Chill coma onset and recovery fail to reveal true variation in thermal performance among populations of Drosophila melanogaster
1.Addo-Bediako, A., Chown, S. L. & Gaston, K. J. Thermal tolerance, climatic variability and latitude. Proc. R. Soc. B. 267, 739–745 (2000).CAS
PubMed
Article
Google Scholar
2.Andersen, J. L. et al. How to assess Drosophila cold tolerance: chill coma temperature and lower lethal temperature are the best predictors of cold distribution limits. Funct. Ecol. 29, 55–65 (2015).Article
Google Scholar
3.Kimura, M. T. Cold and heat tolerance of drosophilid flies with reference to their latitudinal distributions. Oecologia 140, 442–449 (2004).ADS
PubMed
Article
PubMed Central
Google Scholar
4.Gaston, K. J. & Chown, S. L. Elevation and climatic tolerance: A test using dung beetles. Oikos 86, 584–590 (1999).Article
Google Scholar
5.MacMillan, H. A. Dissecting cause from consequence: a systematic approach to thermal limits. J. Exp. Biol. 222, jeb191593 (2019).6.Overgaard, J. & MacMillan, H. A. The integrative physiology of insect chill tolerance. Annu. Rev. Physiol. 79, 187–208 (2017).CAS
PubMed
Article
Google Scholar
7.Armstrong, G. A. B., Rodríguez, E. C. & Meldrum Robertson, R. Cold hardening modulates K+ homeostasis in the brain of Drosophila melanogaster during chill coma. J. Insect Physiol. 58, 1511–1516 (2012).8.Rodgers, C. I., Armstrong, G. A. B. & Robertson, R. M. Coma in response to environmental stress in the locust: a model for cortical spreading depression. J. Insect Physiol. 56, 980–990 (2010).CAS
PubMed
Article
PubMed Central
Google Scholar
9.Andersen, M. K. & Overgaard, J. The central nervous system and muscular system play different roles for chill coma onset and recovery in insects. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 233, 10–16 (2019).10.Koštál, V., Vambera, J. & Bastl, J. On the nature of pre-freeze mortality in insects: Water balance, ion homeostasis and energy charge in the adults of Pyrrhocoris apterus. J. Exp. Biol. 207, 1509–1521 (2004).PubMed
Article
Google Scholar
11.Zachariassen, K. E., Kristiansen, E. & Pedersen, S. A. Inorganic ions in cold-hardiness. Cryobiology 48, 126–133 (2004).CAS
PubMed
Article
Google Scholar
12.MacMillan, H. A. & Sinclair, B. J. The role of the gut in insect chilling injury: Cold-induced disruption of osmoregulation in the fall field cricket, Gryllus pennsylvanicus. J. Exp. Biol. 214, 726–734 (2011).CAS
PubMed
Article
Google Scholar
13.MacMillan, H. A., Williams, C. M., Staples, J. F. & Sinclair, B. J. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus. PNAS 109, 20750–20755 (2012).ADS
CAS
PubMed
Article
Google Scholar
14.MacMillan, H. A., Findsen, A., Pedersen, T. H. & Overgaard, J. Cold-induced depolarization of insect muscle: Differing roles of extracellular K+ during acute and chronic chilling. J. Exp. Biol. 217, 2930–2938 (2014).PubMed
PubMed Central
Google Scholar
15.Bayley, J. S., Sørensen, J. G., Moos, M., Koštál, V. & Overgaard, J. Cold-acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria. Am. J. Physiol. Regul. Integr. Comp. Physiol. 319, R439–R447 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
16.Bayley, J. S. et al. Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect. PNAS 115, E9737–E9744 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
17.Carrington, J., Andersen, M. K., Brzezinski, K. & MacMillan, H. A. Hyperkalemia, not apoptosis, accurately predicts chilling injury in individual locusts. Proc. R. Soc. B. (in press).18.Koštál, V., Yanagimoto, M. & Bastl, J. Chilling-injury and disturbance of ion homeostasis in the coxal muscle of the tropical cockroach (Nauphoeta cinerea). Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 143, 171–179 (2006).19.MacMillan, H. A., Baatrup, E. & Overgaard, J. Concurrent effects of cold and hyperkalaemia cause insect chilling injury. Proc. R. Soc. B. 282 (2015).20.Garcia, M. J., Littler, A. S., Sriram, A. & Teets, N. M. Distinct cold tolerance traits independently vary across genotypes in Drosophila melanogaster. Evolution 74, 1437–1450 (2020).CAS
PubMed
Article
PubMed Central
Google Scholar
21.Gerken, A. R., Mackay, T. F. C. & Morgan, T. J. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection. J. Therm. Biol. 59, 77–85 (2016).PubMed
Article
PubMed Central
Google Scholar
22.Colinet, H. & Hoffmann, A. A. Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct. Ecol. 26, 84–93 (2012).Article
Google Scholar
23.MacMillan, H. A., Andersen, J. L., Loeschcke, V. & Overgaard, J. Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308, R823–R831 (2015).CAS
PubMed
Article
PubMed Central
Google Scholar
24.Ransberry, V. E., MacMillan, H. A. & Sinclair, B. J. The relationship between chill-coma onset and recovery at the extremes of the thermal window of Drosophila melanogaster. Physiol. Biochem. Zool. 84, 553–559 (2011).PubMed
Article
PubMed Central
Google Scholar
25.Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B. 278, 1823–1830 (2011).PubMed
Article
PubMed Central
Google Scholar
26.Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).Article
Google Scholar
27.Hoffmann, A. A., Shirriffs, J. & Scott, M. Relative importance of plastic vs genetic factors in adaptive differentiation: Geographical variation for stress resistance in Drosophila melanogaster from eastern Australia. Funct. Ecol. 19, 222–227 (2005).Article
Google Scholar
28.Overgaard, J., Hoffmann, A. A. & Kristensen, T. N. Assessing population and environmental effects on thermal resistance in Drosophila melanogaster using ecologically relevant assays. J. Therm. Biol. 36, 409–416 (2011).Article
Google Scholar
29.Ayrinhac, A. et al. Cold adaptation in geographical populations of Drosophila melanogaster: Phenotypic plasticity is more important than genetic variability. Funct. Ecol. 18, 700–706 (2004).Article
Google Scholar
30.Gibert, P. & Huey, R. B. Chill-coma temperature in Drosophila: Effects of developmental temperature, latitude, and phylogeny. Physiol. Biochem. Zool. 74, 429–434 (2001).CAS
PubMed
Article
Google Scholar
31.Hori, Y. & Kimura, M. T. Relationship between cold stupor and cold tolerance in Drosophila (Diptera: Drosophilidae). Environ. Entomol. 27, 1297–1302 (1998).Article
Google Scholar
32.Teets, N. M. & Hahn, D. A. Genetic variation in the shape of cold-survival curves in a single fly population suggests potential for selection from climate variability. J. Evol. Biol. 31, 543–555 (2018).CAS
PubMed
Article
Google Scholar
33.Kellermann, V. et al. Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of desiccation and cold resistance across 95 Drosophila species. Evolution 66, 3377–3389 (2012).PubMed
Article
Google Scholar
34.Pool, J. E., Braun, D. T. & Lack, J. B. Parallel evolution of cold tolerance within Drosophila melanogaster. Mol. Biol. Evol. 34, 349–360 (2017).CAS
PubMed
Google Scholar
35.Mansourian, S. et al. Wild African Drosophila melanogaster are seasonal specialists on marula fruit. Curr. Biol. 28, 3960-3968.e3 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
36.Pool, J. E. et al. Population genomics of Sub-Saharan Drosophila melanogaster: African diversity and non-African admixture. PLoS Genetics 8, e1003080 (2012).37.Baudry, E., Viginier, B. & Veuille, M. Non-African populations of Drosophila melanogaster have a unique origin. Mol. Biol. Evol. 21, 1482–1491 (2004).CAS
PubMed
Article
Google Scholar
38.MacMillan, H. A., Andersen, J. L., Davies, S. A. & Overgaard, J. The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance. Sci. Rep. 5, 18607 (2015).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
39.Chen, C.-P. & Walker, V. K. Cold-shock and chilling tolerance in Drosophila. J. Insect Physiol. 40, 661–669 (1994).Article
Google Scholar
40.Hoffmann, A. A. & Watson, M. Geographical variation in the acclimation responses of Drosophila to temperature extremes. Am. Nat. 142, S93–S113 (1993).PubMed
Article
PubMed Central
Google Scholar
41.Ørsted, M., Hoffmann, A. A., Rohde, P. D., Sørensen, P. & Kristensen, T. N. Strong impact of thermal environment on the quantitative genetic basis of a key stress tolerance trait. Heredity 122, 315–325 (2019).PubMed
Article
PubMed Central
Google Scholar
42.Gerken, A. R., Eller, O. C., Hahn, D. A. & Morgan, T. J. Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. PNAS 112, 4399–4404 (2015).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
43.Nyamukondiwa, C., Terblanche, J. S., Marshall, K. E. & Sinclair, B. J. Basal cold but not heat tolerance constrains plasticity among Drosophila species (Diptera: Drosophilidae). J. Evol. Biol. 24, 1927–1938 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
44.van Heerwaarden, B. & Kellermann, V. Does plasticity trade off with basal heat tolerance?. Trends Ecol. Evol. 35, 874–885 (2020).PubMed
Article
PubMed Central
Google Scholar
45.Gilchrist, G. W., Huey, R. B. & Partridge, L. Thermal sensitivity of Drosophila melanogaster: evolutionary responses of adults and eggs to laboratory natural selection at different temperatures. Physiol. Zool. 70, 403–414 (1997).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Maclean, H. J., Kristensen, T. N., Sørensen, J. G. & Overgaard, J. Laboratory maintenance does not alter ecological and physiological patterns among species: A Drosophila case study. J. Evol. Biol. 31, 530–542 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
47.Henry, Y., Renault, D. & Colinet, H. Hormesis-like effect of mild larval crowding on thermotolerance in Drosophila flies. J. Exp. Biol. 221, jeb169342 (2018).48.Nilson, T. L., Sinclair, B. J. & Roberts, S. P. The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster. J. Insect Physiol. 52, 1027–1033 (2006).CAS
PubMed
PubMed Central
Article
Google Scholar
49.Hazell, S. P. & Bale, J. S. Low temperature thresholds: are chill coma and CTmin synonymous?. J. Insect Physiol. 57, 1085–1089 (2011).CAS
PubMed
Article
Google Scholar
50.Bertram, G. C. L. The low temperature limit of activity of arctic insects. J. Anim. Ecol. 4, 35–42 (1935).Article
Google Scholar
51.Sinclair, B. J., Coello Alvarado, L. E. & Ferguson, L. V. An invitation to measure insect cold tolerance: Methods, approaches, and workflow. J. Therm. Biol. 53, 180–197 (2015).52.MacMillan, H. A. et al. Anti-diuretic activity of a CAPA neuropeptide can compromise Drosophila chill tolerance. J. Exp. Biol. 221, jeb185884 (2018).53.R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020). More
