Global effects of land-use intensity on local pollinator biodiversity
1.Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).Article
Google Scholar
2.Steffan-Dewenter, I. & Westphal, C. The interplay of pollinator diversity, pollination services and landscape change. J. Appl. Ecol. 45, 737–741 (2007).Article
Google Scholar
3.Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
4.Winfree, R., Bartomeus, I. & Cariveau, D. P. Native pollinators in anthropogenic habitats. Annu. Rev. Ecol. Evol. Syst. 42, 1–22 (2011).Article
Google Scholar
5.Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).ADS
CAS
PubMed
Article
Google Scholar
6.IPBES (2017). The Assessment Report on Pollinators, Pollination and Food Production. Bonn.7.Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
8.Embury-Dennis, T. The Independent. 19 October. (2017) http://www.independent.co.uk/news/science/flying-insects-numbers-drop-ecological-armageddon-75-per-cent-plummet-a8008406.html. Accessed 03 Dec 2020.9.Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: a review of its drivers. Biol. Conserv. 232, 8–27 (2019).Article
Google Scholar
10.Martin, E. A. et al. The interplay of landscape composition and configuration: new pathways to manage functional biodiversity and agroecosystem services across Europe. Ecol. Lett. 22, 1083–1094 (2019).PubMed
Article
Google Scholar
11.Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1–6 (2019).ADS
CAS
Article
Google Scholar
12.Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406. (2018).CAS
PubMed
Article
Google Scholar
13.Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE 12, e0185809 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
14.Ollerton, J. Pollinator diversity: distribution, ecological function, and conservation. Annu. Rev. Ecol. Evol. Syst. 48, 353–376 (2017).Article
Google Scholar
15.Saunders, M. E., Janes, J. K. & O’hanlon, J. C. Moving on from the insect apocalypse narrative: engaging with evidence-based insect conservation. BioScience 70, 80–89 (2020).Article
Google Scholar
16.De Palma, A. et al. Predicting bee community responses to land-use changes: effects of geographic and taxonomic biases. Sci. Rep. 6, 31153 (2016).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
17.Kunin, W. E. Robust evidence of declines in insect abundance and biodiversity. Nature 574, 641–642 (2019).ADS
CAS
PubMed
Article
Google Scholar
18.Macgregor, C. J. et al. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).PubMed
Article
Google Scholar
19.Millard, J. W., Freeman, R. & Newbold, T. Text‐analysis reveals taxonomic and geographic disparities in animal pollination literature. Ecography 43, 44–59 (2020).Article
Google Scholar
20.Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. Lond. Ser. B 274, 303–313 (2007).
Google Scholar
21.European Commission. EU Pollinators Initiative (European Commission, Brussels, 2018).22.Food and Agriculture Organization. The International Pollinator Initiative plan of action 2018-2030 (FAO, Rome, 2018).23.Secretariat of the Convention on Biological Diversity. Zero Draft of the Post-2020 Global Biodiversity Framework (CBD, Montreal, 2020).24.Ellis, E. C. & Ramankutty, N. Putting people in the map: anthropogenic biomes of the world. Front. Ecol. Environ. 6, 439–447 (2008).Article
Google Scholar
25.Le B. Hooke, R., Martín-Duque, J. F. and Pedraza, J. Land transformation by humans: a review. GSA Today 22, 4–10 (2012).26.Donald, P. F., Green, R. E. & Heath, M. F. Agricultural intensifcation and the collapse of Europe’s farmland bird populations. Proc. R. Soc. Lond. B. 268, 25–29 (2001).Article
Google Scholar
27.Benton, T. G. et al. Linking agricultural practice to insect and bird populations: a historical study over three decades. J. Appl. Ecol. 39, 673–687 (2002).Article
Google Scholar
28.Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article
Google Scholar
29.Tscharntke, T. et al. Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecol. Appl. 12, 354–363 (2002).
Google Scholar
30.Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).PubMed
Article
Google Scholar
31.Ricketts, T. H. et al. Landscape effects on crop pollination services: are there general patterns? Ecol. Lett. 11, 499–515 (2008).PubMed
Article
Google Scholar
32.Klein, A.-M., Steffan-Dewenter, I. & Tscharntke, T. Fruit set of highland coffee increases with the diversity of pollinating bees. Proc. R. Soc. Lond. Biol. Sci. 270, 955–961 (2003).Article
Google Scholar
33.Xiao, Y. et al. The diverse effects of habitat fragmentation on plant–pollinator interactions. Plant Ecol. 217, 857–868 (2016).Article
Google Scholar
34.Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987 (2013).Article
Google Scholar
35.Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).CAS
Article
Google Scholar
36.Sánchez-Bayo, F. & Goka, K. Pesticide residues and bees—a risk assessment. PLoS One. 9, e94482 (2014).ADS
PubMed
PubMed Central
Article
CAS
Google Scholar
37.Pilling, E. D. & Jepson, P. C. Synergism between EBI fungicides and a pyrethroid insecticide in the honeybee (Apis mellifera). Pestic. Sci. 39, 293–297 (1993).CAS
Article
Google Scholar
38.Crall, J. D. et al. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362, 683–686 (2018).ADS
CAS
PubMed
Article
Google Scholar
39.Schmuck, R., Stadler, T. & Schmidt, H.-W. Field relevance of a synergistic effect observed in the laboratory between an EBI fungicide and a chloronicotinyl insecticide in the honeybee (Apis mellifera L, Hymenoptera). Pest Manag. Sci. 59, 279–286 (2003).CAS
PubMed
Article
Google Scholar
40.Morandin, L. A. & Winston, M. L. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881 (2005).Article
Google Scholar
41.Ridding, L. E. et al. Long-term change in calcareous grassland vegetation and drivers over three time periods between 1970 and 2016. Plant Ecol. 221, 377–394 (2020).Article
Google Scholar
42.Goulson, D., Lye, G. C. & Darvill, B. Decline and conservation of bumble bees. Annu. Rev. Entomol. 53, 191–208 (2008).CAS
PubMed
Article
Google Scholar
43.Michener, C. D. The Bees of the World (Johns Hopkins University Press 2007).44.Deans, A. M. et al. Hoverfly (Syrphidae) communities respond to varying structural retention after harvesting in Canadian peatland black spruce forests. Environ. Entomol. 36, 308–318 (2007).CAS
PubMed
Article
Google Scholar
45.Kuussaari, M. et al. Determinants of local species richness of diurnal Lepidoptera in boreal agricultural landscapes. Agric. Ecosyst. Environ. 122, 366–376 (2007).Article
Google Scholar
46.Tscharntke, T. et al. Landscape constraints on functional diversity of birds and insects in tropical agroecosystems. Ecology 89, 944–951 (2008).PubMed
Article
Google Scholar
47.Hall, D. M. et al. The city as a refuge for insect pollinators. Conserv. Biol. 31, 24–29 (2017).PubMed
Article
Google Scholar
48.Öckinger, E. et al. Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol. Lett. 13, 969–979 (2010).PubMed
Google Scholar
49.Burivalova, Z. et al. Avian responses to selective logging shaped by species traits and logging practices. Proc. R. Soc. B 282, 20150164 (2015).PubMed
Article
Google Scholar
50.Montero-Castaño, A. & Vilà, M. Impact of landscape alteration and invasions on pollinators: a meta-analysis. J. Ecol. 100, 884–893 (2012).Article
Google Scholar
51.De Palma, A. et al. Ecological traits affect the sensitivity of bees to land-use pressures in European agricultural landscapes. J. Appl. Ecol. 52, 1567–1577 (2015).PubMed
PubMed Central
Article
Google Scholar
52.Aguirre-Gutiérrez, J. et al. Functional traits help to explain half-century long shifts in pollinator distributions. Sci. Rep. 6, 1–13. (2016).Article
CAS
Google Scholar
53.Shuler, R. E., Roulston, T. H. & Farris, G. E. Farming practices influence wild pollinator populations on squash and pumpkin. J. Economic Entomol. 98, 790–795 (2005).Article
Google Scholar
54.Cusser, S., Neff, J. L. & Jha, S. Land-use history drives contemporary pollinator community similarity. Landsc. Ecol. 33, 1335–1351 (2018).Article
Google Scholar
55.Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 1, 193–196 (1996).Article
Google Scholar
56.Høye, T., Post, E., Schmidt, N., Trøjelsgaard, K. & Forchhammer, M. C. Shorter flowering seasons and declining abundance of flower visitors in a warmer Arctic. Nat. Clim. Change 3, 759–763 (2013).ADS
Article
Google Scholar
57.Barlow, J. et al. The future of hyperdiverse tropical ecosystems. Nature 559, 517–526 (2018).ADS
CAS
PubMed
Article
Google Scholar
58.Williams, J. J., Bates, A. E. & Newbold, T. Human‐dominated land uses favour species affiliated with more extreme climates, especially in the tropics. Ecography 43, 391–405 (2020).Article
Google Scholar
59.Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).ADS
CAS
PubMed
Article
Google Scholar
60.Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).ADS
CAS
PubMed
Article
Google Scholar
61.Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).PubMed
Article
Google Scholar
62.Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project. Ecol. Evolution 7, 145–188 (2017).Article
Google Scholar
63.Clough, Y. et al. Density of insect-pollinated grassland plants decreases with increasing surrounding land-use intensity. Ecol. Lett. 17, 1168–1177 (2014).PubMed
Article
Google Scholar
64.Lazaro, A., Tscheulin, T., Devalez, J., Nakas, G. & Petanidou, T. Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecol. Entomol. 41, 400–412 (2016).Article
Google Scholar
65.Baldock, K. C. R. et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat. Ecol. Evol. 3, 363–373 (2019).PubMed
PubMed Central
Article
Google Scholar
66.Ollerton, J., Tarrant, S. & Winfree, R. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011).Article
Google Scholar
67.Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).ADS
Article
Google Scholar
68.Outhwaite, C. L. et al. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).PubMed
Article
Google Scholar
69.Rader, R. et al. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Diversity Distrib. 20, 908–917 (2014).Article
Google Scholar
70.Woodcock, B. A. et al. Meta-analysis reveals that pollinator functional diversity and abundance enhance crop pollination and yield. Nat. Commun. 10, 1–10. (2019).ADS
CAS
Article
Google Scholar
71.Tscharntke, T. et al. Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol. Lett. 8, 857–874 (2005).Article
Google Scholar
72.DeFries, R. & Rosenzweig, C. Toward a whole-landscape approach for sustainable land use in the tropics. Proc. Natl Acad. Sci. USA 107, 19627–19632 (2010).ADS
CAS
PubMed
Article
Google Scholar
73.Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).ADS
CAS
PubMed
Article
Google Scholar
74.Weiner, C. N. et al. Land use intensity in grasslands: changes in biodiversity, species composition and specialisation in flower visitor networks. Basic Appl. Ecol. 12, 292–299 (2011).Article
Google Scholar
75.Parker, W. E. & Howard, J. J. The biology and management of wireworms (Agriotes spp.) on potato with particular reference to the UK. Agric. For. Entomol. 3, 85–98 (2001).Article
Google Scholar
76.Jauker, F. et al. Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).Article
Google Scholar
77.Haenke, S. et al. Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. J. Appl. Ecol. 46, 1106–1114 (2009).Article
Google Scholar
78.Speight, M. C. D. Species Accounts of European Syrphidae, 2017. Syrph Net. Database Eur. Syrphidae (Diptera) 97, 1–294 (2017).
Google Scholar
79.Easton, A. H. & Goulson, D. The neonicotinoid insecticide imidacloprid repels pollinating flies and beetles at field-realistic concentrations. PLoS One 8, e54819 (2013).ADS
CAS
PubMed
PubMed Central
Article
Google Scholar
80.Maggi, F. et al. PEST-CHEMGRIDS, global gridded maps of the top 20 crop-specific pesticide application rates from 2015 to 2025. Sci. Data 6, 1–20. (2019).CAS
Article
Google Scholar
81.Henle, K., Davies, K. F., Kleyer, M., Margules, C. & Settele, J. Predictors of species sensitivity to fragmentation. Biodivers. Conserv. 13, 207–251 (2004).Article
Google Scholar
82.Watanabe, M. E. Pollination worries rise as honey bees decline. Science 265, 1170 (1994).ADS
CAS
PubMed
Article
Google Scholar
83.Kevan, P. G. Blueberry crops in Nova Scotia and New Brunswick—pesticides and crop reductions. Can. J. Agric. Econ. 25, 61–64 (1977).Article
Google Scholar
84.Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 340, 1608–1611 (2013).ADS
Article
CAS
Google Scholar
85.Ollerton J. Pollinators & Pollination: Nature and Society (Pelagic Publishing, Exeter, 2021).86.Purvis, A. et al. Modelling and projecting the response of local terrestrial biodiversity worldwide to land use and related pressures: the PREDICTS project. Adv. Ecol. Res. 58, 201–241 (2018).Article
Google Scholar
87.Brittain, C. A. et al. Impacts of a pesticide on pollinator species richness at different spatial scales. Basic Appl. Ecol. 11, 106–115 (2010).CAS
Article
Google Scholar
88.Melidonis, C. A. & Peter, C. I. Diurnal pollination, primarily by a single species of rodent, documented in Protea foliosa using modified camera traps. South Afr. J. Bot. 97, 9–15 (2015).Article
Google Scholar
89.Ollerton, J. & Liede, S. Pollination systems in the Asclepiadaceae: a survey and preliminary analysis. Biol. J. Linn. Soc. 62, 593–610 (1997).Article
Google Scholar
90.Dutton, E. M. & Frederickson, M. E. Why ant pollination is rare: new evidence and implications of the antibiotic hypothesis. Arthropod-Plant Interact. 6, 561–569 (2012).Article
Google Scholar
91.Dukas, R. & Morse, D. H. Crab spiders affect flower visitation by bees. Oikos 101, 157–163 (2003).Article
Google Scholar
92.Myers, S. A., Donnellan, S. & Kleindorfer, S. Rainfall can explain adaptive phenotypic variation with high gene flow in the New Holland honeyeater (Phylidonyris novaehollandiae). Ecol. Evol. 2, 2397–2412 (2012).PubMed
PubMed Central
Article
Google Scholar
93.Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS
CAS
Article
Google Scholar
94.Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article
Google Scholar
95.Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).MathSciNet
MATH
Article
Google Scholar
96.Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS
CAS
PubMed
Article
Google Scholar
97.Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012).ADS
CAS
PubMed
Article
Google Scholar
98.West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014).ADS
CAS
PubMed
Article
Google Scholar
99.Millard, J. et al. Global_effects_of_land-use_intensity_on_local_pollinator-biodiversity (Version v1.0.0). Zenodo https://doi.org/10.5281/zenodo.4593493 (2021). More