More stories

  • in

    Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe

    Genetic diversity and population structure across European urban and rural populationsA total of 192 great tits from the nine paired urban–rural populations were genotyped at 517,603 filtered SNPs, with 10–16 individuals per sampling site (Supplementary Table 1). We quantified the relative degree of urbanisation for each site (urbanisation score: PCurb, from principal component analysis, PCA; see “Methods”, Fig. 1b, Supplementary Fig. 1 and Supplementary Table 1) to inform our genetic downstream analyses. Population structuring based on 314,351 LD (linkage-disequilibrium)-pruned SNPs (excluding small linkage groups and the Z-chromosome) was overall low across the 18 studied sites (Supplementary Fig. 2), with each of the first two principal components explaining More

  • in

    Variety in the sea and on our plates

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Landscape complexity and US crop production

    1.Landis, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12 (2017).
    Google Scholar 
    2.Aguilar, J. et al. Crop species diversity changes in the United States: 1978–2012. PLoS ONE 10, e0136580 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    3.Census of Agriculture (USDA National Agricultural Statistics Service, 2017); www.nass.usda.gov/AgCensus4.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed 

    Google Scholar 
    5.Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).CAS 
    PubMed 

    Google Scholar 
    7.Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2, 2 (2013).
    Google Scholar 
    8.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Ojha, S. & Dimov, L. Variation in the diversity-productivity relationship in young forests of the eastern United States. PLoS ONE 12, e0187106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    10.Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).
    Google Scholar 
    11.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS 
    PubMed 

    Google Scholar 
    12.Bastian, O., Grunewald, K., Syrbe, R. U., Walz, U. & Wende, W. Landscape services: the concept and its practical relevance. Landsc. Ecol. 29, 1463–1479 (2014).
    Google Scholar 
    13.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).
    Google Scholar 
    15.Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, e8049 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Swinton, S. M., Lupi, F., Robertson, G. P. & Hamilton, S. K. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64, 245–252 (2007).
    Google Scholar 
    17.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Burchfield, E. K., Nelson, K. S. & Spangler, K. The impact of agricultural landscape diversification on US crop production. Agric. Ecosyst. Environ. 285, 106615 (2019).
    Google Scholar 
    19.Galpern, P., Vickruck, J., Devries, J. H. & Gavin, M. P. Landscape complexity is associated with crop yields across a large temperate grassland region. Agric. Ecosyst. Environ. 290, 106724 (2020).
    Google Scholar 
    20.Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    21.Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Pol. 8, 106–140 (2016).
    Google Scholar 
    22.Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 

    Google Scholar 
    23.Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Schauberger, B., Rolinski, S. & Müller, C. A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environ. Res. Lett. 11, 123001 (2016).ADS 

    Google Scholar 
    25.Burchfield, E., Matthews-Pennanen, N., Stoebner, J. & Lant, C. Changing yields in the central United States under climate and technological change. Clim. Change 159, 329–346 (2019).ADS 

    Google Scholar 
    26.Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    27.Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).ADS 

    Google Scholar 
    28.Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).PubMed 

    Google Scholar 
    29.Grab, H., Danforth, B., Poveda, K. & Loeb, G. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 28, 348–355 (2018).PubMed 

    Google Scholar 
    30.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    31.Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).
    Google Scholar 
    33.Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).
    Google Scholar 
    34.Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2012).
    Google Scholar 
    35.Swift, M. J., Izac, A.-M. N. & van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric. Ecosyst. Environ. 104, 113–134 (2004).
    Google Scholar 
    36.CropScrape—Cropland Data Layer (USDA National Agricultural Statistics Service, 2018); https://nassgeodata.gmu.edu/CropScape/37.Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).CAS 
    PubMed 

    Google Scholar 
    40.Brandes, E. et al. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 11, 014009 (2016).ADS 

    Google Scholar 
    41.Capmourteres, V. et al. Precision conservation meets precision agriculture: a case study from southern Ontario. Agric. Syst. 167, 176–185 (2018).
    Google Scholar 
    42.Census of Agriculture (USDA National Agricultural Statistics Service, 2019); www.nass.usda.gov/AgCensus43.Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).
    Google Scholar 
    45.PRISM Climate Data (PRISM Climate Group, 2004) http://www.prism.oregonstate.edu/46.Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant Stages (Montana State University, 2001); http://store.msuextension.org/publications/AgandNaturalResources/MT200103AG.pdf47.agweather connection (Mesonet, 2007); https://www.mesonet.org/mesonet_connection/V2_No8.pdf48.Corn Growing Degree Days (NDAWN: North Dakota Agricultural Weather Network, 2017); https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html49.Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States (US Department of Agriculture, Natural Resources Conservation Service, 2014); https://gdg.sc.egov.usda.gov/50.Dobos, R. R., Sinclair, H. R., Jr & Robotham, M. P. User Guide for the National Commodity Crop Productivity Index (NCCPI, 2012).51.Plexida, S. G., Sfougaris, A. I., Ispikoudis, I. P. & Papanastasis, V. P. Selecting landscape metrics as indicators of spatial heterogeneity—a comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 26, 26–35 (2014).ADS 

    Google Scholar 
    52.Schindler, S., Poirazidis, K. & Wrbka, T. Towards a core set of landscape metrics for biodiversity assessments: a case study from Dadia National Park, Greece. Ecol. Indic. 8, 502–514 (2008).
    Google Scholar 
    53.Turner, M. G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 4, 21–30 (1990).
    Google Scholar 
    54.Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).
    Google Scholar 
    55.Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1–10 (2019).
    Google Scholar 
    56.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/57.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).MathSciNet 
    MATH 

    Google Scholar 
    58.Blanc, E. & Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 11, 258–279 (2017).
    Google Scholar 
    59.Level III Ecoregions of the Continental United States (US Environmental Protection Agency, 2011); https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states60.Bakka, H. et al. Spatial modeling with R-INLA: a review. Wiley Interdiscip. Rev. Comput. Stat. 10, e1443 (2018).MathSciNet 

    Google Scholar 
    61.2018 Cartographic Boundary Files [data set] (US Census Bureau, 2018); https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html More

  • in

    Population differentiation of Rhodobacteraceae along with coral compartments

    1.Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol. 2016;70:317–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Ainsworth TD, Thurber RV, Gates RD. The future of coral reefs: a microbial perspective. Trends Ecol Evol. 2010;25:233–40.PubMed 
    Article 

    Google Scholar 
    3.Huettel M, Wild C, Gonelli S. Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar Ecol Prog Ser. 2006;307:69–84.Article 

    Google Scholar 
    4.Coffroth M. Mucous sheet formation on poritid corals: an evaluation of coral mucus as a nutrient source on reefs. Mar Biol. 1990;105:39–49.CAS 
    Article 

    Google Scholar 
    5.Brown BE, Bythell JC. Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser. 2005;296:291–309.CAS 
    Article 

    Google Scholar 
    6.Sweet M, Croquer A, Bythell J. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs. 2011;30:39–52.Article 

    Google Scholar 
    7.Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208:2819–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem. 2008;283:7309–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Singh LR, Dar TA, editors. Cellular osmolytes: from chaperoning protein folding to clinical perspectives. 1st ed. Singapore: Springer Nature Singapore Pte Ltd.; 2017.10.Yancey PH, Heppenstall M, Ly S, Andrell RM, Gates RD, Carter VL, et al. Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiol Biochem Zool. 2010;83:167–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Mayfield AB, Gates RD. Osmoregulation in anthozoan—dinoflagellate symbiosis. Compar Biochem Physiol A. 2007;147:1–10.Article 
    CAS 

    Google Scholar 
    12.Rublee PA, Lasker HR, Gottfried M, Roman MR. Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull Mar Sci. 1980;30:888–93.
    Google Scholar 
    13.Wild C, Woyt H, Huettel M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser. 2005;287:87–98.CAS 
    Article 

    Google Scholar 
    14.Coles SL, Strathmann R. Observations on coral mucus “flocs” and their potential trophic significance. Limnol Oceanogr. 1973;18:673–8.Article 

    Google Scholar 
    15.Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 
    Article 

    Google Scholar 
    16.Falini G, Fermani S, Goffredo S. Coral biomineralization: a focus on intra-skeletal organic matrix and calcification. Semin Cell Dev Biol. 2015;46:17–26.Article 

    Google Scholar 
    17.Constantz B, Weiner S. Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool. 1988;248:253–8.CAS 
    Article 

    Google Scholar 
    18.Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D. Stable isotopes (delta C-13 and delta N-15) of organic matrix from coral skeleton. Proc Natl Acad Sci USA. 2005;102:1525–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Sorek M, Díaz-Almeyda EM, Medina M, Levy O. Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host. Mar Genom. 2014;14:47–57.Article 

    Google Scholar 
    20.Agostini S, Suzuki Y, Higuchi T, Casareto B, Yoshinaga K, Nakano Y, et al. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs. 2012;31:147–56.Article 

    Google Scholar 
    21.Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Ritchie KB. Bacterial symbionts of corals and Symbiodinium. In: Rosenberg E, Gophna U editors. Beneficial microorganisms in multicellular life forms. 1st ed. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2012. pp 139–50.23.Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems. 2016;1:e00143–00116.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:1–13.CAS 
    Article 

    Google Scholar 
    25.Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabó G, et al. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Youngblut ND, Wirth JS, Henriksen JR, Smith M, Simon H, Metcalf WW, et al. Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment. ISME J. 2015;9:2191–205.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Wielgoss S, Didelot X, Chaudhuri RR, Liu X, Weedall GD, Velicer GJ, et al. A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME J. 2016;10:2468–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JB. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. Mbio. 2019;10:e02361–02319.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Huggett MJ, Apprill A. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85.PubMed 
    Article 

    Google Scholar 
    30.Apprill A, Marlow HQ, Martindale MQ, Rappe MS. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 2009;3:685–99.PubMed 
    Article 

    Google Scholar 
    31.Epstein HE, Torda G, Munday PL, van Oppen MJH. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 2019;13:1635–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Freire I, Gutner-Hoch E, Muras A, Benayahu Y, Otero A. The effect of bacteria on planula-larvae settlement and metamorphosis in the octocoral Rhytisma fulvum fulvum. PLoS ONE. 2019;14:e0223214.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Miura N, Motone K, Takagi T, Aburaya S, Watanabe S, Aoki W, et al. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar Biotechnol. 2019;21:1–8.CAS 
    Article 

    Google Scholar 
    34.Apprill A, Hughen K, Mincer T. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ Microbiol. 2013;15:2063–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Sekar R, Kaczmarsky LT, Richardson LL. Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar Ecol Prog Ser. 2008;362:85–98.CAS 
    Article 

    Google Scholar 
    36.Casey JM, Connolly SR, Ainsworth TD. Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens. Sci Rep. 2015;5:11903–11903.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Tsang RHL, Ang PO. Resistance to temperature stress and Drupella corallivory may promote the dominance of Platygyra acuta in the marginal coral communities in Hong Kong. Mar Environ Res. 2019;144:20–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Tam TW, Ang PO Jr. Repeated physical disturbances and the stability of sub‐tropical coral communities in Hong Kong, China. Aquat Conserv. 2008;18:1005–24.Article 

    Google Scholar 
    39.Ang Jr PO, Choi LS, Choi MM, Cornish A, Fung HL, Lee MW et al. Hong Kong. In: Centre JWR editors. Status of coral reefs of the East Asian Seas region: 2004. Tokyo: Ministry of the Environment; 2005. pp 121–52.40.Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F editors. The Prokaryotes: alphaproteobacteria and Betaproteobacteria. 4th ed. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2014. pp 439–512.42.Johannes RE, Wiebe WJ. Method for determination of coral tissue biomass and composition. Limnol Oceanogr. 1970;15:822–4.Article 

    Google Scholar 
    43.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:1–14.Article 

    Google Scholar 
    44.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Feil EJ, Spratt BG. Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol. 2001;55:561–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020;14:3106–19.48.Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012;8:e1002453.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015;11:e1004041.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.PubMed 
    Article 

    Google Scholar 
    51.Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–02517.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Librado P, Vieira FG, Rozas J. BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics. 2011;28:279–81.PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Slatkin M, Maddison WP. A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 1989;123:603–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.Article 
    CAS 

    Google Scholar 
    55.Lohr KE, Khattri RB, Guingab-Cagmat J, Camp EF, Merritt ME, Garrett TJ, et al. Metabolomic profiles differ among unique genotypes of a threatened Caribbean coral. Sci Rep. 2019;9:1–11.CAS 
    Article 

    Google Scholar 
    56.Hill R, Li C, Jones A, Gunn J, Frade P. Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs. 2010;29:869–80.Article 

    Google Scholar 
    57.Gowrishankar J. Nucleotide sequence of the osmoregulatory proU operon of Escherichia coli. J Bacteriol. 1989;171:1923–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Chandravanshi M, Gogoi P, Kanaujia SP. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter. Gene. 2016;592:260–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol. 2010;78:13–34.CAS 
    PubMed 

    Google Scholar 
    60.Geiger O, López-Lara IM, Sohlenkamp C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta Mol Cell Biol Lipids. 2013;1831:503–13.CAS 
    Article 

    Google Scholar 
    61.Lidbury I, Kimberley G, Scanlan DJ, Murrell JC, Chen Y. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade. Environ Microbiol. 2015;17:5048–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 2012;6:2229–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Jones M, Talfournier F, Bobrov A, Grossmann JG, Vekshin N, Sutcliffe MJ, et al. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. J Biol Chem. 2002;277:8457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Chen Y. Comparative genomics of methylated amine utilization by marine Roseobacter clade bacteria and development of functional gene markers (tmm, gmaS). Environ Microbiol. 2012;14:2308–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Schäfer H, McDonald IR, Nightingale PD, Murrell JC. Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide‐oxidizing bacteria. Environ Microbiol. 2005;7:839–52.PubMed 
    Article 
    CAS 

    Google Scholar 
    67.McNicholas PM, Chiang RC, Gunsalus RP. Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate‐responsive regulator ModE. Mol Microbiol. 1998;27:197–208.CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, et al. Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem. 2004;279:50391–50400.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Hillyer KE, Dias DA, Lutz A, Wilkinson SP, Roessner U, Davy SK. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs. 2017;36:105–18.Article 

    Google Scholar 
    70.Rösgen J. Molecular basis of osmolyte effects on protein and metabolites. Methods Enzymol. 2007;428:459–86.PubMed 
    Article 
    CAS 

    Google Scholar 
    71.Cunliffe M. Correlating carbon monoxide oxidation with cox genes in the abundant marine Roseobacter clade. ISME J. 2011;5:685–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Bartling P, Vollmers J, Petersen J. The first world swimming championships of Roseobacters—phylogenomic insights into an exceptional motility phenotype. Syst Appl Microbiol. 2018;41:544–54.PubMed 
    Article 

    Google Scholar 
    73.Michael V, Frank O, Bartling P, Scheuner C, Goker M, Brinkmann H, et al. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J. 2016;10:2498–513.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Armitage JP. Behavioural responses of bacteria to light and oxygen. Arch Microbiol. 1997;168:249–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Jorgensen NOG. Uptake of urea by estuarine bacteria. Aquat Micro Ecol. 2006;42:227–42.Article 

    Google Scholar 
    76.Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2019: 1–10.77.Krajewska B, Ureases I. Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym. 2009;59:9–21.CAS 
    Article 

    Google Scholar 
    78.Cheng L, Cord-Ruwisch R. In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng. 2012;42:64–72.Article 

    Google Scholar 
    79.Cho BC, Park MG, Shim JH, Azam F. Significance of bacteria in urea dynamics in coastal surface waters. Mar Ecol Prog Ser. 1996;142:19–26.Article 

    Google Scholar 
    80.Jin D, Zhao SG, Zheng N, Beckers Y, Wang JQ. Urea metabolism and regulation by rumen bacterial urease in ruminants—a review. Ann Anim Sci. 2018;18:303–18.Article 

    Google Scholar 
    81.Collier JL, Baker KM, Bell SL. Diversity of urea-degrading microorganisms in open-ocean and estuarine planktonic communities. Environ Microbiol. 2009;11:3118–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Rottier C, Wright A, et al. Enhancement of coral calcification via the interplay of nickel and urease. Aquat Toxicol. 2018;200:247–56.PubMed 
    Article 
    CAS 

    Google Scholar 
    83.Crossland C, Barnes D. The role of metabolic nitrogen in coral calcification. Mar Biol. 1974;28:325–32.CAS 
    Article 

    Google Scholar 
    84.Goodkin NF, Switzer AD, Mccorry D, Devantier L, True J, Hughen KA, et al. Coral communities of Hong Kong: long-lived corals in a marginal reef environment. Mar Ecol Prog Ser. 2011;426:185–96.Article 

    Google Scholar 
    85.Bernasconi R, Stat M, Koenders A, Paparini A, Bunce M, Huggett MJ. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front Mirobiol. 2019;10:1529.Article 

    Google Scholar 
    86.Chu X, Li S, Wang S, Luo D, Luo H. Gene loss through pseudogenization contributes to the ecological diversification of a generalist Roseobacter lineage. ISME J. 2020;15:489–502.PubMed 
    Article 
    CAS 

    Google Scholar 
    87.Gardner SN, Slezak T, Hall BG. kSNP3. 0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:2877–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Krzywinski M, Schein JE, Birol I, Connors JM, Gascoyne RD, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity

    1.Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; with 47 Tables. (Springer Science & Business Media, 2003).2.Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).Article 

    Google Scholar 
    3.Xu, J. et al. The Melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23, 520–530 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Liang, Q. et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45, 1334–1344 (2018).Article 

    Google Scholar 
    5.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).ADS 
    Article 

    Google Scholar 
    7.Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).Article 

    Google Scholar 
    8.Tang, Z., Wang, Z., Zheng, C. & Fang, J. Biodiversity in China’s mountains. Front. Ecol. Environ. 4, 347–352 (2006).Article 

    Google Scholar 
    9.Lomolino, Mark V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    10.Colwell, RobertK. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).ADS 
    Article 

    Google Scholar 
    12.Su, X., Han, W., Liu, G., Zhang, Y. & Lu, H. Substantial gaps between the protection of biodiversity hotspots in alpine grasslands and the effectiveness of protected areas on the Qinghai-Tibetan Plateau, China. Agric. Ecosyst. Environ. 278, 15–23 (2019).Article 

    Google Scholar 
    13.Zhang, Y. et al. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. (2020) https://doi.org/10.1016/j.pld.2020.09.001.14.Hopping, K. A., Knapp, A. K., Dorji, T. & Klein, J. A. Warming and land use change concurrently erode ecosystem services in Tibet. Glob. Change Biol. 24, 5534–5548 (2018).ADS 
    Article 

    Google Scholar 
    15.Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).ADS 
    Article 

    Google Scholar 
    16.Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. N. Phytol. 204, 37–54 (2014).Article 

    Google Scholar 
    17.Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228, 1–25 (2016).Article 

    Google Scholar 
    18.Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).CAS 
    Article 

    Google Scholar 
    19.Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile. Quat. Res. 73, 324–335 (2010).CAS 
    Article 

    Google Scholar 
    20.Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 23–41 (2010).Article 

    Google Scholar 
    21.Hou, G., Yang, P., Cao, G., Chongyi, E. & Wang, Q. Vegetation evolution and human expansion on the Qinghai–Tibet Plateau since the Last Deglaciation. Quat. Int. 430, 82–93 (2017).Article 

    Google Scholar 
    22.Chen, F. et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review. Quat. Sci. Rev. 243, 106444 (2020).Article 

    Google Scholar 
    23.Singh, U. M., Gupta, V., Rao, V. P., Sengar, R. S. & Yadav, M. K. A review on biological activities and conservation of endangered medicinal herb Nardostachys jatamansi. Int. J. Med. Arom. Plants 3, 113–124 (2013).CAS 

    Google Scholar 
    24.Li, X. H., Zhu, X. X., Niu, Y. & Sun, H. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China: Phylogenetic structure along elevational gradient. J. Syst. Evol. 52, 280–288 (2014).Article 

    Google Scholar 
    25.Kanz, C. et al. The EMBL nucleotide sequence database. Nucleic Acids Res. 33, D29–D33 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yu, H. et al. Contrasting floristic diversity of the Hengduan mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front. Ecol. Evol. 8 (2020).27.Scheiner, S. M. et al. The underpinnings of the relationship of species richness with space and time. Ecol. Monogr. 81, 195–213 (2011).Article 

    Google Scholar 
    28.Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Opitz, S., Zhang, C., Herzschuh, U. & Mischke, S. Climate variability on the south-eastern Tibetan Plateau since the Lateglacial based on a multiproxy approach from Lake Naleng – comparing pollen and non-pollen signals. Quat. Sci. Rev. 115, 112–122 (2015).ADS 
    Article 

    Google Scholar 
    30.Laliberté, E. et al. How does pedogenesis drive plant diversity? Trends Ecol. Evol. 28, 331–340 (2013).PubMed 
    Article 

    Google Scholar 
    31.Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 18, 927–939 (2018).CAS 
    Article 

    Google Scholar 
    32.Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).PubMed 
    Article 

    Google Scholar 
    35.Chen, F. H. et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248–250 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Group, M. R. I. E. W. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).ADS 
    Article 

    Google Scholar 
    37.Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).ADS 
    Article 

    Google Scholar 
    39.Zu, K. et al. Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai–Tibetan Plateau. Ecol. Evol. 9, 9586–9596 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Sun, H., Zhang, J., Deng, T. & Boufford, D. E. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161–166 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. 106, 19729–19736 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Late Quaternary environmental history of the south-eastern Tibetan Plateau inferred from the Lake Naleng non-pollen palynomorph record. Veg. Hist. Archaeobotany 19, 453–468 (2010).Article 

    Google Scholar 
    43.Stuiver, M. & Reimer, P. J. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35, 215–230 (1993).Article 

    Google Scholar 
    44.Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP. Radiocarbon 46, 1029–1058 (2004).45.Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14–e14 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    46.Coissac, E. OligoTag: A Program for Designing Sets of Tags for Next-Generation Sequencing of Multiplexed Samples. in Data Production and Analysis in Population Genomics: Methods and Protocols (eds. Pompanon, F. & Bonin, A.) 13–31 (Humana Press, 2012). https://doi.org/10.1007/978-1-61779-870-2_2.47.De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.SøNstebø, J. H. et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate: TECHNICAL ADVANCES. Mol. Ecol. Resour. 10, 1009–1018 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS ONE 10, e0115335 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.R Core Team. R: A Language and Environment for Statistical Computing. (2019).54.Brach, A. R. & Song, H. eFloras: New directions for online floras exemplified by the Flora of China Project. TAXON 55, 188–192 (2006).Article 

    Google Scholar 
    55.Zhao, Y. et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci. Adv. 6, eaay6193 (2020).56.Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Kessler, M. A., Anderson, R. S. & Stock, G. M. Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum. J. Geophys. Res. Earth Surf. 111, F02002 (2006).60.Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).ADS 
    Article 

    Google Scholar 
    61.Braithwaite, R. J. From Doktor Kurowski’s Schneegrenze to our modern glacier equilibrium line altitude (ELA). Cryosphere 9, 2135–2148 (2015).ADS 
    Article 

    Google Scholar 
    62.Maussion, F. et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high asia reanalysis. J. Clim. 27, 1910–1927 (2014).ADS 
    Article 

    Google Scholar 
    63.Anja, M.-C. et al. GPCC Climatology Version 2011 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data. https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2011_025.64.Yuzhong, Y., Qingbai, W. & Hanbo, Y. Stable isotope variations in the ground ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quat. Int. 313–314, 85–91 (2013).Article 

    Google Scholar 
    65.Li, X. et al. Near-surface air temperature lapse rates in the mainland China during 1962–2011. J. Geophys. Res. Atmospheres 118, 7505–7515 (2013).ADS 
    Article 

    Google Scholar 
    66.Revelle, W. psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA. Northwest. Univ. (2018).67.Zimmermann, H. H. et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences Discuss. 1–50 (2016) https://doi.org/10.5194/bg-2016-386.68.Oksanen, J. et al. vegan: Community Ecology Package. (2019).69.Hallett, L. M. et al. codyn: An r package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 

    Google Scholar 
    70.Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A. & Real, R. modEvA: Model Evaluation and Analysis. R package version 1.3.2. (2016).71.Kuhn, M. caret: Classification and Regression Training. R package version 6.0–86. (2020). More

  • in

    Bat responses to changes in forest composition and prey abundance depend on landscape matrix and stand structure

    1.Watling, J. I. et al. Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol. Lett. 23, 674–681 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Ćosović, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 11, 343 (2020).Article 

    Google Scholar 
    5.Bouvet, A. et al. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148–160 (2016).Article 

    Google Scholar 
    6.Froidevaux, J. S., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).ADS 
    Article 

    Google Scholar 
    7.Fuentes-Montemayor, E. et al. Species mobility and landscape context determine the importance of local and landscape-level attributes. Ecol. Appl. 27, 1541–1554 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Jung, K., Kaiser, S., Böhm, S., Nieschulze, J. & Kalko, E. K. Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J. Appl. Ecol. 49, 523–531 (2012).Article 

    Google Scholar 
    9.Langridge, J., Pisanu, B., Laguet, S., Archaux, F. & Tillon, L. The role of complex vegetation structures in determining hawking bat activity in temperate forests. For. Ecol. Manag. 448, 559–571 (2019).Article 

    Google Scholar 
    10.Müller, J. et al. From ground to above canopy—Bat activity in mature forests is driven by vegetation density and height. For. Ecol. Manag. 306, 179–184 (2013).Article 

    Google Scholar 
    11.Renner, S. C. et al. Divergent response to forest structure of two mobile vertebrate groups. For. Ecol. Manag. 415, 129–138 (2018).Article 

    Google Scholar 
    12.Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Fragmented woodlands in agricultural landscapes: the influence of woodland character and landscape context on bats and their insect prey. Agr. Ecosyst. Environ. 172, 6–15 (2013).Article 

    Google Scholar 
    13.Rachwald, A., Boratyński, J. S., Krawczyk, J., Szurlej, M. & Nowakowski, W. K. Natural and anthropogenic factors influencing the bat community in commercial tree stands in a temperate lowland forest of natural origin (Białowieża Forest). For. Ecol. Manag. 479, 118544 (2021).Article 

    Google Scholar 
    14.Alder, D., Poore, A., Norrey, J., Newson, S. & Marsden, S. Irregular silviculture positively influences multiple bat species in a lowland temperate broadleaf woodland. For. Ecol. Manag. 118786, 1613 (2020).
    Google Scholar 
    15.Carr, A., Zeale, M. R., Weatherall, A., Froidevaux, J. S. & Jones, G. Ground-based and LiDAR-derived measurements reveal scale-dependent selection of roost characteristics by the rare tree-dwelling bat Barbastella barbastellus. For. Ecol. Manag. 417, 237–246 (2018).Article 

    Google Scholar 
    16.Kortmann, M. et al. Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Anim. Conserv. 21, 21–30 (2018).Article 

    Google Scholar 
    17.Ruczyński, I., Nicholls, B., MacLeod, C. & Racey, P. Selection of roosting habitats by Nyctalus noctula and Nyctalus leisleri in Białowieża Forest—adaptive response to forest management?. For. Ecol. Manag. 259, 1633–1641 (2010).Article 

    Google Scholar 
    18.Ober, H. K. & Hayes, J. P. Influence of forest riparian vegetation on abundance and biomass of nocturnal flying insects. For. Ecol. Manag. 256, 1124–1132 (2008).Article 

    Google Scholar 
    19.Russo, D. et al. Identifying key research objectives to make European forests greener for bats. Front. Ecol. Evol. 4, 87 (2016).Article 

    Google Scholar 
    20.Kaňuch, P. et al. Relating bat species presence to habitat features in natural forests of Slovakia (Central Europe). Mamm. Biol. 73, 147–155 (2008).Article 

    Google Scholar 
    21.Kirkpatrick, L. et al. Bat use of commercial coniferous plantations at multiple spatial scales: management and conservation implications. Biol. Cons. 206, 1–10 (2017).Article 

    Google Scholar 
    22.Vasko, V. et al. Within-season changes in habitat use of forest-dwelling boreal bats. Ecol. Evol. 10, 4164–4174 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Węgiel, A. et al. The foraging activity of bats in managed pine forests of different ages. Eur. J. Forest Res. 138, 383–396 (2019).Article 

    Google Scholar 
    24.Bender, M. J., Castleberry, S. B., Miller, D. A. & Wigley, T. B. Site occupancy of foraging bats on landscapes of managed pine forest. For. Ecol. Manag. 336, 1–10 (2015).Article 

    Google Scholar 
    25.Apoznański, G. et al. Use of coniferous plantations by bats in western Poland during summer. Balt. For. 26, 232 (2020).Article 

    Google Scholar 
    26.Buchholz, S., Kelm, V. & Ghanem, S. J. Mono-specific forest plantations are valuable bat habitats: implications for wind energy development. Eur. J. Wildl. Res. 67, 1–12 (2021).Article 

    Google Scholar 
    27.Charbonnier, Y. et al. Deciduous trees increase bat diversity at stand and landscape scales in mosaic pine plantations. Landscape Ecol. 31, 291–300 (2016).Article 

    Google Scholar 
    28.Arroyo‐Rodríguez, V. et al. Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecol. Lett. In Press. (2020).29.Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 15, 169–175 (1992).Article 

    Google Scholar 
    30.Hatfield, J. H. et al. Mediation of area and edge effects in forest fragments by adjacent land use. Conserv. Biol. 34, 395–404 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Barbaro, L. et al. Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests. Proc. R. Soc. B 286, 20182193 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ethier, K. & Fahrig, L. Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landsc. Ecol. 26, 865–876 (2011).Article 

    Google Scholar 
    33.Rodríguez-San Pedro, A. & Simonetti, J. A. The relative influence of forest loss and fragmentation on insectivorous bats: does the type of matrix matter?. Landsc. Ecol. 30, 1561–1572 (2015).Article 

    Google Scholar 
    34.Charbonnier, Y. M. et al. Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia 182, 529–537 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Dietz, C., Nill, D. & von Helversen, O. Bats of Britain, Europe and Northwest Africa. (A & C Black, 2009).36.Law, B., Park, K. J. & Lacki, M. J. in Bats in the Anthropocene: conservation of bats in a changing world (eds Christian C Voigt & T Kingston) 105–150 (Springer, 2016).37.Carr, A., Weatherall, A. & Jones, G. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. For. Ecol. Manag. 457, 117682 (2020).Article 

    Google Scholar 
    38.Müller, J. et al. Aggregative response in bats: prey abundance versus habitat. Oecologia 169, 673–684 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Ware, R. L., Garrod, B., Macdonald, H. & Allaby, R. G. Guano morphology has the potential to inform conservation strategies in British bats. PLoS ONE 15, e0230865 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kirkpatrick, L., Bailey, S. & Park, K. J. Negative impacts of felling in exotic spruce plantations on moth diversity mitigated by remnants of deciduous tree cover. For. Ecol. Manag. 404, 306–315 (2017).Article 

    Google Scholar 
    41.Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Factors influencing moth assemblages in woodland fragments on farmland: implications for woodland management and creation schemes. Biol. Cons. 153, 265–275 (2012).Article 

    Google Scholar 
    42.Rainho, A., Augusto, A. M. & Palmeirim, J. M. Influence of vegetation clutter on the capacity of ground foraging bats to capture prey. J. Appl. Ecol. 47, 850–858 (2010).Article 

    Google Scholar 
    43.Blakey, R. V., Law, B. S., Kingsford, R. T. & Stoklosa, J. Terrestrial laser scanning reveals below-canopy bat trait relationships with forest structure. Remote Sens. Environ. 198, 40–51 (2017).ADS 
    Article 

    Google Scholar 
    44.Laforge, A. et al. Landscape composition and life-history traits influence bat movement and space use: analysis of 30 years of published telemetry data. (Submitted).45.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    46.Summerville, K. S. & Crist, T. O. Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography 27, 3–12 (2004).Article 

    Google Scholar 
    47.Vinet, O., Sane, F. & Chaigne, A. Radiopistage de la barbastelle (Barbastella barbastellus) en forêt domaniale de l’Aigoual. (Nimes, France, 2013).
    48.Obrist, M. K. et al. Response of bat species to sylvo-pastoral abandonment. For. Ecol. Manag. 261, 789–798 (2011).Article 

    Google Scholar 
    49.Norberg, U. M. & Rayner, J. M. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 316, 335–427 (1987).ADS 
    Article 

    Google Scholar 
    50.Swift, S. & Racey, P. Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behav. Ecol. Sociobiol. 52, 408–416 (2002).Article 

    Google Scholar 
    51.Brigham, R., Grindal, S., Firman, M. & Morissette, J. The influence of structural clutter on activity patterns of insectivorous bats. Can. J. Zool. 75, 131–136 (1997).Article 

    Google Scholar 
    52.Bender, M. J., Perea, S., Castleberry, S. B., Miller, D. A. & Wigley, T. B. Influence of insect abundance and vegetation structure on site-occupancy of bats in managed pine forests. For. Ecol. Manag. 482, 118839 (2021).Article 

    Google Scholar 
    53.Ancillotto, L. et al. The importance of non-forest landscapes for the conservation of forest bats: lessons from barbastelles (Barbastella barbastellus). Biodivers. Conserv. 24, 171–185 (2015).Article 

    Google Scholar 
    54.Plank, M., Fiedler, K. & Reiter, G. Use of forest strata by bats in temperate forests. J. Zool. 286, 154–162 (2012).Article 

    Google Scholar 
    55.Kusch, J., Weber, C., Idelberger, S. & Koob, T. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zool. 53, 113–128 (2004).
    Google Scholar 
    56.Siemers, B. M. & Schnitzler, H.-U. Natterer’s bat (Myotis nattereri Kuhl, 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behav. Ecol. Sociobiol. 47, 400–412 (2000).Article 

    Google Scholar 
    57.Arrizabalaga-Escudero, A. et al. Trophic requirements beyond foraging habitats: the importance of prey source habitats in bat conservation. Biol. Conserv. 191, 512–519 (2015).Article 

    Google Scholar 
    58.Carr, A. et al. Moths consumed by the Barbastelle Barbastella barbastellus require larval host plants that occur within the bat’s foraging habitats. Acta Chiropterologica 22, 257–269 (2021).
    Google Scholar 
    59.van der Plas, F. et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31–42 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445 (2006).Article 

    Google Scholar 
    61.Wolters, V., Bengtsson, J. & Zaitsev, A. S. Relationship among the species richness of different taxa. Ecology 87, 1886–1895 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Larrieu, L. et al. Cost-efficiency of cross-taxon surrogates in temperate forests. Ecol. Ind. 87, 56–65 (2018).Article 

    Google Scholar 
    63.Westgate, M. J., Tulloch, A. I., Barton, P. S., Pierson, J. C. & Lindenmayer, D. B. Optimal taxonomic groups for biodiversity assessment: a meta-analytic approach. Ecography 40, 539–548 (2017).Article 

    Google Scholar 
    64.Larrieu, L. et al. Assessing the potential of routine stand variables from multi-taxon data as habitat surrogates in European temperate forests. Ecol. Ind. 104, 116–126 (2019).Article 

    Google Scholar 
    65.Bitterlich, W. The relascope idea. Relative measurements in forestry. Farnham Royal: Commonwealth Agricultural Bureaux, Slough. (1984).
    66.Bachelot, B. Sky: canopy openness analyzer package. R package version 1.0. https://cran.r-project.org/web/packages/Sky/index.html. (2016).67.R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (2019).68.Blondel, J. & Cuvillier, R. Une méthode simple et rapide pour décrire les habitats d’oiseaux: le stratiscope. Oikos 29, 326–331 (1977).Article 

    Google Scholar 
    69.Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    70.Froidevaux, J. S., Zellweger, F., Bollmann, K. & Obrist, M. K. Optimizing passive acoustic sampling of bats in forests. Ecol. Evol. 4, 4690–4700 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Bas, Y., Bas, D. & Julien, J.-F. Tadarida: a toolbox for animal detection on acoustic recordings. J. Open Res. Softw. 5, 6 (2017).Article 

    Google Scholar 
    72.Barré, K. et al. Accounting for automated identification errors in acoustic surveys. Methods Ecol. Evol. 10, 1171–1188 (2019).Article 

    Google Scholar 
    73.Russo, D., Ancillotto, L. & Jones, G. Bats are still not birds in the digital era: echolocation call variation and why it matters for bat species identification. Can. J. Zool. 96, 63–78 (2018).Article 

    Google Scholar 
    74.Obrist, M. K., Boesch, R. & Flückiger, P. F. Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia 68, 307–322 (2004).Article 

    Google Scholar 
    75.Barataud, M. Acoustic ecology of european bats: species identification, study of their habitats and foraging behaviour. Paris: Muséum national d’Histoire naturelle & Mèze: Biotope (Inventaires & biodiversité) 352, 115 (2015).
    Google Scholar 
    76.Truxa, C. & Fiedler, K. Attraction to light-from how far do moths (Lepidoptera) return to weak artificial sources of light?. Eur. J. Entomol. 109, 1053 (2012).Article 

    Google Scholar 
    77.Froidevaux, J. S., Fialas, P. C. & Jones, G. Catching insects while recording bats: impacts of light trapping on acoustic sampling. Remote Sens. Ecol. Conserv. 4, 240–247 (2018).Article 

    Google Scholar 
    78.Andreas, M., Reiter, A., Cepáková, E. & Uhrin, M. Body size as an important factor determining trophic niche partitioning in three syntopic rhinolophid bat species. Biologia 68, 170–175 (2013).Article 

    Google Scholar 
    79.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R J. 9, 378–400 (2017).Article 

    Google Scholar 
    80.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. Multimodel Inference 2, 15 (2002).MATH 

    Google Scholar 
    81.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    82.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.2.0. https://cran.r-project.org/web/packages/DHARMa/index.html. (2017).83.Mazerolle, M. J. AICcmodavg. R package version 2.3-1. https://cran.r-project.org/web/packages/AICcmodavg/index.html. (2020).84.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    87.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.0. https://cran.r-project.org/web/packages/emmeans/index.html. (2020). More

  • in

    Impact of natural salt lick on the home range of Panthera tigris at the Royal Belum Rainforest, Malaysia

    1.Hamdan, A. et al. A preliminary study of mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest Malaysia. Sci. Rep. 10, 14105. https://doi.org/10.1038/s41598-020-71047-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Lazarus, B. A. et al. Topographical differences impacting wildlife dynamics at natural salt licks in the Royal Belum Rainforest. Asian J. Conserv. Biol. 8(2), 97–101 (2019).
    Google Scholar 
    3.Brightsmith, D. J., Taylor, J. & Phillips, T. D. The roles of soil characteristics and toxin adsorption in avian geophagy. Biotropica 40, 766–774 (2008).Article 

    Google Scholar 
    4.Ayotte, J. B., Parker, K. L., Arocena, J. & Gillingham, M. P. Chemical composition of lick soils: functions of soil ingestion by four ungulate species. J. Mammal. 87(5), 878–888 (2006).Article 

    Google Scholar 
    5.Matsubayashi, H. et al. Importance of natural licks for mammals in Bornean Inland Tropical Rainforest. Ecol. Res. 22, 742 (2006).Article 

    Google Scholar 
    6.Tracy, B. F. & McNaughton, S. J. Elemental analysis of mineral licks from the Serengeti National Park, the Konza Prairie and Yellowstone National Park. Ecography 18, 91–94 (1995).Article 

    Google Scholar 
    7.Razali, N. B. et al. Physical factors at salt licks influenced the frequency of wildlife visitation in the Malaysian tropical rainforest. Trop. Zool. 33(3), 83–96. https://doi.org/10.4081/tz.2020.69 (2020).Article 

    Google Scholar 
    8.Owen-Smith, N. & Mills, M. Predator-prey size relationships in an African large-mammal food web. J. Anim. Ecol. 77, 173–183 (2008).Article 

    Google Scholar 
    9.Mathers, K. L., Rice, S. P. & Wood, P. J. Predator, prey, and substrate interactions: the role of faunal activity and substrate characteristics. Ecosphere 10(1), e02545 (2019).Article 

    Google Scholar 
    10.Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).Article 

    Google Scholar 
    11.Stevens, A. Dynamics of predation. Nat. Educ. Knowl. 3(10), 46 (2010).
    Google Scholar 
    12.Lima, S. T. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17(2), 70–75 (2002).Article 

    Google Scholar 
    13.Cuyper, A. D. et al. Predator size and prey size–gut capacity ratios determine kill frequency and carcass production in terrestrial carnivorous mammals. Oikos https://doi.org/10.1111/oik.05488 (2018).Article 

    Google Scholar 
    14.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294(5548), 1923–1926 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Couturier, S. & Barrete, C. The behaviour of moose at natural mineral springs in Quebec. Can. J. Zool. 66, 522–528 (1987).Article 

    Google Scholar 
    16.Ruggiero, R. D. & Fay, J. M. Utilization of termitarium soils by elephants and its ecological implications. Afr. J. Ecol. 32, 222–232 (1994).Article 

    Google Scholar 
    17.Shahfiz, M. A. et al. Checklist of vertebrates at Primary Linkages 2 (PL2) of the central forest spine ecological corridor in Belum Temengor Forest Reserves, Perak, Peninsular Malaysia. Malays. For. 82(2), 463–485 (2019).
    Google Scholar 
    18.Liyana, N. M., Othman, Z., Wahid, A. R. & Hakimie, A. A. Habitat suitability prediction model of wildlife at Royal Belum State Park using geographical information system. Int. J. Geoinform. 12(2), 1–8 (2016).
    Google Scholar 
    19.Kawanishi, K. et al. The Malayan tiger. In In Noyes Series in Animal Behavior, Ecology, Conservation and Management, Tigers of the World 2nd edn (eds Tilson, R. & Nyhus, P. J.) 367–376 (William Andrew Publishing, Norwich, 2010).
    Google Scholar 
    20.Lynam, A. J., Laidlaw, R., Wan Noordin, W. S., Elagupillay, S. & Bennett, E. L. Assessing the conservation status of the tiger Panthera tigris at priority sites in Peninsular Malaysia. Oryx 41(4), 454–462. https://doi.org/10.1017/S0030605307001019 (2007).Article 

    Google Scholar 
    21.Kawanishi, K., Rayan, M. D., Gumal, M. T. & Shepherd, C. R. Extinction process of the sambar in Peninsular Malaysia. Deer Spec. Group Newsl. N. 26, 48–59 (2014).
    Google Scholar 
    22.Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: important metrics for management. Oryx 48(3), 370–377. https://doi.org/10.1017/S0030605312001408 (2014).Article 

    Google Scholar 
    23.Kedri, K. et al. Distribution and ecology of Rafflesia in Royal Belum state park, Perak, Malaysia. Int. J. Eng. Technol. 7(229), 292–296 (2018).Article 

    Google Scholar 
    24.Misni, A., Rauf, A., Rasam, A. & Buyadi, A. S. N. Spatial analysis of habitat conservation for hornbills: a case study of Royal Belum-Temengor forest complex in Perak Sate Park Malaysia. Pertanika J. Soc. Sci. Hum. 25(S), 11–20 (2017).
    Google Scholar 
    25.Rovero, F., Zimmermann, F., Berzi, D. & Meek, P. Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix 2, 6318 (2013).
    Google Scholar 
    26.Liu, N., Zhao, Q., Zhang, N., Cheng, X., & Zhu, J. Pose-guided complementary features learning for Amur tiger re-identification, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 286–293. https://doi.org/10.1109/ICCVW.2019.00038 (2019).27.Sharma, S., Jhala, Y. & Sawarkar, V. B. Identification of individual tigers (Panthera tigris) from their pugmarks. J. Zool. 267, 9–18 (2005).Article 

    Google Scholar 
    28.Cho, Y. et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 4, 2433 (2013).ADS 
    Article 

    Google Scholar 
    29.Kerley, L. L. Using dogs for tiger conservation and research. Integr. Zool. 5, 390–396 (2010).Article 

    Google Scholar 
    30.Li, S., Li, J., Tang, H., Qian, R., & Lin, W. ATRW: a benchmark for Amur tiger re-identification in the wild, in Proceedings of the 28th ACM International Conference on Multimedia (MM ’20), October 12–16, 2020, Seattle, WA, USA. https://doi.org/10.1145/3394171.3413569 (ACM, New York, NY, USA, 2020).31.Shi, C. et al. Amur tiger stripes: Individual identification based on deep convolutional neural network. Integr. Zool. 15(6), 461–470 (2020).Article 

    Google Scholar 
    32.McCullough, D. R., Pei, K. C. J. & Wang, Y. Home range, activity patterns, and habitat relations of Reeves’ muntjacs in Taiwan. J. Wildl. Manag. 64(2), 430. https://doi.org/10.2307/3803241 (2000).Article 

    Google Scholar 
    33.Chatterjee, D., Sankar, K., Qureshi, Q., Malik, P. K. & Nigam, P. Ranging pattern and habitat use of sambar (Rusa unicolor) in Sariska Tiger Reserve, Rajasthan, western India. DSG Newsl. 26, 60–71 (2014).
    Google Scholar 
    34.Garza, S. J., Tabak, M. A., Miller, R. S., Farnsworth, M. L. & Burdett, C. L. Abiotic and biotic influences on home-range size of wild pigs (Sus scrofa). J. Mammal. 99(1), 97–107. https://doi.org/10.1093/jmammal/gyx154 (2018).Article 

    Google Scholar 
    35.Sankar, K. et al. Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, Central India. Trop. Conserv. Sci. 6(1), 50–69 (2013).Article 

    Google Scholar 
    36.Simcharoen, A. et al. Ecological Factors that influence sambar (Rusa unicolor) distribution and abundance in western Thailand: Implications for tiger conservation. Raffles Bull. Zool. 62, 100–106 (2014).
    Google Scholar 
    37.Mark Rayan, D. & Linkie, M. Managing threatened ungulates in logged-primary forest mosaics in Malaysia. PLoS ONE 15(12), e0243932. https://doi.org/10.1371/journal.pone.0243932 (2020).CAS 
    Article 

    Google Scholar 
    38.McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10(8), e0133771. https://doi.org/10.1371/journal.pone.0133771 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Ickes, K. Hyper-abundance of native wild pigs (Sus scrofa) in a lowland dipterocarp rain forest of Peninsular Malaysia. Biotropica 33(4), 682–690 (2001).Article 

    Google Scholar 
    40.Saunders, G. & McLeod, S. Predicting home range size from the body mass or population densities of feral pigs, sus scrofa (Artiodactyla: Suidae). Aust. J. Ecol. 24, 538–543 (1999).Article 

    Google Scholar 
    41.Abrams, P. A. & Matsuda, H. Prey adaptation as a cause of predator-prey cycles. Evolution 51, 1742–1750 (1997).Article 

    Google Scholar 
    42.Zhang, C., Minghai, Z. & Philip, S. Does prey density limit Amur tiger (Panthera tigris altaica) recovery in north-eastern China. Wildl. Biol. 19(4), 452–461 (2013).Article 

    Google Scholar 
    43.Majumder, A. et al. Home ranges of Bengal tiger (Panthera tigris tigris L.) in Pench Tiger Reserve, Madhya Pradesh, Central India. Wildl. Biol. Pract. 8, 36–49 (2012).
    Google Scholar  More

  • in

    Marine signature taxa and core microbial community stability along latitudinal and vertical gradients in sediments of the deepest freshwater lake

    1.UNDP-GEF. The ecological atlas of the Baikal basin. United Nations Office for Project Sercives (UNOPS). 2015. p 145. http://baikal.iwlearn.org/en.2.Moore MV, Hampton SE, Izmest’eva LR, Silow EA, Peshkova EV, Pavlov BK. Climate change and the world’s “Sacred Sea”—Lake Baikal, Siberia. Bioscience. 2009;59:405–17.Article 

    Google Scholar 
    3.Granin NG, Aslamov IA, Kozlov VV, Makarov MM, Kirillin G, McGinnis DF, et al. Methane hydrate emergence from Lake Baikal: direct observations, modelling, and hydrate footprints in seasonal ice cover. Sci Rep. 2019;9:19361.CAS 
    Article 

    Google Scholar 
    4.Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol. 2000;66:5053–65.Article 

    Google Scholar 
    5.Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, Domysheva VM et al. Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol. 2016;92:fiw094.6.Zakharenko AS, Galachyants YP, Morozov IV, Shubenkova OV, Morozov AA, Ivanov VG, et al. Bacterial communities in areas of oil and methane seeps in pelagic of Lake Baikal. Micro Ecol. 2019;78:269–85.CAS 
    Article 

    Google Scholar 
    7.Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol Ecol. 2017;93:10.Article 

    Google Scholar 
    8.David GM, Moreira D, Reboul G, Annenkova NV, Galindo LJ, Bertolino P, et al. Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environ Microbiol. 2021;23:1436–51.CAS 
    Article 

    Google Scholar 
    9.Annenkova NV, Giner CR, Logares R. Tracing the origin of planktonic protists in an ancient lake. Microorganisms. 2020;8:543.10.Lomakina AV, Mamaeva EV, Galachyants YP, Petrova DP, Pogodaeva TV, Shubenkova OV, et al. Diversity of archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal. Geomicrobiol J. 2018;35:50–63.CAS 
    Article 

    Google Scholar 
    11.Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16:629–45.CAS 
    Article 

    Google Scholar 
    12.Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA. 2008;105:10583–1058.CAS 
    Article 

    Google Scholar 
    13.Spring S, Bunk B, Sproer C, Rohde M, Klenk HP. Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments. Environ Microbiol. 2018;20:2438–55.CAS 
    Article 

    Google Scholar 
    14.Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol. 2013;15:1759–71.CAS 
    Article 

    Google Scholar 
    15.Dombrowski N, Seitz KW, Teske AP, Baker BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 2017;5:106.Article 

    Google Scholar 
    16.Roberts SL, Swann GEA, McGowan S, Panizzo VN, Vologina EG, Sturm M, et al. Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia. PLoS One. 2018;13:e0208765.Article 

    Google Scholar 
    17.Mukherjee I, Hodoki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano SI. Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front Microbiol. 2019;10:2375.Article 

    Google Scholar 
    18.Zemskaya TI, Cabello-Yeves PJ, Pavlova ON, Rodriguez-Valera F. Microorganisms of Lake Baikal—the deepest and most ancient lake on Earth. Appl Microbiol Biotechnol. 2020;104:6079–90.19.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    Article 

    Google Scholar 
    20.Paver SF, Muratore D, Newton RJ, Coleman ML. Reevaluating the salty divide: phylogenetic specificity of transitions between marine and freshwater systems. mSystems. 2018; 3:e00232–18. More