Distinguishing anthropogenic and natural contributions to coproduction of national crop yields globally
1.Pellegrini, P. & Fernández, R. J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. U. S. A. 115(10), 2335–2340 (2018).CAS
PubMed
PubMed Central
Article
Google Scholar
2.Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3(1), 1293 (2012).ADS
PubMed
Article
CAS
PubMed Central
Google Scholar
3.Palomo, I., Felipe-Lucia, M. R., Bennett, E. M., Martín-López, B. & Pascual, U. Chapter six—disentangling the pathways and effects of ecosystem service co-production. In Advance Ecology Research (eds Woodward, G. & Bohan, D. A.) 245–283 (Academic Press, 2016).
Google Scholar
4.Lavorel, S., Locatelli, B., Colloff, M. J. & Bruley, E. Co-producing ecosystem services for adapting to climate change. Philos. T. Roy. Soc. B. 375(1794), 20190119 (2020).Article
Google Scholar
5.Boerema, A., Rebelo, A. J., Bodi, M. B., Esler, K. J. & Meire, P. Are ecosystem services adequately quantified?. J. Appl. Ecol. 54(2), 358–370 (2017).Article
Google Scholar
6.Maes, J. et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 17, 14–23 (2016).Article
Google Scholar
7.Jones, L. et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 52, 151–162 (2016).Article
Google Scholar
8.Barot, S., Yé, L., Abbadie, L., Blouin, M. & Frascaria-Lacoste, N. Ecosystem services must tackle anthropized ecosystems and ecological engineering. Ecol. Eng. 99, 486–495 (2017).Article
Google Scholar
9.Remme, R. P., Edens, B., Schröter, M. & Hein, L. Monetary accounting of ecosystem services: a test case for Limburg province, the Netherlands. Ecol. Econ. 112, 116–128 (2015).Article
Google Scholar
10.Gaiser, T. & Stahr, K. Soil organic carbon, soil formation and soil fertility. In Ecosystem Services and Carbon Sequestration in the Biosphere (eds Lal, R. et al.) 407–418 (Springer, 2013).
Google Scholar
11.FAO and ITPS. Status of the World’s Soil Resources (SWSR)—Main Report (Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015).
Google Scholar
12.Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5(10), eaax0121 (2019).ADS
PubMed
PubMed Central
Article
Google Scholar
13.Bommarco, R., Kleijn, D. & Potts, S. G. Ecological intensification: harnessing ecosystem services for food security. Trends Ecol. Evol. 28(4), 230–238 (2013).PubMed
Article
PubMed Central
Google Scholar
14.Zabel, F., Putzenlechner, B. & Mauser, W. Global agricultural land resources—a high resolution suitability evaluation and its perspectives until 2100 under climate change conditions. PLoS ONE 9(9), e107522 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
15.Pelletier, N. et al. Energy intensity of agriculture and food systems. Annu. Rev. Environ. Resour. 36(1), 223–246 (2011).Article
Google Scholar
16.Díaz, S. et al. The IPBES conceptual framework—connecting nature and people. Curr. Opin. Environ. Sustain. 14, 1–16 (2015).Article
Google Scholar
17.Bennett, E. M. Research frontiers in ecosystem service science. Ecosystems 20(1), 31–37 (2017).Article
Google Scholar
18.Woods, J., Williams, A., Hughes, J. K., Black, M. & Murphy, R. Energy and the food system. Philos. T. Roy. Soc. B. 365(1554), 2991–3006 (2010).Article
Google Scholar
19.Foley, J. A. et al. Global consequences of land use. Science 309(5734), 570–574 (2005).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
20.Seppelt, R., Manceur, A. M., Liu, J., Fenichel, E. P. & Klotz, S. Synchronized peak-rate years of global resources use. Ecol. Soc. 19(4), 50 (2014).Article
Google Scholar
21.Meyfroidt, P. et al. Middle-range theories of land system change. Glob. Environ. Chang. 53, 52–67 (2018).Article
Google Scholar
22.Fitter, A. H. Are ecosystem services replaceable by technology?. Environ. Res. Econ. 55(4), 513–524 (2013).Article
Google Scholar
23.Cohen, F., Hepburn, C. J. & Teytelboym, A. Is natural capital really substitutable?. Annu. Rev. Environ. Resour. 44(1), 425–448 (2019).Article
Google Scholar
24.Ekins, P., Simon, S., Deutsch, L., Folke, C. & De Groot, R. A framework for the practical application of the concepts of critical natural capital and strong sustainability. Ecol. Econ. 44(2–3), 165–185 (2003).Article
Google Scholar
25.Lassaletta, L., Billen, G., Grizzetti, B., Anglade, J. & Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 9(10), 105011 (2014).ADS
Article
Google Scholar
26.Levers, C., Butsic, V., Verburg, P. H., Müller, D. & Kuemmerle, T. Drivers of changes in agricultural intensity in Europe. Land Use Policy 58, 380–393 (2016).Article
Google Scholar
27.Coomes, O. T., Barham, B. L., MacDonald, G. K., Ramankutty, N. & Chavas, J.-P. Leveraging total factor productivity growth for sustainable and resilient farming. Nat. Sustain. 2(1), 22–28 (2019).Article
Google Scholar
28.Fuglie, K. R&D capital, RD spillovers, and productivity growth in world agriculture. Appl. Econ. Perspect. Policy 40(3), 421–444 (2018).Article
Google Scholar
29.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254 (2012).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
30.German, R. N., Thompson, C. E. & Benton, T. G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: a meta-analysis to guide sustainable agriculture. Biol. Rev. 92(2), 716–738 (2017).PubMed
Article
PubMed Central
Google Scholar
31.Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article
Google Scholar
32.Lobell, D. B., Schlenker, W. & Costa-Roberts, J. Climate trends and global crop production since 1980. Science 333(6042), 616–620 (2011).ADS
CAS
Article
Google Scholar
33.Erb, K.-H. et al. A conceptual framework for analysing and measuring land-use intensity. Curr. Opin. Environ. Sustain. 5(5), 464–470 (2013).PubMed
PubMed Central
Article
Google Scholar
34.Loos, J. et al. Putting meaning back into “sustainable intensification”. Front. Ecol. Environ. 12(6), 356–361 (2014).Article
Google Scholar
35.Kleijn, D. et al. Ecological intensification: bridging the gap between science and practice. Trends Ecol. Evol. 34(2), 154–166 (2019).PubMed
Article
PubMed Central
Google Scholar
36.Stirzaker, R., Biggs, H., Roux, D. & Cilliers, P. Requisite simplicities to help negotiate complex problems. Ambio 39(8), 600–607 (2010).PubMed
PubMed Central
Article
Google Scholar
37.Kuemmerle, T. et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 5(5), 484–493 (2013).PubMed
PubMed Central
Article
Google Scholar
38.Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl. Acad. Sci. U. S. A. 108(14), 5909–5914 (2011).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
39.Bengtsson, J. Biological control as an ecosystem service: partitioning contributions of nature and human inputs to yield. Ecol. Entomol. 40(S1), 45–55 (2015).Article
Google Scholar
40.Seppelt, R., Arndt, C., Beckmann, M., Martin, E. A. & Hertel, T. Deciphering the biodiversity-production mutualism in the global food security debate. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2020.06.012 (2020).Article
PubMed
PubMed Central
Google Scholar
41.Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360(6392), 987–992 (2018).ADS
CAS
PubMed
Article
PubMed Central
Google Scholar
42.Beckmann, M. et al. Conventional land-use intensification reduces species richness and increases production: a global meta-analysis. Glob. Chang. Biol. 25(6), 1941–1956 (2019).ADS
PubMed
Article
PubMed Central
Google Scholar
43.Garibaldi, L. A. et al. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol. Evol. 32(1), 68–80 (2017).PubMed
Article
PubMed Central
Google Scholar
44.Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22(1), 1–19 (2008).Article
CAS
Google Scholar
45.IFA, IFDC, IPI, PPI, FAO. Fertilizer Use by Crop (FAO, 2002).
Google Scholar
46.IFA. Assessment of Fertilizer Use by Crop at the Global Level 2006/07–2007/08 (IFA, 2009).
Google Scholar
47.IFA. Assessment of Fertilizer Use by Crop at the Global Level 2010–2010/11 (IFA, 2013).
Google Scholar
48.IFA and IPNI. Assessment of Fertilizer Use by Crop at the Global Level (IFA and IPNI, 2017).
Google Scholar
49.FAO. Crops. http://www.fao.org/faostat/en/#data/QC (2018).50.FAO. Capital Stock. http://www.fao.org/faostat/en/#data/CS (2018).51.U.S. Bureau of Labor Statistics. CPI Inflation Calculator. https://data.bls.gov/cgi-bin/cpicalc.pl?cost1=1.00&year1=200001&year2=201401 (2020).52.FAO. Livestock Manure. http://www.fao.org/faostat/en/#data/EMN (2018).53.FAO. Food Balance Sheets: A Handbook 95 (FAO, 2001).
Google Scholar
54.World Bank. The World by Income and Region. https://datatopics.worldbank.org/world-development-indicators/the-world-by-income-and-region.html (2019).55.R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Google Scholar
56.RStudio Team. RStudio: Integrated Development for R (RStudio, Inc., 2018).
Google Scholar
57.Cook, R. D. Detection of influential observation in linear regression. Technometrics 19(1), 15–18 (1977).MathSciNet
MATH
Google Scholar
58.Natural Earth. Admin 0—Countries. Version 4.0.0 (accessed 22 October 2017); https://www.naturalearthdata.com/ (2017). More
