More stories

  • in

    Author Correction: Priority list of biodiversity metrics to observe from space

    Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, the NetherlandsAndrew K. Skidmore, Elnaz Neinavaz, Abebe Ali, Roshanak Darvishzadeh, Marcelle C. Lock & Tiejun WangDepartment of Earth and Environmental Science, Macquarie University, Sydney, New South Wales, AustraliaAndrew K. Skidmore & Marcelle C. LockDepartment of Forest Resources Management, University of British Columbia, Vancouver, British Columbia, CanadaNicholas C. CoopsDepartment of Geography and Environmental Studies, Wollo University, Dessie, EthiopiaAbebe AliRemote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, SwitzerlandMichael E. SchaepmanEuropean Space Research Institute (ESRIN), European Space Agency, Frascati, ItalyMarc PaganiniInstitute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the NetherlandsW. Daniel KisslingBiodiversity Centre, Finnish Environment Institute (SYKE), Helsinki, FinlandPetteri VihervaaraInstitute of Geographical Sciences, Freie Universität Berlin, Berlin, GermanyHannes FeilhauerRemote Sensing Center for Earth System Research, University of Leipzig, Leipzig, GermanyHannes FeilhauerNatureServe, Arlington, VA, USAMiguel FernandezGeorge Mason University, Fairfax, VA, USAMiguel FernandezGerman Centre for Integrative Biodiversity Research (iDiv), Leipzig, GermanyNéstor FernándezInstitute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), GermanyNéstor FernándezGoogle, Zurich, SwitzerlandNoel GorelickTour du Valat, Arles, FranceIlse GeijzendorfferEarth Observation Center (EOC), Remote Sensing Technology Institute, German Aerospace Center (DLR), Oberpfaffenhofen, GermanyUta Heiden & Stefanie HolzwarthDepartment of Visitor Management and National Park Monitoring, Bavarian Forest National Park Administration, Grafenau, GermanyMarco HeurichAlbert Ludwigs University of Freiburg, Freiburg, GermanyMarco HeurichGBIF Secretariat, Copenhagen, DenmarkDonald HobernCollege of Marine Science, University of South Florida, St Petersburg, FL, USAFrank E. Muller-KargerFlemish Institute for Technological Research (VITO), Mol, BelgiumRuben Van De KerchoveComputational Landscape Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, GermanyAngela LauschGeography Department, Humboldt University of Berlin, Berlin, GermanyAngela LauschTechnische Universität Braunschweig, Braunschweig, GermanyPedro J. LeitãoHumboldt-Universität zu Berlin, Berlin, GermanyPedro J. LeitãoWageningen Environmental Research, Wageningen University & Research, Wageningen, the NetherlandsCaspar A. MücherUN Environment World Conservation Monitoring Centre, Cambridge, UKBrian O’ConnorDepartment of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, ItalyDuccio RocchiniDepartment of Applied Geoinformatics and Spatial Planning, Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, Czech RepublicDuccio RocchiniEarth Science Division, NASA, Washington DC, USAWoody TurnerUnilever Europe B.V., Rotterdam, the NetherlandsJan Kees VisInstitute of Geography and Geology, University of Wuerzburg, Würzburg, GermanyMartin WegmannLand Systems and Sustainable Land Management, Geographisches Institut, Universität Bern, Bern, SwitzerlandVladimir Wingate More

  • in

    Effects of long-term integrated agri-aquaculture on the soil fungal community structure and function in vegetable fields

    Effects of the two planting systems on soil fungal diversityIn this study, 561,254 sequences were generated from 15 samples obtained from 5 treatments. Base sequences with a length of 201–300 bp accounted for 97.82% of all sequences (Table S1a,b). Rarefaction curves at a similarity level of 97% indicated that the number of sequences extracted from most samples tended to plateau above 10,000. The number of sequences extracted in the test exceeded 30,000, suggesting that the sequencing data were close to saturation, sequencing depth was reasonable, and the results reflected true sample conditions (Fig. 1). The coverage of all samples was above 99.84%. The range of reads in each sample was between 34,390 and 43,510. The range of Operational Taxonomic Units (OTUs) in each sample was between 145 and 318 (Table 1).Figure 1α-Diversity comparison. Rarefaction curves for OTUs were calculated using Mothur (v1.27.0) with reads normalized to more than 30,000 for each sample using a distance of 0.03 OTU.Full size imageTable 1 Comparison of α-diversity indices in TPP and VEE soil samples.Full size tableThe analysis of alpha diversity showed that with increasing planting time, soil fungal OTUs, the Chao index, and the ACE index in TPP-treated plots increased and then decreased with time. In the VEE-IPBP-treated plots, these 3 indexes increased with time and were 56.94%, 33.81%, and 32.50% higher than those in the TPP-treated plots, respectively, after 6 years of implementation (p  More

  • in

    Global earthworm distribution and activity windows based on soil hydromechanical constraints

    1.Young, I. M. et al. The interaction of soil biota and soil structure under global change. Glob. Change Biol. 4, 703–712 (1998).Article 

    Google Scholar 
    2.Lavelle, P. et al. Earthworms as key actors in self-organized soil systems. Theor. Ecol. Ser. 4, 77–106 (2007).Article 

    Google Scholar 
    3.Blakemore, R. & Hochkirch, A. Soil: restore earthworms to rebuild topsoil. Nature 545, 30–30 (2017).CAS 
    Article 

    Google Scholar 
    4.Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 
    Article 

    Google Scholar 
    5.Brown, G. G., Barois, I. & Lavelle, P. Regulation of soil organic matter dynamics and microbial activityin the drilosphere and the role of interactionswith other edaphic functional domains. Eur. J. Soil Biol. 36, 177–198 (2000).Article 

    Google Scholar 
    6.Denef, K. et al. Influence of dry–wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 33, 1599–1611 (2001).CAS 
    Article 

    Google Scholar 
    7.Van Groenigen, J. W. et al. Earthworms increase plant production: a meta-analysis. Sci. Rep. 4, 1–7 (2014).8.Blouin, M. et al. A review of earthworm impact on soil function and ecosystem services. Eur. J. Soil Sci. 64, 161–182 (2013).Article 

    Google Scholar 
    9.Capowiez, Y. et al. Experimental evidence for the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol. Biochem. 41, 711–717 (2009).CAS 
    Article 

    Google Scholar 
    10.Wu, X. D., Guo, J. L., Han, M. & Chen, G. An overview of arable land use for the world economy: From source to sink via the global supply chain. Land Use Policy 76, 201–214 (2018).Article 

    Google Scholar 
    11.Ruiz, S., Schymanski, S. & Or, D. Mechanics and energetics of soil penetration by earthworms and plant roots—higher burrowing rates cost more. Vadose Zone J. https://doi.org/10.2136/vzj2017.01.0021 (2017).12.Quillin, K. J. Kinematic scaling of locomotion by hydrostatic animals: ontogeny of peristaltic crawling by the earthworm Lumbricus terrestris. J. Exp. Biol. 202, 661–674 (1999).Article 

    Google Scholar 
    13.Ruiz, S., Or, D. & Schymanski, S. Soil penetration by earthworms and plant roots—mechanical energetics of bioturbation of compacted soils. PLoS ONE https://doi.org/10.1371/journal.pone.0128914 (2015).14.Phillips, H. R. et al. Global distribution of earthworm diversity. Science 366, 480–485 (2019).CAS 
    Article 

    Google Scholar 
    15.Abbott, I. Distribution of the native earthworm fauna of Australia—a continent-wide perspective. Soil Res. 32, 117–126 (1994).Article 

    Google Scholar 
    16.Hendrix, P. F. & Bohlen, P. J. Exotic earthworm invasions in North America: ecological and policy implications. Bioscience 52, 801–811 (2002).Article 

    Google Scholar 
    17.Nakamura, Y. Studies on the ecology of terrestrial oligochaeta: I. Sesonal variation in the population density of earthworms in alluvial soil grassland in Sapporo, Hokkaido. Appl. Entomol. Zool. 3, 89–95 (1968).Article 

    Google Scholar 
    18.Edwards, C. A. & Bohlen, P. J. Biology and Ecology of Earthworms. Vol. 3 (Springer Science & Business Media, 1996).19.Kretzschmar, A. Burrowing ability of the earthworm Aporrectodea longa limited by soil compaction and water potential. Biol. Fertil. Soils 11, 48–51 (1991).Article 

    Google Scholar 
    20.Johnston, A. S. Land management modulates the environmental controls on global earthworm communities. Glob. Ecol. Biogeogr. 28, 1787–1795 (2019).Article 

    Google Scholar 
    21.Rao, K. P. Physiology of low temperature acclimation in tropical poikilotherms. I. Ionic changes in the blood of the freshwater mussel, Lamellidens marginalis, and the earthworm, Lampito mauritii. Proc. Indian Acad. Sci. 57, 290–295 (1963).CAS 

    Google Scholar 
    22.Baker, G. H. & Whitby, W. A. Soil pH preferences and the influences of soil type and temperature on the survival and growth of Aporrectodea longa (Lumbricidae): the 7th international symposium on earthworm ecology· Cardiff· Wales· 2002. Pedobiologia 47, 745–753 (2003).
    Google Scholar 
    23.El-Duweini, A. K. & Ghabbour, S. I. Population density and biomass of earthworms in different types of Egyptian soils. J. Appl. Ecol. 2, 271–287 (1965).24.Ghezzehei, T. A. & Or, D. Rheological properties of wet soils and clays under steady and oscillatory stresses. Soil Sci. Soc. Am. J. 65, 624–637 (2001).CAS 
    Article 

    Google Scholar 
    25.Ghezzehei, T. A. & Or, D. Dynamics of soil aggregate coalescence governed by capillary and rheological processes. Water Resour. Res. 36, 367–379 (2000).Article 

    Google Scholar 
    26.Gerard, C. The influence of soil moisture, soil texture, drying conditions, and exchangeable cations on soil strength. Soil Sci. Soc. Am. J. 29, 641–645 (1965).CAS 
    Article 

    Google Scholar 
    27.Quillin, K. J. Ontogenetic scaling of burrowing forces in the earthworm Lumbricus terrestris. J. Exp. Biol. 203, 2757–2770 (2000).CAS 
    Article 

    Google Scholar 
    28.Ruiz, S. A. & Or, D. Biomechanical limits to soil penetration by earthworms: direct measurements of hydroskeletal pressures and peristaltic motions. J. R. Soc. Interface 15, 20180127 (2018).Article 

    Google Scholar 
    29.McKenzie, B. M. & Dexter, A. R. Radial pressures generated by the earthworm Aporrectodea rosea. Biol. Fertil. Soils 5, 328–332 (1988).
    Google Scholar 
    30.Hengl, T. et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    31.Burges, A. Soil Biology. (Elsevier, 2012).32.Ruiz, S. A. Mechanics and Energetics of Soil Bioturbation by Earthworms and Growing Plant Roots. https://doi.org/10.3929/ethz-b-000280625 (2018).33.Kretzschmar, A. & Bruchou, C. Weight response to the soil water potential of the earthworm Aporrectodea longa. Biol. Fertil. Soils 12, 209–212 (1991).Article 

    Google Scholar 
    34.Eggleton, P., Inward, K., Smith, J., Jones, D. T. & Sherlock, E. A six year study of earthworm (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol. Biochem. 41, 1857–1865 (2009).CAS 
    Article 

    Google Scholar 
    35.Beer, C., Reichstein, M., Ciais, P., Farquhar, G. & Papale, D. Mean annual GPP of Europe derived from its water balance. Geophysical Research Letters 34 (2007).36.Keudel, M. & Schrader, S. Axial and radial pressure exerted by earthworms of different ecological groups. Biol. Fertil. Soils 29, 262–269 (1999).Article 

    Google Scholar 
    37.Heaney, L. R., Balete, D. S., Rickart, E. A. & Niedzielski, A. The Mammals of Luzon Island: Biogeography and natural history of a Philippine fauna. (Johns Hopkins University Press, 2016).38.Keller, T. et al. Long-term soil structure observatory for monitoring post-compaction evolution of soil structure. Vadose Zone J. 16, 1–16 (2017).39.Lacoste, M., Ruiz, S. & Or, D. Listening to earthworms burrowing and roots growing-acoustic signatures of soil biological activity. Sci. Rep. 8, 10236 (2018).Article 

    Google Scholar 
    40.Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    41.IPCC. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley). 1535 (Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013).42.Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    43.Bengough, A. G. et al. Root responses to soil physical conditions; growth dynamics from field to cell. J. Exp. Bot. 57, 437–447 (2005).Article 

    Google Scholar 
    44.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS 
    Article 

    Google Scholar 
    45.Paoletti, M. G. The role of earthworms for assessment of sustainability and as bioindicators. Agric. Ecosyst. Environ. 74, 137–155 (1999).Article 

    Google Scholar 
    46.Gruber, S. Derivation and analysis of a high-resolution estimate of global permafrost zonation. Cryosphere 6, 221 (2012).Article 

    Google Scholar 
    47.Muñoz Sabater, J. (ed Copernicus Climate Change Service (C3S) Climate Data Store (CDS)) (2019).48.Beck, H. E. et al. MSWEP V2 global 3-hourly 0.1° precipitation: methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 100, 473–500 (2019).Article 

    Google Scholar 
    49.Chamberlain, E. J. & Butt, K. R. Distribution of earthworms and influence of soil properties across a successional sand dune ecosystem in NW England. Eur. J. Soil Biol. 44, 554–558 (2008).Article 

    Google Scholar 
    50.Booth, L. H., Heppelthwaite, V. & McGlinchy, A. The effect of environmental parameters on growth, cholinesterase activity and glutathione S-transferase activity in the earthworm (Apporectodea caliginosa). Biomarkers 5, 46–55 (2000).CAS 
    Article 

    Google Scholar 
    51.GBIF.org. GBIF Occurrence Download (Almidae). https://doi.org/10.15468/dl.xstqow (2020).52.GBIF.org. GBIF Occurrence Download (Eudrilidae). https://doi.org/10.15468/dl.wghggg (2020).53.GBIF.org. GBIF Occurrence Download (Glossoscolecidae). https://doi.org/10.15468/dl.3yj8pk (2020).54.GBIF.org. GBIF Occurrence Download (Hormogastridae). https://doi.org/10.15468/dl.lzuwlg (2020).55.GBIF.org. GBIF Occurrence Download (Lumbricidae). https://doi.org/10.15468/dl.vwqtsk (2020).56.GBIF.org. GBIF Occurrence Download (Microchaetidae). https://doi.org/10.15468/dl.brqmht (2020).57.GBIF.org. GBIF Occurrence Download (Moniligastridae). https://doi.org/10.15468/dl.ghccto (2020).58.GBIF.org. GBIF Occurrence Download (Ocnerodrilidae). https://doi.org/10.15468/dl.dk97gk (2020).59.GBIF.org. GBIF Occurrence Download (Octochaetidae). https://doi.org/10.15468/dl.xjw6kc (2020).60.GBIF.org. GBIF Occurrence Download (Sparganophilidae). https://doi.org/10.15468/dl.9a4ojx (2020).61.Ruiz, S. B., S; Or, D. Dataset for: Global Earthworm Distribution and Activity Windows Based on Soil Hydromechanical Constraints. https://doi.org/10.3929/ethz-b-000476615 (2021). More

  • in

    Current extinction rate in European freshwater gastropods greatly exceeds that of the late Cretaceous mass extinction

    1.Darwall, W. et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat. Conserv. 28, 1015–1022 (2018).Article 

    Google Scholar 
    2.Green, P. A. et al. Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Global Environ. Chang. 34, 108–118 (2015).Article 

    Google Scholar 
    3.EEA (European Environment Agency). The European environment — state and outlook 2020. Knowledge for transition to a sustainable Europe (Publications Office of the European Union, Luxembourg, 2019).4.Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).Article 

    Google Scholar 
    5.Régnier, C., Fontaine, B. & Bouchet, P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol. 23, 1214–1221 (2009).Article 

    Google Scholar 
    6.Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    7.Burkhead, N. M. Extinction rates in North American freshwater fishes, 1900–2010. BioScience 62, 798–808 (2012).Article 

    Google Scholar 
    8.Poff, N. L., Olden, J. D. & Strayer, D. L. Climate change and freshwater fauna extinction risk. 309–336. In: Hannah, L. (ed.) Saving a million species (Island Press/Center for Resource Economics, Washington, 2012).9.De Grave, S. et al. Dead shrimp blues: a global assessment of extinction risk in freshwater shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 10, e0120198 (2015).Article 
    CAS 

    Google Scholar 
    10.Böhm, M. et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia (2020) https://doi.org/10.1007/s10750-020-04385-w.11.Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).Article 

    Google Scholar 
    12.Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).Article 

    Google Scholar 
    13.Dudgeon, D. Freshwater biodiversity: status, threats and conservation (Cambridge University Press, Cambridge, 2020).14.WWF (World Wildlife Fund). Living Planet Report – 2020: Bending the curve of biodiversity loss (WWF, Gland, 2020).15.Döll, P. & Zhang, J. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci 14, 783–799 (2010).Article 

    Google Scholar 
    16.Janse, J. H. et al. GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environ. Sci. Policy 48, 99–114 (2015).Article 

    Google Scholar 
    17.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    Article 

    Google Scholar 
    18.Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 

    Google Scholar 
    19.Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).CAS 
    Article 

    Google Scholar 
    20.Wang, J.-G., Wu, F.-Y., Tan, X.-C. & Liu, C.-Z. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612–613, 97–105 (2014).Article 
    CAS 

    Google Scholar 
    21.Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019).CAS 
    Article 

    Google Scholar 
    22.Shukla, P. R. et al. (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (IPCC, Geneva, 2019).23.Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).CAS 
    Article 

    Google Scholar 
    24.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).CAS 
    Article 

    Google Scholar 
    25.Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K-Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).Article 

    Google Scholar 
    26.Balian, E. V., Segers, H., Lévêque, C. & Martens, K. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595, 627–637 (2008).Article 

    Google Scholar 
    27.Darwall, W., Seddon, M., Clausnitzer, V. & Cumberlidge, N. Freshwater invertebrate life. 26–32. In: Collen, B., Böhm, M., Kemp, R. & Baillie, J. E. M. (eds). Spineless: status and trends of the world’s invertebrates (Zoological Society of London, London, 2012).28.Strong, E. E., Gargominy, O., Ponder, W. F. & Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595, 149–166 (2008).Article 

    Google Scholar 
    29.Neubauer, T. A., Harzhauser, M., Georgopoulou, E., Kroh, A. & Mandic, O. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots. Proc. Natl. Acad. Sci. USA 112, 11478–11483 (2015).CAS 
    Article 

    Google Scholar 
    30.Cuttelod, A., Seddon, M. & Neubert, E. European red list of non-marine molluscs (Publications Office of the European Union, Luxembourg, 2011).31.Cordellier, M., Pfenninger, A., Streit, B. & Pfenninger, M. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar. Biol. 159, 2519–2531 (2012).Article 

    Google Scholar 
    32.Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).Article 

    Google Scholar 
    33.Georgopoulou, E., Neubauer, T. A., Harzhauser, M., Kroh, A. & Mandic, O. Distribution patterns of European lacustrine gastropods: a result of environmental factors and deglaciation history. Hydrobiologia 775, 69–82 (2016).Article 

    Google Scholar 
    34.IUCN (International Union for Conservation of Nature). The IUCN red list of threatened species. Version 2020-1. https://www.iucnredlist.org (2020).35.Andermann, T., Faurby, S., Cooke, R., Silvestro, D. & Antonelli, A. iucn_sim: a new program to simulate future extinctions based on IUCN threat status. Ecography 44, 162–176 (2021).Article 

    Google Scholar 
    36.Neubauer, T. A., Harzhauser, M., Kroh, A., Georgopoulou, E. & Mandic, O. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Sci. Rev. 143, 98–116 (2015).Article 

    Google Scholar 
    37.Sheehan, P. M., Coorough, P. J. & Fastovsky, D. E. Biotic selectivity during the K/T and Late Ordovician extinction events. Geol. Soc. Spec. Pap. 307, 477–489 (1996).
    Google Scholar 
    38.MacLeod, N. et al. The Cretaceous-Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).Article 

    Google Scholar 
    39.Vajda, V. & Bercovici, A. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Global Planet. Change 122, 29–49 (2014).Article 

    Google Scholar 
    40.Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).Article 

    Google Scholar 
    41.Henderson, J. Fossil non-marine Mollusca of North America. Geol. Soc. Spec. Pap. 3, 1–313 (1935).
    Google Scholar 
    42.Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).CAS 
    Article 

    Google Scholar 
    43.Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. 481–508. In: Thierstein, H. R. & Young, J. R. (eds). Coccolithophores (Springer, Berlin, 2004).44.Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).CAS 
    Article 

    Google Scholar 
    45.Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).CAS 
    Article 

    Google Scholar 
    46.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    47.Cowie, R. H., Régnier, C., Fontaine, B. & Bouchet, P. Measuring the sixth extinction: what do mollusks tell us? Nautilus 131, 3–41 (2017).
    Google Scholar 
    48.Georgopoulou, E. et al. Beginning of a new age: How did freshwater gastropods respond to the Quaternary climate change in Europe? Quat. Sci. Rev. 149, 269–278 (2016).Article 

    Google Scholar 
    49.Csapó, H. et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci. Rep. 10, 18695 (2020).Article 
    CAS 

    Google Scholar 
    50.Davis, M., Faurby, S. & Svenning, J.-C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. USA 115, 11262–11267 (2018).CAS 
    Article 

    Google Scholar 
    51.Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).Article 

    Google Scholar 
    52.Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).CAS 
    Article 

    Google Scholar 
    53.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).Article 

    Google Scholar 
    54.Pimiento, C. et al. Selective extinction against redundant species buffers functional diversity. Proc. R. Soc. B 287, 20201162 (2020).Article 

    Google Scholar 
    55.Cao, W. et al. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–5439 (2017).Article 

    Google Scholar 
    56.Martinson, G. G. Mezozoiskie i Kainozoiskie Molliuski kontinentalnykh otlozhenii Sibirskoi Platformy Zabaikalia i Mongolii. Trudy Baikal’skoy Limnologicheskoy Stantzii Akademii Nauk SSSR 19, 1–332 (1961).
    Google Scholar 
    57.Pan, H. Mesozoic and Cenozoic fossil Gastropoda from Yunnan. 83-152. In: Nanjing Institute of Geology and Palaeontology (Ed.). Mesozoic Fossils from Yunnan. 2 (Science Press, Beijing, 1977).58.Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauly, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).CAS 
    Article 

    Google Scholar 
    59.Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J. & Allmon, W. D. The generification of the fossil record. Paleobiology 40, 511–528 (2014).Article 

    Google Scholar 
    60.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article 

    Google Scholar 
    61.Plummer, M. et al. coda: Output analysis and diagnostics for MCMC. R package version 0.19-3. https://cran.r-project.org/web/packages/coda/index.html (2019).62.R Core Team. R: A language and environment for statistical computing. Version 3.6.3. R Foundation for Statistical Computing, Vienna. http://www.R-project.org (2020).63.Chamberlain, S. rredlist: ‘IUCN’ red list client. R package version 0.6.0. http://CRAN.R-project.org/package=rredlist (2020)64.Bandel, K. & Riedel, F. The late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Ann. Naturhist. Mus. Wien Ser. A 96, 1–65 (1994).
    Google Scholar  More

  • in

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Joanne M. Bennett, Rémy Beugnon, Olga Ferlian, Carlos A. Guerra, Birgitta König-Ries, Julia J. Krebs, Ulrich Brose & Nico EisenhauerInstitute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Rémy Beugnon, Olga Ferlian, Julia J. Krebs & Nico EisenhauerDepartment of Environmental Science, Saint Mary’s University, Halifax, Nova Scotia, CanadaHelen R. P. Phillips & Erin K. CameronGlobal Soil Biodiversity Initiative and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallDepartment of Biology, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallUniversidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR, 81280-330, BrazilMarie L. C. BartzCenter of Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, PortugalMarie L. C. BartzInstitute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), GermanyJoanne M. Bennett & Carlos A. GuerraCentre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, AustraliaJoanne M. BennettDepartamento de Ecología y Biología Animal, Universidad de Vigo, 36310, Vigo, SpainMaria J. I. BrionesEmbrapa Forestry, Estrada da Ribeira, km. 111, C.P. 231, Colombo, PR, 83411-000, BrazilGeorge G. BrownA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., 33, Moscow, 119071, RussiaKonstantin B. Gongalsky & Iurii M. LebedevM.V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, RussiaKonstantin B. Gongalsky & Iurii M. LebedevInstitute of Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, GermanyBirgitta König-RiesEuropean Commission, Joint Research Centre (JRC), Ispra, ItalyAlberto OrgiazziDepartment of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700, Wageningen, AB, The NetherlandsKelly S. Ramirez, Wim H. van der Putten & Madhav P. ThakurSenckenberg Museum for Natural History Görlitz, Department of Soil Zoology, 02826, Görlitz, GermanyDavid J. RussellBiometry and Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, GermanyBenjamin SchwarzInstitute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, GermanyUlrich BroseCEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, FranceThibaud DecaënsSorbonne Université, Institut d’Ecologie et des Sciences de l’Environnement, 75005, Paris, FrancePatrick LavelleCentre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 09200, Moulis, FranceMichel LoreauSorbonne Université, Institute of Ecology and Environmental Sciences of Paris (UMR 7618 IEES-Paris, CNRS, INRA, UPMC, IRD, UPEC), 4 place Jussieu, 75000, Paris, FranceJérôme MathieuINRA, IRD, Institut d’Ecologie et des Sciences de l’Environnement de Paris, F-75005, Paris, FranceJérôme MathieuDepartment of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, ItalyChristian MulderLaboratory of Nematology, Wageningen University, PO Box 8123, 6700, Wageningen, ES, The NetherlandsWim H. van der PuttenInstitute of Biology, Freie Universität Berlin, 14195, Berlin, GermanyMatthias C. Rillig & Daniel R. LammelInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsFranciska T. de VriesAsian School of the Environment, Nanyang Technological University, Singapore, 639798, SingaporeDavid A. WardleCentre of Biodiversity and Sustainable Landuse, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerSilviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerForest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, Göttingen, GermanySabine AmmerInstitute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kan-nondai, Tsukuba, Ibaraki, JapanMiwa AraiLand Resource Management and Agricultural Technology, University of Nairobi, Kapenguria Road, Off Naivasha Road, P.O Box 29053, Nairobi, KenyaFredrick O. AyukeRwanda Institute for Conservation Agriculture, KG 541, Kigali, RwandaFredrick O. AyukeHealth & Biosecurity, CSIRO, PO Box 1700, Canberra, AustraliaGeoff H. BakerDepartment of Animal Science, Santa Catarina State University, Chapecó, SC, 89815-630, BrazilDilmar BarettaExperimental Infrastructure Platform (EIP), Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyDietmar Barkusky & Monika JoschkoDépartment de biologie, Université de Sherbrooke, Sherbrooke, Québec, CanadaRobin Beauséjour & Robert L. BradleyGeology Department, FCEFQyN, ICBIA-CONICET (National Scientific and Technical Research Council), National University of Rio Cuarto, Ruta 36 Km, 601, Río Cuarto, ArgentinaJose C. Bedano & Anahí DomínguezDepartment of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, Cottbus, GermanyKlaus BirkhoferEco&Sols, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier, FranceEric Blanchart & Michel BrossardNatural Resources, Cornell University, Ithaca, NY, USABernd BlosseyEarth Institute, University College Dublin, Belfield, Dublin, 4, IrelandThomas BolgerSchool of Biology and Environmental Science, University College Dublin, Belfield, Dublin, IrelandThomas BolgerDepartment of Entomology, Cornell University, 3132, Comstock Hall, Ithaca, NY, USAJames C. BurtisEMMAH, UMR 1114, INRA, Site Agroparc, Avignon, FranceYvan CapowiezThe School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, AustraliaTimothy R. CavagnaroFaculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, CanadaAmy Choi & Sandy M. SmithLaboratoire Écologie et Biologie des Interactions, équipe EES, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, Poitiers, FranceJulia ClauseUMR ECOBIO (Ecosystems, Biodiversity, Evolution) CNRS-Université de Rennes, Station Biologique, 35380, Paimpont, FranceDaniel Cluzeau & Guénola PérèsECT Oekotoxikologie GmbH, Boettgerstr. 2-14, Floersheim, GermanyAnja CoorsInstitute of Biological, Environmental and Rural Sciences, Aberystwyth Universtiy, Plas Gogerddan, Aberystwyth, SY24 3EE, United KingdomFelicity V. CrottySchool for Agriculture, Food and the Environment, Royal Agricultural University, Stroud Road, Cirencester, GL7 6JS, United KingdomFelicity V. CrottyOdum School of Ecology, University of Georgia, 140 E Green Street, Athens, USAJasmine M. CrumseyDepartment of Biological Sciencies, SUNY Cortland, 1215 Bowers Hall, Cortland, USAAndrea DávalosBiodiversity, Ecology and Evolution, Faculty of Biology, University Complutense of Madrid, José Antonio Novais, 12, Madrid, SpainDarío J. Díaz Cosín, Mónica Gutiérrez López, Juan B. Jesús, Marta Novo & Dolores TrigoYale School of the Environment, Yale University, 370 Prospect St, New Haven, CT, USAAnnise M. DobsonDepartamento de Ciencias Básicas, Universidad Nacional de Luján, Argentina – INEDES (Universidad Nacional de Luján – CONICET), Luján, ArgentinaAndrés Esteban DuhourLouis Bolk Institute, Kosterijland 3-5, Bunnik, The NetherlandsNick van EekerenDepartment of Soil Science, University of Trier, Campus II, Behringstraße 21, Trier, GermanyChristoph EmmerlingDepartamento de Ciencias Básicas, Instituto de Ecología y Desarrollo Sustentable, Universidad Nacional de Luján, Av. Constitución y Ruta 5, Luján, ArgentinaLiliana B. FalcoAnimal Biodiversity and Evolution, Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta 37, Barcelona, SpainRosa FernándezDepartment of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO, USASteven J. Fonte & Tunsisa T. HurissoBiodiversity and Systematic Network, Institute of Ecology A.C., El Haya, Xalapa, Veracruz, 91070, MexicoCarlos FragosoDepartment of Biology, Colorado State University, 200 West Lake Street, Fort Collins, CO, USAAndré L. C. FrancoDepartment of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Davao, PhilippinesAbegail FusileroLaboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit – GhEnToxLab, Ghent University, Campus Coupure, Coupure Links 653, Ghent, BelgiumAbegail FusileroCenter for Forest Ecology and Productivity RAS, Profsoyuznaya st. 84/32 bldg. 14, Moscow, RussiaAnna P. GeraskinaRazi University, Kermanshah, IranShaieste Gholami & Ehsan SayadUnited States Department of Agriculture, Forest Service, International Institute of Tropical Forestry, 1201 Ceiba Street, San Juan, Puerto RicoGrizelle GonzálezDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgrand 17, 901 83, Umeå, SwedenMichael J. GundaleDepartment of Biology, University of Osijek, Cara Hadrijana 8 A, Osijek, CroatiaBranimir K. Hackenberger & Davorka K. HackenbergerAgriculture engineering, Agroecology Postgraduate Program, Maranhão State University, Avenida Lourenço Vieira da Silva 1000, São Luis, BrazilLuis M. Hernández & Guillaume X. RousseauDepartment of Jobs, Precincts and Regions, Agriculture Victoria, Chiltern Valley Road, Rutherglen, AustraliaJeff R. HirthFaculty of Agriculture, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka, 811-2415, JapanTakuo HishiMinnesota Pollution Control Agency, 520 Lafayette Road, St Paul, MN, USAAndrew R. HoldsworthDepartment of Bioscience, Aarhus University, Vejlsøvej 25, Aarhus, DenmarkMartin HolmstrupDepartment of Biological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, USAKristine N. HopfenspergerAgricultura Sociedad y Ambiente, El Colegio de la Frontera Sur, Av. Polígono s/n Cd. Industrial Lerma, Campeche, Campeche, MexicoEsperanza Huerta LwangaSoil Physics and Land Management Group, Wageningen University & Research, Droevendaalsteeg 4, Wageningen, The NetherlandsEsperanza Huerta Lwanga & Loes van SchaikDept. of Biological and Environmental Sciences, University of Jyväskylä, Box 35, Jyväskylä, FinlandVeikko HuhtaCollege of Agriculture, Environmental and Human Sciences, Lincoln University of Missouri, Jefferson City, MO, 65101, USATunsisa T. HurissoSchool of Forest Resources and Conservation, University of Florida, Gainesville, USABasil V. Iannone IIISustainable Development and Environmental Engineering, University of Agricultural Sciences and Veterinary Medicine of Banat “King Michael the 1st of Romania” from Timisoara, Calea Aradului 119, Timisoara, RomaniaMadalina IordacheInstitute for Ecosystem Research, University of Kiel, Olshausenstrasse 40, 24098, Kiel, GermanyUlrich IrmlerTartu College, Tallinn University of Technology, Puiestee 78, Tartu, EstoniaMari IvaskDepartment of Soil and Water Systems, University of Idaho, 875 Perimeter Drive MS, 2340, Moscow, USAJodi L. Johnson-MaynardFaculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima, JapanNobuhiro KanekoDepartment of Environment, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica, SlovakiaRadoslava KanianskaUK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster, United KingdomAidan M. KeithLand Use and Governance, Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyMaria L. KerneckerUFR Sciences de la Nature, UR Gestion Durable des Sols, Université Nangui Abrogoua, Abidjan, Côte d’IvoireArmand W. KonéFaculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489, Noor, Mazandaran, IranYahya KoochProduction Systems, Natural Resources Institute Finland, Survontie 9 A, Jyväskylä, FinlandSanna T. KukkonenDepartment of Zoology, Pachhunga University College, Aizawl, Mizoram, IndiaH. LalthanzaraSkolkovo Institute of Science and Technology, 30-1 Bolshoy Boulevard, Moscow, 121205, RussiaIurii M. LebedevSAS, INRAE, Institut Agro, 35042, Rennes, FranceEdith Le CadreTropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, 3190 Maile Way, St. John 102, Honolulu, USANoa K. LincolnEcologia Aplicada, Instituto de Zoologia y Ecologia Tropical, Universidad Central de Venezuela, Los Chaguaramos, Ciudad Universitaria, Caracas, VenezuelaDanilo López-HernándezDepartment of Natural Resource Ecology and Management, Oklahoma State University, 008C, Ag Hall, Stillwater, USAScott R. Loss & Shishir PaudelUPR Systèmes de Pérennes, CIRAD, Univ Montpellier, TA B-34/02 Avenue Agropolis, Montpellier, FranceRaphael MarichalDepartment of Forest Ecology, Faculty of Forestry and Wood Technology, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech RepublicRadim MatulaTochigi Prefectural Museum, 2-2 Mutsumi-cho, Utsunomiya, JapanYukio MinamiyaThuenen-Institute of Biodiversity, Bundesallee 65, Braunschweig, GermanyJan Hendrik MoosThuenen-Institute of Organic Farming, Trenthorst 32, Westerau, GermanyJan Hendrik MoosPlant Biology, Ecology and Earth Science, INDEHESA, University of Extremadura, Plasencia, SpainGerardo MorenoConservación de la Biodiversidad, El Colegio de la Frontera Sur, Av. Rancho, poligono 2 A, Cd. Industrial de Lerma, Campeche, MexicoAlejandro Morón-RíosDepartment of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, 602-8580, JapanHasegawa MotohiroDepartment of Earth & Environmental Sciences, Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E Box, 2411, Leuven, BelgiumBart MuysResearch Institute for Nature and Forest, Gaverstraat 35, 9500, Geraardsbergen, BelgiumJohan NeirynckSchool of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Länggasse 85, Zollikofen, SwitzerlandLindsey NorgroveSoil Ecosystems, Natural Resources Institute Finland (Luke), Tietotie 4, Jokioinen, FinlandVisa NuutinenNatural Area Consultants, 1 West Hill School Road, Richford, NY, USAVictoria NuzzoDepartment of Zoology, PSMO College, Tirurangadi, Malappuram, Kerala, India, Malappuram, IndiaP. Mujeeb RahmanCSIRO Ocean and Atmosphere, CSIRO, New Illawarra Road, Lucas Heights, NSW, AustraliaJohan PansuUMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, Roscoff, FranceJohan PansuPhipps Conservatory and Botanical Gardens, Pittsburgh, PA, 15213, USAShishir PaudelUMR SAS, INRAE, Institut Agro Agrocampus Ouest, 35000, Rennes, FranceGuénola PérèsForest Ecology and Restoration Group, Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainLorenzo Pérez-Camacho & Salvador RebolloAdaptations du Vivant, CNRS UMR 7179, Muséum National d’Histoire Naturelle, 4 Avenue du Petit Château, Brunoy, FranceJean-François PongeDepartment of Ecology and Ecosystem Management, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, GermanyJörg PrietzelTembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, I. Armand, 37a, Nalchik, RussiaIrina B. RapoportCenter of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah, 21589, Saudi ArabiaMuhammad Imtiaz RashidGlobal Change Ecology and Evolution Research Group (GloCEE), Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainMiguel Á. RodríguezDepartment of Forest Resources, University of Minnesota, 1530, Cleveland Ave. N, St. Paul, USAAlexander M. RothFriends of the Mississippi River, 101 E 5th St. Suite 2000, St Paul, USAAlexander M. RothBiology, Biodiversity and Conservation Postgraduate Program, Federal University of Maranhão, Avenida dos Portugueses 1966, São Luis, BrazilGuillaume X. RousseauInstitute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, PolandAnna RozenCollege of Natural Resources, University of Wisconsin, Stevens Point, WI, 54481, USABryant ScharenbrochThe Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USABryant ScharenbrochDepartment Engineering for Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, Potsdam, GermanyMichael SchirrmannSchool of Agriculture and Food Science, University College Dublin, Agriculture and Food Science Centre, Dublin, IrelandOlaf SchmidtUCD Earth Institute, University College Dublin, Dublin, IrelandOlaf SchmidtLandscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, Braunschweig, GermanyBoris SchröderDepartment of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, AustriaJulia SeeberInstitute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, ItalyJulia Seeber & Michael SteinwandterLaboratory of Ecosystem Modelling, Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences, Institutskaya str., 2, Pushchino, RussiaMaxim P. ShashkovLaboratory of Computational Ecology, Institute of Mathematical Problems of Biology RAS – the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Vitkevicha str., 1, Pushchino, RussiaMaxim P. ShashkovDepartment of Zoology, Khalsa College Amritsar, Amritsar, Punjab, IndiaJaswinder SinghDepartment of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, USAKatalin SzlaveczDepartment of animal biology, edaphology and geology, Faculty of Sciences (Biology), University of La Laguna, La Laguna, Santa Cruz De Tenerife, SpainJosé Antonio TalaveraForest Science, Kochi University, Monobe Otsu 200, Nankoku, JapanJiro TsukamotoJuárez Autonomous University of Tabasco, Nanotechnology Engineering, Multidisciplinary Academic Division of Jalpa de Méndez, Carr. Estatal libre Villahermosa-Comalcalco, Km 27 S/N, C.P. 86205 Jalpa de Méndez, Tabasco, MexicoSheila Uribe-LópezUnit Food & Agriculture, WWF-Netherlands, Driebergseweg 10, Zeist, The NetherlandsAnne W. de ValençaDpto. Ciencias, IS-FOOD, Universidad Pública de Navarra, Edificio Olivos – Campus Arrosadia, Pamplona, SpainIñigo VirtoDepartment of Soil, Water and Climate, University of Minnesota, 1991 Upper Buford Circle, St Paul, USAAdrian A. WackettEarth Innovation Institute, 98 Battery Street Suite 250, San Francisco, USAMatthew W. WarrenUniversity of California Davis, 1 Shields Avenue, Davis, USAEmily R. WebsterNatural Resources & Environmental Management, University of Hawaii at Manoa, 1910 East West Rd, Honolulu, USANathaniel H. WehrNatural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, CanadaJoann K. WhalenThe Nature Conservancy, 4245 Fairfax Drive, Arlington, USAMichael B. WironenAnimal Ecology, Justus Liebig University, Heinrich-Buff-Ring 26, Giessen, GermanyVolkmar WoltersInstitute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, ChinaPengfei WuLaboratory of terrestrial ecosystems, Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, Institute of North Industrial Ecology Problems (INEP KSC RAS), Akademgorodok, 14a, Apatity, Murmansk, Province, RussiaIrina V. ZenkovaKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, ChinaWeixin ZhangFaculty of Biological and Environmental Sciences, Post Office Box 65, FI 00014, University of Helsinki, Helsinki, FinlandErin K. CameronThe sWorm workshops were organised by N.E., E.K.C. and H.R.P.P., with funding acquired by N.E., E.K.C. and M.P.T. Data collation and formatting was led by H.R.P.P., with assistance from J.K., M.J.I.B., G.B., K.B.G. and B.S. Harmonisation of earthworm species names was completed by G.B., M.J.I.B., M.L.C.B. and P.L. Advice and feedback on data collation protocols was provided by E.M.B., M.J.I.B., G.B., O.F., C.A.G., B.K.R., A.O., D.R., and D.H.W. Writing of the manuscript was led by H.R.P.P. All authors provided input and comments on the manuscript. The majority of authors provided data to the database. More

  • in

    Balancing carbon storage under elevated CO2

    RESEARCH SUMMARY

    21 May 2021

    Balancing carbon storage under elevated CO2

    A global synthesis of experiments reveals that increases in plant biomass under conditions of elevated CO2 mean that plants need to mine the soil for nutrients, which decreases soil’s ability to store carbon. In forests, elevated CO2 generally seems to greatly increase plant biomass, but not soil carbon. In grasslands, by contrast, it causes small changes in biomass and large increases in soil carbon.

    César Terrer

     ORCID: http://orcid.org/0000-0002-5479-3486

    0

    César Terrer

    Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA; and the Department of Earth System Science, Stanford University, Stanford, CA, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    This is a summary of Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature https://doi.org/10.1038/s41586-021-03306-8 (2021).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-01117-5

    References1.van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Science 344, 508–509 (2014PubMedArticle
    Google Scholar2.Jastrow, J. D. et al. Glob. Change Biol. 11, 2057–2064 (2005).Article
    Google Scholar3.Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).Article
    Google Scholar4.Todd-Brown, K. E. O. et al. Biogeoscience 11, 2341–2356 (2014).Article
    Google Scholar5.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Science 353, 72–74 (2016).PubMedArticle
    Google ScholarDownload references

    Competing Interests
    The author declares no competing interests.

    Latest on:

    Climate sciences

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Climate change

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Ecology

    Our radical changes to Earth’s greenery began long ago — with farms, not factories
    Research Highlight 20 MAY 21

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Jobs from Nature Careers

    All jobs

    Post-Doc – Numerical and microfabrication development of 4D metamaterials for mechanical, acoustic and photonics applications
    Université Bourgogne Franche-Comté (UBFC)
    BESANCON, France

    JOB POST

    Postdoctoral Position – Ecological Modeler
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Postdoctoral Fellow | Zandstra Stem Cell Bioengineering Lab
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Masterthesis / internship (m/f/x)
    Helmholtz Centre for Environmental Research (UFZ)
    Leipzig, Germany

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up

    Access through your institution

    Change institution

    Buy or subscribe

    Related Articles

    Effects of rising CO2 levels on carbon sequestration are coordinated above and below ground

    Subjects

    Climate sciences

    Climate change

    Ecology

    Sign up to Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Publisher Correction: Carbon tariffs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought

    1.Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784. https://doi.org/10.2307/1313099 (1997).Article 

    Google Scholar 
    2.Naiman, R. J., Latterell, J. J., Pettit, N. E. & Olden, J. D. Flow variability and the biophysical vitality of river systems. CR Geosci. 340, 629–643. https://doi.org/10.1016/j.crte.2008.01.002 (2008).Article 

    Google Scholar 
    3.Larson, E. R., Magoulick, D. D., Turner, C. & Laycock, K. H. Disturbance and species displacement: Different tolerances to stream drying and desiccation in a native and an invasive crayfish. Freshw. Biol. 54, 1899–1908. https://doi.org/10.1111/j.1365-2427.2009.02243.x (2009).Article 

    Google Scholar 
    4.Magoulick, D. D. & Kobza, R. M. The role of refugia for fishes during drought: A review and synthesis. Freshw. Biol. 48, 1186–1198 (2003).Article 

    Google Scholar 
    5.Poff, N. L. & Allan, J. D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76, 606–627 (1995).Article 

    Google Scholar 
    6.Bruckerhoff, L. A., Leasure, D. R. & Magoulick, D. D. Flow-ecology relationships are spatially structured and differ among flow regimes. J. Appl. Ecol. 56, 398–412. https://doi.org/10.1111/1365-2664.13297 (2019).Article 

    Google Scholar 
    7.Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170. https://doi.org/10.1111/j.1365-2427.2009.02204.x (2010).Article 

    Google Scholar 
    8.Warfe, D. M., Hardie, S. A., Uytendaal, A. R., Bobbi, C. J. & Barmuta, L. A. The ecology of rivers with contrasting flow regimes: Identifying indicators for setting environmental flows. Freshw. Biol. 59, 2064–2080. https://doi.org/10.1111/fwb.12407 (2014).Article 

    Google Scholar 
    9.Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x (2010).Article 

    Google Scholar 
    10.Belmar, O., Velasco, J. & Martinez-Capel, F. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean Rivers, Segura River Basin (Spain). Environ. Manag. 47, 992–1004. https://doi.org/10.1007/s00267-011-9661-0 (2011).ADS 
    Article 

    Google Scholar 
    11.Mcmanamay, R. A. & Frimpong, E. A. Hydrologic filtering of fish life history strategies across the United States: Implications for stream flow alteration. Ecol. Appl. 25, 243–263. https://doi.org/10.1890/14-0247.1 (2015).Article 
    PubMed 

    Google Scholar 
    12.Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North-American Fishes—Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).Article 

    Google Scholar 
    13.Olden, J. D. & Kennard, M. J. Intercontinental comparison of fish life history strategies along a gradient of hydrologic variability. Am. Fish. Soc. Symp. 73, 83–107 (2010).
    Google Scholar 
    14.Grossman, G. D., Ratajczak, R. E. Jr., Crawford, M. & Freeman, M. C. Assemblage organization in stream fishes: Effects of environmental variation and interspecific interactions. Ecol. Monogr. 68, 395–420 (1998).Article 

    Google Scholar 
    15.Fitzgerald, D. B., Winemiller, K. O., Perez, M. H. S. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31. https://doi.org/10.1002/ecy.1616 (2017).Article 
    PubMed 

    Google Scholar 
    16.Lynch, D. T., Leasure, D. R. & Magoulick, D. D. Flow alteration-ecology relationships in Ozark Highland streams: Consequences for fish, crayfish and macroinvertebrate assemblages. Sci. Total Environ. 672, 680–697. https://doi.org/10.1016/j.scitotenv.2019.03.383 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Lynch, D. T., Leasure, D. R. & Magoulick, D. D. The influence of drought on flow-ecology relationships in Ozark Highland streams. Freshw. Biol. 63, 946–968. https://doi.org/10.1111/fwb.13089 (2018).Article 

    Google Scholar 
    18.Matthews, W. J., Marsh-Matthews, E., Cashner, R. C. & Gelwick, F. Disturbance and trajectory of change in a stream fish community over four decades. Oecologia 173, 955–969. https://doi.org/10.1007/s00442-013-2646-3 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    19.Taylor, C. M. & Warren, M. L. Dynamics in species composition of stream fish assemblages: Environmental variability and nested subsets. Ecology 82, 2320–2330. https://doi.org/10.1890/0012-9658(2001)082[2320:Discos]2.0.Co;2 (2001).Article 

    Google Scholar 
    20.Matthews, W. J. & Marsh-Matthews, E. Dynamics of an upland stream fish community over 40 years: Trajectories and support for the loose equilibrium concept. Ecology 97, 706–719. https://doi.org/10.1890/14-2179.1 (2016).Article 
    PubMed 

    Google Scholar 
    21.Cook, R., Angermeier, R., Finn, D., Poff, N. & Krueger, K. Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia. Oecologia 140, 639–649 (2004).ADS 
    Article 

    Google Scholar 
    22.Leasure, D. R., Magoulick, D. D. & Longing, S. D. Natural flow regimes of the Ozark-Ouachita interior highlands region. River Res. Appl. 32, 18–35. https://doi.org/10.1002/rra.2838 (2016).Article 

    Google Scholar 
    23.Adamski, J., Petersen, J., Freiwald, D. & Davis, J. Environmental and Hydrologic Setting of the Ozark Plateaus Study Unit, Arkansas, Kansas, Missouri, and Oklahoma 69 (National Water-Quality Assessment Program, 1995).
    Google Scholar 
    24.Fenneman, N. M. Physiography of Eastern United States (McGraw-Hill, 1938).
    Google Scholar 
    25.Hunrichs, R. Identification and classification of perennial streams of Arkansas (U.S. Geological Survey Water Resources Investigations Report 83-4063, 1983).
    Google Scholar 
    26.Hedman, E., Skelton, J. & Freiwald, D. Flow characteristics for selected springs and streams in the Ozark subregion, Arkansas, Kansas, Missouri, and Oklahoma (U.S. Geological Survey Hydrologic Investigations Atlas HA-688, 1987).
    Google Scholar 
    27.Qiao, L., Zou, C. B., Gaitan, C. F., Hong, Y. & McPherson, R. A. Analysis of precipitation projections over the climate gradient of the Arkansas Red River Basin. J. Appl. Meteorol. Clim. 56, 1325–1336. https://doi.org/10.1175/Jamc-D-16-0201.1 (2017).ADS 
    Article 

    Google Scholar 
    28.Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Zippin, C. An evaluation of the removal method of estimating animal populations. Biometrics 12, 163–189. https://doi.org/10.2307/3001759 (1956).Article 

    Google Scholar 
    30.Van Deventer, J. S. & Platts, W. S. A Computer Software System for Entering, Managing, and Analyzing Fish Capture Data from Streams (U.S. Dept. of Agriculture, Forest Service, 1985).Book 

    Google Scholar 
    31.ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4) (Microcomputer power, 2002).32.Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, 2003).Book 

    Google Scholar 
    33.Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    34.R_Core_Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org/ (Vienna, Austria, 2016).35.Hallett, L. M. et al. CODYN: AnR package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151. https://doi.org/10.1111/2041-210x.12569 (2016).Article 

    Google Scholar 
    36.Robison, H. W. & Buchanan, T. M. Fishes of Arkansas (University of Arkansas Press, 1988).
    Google Scholar 
    37.Pflieger, W. L. The Fishes of Missouri (Missouri Department of Conservation, 1975).
    Google Scholar 
    38.Winemiller, K. O. Life-history strategies and the effectiveness of sexual selection. Oikos 63, 318–327. https://doi.org/10.2307/3545395 (1992).Article 

    Google Scholar 
    39.Hoeinghaus, D. J., Winemiller, K. O. & Birnbaum, J. S. Local and regional determinants of stream fish assemblage structure: Inferences based on taxonomic vs. functional groups. J. Biogeogr. 34, 324–338. https://doi.org/10.1111/j.1365-2699.2006.01587.x (2007).Article 

    Google Scholar 
    40.Whiterod, N. S., Hammer, M. P. & Vilizzi, L. Spatial and temporal variability in fish community structure in Mediterranean climate temporary streams. Fundam. Appl. Limnol. 187, 135–150. https://doi.org/10.1127/fal/2015/0771 (2015).Article 

    Google Scholar 
    41.Driver, L. J. & Hoeinghaus, D. J. Spatiotemporal dynamics of intermittent stream fish metacommunities in response to prolonged drought and reconnectivity. Mar. Freshw. Res. 67, 1667–1679. https://doi.org/10.1071/Mf15072 (2016).Article 

    Google Scholar 
    42.Labbe, T. R. & Fausch, K. D. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol. Appl. 10, 1774–1791 (2000).Article 

    Google Scholar 
    43.Colvin, R., Giannico, G. R., Li, J., Boyer, K. L. & Gerth, W. J. Fish use of intermittent watercourses draining agricultural lands in the upper Willamette River Valley, Oregon. Trans. Am. Fish. Soc. 138, 1302–1313. https://doi.org/10.1577/t08-150.1 (2009).Article 

    Google Scholar 
    44.Kerezsy, A. G., Keith, M., Maria, F., & Skelton, P. in Intermittent Rivers and Ephemeral Streams: Ecology and Management (eds. Thibault, B. D., & Nuria, B. A.) (Academic Press, 2017).45.Franssen, N. R., Tobler, M. & Gido, K. B. Annual variation of community biomass is lower in more diverse stream fish communities. Oikos 120, 582–590. https://doi.org/10.1111/j.1600-0706.2010.18810.x (2011).Article 

    Google Scholar 
    46.Falke, J. A. et al. The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology 4, 682–697. https://doi.org/10.1002/eco.158 (2011).Article 

    Google Scholar 
    47.Perkin, J. S. et al. Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proc. Natl. Acad. Sci. USA 114, 7373–7378. https://doi.org/10.1073/pnas.1618936114 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Lake, P. S. Ecological effects of perturbation by drought in flowing waters. Freshw. Biol. 48, 1161–1172. https://doi.org/10.1046/j.1365-2427.2003.01086.x (2003).Article 

    Google Scholar 
    49.Ludlam, J. P. & Magoulick, D. D. Spatial and temporal variation in the effects of fish and crayfish on benthic communities during stream drying. J. N. Am. Benthol. Soc. 28, 371–382. https://doi.org/10.1899/08-149.1 (2009).Article 

    Google Scholar 
    50.McManamay, R. A., Bevelhimer, M. S. & Frimpong, E. A. Associations among hydrologic classifications and fish traits to support environmental flow standards. Ecohydrology 8, 460–479. https://doi.org/10.1002/eco.1517 (2015).Article 

    Google Scholar 
    51.Hodges, S. W. & Magoulick, D. D. Refuge habitats for fishes during seasonal drying in an intermittent stream: Movement, survival and abundance of three minnow species. Aquat. Sci. 73, 513–522. https://doi.org/10.1007/s00027-011-0206-7 (2011).Article 

    Google Scholar 
    52.Magalhaes, M., Beja, P., Schlosser, I. & Collares-Pereira, M. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshw. Biol. 52, 1494–1510 (2007).Article 

    Google Scholar 
    53.Matthews, W. & Marsh-Matthews, E. Effects of drought on fish across axes of space, time and ecological complexity. Freshw. Biol. 48, 1232–1253 (2003).
    Article 

    Google Scholar 
    54.Driver, L. J. & Hoeinghaus, D. J. Fish metacommunity responses to experimental drought are determined by habitat heterogeneity and connectivity. Freshw. Biol. 61, 533–548. https://doi.org/10.1111/fwb.12726 (2016).Article 

    Google Scholar  More