Observed increasing water constraint on vegetation growth over the last three decades
1.Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 6, 1023–1027 (2016).CAS
Article
ADS
Google Scholar
2.Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529 (2005).CAS
PubMed
Article
ADS
Google Scholar
3.Porporato, A., D’odorico, P., Laio, F., Ridolfi, L. & Rodriguez-Iturbe, I. Ecohydrology of water-controlled ecosystems. Adv. Water Resour. 25, 1335–1348 (2002).Article
ADS
Google Scholar
4.Huang, K. et al. Enhanced peak growth of global vegetation and its key mechanisms. Nat. Ecol. Evolution 2, 1897 (2018).Article
Google Scholar
5.Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166 (2016).Article
ADS
Google Scholar
6.Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
7.Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951 (2010).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
8.Sherwood, S. & Fu, Q. A drier future? Science 343, 737–739 (2014).CAS
PubMed
Article
ADS
Google Scholar
9.Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
10.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. change 6, 791–795 (2016).CAS
Article
ADS
Google Scholar
11.Fensholt, R. et al. Greenness in semi-arid areas across the globe 1981–2007—an Earth Observing Satellite based analysis of trends and drivers. Remote Sens. Environ. 121, 144–158 (2012).Article
ADS
Google Scholar
12.Fernández-Martínez, M. et al. Global trends in carbon sinks and their relationships with CO2 and temperature. Nat. Clim. change 9, 73 (2019).Article
ADS
CAS
Google Scholar
13.Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv. 5, eaaw0667 (2019).PubMed
PubMed Central
Article
ADS
Google Scholar
14.Piao, S. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
15.Wild, M. et al. From dimming to brightening: decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
16.Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
17.Forzieri, G., Alkama, R., Miralles, D. G. & Cescatti, A. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth. Science 356, 1180–1184 (2017).CAS
PubMed
Article
PubMed Central
Google Scholar
18.Vicente-Serrano, S. M. et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl Acad. Sci. USA 110, 52–57 (2013).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
19.Anderegg, W. R. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538 (2018).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
20.Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324 (2013).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
21.Jiao, W., Wang, L. & McCabe, M. F. Multi-sensor remote sensing for drought characterization: current status, opportunities and a roadmap for the future. Remote Sens. Environ. 256, 112313 (2021).Article
ADS
Google Scholar
22.Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the US Midwest. Science 344, 516–519 (2014).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
23.Saleska, S. R., Didan, K., Huete, A. R. & Da Rocha, H. R. Amazon forests green-up during 2005 drought. Science 318, 612–612 (2007).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
24.Chen, T., Werf, G., Jeu, R., Wang, G. & Dolman, A. A global analysis of the impact of drought on net primary productivity. Hydrol. Earth Syst. Sci. 17, 3885 (2013).Article
ADS
Google Scholar
25.Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
26.Kreuzwieser, J. & Rennenberg, H. Molecular and physiological responses of trees to waterlogging stress. Plant, Cell Environ. 37, 2245–2259 (2014).CAS
Google Scholar
27.Buermann, W. et al. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature 562, 110 (2018).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
28.Zhao, M. & Running, S. W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329, 940–943 (2010).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
29.Anderegg, W. R. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
30.Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2012).31.Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52 (2013).Article
ADS
Google Scholar
32.Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17 (2013).Article
ADS
Google Scholar
33.Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).PubMed
PubMed Central
Article
ADS
Google Scholar
34.Milly, P. C. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Change 6, 946 (2016).Article
ADS
Google Scholar
35.Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Change 9, 948–953 (2019).CAS
Article
ADS
Google Scholar
36.Konapala, G., Mishra, A. K., Wada, Y. & Mann, M. E. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. 11, 1–10 (2020).Article
CAS
Google Scholar
37.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evolution 1, 1438–1445 (2017).Article
Google Scholar
38.Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).CAS
PubMed
Article
ADS
Google Scholar
39.Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J. Clim. 23, 1696–1718 (2010).Article
ADS
Google Scholar
40.Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
41.Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202 (2017).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
42.Peters, W. et al. Increased water-use efficiency and reduced CO2 uptake by plants during droughts at a continental scale. Nat. Geosci. 11, 744 (2018).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
43.Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
44.Minasny, B. et al. Digital mapping of peatlands–A critical review. Earth-Sci. Rev. 196, 102870 (2019).CAS
Article
Google Scholar
45.Cronk, J. K. & Fennessy, M. S. Wetland Plants: Biology and Ecology. (CRC press, 2016).46.Zohaib, M. & Choi, M. Satellite-based global-scale irrigation water use and its contemporary trends. Sci. Total Environ. 714, 136719 (2020).47.Smith, W. K. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO2 fertilization. Nat. Clim. Change 6, 306 (2016).Article
ADS
CAS
Google Scholar
48.Abel, C. et al. The human–environment nexus and vegetation–rainfall sensitivity in tropical drylands. Nat. Sustain. 4, 25–32 (2020).49.Lu, X., Wang, L. & McCabe, M. F. Elevated CO2 as a driver of global dryland greening. Sci. Rep. 6, 20716 (2016).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
50.Oliveira, P. J., Davin, E. L., Levis, S. & Seneviratne, S. I. Vegetation‐mediated impacts of trends in global radiation on land hydrology: a global sensitivity study. Glob. Change Biol. 17, 3453–3467 (2011).Article
ADS
Google Scholar
51.Grömping, U. Relative importance for linear regression in R: the package relaimpo. J. Stat. Softw. 17, 1–27 (2006).Article
Google Scholar
52.Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (VODCA). Earth Syst. Sci. Data 12, 177–196 (2020).Article
ADS
Google Scholar
53.Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).Article
ADS
Google Scholar
54.Palmer, W. C. Meteorological Drought. Vol. 30 (Citeseer, 1965).55.Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5, 170191 (2018).PubMed
PubMed Central
Article
Google Scholar
56.Trabucco, A. & Zomer, R. J. Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. CGIAR Consortium for Spatial Information (2009).57.Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosyst. Environ. 126, 67–80 (2008).Article
Google Scholar
58.Gruber, A., Scanlon, T., Schalie, R. V. D., Wagner, W. & Dorigo, W. Evolution of the ESA CCI soil moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 11, 717–739 (2019).Article
ADS
Google Scholar
59.Dorigo, W. et al. ESA CCI Soil moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 203, 185–215 (2017).Article
ADS
Google Scholar
60.Wagner, W. et al. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences (ISPRS Annals) 7, 315–321 (2012).61.Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high‐resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 34, 623–642 (2014).Article
Google Scholar
62.Sheffield, J., Goteti, G. & Wood, E. F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 19, 3088–3111 (2006).Article
ADS
Google Scholar
63.Tian, F. et al. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 177, 265–276 (2016).Article
ADS
Google Scholar
64.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295 (2013).CAS
PubMed
PubMed Central
Article
ADS
Google Scholar
65.Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).Article
ADS
Google Scholar
66.Goetz, S. J., Bunn, A. G., Fiske, G. J. & Houghton, R. A. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance. Proc. Natl Acad. Sci. USA 102, 13521–13525 (2005).CAS
PubMed
Article
ADS
PubMed Central
Google Scholar
67.Wu, D. et al. Time‐lag effects of global vegetation responses to climate change. Glob. Change Biol. 21, 3520–3531 (2015).Article
ADS
Google Scholar
68.Tei, S. & Sugimoto, A. Time lag and negative responses of forest greenness and tree growth to warming over circumboreal forests. Glob. Change Biol. 24, 4225–4237 (2018).Article
ADS
Google Scholar
69.Wen, Y. et al. Cumulative effects of climatic factors on terrestrial vegetation growth. J. Geophys. Res.: Biogeosciences 124, 789–806 (2019).Article
ADS
Google Scholar
70.McKee, T. B., Doesken, N. J. & Kleist, J. in Proceedings of the 8th Conference on Applied Climatology. 179-183 (American Meteorological Society Boston, MA).71.Jiao, W., Tian, C., Chang, Q., Novick, K. A. & Wang, L. A new multi-sensor integrated index for drought monitoring. Agric. For. Meteorol. 268, 74–85 (2019).Article
ADS
Google Scholar More
