More stories

  • in

    Balancing carbon storage under elevated CO2

    RESEARCH SUMMARY

    21 May 2021

    Balancing carbon storage under elevated CO2

    A global synthesis of experiments reveals that increases in plant biomass under conditions of elevated CO2 mean that plants need to mine the soil for nutrients, which decreases soil’s ability to store carbon. In forests, elevated CO2 generally seems to greatly increase plant biomass, but not soil carbon. In grasslands, by contrast, it causes small changes in biomass and large increases in soil carbon.

    César Terrer

     ORCID: http://orcid.org/0000-0002-5479-3486

    0

    César Terrer

    Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA; and the Department of Earth System Science, Stanford University, Stanford, CA, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    This is a summary of Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature https://doi.org/10.1038/s41586-021-03306-8 (2021).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-01117-5

    References1.van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Science 344, 508–509 (2014PubMedArticle
    Google Scholar2.Jastrow, J. D. et al. Glob. Change Biol. 11, 2057–2064 (2005).Article
    Google Scholar3.Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).Article
    Google Scholar4.Todd-Brown, K. E. O. et al. Biogeoscience 11, 2341–2356 (2014).Article
    Google Scholar5.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Science 353, 72–74 (2016).PubMedArticle
    Google ScholarDownload references

    Competing Interests
    The author declares no competing interests.

    Latest on:

    Climate sciences

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Climate change

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Ecology

    Our radical changes to Earth’s greenery began long ago — with farms, not factories
    Research Highlight 20 MAY 21

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Jobs from Nature Careers

    All jobs

    Post-Doc – Numerical and microfabrication development of 4D metamaterials for mechanical, acoustic and photonics applications
    Université Bourgogne Franche-Comté (UBFC)
    BESANCON, France

    JOB POST

    Postdoctoral Position – Ecological Modeler
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Postdoctoral Fellow | Zandstra Stem Cell Bioengineering Lab
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Masterthesis / internship (m/f/x)
    Helmholtz Centre for Environmental Research (UFZ)
    Leipzig, Germany

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up

    Access through your institution

    Change institution

    Buy or subscribe

    Related Articles

    Effects of rising CO2 levels on carbon sequestration are coordinated above and below ground

    Subjects

    Climate sciences

    Climate change

    Ecology

    Sign up to Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Publisher Correction: Carbon tariffs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Hydrologic variation influences stream fish assemblage dynamics through flow regime and drought

    1.Poff, N. L. et al. The natural flow regime. Bioscience 47, 769–784. https://doi.org/10.2307/1313099 (1997).Article 

    Google Scholar 
    2.Naiman, R. J., Latterell, J. J., Pettit, N. E. & Olden, J. D. Flow variability and the biophysical vitality of river systems. CR Geosci. 340, 629–643. https://doi.org/10.1016/j.crte.2008.01.002 (2008).Article 

    Google Scholar 
    3.Larson, E. R., Magoulick, D. D., Turner, C. & Laycock, K. H. Disturbance and species displacement: Different tolerances to stream drying and desiccation in a native and an invasive crayfish. Freshw. Biol. 54, 1899–1908. https://doi.org/10.1111/j.1365-2427.2009.02243.x (2009).Article 

    Google Scholar 
    4.Magoulick, D. D. & Kobza, R. M. The role of refugia for fishes during drought: A review and synthesis. Freshw. Biol. 48, 1186–1198 (2003).Article 

    Google Scholar 
    5.Poff, N. L. & Allan, J. D. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76, 606–627 (1995).Article 

    Google Scholar 
    6.Bruckerhoff, L. A., Leasure, D. R. & Magoulick, D. D. Flow-ecology relationships are spatially structured and differ among flow regimes. J. Appl. Ecol. 56, 398–412. https://doi.org/10.1111/1365-2664.13297 (2019).Article 

    Google Scholar 
    7.Poff, N. L. et al. The ecological limits of hydrologic alteration (ELOHA): A new framework for developing regional environmental flow standards. Freshw. Biol. 55, 147–170. https://doi.org/10.1111/j.1365-2427.2009.02204.x (2010).Article 

    Google Scholar 
    8.Warfe, D. M., Hardie, S. A., Uytendaal, A. R., Bobbi, C. J. & Barmuta, L. A. The ecology of rivers with contrasting flow regimes: Identifying indicators for setting environmental flows. Freshw. Biol. 59, 2064–2080. https://doi.org/10.1111/fwb.12407 (2014).Article 

    Google Scholar 
    9.Kennard, M. J. et al. Classification of natural flow regimes in Australia to support environmental flow management. Freshw. Biol. 55, 171–193. https://doi.org/10.1111/j.1365-2427.2009.02307.x (2010).Article 

    Google Scholar 
    10.Belmar, O., Velasco, J. & Martinez-Capel, F. Hydrological classification of natural flow regimes to support environmental flow assessments in intensively regulated Mediterranean Rivers, Segura River Basin (Spain). Environ. Manag. 47, 992–1004. https://doi.org/10.1007/s00267-011-9661-0 (2011).ADS 
    Article 

    Google Scholar 
    11.Mcmanamay, R. A. & Frimpong, E. A. Hydrologic filtering of fish life history strategies across the United States: Implications for stream flow alteration. Ecol. Appl. 25, 243–263. https://doi.org/10.1890/14-0247.1 (2015).Article 
    PubMed 

    Google Scholar 
    12.Winemiller, K. O. & Rose, K. A. Patterns of life-history diversification in North-American Fishes—Implications for population regulation. Can. J. Fish. Aquat. Sci. 49, 2196–2218 (1992).Article 

    Google Scholar 
    13.Olden, J. D. & Kennard, M. J. Intercontinental comparison of fish life history strategies along a gradient of hydrologic variability. Am. Fish. Soc. Symp. 73, 83–107 (2010).
    Google Scholar 
    14.Grossman, G. D., Ratajczak, R. E. Jr., Crawford, M. & Freeman, M. C. Assemblage organization in stream fishes: Effects of environmental variation and interspecific interactions. Ecol. Monogr. 68, 395–420 (1998).Article 

    Google Scholar 
    15.Fitzgerald, D. B., Winemiller, K. O., Perez, M. H. S. & Sousa, L. M. Seasonal changes in the assembly mechanisms structuring tropical fish communities. Ecology 98, 21–31. https://doi.org/10.1002/ecy.1616 (2017).Article 
    PubMed 

    Google Scholar 
    16.Lynch, D. T., Leasure, D. R. & Magoulick, D. D. Flow alteration-ecology relationships in Ozark Highland streams: Consequences for fish, crayfish and macroinvertebrate assemblages. Sci. Total Environ. 672, 680–697. https://doi.org/10.1016/j.scitotenv.2019.03.383 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    17.Lynch, D. T., Leasure, D. R. & Magoulick, D. D. The influence of drought on flow-ecology relationships in Ozark Highland streams. Freshw. Biol. 63, 946–968. https://doi.org/10.1111/fwb.13089 (2018).Article 

    Google Scholar 
    18.Matthews, W. J., Marsh-Matthews, E., Cashner, R. C. & Gelwick, F. Disturbance and trajectory of change in a stream fish community over four decades. Oecologia 173, 955–969. https://doi.org/10.1007/s00442-013-2646-3 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    19.Taylor, C. M. & Warren, M. L. Dynamics in species composition of stream fish assemblages: Environmental variability and nested subsets. Ecology 82, 2320–2330. https://doi.org/10.1890/0012-9658(2001)082[2320:Discos]2.0.Co;2 (2001).Article 

    Google Scholar 
    20.Matthews, W. J. & Marsh-Matthews, E. Dynamics of an upland stream fish community over 40 years: Trajectories and support for the loose equilibrium concept. Ecology 97, 706–719. https://doi.org/10.1890/14-2179.1 (2016).Article 
    PubMed 

    Google Scholar 
    21.Cook, R., Angermeier, R., Finn, D., Poff, N. & Krueger, K. Geographic variation in patterns of nestedness among local stream fish assemblages in Virginia. Oecologia 140, 639–649 (2004).ADS 
    Article 

    Google Scholar 
    22.Leasure, D. R., Magoulick, D. D. & Longing, S. D. Natural flow regimes of the Ozark-Ouachita interior highlands region. River Res. Appl. 32, 18–35. https://doi.org/10.1002/rra.2838 (2016).Article 

    Google Scholar 
    23.Adamski, J., Petersen, J., Freiwald, D. & Davis, J. Environmental and Hydrologic Setting of the Ozark Plateaus Study Unit, Arkansas, Kansas, Missouri, and Oklahoma 69 (National Water-Quality Assessment Program, 1995).
    Google Scholar 
    24.Fenneman, N. M. Physiography of Eastern United States (McGraw-Hill, 1938).
    Google Scholar 
    25.Hunrichs, R. Identification and classification of perennial streams of Arkansas (U.S. Geological Survey Water Resources Investigations Report 83-4063, 1983).
    Google Scholar 
    26.Hedman, E., Skelton, J. & Freiwald, D. Flow characteristics for selected springs and streams in the Ozark subregion, Arkansas, Kansas, Missouri, and Oklahoma (U.S. Geological Survey Hydrologic Investigations Atlas HA-688, 1987).
    Google Scholar 
    27.Qiao, L., Zou, C. B., Gaitan, C. F., Hong, Y. & McPherson, R. A. Analysis of precipitation projections over the climate gradient of the Arkansas Red River Basin. J. Appl. Meteorol. Clim. 56, 1325–1336. https://doi.org/10.1175/Jamc-D-16-0201.1 (2017).ADS 
    Article 

    Google Scholar 
    28.Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M. & Altman, D. G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412. https://doi.org/10.1371/journal.pbio.1000412 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Zippin, C. An evaluation of the removal method of estimating animal populations. Biometrics 12, 163–189. https://doi.org/10.2307/3001759 (1956).Article 

    Google Scholar 
    30.Van Deventer, J. S. & Platts, W. S. A Computer Software System for Entering, Managing, and Analyzing Fish Capture Data from Streams (U.S. Dept. of Agriculture, Forest Service, 1985).Book 

    Google Scholar 
    31.ter Braak, C. J. F. & Smilauer, P. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4) (Microcomputer power, 2002).32.Lepš, J. & Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO (Cambridge University Press, 2003).Book 

    Google Scholar 
    33.Burnham, K. & Anderson, D. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    34.R_Core_Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. http://www.R-project.org/ (Vienna, Austria, 2016).35.Hallett, L. M. et al. CODYN: AnR package of community dynamics metrics. Methods Ecol. Evol. 7, 1146–1151. https://doi.org/10.1111/2041-210x.12569 (2016).Article 

    Google Scholar 
    36.Robison, H. W. & Buchanan, T. M. Fishes of Arkansas (University of Arkansas Press, 1988).
    Google Scholar 
    37.Pflieger, W. L. The Fishes of Missouri (Missouri Department of Conservation, 1975).
    Google Scholar 
    38.Winemiller, K. O. Life-history strategies and the effectiveness of sexual selection. Oikos 63, 318–327. https://doi.org/10.2307/3545395 (1992).Article 

    Google Scholar 
    39.Hoeinghaus, D. J., Winemiller, K. O. & Birnbaum, J. S. Local and regional determinants of stream fish assemblage structure: Inferences based on taxonomic vs. functional groups. J. Biogeogr. 34, 324–338. https://doi.org/10.1111/j.1365-2699.2006.01587.x (2007).Article 

    Google Scholar 
    40.Whiterod, N. S., Hammer, M. P. & Vilizzi, L. Spatial and temporal variability in fish community structure in Mediterranean climate temporary streams. Fundam. Appl. Limnol. 187, 135–150. https://doi.org/10.1127/fal/2015/0771 (2015).Article 

    Google Scholar 
    41.Driver, L. J. & Hoeinghaus, D. J. Spatiotemporal dynamics of intermittent stream fish metacommunities in response to prolonged drought and reconnectivity. Mar. Freshw. Res. 67, 1667–1679. https://doi.org/10.1071/Mf15072 (2016).Article 

    Google Scholar 
    42.Labbe, T. R. & Fausch, K. D. Dynamics of intermittent stream habitat regulate persistence of a threatened fish at multiple scales. Ecol. Appl. 10, 1774–1791 (2000).Article 

    Google Scholar 
    43.Colvin, R., Giannico, G. R., Li, J., Boyer, K. L. & Gerth, W. J. Fish use of intermittent watercourses draining agricultural lands in the upper Willamette River Valley, Oregon. Trans. Am. Fish. Soc. 138, 1302–1313. https://doi.org/10.1577/t08-150.1 (2009).Article 

    Google Scholar 
    44.Kerezsy, A. G., Keith, M., Maria, F., & Skelton, P. in Intermittent Rivers and Ephemeral Streams: Ecology and Management (eds. Thibault, B. D., & Nuria, B. A.) (Academic Press, 2017).45.Franssen, N. R., Tobler, M. & Gido, K. B. Annual variation of community biomass is lower in more diverse stream fish communities. Oikos 120, 582–590. https://doi.org/10.1111/j.1600-0706.2010.18810.x (2011).Article 

    Google Scholar 
    46.Falke, J. A. et al. The role of groundwater pumping and drought in shaping ecological futures for stream fishes in a dryland river basin of the western Great Plains, USA. Ecohydrology 4, 682–697. https://doi.org/10.1002/eco.158 (2011).Article 

    Google Scholar 
    47.Perkin, J. S. et al. Groundwater declines are linked to changes in Great Plains stream fish assemblages. Proc. Natl. Acad. Sci. USA 114, 7373–7378. https://doi.org/10.1073/pnas.1618936114 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    48.Lake, P. S. Ecological effects of perturbation by drought in flowing waters. Freshw. Biol. 48, 1161–1172. https://doi.org/10.1046/j.1365-2427.2003.01086.x (2003).Article 

    Google Scholar 
    49.Ludlam, J. P. & Magoulick, D. D. Spatial and temporal variation in the effects of fish and crayfish on benthic communities during stream drying. J. N. Am. Benthol. Soc. 28, 371–382. https://doi.org/10.1899/08-149.1 (2009).Article 

    Google Scholar 
    50.McManamay, R. A., Bevelhimer, M. S. & Frimpong, E. A. Associations among hydrologic classifications and fish traits to support environmental flow standards. Ecohydrology 8, 460–479. https://doi.org/10.1002/eco.1517 (2015).Article 

    Google Scholar 
    51.Hodges, S. W. & Magoulick, D. D. Refuge habitats for fishes during seasonal drying in an intermittent stream: Movement, survival and abundance of three minnow species. Aquat. Sci. 73, 513–522. https://doi.org/10.1007/s00027-011-0206-7 (2011).Article 

    Google Scholar 
    52.Magalhaes, M., Beja, P., Schlosser, I. & Collares-Pereira, M. Effects of multi-year droughts on fish assemblages of seasonally drying Mediterranean streams. Freshw. Biol. 52, 1494–1510 (2007).Article 

    Google Scholar 
    53.Matthews, W. & Marsh-Matthews, E. Effects of drought on fish across axes of space, time and ecological complexity. Freshw. Biol. 48, 1232–1253 (2003).
    Article 

    Google Scholar 
    54.Driver, L. J. & Hoeinghaus, D. J. Fish metacommunity responses to experimental drought are determined by habitat heterogeneity and connectivity. Freshw. Biol. 61, 533–548. https://doi.org/10.1111/fwb.12726 (2016).Article 

    Google Scholar  More

  • in

    Evidence of anticipatory immune and hormonal responses to predation risk in an echinoderm

    1.Tort, L. Stress and immune modulation in fish. Dev. Comp. Immunol. 35, 1366–1375 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Boonstra, R. Reality as the leading cause of stress: Rethinking the impact of chronic stress in nature. Funct. Ecol. 27, 11–23. https://doi.org/10.1111/1365-2435.12008 (2013).Article 

    Google Scholar 
    3.Öhman, A. Fear and anxiety: Overlaps and dissociations. in Handbook of Emotions (eds M. Lewis, J. M. Haviland-Jones, & L. F. Barrett) 709–728 (The Guilford Press, 2008).4.Maydych, V. et al. Impact of chronic and acute academic stress on lymphocyte subsets and monocyte function. PLoS One 12, e0188108 (2017).5.Clinchy, M., Sheriff, M. J. & Zanette, L. Y. Predator-induced stress and the ecology of fear. Funct. Ecol. 27, 56–65. https://doi.org/10.1111/1365-2435.12007 (2013).Article 

    Google Scholar 
    6.Allen-Hermanson, S. Insects and the problem of simple minds: Are bees natural zombies? J. Philos. 105, 389–415 (2008).Article 

    Google Scholar 
    7.Loukola, O. J., Perry, C. J., Coscos, L. & Chittka, L. Bumblebees show cognitive flexibility by improving on an observed complex behavior. Science 355, 833–836 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Perry, C. J. & Baciadonna, L. Studying emotion in invertebrates: what has been done, what can be measured and what they can provide. J. Exp. Biol. 220, 3856–3868 (2017).PubMed 
    Article 

    Google Scholar 
    9.Darwin, C. The Expression of the Emotions in Man and Animals. (John Murray, 1872).10.Anderson, D. J. & Adolphs, R. A framework for studying emotions across species. Cell 157, 187–200 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    11.Mendl, M., Paul, E. S. & Chittka, L. Animal behaviour: Emotion in invertebrates?. Curr. Biol. 21, R463–R465 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    12.Kita, S. et al. peiDoes conditioned taste aversion learning in the pond snail Lymnaea stagnalis produce conditioned fear? Biol. Bull. 220, 71–81 (2011).PubMed 
    Article 

    Google Scholar 
    13.Bateson, M., Desire, S., Gartside, S. E. & Wright, G. A. Agitated honeybees exhibit pessimistic cognitive biases. Curr. Biol. 21, 1070–1073. https://doi.org/10.1016/j.cub.2011.05.017 (2011).14.Perry, C. J., Baciadonna, L. & Chittka, L. Unexpected rewards induce dopamine-dependent positive emotion–like state changes in bumblebees. Science 353, 1529. https://doi.org/10.1126/science.aaf4454 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Cannon, W. B. The Wisdom of the Body. (Norton & Co., 1939).16.Jansen, A. S. P., Van Nguyen, X., Karpitskiy, V., Mettenleiter, T. C. & Loewy, A. D. Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270, 644–646 (1995).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Burnovicz, A., Oliva, D. & Hermitte, G. The cardiac response of the crab Chasmagnathus granulatus as an index of sensory perception. J. Exp. Biol. 212, 313–324 (2009).PubMed 
    Article 

    Google Scholar 
    18.Brod, S., Rattazzi, L., Piras, G. & D’Acquisto, F. ‘As above, so below’ examining the interplay between emotion and the immune system. Immunology 143, 311–318 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    19.Höglund, C. O. et al. Changes in immune regulation in response to examination stress in atopic and healthy individuals. Clin. Exp. Allergy 36, 982–992 (2006).PubMed 
    Article 

    Google Scholar 
    20.Mydlarz, L. D., Jones, L. E. & Harvell, C. D. Innate immunity, environmental drivers, and disease ecology of marine and freshwater invertebrates. Annu. Rev. Ecol. Evol. S. 37, 251–288 (2006).Article 

    Google Scholar 
    21.Beck, G. & Habicht, G. S. Immunity and the invertebrates. Sci. Am. 275, 60–66 (1996).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Chia, F.-S. & Xing, J. Echinoderm coelomocytes. Zool. Stud. 35, 231–254 (1996).
    Google Scholar 
    23.Pinsino, A. & Matranga, V. Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol. 49, 198–205 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    24.Smith, A. B. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence. in Echinoderm Phylogeny and Evolutionary Biology (eds C.R.C. Paul & A.B. Smith) 85–97 (Clarendon Press, 1988).25.Gliński, Z. & Jarosz, J. Immune phenomena in echinoderms. Arch. Immunol. Ther. Ex. 48, 189–193 (2000).
    Google Scholar 
    26.Muñoz-Chápuli, R., Carmona, R., Guadix, J. A., Macías, D. & Pérez-Pomares, J. M. The origin of the endothelial cells: An evo-devo approach for the invertebrate/vertebrate transition of the circulatory system. Evol. Dev. 7, 351–358 (2005).PubMed 
    Article 

    Google Scholar 
    27.Matranga, V., Pinsino, A., Celi, M., Di Bella, G. & Natoli, A. Impacts of UV-B radiation on short-term cultures of sea urchin coelomocytes. Mar. Biol. 149, 25–34 (2006).CAS 
    Article 

    Google Scholar 
    28.Matranga, V. et al. Monitoring chemical and physical stress using sea urchin immune cells. in Echinodermata Vol. 39 (ed V. Matranga) 85–110 (Springer, 2005).29.Canicattì, C., D’Ancona, G. & Farina-Lipari, E. The Holothuria polii brown bodies. Ital. J. Zool. 56, 275–283 (1989).
    Google Scholar 
    30.Canicatti, C. & Quaglia, A. Ultrastructure of Holothuria polii encapsulating body. J. Zool. 224, 419–429 (1991).Article 

    Google Scholar 
    31.Caulier, G., Hamel, J.-F. & Mercier, A. From coelomocytes to colored aggregates: cellular components and processes involved in the immune response of the holothuroid Cucumaria frondosa. Biol. Bull. 239, 95–114 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Branco, P. C., Borges, J. C. S., Santos, M. F., Junior, B. E. J. & da Silva, J. R. M. C. The impact of rising sea temperature on innate immune parameters in the tropical subtidal sea urchin Lytechinus variegatus and the intertidal sea urchin Echinometra lucunter. Mar. Environ. Res. 92, 95–101 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    33.Wendelaar Bonga, S. E. The stress response in fish. Physiol. Rev. 77, 591–625 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Xu, R. A. Annual changes in the steroid levels in the testis and the pyloric caeca of Sclerasterias mollis (Hutton) (Echinodermata: Asteroidea) during the reproductive cycle. Invertebr. Reprod. Dev. 20, 147–152 (1991).CAS 
    Article 

    Google Scholar 
    35.Binder, A. R. D., Pfaffl, M. W., Hiltwein, F., Geist, J. & Beggel, S. Does environmental stress affect cortisol biodistribution in freshwater mussels? Conserv. Physiol. 7, coz101 (2019).36.Pei, S., Dong, S., Wang, F., Tian, X. & Gao, Q. Effects of density on variation in individual growth and differentiation in endocrine response of Japanese sea cucumber (Apostichopus japonicus Selenka). Aquaculture 356, 398–403 (2012).Article 
    CAS 

    Google Scholar 
    37.Xu, R. A. & Barker, M. F. Annual changes in the steroid levels in the ovaries and the pyloric caeca of Sclerasterias mollis (Echinodermata: Asteroidea) during the reproductive cycle. Comp. Biochem. Phys. A 95, 127–133 (1990).Article 

    Google Scholar 
    38.Satoh, N., Rokhsar, D. & Nishikawa, T. Chordate evolution and the three-phylum system. Proc. R. Soc. B 281, 20141729 (2014).PubMed 
    Article 

    Google Scholar 
    39.Hamel, J.-F. et al. Active buoyancy adjustment increases dispersal potential in benthic marine animals. J. Anim. Ecol. 88, 820–832 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Thompson, R. F. & Spencer, W. A. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol. Rev. 73, 16 (1966).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    41.Denson, T. F., Spanovic, M. & Miller, N. Cognitive appraisals and emotions predict cortisol and immune responses: A meta-analysis of acute laboratory social stressors and emotion inductions. Psychol. Bull. 135, 823 (2009).PubMed 
    Article 

    Google Scholar 
    42.Pagán, O. R. The brain: A concept in flux. Philos. Trans. R. Soc. Lond. B 374, 20180383 (2019).Article 

    Google Scholar 
    43.Durrieu, M., Wystrach, A., Arrufat, P., Giurfa, M. & Isabel, G. Fruit flies can learn non-elemental olfactory discriminations. Proc. R. Soc. B 287, 20201234 (2020).PubMed 
    Article 

    Google Scholar 
    44.Díaz-Balzac, C. A. & García-Arrarás, J. E. Echinoderm Nervous System. (Oxford Research Encyclopedia of Neuroscience. https://doi.org/10.1093/acrefore/9780190264086.013.205, 2018).45.Landenberger, D. E. Learning in the Pacific starfish Pisaster giganteus. Anim. Behav. 14, 414–418 (1966).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.McClintock, J. B. & Lawrence, J. M. Photoresponse and associative learning in Luidia clathrata Say (Echinodermata: Asteroidea). Mar. Freshw. Behav. Phys. 9, 13–21 (1982).
    Google Scholar 
    47.Ginsburg, S. & Jablonka, E. The evolution of associative learning: A factor in the Cambrian explosion. J. Theor. Biol. 266, 11–20 (2010).PubMed 
    Article 

    Google Scholar 
    48.Boisseau, R. P., Vogel, D. & Dussutour, A. Habituation in non-neural organisms: Evidence from slime moulds. Proc. R. Soc. B 283, 20160446 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    49.Verheggen, F. J., Haubruge, E. & Mescher, M. C. Alarm pheromones—chemical signaling in response to danger. in Vitamins & Hormones: Pheromones Vol. 83 (ed Gerald Litwack) 215–239 (Elsevier, 2010).50.Byrne, M. The ultrastructure of the morula cells of Eupentacta quinquesemita (Echinodermata: Holothuroidea) and their role in the maintenance of the extracellular matrix. J. Morphol. 188, 179–189 (1986).PubMed 
    Article 

    Google Scholar 
    51.Melillo, D., Marino, R., Italiani, P. & Boraschi, D. Innate immune memory in invertebrate metazoans: A critical appraisal. Front. Immunol. 9, 1915 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    52.Garcia-Arraras, J. E. et al. Cellular mechanisms of intestine regeneration in the sea cucumber, Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). J. Exp. Zool. 281, 288–304 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    53.Sun, J. & Bai, Y. Predator-induced stress influences fall armyworm immune response to inoculating bacteria. J. Invertebr. Pathol. 172, 107352. https://doi.org/10.1016/j.jip.2020.107352 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    54.Otti, O., Gantenbein-Ritter, I., Jacot, A. & Brinkhof, M. W. G. Immune response increases predation risk. Evolution 66, 732–739. https://doi.org/10.1111/j.1558-5646.2011.01506.x (2012).Article 
    PubMed 

    Google Scholar 
    55.Powell, D. J. & Schlotz, W. Daily life stress and the cortisol awakening response: Testing the anticipation hypothesis. PLoS ONE 7, e52067 (2012).56.Blackburn-Munro, G. & Blackburn-Munro, R. Pain in the brain: Are hormones to blame? Trends Endocrin. Met. 14, 20–27 (2003).CAS 
    Article 

    Google Scholar 
    57.Dedovic, K., Duchesne, A., Andrews, J., Engert, V. & Pruessner, J. C. The brain and the stress axis: The neural correlates of cortisol regulation in response to stress. Neuroimage 47, 864–871 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    58.Canero, E. M. & Hermitte, G. New evidence on an old question: Is the “fight or flight” stage present in the cardiac and respiratory regulation of decapod crustaceans? J. Physiol. 108, 174–186 (2014).
    Google Scholar 
    59.Harding, E. J., Paul, E. S. & Mendl, M. Cognitive bias and affective state. Nature 427, 312–312 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    60.Gianasi, B. L., Hamel, J.-F., Montgomery, E. M., Sun, J. & Mercier, A. Current knowledge on the biology, ecology, and commercial exploitation of the sea cucumber Cucumaria frondosa. Rev. Fish. Sci. Aquac. https://doi.org/10.1080/23308249.23302020.21839015 (2020).Article 

    Google Scholar 
    61.Montgomery, E. M. et al. Functional significance and characterization of sexual dimorphism in holothuroids. Invertebr. Reprod. Dev. 62, 191–201 (2018).Article 

    Google Scholar 
    62.So, J. J., Hamel, J.-F. & Mercier, A. Habitat utilisation, growth and predation of Cucumaria frondosa: implications for an emerging sea cucumber fishery. Fish. Manage. Ecol. 17, 473–484 (2010).Article 

    Google Scholar 
    63.Legault, C. & Himmelman, J. H. Relation between escape behaviour of benthic marine invertebrates and the risk of predation. J. Exp. Mar. Biol. Ecol. 170, 55–74 (1993).Article 

    Google Scholar 
    64.Gianasi, B. L., Verkaik, K., Hamel, J.-F. & Mercier, A. Novel use of PIT tags in sea cucumbers: promising results with the commercial species Cucumaria frondosa. PLoS ONE 10, e0127884 (2015).65.Wasserstein, R. L., Schirm, A. L. & Lazar, N. A. Moving to a world beyond “p< 0.05”. Am. Stat. 73, 1–19 (2019).66.Dushoff, J., Kain, M. P. & Bolker, B. M. I can see clearly now: reinterpreting statistical significance. Methods Ecol. Evol. 10, 756–759 (2019).Article  Google Scholar  More

  • in

    Environmental implications and evidence of natural products from dental calculi of a Neolithic–Chalcolithic community (central Italy)

    Morphological analysisFood preparation or processing of plant material involve multiple activities and all of them can potentially leave micro-traces in the tartar, together with the environmental components.Eleven dental calculi showed plant record: starches, pollen grains, one trichome, one sporangium, and tissue fragments (Table 1).Table 1 Plant microdebris recovered from dental calculus samples of Casale del Dolce.Full size tablePlant hairTrichomes are epidermal outgrowths characterized by different structure and function. Although plant hairs are some of the most common findings in the overall particulate matter carried by air (as pollen grains), in literature, only very few examples of trichomes in ancient contexts have been reported28,29,30. Trichome identification is not a common area in dental calculus research since they do not have a diagnostic morphology. For this reason, the identification of such type of microdebris must be based on realistic criteria, also in accordance with the geographical and historical context, providing all possible interpretative scenarios. The detection of trichomes in ancient tartar may disclose other lines of evidence than nutrition, representing a reliable archaeological environmental proof31.One plant hair was identified in CDD1 sample (Table 1). This remain (Fig. 2L) falls into the general class of dendritic trichomes and its peculiar morphology has been more specifically termed a candelabrum or abietiform32. The overall structure corresponded to non-glandular and pluricellular trichomes with a central uniseriate axis and whorls of unicellular rays emerging at the joints of the axis. Usually, 4 radii from each node occurred perpendicular to the central axis. As exhaustively reported in literature, dendritic trichomes are known in ferns, different groups of modern monocots and basal eudicots, such as Scrophulariaceae and Platanaceae. Although dendritic, trichomes of ferns and monocots were excluded. Indeed, the first ones possess single secondary branches that alternatingly arise at an angle of 70°–120° with respect to the main axis along a single plane33, while the second ones show morphological features and appearance different from the ancient debris34,35. Candelabrum-like trichomes have been usually detected in Verbascum L. and Platanus L. species36. For this work, an experimental reference collection of trichomes from these plants was created (Supplementary Information 1). The general aspect of mullein trichomes appears to be capitate, bigger, more elongated, and slenderer than the microremain found in tartar sample. In addition, these trichomes seem to possess a pair of secondary elements per side or single secondary branches, which depart from the nodes, only rarely perpendicular to the central axis37,38,39. Thanks to the well-preserved morphology, the ancient candelabrum hair was interpreted as a Platanus sp. foliar trichome based on literature40 and our experimental reference, although mullein cannot be totally excluded. Dimensions, distance between nodes and the number of tapering secondary branches attached to the central axis of the microremain were like those of all plane species documented in literature40,41,42.Figure 2Plant microremains identified by light microscopy in dental calculus samples. Some of the images captured by optic microscopy were shown. Aggregate of Triticeae starch granules and relative polarized image (A); Fabaceae starch granule and relative polarized image (B); Pinaceae pollen grain (C); aggregate of Triticeae starch granules and relative polarized image (D); Cupressaceae pollen grain (E); Poaceae spontaneous group pollen (F); polyhedral starches of morphotype II (G,H); fragments of plant tissues (I–K); dendritic hair (L). The scale bar indicates 15 µm [45 µm for panel (L)]. Small flecks of calculus still attached to microremains can be observed in some panels.Full size imageThis finding leads to consider some paleoenvironmental implications. Fossil pollen analysis has demonstrated that, during the Plio-Pleistocene, Platanaceae were present in the Upper Valdarno (Italy)43. For the Holocene, likely as a consequence of Pleistocene glaciations, fragmentary and scarce evidence of plane tree have been found in Spain and French Mediterranean coast; no record of Platanus sp. has hitherto been found in Italy44,45. This thermophylous taxon has reappeared later as an ornamental tree, providing shade, during Roman times46. As we applied rigorous decontamination protocols, the evidence of this ancient trichome, probably accidentally inhaled by CDD1, may testify the presence of Platanus sp. and humid environments in central Italy during the Neo-Chalcolithic period.Starch granulesMore than 70 starches were retrieved from calculus samples (Table 1). Some of them were found in an extraordinary state of preservation, likely due to intentional ingestion and/or accidental inhalation during the processing of starchy foods. These grains were clustered in three different morphological types, based on the morphometric parameters (i.e., shape, size, presence of lamellae and hilum, aggregation level, and other secondary features) evidenced by literature. They were described using the International Code for Starch Nomenclature47,48.Morphotype I These starches were consistent with those of Triticeae Dumort. tribe and occurred in almost all samples, as the most copious group (Table 1; Fig. 2A,D). Some grains were still lodged together. The morphotype was characterised by a bimodal distribution, or rather co-presence of large and small granules. Occasionally, the morphology was not completely intact, probably due to chewing as well as grinding and/or cooking procedures. These starch grains were similar to those occurring in caryopses of cereals, such as Hordeum sp. L. and Triticum sp. L. In particular, the diagnostic starches were oval to sub-round in 2D shape (15–43 µm in length; 10–35 µm in width). They had a central and distinct hilum and, sometimes, no visible lamellae. The small granules (≤ 10 μm in diameter) were spherical in shape with a central hilum. Knowledge about the Neo-Eneolithic period in central Italy is characterized by discontinuous data. The archaeobotanical dataset available for Latium is still limited49 but information about cultivated and wild-collected plants from Casale del Dolce site exists. In fact, the carpological analysis previously conducted50 has identified several caryopses of barley and wheat, supporting our results. The recovery of these starch grains, in almost all samples, suggested that the use of cereals was common and probably frequent for Casale del Dolce people, even if it is quite difficult to correlate presence of plant remains in calculus and quantity of consumed food26. The hypothesis of cereal consumption for this community has been also proposed by stable isotope data. Isotopic values would suggest a subsistence economy based on a great intake of carbohydrates and a lifestyle characterized by a progressive agricultural exploitation, even more evident than other Eneolithic sites of central Italy6,51. Lastly, Triticeae starches have been also found in dental calculus from Grotta dello Scoglietto (southern Tuscany), for the same pre-historical period52.Morphotype II A low number of starch granules with faceted shape, perpendicular extinction cross and, sometimes, evident central fissures was recovered from dental calculus (Table 1; Fig. 2G,H). The morphology appeared oval to polygon (2D) with centric hilum and fissures radiating from it. The most frequent size distribution length was 14–25 μm in length and 13–17 μm in width. This type of grains exists in seeds of grasses belonging to the Andropogoneae Dumort. and Paniceae R. Br. tribes, as shown in the modern reference material19. Since an overlap in size and shape occurs among starches of species related to these tribes, the identification of these plant remains is arduous at a lower taxonomic level. Sorghum sp. Moench (sorghum), Setaria sp. P. Beauv. (foxtail millet) and Panicum sp. L. (millet) can be considered as potential candidates. Unfortunately, no phytolith, which would have helped us in distinguishing between the species of Paniceae53, was detected. In addition, the lack of an isotopic signal specific for this type of consumption and the absence of relative carpological remains for the archaeological site of Casale del Dolce might be due to a limited usage of these plants. In fact, although several species of these genera were diffused in Italy, little is known about their employment. The archaeobotanical evidence of millets (i.e., Panicum sp. and Setaria sp.) from the Late Neolithic period has been discussed; however, their cultivation is certain during the Bronze and Iron Ages52,54,55. Recently, Accelerator Mass Spectrometry-datings of prehistoric charred broomcorn millet grains has pinpointed the earliest occurrence of Panicum miliaceum L. in Europe at the middle of the 2nd millennium BCE (Middle/Late Bronze Age)56.Morphotype III Only one grain contributed to the third type of starch (Table 1; Fig. 2B). It appeared to be consistent with the Fabaceae family, probably Vicieae (Bronn) DC. tribe (e.g., vetches) for its oval to elongated (irregular) shape and kidney-like. The hilum was obscured and sunken, while the lamellae were not fully visible. The size was 42 μm in length and 30 μm in width. Data about pulses are scarce for this period. In northern Italy, a high variety of pulses was already present in the Neolithic57,58 but this starch grain would seem to be one of the few and unique evidence of consumption in central and southern Italy. As this finding refers to a single individual, certainly, it is not expected to provide an exhaustive image of the use of pulses for the period and region but its presence, together with the carpological remains of Fabaceae49,50, could attest plant protein consumption.A single starch granule was not classified because missing diagnostic and distinguishable characteristics. Probably modification events, such as grinding process, cooking procedure in water and/or chewing, and exposure to alfa-amylase, altered its shape.Pollen grainsFour calculus samples showed the presence of different pollen types (Table 1). In total, 49 grains were found. Three of them were detected in CDD2, 4, and 9 (Fig. 2C,EF), while the remaining ones (46), both in single and in aggregate form, were retrieved from only one individual (CDD7) (e.g., in Fig. 3). All palynomorphs were identified according to morphometric parameters described in literature and evidenced in the Palynological Database59 and the names of the pollen types refer to literature60,61,62.Figure 3Plant micro-remains detected by morphological analysis in the dental calculus of CDD7 sample. Representative images obtained by light microscopy analysis were shown. Aggregates of pollen and spores (A,B); Pinaceae and Cupressaceae pollen grains (C); Brassicaceae pollen grain (D); Pinaceae pollen grains (E,F); Cupressaceae pollen (G); Quercus deciduous pollen (H); Alchemilla type pollen (I); sporangium of Monylophyta (J). The scale bar indicates 15 µm. Small flecks of calculus still attached to microparticles can be observed in some panels.Full size imageIn this paragraph we describe the pollen grains found in CDD2, 4, and 9 samples.The ancient microremain embedded in sample CDD2 was apolar and medium in size (63 µm in diameter), showing a morphology which typically occurs in Poaceae63,64. The stenopalynous nature of such type of pollen (that is, uniform monoporate) makes its systematic identification difficult. Although a low taxonomic determination limits paleoecological inferences, the evidence of Poaceae pollen is usually interpreted as indicative of open grasslands65.One ancient palynomorph displayed morphological traits consistent with Pinaceae (sample CDD4). It appeared as a bisaccate monad with an elliptic corpus and medium reticulation on bladders59,66,67. Including sacci, the dimension was 56 µm in equatorial view.A non-saccate Cupressaceae-type pollen, instead, was found in sample CDD9. It appeared spherical (with polar and equatorial axes of 30 µm) and inaperturate at light microscope; the protoplast exhibited itself star-like. Pollen grains produced by several species of Cupressaceae are considered morphologically uniform68. Since prehistoric times, Gymnosperm wood has been widely used as raw material and firewood, while needles, nuts and inner bark represented the edible parts of these trees69. Noteworthy is that the resins of these plants, possessing adhesive qualities and antibacterial properties, might have been also appreciated by Neanderthal14. Cupressaceae pollen grain is generally scarce in ancient sediments and one of the most underrepresented palynomorph in archaeological context. Several archaeobotanical studies have demonstrated the use of Juniperus L. species in the Mediterranean basin since the Holocene. In particular, the use of them as a source of aromatic foliage and resins employed for medicinal purposes, wood as fuel and for construction of dwellings, and fresh or dried berries as food has been proposed70,71,72. Sporadic fossil discoveries of Cupressus sp. L, instead, are rather sparse in the Mediterranean area, although some ancient record has been registered in Italy during the Quaternary73. Thus, the investigated plant microdebris testify the presence of Cupressaceae and provide additional evidence about the possible existence of evergreen Mediterranean forests, during the Neo-Chalcolithic period, in the Sacco River Valley.Pollen grains in CDD7CDD7 specimen (Fig. 1B), an adult male affected by severe malocclusion, preserved an interesting set of microparticles at microscopic analysis; therefore, we decided to report and discuss separately the data obtained from his calculus.Eleven pollen grains out of 46 were not distinguishable due to the lack of diagnostic characteristics. The remaining 35 were found (singly, in pairs, or aggregates; Table 1, Fig. 3) in good or excellent state of conservation. The latter appeared as clusters of Pinaceae pollen (Gymnosperm) and other palynomorphs, including spores. Examples are shown in panels A and B of Fig. 3.Two Cupressaceae, ten Pinaceae and one Poaceae pollen, presenting the same morphological features described in the previous paragraph, were also found in this sample (e.g., see Fig. 3C,E,F,G).In addition, pollen grains from four herbaceous plants, namely Cyperaceae, Urticaceae, Trifolium, and Alchemilla species, and from the arboreal genus Corylus L. were detected and aredescribed below. Although pollen morphological variation within Cyperoideae subfamily is notable, one ancient microremain, possessing a pear-shape and a scabrate sculpture on its surface, appeared belonging to the genus Carex74,75. In equatorial view it was triangular and the polar axis length was 41 µm. A second pollen grain was recognised as Urticaceae-type; it exhibited spheroidal shape (equatorial diameter 23 μm) and scabrate ornamentation. This morphology occurs both in Parietaria sp. and Urtica sp. pollen grains59,62 and it is very difficult to distinguish them by optical microscope, especially if degraded. The shape of a third ancient monad, attributed to Trifolium-type (Fabaceae), was subprolate in equatorial view (46 μm) with scabrate ornamentation76. The Alchemilla-type (Rosaceae) microremain (26 μm equatorial view, Fig. 3I) was radially symmetrical, elliptic and prolate in shape77. Finally, another pollen type was found and attributable to Corylus sp. L. (Betulaceae). It was oval in equatorial view (19 μm), smooth, and tripolar with deep oncusis in each pore78.Seven pollen grains were single, prolate, isopolar, and elliptic in equatorial view (polar axis 19–25 µm long). They were tricolpate, with long and narrow colpi. Pores were at times indistinct. Pollen of the different species of Fagaceae shows a high variability in form, size, sculpturing; for this reason, most of them overlap in morphology. The ancient palynomorphs in exam were closely similar to a Quercus-type (examples in Fig. 3A,H)79,80.The last 10 grains showed a morphology (3-colpate, reticulate and subprolate) ascribable to Brassicaceae pollen grains (example in Fig. 3D). This is a stenopalynous family in which pollen varies among the genera but rarely in the species under the same genus81,82.Intriguingly, pollen findings in sample CDD7 were numerous and deriving also from insect-pollinated plants (e.g., Brassicaceae). This evidence appeared like a honey palynospectrum. This type of assemblage has been never registered in dental calculus deposits and, especially for the aggregates, the hypothesis of accidental inhalation seems implausible. Precisely, the presence of aggregates induced us to reflect upon a common origin of the whole pollen record. However, for single granules, to date, the supposition of aspiration cannot be completely excluded, due to the multiple pathways of inclusion of such type of microparticles27. The high pollen variety could be explained by the presence of residues of natural matrices, as well as honey or beehive products (e.g., wax, propolis), in the calculus sample. To support our hypothesis, we prepared a reference collection based on modern multifloral honey samples (Supplementary Information 1, panel E–J).Archaeological finds of bee products are quite rare83,84,85,86,87,88. Since the end of the upper Palaeolithic, honey has been employed as sweetener, while beeswax for technological, ritual, cosmetic and medicinal applications89,90. Regarding the latter, Bernardini et al.91 have found fascinating traces of a filling with beeswax, highlighting Neolithic dentistry procedures. It is important to recall that bees may also visit non-nectariferous plants (e.g., Poaceae, Betulaceae like Corylus sp.) for collecting pollen as protein source. Moreover, Pinaceae (Pinus sp. L. and Abies sp. Mill.) and Fagaceae (Fagus sp. L. and Quercus sp. L.), among others, emit sweet secretions and may be classified as honeydew producers88. Therefore, it is not unlikely to discover pollen grains of pine, hazel, oak, and cereals mixed with melliferous taxa. In fact, similarly, Carboni et al.92 have observed a lump of pollen inside an Eneolithic vessel, suggesting the use of a fermented honey-based drink, the mead, for ritual purposes.According to all this evidence, the pollen record detected in the present ancient calculus could be likely interpreted as direct honey consumption and/or remain of food or beverage including honey as natural sweetener. However, the use of conifer resins as antimicrobial or flavouring agents, mixed to honey or alone, cannot be excluded, together with the hypothesis of inhalation of bisaccate pollen from the immediate environment.Unfortunately, for the investigated site, no evidence supporting the previous hypotheses exists. Nevertheless, it is possible that the individuals from Casale del Dolce practised bee-keeping culture near woodland pastures, although this interpretation cannot be definitive.Currently, pollen spectra from beehive products are used to deduce plant biodiversity of the areas visited by insects for nectar collection93,94. Bearing in mind this indication and the typical habitats of the identified plant taxa, some ecological implications were inferred. A thermophilic broad-leaved forest mainly made up of conifers (such as Pinus) and several deciduous trees (such as Quercus and Corylus), together with wet grasslands (Cyperaceae, Urticaceae, Alchemilla sp.), was outlined by pollen analysis. This hypothesis would seem consistent with Coubray’s work50, who has identified the wood charcoals found in the archaeological site of Casale del Dolce as Carpinus L., Quercus, Maloideae, Cornus L., Corylus, Ulmus L., Fraxinus L., and Acer L. remains. In addition, palynological analyses performed in the same region95,96,97 have detected similar vegetational elements.Other plant microremainsWe detected an unusual range of microparticles, that is, fragments of plant tissues and a sporangium, rarely documented in human dental calculus investigations (Table 1)69,98,99,100.Among the first, one microparticle was made up of plant cells associated to a scalariform xylem vessel (Fig. 2I), while another debris showed wood cells with simple pits (Fig. 2J). A brown-yellowish fragment was also photographed (Fig. 2K). As reported in literature99, no evidence of charring or burning may be attributed to this type of darkening colouring but, if so, it would suggest an involuntary inhalation of ash particles from trees or shrubs used for fire. Thus, this type of microremain could derive from both non-edible and edible plants. In general, all these fragments retrieved from calculus might be the result of some activities, such as chewing of fresh plant organs, food and/or other uses of bark, oral hygiene procedures with woody dental picks, and/or use of teeth as a third hand99,101,102.The second type of uncommon microparticle, found in sample CDD7 (Table 1), appeared morphologically like a sporangium, probably from Monylophyta (Fig. 3J). It was brownish in colour and ovoid in shape. This type of microremain has never been observed in so ancient human dental calculus. A more specific taxonomical identification is very complex and would be risky, since at palaeobotanical and/or archaeological level there is no evidence to support this finding. However, considering that sporangia are typically attached to the abaxial surface of the leaf and that airborne dispersal capability of fern spores into stronger wind currents is rare and improbable100,103, the recovery of the whole sporangium allowed us to hypothesize a voluntary use of fern leaves.Biochemical analysisGC–MS approach revealed the presence of organic compounds derived from the matter ingested and/or inhaled by the individuals. However, the potential of the biomolecular approach on dental calculus is still highly challenging and the capacity to trace the origin of some molecules is still difficult, due to the multifactorial dental calculus’s aetiology31,104.In Supplementary Information 2 (SI2), the molecules detected in each sample were listed and clustered in chemical classes. The chromatographic profiles were dominated by a series of C6 to C30 n-alkenes and n-alkanes, not reported in SI2 because ubiquitous and not taxonomically specific. They could probably come from degradation of oral bacteria or consumed food, representing, for instance, fragments of unsaturated or saturated lipids14,105,106,107.The typology of residues accumulated in dental calculus and their adsorption capacity determine the lipid profile of this matrix, considering that different foods naturally possess variable lipid composition. For this reason, it is difficult to associate fatty acids to specific dietary sources. The presence of fatty acids (e.g., odd, short, and long chains), ubiquitous components of organic matter, could be considered indicator for consumption of animal fats or plant oils (e.g., oil-rich seeds and fruits)104,108,109,110,111,112,113. Long-chained polyunsaturated fatty acid derivatives (PUFAs; e.g., eicosapentaenoic acid, EPA), abundant in dried fruits114, were detected in some samples. Polyunsaturated omega-3 fatty acids have been rarely identified in archaeological contexts115, due to their highly inclination to oxidative alteration116. However, dental calculus has shown itself conservative for this type of molecules31. The consumption of aquatic organisms cannot be excluded, being rich of PUFAs114 and considering the proximity of the ancient settlement to the Sacco River.Monoterpene derivatives, non-specific compounds with volatile nature, retrieved from some samples, such as citronellol, menthol and pinanol (commonly found in leaves, fruit, and bark of a wide range of plant species), could generically indicate the ingestion of plant materials or waxes109.In CDD5 calculus, azulene and coumarin derivatives were also recovered. These secondary metabolites usually occur in species belonging to Apiaceae, Asteraceae, and Rutaceae families, well known medicinal plants possessing a wide range of biological activities117,118. As suggested by Hardy et al.14, the plant species rich in such type of bitter-tasting compounds might have been ingested for self-medication.Two alkaloids were found: trigonelline and hordenine, respectively, in CDD4 and CDD7 specimens. The first one, whose accumulation takes place in various plant species (i.e., Achillea sp. L.) and especially in Fabaceae seeds (e.g., Trigonella sp. L., Trifolium sp. L., and Medicago sp. L.)119,120, might represents a further proof for consumption of pulses.Hordenine, which naturally occurs in certain grasses, like cereals (e.g., barley, millet, and sorghum)121, could demonstrate the ingestion of starchy material, as already testified by the detection of a Triticeae starch granule in the same calculus flakes and the recovery of caryopses at the site50. More

  • in

    Contrasting metabolic strategies of two co-occurring deep-sea octocorals

    1.Watling, L., France, S. C., Pante, E. & Simpson, A. Biology of Deep-Water Octocorals. Advances in Marine Biology Vol. 60 (Elsevier, Amsterdam, 2011).
    Google Scholar 
    2.Sánchez, J. A. Diversity and Evolution of Octocoral Animal Forests at Both Sides of Tropical America. in Marine Animal Forests (ed. Rossi, S., Bramanti, L., Gori, A., & Orejas, C) 1–33 (Springer, 2016).3.Rossi, S., Bramanti, L., Gori, A. and Orejas, C. Marine animal forests: the ecology of benthic biodiversity hotspots. 1-1366. (Springer International Publishing, 2017)4.Cairns, S. D. Studies on western Atlantic Octocorallia (Gorgonacea: Primnoidae). Part 8: New records of Primnoidae from the New England and Corner Rise Seamounts. Proceedings of the Biological Society of Washington120(2), 243–263 (2007).5.Freiwald, A. and Roberts, J.M. Cold-water corals and ecosystems. (Springer, 2005)6.Buhl-Mortensen, L. & Buhl-Mortensen, P. Cold Temperate Coral Habitats. in Corals in a Changing World (2018).7.Braga-Henriques, A. et al. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic). Biogeosciences 10, 4009–4036 (2013).ADS 
    Article 

    Google Scholar 
    8.Íris, S., Andre, F., Filipe, M. P., Gui, M. & Marina, C.-S. Census of Octocorallia (Cnidaria: Anthozoa) of the Azores (NE Atlantic) with a nomenclature update. Zootaxa 4550, 451 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Tempera, F. et al. Mapping condor seamount seafloor environment and associated biological assemblages (Azores, NE Atlantic). Seafloor Geomorphol. Benthic Habitat https://doi.org/10.1016/B978-0-12-385140-6.00059-1 (2012).Article 

    Google Scholar 
    10.Andrews, A., Stone, R., Lundstrom, C. & DeVogelaere, A. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating. Mar. Ecol. Prog. Ser. 397, 173–185 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Neves, B. D. M., Edinger, E., Layne, G. D. & Wareham, V. E. Decadal longevity and slow growth rates in the deep-water sea pen Halipteris finmarchica (Sars, 1851) (Octocorallia: Pennatulacea): implications for vulnerability and recovery from anthropogenic disturbance. Hydrobiologia 759, 147–170 (2015).CAS 
    Article 

    Google Scholar 
    12.FAO. International guidelines for the management of deep-sea fisheries in the High Seas. (2009).13.OSPAR. Background document for coral gardens, Biodiversity Series, Publication Number: 15486/2010. (2010).14.Kim, K. & Lasker, H. R. Allometry of resource capture in colonial cnidarians and constraints on modular growth. Funct. Ecol. 12, 646–654 (1998).Article 

    Google Scholar 
    15.Gori, A. et al. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J. Exp. Mar. Bio. Ecol. 444, 38–45 (2013).Article 

    Google Scholar 
    16.Coma, R. & Ribes, M. Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101, 205–215 (2003).Article 

    Google Scholar 
    17.Nisbet, R. M., Muller, E. B., Lika, K. & Kooijman, S. A. L. M. From molecules to ecosystems through dynamic energy budget models. J. Anim. Ecol. 69, 913–926 (2008).Article 

    Google Scholar 
    18.Sebens, K., Sarà, G. & Nishizaki, M. Energetics, Particle Capture, and Growth Dynamics of Benthic Suspension Feeders. in Marine Animal Forests 813–854 (Springer, 2017).19.Ribes, M., Coma, R. & Gili, J. M. Heterogeneous feeding in benthic suspension feeders: The natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar. Ecol. Prog. Ser. 183, 125–137 (1999).ADS 
    Article 

    Google Scholar 
    20.Orejas, C., Gili, J. M. & Arntz, W. Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar. Ecol. Prog. Ser. 250, 105–116 (2003).ADS 
    Article 

    Google Scholar 
    21.Ribes, M., Coma, R. & Rossi, S. Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar. Ecol. Prog. Ser. 254, 141–150 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Cocito, S. et al. Nutrient acquisition in four Mediterranean gorgonian species. Mar. Ecol. Prog. Ser. 473, 179–188 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Leal, M. C. et al. Temporal changes in the trophic ecology of the asymbiotic gorgonian Leptogorgia virgulata. Mar. Biol. 161, 2191–2197 (2014).Article 

    Google Scholar 
    24.Fabricius, K. E., Benayahu, Y. & Genin, A. Herbivory in Asymbiotic Soft Corals. Science (80-) 268, 90–92 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Rossi, S., Ribes, M., Coma, R. & Gili, J. M. Temporal variability in Zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar. Biol. 144, 89–99 (2004).Article 

    Google Scholar 
    26.Coma, R., Llorente-Llurba, E., Serrano, E., Gili, J. M. & Ribes, M. Natural heterotrophic feeding by a temperate octocoral with symbiotic zooxanthellae: a contribution to understanding the mechanisms of die-off events. Coral Reefs 34, 549–560 (2015).ADS 
    Article 

    Google Scholar 
    27.Orejas, C., Gili, J., López-González, P. & Arntz, W. Feeding strategies and diet composition of four Antarctic cnidarian species. Polar Biol. 24, 620–627 (2001).Article 

    Google Scholar 
    28.Sherwood, O. A., Jamieson, R. E., Edinger, E. N. & Wareham, V. E. Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects . Deep. Res. Part I Oceanogr. Res. Pap. 55, 1392–1402 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Kiriakoulakis, K. et al. Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. in Cold-Water Corals and Ecosystems 715–729 (Springer, 2005).30.Naumann, M. S., Tolosa, I., Taviani, M., Grover, R. & Ferrier-Pagès, C. Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs 34, 1165–1175 (2015).ADS 
    Article 

    Google Scholar 
    31.Naumann, M. S., Orejas, C., Wild, C. & Ferrier-Pagès, C. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J. Exp. Biol. 214, 3570–3576 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sherwood, O. et al. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar. Ecol. Prog. Ser. 301, 135–148 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Imbs, A. B., Demidkova, D. A. & Dautova, T. N. Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Mar. Biol. 163, 202 (2016).Article 
    CAS 

    Google Scholar 
    34.Salvo, F., Hamoutene, D., Hayes, V. E. W., Edinger, E. N. & Parrish, C. C. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses. Coral Reefs 37, 157–171 (2018).ADS 
    Article 

    Google Scholar 
    35.Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).ADS 
    Article 

    Google Scholar 
    36.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    37.Fabricius, K. E., Genin, A. & Benayahu, Y. Flow-dependent herbivory and growth in zoxanthellae-free soft corals. Limnol. Oceanogr. 40, 1290–1301 (1995).ADS 
    Article 

    Google Scholar 
    38.Widdig, A. & Schlichter, D. Phytoplankton: a significant trophic source for soft corals?. Helgol. Mar. Res. 55, 198–211 (2001).ADS 
    Article 

    Google Scholar 
    39.Colaço, A., Giacomello, E., Porteiro, F. & Menezes, G. M. Trophodynamic studies on the Condor seamount (Azores, Portugal, North Atlantic) . Deep. Res. Part II Top. Stud. Oceanogr. 98, 178–189 (2013).ADS 
    Article 

    Google Scholar 
    40.Addamo, A. M. et al. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0654-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Mueller, C. E., Larsson, A. I., Veuger, B., Middelburg, J. J. & van Oevelen, D. Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11, 123–133 (2014).ADS 
    Article 

    Google Scholar 
    42.Roushdy, H. & Hansen, V. Filtration of phytoplankton by the octocoral Alcyonium digitatum. Nature 190, 649–650 (1961).ADS 
    Article 

    Google Scholar 
    43.Sorokin, Y. Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Aust. J. Mar. Freshw. Resour. 42, 729–741 (1991).Article 

    Google Scholar 
    44.Seemann, J. The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J. Exp. Mar. Biol. Ecol. 442, 88–95 (2013).CAS 
    Article 

    Google Scholar 
    45.Orejas, C. et al. The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J. Exp. Mar. Biol. Ecol. 481, 34–40 (2016).Article 

    Google Scholar 
    46.Carmo, V. et al. Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic) . Deep. Sea Res. Part II Top. Stud. Oceanogr. 98, 63–74 (2013).ADS 
    Article 

    Google Scholar 
    47.Gori, A., Grover, R., Orejas, C., Sikorski, S. & Ferrier-Pagès, C. Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea . Deep. Sea Res. Part II Top. Stud. Oceanogr. 99, 42–50 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Science of the Anthropocene vol. 5 (2017).49.Migné, A. & Davoult, D. Experimental nutrition in the soft coral Alcyonium digitatum (Cnidaria: Octocorallia): Removal rate of phytoplankton and zooplankton. Cah. Biol. Mar. 43, 9–16 (2002).
    Google Scholar 
    50.Sebens, K. P. & Koehl, M. A. R. Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar. Biol. 81, 255–271 (1984).Article 

    Google Scholar 
    51.Gili, J.-M., Coma, R., Orejas, C., López-González, P. & Zabala, M. Are Antarctic suspension-feeding communities different from those elsewhere in the world?. Polar Biol. 24, 473–485 (2001).Article 

    Google Scholar 
    52.Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer-autumn feeding constraints. Mar. Biol. 149, 643–651 (2006).CAS 
    Article 

    Google Scholar 
    53.Coma, R., Ribes, M., Gili, J.-M. & Zabala, M. Seasonality in coastal benthic ecosystems. Trends Ecol. Evol. 15, 448–453 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bythell, J. C. & Wild, C. Biology and ecology of coral mucus release. J. Exp. Mar. Biol. Ecol. 408, 88–93 (2011).Article 

    Google Scholar 
    55.Brooke, S., Holmes, M. & Young, C. Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Mar. Ecol. Prog. Ser. 390, 137–144 (2009).ADS 
    Article 

    Google Scholar 
    56.Larsson, A. I., van Oevelen, D., Purser, A. & Thomsen, L. Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar. Pollut. Bull. 70, 176–188 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Ragnarsson, S. Á. et al. The impact of anthropogenic activity on cold-water corals. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots 989–1023 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_27.58.Rix, L. et al. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci. Rep. 6, 18715 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lampert, W. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23, 831–834 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Moller, E. F. Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. J. Plankton Res. 27, 27–35 (2004).Article 
    CAS 

    Google Scholar 
    61.Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. R. Soc. B Biol. Sci. 278, 3465–3473 (2011).CAS 
    Article 

    Google Scholar 
    62.Burgess, S. C. et al. Metabolic scaling in modular animals. Invertebr. Biol. 136, 456–472 (2017).Article 

    Google Scholar 
    63.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. 64, 1651–1671 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Okie, J. G. et al. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proc. R. Soc. B Biol. Sci. 282, 20142630 (2015).Article 

    Google Scholar 
    65.van Oevelen, D. et al. The cold-water coral community as hotspot of carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 54, 1829–1844 (2009).ADS 
    Article 

    Google Scholar 
    66.Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).Article 

    Google Scholar 
    67.Coppari, M., Zanella, C. & Rossi, S. The importance of coastal gorgonians in the blue carbon budget. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    68.Moller, E. F. & Nielsen, T. G. Production of bacterial substrate by marine copepods: effect of phytoplankton biomass and cell size. J. Plankton Res. 23, 527–536 (2001).Article 

    Google Scholar 
    69.Titelman, J., Riemann, L., Holmfeldt, K. & Nilsen, T. Copepod feeding stimulates bacterioplankton activities in a low phosphorus system. Aquat. Biol. 2, 131–141 (2008).Article 

    Google Scholar 
    70.Violle, C. & Jiang, L. Towards a trait-based quantification of species niche. J. Plant Ecol. 2, 87–93 (2009).Article 

    Google Scholar 
    71.Yesson, C. et al. Global habitat suitability of cold-water octocorals. J. Biogeogr. 39, 1278–1292 (2012).Article 

    Google Scholar 
    72.Kearney, M., Simpson, S. J., Raubenheimer, D. & Helmuth, B. Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B Biol. Sci. 365, 3469–3483 (2010).Article 

    Google Scholar 
    73.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    74.Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conservation Physiology 3, cov056 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Johnson, J. Y. Description of a new species of flexible coral belonging to the genus Juncella, obtained at Madeira. Proc. Zool. Soc. London 505–506 (1863).76.Weinberg, S. & Grasshoff, M. Gorgonias. El Mar Mediterraneo. Fauna, Flora, Ecologia. II/1. Guia Sistematica y de Identificacion. (Ediciones Omega, 2003).77.Carpine, C. & Grasshoff, M. Les gorgonaires de la Méditerranée. Bull. l’Institut Océanographique 1–140 (1975).78.Brito, A. & Ocaña, O. Corales de las Islas Canarias. (2004).79.Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).Article 

    Google Scholar 
    80.Tempera, F. et al. Mapping the Condor seamount seafloor environment and associated biological assemblages (Azores, NE Atlantic). In Seafloor geomorphology as benthic habitat: geohab atlas of seafloor geomorphic features and benthic habitats (eds Harris, P. T. & Baker, E. K.) 807–818 (Elsevier, Amsterdam, 2012).
    Google Scholar 
    81.Santos, M. et al. Phytoplankton variability and oceanographic conditions at Condor seamount, Azores (NE Atlantic) . Deep. Sea Res. Part II Top. Stud. Oceanogr. 98, 52–62 (2013).ADS 
    Article 

    Google Scholar 
    82.Sorokin, Y. I. On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol. Oceanogr. 18, 380–386 (1973).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. https://doi.org/10.1002/lno.11142 (2019).Article 

    Google Scholar 
    84.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    85.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York , 2009).MATH 
    Book 

    Google Scholar 
    86.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    87.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and Nonlinear mixed effects models. R package version 3.1–140. (2019). More

  • in

    Don’t forget subterranean ecosystems in climate change agendas

    1.Nat. Clim. Change 9, 491 (2019).2.Arneth, A. et al. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).CAS 
    Article 

    Google Scholar 
    3.Dinerstein, E. et al. Sci. Adv. 6, eabb2824 (2020).Article 

    Google Scholar 
    4.Mammola, S. et al. BioScience 69, 641–650 (2019).Article 

    Google Scholar 
    5.Ficetola, G. F., Canedoli, C. & Stoch, F. Conserv. Biol. 33, 214–216 (2019).Article 

    Google Scholar 
    6.Chen, Z. et al. World Karst Aquifer Map (WHYMAP WOKAM) (BGR, IAH, KIT & UNESCO, 2017); https://doi.org/10.25928/b2.21_sfkq-r4067.World Database on Protected Areas (IUCN & UNEP-WCMC, 2016).8.Mammola, S. et al. Anthr. Rev. 6, 98–116 (2019).
    Google Scholar 
    9.Pallarés, S. et al. Anim. Conserv. https://doi.org/10.1111/acv.12654 (2021).10.Castaño-Sánchez, A., Hose, G. C. & Reboleira, A. S. P. Sci. Rep. 10, 12328 (2020).Article 

    Google Scholar 
    11.Taylor, R. G. et al. Nat. Clim. Change 3, 322–329 (2012).Article 

    Google Scholar 
    12.Griebler, C. & Avramov, M. Freshw. Sci. 34, 355–367 (2015).Article 

    Google Scholar 
    13.Gleeson, T., Wada, Y., Bierkens, M. F. P. & van Beek, L. P. H. Nature 488, 197–200 (2012).CAS 
    Article 

    Google Scholar 
    14.Wu, W. Y. et al. Nat. Commun. 11, 3710 (2020).CAS 
    Article 

    Google Scholar 
    15.Famiglietti, J. S. Nat. Clim. Change 4, 945–948 (2014).Article 

    Google Scholar 
    16.Frick, W. F. et al. Ann. N. Y. Acad. Sci. 1469, 5–25 (2020).Article 

    Google Scholar 
    17.Browning, E. et al. Mamm. Rev. https://doi.org/10.1111/mam.12239 (2021).18.Deharveng, L. & Bedos, A. In Cave Ecology 107–172 (Springer, 2019).19.Stein, H. et al. Sci. Rep. 2, 673 (2012).Article 

    Google Scholar 
    20.Culver, D. C. & Holsinger, J. R. Nat. Speleol. Soc. Bull. 54, 79–80 (1992).
    Google Scholar 
    21.Magnabosco, C. et al. Nat. Geosci. 11, 707–717 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe

    Genetic diversity and population structure across European urban and rural populationsA total of 192 great tits from the nine paired urban–rural populations were genotyped at 517,603 filtered SNPs, with 10–16 individuals per sampling site (Supplementary Table 1). We quantified the relative degree of urbanisation for each site (urbanisation score: PCurb, from principal component analysis, PCA; see “Methods”, Fig. 1b, Supplementary Fig. 1 and Supplementary Table 1) to inform our genetic downstream analyses. Population structuring based on 314,351 LD (linkage-disequilibrium)-pruned SNPs (excluding small linkage groups and the Z-chromosome) was overall low across the 18 studied sites (Supplementary Fig. 2), with each of the first two principal components explaining More