowdhury, A. Effect of novaluron on microbial biomass, respiration, and fluorescein diacetate-hydrolyzing activity in tropical soils. Biol. Fertil. Soils 44, 387–391. https://doi.org/10.1007/s00374-007-0219-5 (2007).Article 

    Google Scholar 
    37.Zabaloy, M. C., Garland, J. L. & Gómez, M. A. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil. Ecol. 40, 1–12. https://doi.org/10.1016/j.apsoil.2008.02.004 (2008).Article 

    Google Scholar 
    38.Perucci, P., Dumontet, S., Bufo, S. A., Mazzatura, A. & Casucci, C. Effects of organic amendment and herbicide treatment on soil microbial biomass. Biol. Fertil. Soils 32, 17–23. https://doi.org/10.1007/s003740000207 (2000).CAS 
    Article 

    Google Scholar 
    39.Medo, J. et al. Effects of sulfonylurea herbicides chlorsulfuron and sulfosulfuron on enzymatic activities and microbial communities in two agricultural soils. Environ. Sci. Pollut. Res. 27, 41265–41278 (2020).CAS 
    Article 

    Google Scholar 
    40.Dennis, P. G., Kukulies, T., Forstner, C., Orton, T. G. & Pattison, A. B. The effects of glyphosate, glufosinate, paraquat and paraquat-diquat on soil microbial activity and bacterial, archaeal and nematode diversity. Sci. Rep. 8, 2119 (2018).ADS 
    Article 

    Google Scholar 
    41.Du, P. et al. Clomazone influence soil microbial community and soil nitrogen cycling. Sci. Total Environ. 644, 475–485. https://doi.org/10.1016/j.scitotenv.2018.06.214 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    42.Elsayed, O. F., Maillard, E., Vuilleumier, S., Millet, M. & Imfeld, G. Degradation of chloroacetanilide herbicides and bacterial community composition in lab-scale wetlands. Sci. Total Environ. 520, 222–231. https://doi.org/10.1016/j.scitotenv.2015.03.061 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    43.Chauhan, A., Pathak, A., Ewida, A. Y., Griffiths, Z. & Stothard, P. Whole genome sequence analysis of an Alachlor and Endosulfan degrading Pseudomonas strain W15Feb9B isolated from Ochlockonee River, Florida. Genom. Data 8, 134–138 (2016).Article 

    Google Scholar 
    44.Xu, C., Ding, J., Qiu, J. & Ma, Y. Biodegradation of acetochlor by a newly isolated Achromobacter sp. strain D-12. J. Environ. Sci. Health B 48, 960–966. https://doi.org/10.1080/03601234.2013.816601 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    45.Dwivedi, S., Singh, B., Al-Khedhairy, A., Alarifi, S. & Musarrat, J. Isolation and characterization of butachlor-catabolizing bacterial strain Stenotrophomonas acidaminiphila JS-1 from soil and assessment of its biodegradation potential. Lett. Appl. Microbiol. 51, 54–60 (2010).CAS 
    PubMed 

    Google Scholar 
    46.Mohanty, S. S. & Jena, H. M. Degradation kinetics and mechanistic study on herbicide bioremediation using hyper butachlor-tolerant Pseudomonas putida G3. Process Saf. Environ. Prot. 125, 172–181 (2019).CAS 
    Article 

    Google Scholar 
    47.Öztürk, B. et al. Comparative genomics suggests mechanisms of genetic adaptation towards the catabolism of the phenylurea herbicide linuron in Variovorax. Genome Biol. Evol. https://doi.org/10.1093/gbe/evaa085 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    48.Sørensen, S. R., Ronen, Z. & Aamand, J. Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Appl. Environ. Microbiol. 67, 5403–5409 (2001).Article 

    Google Scholar 
    49.Batisson, I., Pesce, S., Besse-Hoggan, P., Sancelme, M. & Bohatier, J. Isolation and characterization of diuron-degrading bacteria from lotic surface water. Microb. Ecol. 54, 761–770 (2007).CAS 
    Article 

    Google Scholar 
    50.Villaverde, J., Rubio-Bellido, M., Merchán, F. & Morillo, E. Bioremediation of diuron contaminated soils by a novel degrading microbial consortium. J. Environ. Manag. 188, 379–386 (2017).CAS 
    Article 

    Google Scholar 
    51.Cassel, D. & Nielsen, D. Field capacity and available water capacity. Methods Soil Anal. Part 1 Phys. Mineral. Methods 5, 901–926 (1986).
    Google Scholar 
    52.Alef, K. Soil respiration. In Methods in Applied Soil Microbiology and Biochemistry (eds Alef, P. & Nannipieri, K.) 214–218 (Academic Press, 1995).
    Google Scholar 
    53.Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1–e1 (2013).CAS 
    Article 

    Google Scholar 
    54.Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).Article 

    Google Scholar 
    55.Vetrovský, T., Baldrian, P., Morais, D. & Berger, B. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 1, 3 (2018).
    Google Scholar 
    56.Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    Article 

    Google Scholar 
    57.Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    58.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).CAS 
    Article 

    Google Scholar 
    59.Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 1–5 https://doi.org/10.1038/s41587-020-0548-6 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    60.Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).Article 

    Google Scholar 
    61.Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J. & Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J 5, 169–172 (2011).Article 

    Google Scholar 
    62.Vance, E. D., Brookes, P. C. & Jenkinson, D. S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707 (1987).CAS 
    Article 

    Google Scholar 
    63.Casida, L. Jr., Klein, D. & Santoro, T. Soil dehydrogenase activity. Soil Sci. 98, 371–376 (1964).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Green, V. S., Stott, D. E. & Diack, M. Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biol. Biochem. 38, 693–701. https://doi.org/10.1016/j.soilbio.2005.06.020 (2006).CAS 
    Article 

    Google Scholar 
    65.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).66.Oksanen, J. et al. Package ‘vegan’. Community ecology package, version 2 (2013). More

  • in

    Production of basil (Ocimum basilicum L.) under different soilless cultures

    The experiment was conducted at Agricultural and Bio-Systems Engineering Department, Faculty of Agriculture Moshtohor, Benha University, Egypt (latitude 30° 21′ N and 31° 13′ E), during the period of May to July, 2019 season under the university guidelines and legislation. Basil seedlings were sown in the plastic cups (7 cm diameter and 7 cm height) filled with peat moss. The cups were irrigated daily using water with nutrient solution (Ca(NO3)2, 236 g L−1, KNO3, 101 g L−1, K2SO4, 115 g L−1, KH2PO4, 136 g L−1, MgSO4 246 g L−1 and chelates for trace elements into preacidified groundwater (from the following ppm concentration are achieved in this formulation: N = 210, P = 31, K = 234, Ca = 200, Mg = 48, S = 64, Fe = 14, Mn = 0.5, Zn = 0.05, Cu = 0.02, B = 0.5, Mo = 0.01)). Two weeks old basil seedlings were planted at 9.0 plant m−2 in the experimental tanks. These seedlings were planted according to the permission of Benha university rules and legislation.Culture systems descriptionFigure 1a,b show the experimental setup. It shows the system which consists of hydroponic system, aeroponic system, soilless substrate, solution system and pumps.Figure 1(a) The experimental setup. (b) Images of system.Full size imageThe hydroponic system (Deep Water Culture (DWC)) consists of three rectangular polyethylene tanks that used for basil plants culture. Dimensions of each tank are 80 cm long, 40 cm wide and 30 cm high. The slope of hydroponic tanks was 2% and stand 1 m high above the ground. The hydroponic tanks were covered with foam boards to support the plants. Each hydroponic tank provided with an air blower (Model NS 780—Flow Rate 850 L h−1—Head 1.5 m—Power 15 W, China) to increase dissolved oxygen concentrations. The solution was circulated by a pump (Model First QB60—Flow Rate 30 L min−1—Head 25 m—Power 0.5 hp, China) from the solution tank to the upper ends of the hydroponic tanks. Small tubes (16 mm) were used to provide tanks with solution in a closed system.Aeroponic system consists of three rectangular polyethylene tanks that used for basil plants culture. Dimensions of each tank are 80 cm long, 40 cm wide and 50 cm high. The aeroponic tanks were established 1 m above the ground. Each aeroponic tank was divided into two parts, the lower part was made from polyethylene and the upper part was made from wood. The aeroponic tanks were covered with foam boards to support the plants. Each aeroponic tank was provided with two fog nozzles (Model M3MNWT5M – Orifice 2 mm – Discharge 8 L h−1, India) located at the bottom of the tank sprayed nutrient solution into the tank in order to keep the roots wet. Small tubes (16 mm) were used to provide aeroponic tank with solution in a closed system.Soilless substrates consist are placed in three rows are 2 m long. Each row consists standard peat moss slabs (1.00 m × 0.20 m × 0.075 m). Basil plants were placed on row peat moss slabs with a drip irrigation system. There were three plants per slab giving a mean density of 9.0 plant m−2. Each plant was fed by a single drip.The circular polyethylene tank of the nutrient solution system 500 L capacity was used for collecting the drained solution by gravity from the ends of the three systems. The nutrient solutions were prepared manually once per ten days17,18 by dissolving appropriate amounts of Ca(NO3)2, 236 g L−1, KNO3, 101 g L−1, K2SO4, 115 g L−1, KH2PO4, 136 g L−1, MgSO4 246 g L−1 and chelates for trace elements into preacidified groundwater (from the following ppm concentration are achieved in this formulation: N = 210, P = 31, K = 234, Ca = 200, Mg = 48, S = 64, Fe = 14, Mn = 0.5, Zn = 0.05, Cu = 0.02, B = 0.5, Mo = 0.01). pH and Electrical Conductivity (EC) were further adjusted to 6.5–7.0 and 1.4–1.8 dS m−1, respectively, after salt addition. The average air ambient temperature was 25.97 ± 4.37 °C and the average water temperature was 24.03 ± 3.92 °C. The average relative humidity was 65.4% and the light intensity was 338.55 ± 40.06 W m−2.MeasurementsThree plants sample were taken during the vegetative and flowering stages (four and seven weeks after transplanting, respectively) for growth measurement and chemical analysis. Plant height, root length and the fresh and dry weight of leaves, stems and roots were determined. After measuring fresh mass, the plants were oven dried at 65 °C until constant weight was reached19. Total content of macro elements was evaluated after being digested20. Nitrogen was determined by Kjeldahl digestion methods21. Potassium, Calcium and magnesium were determined by Photofatometer (Model Jenway PFP7—Range 0—160 mmol L−1, USA) and phosphorus (P) was determined colorimetrically method22. The content of oil was determined in different organs: leaves, stems and inflorescences according to23.Water samples were taken, at inlet and outlet of the culture units for measuring nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) were measured every week at 10 am during the experimental period.Total production costThe cost calculation based on the following parameters was also performed:Fixed costs (Fc)Depreciation costs (Dc)$$D_{c} = frac{{P_{d} – S_{r} }}{{L_{d} }}$$
    (1)

    where Dc is the depreciation cost, EGP (Egyptian pound) year−1. ($ = 15.63 EGP). Pd is the system price, EGP. Sr is the salvage rate (0.1Pd) EGP. Ld is the system life, year.Interest costs (In):$$I_{n} = frac{{P_{d} + S_{r} }}{2} times {text{i}}_{{text{n}}}$$
    (2)

    where In is the interest, EGP year−1. in is the interest as compounded annually, decimal (12%). Shelter, taxes and insurance costs (Si).Shelter, taxes and insurance costs were assumed to be 3% of the purchase price of the automatic feeder (Pm).Then:$${text{Fixed,cost }} = {text{ D}}_{{text{c}}} + {text{ I}}_{{text{n}}} + 0.03{text{ P}}_{{text{m}}} /{text{ hour, of, use ,per ,year}}$$
    (3)
    Variable (operating) costs (Vc)Repair and maintenance costs (Rm):$${text{R}}_{{text{m}}} = 100% ;{text{deprecation,cost/hour,of,use,per,year}}$$
    (4)
    Energy costs (E):$${text{E }} = {text{ EC }} times {text{ EP}}$$
    (5)

    where E is the energy costs, EGP h−1. EC is the electrical energy consumption, kWh. EP is the energy price, 0.57 EGP kW−1.Labor costs (La):$${text{L}}_{{text{a}}} = {text{ Salary, of, one, worker }} times {text{ No}}{text{. ,of, workers}}$$
    (6)

    where La is the Labor costs, EGP h−1. Salary of one worker = 10 EGP h−1. No. of workers = 1.Then:$${text{Variable,costs }} = {text{ Rm }} + {text{ E }} + {text{ La}}$$
    (7)
    Total costs (Tc)$${text{Total ,costs }} = {text{ Fixed ,costs }} + {text{ Variable ,costs}}$$
    (8)

    Table 1 shows the input parameters of calculate total production costs of basil plants grown in different soilless systems.Table 1 The input parameters of calculate total production costs of basil plants grown in different soilless systems.Full size tableNutrients consumption rateThe Nutrients consumption rate were calculated as the differences between the nutrients at inlet and outlet of culture units by the following formula24:$$C_{{Nc}} = frac{{Nc_{{in}} – Nc_{{out}} }}{{{text{Number, of ,plants}}}} times Q times {text{24}}$$
    (9)

    where CNc is the nutrients consumption rate, mg day−1 plant −1. Ncin is the nutrients at inlet of the hydroponic unit, mg L−1. Ncout is the nutrients at outlet of the hydroponic unit, mg L−1. Q is the discharge, L h−1.Model development of nutrient consumptionModel assumptions:

    N, P, K, Ca and Mg are the nutrients used in study.

    The plants are uniformity distributed in the solution, so they work as a uniform sink for water and minerals with space at any time.

    The root systems are uniformly dispersed in the solution with uniform root length density at any time.

    The whole root system uptake characteristics are uniform.

    Water losses by evaporation are negligible.

    The simplest nutrient consumption models relate the nutrient consumption to the concentration gradient using some sort of proportionality factor such as root permeability or conductivity25,26. The nutrient consumption was determined by using the following equation:$$NC = a_{{NC}} cdot Delta {text{C }}$$
    (10)

    where NC is the nutrient consumption, mg plant−1 day−1. ∆C is the concentration gradient, mg plant−1 day−1. aNC is the proportionality factor, dimensionless.A similar model of nutrient consumption takes into consideration the differing effects caused by variations in root growth stage. Assuming that growth follows a first order differential equation and assuming that the root growth is exponential27, then Eq. (11) can be derived. This equation is presented in similar form to Eq. (10) and use the following equation:$$NC = left( {frac{{left( {C_{{plant}} – {text{C}}_{{{text{plant0}}}} } right)}}{{A_{r} – A_{{r0}} }}} right) cdot left( {frac{{{text{ln}}left( {frac{{{text{A}}_{{text{r}}} }}{{{text{A}}_{{{text{r0}}}} }}} right)}}{{{text{t}} – {text{t}}_{0} }}} right){text{.A}}_{{text{r}}}$$
    (11)

    where Cplanto is the concentration of the nutrients in the plant at time t0, mg plant−1. Ar is the root surface area at time t, cm2 plant−1. Ar0 is the root surface area at time t0, cm2 plant−1.Root surface area was calculated from root length and mean root radius using the following equation:$$A_{r} = {text{2}}pi {text{r}}_{{text{0}}} {text{L}}_{{text{r}}}$$
    (12)
    The root length increment using the following equation28:$$Delta L_{r} = Delta DW_{{root}} {text{v }}$$
    (13)

    where ∆Lr is the root length increment, cm day−1. ∆DWroot is the daily amount of root dry mass increment, g day−1. v is the ratio of root length and mass of roots, cm g−1.The daily amount of dry weight of roots is calculated from the following equation29:$$Delta DW_{{root}} = left{ {begin{array}{*{20}l} {{text{5LAI}}} hfill & {{text{for,LAI}} le {{0}}{{.5}}} hfill \ {{{2}}{{.5}} + {{23}}{{.9}}left( {{text{LAI-0}}{{.5}}} right)} hfill & {{text{for,LAI}} > {{0}}{{.5}}} hfill \ end{array} } right.$$
    (14)

    where LAI is the leaf area index.Leaf area index was changed in the same proportions as root length density to maintain a constant ratio between roots and shoots. The leaf area index is calculated from the following equation30:$$LAI = frac{{LAI_{{max }} }}{{1 + K_{2} e^{{left( { – k_{1} t} right)}} }}$$
    (15)

    where LAImax is the maximum leaf area index. K2 and k1 are the coefficients of the growth functions.All computational procedures of the model were carried out using Excel spreadsheet. The computer program was devoted to mass balance for predicting the nutrients consumption. The differences between the predicted and measured values were evaluated using RMSE indicator (root means square error) which is calculated using the following equation:$$RMSE = sqrt {frac{{sum {left( {Predicted-Measured} right)^{2} } }}{n}}$$
    (16)
    The parameters used in the model that were obtained from the literature are listed in Table 2. Figure 2 shows flow chart of the model.Table 2 The parameters used in the model.Full size tableFigure 2Flow chart of nutrients consumption rate.Full size imageStatistical analysisThree replicates of each treatment were allocated in a Randomize Complete Block Design (RCBD) in the system. Data were analyzed one-way ANOVA (analysis of variance) using statistical package for social sciences (spss v21). Means were separated using New Duncan Multiple Range Test (DMRT). Data presented are mean ± standard division (SD) of four replicates. More

  • in

    Impacts of detritivore diversity loss on instream decomposition are greatest in the tropics

    1.van der Plas, F. Biodiversity and ecosystem functioning in naturally assembled communities. Biol. Rev. 94, 1220–1245 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    2.Isbell, F. et al. Quantifying effects of biodiversity on ecosystem functioning across times and places. Ecol. Lett. 21, 763–778 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Naeem, S., Thompson, L. J., Lawler, S. P., Lawton, J. H. & Woodfin, R. M. Declining biodiversity can alter the performance of ecosystems. Nature 368, 734–737 (1994).ADS 
    Article 

    Google Scholar 
    4.Cardinale, B. J. Impacts of biodiversity loss. Science 336, 552–553 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Caliman, A., Pires, A. F., Esteves, F. A., Bozelli, R. L. & Farjalla, V. F. The prominence of and biases in biodiversity and ecosystem functioning research. Biodivers. Conserv 19, 651–664 (2010).Article 

    Google Scholar 
    6.Cardinale, B. J. et al. The functional role of producer diversity in ecosystems. Am. J. Bot. 98, 572–592 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Porre R. J., van der Werf W., De Deyn G. B., Stomph T. J. & Hoffland E. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biol. Biochem. 145, 107791 (2020).8.Kou, L. et al. Diversity-decomposition relationships in forests worldwide. eLife 9, e55813 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Srivastava, D. et al. Diversity has stronger top-down than bottom-up effects on decomposition. Ecology 90, 1073–1083 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    10.Gessner, M. O. et al. Diversity meets decomposition. Trends Ecol. Evol. 25, 372–380 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Cebrian, J. Patterns in the fate of production in plant communities. Am. Nat. 154, 449–468 (1999).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).Article 

    Google Scholar 
    13.Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Hotchkiss, E. R. et al. Sources of and processes controlling CO2 emissions change with the size of streams and rivers. Nat. Geosci. 8, 696–699 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Yao, Y. et al. Increased global nitrous oxide emissions from streams and rivers in the Anthropocene. Nat. Clim. Change 10, 138–142 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    16.Gessner, M. O., Chauvet, E. & Dobson, M. A perspective on leaf litter breakdown in streams. Oikos 85, 377–384 (1999).Article 

    Google Scholar 
    17.Marks, J. C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. 50, 547–568 (2019).Article 

    Google Scholar 
    18.Tonin, A. M. et al. Interactions between large and small detritivores influence how biodiversity impacts litter decomposition. J. Anim. Ecol. 87, 1465–1474 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Jonsson, M. & Malmqvist, B. Mechanisms behind positive diversity effects on ecosystem functioning: testing the facilitation and interference hypotheses. Oecologia 134, 554–559 (2003).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Bastian, M., Pearson, R. G. & Boyero, L. Effects of diversity loss on ecosystem function across trophic levels and ecosystems: a test in a detritus-based tropical food web. Austral. Ecol. 33, 301–306 (2008).Article 

    Google Scholar 
    21.McKie, B. G., Schindler, M., Gessner, M. O. & Malmqvist, B. Placing biodiversity and ecosystem functioning in context: environmental perturbations and the effects of species richness in a stream field experiment. Oecologia 160, 757–770 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    22.McKie, B. G. et al. Ecosystem functioning in stream assemblages from different regions: contrasting responses to variation in detritivore richness, evenness and density. J. Anim. Ecol. 77, 495–504 (2008).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    23.Tylianakis, J. M. Resource heterogeneity moderates the biodiversity-function relationship in real world ecosystems. PLoS Biol. 6, e122 (2008).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Boyero, L. et al. A global experiment suggests climate warming will not accelerate litter decomposition in streams but may reduce carbon sequestration. Ecol. Lett. 14, 289–294 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    25.Boyero, L. et al. Global patterns of stream detritivore distribution: implications for biodiversity loss in changing climates. Glob. Ecol. Biogeogr. 21, 134–141 (2012).Article 

    Google Scholar 
    26.Boyero, L. et al. Global distribution of a key trophic guild contrasts with common latitudinal diversity patterns. Ecology 92, 1839–1848 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    27.Handa, I. T. et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature 509, 218–221 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Borer, E. T. et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5, 65–73 (2014).Article 

    Google Scholar 
    29.Fraser, L. H. et al. Coordinated distributed experiments: an emerging tool for testing global hypotheses in ecology and environmental science. Front. Ecol. Environ. 11, 147–155 (2013).Article 

    Google Scholar 
    30.Woodward, G. et al. Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336, 1438–1440 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Jonsson, M. & Malmqvist, B. Ecosystem process rate increases with animal species richness: evidence from leaf-eating, aquatic insects. Oikos 89, 519–523 (2000).Article 

    Google Scholar 
    32.Boyero, L., Ramírez, A., Dudgeon, D. & Pearson, R. G. Are tropical streams really different? J. North Am. Benthol. Soc. 28, 397–403 (2009).Article 

    Google Scholar 
    33.Jonsson, M., Malmqvist, B. & Hoffsten, P. O. Leaf litter breakdown rates in boreal streams: does shredder species richness matter? Freshw. Biol. 46, 161–171 (2001).Article 

    Google Scholar 
    34.Cornejo, A. et al. Effects of multiple stressors associated with agriculture on stream macroinvertebrate communities in a tropical catchment. PLoS ONE 14, e0220528 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    35.Cornejo, A. et al. A common fungicide impairs stream ecosystem functioning through effects on aquatic hyphomycetes and detritivorous caddisflies. J. Environ. Manag. 263, 110425 (2020).CAS 
    Article 

    Google Scholar 
    36.Zubrod, J. P. et al. Long-term effects of fungicides on leaf-associated microorganisms and shredder populations-an artificial stream study. Environ. Toxicol. Chem. 36, 2178–2189 (2017).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.Rasmussen, J. J. et al. Effects of a triazole fungicide and a pyrethroid insecticide on the decomposition of leaves in the presence or absence of macroinvertebrate shredders. Aquat. Toxicol. 118-119, 54–61 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Dai, A. Drought under global warming: a review. Clim. Change 2, 45–65 (2011).
    Google Scholar 
    40.Tonin, A. M., Hepp, L. U., Restello, R. M. & Gonçalves, J. F. Understanding of colonization and breakdown of leaves by invertebrates in a tropical stream is enhanced by using biomass as well as count data. Hydrobiologia 740, 79–88 (2014).Article 

    Google Scholar 
    41.Pérez, J., Basaguren, A., Descals, E., Larrañaga, A. & Pozo, J. Leaf-litter processing in headwater streams of northern Iberian Peninsula: moderate levels of eutrophication do not explain breakdown rates. Hydrobiologia 718, 41–57 (2013).Article 

    Google Scholar 
    42.Friberg, N. et al. Biomonitoring of human impacts in freshwater ecosystems: the good, the bad and the ugly. Adv. Ecol. Res. 44, 211–278 (2011).Article 

    Google Scholar 
    43.Pennington, R. T., Cronk, Q. C. B. & Richardson, J. A. Introduction and synthesis: plant phylogeny and the origin of major biomes. Philos. Trans. R. Soc. Lond. B 359, 1455–1464 (2004).Article 

    Google Scholar 
    44.Proches, S. Latitudinal and longitudinal barriers in global biogeography. Biol. Lett. 2, 69–72 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Vanderpoorten, A., Gradstein, S. R., Carine, M. A. & Devos, N. The ghosts of Gondwana and Laurasia in modern liverwort distributions. Biol. Rev. 85, 471–487 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    46.Young, R. G., Matthaei, C. D. & Townsend, C. R. Organic matter breakdown and ecosystem metabolism: functional indicators for assessing river ecosystem health. J. North Am. Benthol. Soc. 27, 605–625 (2008).Article 

    Google Scholar 
    47.Gessner, M. O. & Chauvet, E. A case for using litter breakdown to assess functional stream integrity. Ecol. Appl 12, 498–510 (2002).Article 

    Google Scholar 
    48.Ramírez A., Pringle C. M., Wantzen K. M. in Tropical Stream Ecology (ed. Dudgeon, D.) (Academic Press, 2008).49.Tiegs, S. D., Akinwole, P. O. & Gessner, M. O. Litter decomposition across multiple spatial scales in stream networks. Oecologia 161, 343–351 (2009).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.Ferreira, V. et al. A global assessment of the effects of eucalyptus plantations on stream ecosystem functioning. Ecosystems 22, 629–642 (2018).Article 

    Google Scholar 
    51.Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    52.Boyero, L. et al. Latitude dictates plant diversity effects on decomposition. Sci. Adv. 7, eabe7860 (2021).53.Fugère, V., Lostchuck, E. & Chapman, L. J. Litter decomposition in Afrotropical streams: effects of land use, home-field advantage, and terrestrial herbivory. Freshw. Sci. 39, 497–507 (2020).54.Fenoy, E. et al. Temperature and substrate chemistry as major drivers of interregional variability of leaf microbial decomposition and cellulolytic activity in headwater streams. FEMS Microbiol. Ecol. 92, fiw169 (2016).55.López-Rojo, N. et al. Shifts in key leaf litter traits can predict effects of plant diversity loss on decomposition in streams. Ecosystems 24, 185–196 (2021).56.Araneda, M., Pérez, E. P. & Gasca-Leyva, E. White shrimp Penaeus vannamei culture in freshwater at three densities: condition state based on length and weight. Aquaculture 283, 13–18 (2008).Article 

    Google Scholar 
    57.Weya, J. M., Rumbiak, N. S., Hariyanto, S., Irawan, B. & Soegianto, A. Length-weight relationship and condition factor of crayfish from South Sorong and Jayawijaya, Papua, Indonesia. Croat. J. Fish. 75, 18–24 (2017).Article 

    Google Scholar 
    58.Poepperl, R. Biomass determination of aquatic invertebrates in the Northern German lowland using the relationship between body length and dry mass. Faunistisch-Ökologische Mitteilungen 7, 379–386 (1998).
    Google Scholar 
    59.Baumgärtner, D. & Rothhaupt, K. O. Predictive length–dry mass regressions for freshwater invertebrates in a pre‐alpine lake littoral. Int. Rev. Hydrobiol. 88, 453–463 (2003).Article 

    Google Scholar 
    60.Mehler, K., Acharya, K. & Sada, D. W. Spatial and temporal pattern in length-mass regressions of freshwater gastropods in Nevada Spring ecosystems. Malacologia 58, 167–177 (2015).Article 

    Google Scholar 
    61.Benke, A. C., Huryn, A. D., Smock, L. A. & Wallace, J. B. Length-mass relationships for freshwater macroinvertebrates in North America with particular reference to the southeastern United States. J. North Am. Benthol. Soc. 18, 308–343 (1999).Article 

    Google Scholar 
    62.Miyasaka, H. et al. Relationships between length and weight of freshwater macroinvertebrates in Japan. Limnology 9, 75–80 (2008).Article 

    Google Scholar 
    63.Costa, L. C., Kiffer, W. P. J., Casotti, C. G. & Moretti, M. S. Size-mass relationships in Trichodactylus fluviatilis (Decapoda: Brachyura: Trichodactylidae), a macroconsumer in coastal streams of the Atlantic Forest, southeastern Brazil. J. Crust. Biol. 38, 539–546 (2018).Article 

    Google Scholar 
    64.Wood, S. N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 99, 673–686 (2004).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    65.Wood S. N. Generalized Additive Models: An Introduction with R 2nd edn (Chapman and Hall/CRC, 2017).66.Wagenmakers, E. J. & Farrell, S. AIC model selection using Akaike weights. Psychon. Bull. Rev. 11, 192–196 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    67.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith G. M. Mixed Effects Models and Extensions in Ecology With R (Springer, 2009).68.Ieno, E. N. & Zuur, A. F. Beginner’s Guide to Data Exploration and Visualisation with R (2015).69.Pinheiro, J. C., Bates, D. M., DebRoy, S., Sarkar, D. & Team R. C. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-151. https://CRAN.R-project.org/package=nlme (2020).70.Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    71.Oksanen, J. et al. vegan: Community Ecology Package. R Package Version 2.5-6. https://CRAN.R-project.org/package=vegan) (2019). More

  • in

    Correlative Microscopy: a tool for understanding soil weathering in modern analogues of early terrestrial biospheres

    1.Morris, J. L. et al. The timescale of early land plant evolution. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1719588115 (2018).Article 
    PubMed 

    Google Scholar 
    2.Gibling, M. R. & Davies, N. S. Palaeozoic landscapes shaped by plant evolution. Nat. Geosci. 5, 99–105 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    3.Gibling, M. R. et al. Palaeozoic co-evolution of rivers and vegetation: A synthesis of current knowledge. Proc. Geol. Assoc. 125, 524–533 (2014).Article 

    Google Scholar 
    4.Mitchell, R. L. et al. Mineral weathering and soil development in the earliest land plant ecosystems. Geology 44, 1007–1010 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Mergelov, N. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth. Sci. Rep. 8, 1–15 (2018).CAS 
    Article 

    Google Scholar 
    6.McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    7.Field, K. J. et al. Functional analysis of liverworts in dual symbiosis with Glomeromycota and Mucoromycotina fungi under a simulated Palaeozoic CO2 decline. ISME J. 10, 1514–1526 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Mills, B., Watson, A. J., Goldblatt, C., Boyle, R. & Lenton, T. M. Timing of Neoproterozoic glaciations linked to transport-limited global weathering. Nat. Geosci. 4, 861–864 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    9.Porada, P., Weber, B., Elbert, W., Pöschl, U. & Kleidon, A. Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global Biogeochem. Cycles 28, 71–85 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    10.Edwards, D., Cherns, L. & Raven, J. A. Could land-based early photosynthesizing ecosystems have bioengineered the planet in mid-Palaeozoic times?. Palaeontology 58, 803–837 (2015).Article 

    Google Scholar 
    11.Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the mojave desert, USA: micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76, 1685 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    12.Belnap, J. & Lange, O. L. Biological Soil Crusts: Structure, Function, and Management (Springer, 2001).
    Google Scholar 
    13.Mitchell, R. L. et al. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated soils. Geobiology 00, 1–15 (2021).
    Google Scholar 
    14.Kenrick, P., Wellman, C. H., Schneider, H. & Edgecombe, G. D. A timeline for terrestrialization: Consequences for the carbon cycle in the Palaeozoic. Philos. Trans. R. Soc. B Biol. Sci. 367, 519–536 (2012).Article 

    Google Scholar 
    15.Strullu-Derrien, C., Wawrzyniak, Z., Goral, T. & Kenrick, P. Fungal colonization of the rooting system of the early land plant Asteroxylon mackiei from the 407-Myr-old Rhynie Chert (Scotland, UK). Bot. J. Linn. Soc. 179, 201–213 (2015).Article 

    Google Scholar 
    16.Krings, M., Kerp, H., Hass, H., Taylor, T. N. & Dotzler, N. A filamentous cyanobacterium showing structured colonial growth from the Early Devonian Rhynie chert. Rev. Palaeobot. Palynol. 146, 265–276 (2007).Article 

    Google Scholar 
    17.Remy, W., Taylort, T. N., Hass, H. & Kerp, H. Four Hundred-million-year-old Vesicular Arbuscular Mycorrhizae (Endomycorrhiae/symbiosis/fossil fungi/mutualims). Proc. Natl. Acad. Sci. United States Am. 91, 11841–11843 (1994).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Field, K. J. et al. Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated Palaeozoic CO2 decline. Nat. Commun. 3, 1–8 (2012).Article 
    CAS 

    Google Scholar 
    19.Lenton, T. M., Crouch, M., Johnson, M., Pires, N. & Dolan, L. First plants cooled the Ordovician. Nat. Geosci. 5, 86–89 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    20.Mills, B. J. W., Batterman, S. A. & Field, K. J. Nutrient acquisition by symbiotic fungi governs Palaeozoic climate transition. Phil. Trans. R. Soc. B 373, 20160503 (2017).21.Mitchell, R. L., Strullu-Derrien, C. & Kenrick, P. Biologically mediated weathering in modern cryptogamic ground covers and the early paleozoic fossil record. J. Geol. Soc. London. 176, 430–439 (2019).CAS 
    Article 

    Google Scholar 
    22.Furnes, H. et al. Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: Tracing subsurface life in oceanic igneous rocks. Precambrian Res. 158, 156–176 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Smits, M. M. et al. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology 37, 615–618 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    24.Bonneville, S. et al. Tree-mycorrhiza symbiosis accelerate mineral weathering: Evidences from nanometer-scale elemental fluxes at the hypha-mineral interface. Geochim. Cosmochim. Acta 75, 6988–7005 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    25.McLoughlin, N. Fungal origins?. Nat. Ecol. Evol. 1, 1–2 (2017).Article 

    Google Scholar 
    26.Ivarsson, M. et al. Intricate tunnels in garnets from soils and river sediments in Thailand-Possible endolithic microborings. PLoS ONE 13, 0200351 (2018).Article 
    CAS 

    Google Scholar 
    27.Hoffland, E. et al. The role of fungi in weathering. Front. Ecol. Environ. 2, 258–264 (2004).Article 

    Google Scholar 
    28.McLoughlin, N., Furnes, H., Banerjee, N. R., Muehlenbachs, K. & Staudigel, H. Ichnotaxonomy of microbial trace fossils in volcanic glass. J. Geol. Soc. London. 166, 159–169 (2009).Article 

    Google Scholar 
    29.Berner, R. A. & Cochran, M. F. Plant-induced weathering of Hawaiian basalts. J. Sediment. Res. 68, 723–726 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Landeweert, R., Hoffland, E., Finlay, R. D., Kuyper, T. W. & Van Breemen, N. Linking plants to rocks: Ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol. Evol. 16, 248–254 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Van Schöll, L. et al. Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles. Plant Soil 303, 35–47 (2008).Article 
    CAS 

    Google Scholar 
    32.Quirk, J. et al. Evolution of trees and mycorrhizal fungi intensifies silicate mineral weathering. Biol. Lett. 8, 1006–1011 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Daly, M. et al. A multi-scale correlative investigation of ductile fracture. Acta Mater. 130, 56–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    34.Gelb, J., Finegan, D. P., Brett, D. J. L. & Shearing, P. R. Multi-scale 3D investigations of a commercial 18650 Li-ion battery with correlative electron- and X-ray microscopy. J. Power Sour. 357, 77–86 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    35.Slater, T. J. A. et al. Multiscale correlative tomography: An investigation of creep cavitation in 316 stainless steel. Sci. Rep. 7, 1–10 (2017).CAS 
    Article 

    Google Scholar 
    36.Burnett, T. L. & Withers, P. J. Completing the picture through correlative characterization. Nat. Mater. 18, 1041–1049 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    37.Mitchell, R. L. et al. Macro-to-nanoscale investigation of wall-plate joints in the acorn barnacle Semibalanus balanoides: correlative imaging, biological form and function, and bioinspiration. J. R. Soc. Interface 16, 20190218 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Bradley, R. S. & Withers, P. J. Correlative multiscale tomography of biological materials. MRS Bull. 41, 549–556 (2016).ADS 
    Article 

    Google Scholar 
    39.Ferstl, S. et al. Nanoscopic X-ray tomography for correlative microscopy of a small meiofaunal sea-cucumber. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    40.O’Sullivan, J. D. B., Cruickshank, S. M., Starborg, T., Withers, P. J. & Else, K. J. Characterisation of cuticular inflation development and ultrastructure in Trichuris muris using correlative X-ray computed tomography and electron microscopy. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    41.Goral, J., Walton, I., Andrew, M. & Deo, M. Pore system characterization of organic-rich shales using nanoscale- resolution 3D imaging. Fuel 258, 116049 (2019).CAS 
    Article 

    Google Scholar 
    42.Andrew, M. Comparing organic-hosted and intergranular pore networks: topography and topology in grains, gaps and bubbles. Geol. Soc. Lond. Spec. Publ. 484, 4844 (2018).
    Google Scholar 
    43.Ma, L. et al. Correlative multi-scale imaging of shales: a review and future perspectives. Geol. Soc. Lond. Spec. Publ. 454, 175–199 (2017).ADS 
    Article 

    Google Scholar 
    44.Schlüter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    45.Bandara, C. D. et al. High-Resolution Chemical Mapping and Microbial Identification of Rhizosphere using Correlative Microscopy. bioRxiv 1–26 (2021).46.Spruzeniece, L., Piazolo, S., Daczko, N. R., Kilburn, M. R. & Putnis, A. Symplectite formation in the presence of a reactive fluid: insights from hydrothermal experiments. J. Metamorph. Geol. 35, 281–299 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Stefánsson, A. et al. Major impact of volcanic gases on the chemical composition of precipitation in Iceland during the 2014–2015 Holuhraun eruption. J. Geophys. Res. Atmos. Geophys. Res. Atmos. 122, 1971–1982 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    48.Gadd, G. M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156, 609–643 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Jongmans, A. G. et al. Rock-eating fungi. 389, 682–683 (1997).CAS 

    Google Scholar 
    50.Gadd, G. M. Fungi, rocks, and minerals. Elements 13, 171–176 (2017).Article 

    Google Scholar 
    51.Warscheid, T. & Braams, J. Biodeterioration of stone: a review. Int. Biodeterior. Biodegredation 46, 343–368 (2000).CAS 
    Article 

    Google Scholar 
    52.Burghelea, C. et al. Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza. Biogeochemistry 124, 187–203 (2015).CAS 
    Article 

    Google Scholar 
    53.Mcloughlin, N., Staudigel, H., Furnes, H., Eickmann, B. & Ivarsson, M. Mechanisms of microtunneling in rock substrates: Distinguishing endolithic biosignatures from abiotic microtunnels. Geobiology 8, 245–255 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Hoffland, E., Giesler, R., Jongmans, T. & Van Breemen, N. Increasing feldspar tunneling by fungi across a North Sweden podzol chronosequence. Ecosystems 5, 11–22 (2002).Article 

    Google Scholar 
    55.Wierzchos, J. & delos Ríos A, Ascaso C, ,. Microorganisms in desert rocks: The edge of life on Earth. Int. Microbiol. 15, 173–183 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    56.Ascaso, C. & Wierzchos, J. New approaches to the study of Antarctic lithobiontic microorganisms and their inorganic traces, and their application in the detection of life in Martian rocks. Int. Microbiol. 5, 215–222 (2003).
    Google Scholar 
    57.Gorbushina, A. A., Boettcher, M., Brumsack, H. J., Krumbein, W. E. & Vendrell-Saz, M. Biogenic forsterite and opal as a product of biodeterioration and lichen stromatolite formation in table mountain systems (Tepuis) of Venezuela. Geomicrobiol. J. 18, 117–132 (2001).CAS 
    Article 

    Google Scholar 
    58.Adamo, P. & Violante, P. Weathering of rocks and neogenesis of minerals associated with lichen activity. Appl. Clay Sci. 16, 229–256 (2000).CAS 
    Article 

    Google Scholar 
    59.Oggerin, M., Tornos, F., Rodriguez, N., Pascual, L. & Amils, R. Fungal iron biomineralization in Río Tinto. Minerals 6, 37 (2016).Article 
    CAS 

    Google Scholar 
    60.Akhtar, M. E. & Kelso, W. I. Electron microscopic characterisation of iron and manganese oxide/hydroxide precipitates from agricultural field drains 1. Biol. Fertil. Soils 16, 305–312 (1993).CAS 
    Article 

    Google Scholar 
    61.Gadd, G. M. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv. Microb. Physiol. 41, 47–92 (1999).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Napieralski, S. A. et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock. Proc. Natl. Acad. Sci. U. S. A. 116, 26394–26401 (2019).ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 
    63.Dorn, R. I., Mahaney, W. C. & Krinsley, D. H. Case hardening: turning weathering rinds into protective shells. Elements 13, 165–169 (2017).Article 

    Google Scholar 
    64.Schreiber, H. D. Experimental studies of nickel and chromium partitioning into olivine from synthetic basaltic melts. in Lunar and Planetary Science Conference, 10th, Houston, Texas, Proceedings Volume 1 509–516 (1979).65.Burford, E. P., Kierans, M. & Gadd, G. M. Geomycology: Fungi in mineral substrata. Mycologist 17, 98–107 (2003).Article 

    Google Scholar 
    66.Dorn, R. I., Gordon, S. J., Krinsley, D. & Langworthy, K. Nanoscale: Mineral Weathering Boundary. In: Treatise on Geomorphology (eds. Shroder, J., Pope, G. A.), vol. 4, 44–69 (2013).67.Smits, M. Mineral tunneling by fungi. in Fungi in Biogeochemical cycles (ed. Gadd, G. M.) 311–327 (Cambridge University Press, 2006).68.Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    69.Gadd, G. M. Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 111, 3–49 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    70.Arocena, J. M., Zhu, L. P. & Hall, K. Mineral accumulations induced by biological activity on granitic rocks in Qinghai Plateau China. Earth Surf. Process. Landforms 28, 1429–1437 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    71.Krumbein, W. E. & Jens, K. Biogenic rock varnishes of the Negev desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50, 25–38 (1981).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Gadd, G. M. Microbial formation and transformation of organometallic and organometalloid compounds. FEMS Microbiol. Rev. 11, 297–316 (1993).CAS 
    Article 

    Google Scholar 
    73.Mitchell, R. L. et al. What lies beneath: 3d vs 2d correlative imaging challenges and how to overcome them. Microsc. Microanal. 25, 416–417 (2019).Article 

    Google Scholar 
    74.Thévenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 7, 27–41 (1998).ADS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Photoperiodically driven transcriptome-wide changes in the hypothalamus reveal transcriptional differences between physiologically contrasting seasonal life-history states in migratory songbirds

    A single long day induces the photoperiodic molecular responseFigure 1c shows results from the experiment 1, as evidenced from the qPCR measurement of mRNA expression of genes of known biological functions in the blood and hypothalamus. Clearly, the exposure to extended light period induced a molecular response by hour 18 of the first long day, as shown by change in mRNA levels of candidate genes in both central (hypothalamus) peripheral (blood) tissues of photosensitive buntings. Blood mRNA levels of peroxiredoxin 4 (prdx4) were significantly lower at hour 18 mimicking a long 18 h photoperiod than those at hour 10 mimicking a short 10 h photoperiod (p = 0.002, t = 5.18, n = 4/time point). Paradoxically, this indicated a reduced cellular response against oxidative stress in the otherwise photo stimulated birds on the first long day. We speculate that prdx4 expression pattern would be inversed (i.e. increased prdx4 mRNA levels) after several long days when birds show photoperiodically stimulated hyperphagia (increased food intake) and lipogenesis (fat accumulation). Intriguingly, however, blood mRNA levels of gpx1 (p = 0.399, t = 0.91, n = 4/time point) and sod1 (p = 0.845, t = 0.20, n = 4/time point) genes were not different between hours 10 and 18 (Student’s t-test, Fig. 1c(a–c)). Taken together differences in the expression pattern of these enzymes, we speculate differential activation of the enzymatic pathways that are probably involved in the oxidative cellular response when migratory birds are exposed to an acute change in their photoperiodic environment.On the other hand, blood il1β mRNA levels were significantly higher at hour 18 than the hour 10 (p = 0.041, t = 2.58, n = 4/time point; Student’s t-test, Fig. 1c(d)). It is consistent with the known role of il1β-encoded interleukin 1β, as a crucial mediator of the inflammation and a marker of the innate immune system22,23. Increased il1β mRNA expression on the first long day is consistent with the idea of parallel photoperiodic induction of multiple biological processes, including those associated with the innate immune response, body fattening and gonadal maturation in migratory songbirds28; however, the possibility that an upregulated interleukin was an indicative a stress response cannot be excluded at this time.Changes in hypothalamic gene expressions further confirm a rapid molecular response to the extended light period when it surpasses the threshold photoperiod, i.e. acts as the stimulatory long day. Reciprocal switching of genes involved in the thyroid hormone responsive pathway at hour 18 particularly evidences this. Hypothalamic mRNA levels of tshβ (p = 0.033, t = 2.75, n = 4/time point) and dio2 (p = 0.0004, t = 7.14, n = 4/time point) genes were higher, and that of dio3 gene expression was lower at hour 18 than the hour 10 (p = 0.036, t = 2.68, n = 4/time point). This is also in agreement with the rapid photoperiodic response found on the first long day in plasma LH secretion, and in hypothalamic expressions of Fos-immunoreactivity and thyroid hormone responsive genes in blackheaded buntings14,33 and other photoperiodic birds15,17,19,32,34,35,36,37,38. However, gnrh mRNA levels were not found significantly different between hours 10 and 18 of the first long day (p = 0.324, t = 1.07, n = 4/time point; Student’s t-test, Fig. 1c(e–h) indicating that hour 18 was probably too early a time for an upregulated gnrh expression on the first long day37,38,39.RNA-Seq reveals differences in time course of the photoperiodic responseTable S2 summarizes the primary statistics used for RNA-Seq results. Using only transcripts with non-zero abundance, we compared the time course of transcriptome-wide response in the hypothalamus both as the function of time (within photosensitive or photorefractory state) and LHS (photosensitive vs. photorefractory state; n = 2/time point/state except at hour 22 in photorefractory state which had n = 1 sample size). Further, to show a functional linkage of differentially expressed genes (DEGs), we performed STRING analysis that predicts the protein–protein interaction (see methods for details).Results on hypothalamic gene expressions suggest that buntings react to the acute photoperiodic change in photorefractory state almost as they do in the photosensitive state. However, the comparison of the overall RNASeq data from both states revealed LHS-dependent pattern in the time course of transcriptional response, with differences in the number and functions of DEGs and associated physiological pathways.Within state differences in time course of transcriptional responseWe examined the time course of response on the first long day, by comparing gene expressions at the hours 14, 18 and 22 of the extended light period that mimicked 14 h, 18 h and 22 h long photoperiods, respectively, with those at hour 10 that mimicked a 10 h short photoperiod.Photosensitive stateAt hour 14, we found 10 differentially expressed genes (DEGs) with 4 upregulated and 6 downregulated genes (Figs. 2a, 3a, Table S3). Of the 10 DEGs, atp6v1e1, atp6v1b2, uqcrc1 and pgam1 genes enriched the oxidative phosphorylation, metabolic pathways, phagosome and mTOR signalling pathways (Table 1). The oxidative phosphorylation and metabolic pathways were upregulated at hour 10, while the phagosome and mTOR signalling pathways were enriched by two genes that were opposite in the expression trend: atp6v1e1 was upregulated while atp6v1b2 was downregulated at hour 14. The STRING analysis showed a significant interaction of atp6v1e1 and atp6v1b2 encoded proteins (ATP6V1E1 and ATP6V1B2). These proteins are the components of vacuolar ATPase enzyme that mediates the acidification of eukaryotic intracellular organelles necessary for protein sorting and zymogen activation. Further, at hour 14, ttr gene that codes for transthyretin (a preferential T3 binder) and pomc gene that codes for the proopiomelanocortin receptor had significantly lower expressions. Whereas, low ttr gene expression, as in photostimulated redheaded buntings40, might indicate a reduced trafficking of thyroid hormones via ttr-encoded transthyretins in the photosensitive state, the low pomc gene expression might suggest the removal of inhibitory effects of the opioids (e.g. β-endorphin, a pomc-encoded proopiomelanocortin product) on hypothalamic GnRH and, in turn, pituitary LH secretion41,42.Figure 2Top panel: Volcano plots showing results of differential gene expression analysis (− log10 padj. vs. log2 fold change values) in the hypothalamus within the photosensitive (a–c) and photorefractory states (e–g). The comparison protocol is shown on the left. In each state, the comparisons were done with respect to the hour 10 value (akin to short day control). Venn diagram shows common and unique DEGs in photosensitive (d) and photorefractory states (h). Bottom panel: Volcano plots showing results of differential gene expression analysis (− log10 padj. vs. log2 fold change values) between the photosensitive and photorefractory states. The pairwise comparisons were made at all the four time points (hours 10 (i), 14 (j), 18 (k) and 22 (l)). Venn diagram shows common and unique DEGs between states at hours 10, 14, 18 and 22 (m). Genes in a volcano plot with log2 fold change  > 2 are marked by green colour, and those with log2 fold change  > 2 and p value (padj.)  More

  • in

    Electrical conductivity as a driver of biological and geological spatial heterogeneity in the Puquios, Salar de Llamara, Atacama Desert, Chile

    1.Rothschild, L. & Mancinelli, R. Life in extreme environments. Nature 409, 1092–1101 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Cavicchioli, R. Extremophiles and the search for extraterrestrial life. Astrobiology 2, 281–292 (2002).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Parro, V. et al. A microbial oasis in the hypersaline atacama subsurface discovered by a life detector chip: Implications for the search for life on mars. Astrobiology 11, 969–996 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Lee, C. J. D. et al. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol. Rev. 42, 672–693 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Coleine, C. et al. Specific adaptations are selected in opposite sun exposed Antarctic cryptoendolithic communities as revealed by untargeted metabolomics. PLoS ONE 15, 1–17 (2020).Article 
    CAS 

    Google Scholar 
    6.Rathour, R. et al. A comparative metagenomic study reveals microbial diversity and their role in the biogeochemical cycling of Pangong lake. Sci. Total Environ. 731, 139074 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Suosaari, E. P. et al. New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    8.Suosaari, E. P. et al. Stromatolite provinces of Hamelin pool: Physiographic controls on stromatolites and associated lithofacies. J. Sediment. Res. 89, 207–226 (2019).ADS 
    Article 

    Google Scholar 
    9.Wong, H., Ahmed-Cox, A. & Burns, B. Molecular ecology of hypersaline microbial mats: Current insights and new directions. Microorganisms 4, 6 (2016).PubMed Central 
    Article 
    CAS 

    Google Scholar 
    10.Grotzinger, J. R. & Knoll, A. H. Stromatolites in Precambrian carbonates: Evolutionary mileposts or environmental dipsticks?. Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Grotzinger, J. P. & James, N. P. Precambrian carbonates: Evolution of understanding. In Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World (eds Grotzinger, J. P. & James, N. P.) 3–20 (Society for Sedimentary Geology, 2000).Chapter 

    Google Scholar 
    12.Demergasso, C. et al. Microbial mats from the Llamara salt flat, northern Chile. Rev. Chil. Hist. Nat. 76, 485–499 (2003).Article 

    Google Scholar 
    13.Demergasso, C. et al. Distribution of prokaryotic genetic diversity in athalassohaline lakes of the Atacama Desert, Northern Chile. FEMS Mirobiol. Ecol. 48, 57–69 (2004).CAS 
    Article 

    Google Scholar 
    14.Saghaï, A. et al. Unveiling microbial interactions in stratified mat communities from a warm saline shallow pond. Environ. Microbiol. 19, 2405–2421 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    15.Shen, J., Zerkle, A. L., Stueeken, E. & Claire, M. W. Nitrates as a potential N supply for microbial ecosystems in a hyperarid mars analog system. Life 9, 79 (2019).PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    16.Albarracín, V. H., Galván, F. S. & Farías, M. E. Extreme microbiology at Laguna Socompa: A high-altitude Andean lake (3570 m a.s.l.) in Salta, Argentina. In Microbial Ecosystems in Central Andes Extreme Environments: Biofilms, Microbial Mats, Microbialites and Endoevaporites (ed. Farías, M. E.) 205–220 (Springer, 2020).Chapter 

    Google Scholar 
    17.Aszalós, J. M. et al. Bacterial diversity of a high-altitude permafrost thaw pond located on Ojos del Salado (Dry Andes, Altiplano-Atacama Region). Astrobiology 20, 754–765 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    18.Boidi, F. J., Mlewski, E. C., Gomez, F. J. & Gérard, E. Characterization of microbialites and microbial mats of the Laguna Negra hypersaline lake (Puna of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 183–203 (Springer, 2020).Chapter 

    Google Scholar 
    19.Farías, M. E. & Saona Acuña, L. A. Modern microbial mats and endoevaporite systems in Andean lakes: A general approach. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 21–33 (Springer, 2020).Chapter 

    Google Scholar 
    20.Farías, M. E., Villafañe, P. G. & Lencina, A. I. Integral propsection of andean microbial ecosystem project. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 245–260 (Springer, 2020).Chapter 

    Google Scholar 
    21.Gomez, F. J., Boidi, F. J., Mlewski, E. C. & Gérard, E. The carbonate system in Hypersaline Lakes: The case of Laguna Negra (in the Puna Region of Catamarca, Argentina). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 231–242 (Springer, 2020).Chapter 

    Google Scholar 
    22.Otálora, F. et al. Hydrochemical and mineralogical evolution through evaporitic processes in Salar de Llamara Brines (Atacama, Chile). ACS Earth Sp. Chem. 4, 882–896 (2020).Article 
    CAS 

    Google Scholar 
    23.Rasuk, M. C., Visscher, P. T., Leiva, M. C. & Farías, M. E. Mats and microbialites from Laguna La Brava. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 221–230 (Springer, 2020).Chapter 

    Google Scholar 
    24.Demergasso, C. et al. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12, 491–504 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.del Rocío Mora-Ruiz, M. & Díaz-Gil, C. Microbial diversity in athalassohaline Argentinean Salterns. In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 165–179 (Springer, 2020).Chapter 

    Google Scholar 
    26.Vignale, F. A. et al. Lithifying and non-lithifying microbial ecosystems in the wetlands and salt flats of the central Andes. Microb. Ecol. https://doi.org/10.1007/s00248-021-01725-8 (2021).Article 
    PubMed 

    Google Scholar 
    27.Stivaletta, N., Barbieri, R., Cevenini, F. & López-García, P. Physicochemical conditions and microbial diversity associated with the evaporite deposits in the Laguna de la Piedra (Salar de Atacama, Chile). Geomicrobiol. J. 28, 83–95 (2011).CAS 
    Article 

    Google Scholar 
    28.Farías, M. E. et al. Characterization of bacterial diversity associated with microbial mats, gypsum evaporites and carbonate microbialites in thalassic wetlands: Tebenquiche and La Brava, Salar de Atacama, Chile. Extremophiles 18, 311–329 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    29.Fernandez, A. B. et al. Microbial diversity in sediment ecosystems (evaporites domes, microbial mats, and crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile. Front. Microbiol. 7, 1–18 (2016).Article 

    Google Scholar 
    30.Rasuk, M. C. et al. Bacterial diversity in microbial mats and sediments from the Atacama Desert. Microb. Ecol. 71, 44–56 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Farias, M. E. et al. Prokaryotic diversity and biogeochemical characteristics of benthic microbial ecosystems at La Brava, a hypersaline lake at Salar de Atacama, Chile. PLoS ONE 12, 1–25 (2017).Article 
    CAS 

    Google Scholar 
    32.Gutiérrez-Preciado, A. et al. Functional shifts in microbial mats recapitulate early Earth metabolic transitions. Nat. Ecol. Evol. 2, 1700–1708 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Escudero, L. et al. A thiotrophic microbial community in an acidic brine lake in Northern Chile. Antonie Van Leeuwenhoek 111, 1403–1419 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    34.Chong-Díaz, G. Die Salare in Nordchile—Geologie, Struktur und Geochemie. Geotekton. Forsch. 67, 1–146 (1984).
    Google Scholar 
    35.Risacher, F. & Fritz, B. Geochemistry of Bolivian salars, Lipez, southern Altiplano: Origin of solutes and brine evolution. Geochim. Cosmochim. Acta 55, 687–705 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    36.Pueyo, J. J., Chong, G. & Jensen, A. Neogene evaporites in Desert volcanic environments: Atacama Desert, northern Chile. Sedimentology 48, 1411–1431 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    37.Simicic Hernández, Y. P. Thickness Distribution of the Oligo-Neogenous Sedimentary Cover of the Tamarugal Pampas, Northern Chile (20 ° 45 ’to 21 ° 30’S) (Universidad de Chile, 2015).
    Google Scholar 
    38.Cabrera, S., Bozzo, S. & Fuenzalida, H. Variations in UV radiation in Chile. J. Photochem. Photobiol. B Biol. 28, 137–142 (1995).CAS 
    Article 

    Google Scholar 
    39.Cabrol, N. A. et al. Life in the Atacama: Searching for life with rovers (science overview). J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2006JG000298 (2007).Article 

    Google Scholar 
    40.Solari, M. The unexplored geobiological heritage of Chile: Key to understand the past and future. In XIV Congr. Geológico Chil. 1–5 (2015).41.Rasuk, M. C. et al. Microbial characterization of microbial ecosystems associated to evaporites domes of gypsum in Salar de Llamara in Atacama Desert. Microb. Ecol. 68, 483–494 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Surma, J., Assonov, S., Herwartz, D., Voigt, C. & Staubwasser, M. The evolution of 17O-excess in surface water of the arid environment during recharge and evaporation. Sci. Rep. 8, 4972 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    43.Rasuk, M. C., Leiva, M. C., Kurth, D. & Farías, M. E. Complete characterization of stratified ecosystems of the Salar de Llamara (Atacama Desert). In Microbial Ecosystems in Central Andes Extreme Environments (ed. Farías, M. E.) 153–164 (Springer, 2020).Chapter 

    Google Scholar 
    44.Kiefer, E., Dorr, M., Ibbeken, H. & Gotze, H. Gravity-based mass balance of an alluvial fan giant: The Arcas Fan, Pampa del Tamarugal, Northern Chile. Rev. Geol. Chile 24, 165–185 (1997).
    Google Scholar 
    45.Houston, J. & Hartley, A. J. The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama Desert. Int. J. Climatol. 23, 1453–1464 (2003).Article 

    Google Scholar 
    46.Dunai, T. J., López, G. A. G. & Juez-Larré, J. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms. Geology 33, 321–324 (2005).ADS 
    Article 

    Google Scholar 
    47.Hartley, A. J., Chong, G., Houston, J. & Mather, A. 150 million years of climatic stability: Evidence from the Atacama Desert, northern Chile. J. Geol. Soc. Lond. 162, 421–424 (2005).Article 

    Google Scholar 
    48.Clarke, J. D. A. Antiquity of aridity in the Chilean Atacama Desert. Geomorphology 73, 101–114 (2006).ADS 
    Article 

    Google Scholar 
    49.Houston, J. Evaporation in the Atacama Desert: An empirical study of spatio-temporal variations and their causes. J. Hydrol. 330, 402–412 (2006).ADS 
    Article 

    Google Scholar 
    50.Fuenzalida, H. & Rutllant, J. Estudio Sobre el Origen del Vapor de agua que Precipita en el Invierno Altiplánico (1986).51.Grosjean, M., Geyh, M. A., Messerli, B. & Schotterer, U. Late-glacial and early Holocene lake sediments, ground-water formation and climate in the Atacama Altiplano 22–24°S. J. Paleolimnol. 14, 241–252 (1995).ADS 
    Article 

    Google Scholar 
    52.Garreaud, R. Multiscale analysis of the summertime precipitation over the central Andes. Mon. Weather Rev. 127, 901–921 (1999).ADS 
    Article 

    Google Scholar 
    53.Houston, J. Groundwater recharge through an alluvial fan in the Atacama Desert, northern Chile: Mechanisms, magnitudes and causes. Hydrol. Process. 16, 3019–3035 (2002).ADS 
    Article 

    Google Scholar 
    54.Marazuela, M. A., Vázquez-Suñé, E., Ayora, C., García-Gil, A. & Palma, T. Hydrodynamics of salt flat basins: The Salar de Atacama example. Sci. Total Environ. 651, 668–683 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    55.Cereceda, P., Larrain, H., Osses, P., Farías, M. & Egaña, I. The spatial and temporal variability of fog and its relation to fog oases in the Atacama Desert, Chile. Atmos. Res. 87, 312–323 (2008).Article 

    Google Scholar 
    56.del Río, C. et al. The role of topography in the spatial distribution of the low stratocumulus cloud and fog in the Peruvian coastal Desert. In AGU Fall Meeting Abstracts 2018, A31J-2979 (2018).57.Hasler, K., Jaque, I., Pucheu, A. & Ortiz, C. Análisis de la Información Histórica de la Operación de la Medida de Mitigación. Estudio de Impacto Ambiental: Modification parcial del Sistema del Sistema de Reinyección en los puquios de Llamara, Elaborado por Geobiota (2020).58.Ordoñez, R., Hasler, K., Pucheu, A. & Ortiz, C. Modelo Numérico Hidrogeológico Acuífero Salar de Llamara. Estudio de Impacto Ambiental, Modificación Parcial del Sistema de reinyección en los Puquios de Llamara, elaborado por Geobiota (2020).59.Babel, M. Models for evaporite, selenite and gypsum microbialite deposition in ancient saline basins. Acta Geol. Pol. 54, 219-U6 (2004).
    Google Scholar 
    60.Rumrich, U., Lange-Bertalot, H. & Rumrich, M. Diatoms of the Andes. Annotated diatom monographs. Iconogr. Diatomol. 9, 671 (2000).
    Google Scholar 
    61.Lowe, R. L. Keeled and canalled raphid diatoms. In Freshwater Algae of North America (ed. Lowe, R. L.) 669–684 (Elsevier, 2003).Chapter 

    Google Scholar 
    62.Whitton, B. A. & Kelly, M. G. Use of algae and other plants for monitoring rivers. Aust. J. Ecol. 20, 45–56 (1995).Article 

    Google Scholar 
    63.Burow, L. C. et al. Identification of Desulfobacterales as primary hydrogenotrophs in a complex microbial mat community. Geobiology 12, 221–230 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    64.Garcés, I. et al. Características geoquímicas generales del sistema salino del Salar de Llamara (Chile). Estud. Geol. 52, 23–35 (1996).Article 

    Google Scholar 
    65.López, P. L., Auqué, L. F., Garcés, I. & Chong, G. Características geoquímicas y pautas de evolución de las salmueras superficiales del Salar de Llamara, Chile. Rev. Geol. de Chile 26, 89–108 (1999).Article 

    Google Scholar 
    66.Kampf, S. K. & Tyler, S. W. Spatial characterization of land surface energy fluxes and uncertainty estimation at the Salar de Atacama, Northern Chile. Adv. Water Resour. 29, 336–354 (2006).ADS 
    Article 

    Google Scholar 
    67.Des-Marais, D. J. The Biogeochemistry of Hypersaline Microbial Mats. In Advances in Microbial Ecology (ed. Jones, J. G.) (Springer, 1995).
    Google Scholar 
    68.Vogel, M. B. et al. The role of biofilms in the sedimentology of actively forming gypsum deposits at Guerrero Negro, Mexico. Astrobiology 9, 875–893 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Vogel, M. B. et al. Biological influences on modern sulfates: Textures and composition of gypsum deposits from Guerrero Negro, Baja California Sur, Mexico. Sediment. Geol. 223, 265–280 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    70.Ali-Bik, M. W., Metwally, H. I. M., Wali, A. M. A. & Kamel, M. G. Facies and geochemistry of non-marine gypsum, EMISAL, Egypt. Geol. Acta 11, 409–420 (2013).CAS 

    Google Scholar 
    71.Taher, A. G. Formation and calcification of modern gypsum-dominated stromatolites, EMISAL, Fayium, Egypt. Facies 60, 721–735 (2014).Article 

    Google Scholar 
    72.Handford, C. Sedimentology and evaporite genesis in a Holocene continental-sabkha playa basin—Bristol Dry Lake, California. Sedimentology 29, 239–253 (1982).ADS 
    Article 

    Google Scholar 
    73.Gerdes, G., Krumbein, W. E. & Holtkamp, E. Salinity and water activity related zonation of microbial communities and potential stromatolites of the Gavish Sabkha. In Hypersaline Ecosystems. Ecological Studies (Analysis and Synthesis) (eds Friedman, G. M. & Krumbein, W. E.) 238–236 (Springer, 1985).Chapter 

    Google Scholar 
    74.Davie, A. W., Mitrovic, S. M. & Lim, R. P. Succession and accrual of benthic algae on cobbles of an upland river following scouring. Inl. Waters 2, 89–100 (2012).Article 

    Google Scholar 
    75.Cohen, Y., Jørgensen, B. B., Padan, E. T. & Shilo, M. Sulphide-dependent anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. Nature 257, 489–492 (1975).ADS 
    CAS 
    Article 

    Google Scholar 
    76.Oren, A. & Shilo, M. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: Sulfur respiration and lactate fermentation. Arch. Microbiol. 122, 77–84 (1979).CAS 
    Article 

    Google Scholar 
    77.Muñoz, J., Amat, F., Green, A. J., Figuerola, J. & Gómez, A. Bird migratory flyways influence the phylogeography of the invasive brine shrimp Artemia franciscana in its native American range. PeerJ 2013, 1–28 (2013).
    Google Scholar 
    78.Clegg, J. S. & Trotman, C. N. A. Physiological and biochemical aspects of Artemia ecology. In Artemia: Basic and Applied Biology (eds Abatzopoulos, T. J. et al.) 129–170 (Springer, 2002).Chapter 

    Google Scholar 
    79.Collado, G. A., Valladares, M. A. & Méndez, M. A. Hidden diversity in spring snails from the andean altiplano, the second highest plateau on earth, and the Atacama Desert, the driest place in the world. Zool. Stud. 52, 1–13 (2013).Article 

    Google Scholar 
    80.Herbst, D. B., Conte, F. P. & Brookes, V. J. Osmoregulation in an alkaline salt lake insect, Ephydra (Hydropyrus) hians Say (Diptera: Ephydridae) in relation to water chemistry. J. Insect Physiol. 34, 903–909 (1988).CAS 
    Article 

    Google Scholar 
    81.Cycil, L. M. et al. Metagenomic insights into the diversity of halophilic microorganisms indigenous to the Karak Salt Mine, Pakistan. Front. Microbiol. 11, 1567 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    82.Dillon, J. G., Carlin, M., Gutierrez, A., Nguyen, V. & McLain, N. Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front. Microbiol. https://doi.org/10.3389/fmicb.2013.00399 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    83.Benlloch, S. et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 4, 349–360 (2002).PubMed 
    Article 

    Google Scholar 
    84.Casamayor, E. O. et al. Changes in Archaeal, bacterial and Eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4, 338–348 (2002).PubMed 
    Article 

    Google Scholar 
    85.Gorrasi, S. et al. Spatio-temporal variation of the bacterial communities along a salinity gradient within a thalassohaline environment (Saline di Tarquinia Salterns, Italy). Molecules 26, 1338 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    86.Campbell, B. J. & Kirchman, D. L. Bacterial diversity, community structure and potential growth rates along an estuarine salinity gradient. ISME J. 7, 210–220 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Gorbushina, A. A. Life on the rocks. Environ. Microbiol. 9, 1613–1631 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    88.Wierzchos, J. et al. Adaptation strategies of endolithic chlorophototrophs to survive the hyperarid and extreme solar radiation environment of the Atacama Desert. Front. Microbiol. 6, 1–17 (2015).Article 

    Google Scholar 
    89.Cody, R. D. & Cody, A. M. Gypsum nucleation and crystal morphology in analog saline terrestrial environments. J. Sediment. Res. 58, 247–255 (1988).CAS 

    Google Scholar 
    90.Arp, G., Thiel, V., Reimer, A., Michaelis, W. & Reitner, J. Biofilm exopolymers control microbialite formation at thermal springs discharging into the alkaline Pyramid Lake, Nevada, USA. Sediment. Geol. 126, 159–176 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    91.Dupraz, C. et al. Processes of carbonate precipitation in modern microbial mats. Earth-Sci. Rev. 96, 141–162 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    92.Cabestrero, Ó. & Sanz-Montero, M. E. Brine evolution in two inland evaporative environments: Influence of microbial mats in mineral precipitation. J. Paleolimnol. 59, 139–157 (2016).Article 

    Google Scholar 
    93.Farías, M. E. Microbial Ecosystems in Central Andes Extreme Environments (Springer, 2020).Book 

    Google Scholar 
    94.Oren, A. Thermodynamic limits to microbial life at high salt concentrations. Environ. Microbiol. 13, 1908–1923 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    95.Rice, E. W., Baird, R. B., Eaton, A. D. & Clesceri, L. S. Standard Methods for the Examination of Water and Wastewater, 22nd Edition. (APHA American Public Health Association, 2012).96.Díaz, C. & Maidana, N. I. Diatomeas de los Salares Atacama y Punta Negra II Región-Chile (Centro de Ecología Aplicada Ltda. & Minera Escondida Ltda, 2005).
    Google Scholar 
    97.Patrick, R. Results of Research in the Antofagasta Ranges of Chile and Bolivia. II. Diatoms (Bacillariophyceae) from the Alimentary tract of Phoenicoparrus jamesi (1961).98.Frenguelli, J. Diatomeas del Río de la Plata. Rev. del Mus. la Plata Sección Bot. 3, 213–334 (1941).
    Google Scholar 
    99.Parra, O., González, M., Dellarossa, V., Rivera, P. & Orellana, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part III: Cryptophyceae, Dinophyceae, Euglenophyceae (1982).100.Parra, O. & González, M. Taxonomic Manual of Phytoplankton of Continental Waters with Special Reference to the Phytoplankton of Chile: Chlorophyceae. Part I: Volvocales, Tetrasporales, Chlorococcales and Ulothricales (1983).101.Seeligmann, C. & Maidana, N. I. Diatomeas (Bacillariophyceae) en ambientes de altura de la provincia de Catamarca (Argentina). Boletín Soc. Argentina Bot. 38, 39–50 (2003).
    Google Scholar 
    102.Seeligmann, C., Maidana, N. I. & Morales, M. Diatoms (Bacillariophyceae) of high altitude wetlands in the Province of Jujuy-Argentina. Boletín Soc. Argentina Bot. 43, 1–17 (2008).
    Google Scholar 
    103.Maidana, N. I. & Seeligmann, C. Diatomeas (Bacillariophyceae) de ambientes acuáticos de altura de la Provincia de Catamarca, Argentina II. Boletín la Soc. Argentina Bot. 41, 1–13 (2006).
    Google Scholar 
    104.Álvarez Blanco, I., Cejudo Figueiras, C., Godos, I. F., Múñoz Torre, R. & White Lance, S. The diatoms of the salt flats of the Bolivian Altiplano: Floristic singularities. Bull. R. Span. Soc. Nat. Hist. 105, 67–82 (2011).
    Google Scholar 
    105.Maidana, N. I. & Seeligmann, C. T. Diatoms (Bacillariophyceae) in high-altitude wetlands of Catamarca Province (Argentina). III. Bol. LA Soc. Argentina Bot. 50, 447–466 (2015).Article 

    Google Scholar 
    106.Woelfl, S., Caputo, L., García-Chicote, J. & de Los Ríos, P. Manuales Para la Bioindicación: Zooplancton Vol. 1 (Manuales Sociedad Chilena de Limnología, 2008).
    Google Scholar 
    107.De los Rios-Escalante, P. & Salgado, I. Artemia (Crustacea, Anostraca) in Chile: A review of basic and applied biology. Lat. Am. J. Aquat. Res. 40, 487–496 (2017).Article 

    Google Scholar 
    108.Araya, J. M. & Zúñiga, L. R. Taxonomic manual of the lacustrine zooplankton of Chile. Limnol. Bull. Univ. Austral Chile 8, 1–69 (1985).
    Google Scholar 
    109.Fernández, H. R. & Domínguez, E. Guide for the Determination of South American Benthic Arthropods, Entomotropica16(3), 219 (2001).110.Crespo, J. E. & Baessolo, L. A. Biogeografia y taxonomia del género Artemis (Crustacea, Anostraca) en Chile: una revisión. Hist. Nat. I(1), 17–21 (2002).
    Google Scholar 
    111.Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene Designer: A synthetic biology tool for constructing artificial DNA segments. BMC Bioinform. 7, 285 (2006).Article 
    CAS 

    Google Scholar 
    112.Palma, A. T., Schwarz, A. O. & Fariña, J. M. Experimental evidence of the tolerance to chlorate of the aquatic macrophyte Egeria densa in a Ramsar wetland in southern Chile. Wetlands 33, 129–140 (2013).Article 

    Google Scholar 
    113.Echeverría-Vega, A. et al. Watershed-induced limnological and microbial status in two oligotrophic Andean Lakes exposed to the same climatic scenario. Front. Microbiol. 9, 357 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Lane, D. J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic (eds Stackebrandt, E. & Goodfellow, M.) 115–175 (Wiley, 1991).
    Google Scholar 
    115.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    116.Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    117.Clarke, K. R. & Gorley, R. N. Getting Started with PRIMER v7 20 (Plymouth Marine Laboratory, 2015).
    Google Scholar 
    118.Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2014).Article 
    CAS 

    Google Scholar 
    119.Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard Methods for the Examination of Water and Wastewater, 20th Edition. (APHA American Public Health Association, 1998). More

  • in

    A subterranean adaptive radiation of amphipods in Europe

    1.Alfaro, M. E. et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. PNAS 106, 134–14 (2009).Article 

    Google Scholar 
    2.Seehausen, O. Process and pattern in cichlid radiations – inferences for understanding unusually high rates of evolutionary diversification. N. Phytol. 207, 304–312 (2015).Article 

    Google Scholar 
    3.Tank, D. C. et al. Nested radiations and the pulse of angiosperm diversification: Increased diversification rates often follow whole genome duplications. N. Phytol. 207, 454–467 (2015).Article 

    Google Scholar 
    4.Neubauer, T. A., Harzhauser, M., Georgopoulou, E., Kroh, A. & Mandic, O. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots. PNAS 112, 11478–11483 (2015).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Schluter, D. The Ecology of Adaptive Radiation (Oxford University Press, 2000).6.Schenk, J. J., Rowe, K. C. & Steppan, S. J. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst. Biol. 62, 837–864 (2013).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Jenkins, N. C., Pimm, S. L. & Joppa, L. N. Global vertebrate diversity and conservation. PNAS 110, E2602–E2610 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. PNAS 106, 9322–9327 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Reyjol, Y. et al. Patterns in species richness and endemism of European freshwater fish. Glob. Ecol. Biogeogr. 16, 65–75 (2007).Article 

    Google Scholar 
    10.Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Albrecht, C., Trajanovski, S., Kuhn, K., Streit, B. & Wilke, T. Rapid evolution of an ancient lake species flock: freshwater limpets (Gastropoda: Ancylidae) in the Balkan lake Ohrid. Org. Divers. Evol. 6, 294–307 (2006).Article 

    Google Scholar 
    12.Vonlanthen, P. et al. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–362 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Renema, W. et al. Hopping hotspots: Global shifts in marine biodiversity. Science 321, 654–657 (2008).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Gargani, J. & Rigollet, C. Mediterranean Sea level variations during the Messinian salinity crisis. Geophys. Res. Lett. 34, 1–5 (2007).Article 

    Google Scholar 
    15.Culver, D. C. et al. The mid-latitude biodiversity ridge in terrestrial cave fauna. Ecography 29, 120–128 (2006).Article 

    Google Scholar 
    16.Zagmajster, M. et al. Geographic variation in range size and beta diversity of groundwater crustaceans: Insights from habitats with low thermal seasonality. Glob. Ecol. Biogeogr. 23, 1135–1145 (2014).Article 

    Google Scholar 
    17.Trontelj, P., Blejec, A. & Fišer, C. Ecomorphological convergence of cave communities. Evolution 66, 3852–3865 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    18.Trontelj, P., Borko, Š. & Delić, T. Testing the uniqueness of deep terrestrial life. Sci. Rep. 9, 15188 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    19.Morvan, C. et al. Timetree of Aselloidea reveals species diversification dynamics in groundwater. Syst. Biol. 62, 512–522 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    20.Eme, D. et al. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41, 424–436 (2017).Article 

    Google Scholar 
    21.Lukić, M., Delić, T., Pavlek, M., Deharveng, L. & Zagmajster, M. Distribution pattern and radiation of the European subterranean genus Verhoeffiella (Collembola, Entomobryidae). Zool. Scr. 49, 86–100 (2019).Article 

    Google Scholar 
    22.Väinölä, R. et al. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595, 241–255 (2008).Article 

    Google Scholar 
    23.Fišer, C., Delić, T., Luštik, R., Zagmajster, M. & Altermatt, F. Niches within a niche: ecological differentiation of subterranean amphipods across Europe’s interstitial waters. Ecography 42, 1212–1223 (2019).Article 

    Google Scholar 
    24.Stroud, J. T. & Losos, J. B. Ecological opportunity and adaptive radiation. Annu. Rev. Ecol. Evol. Syst. 47, 507–532 (2016).Article 

    Google Scholar 
    25.McInerney, C. E. et al. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Mol. Ecol. 23, 1153–1166 (2014).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    27.Culver, D. C. & Pipan, T. The Biology of Caves and Other Subterranean Habitats 2nd edn (OUP, 2019).28.Kralj-Fišer, S. et al. The interplay between habitat use, morphology and locomotion in subterranean crustaceans of the genus. Niphargus. Zool. 139, 125742 (2020).Article 

    Google Scholar 
    29.Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 1–12 (2017).Article 
    CAS 

    Google Scholar 
    30.Harmon, L. J., Schulte, J. A., Losos, J. B. & Larson, A. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964 (2003).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Murrell, D. J. A global envelope test to detect non‐random bursts of trait evolution. Methods Ecol. Evol. 9, 1739–1748 (2018).Article 

    Google Scholar 
    32.Freckleton, R. P. & Harvey, P. H. Detecting non-Brownian trait evolution in adaptive radiations. PLoS Biol. 4, e373 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods Ecol. Evol. 6, 1311–1319 (2015).Article 

    Google Scholar 
    34.Kováč, M. et al. The central paratethyspalaeoceanography: a water circulation model based on microfossilproxies, climate, and changes of depositional environment. Acta Geol. Slov. 9, 75–114 (2017).
    Google Scholar 
    35.Kováč, M. et al. Towards better correlation of the Central Paratethys regional time scale with the standard geological time scale of the Miocene Epoch. Geol. Carpath. 69, 283–300 (2018).ADS 
    Article 

    Google Scholar 
    36.Mahler, D. L., Ingram, T., Revell, L. J. & Losos, J. B. Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341, 6143 (2013).Article 
    CAS 

    Google Scholar 
    37.Ingram, T. & Mahler, D. SURFACE: detecting convergent evolution from comparative data by fitting Ornstein‐Uhlenbeck models with stepwise Akaike Information Criterion. Methods Ecol. Evol. 4, 416–425 (2013).Article 

    Google Scholar 
    38.Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341 (1997).Article 

    Google Scholar 
    39.Popov, S. V., Rögl, F. & Rozanov, A. Y. Lithological-Paleogeographic Maps of Paratethys: 10 Maps Late Eocene to Pliocene (Schweizerbart’sche Verlagsbuchhandlung, 2004).40.Barrier, E., Vrielynck, B., Brouillet, J. F. & Brunet, M. F. Paleotectonic Reconstruction of the Central Tethyan Realm. Tectonono-Sedimentary-Palinspastic Maps from Late Permian to Pliocene (CCGM/CGMW, 2018).41.Handy, M. R., Ustaszewski, K. & Kissling, E. Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. Int. J. Earth. Sci. 104, 1–26 (2015).CAS 
    Article 

    Google Scholar 
    42.Esmaeili-Rineh, S., Sari, A., Delić, T., Moškrič, A. & Fišer, C. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European Niphargids. Zool. J. Linn. Soc. 175, 812–826 (2015).Article 

    Google Scholar 
    43.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 6187 (2014).Article 
    CAS 

    Google Scholar 
    44.Hou, Z. & Sket, B. A review of Gammaridae (Crustacea: Amphipoda): the family extent, its evolutionary history, and taxonomic redefinition of genera. Zool. J. Linn. Soc. 176, 323–348 (2016).Article 

    Google Scholar 
    45.Corrigan, L. J., Horton, T., Fotherby, H., White, T. A. & Hoelzel, A. R. Adaptive evolution of deep‐sea amphipods from the superfamily lysiassanoidea in the North Atlantic. Evol. Biol. 41, 154–165 (2014).Article 

    Google Scholar 
    46.Clarke, A. & Johnston, I. A. Evolution and adaptive radiation of Antarctic fishes. Trends Ecol. Evol. 11, 212–218 (1996).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    47.Macdonald, K. S. 3rd, Yampolsky, L. & Duffy, J. E. Molecular and morphological evolution of the amphipod radiation of Lake Baikal. Mol. Phylogenet. Evol. 35, 323–343 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    48.Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 5168 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Esquerré, D. & Keogh, J. S. Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas. Ecol. Lett. 19, 800–809 (2016).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    50.von Saltzwedel, H., Scheu, S. & Schaefer, I. Founder events and pre-glacial divergences shape the genetic structure of European Collembola species. BMC Evol. Biol. 16, 148 (2016).Article 
    CAS 

    Google Scholar 
    51.Mammola, S. et al. Scientists’ warning on the conservation of subterranean ecosystems. BioScience 69, 641–650 (2019).Article 

    Google Scholar 
    52.Lefébure, T., Douady, C. J., Malard, F. & Gibert, J. Testing dispersal and cryptic diversity in a widely distributed groundwater amphipod (Niphargus rhenorhodanensis). Mol. Phylogenet. Evol. 42, 676–686 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    53.Zagmajster, M., Turjak, M., & Sket, B. Database on subterranean biodiversity of the Dinarides and neighboring regions – SubBioDatabase. In 21st International Conference on Subterranean Biology, 2–7 September, 2012, Košice, Slovakia, Abstract book (ed. Kováč, Ĺ., et al.) 116–117 https://doi.org/10.13140/2.1.4518.0487 (Pavol Jozef Šafárik University, Košice, 2012).54.Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Fišer, C. et al. Translating Niphargus barcodes from Switzerland into taxonomy with a description of two new species (Amphipoda, Niphargidae). ZooKeys 760, 113–141 (2018).Article 

    Google Scholar 
    56.Jurado-Rivera, J. A. et al. Molecular systematics of Haploginglymus, a genus of subterranean amphipods endemic to the Iberian Peninsula (Amphipoda: Niphargidae). Contrib. Zool. 86, 239–260 (2017).Article 

    Google Scholar 
    57.Copilaş-Ciocianu, D., Borko, Š. & Fišer, C. The late blooming amphipods: global change promoted post-Jurassic ecological radiation despite Palaeozoic origin. Mol. Phylogenet. Evol. 143, 106664 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Horton, T. et al. World Register of Marine Species. https://www.marinespecies.org. Accessed 6 Mar 2020 (2020).59.Fišer, C., Trontelj, P., Luštrik, R. & Sket, B. Toward a unified taxonomy of Niphargus (Crustacea: Amphipoda): a review of morphological variability. Zootaxa 2061, 1–22 (2009).Article 

    Google Scholar 
    60.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    61.Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29, 1695–1701 (2012).64.Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    66.Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Tracer v1.7. http://tree.bio.ed.ac.uk/software/tracer/ (2018).67.Minh, B. Q., Nguyen, M. A. T. & von Haeseler, A. Ultrafast approximation for phylogenetic bootstrap. Mol. Biol. Evol. 30, 1188–1195 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    68.Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    69.Jażdżewskii, K. & Kupryjanowicz, J. One more fossil Niphargid (Malacostraca: Amphipoda) from Baltic Amber. J. Crustac. Biol. 30, 413–416 (2010).Article 

    Google Scholar 
    70.Brikiatis, L. Late Mesozic North Atlantic land bridges. Earth-Sci. Rev. 159, 47–57 (2016).ADS 
    Article 

    Google Scholar 
    71.Allegrucci, G., Trucchi, E. & Sbordoni, V. Tempo and mode of species diversification in Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae). Mol. Phylogenet. Evol. 60, 108–121 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    72.R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2018).73.Pybus, O. G. & Harvey, P. H. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc. R. Soc. B. 267, 2267–2272 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    74.Etienne, R. S. & Haegeman, B. A conceptual and statistical framework for adaptive radiations with a key role for diversity dependence. Am. Nat. 180, E75–E89 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    75.Bollback, J. P. SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics 7, 88 (2006).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    76.Pagel, M., Meade, A. & Barker, D. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. 53, 673–684 (2004).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    77.QGIS.org. QGIS Geographic Information System. http://www.qgis.org (QGIS Association, 2021).78.Esri & U.S. National Park Service. “Physical” [basemap]. Scale Not Given. “World Physical Map”. https://www.arcgis.com/home/item.html?id=c4ec722a1cd34cf0a23904aadf8923a0. Accessed 12 Dec 2019 (2019).79.Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A., Fišer, C. Supplementary data and code: a subterranean adaptive radiation of amphipods in Europe [Data set]. Zenodo https://doi.org/10.5281/zenodo.4779097 (2021). More