More stories

  • in

    Deep ocean metagenomes provide insight into the metabolic architecture of bathypelagic microbial communities

    1.Cho, B. C. & Azam, F. major role of bacteria in biogeochemical fluxes in the ocean´s interior. Nature 332, 441–443 (1988).CAS 
    Article 

    Google Scholar 
    2.Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).3.Aristegui, J., Gasol, J. M., Duarte, C. M. & Herndl, G. J. Microbial oceanography of the dark ocean’s pelagic realm. Limnol. Oceanogr. 54, 1501–1529 (2009).CAS 
    Article 

    Google Scholar 
    4.Baltar, F., Arístegui, J., Gasol, J. M., Lekunberri, I. & Herndl, G. J. Mesoscale eddies: hotspots of prokaryotic activity and differential community structure in the ocean. ISME J. 4, 975–988 (2010).PubMed 
    Article 

    Google Scholar 
    5.Del Giorgio, P. A. & Duarte, C. M. Respiration in the open ocean. Nature 420, 379–384 (2002).PubMed 
    Article 
    CAS 

    Google Scholar 
    6.Arístegui, J. et al. Oceanography: dissolved organic carbon support of respiration in the dark ocean. Science 298, 1967 (2002).PubMed 
    Article 

    Google Scholar 
    7.Herndl, G. J. & Reinthaler, T. Microbial control of the dark end of the biological pump. Nat. Geosci. 6, 718–724 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Baltar, F. et al. Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Geophys. Res. Lett. 37, L09602 (2010).Article 
    CAS 

    Google Scholar 
    9.Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    10.Stukel, M. R., Song, H., Goericke, R. & Miller, A. J. The role of subduction and gravitational sinking in particle export, carbon sequestration, and the remineralization length scale in the California Current Ecosystem. Limnol. Oceanogr. 63, 363–383 (2018).CAS 
    Article 

    Google Scholar 
    11.Omand, M. M. et al. Eddy-driven subduction exports particulate organic carbon from the spring bloom. Science 348, 222–225 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Jónasdóttir, S. H., Visser, A. W., Richardson, K. & Heath, M. R. Seasonal copepod lipid pump promotes carbon sequestration in the deep North Atlantic. Proc. Natl Acad. Sci. USA 112, 12122–12126 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    13.Dall’Olmo, G., Dingle, J., Polimene, L., Brewin, R. J. W. & Claustre, H. Substantial energy input to the mesopelagic ecosystem from the seasonal mixed-layer pump. Nat. Geosci. 9, 820–823 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    14.Herndl, G. J. et al. Contribution of archaea to total prokaryotic production in the deep Atlantic Ocean. Appl. Environ. Microbiol. 71, 2303–2309 (2005).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    15.Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl Acad. Sci. USA 103, 12317–12322 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    16.Reinthaler, T., van Aken, H. M. & Herndl, G. J. Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep Res. Part II Top. Stud. Oceanogr. 57, 1572–1580 (2010).CAS 
    Article 

    Google Scholar 
    17.Swan, B. K. et al. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333, 1296–1300 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Hügler, M. & Sievert, S. M. Beyond the Calvin Cycle: autotrophic carbon fixation in the ocean. Ann. Rev. Mar. Sci. 3, 261–289 (2011).PubMed 
    Article 

    Google Scholar 
    20.Sorokin, D. Y. Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology 72, 641–653 (2003).CAS 
    Article 

    Google Scholar 
    21.Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C. & Bertilsson, S. High bicarbonate assimilation in the dark by Arctic bacteria. ISME J. 4, 1581–1590 (2010).PubMed 
    Article 
    CAS 

    Google Scholar 
    22.Turner, J. T. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol. 27, 57–102 (2002).Article 

    Google Scholar 
    23.Ploug, H., Iversen, M. H. & Fischer, G. Ballast, sinking velocity, and apparent diffusivity within marine snow and zooplankton fecal pellets: implications for substrate turnover by attached bacteria. Limnol. Oceanogr. 53, 1878–1886 (2008).Article 

    Google Scholar 
    24.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 7608 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    25.Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl Acad. Sci. USA 115, 12235–12240 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    26.Salazar, G. et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J. 10, 596–608 (2016).PubMed 
    Article 

    Google Scholar 
    27.Mestre, M. et al. Sinking particles promote vertical connectivity in the ocean microbiome. Proc. Natl Acad. Sci. USA 115, E6799–E6807 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    28.Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 24, 5692–5706 (2015).PubMed 
    Article 

    Google Scholar 
    29.DeLong, E. F. et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311, 496–503 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    30.Martín-Cuadrado, A.-B. et al. Metagenomics of the deep mediterranean, a warm bathypelagic habitat. PLoS ONE 2, e914 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    31.Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. Proc. Natl Acad. Sci. USA 116, 11824–11832 (2019).CAS 
    PubMed 

    Google Scholar 
    32.Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Rusch, D. B. et al. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical pacific. PLoS Biol. 5, e77 (2007).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    34.Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    35.Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Duarte, C. M. Seafaring in the 21St Century: the Malaspina 2010 circumnavigation expedition. Limnol. Oceanogr. Bull. 24, 11–14 (2015).Article 

    Google Scholar 
    37.Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    38.Baltar, F. et al. Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ. Microbiol 11, 1998–2014 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    39.Bergauer, K. et al. Organic matter processing by microbial communities throughout the Atlantic water column as revealed by metaproteomics. Proc. Natl Acad. Sci. USA 115, E400–E408 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    40.Zhao, Z., Baltar, F. & Herndl, G. J. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci. Adv. 6, 1–11 (2020).CAS 

    Google Scholar 
    41.Ruiz‐González, C. et al. Major imprint of surface plankton on deep ocean prokaryotic structure and activity. Mol. Ecol. 29, 1820–1838 (2020).42.Pernice, M. C. et al. Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958 (2016).PubMed 
    Article 

    Google Scholar 
    43.Hingamp, P. et al. Exploring nucleo-cytoplasmic large DNA viruses in Tara Oceans microbial metagenomes. ISME J. 7, 1678–1695 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Galperin, M. Y., Makarova, K. S., Wolf, Y. I. & Koonin, E. V. Expanded Microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261–D269 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Allen, L. Z. et al. Influence of nutrients and currents on the genomic composition of microbes across an upwelling mosaic. ISME J. 6, 1403–1414 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.López-Pérez, M., Kimes, N. E., Haro-Moreno, J. M. & Rodríguez-Valera, F. Not all particles are equal: the selective enrichment of particle-associated bacteria from the mediterranean sea. Front. Microbiol. 7, 996 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Smith, M. W., Zeigler Allen, L., Allen, A. E., Herfort, L. & Simon, H. M. Contrasting genomic properties of free-living and particle-attached microbial assemblages within a coastal ecosystem. Front. Microbiol. 4, 120 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    50.Könneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).PubMed 
    Article 
    CAS 

    Google Scholar 
    51.Alonso-Saez, L. et al. Role for urea in nitrification by polar marine Archaea. Proc. Natl Acad. Sci. USA 109, 17989–17994 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    52.Cordero, P. R. F. et al. Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival. ISME J. 13, 2868–2881 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    53.Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl Acad. Sci. USA 110, 330–335 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    54.Brazelton, W. J., Nelson, B. & Schrenk, M. O. Metagenomic evidence for H2 oxidation and H2 production by serpentinite-hosted subsurface microbial communities. Front. Microbiol. 2, 268 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Ragsdale, S. W. Life with carbon monoxide. Crit. Rev. Biochem. Mol. Biol. 39, 165–195 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    56.Weber, C. F. & King, G. M. Physiological, ecological, and phylogenetic characterization of Stappia, a marine CO-oxidizing bacterial genus. Appl. Environ. Microbiol. 73, 1266–1276 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    57.Martín-Cuadrado, A. B., Ghai, R., Gonzaga, A. & Rodríguez-Valera, F. CO dehydrogenase genes found in metagenomic fosmid clones from the deep Mediterranean Sea. Appl. Environ. Microbiol. 75, 7436–7444 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    58.Einsle, O. et al. Structure of cytochrome c nitrite reductase. Nature 400, 476–480 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Harborne, N. R., Griffiths, L., Busby, S. J. W. & Cole, J. A. Transcriptional control, translation and function of the products of the five open reading frames of the Escherichia coli nir operon. Mol. Microbiol. 6, 2805–2813 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).CAS 
    Article 

    Google Scholar 
    61.Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Delmont, T. O. et al. Nitrogen-fixing populations of Planctomycetes and Proteobacteria are abundant in surface ocean metagenomes. Nat. Microbiol. 3, 804–813 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Tully, B. J., Sachdeva, R., Graham, E. D. & Heidelberg, J. F. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ 5, e3558 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    64.Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    65.Huber, H. et al. A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417, 63–67 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Sharma, G., Khatri, I. & Subramanian, S. Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol. Evol. 8, 2520–2529 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    67.Mohr, K. Diversity of myxobacteria—we only see the tip of the iceberg. Microorganisms 6, 84 (2018).PubMed Central 
    Article 
    PubMed 

    Google Scholar 
    68.Farnelid, H. et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE 6, e19223 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    69.Moisander, P. H. et al. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front. Microbiol. 8, 1736 (2017).70.Zehr, J. P., Weitz, J. S. & Joint, I. How microbes survive in the open ocean. Science 357, 646–647 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    71.Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Hewson, I. et al. Characteristics of diazotrophs in surface to abyssopelagic waters of the Sargasso Sea. Aquat. Microb. Ecol. 46, 15–30 (2007).Article 

    Google Scholar 
    73.Hamersley, M. R. et al. Nitrogen fixation within the water column associated with two hypoxic basins in the Southern California Bight. Aquat. Microb. Ecol. 63, 193–205 (2011).Article 

    Google Scholar 
    74.Farnelid, H. et al. Diverse diazotrophs are present on sinking particles in the North Pacific Subtropical Gyre. ISME J. 13, 170–182 (2019).PubMed 
    Article 

    Google Scholar 
    75.Sorokin, D. Y., Tourova, T. P. & Muyzer, G. Citreicella thiooxidans gen. nov., sp. nov., a novel lithoheterotrophic sulfur-oxidizing bacterium from the Black Sea. Syst. Appl. Microbiol. 28, 679–687 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    76.Tiirola, M. A., Männistö, M. K., Puhakka, J. A. & Kulomaa, M. S. Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl. Environ. Microbiol. 68, 173–180 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    77.Yuan, J., Lai, Q., Zheng, T. & Shao, Z. Novosphingobium indicum sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from a deep-sea environment. Int. J. Syst. Evol. Microbiol. 59, 2084–2088 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    78.Addison, S. L., Foote, S. M., Reid, N. M. & Lloyd-Jones, G. Novosphingobium nitrogenifigens sp. nov., a polyhydroxyalkanoate-accumulating diazotroph isolated from a New Zealand pulp and paper wastewater. Int. J. Syst. Evol. Microbiol 57, 2467–2471 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    79.Kim, S. H. et al. Ketobacter alkanivorans gen. nov., sp. nov., an n-alkane-degrading bacterium isolated from seawater. Int. J. Syst. Evol. Microbiol. 68, 2258–2264 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    80.Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data 5, 170203 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    81.Teira, E., Lebaron, P., Van Aken, H. & Herndl, G. J. Distribution and activity of bacteria and archaea in the deep water masses of the North Atlantic. Limnol. Oceanogr. 51, 2131–2144 (2006).CAS 
    Article 

    Google Scholar 
    82.Yakimov, M. M. et al. Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J. 5, 945–961 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    83.La Cono, V. et al. Contribution of bicarbonate assimilation to carbon pool dynamics in the deep Mediterranean Sea and cultivation of actively nitrifying and CO2-fixing bathypelagic prokaryotic consortia. Front. Microbiol. 9, 3 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    84.Zarzycki, J., Brecht, V., Müller, M. & Fuchs, G. Identifying the missing steps of the autotrophic 3-hydroxypropionate CO2 fixation cycle in Chloroflexus aurantiacus. Proc. Natl Acad. Sci. USA 106, 21317–21322 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    85.Landry, Z., Swan, B. K., Herndl, G. J., Stepanauskas, R. & Giovannoni, S. J. SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. mBio 8, 1e00413-17–19e00413-17 (2017).Article 

    Google Scholar 
    86.Mehrshad, M., Rodríguez-Valera, F., Amoozegar, M. A., López-García, P. & Ghai, R. The enigmatic SAR202 cluster up close: shedding light on a globally distributed dark ocean lineage involved in sulfur cycling. ISME J. 12, 655–668 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    87.Tabita, F. R., Satagopan, S., Hanson, T. E., Kreel, N. E. & Scott, S. S. Distinct form I, II, III, and IV Rubisco proteins from the three kingdoms of life provide clues about Rubisco evolution and structure/function relationships. J. Exp. Bot. 59, 1515–1524 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Carter, M. S. et al. Functional assignment of multiple catabolic pathways for D-apiose. Nat. Chem. Biol. 14, 696–705 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    89.Yelton, A. P. et al. Global genetic capacity for mixotrophy in marine picocyanobacteria. ISME J. 10, 2946–2957 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    90.Buesseler, K. O. et al. An assessment of the use of sediment traps for estimating upper ocean particle fluxes. J. Mar. Res. 65, 345–416 (2007).CAS 
    Article 

    Google Scholar 
    91.Crump, B. C., Armbrust, E. V. & Baross, J. A. Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia River, Its Estuary, and the Adjacent Coastal Ocean. Appl. Environ. Microbiol. 65, 3192–3204 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    92.Ghiglione, J. F., Conan, P. & Pujo-Pay, M. Diversity of total and active free-living vs. particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS Microbiol. Lett. 299, 9–21 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    93.Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    94.Huntemann, M. et al. The standard operating procedure of the DOE-JGI Metagenome Annotation Pipeline (MAP v.4). Stand. Genom. Sci. 11, 1–5 (2016).Article 
    CAS 

    Google Scholar 
    95.Oksanen, J. et al. vegan: community ecology package. https://cran.r-project.org/package=vegan (2019).96.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2020).97.Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 
    Article 

    Google Scholar 
    98.Suzek, B. E., Wang, Y., Huang, H., McGarvey, P. B. & Wu, C. H. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    99.Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    100.Federhen, S. The NCBI Taxonomy database. Nucleic Acids Res. 40, 136–143 (2012).Article 
    CAS 

    Google Scholar 
    101.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    102.Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, 597–604 (2013).Article 
    CAS 

    Google Scholar 
    103.Yutin, N., Wolf, Y. I., Raoult, D. & Koonin, E. V. Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruction of viral genome evolution. Virol. J. 6, 223 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    104.Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    105.Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    106.Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    107.Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2008).Article 

    Google Scholar 
    108.Li, D. et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods 102, 3–11 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    109.Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    110.Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    111.Kang, D. D., Froula, J., Egan, R. & Wang, Z. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    112.Huang, X. & Madan, A. CAP3: a DNA sequence assembly program resource 868 genome research. Genome Res. 9, 868–877 (1999).113.Letunic, I. & Bork, P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    114.Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 
    PubMed 

    Google Scholar 
    115.Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    116.Aramaki, T. et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    117.Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).118.Bushnell, B.BBMap. 1. Bushnell, B. BBMap. https://sourceforge.net/projects/bbmap/ (2018).119.Caro-Quintero, A. & Konstantinidis, K. T. Bacterial species may exist, metagenomics reveal. Environ. Microbiol. 14, 347–355 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    120.Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).121.Jaffe, A. L., Castelle, C. J., Dupont, C. L. & Banfield, J. F. Lateral gene transfer shapes the distribution of RuBisCO among candidate phyla radiation bacteria and DPANN archaea. Mol. Biol. Evol. 36, 435–446 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    122.Aylward, F. O. & Santoro, A. E. Heterotrophic Thaumarchaea with small genomes are widespread in the dark ocean. mSystems 5, e00415-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    123.Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    124.Alves, R. J. E., Minh, B. Q., Urich, T., Von Haeseler, A. & Schleper, C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat. Commun. 9, 1–17 (2018).CAS 
    Article 

    Google Scholar 
    125.Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Global earthworm distribution and activity windows based on soil hydromechanical constraints

    1.Young, I. M. et al. The interaction of soil biota and soil structure under global change. Glob. Change Biol. 4, 703–712 (1998).Article 

    Google Scholar 
    2.Lavelle, P. et al. Earthworms as key actors in self-organized soil systems. Theor. Ecol. Ser. 4, 77–106 (2007).Article 

    Google Scholar 
    3.Blakemore, R. & Hochkirch, A. Soil: restore earthworms to rebuild topsoil. Nature 545, 30–30 (2017).CAS 
    Article 

    Google Scholar 
    4.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar 
    5.Brown, G. G., Barois, I. & Lavelle, P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur. J. Soil Biol. 36, 177–198 (2000).Article 

    Google Scholar 
    6.Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).CAS 
    Article 

    Google Scholar 
    7.Van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Sci. Rep. 4, 1–7 (2014).8.Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).Article 

    Google Scholar 
    9.Capowiez, Y. et al. Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol. Biochem. 41, 711–717 (2009).CAS 
    Article 

    Google Scholar 
    10.Wu, X. D., Guo, J. L., Han, M. & Chen, G. An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 76, 201–214 (2018).Article 

    Google Scholar 
    11.Ruiz, S., Schymanski, S. & Or, D. Mechanics and energetics of soil penetration by earthworms and plant roots—higher burrowing rates cost more. Vadose Zone J. https://doi.org/10.2136/vzj2017.01.0021 (2017).12.Quillin, K. J. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661–674 (1999).Article 

    Google Scholar 
    13.Ruiz, S., Or, D. & Schymanski, S. Soil penetration by earthworms and plant roots—mechanical energetics of bioturbation of compacted soils. PLoS ONE https://doi.org/10.1371/journal.pone.0128914 (2015).14.Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).CAS 
    Article 

    Google Scholar 
    15.Abbott, I. Distribution of the native earthworm fauna of Australia—a continent-wide perspective. Soil Res. 32, 117–126 (1994).Article 

    Google Scholar 
    16.Hendrix, P. F. & Bohlen, P. J. Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52, 801–811 (2002).Article 

    Google Scholar 
    17.Nakamura, Y. Studies on the ecology of terrestrial oligochaeta: I. Sesonal variation in the population density of earthworms in alluvial soil grassland in Sapporo, Hokkaido. Appl. Entomol. Zool. 3, 89–95 (1968).Article 

    Google Scholar 
    18.Edwards, C. A. & Bohlen, P. J. Biology and Ecology of Earthworms. Vol. 3 (Springer Science & Business Media, 1996).19.Kretzschmar, A. Burrowing ability of the earthworm Aporrectodea longa limited by soil compaction and water potential. Biol. Fertil. Soils 11, 48–51 (1991).Article 

    Google Scholar 
    20.Johnston, A. S. Land management modulates the environmental controls on global earthworm communities. Glob. Ecol. Biogeogr. 28, 1787–1795 (2019).Article 

    Google Scholar 
    21.Rao, K. P. Physiology of low temperature acclimation in tropical poikilotherms. I. Ionic changes in the blood of the freshwater mussel, Lamellidens marginalis, and the earthworm, Lampito mauritii. Proc. Indian Acad. Sci. 57, 290–295 (1963).CAS 

    Google Scholar 
    22.Baker, G. H. & Whitby, W. A. Soil pH preferences and the influences of soil type and temperature on the survival and growth of Aporrectodea longa (Lumbricidae): the 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47, 745–753 (2003).
    Google Scholar 
    23.El-Duweini, A. K. & Ghabbour, S. I. Population density and biomass of earthworms in different types of Egyptian soils. J. Appl. Ecol. 2, 271–287 (1965).24.Ghezzehei, T. A. & Or, D. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci. Soc. Am. J. 65, 624–637 (2001).CAS 
    Article 

    Google Scholar 
    25.Ghezzehei, T. A. & Or, D. Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resour. Res. 36, 367–379 (2000).Article 

    Google Scholar 
    26.Gerard, C. The influence of soil moisture, soil texture, drying conditions, and exchangeable cations on soil strength. Soil Sci. Soc. Am. J. 29, 641–645 (1965).CAS 
    Article 

    Google Scholar 
    27.Quillin, K. J. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. J. Exp. Biol. 203, 2757–2770 (2000).CAS 
    Article 

    Google Scholar 
    28.Ruiz, S. A. & Or, D. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. J. R. Soc. Interface 15, 20180127 (2018).Article 

    Google Scholar 
    29.McKenzie, B. M. & Dexter, A. R. Radial pressures generated by the earthworm Aporrectodea rosea. Biol. Fertil. Soils 5, 328–332 (1988).
    Google Scholar 
    30.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    31.Burges, A. Soil Biology. (Elsevier, 2012).32.Ruiz, S. A. Mechanics and Energetics of Soil Bioturbation by Earthworms and Growing Plant Roots. https://doi.org/10.3929/ethz-b-000280625 (2018).33.Kretzschmar, A. & Bruchou, C. Weight response to the soil water potential of the earthworm Aporrectodea longa. Biol. Fertil. Soils 12, 209–212 (1991).Article 

    Google Scholar 
    34.Eggleton, P., Inward, K., Smith, J., Jones, D. T. & Sherlock, E. A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol. Biochem. 41, 1857–1865 (2009).CAS 
    Article 

    Google Scholar 
    35.Beer, C., Reichstein, M., Ciais, P., Farquhar, G. & Papale, D. Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters 34 (2007).36.Keudel, M. & Schrader, S. Axial and radial pressure exerted by earthworms of different ecological groups. Biol. Fertil. Soils 29, 262–269 (1999).Article 

    Google Scholar 
    37.Heaney, L. R., Balete, D. S., Rickart, E. A. & Niedzielski, A. The Mammals of Luzon Island: Biogeography and natural history of a Philippine fauna. (Johns Hopkins University Press, 2016).38.Keller, T. et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zone J. 16, 1–16 (2017).39.Lacoste, M., Ruiz, S. & Or, D. Listening to earthworms burrowing and roots growing-acoustic signatures of soil biological activity. Sci. Rep. 8, 10236 (2018).Article 

    Google Scholar 
    40.Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    41.IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley). 1535 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).42.Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    43.Bengough, A. G. et al. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 57, 437–447 (2005).Article 

    Google Scholar 
    44.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    Article 

    Google Scholar 
    45.Paoletti, M. G. The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. 74, 137–155 (1999).Article 

    Google Scholar 
    46.Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221 (2012).Article 

    Google Scholar 
    47.Muñoz Sabater, J. (ed Copernicus Climate Change Service (C3S) Climate Data Store (CDS)) (2019).48.Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).Article 

    Google Scholar 
    49.Chamberlain, E. J. & Butt, K. R. Distribution of earthworms and influence of soil properties across a successional sand dune ecosystem in NW England. Eur. J. Soil Biol. 44, 554–558 (2008).Article 

    Google Scholar 
    50.Booth, L. H., Heppelthwaite, V. & McGlinchy, A. The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa). Biomarkers 5, 46–55 (2000).CAS 
    Article 

    Google Scholar 
    51.GBIF.org. GBIF Occurrence Download (Almidae). https://doi.org/10.15468/dl.xstqow (2020).52.GBIF.org. GBIF Occurrence Download (Eudrilidae). https://doi.org/10.15468/dl.wghggg (2020).53.GBIF.org. GBIF Occurrence Download (Glossoscolecidae). https://doi.org/10.15468/dl.3yj8pk (2020).54.GBIF.org. GBIF Occurrence Download (Hormogastridae). https://doi.org/10.15468/dl.lzuwlg (2020).55.GBIF.org. GBIF Occurrence Download (Lumbricidae). https://doi.org/10.15468/dl.vwqtsk (2020).56.GBIF.org. GBIF Occurrence Download (Microchaetidae). https://doi.org/10.15468/dl.brqmht (2020).57.GBIF.org. GBIF Occurrence Download (Moniligastridae). https://doi.org/10.15468/dl.ghccto (2020).58.GBIF.org. GBIF Occurrence Download (Ocnerodrilidae). https://doi.org/10.15468/dl.dk97gk (2020).59.GBIF.org. GBIF Occurrence Download (Octochaetidae). https://doi.org/10.15468/dl.xjw6kc (2020).60.GBIF.org. GBIF Occurrence Download (Sparganophilidae). https://doi.org/10.15468/dl.9a4ojx (2020).61.Ruiz, S. B., S; Or, D. Dataset for: Global Earthworm Distribution and Activity Windows Based on Soil Hydromechanical Constraints. https://doi.org/10.3929/ethz-b-000476615 (2021). More

  • in

    Landscape complexity and US crop production

    1.Landis, D. A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 18, 1–12 (2017).
    Google Scholar 
    2.Aguilar, J. et al. Crop species diversity changes in the United States: 1978–2012. PLoS ONE 10, e0136580 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    3.Census of Agriculture (USDA National Agricultural Statistics Service, 2017); www.nass.usda.gov/AgCensus4.Fahrig, L. et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol. Lett. 14, 101–112 (2011).PubMed 

    Google Scholar 
    5.Meehan, T. D., Werling, B. P., Landis, D. A. & Gratton, C. Agricultural landscape simplification and insecticide use in the Midwestern United States. Proc. Natl Acad. Sci. USA 108, 11500–11505 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    6.Tiemann, L. K., Grandy, A. S., Atkinson, E. E., Marin-Spiotta, E. & McDaniel, M. D. Crop rotational diversity enhances belowground communities and functions in an agroecosystem. Ecol. Lett. 18, 761–771 (2015).CAS 
    PubMed 

    Google Scholar 
    7.Abson, D. J., Fraser, E. D. & Benton, T. G. Landscape diversity and the resilience of agricultural returns: a portfolio analysis of land-use patterns and economic returns from lowland agriculture. Agric. Food Secur. 2, 2 (2013).
    Google Scholar 
    8.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    9.Ojha, S. & Dimov, L. Variation in the diversity-productivity relationship in young forests of the eastern United States. PLoS ONE 12, e0187106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    10.Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of crop diversity on agroecosystem function: crop yield response. Ecosystems 11, 355–366 (2008).
    Google Scholar 
    11.Karp, D. S. et al. Crop pests and predators exhibit inconsistent responses to surrounding landscape composition. Proc. Natl Acad. Sci. USA 115, E7863–E7870 (2018).CAS 
    PubMed 

    Google Scholar 
    12.Bastian, O., Grunewald, K., Syrbe, R. U., Walz, U. & Wende, W. Landscape services: the concept and its practical relevance. Landsc. Ecol. 29, 1463–1479 (2014).
    Google Scholar 
    13.Winfree, R. et al. Species turnover promotes the importance of bee diversity for crop pollination at regional scales. Science 359, 791–793 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    14.Duarte, G. T., Santos, P. M., Cornelissen, T. G., Ribeiro, M. C. & Paglia, A. P. The effects of landscape patterns on ecosystem services: meta-analyses of landscape services. Landsc. Ecol. 33, 1247–1257 (2018).
    Google Scholar 
    15.Li, C. et al. Crop diversity for yield increase. PLoS ONE 4, e8049 (2009).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    16.Swinton, S. M., Lupi, F., Robertson, G. P. & Hamilton, S. K. Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecol. Econ. 64, 245–252 (2007).
    Google Scholar 
    17.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    18.Burchfield, E. K., Nelson, K. S. & Spangler, K. The impact of agricultural landscape diversification on US crop production. Agric. Ecosyst. Environ. 285, 106615 (2019).
    Google Scholar 
    19.Galpern, P., Vickruck, J., Devries, J. H. & Gavin, M. P. Landscape complexity is associated with crop yields across a large temperate grassland region. Agric. Ecosyst. Environ. 290, 106724 (2020).
    Google Scholar 
    20.Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 4, 3514–3524 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    21.Burke, M. & Emerick, K. Adaptation to climate change: evidence from US agriculture. Am. Econ. J. Econ. Pol. 8, 106–140 (2016).
    Google Scholar 
    22.Lobell, D. B. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change 3, 497–501 (2013).ADS 

    Google Scholar 
    23.Schlenker, W. & Roberts, M. J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl Acad. Sci. USA 106, 15594–15598 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    24.Schauberger, B., Rolinski, S. & Müller, C. A network-based approach for semi-quantitative knowledge mining and its application to yield variability. Environ. Res. Lett. 11, 123001 (2016).ADS 

    Google Scholar 
    25.Burchfield, E., Matthews-Pennanen, N., Stoebner, J. & Lant, C. Changing yields in the central United States under climate and technological change. Clim. Change 159, 329–346 (2019).ADS 

    Google Scholar 
    26.Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    27.Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 10, 054013 (2015).ADS 

    Google Scholar 
    28.Chaplin‐Kramer, R., O’Rourke, M. E., Blitzer, E. J. & Kremen, C. A meta‐analysis of crop pest and natural enemy response to landscape complexity. Ecol. Lett. 14, 922–932 (2011).PubMed 

    Google Scholar 
    29.Grab, H., Danforth, B., Poveda, K. & Loeb, G. Landscape simplification reduces classical biological control and crop yield. Ecol. Appl. 28, 348–355 (2018).PubMed 

    Google Scholar 
    30.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    31.Lark, T. J., Spawn, S. A., Bougie, M. & Gibbs, H. K. Cropland expansion in the United States produces marginal yields at high costs to wildlife. Nat. Commun. 11, 4295 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    32.Finney, D. M. & Kaye, J. P. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54, 509–517 (2017).
    Google Scholar 
    33.Bowles, T. M. et al. Long-term evidence shows that crop-rotation diversification increases agricultural resilience to adverse growing conditions in North America. One Earth 2, 284–293 (2020).
    Google Scholar 
    34.Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity-ecosystem service management. Ecol. Lett. 8, 857–874 (2012).
    Google Scholar 
    35.Swift, M. J., Izac, A.-M. N. & van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric. Ecosyst. Environ. 104, 113–134 (2004).
    Google Scholar 
    36.CropScrape—Cropland Data Layer (USDA National Agricultural Statistics Service, 2018); https://nassgeodata.gmu.edu/CropScape/37.Schulte, L. A. et al. Prairie strips improve biodiversity and the delivery of multiple ecosystem services from corn–soybean croplands. Proc. Natl Acad. Sci. USA 114, 11247–11252 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    38.Albrecht, M. et al. The effectiveness of flower strips and hedgerows on pest control, pollination services and crop yield: a quantitative synthesis. Ecol. Lett. 23, 1488–1498 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    39.Liang, X. Z. et al. Determining climate effects on US total agricultural productivity. Proc. Natl Acad. Sci. USA 114, E2285–E2292 (2017).CAS 
    PubMed 

    Google Scholar 
    40.Brandes, E. et al. Subfield profitability analysis reveals an economic case for cropland diversification. Environ. Res. Lett. 11, 014009 (2016).ADS 

    Google Scholar 
    41.Capmourteres, V. et al. Precision conservation meets precision agriculture: a case study from southern Ontario. Agric. Syst. 167, 176–185 (2018).
    Google Scholar 
    42.Census of Agriculture (USDA National Agricultural Statistics Service, 2019); www.nass.usda.gov/AgCensus43.Ray, D. K., Gerber, J. S., Macdonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nat. Commun. 6, 5989 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    44.Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochem. Cycles 22, GB1003 (2008).
    Google Scholar 
    45.PRISM Climate Data (PRISM Climate Group, 2004) http://www.prism.oregonstate.edu/46.Miller, P., Lanier, W. & Brandt, S. Using Growing Degree Days to Predict Plant Stages (Montana State University, 2001); http://store.msuextension.org/publications/AgandNaturalResources/MT200103AG.pdf47.agweather connection (Mesonet, 2007); https://www.mesonet.org/mesonet_connection/V2_No8.pdf48.Corn Growing Degree Days (NDAWN: North Dakota Agricultural Weather Network, 2017); https://ndawn.ndsu.nodak.edu/help-corn-growing-degree-days.html49.Gridded Soil Survey Geographic (gSSURGO) Database for the Conterminous United States (US Department of Agriculture, Natural Resources Conservation Service, 2014); https://gdg.sc.egov.usda.gov/50.Dobos, R. R., Sinclair, H. R., Jr & Robotham, M. P. User Guide for the National Commodity Crop Productivity Index (NCCPI, 2012).51.Plexida, S. G., Sfougaris, A. I., Ispikoudis, I. P. & Papanastasis, V. P. Selecting landscape metrics as indicators of spatial heterogeneity—a comparison among Greek landscapes. Int. J. Appl. Earth Obs. Geoinf. 26, 26–35 (2014).ADS 

    Google Scholar 
    52.Schindler, S., Poirazidis, K. & Wrbka, T. Towards a core set of landscape metrics for biodiversity assessments: a case study from Dadia National Park, Greece. Ecol. Indic. 8, 502–514 (2008).
    Google Scholar 
    53.Turner, M. G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 4, 21–30 (1990).
    Google Scholar 
    54.Li, H. & Wu, J. Use and misuse of landscape indices. Landsc. Ecol. 19, 389–399 (2004).
    Google Scholar 
    55.Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1–10 (2019).
    Google Scholar 
    56.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017); https://www.R-project.org/57.Rue, H., Martino, S. & Chopin, N. Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).MathSciNet 
    MATH 

    Google Scholar 
    58.Blanc, E. & Schlenker, W. The use of panel models in assessments of climate impacts on agriculture. Rev. Environ. Econ. Policy 11, 258–279 (2017).
    Google Scholar 
    59.Level III Ecoregions of the Continental United States (US Environmental Protection Agency, 2011); https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states60.Bakka, H. et al. Spatial modeling with R-INLA: a review. Wiley Interdiscip. Rev. Comput. Stat. 10, e1443 (2018).MathSciNet 

    Google Scholar 
    61.2018 Cartographic Boundary Files [data set] (US Census Bureau, 2018); https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html More

  • in

    Population differentiation of Rhodobacteraceae along with coral compartments

    1.Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol. 2016;70:317–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    2.Ainsworth TD, Thurber RV, Gates RD. The future of coral reefs: a microbial perspective. Trends Ecol Evol. 2010;25:233–40.PubMed 
    Article 

    Google Scholar 
    3.Huettel M, Wild C, Gonelli S. Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar Ecol Prog Ser. 2006;307:69–84.Article 

    Google Scholar 
    4.Coffroth M. Mucous sheet formation on poritid corals: an evaluation of coral mucus as a nutrient source on reefs. Mar Biol. 1990;105:39–49.CAS 
    Article 

    Google Scholar 
    5.Brown BE, Bythell JC. Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser. 2005;296:291–309.CAS 
    Article 

    Google Scholar 
    6.Sweet M, Croquer A, Bythell J. Bacterial assemblages differ between compartments within the coral holobiont. Coral Reefs. 2011;30:39–52.Article 

    Google Scholar 
    7.Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208:2819–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Burg MB, Ferraris JD. Intracellular organic osmolytes: function and regulation. J Biol Chem. 2008;283:7309–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    9.Singh LR, Dar TA, editors. Cellular osmolytes: from chaperoning protein folding to clinical perspectives. 1st ed. Singapore: Springer Nature Singapore Pte Ltd.; 2017.10.Yancey PH, Heppenstall M, Ly S, Andrell RM, Gates RD, Carter VL, et al. Betaines and dimethylsulfoniopropionate as major osmolytes in cnidaria with endosymbiotic dinoflagellates. Physiol Biochem Zool. 2010;83:167–73.CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Mayfield AB, Gates RD. Osmoregulation in anthozoan—dinoflagellate symbiosis. Compar Biochem Physiol A. 2007;147:1–10.Article 
    CAS 

    Google Scholar 
    12.Rublee PA, Lasker HR, Gottfried M, Roman MR. Production and bacterial colonization of mucus from the soft coral Briarium asbestinum. Bull Mar Sci. 1980;30:888–93.
    Google Scholar 
    13.Wild C, Woyt H, Huettel M. Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser. 2005;287:87–98.CAS 
    Article 

    Google Scholar 
    14.Coles SL, Strathmann R. Observations on coral mucus “flocs” and their potential trophic significance. Limnol Oceanogr. 1973;18:673–8.Article 

    Google Scholar 
    15.Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2020;14:325–34.PubMed 
    Article 

    Google Scholar 
    16.Falini G, Fermani S, Goffredo S. Coral biomineralization: a focus on intra-skeletal organic matrix and calcification. Semin Cell Dev Biol. 2015;46:17–26.Article 

    Google Scholar 
    17.Constantz B, Weiner S. Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool. 1988;248:253–8.CAS 
    Article 

    Google Scholar 
    18.Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D. Stable isotopes (delta C-13 and delta N-15) of organic matrix from coral skeleton. Proc Natl Acad Sci USA. 2005;102:1525–30.CAS 
    PubMed 
    Article 

    Google Scholar 
    19.Sorek M, Díaz-Almeyda EM, Medina M, Levy O. Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host. Mar Genom. 2014;14:47–57.Article 

    Google Scholar 
    20.Agostini S, Suzuki Y, Higuchi T, Casareto B, Yoshinaga K, Nakano Y, et al. Biological and chemical characteristics of the coral gastric cavity. Coral Reefs. 2012;31:147–56.Article 

    Google Scholar 
    21.Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5:355–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    22.Ritchie KB. Bacterial symbionts of corals and Symbiodinium. In: Rosenberg E, Gophna U editors. Beneficial microorganisms in multicellular life forms. 1st ed. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2012. pp 139–50.23.Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems. 2016;1:e00143–00116.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    24.Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:1–13.CAS 
    Article 

    Google Scholar 
    25.Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabó G, et al. Population genomics of early events in the ecological differentiation of bacteria. Science. 2012;336:48–51.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Youngblut ND, Wirth JS, Henriksen JR, Smith M, Simon H, Metcalf WW, et al. Genomic and phenotypic differentiation among Methanosarcina mazei populations from Columbia River sediment. ISME J. 2015;9:2191–205.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Wielgoss S, Didelot X, Chaudhuri RR, Liu X, Weedall GD, Velicer GJ, et al. A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME J. 2016;10:2468–77.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    28.Chase AB, Arevalo P, Brodie EL, Polz MF, Karaoz U, Martiny JB. Maintenance of sympatric and allopatric populations in free-living terrestrial bacteria. Mbio. 2019;10:e02361–02319.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    29.Huggett MJ, Apprill A. Coral microbiome database: integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85.PubMed 
    Article 

    Google Scholar 
    30.Apprill A, Marlow HQ, Martindale MQ, Rappe MS. The onset of microbial associations in the coral Pocillopora meandrina. ISME J. 2009;3:685–99.PubMed 
    Article 

    Google Scholar 
    31.Epstein HE, Torda G, Munday PL, van Oppen MJH. Parental and early life stage environments drive establishment of bacterial and dinoflagellate communities in a common coral. ISME J. 2019;13:1635–8.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Freire I, Gutner-Hoch E, Muras A, Benayahu Y, Otero A. The effect of bacteria on planula-larvae settlement and metamorphosis in the octocoral Rhytisma fulvum fulvum. PLoS ONE. 2019;14:e0223214.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    33.Miura N, Motone K, Takagi T, Aburaya S, Watanabe S, Aoki W, et al. Ruegeria sp. strains isolated from the reef-building coral Galaxea fascicularis inhibit growth of the temperature-dependent pathogen Vibrio coralliilyticus. Mar Biotechnol. 2019;21:1–8.CAS 
    Article 

    Google Scholar 
    34.Apprill A, Hughen K, Mincer T. Major similarities in the bacterial communities associated with lesioned and healthy Fungiidae corals. Environ Microbiol. 2013;15:2063–72.CAS 
    PubMed 
    Article 

    Google Scholar 
    35.Sekar R, Kaczmarsky LT, Richardson LL. Microbial community composition of black band disease on the coral host Siderastrea siderea from three regions of the wider Caribbean. Mar Ecol Prog Ser. 2008;362:85–98.CAS 
    Article 

    Google Scholar 
    36.Casey JM, Connolly SR, Ainsworth TD. Coral transplantation triggers shift in microbiome and promotion of coral disease associated potential pathogens. Sci Rep. 2015;5:11903–11903.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    37.Tsang RHL, Ang PO. Resistance to temperature stress and Drupella corallivory may promote the dominance of Platygyra acuta in the marginal coral communities in Hong Kong. Mar Environ Res. 2019;144:20–27.CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Tam TW, Ang PO Jr. Repeated physical disturbances and the stability of sub‐tropical coral communities in Hong Kong, China. Aquat Conserv. 2008;18:1005–24.Article 

    Google Scholar 
    39.Ang Jr PO, Choi LS, Choi MM, Cornish A, Fung HL, Lee MW et al. Hong Kong. In: Centre JWR editors. Status of coral reefs of the East Asian Seas region: 2004. Tokyo: Ministry of the Environment; 2005. pp 121–52.40.Luo H, Moran MA. Evolutionary ecology of the marine Roseobacter clade. Microbiol Mol Biol Rev. 2014;78:573–87.PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC. The family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F editors. The Prokaryotes: alphaproteobacteria and Betaproteobacteria. 4th ed. Berlin Heidelberg: Springer-Verlag Berlin Heidelberg; 2014. pp 439–512.42.Johannes RE, Wiebe WJ. Method for determination of coral tissue biomass and composition. Limnol Oceanogr. 1970;15:822–4.Article 

    Google Scholar 
    43.Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:1–14.Article 

    Google Scholar 
    44.Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Achtman M, Wagner M. Microbial diversity and the genetic nature of microbial species. Nat Rev Microbiol. 2008;6:431–40.CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Feil EJ, Spratt BG. Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol. 2001;55:561–90.CAS 
    PubMed 
    Article 

    Google Scholar 
    47.Wang X, Zhang Y, Ren M, Xia T, Chu X, Liu C, et al. Cryptic speciation of a pelagic Roseobacter population varying at a few thousand nucleotide sites. ISME J. 2020;14:3106–19.48.Lawson DJ, Hellenthal G, Myers S, Falush D. Inference of population structure using dense haplotype data. PLoS Genet. 2012;8:e1002453.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Didelot X, Wilson DJ. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLoS Comput Biol. 2015;11:e1004041.PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    50.Excoffier L, Lischer HE. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564–7.PubMed 
    Article 

    Google Scholar 
    51.Sun Y, Luo H. Homologous recombination in core genomes facilitates marine bacterial adaptation. Appl Environ Microbiol. 2018;84:e02545–02517.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Librado P, Vieira FG, Rozas J. BadiRate: estimating family turnover rates by likelihood-based methods. Bioinformatics. 2011;28:279–81.PubMed 
    Article 
    CAS 

    Google Scholar 
    53.Slatkin M, Maddison WP. A cladistic measure of gene flow inferred from the phylogenies of alleles. Genetics 1989;123:603–13.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    54.Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:1–8.Article 
    CAS 

    Google Scholar 
    55.Lohr KE, Khattri RB, Guingab-Cagmat J, Camp EF, Merritt ME, Garrett TJ, et al. Metabolomic profiles differ among unique genotypes of a threatened Caribbean coral. Sci Rep. 2019;9:1–11.CAS 
    Article 

    Google Scholar 
    56.Hill R, Li C, Jones A, Gunn J, Frade P. Abundant betaines in reef-building corals and ecological indicators of a photoprotective role. Coral Reefs. 2010;29:869–80.Article 

    Google Scholar 
    57.Gowrishankar J. Nucleotide sequence of the osmoregulatory proU operon of Escherichia coli. J Bacteriol. 1989;171:1923–31.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    58.Chandravanshi M, Gogoi P, Kanaujia SP. Computational characterization of TTHA0379: A potential glycerophosphocholine binding protein of Ugp ATP-binding cassette transporter. Gene. 2016;592:260–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    59.Ziegler C, Bremer E, Krämer R. The BCCT family of carriers: from physiology to crystal structure. Mol Microbiol. 2010;78:13–34.CAS 
    PubMed 

    Google Scholar 
    60.Geiger O, López-Lara IM, Sohlenkamp C. Phosphatidylcholine biosynthesis and function in bacteria. Biochim Biophys Acta Mol Cell Biol Lipids. 2013;1831:503–13.CAS 
    Article 

    Google Scholar 
    61.Lidbury I, Kimberley G, Scanlan DJ, Murrell JC, Chen Y. Comparative genomics and mutagenesis analyses of choline metabolism in the marine Roseobacter clade. Environ Microbiol. 2015;17:5048–62.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    62.Thole S, Kalhoefer D, Voget S, Berger M, Engelhardt T, Liesegang H, et al. Phaeobacter gallaeciensis genomes from globally opposite locations reveal high similarity of adaptation to surface life. ISME J. 2012;6:2229–44.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    63.Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    64.Jones M, Talfournier F, Bobrov A, Grossmann JG, Vekshin N, Sutcliffe MJ, et al. Electron transfer and conformational change in complexes of trimethylamine dehydrogenase and electron transferring flavoprotein. J Biol Chem. 2002;277:8457–65.CAS 
    PubMed 
    Article 

    Google Scholar 
    65.Chen Y. Comparative genomics of methylated amine utilization by marine Roseobacter clade bacteria and development of functional gene markers (tmm, gmaS). Environ Microbiol. 2012;14:2308–22.CAS 
    PubMed 
    Article 

    Google Scholar 
    66.Schäfer H, McDonald IR, Nightingale PD, Murrell JC. Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide‐oxidizing bacteria. Environ Microbiol. 2005;7:839–52.PubMed 
    Article 
    CAS 

    Google Scholar 
    67.McNicholas PM, Chiang RC, Gunsalus RP. Anaerobic regulation of the Escherichia coli dmsABC operon requires the molybdate‐responsive regulator ModE. Mol Microbiol. 1998;27:197–208.CAS 
    PubMed 
    Article 

    Google Scholar 
    68.Loschi L, Brokx SJ, Hills TL, Zhang G, Bertero MG, Lovering AL, et al. Structural and biochemical identification of a novel bacterial oxidoreductase. J Biol Chem. 2004;279:50391–50400.CAS 
    PubMed 
    Article 

    Google Scholar 
    69.Hillyer KE, Dias DA, Lutz A, Wilkinson SP, Roessner U, Davy SK. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera. Coral Reefs. 2017;36:105–18.Article 

    Google Scholar 
    70.Rösgen J. Molecular basis of osmolyte effects on protein and metabolites. Methods Enzymol. 2007;428:459–86.PubMed 
    Article 
    CAS 

    Google Scholar 
    71.Cunliffe M. Correlating carbon monoxide oxidation with cox genes in the abundant marine Roseobacter clade. ISME J. 2011;5:685–91.CAS 
    PubMed 
    Article 

    Google Scholar 
    72.Bartling P, Vollmers J, Petersen J. The first world swimming championships of Roseobacters—phylogenomic insights into an exceptional motility phenotype. Syst Appl Microbiol. 2018;41:544–54.PubMed 
    Article 

    Google Scholar 
    73.Michael V, Frank O, Bartling P, Scheuner C, Goker M, Brinkmann H, et al. Biofilm plasmids with a rhamnose operon are widely distributed determinants of the ‘swim-or-stick’ lifestyle in roseobacters. ISME J. 2016;10:2498–513.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    74.Armitage JP. Behavioural responses of bacteria to light and oxygen. Arch Microbiol. 1997;168:249–61.CAS 
    PubMed 
    Article 

    Google Scholar 
    75.Jorgensen NOG. Uptake of urea by estuarine bacteria. Aquat Micro Ecol. 2006;42:227–42.Article 

    Google Scholar 
    76.Pernice M, Raina J-B, Rädecker N, Cárdenas A, Pogoreutz C, Voolstra CR. Down to the bone: the role of overlooked endolithic microbiomes in reef coral health. ISME J. 2019: 1–10.77.Krajewska B, Ureases I. Functional, catalytic and kinetic properties: a review. J Mol Catal B Enzym. 2009;59:9–21.CAS 
    Article 

    Google Scholar 
    78.Cheng L, Cord-Ruwisch R. In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng. 2012;42:64–72.Article 

    Google Scholar 
    79.Cho BC, Park MG, Shim JH, Azam F. Significance of bacteria in urea dynamics in coastal surface waters. Mar Ecol Prog Ser. 1996;142:19–26.Article 

    Google Scholar 
    80.Jin D, Zhao SG, Zheng N, Beckers Y, Wang JQ. Urea metabolism and regulation by rumen bacterial urease in ruminants—a review. Ann Anim Sci. 2018;18:303–18.Article 

    Google Scholar 
    81.Collier JL, Baker KM, Bell SL. Diversity of urea-degrading microorganisms in open-ocean and estuarine planktonic communities. Environ Microbiol. 2009;11:3118–31.CAS 
    PubMed 
    Article 

    Google Scholar 
    82.Biscéré T, Ferrier-Pagès C, Grover R, Gilbert A, Rottier C, Wright A, et al. Enhancement of coral calcification via the interplay of nickel and urease. Aquat Toxicol. 2018;200:247–56.PubMed 
    Article 
    CAS 

    Google Scholar 
    83.Crossland C, Barnes D. The role of metabolic nitrogen in coral calcification. Mar Biol. 1974;28:325–32.CAS 
    Article 

    Google Scholar 
    84.Goodkin NF, Switzer AD, Mccorry D, Devantier L, True J, Hughen KA, et al. Coral communities of Hong Kong: long-lived corals in a marginal reef environment. Mar Ecol Prog Ser. 2011;426:185–96.Article 

    Google Scholar 
    85.Bernasconi R, Stat M, Koenders A, Paparini A, Bunce M, Huggett MJ. Establishment of coral-bacteria symbioses reveal changes in the core bacterial community with host ontogeny. Front Mirobiol. 2019;10:1529.Article 

    Google Scholar 
    86.Chu X, Li S, Wang S, Luo D, Luo H. Gene loss through pseudogenization contributes to the ecological diversification of a generalist Roseobacter lineage. ISME J. 2020;15:489–502.PubMed 
    Article 
    CAS 

    Google Scholar 
    87.Gardner SN, Slezak T, Hall BG. kSNP3. 0: SNP detection and phylogenetic analysis of genomes without genome alignment or reference genome. Bioinformatics. 2015;31:2877–8.CAS 
    PubMed 
    Article 

    Google Scholar 
    88.Krzywinski M, Schein JE, Birol I, Connors JM, Gascoyne RD, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–45.CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity

    1.Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems; with 47 Tables. (Springer Science & Business Media, 2003).2.Alexander, J. M. et al. Plant invasions into mountains and alpine ecosystems: current status and future challenges. Alp. Bot. 126, 89–103 (2016).Article 

    Google Scholar 
    3.Xu, J. et al. The Melting Himalayas: cascading effects of climate change on water, biodiversity, and livelihoods. Conserv. Biol. 23, 520–530 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    4.Liang, Q. et al. Shifts in plant distributions in response to climate warming in a biodiversity hotspot, the Hengduan Mountains. J. Biogeogr. 45, 1334–1344 (2018).Article 

    Google Scholar 
    5.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Dullinger, S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).ADS 
    Article 

    Google Scholar 
    7.Zhang, D. C., Zhang, Y. H., Boufford, D. E. & Sun, H. Elevational patterns of species richness and endemism for some important taxa in the Hengduan Mountains, southwestern China. Biodivers. Conserv. 18, 699–716 (2009).Article 

    Google Scholar 
    8.Tang, Z., Wang, Z., Zheng, C. & Fang, J. Biodiversity in China’s mountains. Front. Ecol. Environ. 4, 347–352 (2006).Article 

    Google Scholar 
    9.Lomolino, Mark V. Elevation gradients of species-density: historical and prospective views. Glob. Ecol. Biogeogr. 10, 3–13 (2001).Article 

    Google Scholar 
    10.Colwell, RobertK. & Lees, D. C. The mid-domain effect: geometric constraints on the geography of species richness. Trends Ecol. Evol. 15, 70–76 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Dirnböck, T., Essl, F. & Rabitsch, W. Disproportional risk for habitat loss of high-altitude endemic species under climate change. Glob. Change Biol. 17, 990–996 (2011).ADS 
    Article 

    Google Scholar 
    12.Su, X., Han, W., Liu, G., Zhang, Y. & Lu, H. Substantial gaps between the protection of biodiversity hotspots in alpine grasslands and the effectiveness of protected areas on the Qinghai-Tibetan Plateau, China. Agric. Ecosyst. Environ. 278, 15–23 (2019).Article 

    Google Scholar 
    13.Zhang, Y. et al. Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwestern China and its implications for biodiversity conservation. Plant Divers. (2020) https://doi.org/10.1016/j.pld.2020.09.001.14.Hopping, K. A., Knapp, A. K., Dorji, T. & Klein, J. A. Warming and land use change concurrently erode ecosystem services in Tibet. Glob. Change Biol. 24, 5534–5548 (2018).ADS 
    Article 

    Google Scholar 
    15.Trivedi, M. R., Berry, P. M., Morecroft, M. D. & Dawson, T. P. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Glob. Change Biol. 14, 1089–1103 (2008).ADS 
    Article 

    Google Scholar 
    16.Gavin, D. G. et al. Climate refugia: joint inference from fossil records, species distribution models and phylogeography. N. Phytol. 204, 37–54 (2014).Article 

    Google Scholar 
    17.Birks, H. J. B. et al. Does pollen-assemblage richness reflect floristic richness? A review of recent developments and future challenges. Rev. Palaeobot. Palynol. 228, 1–25 (2016).Article 

    Google Scholar 
    18.Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytol. 214, 924–942 (2017).CAS 
    Article 

    Google Scholar 
    19.Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile. Quat. Res. 73, 324–335 (2010).CAS 
    Article 

    Google Scholar 
    20.Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Holocene treeline shifts and monsoon variability in the Hengduan Mountains (southeastern Tibetan Plateau), implications from palynological investigations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 286, 23–41 (2010).Article 

    Google Scholar 
    21.Hou, G., Yang, P., Cao, G., Chongyi, E. & Wang, Q. Vegetation evolution and human expansion on the Qinghai–Tibet Plateau since the Last Deglaciation. Quat. Int. 430, 82–93 (2017).Article 

    Google Scholar 
    22.Chen, F. et al. Climate change, vegetation history, and landscape responses on the Tibetan Plateau during the Holocene: a comprehensive review. Quat. Sci. Rev. 243, 106444 (2020).Article 

    Google Scholar 
    23.Singh, U. M., Gupta, V., Rao, V. P., Sengar, R. S. & Yadav, M. K. A review on biological activities and conservation of endangered medicinal herb Nardostachys jatamansi. Int. J. Med. Arom. Plants 3, 113–124 (2013).CAS 

    Google Scholar 
    24.Li, X. H., Zhu, X. X., Niu, Y. & Sun, H. Phylogenetic clustering and overdispersion for alpine plants along elevational gradient in the Hengduan Mountains Region, southwest China: Phylogenetic structure along elevational gradient. J. Syst. Evol. 52, 280–288 (2014).Article 

    Google Scholar 
    25.Kanz, C. et al. The EMBL nucleotide sequence database. Nucleic Acids Res. 33, D29–D33 (2005).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Yu, H. et al. Contrasting floristic diversity of the Hengduan mountains, the Himalayas and the Qinghai-Tibet Plateau Sensu Stricto in China. Front. Ecol. Evol. 8 (2020).27.Scheiner, S. M. et al. The underpinnings of the relationship of species richness with space and time. Ecol. Monogr. 81, 195–213 (2011).Article 

    Google Scholar 
    28.Milner, A. M. et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl Acad. Sci. USA 114, 9770–9778 (2017).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    29.Opitz, S., Zhang, C., Herzschuh, U. & Mischke, S. Climate variability on the south-eastern Tibetan Plateau since the Lateglacial based on a multiproxy approach from Lake Naleng – comparing pollen and non-pollen signals. Quat. Sci. Rev. 115, 112–122 (2015).ADS 
    Article 

    Google Scholar 
    30.Laliberté, E. et al. How does pedogenesis drive plant diversity? Trends Ecol. Evol. 28, 331–340 (2013).PubMed 
    Article 

    Google Scholar 
    31.Nichols, R. V. et al. Minimizing polymerase biases in metabarcoding. Mol. Ecol. Resour. 18, 927–939 (2018).CAS 
    Article 

    Google Scholar 
    32.Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Niemeyer, B., Epp, L. S., Stoof-Leichsenring, K. R., Pestryakova, L. A. & Herzschuh, U. A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline. Mol. Ecol. Resour. 17, e46–e62 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 17, 866–880 (2014).PubMed 
    Article 

    Google Scholar 
    35.Chen, F. H. et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P. Science 347, 248–250 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    36.Group, M. R. I. E. W. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).ADS 
    Article 

    Google Scholar 
    37.Liang, E. et al. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl Acad. Sci. USA 113, 4380–4385 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    38.Alexander, J. M. et al. Lags in the response of mountain plant communities to climate change. Glob. Change Biol. 24, 563–579 (2018).ADS 
    Article 

    Google Scholar 
    39.Zu, K. et al. Altitudinal biodiversity patterns of seed plants along Gongga Mountain in the southeastern Qinghai–Tibetan Plateau. Ecol. Evol. 9, 9586–9596 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Sun, H., Zhang, J., Deng, T. & Boufford, D. E. Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Divers. 39, 161–166 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Wiens, J. A., Stralberg, D., Jongsomjit, D., Howell, C. A. & Snyder, M. A. Niches, models, and climate change: assessing the assumptions and uncertainties. Proc. Natl Acad. Sci. 106, 19729–19736 (2009).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Kramer, A., Herzschuh, U., Mischke, S. & Zhang, C. Late Quaternary environmental history of the south-eastern Tibetan Plateau inferred from the Lake Naleng non-pollen palynomorph record. Veg. Hist. Archaeobotany 19, 453–468 (2010).Article 

    Google Scholar 
    43.Stuiver, M. & Reimer, P. J. Extended 14C Data Base and Revised CALIB 3.0 14C Age Calibration Program. Radiocarbon 35, 215–230 (1993).Article 

    Google Scholar 
    44.Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP. Radiocarbon 46, 1029–1058 (2004).45.Taberlet, P. et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Res. 35, e14–e14 (2007).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    46.Coissac, E. OligoTag: A Program for Designing Sets of Tags for Next-Generation Sequencing of Multiplexed Samples. in Data Production and Analysis in Population Genomics: Methods and Protocols (eds. Pompanon, F. & Bonin, A.) 13–31 (Humana Press, 2012). https://doi.org/10.1007/978-1-61779-870-2_2.47.De Barba, M. et al. DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol. Ecol. Resour. 14, 306–323 (2014).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    48.Boyer, F. et al. obitools: a unix-inspired software package for DNA metabarcoding. Mol. Ecol. Resour. 16, 176–182 (2016).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.SøNstebø, J. H. et al. Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate: TECHNICAL ADVANCES. Mol. Ecol. Resour. 10, 1009–1018 (2010).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    50.Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506, 47–51 (2014).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    51.Soininen, E. M. et al. Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding. PLoS ONE 10, e0115335 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Ficetola, G. F. et al. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    53.R Core Team. R: A Language and Environment for Statistical Computing. (2019).54.Brach, A. R. & Song, H. eFloras: New directions for online floras exemplified by the Flora of China Project. TAXON 55, 188–192 (2006).Article 

    Google Scholar 
    55.Zhao, Y. et al. Evolution of vegetation and climate variability on the Tibetan Plateau over the past 1.74 million years. Sci. Adv. 6, eaay6193 (2020).56.Herzschuh, U. et al. Position and orientation of the westerly jet determined Holocene rainfall patterns in China. Nat. Commun. 10, 2376 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    57.Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    58.Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    59.Kessler, M. A., Anderson, R. S. & Stock, G. M. Modeling topographic and climatic control of east-west asymmetry in Sierra Nevada glacier length during the Last Glacial Maximum. J. Geophys. Res. Earth Surf. 111, F02002 (2006).60.Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).ADS 
    Article 

    Google Scholar 
    61.Braithwaite, R. J. From Doktor Kurowski’s Schneegrenze to our modern glacier equilibrium line altitude (ELA). Cryosphere 9, 2135–2148 (2015).ADS 
    Article 

    Google Scholar 
    62.Maussion, F. et al. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high asia reanalysis. J. Clim. 27, 1910–1927 (2014).ADS 
    Article 

    Google Scholar 
    63.Anja, M.-C. et al. GPCC Climatology Version 2011 at 0.25°: Monthly Land-Surface Precipitation Climatology for Every Month and the Total Year from Rain-Gauges built on GTS-based and Historic Data. https://doi.org/10.5676/DWD_GPCC/CLIM_M_V2011_025.64.Yuzhong, Y., Qingbai, W. & Hanbo, Y. Stable isotope variations in the ground ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quat. Int. 313–314, 85–91 (2013).Article 

    Google Scholar 
    65.Li, X. et al. Near-surface air temperature lapse rates in the mainland China during 1962–2011. J. Geophys. Res. Atmospheres 118, 7505–7515 (2013).ADS 
    Article 

    Google Scholar 
    66.Revelle, W. psych: Procedures for Personality and Psychological Research, Northwestern University, Evanston, Illinois, USA. Northwest. Univ. (2018).67.Zimmermann, H. H. et al. Sedimentary ancient DNA and pollen reveal the composition of plant organic matter in Late Quaternary permafrost sediments of the Buor Khaya Peninsula (north-eastern Siberia). Biogeosciences Discuss. 1–50 (2016) https://doi.org/10.5194/bg-2016-386.68.Oksanen, J. et al. vegan: Community Ecology Package. (2019).69.Hallett, L. M. et al. codyn: An r package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151 (2016).Article 

    Google Scholar 
    70.Barbosa, A. M., Brown, J. A., Jimenez-Valverde, A. & Real, R. modEvA: Model Evaluation and Analysis. R package version 1.3.2. (2016).71.Kuhn, M. caret: Classification and Regression Training. R package version 6.0–86. (2020). More

  • in

    Solar geoengineering can alleviate climate change pressures on crop yields

    1.Lawrence, M. G. et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 9, 3734 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.MacMartin, D. G., Ricke, K. L. & Keith, D. W. Solar geoengineering as part of an overall strategy for meeting the 1.5 °C Paris target. Phil. Trans. R. Soc. A 376, 20160454 (2018).ADS 

    Google Scholar 
    3.Crutzen, P. J. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climatic Change 77, 211–220 (2006).ADS 
    CAS 

    Google Scholar 
    4.Ahlm, L. et al. Marine cloud brightening—as effective without clouds. Atmos. Chem. Phys. 17, 13071–13087 (2017).ADS 
    CAS 

    Google Scholar 
    5.Muri, H. et al. Climate response to aerosol geoengineering: a multimethod comparison. J. Clim. 31, 6319–6340 (2018).ADS 

    Google Scholar 
    6.Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).ADS 

    Google Scholar 
    7.Robock, A., Oman, L. & Stenchikov, G. L. Regional climate responses to geoengineering with tropical and Arctic SO2 injections. J. Geophys. Res. Atmos. 113, D16101 (2008).ADS 

    Google Scholar 
    8.Tjiputra, J. F., Grini, A. & Lee, H. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles. J. Geophys. Res. Biogeosci. 121, 2015JG003045 (2016).
    Google Scholar 
    9.Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    10.Xia, L. et al. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 119, 8695–8711 (2014).ADS 

    Google Scholar 
    11.Zhan, P., Zhu, W., Zhang, T., Cui, X. & Li, N. Impacts of sulfate geoengineering on rice yield in china: results from a multimodel ensemble. Earth Future 7, 395–410 (2019).ADS 

    Google Scholar 
    12.Parkes, B., Challinor, A. & Nicklin, K. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. Environ. Res. Lett. 10, 084003 (2015).13.Yang, H. et al. Potential negative consequences of geoengineering on crop production: a study of Indian groundnut. Geophys. Res. Lett. 43, 11786–11795 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    14.Pongratz, J., Lobell, D. B., Cao, L. & Caldeira, K. Crop yields in a geoengineered climate. Nat. Clim. Change 2, 101–105 (2012).ADS 
    CAS 

    Google Scholar 
    15.Proctor, J., Hsiang, S., Burney, J., Burke, M. & Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 560, 480–483 (2018).ADS 
    CAS 

    Google Scholar 
    16.Tjiputra, J. F. et al. Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 6, 301–325 (2013).ADS 

    Google Scholar 
    17.MacMartin, D. G. & Kravitz, B. Mission-driven research for stratospheric aerosol geoengineering. Proc. Natl Acad. Sci. USA 116, 1089–1094 (2019).ADS 
    CAS 

    Google Scholar 
    18.Lombardozzi, D. L. et al. Simulating agriculture in the community land model version 5. J. Geophys. Res. Biogeosci. 125, e2019JG005529 (2020).ADS 

    Google Scholar 
    19.Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).
    Google Scholar 
    20.O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).ADS 

    Google Scholar 
    21.IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).22.FAOSTAT (FAO, 2019); http://www.fao.org/faostat/en/?#data/QC23.Tai, A. P. K., Martin, M. V. & Heald, C. L. Threat to future global food security from climate change and ozone air pollution. Nat. Clim. Change 4, 817–821 (2014).ADS 
    CAS 

    Google Scholar 
    24.Hsiao, J., Swann, A. L. S. & Kim, S.-H. Maize yield under a changing climate: the hidden role of vapor pressure deficit. Agric. For. Meteorol. 279, 107692 (2019).ADS 

    Google Scholar 
    25.Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. https://doi.org/10.1111/nph.16485 (2020).26.Rigden, A. J., Mueller, N. D., Holbrook, N. M., Pillai, N. & Huybers, P. Combined influence of soil moisture and atmospheric evaporative demand is important for accurately predicting US maize yields. Nat. Food 1, 127–133 (2020).
    Google Scholar 
    27.Konings, A. G., Williams, A. P. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nat. Geosci. 10, 284–288 (2017).ADS 
    CAS 

    Google Scholar 
    28.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).ADS 
    CAS 

    Google Scholar 
    29.Ainsworth, E. A. & Long, S. P. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2: Tansley review. New Phytol. 165, 351–372 (2004).
    Google Scholar 
    30.Bishop, K. A., Leakey, A. D. B. & Ainsworth, E. A. How seasonal temperature or water inputs affect the relative response of C3 crops to elevated CO2: a global analysis of open top chamber and free air CO2 enrichment studies. Food Energy Secur. 3, 33–45 (2014).
    Google Scholar 
    31.Ainsworth, E. A. et al. A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Glob. Change Biol. 8, 695–709 (2002).ADS 

    Google Scholar 
    32.Leakey, A. D. B. Rising atmospheric carbon dioxide concentration and the future of C4 crops for food and fuel. Proc. R. Soc. B 276, 2333–2343 (2009).CAS 

    Google Scholar 
    33.Ainsworth, E. A. & Rogers, A. The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ. 30, 258–270 (2007).CAS 

    Google Scholar 
    34.National Research Council Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies, 2015); https://doi.org/10.17226/1898835.Lutsko, N. J., Seeley, J. T. & Keith, D. W. Estimating impacts and trade-offs in solar geoengineering scenarios with a moist energy balance model. Geophys. Res. Lett. 47, e2020GL087290 (2020).ADS 

    Google Scholar 
    36.Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).ADS 

    Google Scholar 
    37.Tilmes, S. et al. The hydrological impact of geoengineering in the geoengineering model intercomparison project (GeoMIP). J. Geophys. Res. Atmos. 118, 11,036–11,058 (2013).
    Google Scholar 
    38.Lawrence, D. M. et al. The community land model version 5: description of new features, benchmarking, and impact of forcing uncertainty. J. Adv. Model. Earth Syst. 11, 4245–4287 (2019).ADS 

    Google Scholar 
    39.Fisher, R. A. et al. Parametric controls on vegetation responses to biogeochemical forcing in the CLM5. J. Adv. Model. Earth Syst. 11, 2879–2895 (2019).ADS 

    Google Scholar 
    40.Bonan, G. B. et al. Model structure and climate data uncertainty in historical simulations of the terrestrial carbon cycle (1850–2014). Glob. Biogeochem. Cycles 33, 1310–1326 (2019).ADS 
    CAS 

    Google Scholar 
    41.Osborne, T., Rose, G. & Wheeler, T. Variation in the global-scale impacts of climate change on crop productivity due to climate model uncertainty and adaptation. Agric. For. Meteorol. 170, 183–194 (2013).ADS 

    Google Scholar 
    42.Peng, B. et al. Improving maize growth processes in the community land model: implementation and evaluation. Agric. For. Meteorol. 250–251, 64–89 (2018).ADS 

    Google Scholar 
    43.Buzan, J. R. & Huber, M. Moist heat stress on a hotter earth. Annu. Rev. Earth Planet. Sci. 48, 623–655 (2020).ADS 
    CAS 

    Google Scholar 
    44.Wieder, W. R. et al. Beyond static benchmarking: using experimental manipulations to evaluate land model assumptions. Glob. Biogeochem. Cycles 33, 1289–1309 (2019).ADS 
    CAS 

    Google Scholar 
    45.Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS 
    CAS 

    Google Scholar 
    46.Cheng, S. J. et al. Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agric. For. Meteorol. 201, 98–110 (2015).ADS 

    Google Scholar 
    47.Shao, L. et al. The fertilization effect of global dimming on crop yields is not attributed to an improved light interception. Glob. Change Biol. 26, 1697–1713 (2020).ADS 

    Google Scholar 
    48.Vattioni, S. et al. Exploring accumulation-mode H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol–chemistry–climate model. Atmos. Chem. Phys. 19, 4877–4897 (2019).ADS 
    CAS 

    Google Scholar 
    49.Levis, S., Badger, A., Drewniak, B., Nevison, C. & Ren, X. CLMcrop yields and water requirements: avoided impacts by choosing RCP 4.5 over 8.5. Climatic Change 146, 501–515 (2018).ADS 

    Google Scholar 
    50.Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).
    Google Scholar 
    51.Lauvset, S. K., Tjiputra, J. & Muri, H. Climate engineering and the ocean: effects on biogeochemistry and primary production. Biogeosciences 14, 5675–5691 (2017).ADS 

    Google Scholar 
    52.Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117–161 (2011).ADS 

    Google Scholar 
    53.West, T. O. et al. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting. Ecol. Appl. 20, 1074–1086 (2010).
    Google Scholar 
    54.Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333, 616–620 (2011).ADS 
    CAS 

    Google Scholar 
    55.Farquhar, G., von Caemmerer, Svon & Berry, J. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).CAS 

    Google Scholar 
    56.Collatz, G. J., Ribas-Carbo, M. & Berry, J. A. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Funct. Plant Biol. 19, 519–538 (1992).
    Google Scholar 
    57.Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Change Biol. 17, 2134–2144 (2011).ADS 

    Google Scholar 
    58.Long, S. P., Ainsworth, E. A., Leakey, A. D. B., Nösberger, J. & Ort, D. R. Food for thought: lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312, 1918–1921 (2006).ADS 
    CAS 

    Google Scholar 
    59.The NCAR Command Language (NCL, Version 6.5.0) (UCAR, NCAR, CISL, TDD, 2018); https://doi.org/10.5065/D6WD3XH5 More

  • in

    A pan-African spatial assessment of human conflicts with lions and elephants

    After preprocessing the data, methods consisted of spatial analyses to map areas at risk of conflict; statistical analyses to identify the most important factors affecting lion and elephant population numbers; economic analyses to estimate the EAA of building and maintaining mitigation fences in areas under severe and high risk of conflict, and fragmentation analyses to assess the impact of fences on migratory mammal species. We describe each step in detail below (see Supplementary Fig. 2 for a flowchart of the analysis). All spatial data were converted to vectors for analysis to reduce commission errors (when a species is mistakenly thought to be present) when converting the species-range maps from vector to raster. Data preprocessing was carried out using the open source database PostgreSQL 11.4 (https://www.postgresql.org/about/) with the GIS extensions of PostGIS 2.5 (https://postgis.net/); conflict mapping and range fragmentation analyses used PostgreSQL 11.4 and PostGIS 2.5, and Python v. 3.7.060; statistical and economic analyses used R v. 3.6.061; sensitivity analyses used PostgreSQL 11.4 and PostGIS 2.5, and Python v. 3.7.060 and R v. 3.6.061.PreprocessingHuman pressuresHuman pressure layers were independently generated from this study. We used Gridded Population of the World Version 4 (GPWv4) as a layer for human population density62. GPWv4 is a minimally modelled data set consisting of estimates of human population (number of persons per raster grid cell) based on non-spatial population data (i.e., tabular counts of population listed by administrative area) and spatially explicit administrative boundary data. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of Population and Housing Censuses. The input data are then extrapolated to 2020 using calculated growth rates to produce future population estimates. A proportional allocation gridding algorithm, utilizing ~13.5 million national and subnational administrative units, assigned population counts to 30 arcsecond (~1 km at the equator) grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land-area raster.We used the most recent version of the Gridded Livestock of the World database63, reflecting the compiled and harmonized subnational livestock distribution data for 2010, to extract information on cattle density. The data set provides global population densities of cattle, buffaloes, horses, sheep, goats, pigs, chickens, and ducks in each land pixel at a spatial resolution of 0.083333 decimal degrees (~10 km at the equator). Detailed livestock census statistics are mined from agricultural yearbooks or through direct contacts with ministries or statistical bureaus. The census statistics are usually found in the form of numbers per administrative unit that must be linked to corresponding geographic information system boundaries. Densities are estimated in each census polygon by dividing the number of animals from the census by the surface area of the administrative unit polygon (estimated in an Albert equal-area projection), corrected by a mask excluding unsuitable areas. Livestock densities were then extracted from the subnational census data and were used as the dependent variable in Random Forest models to estimate a density value in each pixel, based on raster predictor variables.We used spatially detailed crop maps available from the Copernicus Global Land Cover map at ~0.001° (~100 m) resolution64. The land-cover map is a discrete map with ten continuous cover fractions (nine base land-cover classes and seasonal water) to provide spatial information about land for a diversity of applications, including biodiversity conservation. Cropland (as percentage of 100 m pixel that is covered by cropland) refers to cultivated and managed agriculture, but does not include perennial woody crops that are classified under the appropriate forest or shrub land-cover type64. Cropland also refers to both irrigated and rainfed agriculture. The land-cover map was generated by compiling the 5-daily PROBA-V multi-spectral image data with a Ground Sampling Distance of ~0.001° as the primary earth observation data and PROBA-V UTM daily multi-spectral image data with a Ground Sampling Distance of ~0.003° (~300 m) as the secondary earth observation data. Next, the 5-daily PROBA-V 100 m and daily 300 m datasets were fused using a Kalman filtering approach. The global overall accuracy of the product for the base year 2015 was calculated through an independent pre-validation and reached 80%.Species-range mapsUpdated range maps showing current distribution for lions and elephants were provided by the International Union for Conservation of Nature (IUCN) Cat and African Elephant Specialist Groups65. In addition to the range maps, the specialist groups provided information on the number of African lions (2018) and elephants (2016) within sites where they are still extant. We also obtained species-range maps for all terrestrial mammal species in orders Cetartiodactyla, Perissodactyla, Primates, and Carnivora occurring in Africa from the IUCN Red List portal (www.iucnredlist.org/). Mammal species in these orders include migratory mammal species (e.g., the common wildebeest Connochaetes taurinus), which might be negatively affected by mitigation fences, e.g., by potentially blocking migratory routes.Protected areasThe data on protected areas were based on the May 2019 release of the World Database on Protected Areas66 (retrieved from http://www.protectedplanet.net). To prevent overestimation of the area coverage of protected areas caused by overlapping designations, we merged polygons into a single layer. We only included in the analysis IUCN categories Ia (Strict Nature Reserve), Ib (Wilderness Area), II (National Park), III (Natural Monument or Feature), and IV (Habitat/Species Management Area), because we wanted to prevent fences from excluding people from protected areas that had been modified by the interaction of nature and people over time (e.g., V, Protected Landscape/Seascape).Mapping potential risk of conflictA database on the spatial distribution of conflict locations between humans and lions and elephants is not available across Africa. We therefore mapped the most prominent factors known to affect conflict: human population density (for both lion and elephant), crop raiding (elephants), and cattle killing (lions)8. Furthermore, spatial modelling of range contractions in carnivores showed that contractions were significantly more likely in regions with high rural human population density, cattle density, and/or cropland4. Therefore, we only retained areas where human, cattle, and crop densities were in the first decile (in our case, the first decile is the decile with the highest human population, crop, and cattle densities) by PostgreSQL/PostGIS. Using only the highest decile likely resulted in a conservative map of spatial conflict.We further classified areas at the highest potential conflict into low, moderate, high, or severe risk of conflict. Specifically, areas at severe risk of conflict are those where the highest human population, crop, and cattle densities all overlap; areas at high risk of conflict are those with overlaps between the highest densities of human population and either crops or cattle; areas at moderate risk of conflict are the areas where the highest crop and cattle densities overlap; and areas at low risk of conflict are those with only one human pressure, i.e., the highest human population, or crop, or cattle density. The remainder was considered as being at no risk of conflict, as it did not meet any of the above criteria, but note the conservative nature of our analysis (see above).The lion and elephant range maps and the protected area layer were intersected to select all protected areas that contain parts of lion and elephant range and/or were adjacent to the species-range maps. The identified protected areas were then merged with the species-range maps to create a new extended range layer (see for an example in Supplementary Fig. 1). These extended range maps were used (i) to identify potential areas where lions and elephants could be restored, and (ii) to avoid interrupting ecological processes (e.g., migrations) and/or causing unintended consequences (e.g., fragment populations) to other biodiversity in neighbouring protected areas.We then identified areas at risk of conflict by intersecting the extended range map layer for lions and elephants with the classified conflict map. In all cases, the intersections were carried out so that the classified conflict areas were either adjacent to, or within a distance of 10 km from, the edge of the extended range map layer. We set this distance to consider the wide-ranging behaviour of both lions and elephants, to account for the fact that conflict decreases at greater distances from protected area boundaries37,38, and to account for the fact that future human pressures will likely increase before conservation actions take place2.We assessed how robust our results were to commission (where human pressure is mistakenly assumed to exist) and omission (where human pressure is mistakenly assumed to be absent) errors in the human pressure maps by carrying out a sensitivity analysis that randomly varied the distances between the extended range maps and the human pressure maps. We first used Latin hypercube sampling, which is a form of sampling used to reduce the number of runs necessary for a Monte Carlo simulation to achieve a reasonably accurate random distribution67, to randomly vary 100 times the distance values between the extended range and human pressure maps. Specifically, we divided the low, moderate, high, and severe conflict lines into 100 m segments, calculated the minimum distance for each segment to human pressure within a 10, 20, and 30 km buffer distance from the edge of the extended range map layer, and then randomly varied that distance 100 times across ±10% of the value. We then averaged the resulting 100 randomly created distance values for each segment and identified which segments fell outside of the analyzed buffer distances of 10, 20, and 30 km. We tested for 20 and 30 km buffer distances, as we wanted to assess the variability of the fencing distance to different buffer sizes. We also estimated the certainty of lion and elephant presence by identifying segments of the perimeter of the range maps of lion and elephant that overlapped with protected areas. We did this as we had information on certain presence of both species from within protected areas, as opposed to areas extending outside of protected areas.Statistical analysesWe used an information theoretic approach68 and Bayesian information criterion to calculate statistical models. We used generalized linear mixed models with a negative‐binomial error distribution to account for over-dispersed count data and a log‐link function to examine factors affecting lion (n = 77) and elephant (n = 191) population sizes in Africa. Generalized linear mixed models were fitted with both random and fixed effects, to capture the data structure. Country was included as a random intercept to represent the hierarchical structure of the data. All variables listed in Supplementary Table 8 were fitted as fixed effects, i.e., with constant regression coefficients across countries. The site-specific variables were calculated only for sites where lions and elephants are currently present and not for the extended ranges. For transboundary sites that stretch across countries, we used the value for Gross Domestic Product, Conservation expenditure, and the Ibrahim Index of African Governance, for the country making the largest area contribution to the site. We compared and ranked models using the Bayesian information criterion68. To avoid multicollinearity among variables, we only selected variables with the strongest effect on population numbers that correlated at r 0.7 was selected as an input into the modelling process. We assessed each model’s relative probability, using Bayesian information criterion weights and the structural goodness-of-fit from the percentage of deviance explained by the model. We determined the magnitude and direction of the coefficients for the independent variables with multi-model averaging implemented in the R package glmulti69. The relative importance of each predictor variable was measured as the sum of the weights over the six top‐ranked models with Bayesian information criterion values closer to that of the best model containing the parameter of interest. Finally, we used a 10-fold cross-validation (a bootstrap resampling procedure using 1000 iterations) to assess the predictive ability of the top-ranked model.Range fragmentation analysesWe assessed how the proposed mitigation fences affected species-range connectivity by calculating the perimeter length-to-area ratio for mammal species in orders Cetartiodactyla, Perissodactyla, Primates, and Carnivora, whose ranges were identified as intersecting with areas at severe risk of conflict. Minimizing the perimeter length-to-area ratio is an important method of optimizing protected area design, resulting in compact reserves with high connectivity that can enhance persistence of the species. The smaller the ratio, the greater the clumping and connectivity of the species ranges. Specifically, we calculated the ratios of perimeter length to area for the ranges of 20 migratory mammalian species (i) under current conditions without fences and (ii) under future conditions where the identified mitigation fences would pass through their ranges. In the latter case, we used a 20 m buffer around the identified fences to account for further habitat clearance due to maintaining clearances around the fences for management purposes.Economic analysesWe used EAA to estimate the return on investment of building and maintaining mitigation fences to reduce cattle loss and crop damage. EAA calculates the constant annual cash flow generated by a project over its lifespan if it were an annuity and the annuity can then be compared to other projects of similar or different lifespan. Therefore, the measure potentially provides an important means for funders/donors to compare different investment opportunities. EAA is calculated by dividing the NPV of a project by the present value of annuity factor39. We started by calculating NPV in countries with areas at severe and high risk of conflict as:$${{NPV}}={sum }_{i}^{n}frac{{R}_{i}}{{left(1+dright)}^{i}}-Z$$
    (1)
    where ({R}_{i}) is net cash flow, (d) is the discount rate specific to each country (Supplementary Table 9), n is the number of time periods, (i) is the cash flow period, and (Z) is the initial investment of building the fences. NPV was calculated over a 10-year investment period. ({R}_{i}) was calculated as:$${R}_{i}=B-C$$
    (2)
    where (B) is the economic benefit derived from mitigation fences and (C) is the cost of maintaining mitigation fences. The economic benefits of mitigation fences for countries with severe risk of conflict refer to the potential reduction in cattle loss (for lions) and crop damage (for elephants) derived from building fences:$$B=L+E$$
    (3)
    where (L) represents the economic benefits of reducing cattle loss and (E) measures the economic benefits of reducing crop damage. For countries with high risk of conflict, the benefit ((B)) is derived from one or the other, i.e., (B) = (L) or (B) = (E).$$L=v * w * P$$
    (4)
    where (v) is the number of cattle that are not lost because of the presence of fences, (w) is the average weight in kg of adult cattle in that country, and (P) is the price of meat per kg paid to producers in that country in 2017 (data can be downloaded from http://www.fao.org/faostat/en/#data/PP). (v) was calculated as the percentage of total cattle present in the 10 km buffer adjacent to severe and high conflict areas, which could potentially be killed, based on published estimates across Africa45. Estimates range from 0.8 to 2.6% of cattle losses, and we decided to use a conservative 1% loss in the analysis (see below for how we accounted for uncertainty in model parameters). (w) was based on the average weight of an adult cow with estimates available at a regional level (west Africa: 262 kg; central Africa: 281 kg; east Africa: 283 kg; and southern Africa: 339 kg)70.$$E=left(d * Aright) * y * P$$
    (5)
    where (d) is the percentage of crop area damaged by elephants; data are taken from published estimates (ranging from 0.2 to 4% and we used a conservative 1% in the analysis)44; (A) is the total area in km2 available as crops in the 10 km buffer adjacent to the areas at severe and high risk of conflict; (y) is the yield (ton/km2) for the crop known to be targeted by elephants (cassava, maize, millet, banana, sorghum, groundnuts)44, which covered the largest area size in that country in 2017 (data calculated from: http://www.fao.org/faostat/en/#data/PP); and (P) is the price per ton paid to producers for that crop in that country in 2017 (data can be downloaded from http://www.fao.org/faostat/en/#data/PP). Although there might be several crops available within the buffer, this information is currently not available at the continental scale. Therefore, we decided to use the most common cultivated crop known to be targeted by elephants in each country.The cost of maintaining mitigation fences ((C)) was calculated as:$$C=f * c$$
    (6)
    where f is the fence length in that country and (c) is the cost for maintaining the fence. We obtained cost estimates of building (Z) and maintaining ((c)) the fences from Pekor et al.33. We used the median estimated current cost of USD 9522 per km for building fences and the median stated annual budget cost of USD 487 per km for adequate fence inspection and maintenance. This is the most up-to-date information validated through peer review on the costs (converted to 2017 USD) across Africa33. Cost estimates varied across surveyed conservation areas because of fence height and materials but included relevant costs of electrification and predator-proof structures33. The data were collected from 29 partially fenced ( More

  • in

    Precision conservation for a changing climate

    The author wishes to thank N. Haan, G. P. Robertson and N. Haddad for their valuable comments. Financial support was provided by USDA/NIFA (awards 2019-67012-29595 and 2015-68007-23133), the US National Science Foundation’s Long-term Ecological Research Program (award 1637653), the US Department of Energy, Office of Science, Office of Biological and Environmental Research (awards DESC0018409 and DE-FC02-07ER64494), and Michigan State University AgBioResearch. More