More stories

  • in

    Current extinction rate in European freshwater gastropods greatly exceeds that of the late Cretaceous mass extinction

    1.Darwall, W. et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat. Conserv. 28, 1015–1022 (2018).Article 

    Google Scholar 
    2.Green, P. A. et al. Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Global Environ. Chang. 34, 108–118 (2015).Article 

    Google Scholar 
    3.EEA (European Environment Agency). The European environment — state and outlook 2020. Knowledge for transition to a sustainable Europe (Publications Office of the European Union, Luxembourg, 2019).4.Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).Article 

    Google Scholar 
    5.Régnier, C., Fontaine, B. & Bouchet, P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol. 23, 1214–1221 (2009).Article 

    Google Scholar 
    6.Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    7.Burkhead, N. M. Extinction rates in North American freshwater fishes, 1900–2010. BioScience 62, 798–808 (2012).Article 

    Google Scholar 
    8.Poff, N. L., Olden, J. D. & Strayer, D. L. Climate change and freshwater fauna extinction risk. 309–336. In: Hannah, L. (ed.) Saving a million species (Island Press/Center for Resource Economics, Washington, 2012).9.De Grave, S. et al. Dead shrimp blues: a global assessment of extinction risk in freshwater shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 10, e0120198 (2015).Article 
    CAS 

    Google Scholar 
    10.Böhm, M. et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia (2020) https://doi.org/10.1007/s10750-020-04385-w.11.Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).Article 

    Google Scholar 
    12.Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).Article 

    Google Scholar 
    13.Dudgeon, D. Freshwater biodiversity: status, threats and conservation (Cambridge University Press, Cambridge, 2020).14.WWF (World Wildlife Fund). Living Planet Report – 2020: Bending the curve of biodiversity loss (WWF, Gland, 2020).15.Döll, P. & Zhang, J. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci 14, 783–799 (2010).Article 

    Google Scholar 
    16.Janse, J. H. et al. GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environ. Sci. Policy 48, 99–114 (2015).Article 

    Google Scholar 
    17.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS 
    Article 

    Google Scholar 
    18.Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 

    Google Scholar 
    19.Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).CAS 
    Article 

    Google Scholar 
    20.Wang, J.-G., Wu, F.-Y., Tan, X.-C. & Liu, C.-Z. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612–613, 97–105 (2014).Article 
    CAS 

    Google Scholar 
    21.Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019).CAS 
    Article 

    Google Scholar 
    22.Shukla, P. R. et al. (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (IPCC, Geneva, 2019).23.Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).CAS 
    Article 

    Google Scholar 
    24.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).CAS 
    Article 

    Google Scholar 
    25.Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K-Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).Article 

    Google Scholar 
    26.Balian, E. V., Segers, H., Lévêque, C. & Martens, K. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595, 627–637 (2008).Article 

    Google Scholar 
    27.Darwall, W., Seddon, M., Clausnitzer, V. & Cumberlidge, N. Freshwater invertebrate life. 26–32. In: Collen, B., Böhm, M., Kemp, R. & Baillie, J. E. M. (eds). Spineless: status and trends of the world’s invertebrates (Zoological Society of London, London, 2012).28.Strong, E. E., Gargominy, O., Ponder, W. F. & Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595, 149–166 (2008).Article 

    Google Scholar 
    29.Neubauer, T. A., Harzhauser, M., Georgopoulou, E., Kroh, A. & Mandic, O. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots. Proc. Natl. Acad. Sci. USA 112, 11478–11483 (2015).CAS 
    Article 

    Google Scholar 
    30.Cuttelod, A., Seddon, M. & Neubert, E. European red list of non-marine molluscs (Publications Office of the European Union, Luxembourg, 2011).31.Cordellier, M., Pfenninger, A., Streit, B. & Pfenninger, M. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar. Biol. 159, 2519–2531 (2012).Article 

    Google Scholar 
    32.Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).Article 

    Google Scholar 
    33.Georgopoulou, E., Neubauer, T. A., Harzhauser, M., Kroh, A. & Mandic, O. Distribution patterns of European lacustrine gastropods: a result of environmental factors and deglaciation history. Hydrobiologia 775, 69–82 (2016).Article 

    Google Scholar 
    34.IUCN (International Union for Conservation of Nature). The IUCN red list of threatened species. Version 2020-1. https://www.iucnredlist.org (2020).35.Andermann, T., Faurby, S., Cooke, R., Silvestro, D. & Antonelli, A. iucn_sim: a new program to simulate future extinctions based on IUCN threat status. Ecography 44, 162–176 (2021).Article 

    Google Scholar 
    36.Neubauer, T. A., Harzhauser, M., Kroh, A., Georgopoulou, E. & Mandic, O. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Sci. Rev. 143, 98–116 (2015).Article 

    Google Scholar 
    37.Sheehan, P. M., Coorough, P. J. & Fastovsky, D. E. Biotic selectivity during the K/T and Late Ordovician extinction events. Geol. Soc. Spec. Pap. 307, 477–489 (1996).
    Google Scholar 
    38.MacLeod, N. et al. The Cretaceous-Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).Article 

    Google Scholar 
    39.Vajda, V. & Bercovici, A. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Global Planet. Change 122, 29–49 (2014).Article 

    Google Scholar 
    40.Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).Article 

    Google Scholar 
    41.Henderson, J. Fossil non-marine Mollusca of North America. Geol. Soc. Spec. Pap. 3, 1–313 (1935).
    Google Scholar 
    42.Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).CAS 
    Article 

    Google Scholar 
    43.Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. 481–508. In: Thierstein, H. R. & Young, J. R. (eds). Coccolithophores (Springer, Berlin, 2004).44.Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).CAS 
    Article 

    Google Scholar 
    45.Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).CAS 
    Article 

    Google Scholar 
    46.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS 
    Article 

    Google Scholar 
    47.Cowie, R. H., Régnier, C., Fontaine, B. & Bouchet, P. Measuring the sixth extinction: what do mollusks tell us? Nautilus 131, 3–41 (2017).
    Google Scholar 
    48.Georgopoulou, E. et al. Beginning of a new age: How did freshwater gastropods respond to the Quaternary climate change in Europe? Quat. Sci. Rev. 149, 269–278 (2016).Article 

    Google Scholar 
    49.Csapó, H. et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci. Rep. 10, 18695 (2020).Article 
    CAS 

    Google Scholar 
    50.Davis, M., Faurby, S. & Svenning, J.-C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. USA 115, 11262–11267 (2018).CAS 
    Article 

    Google Scholar 
    51.Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).Article 

    Google Scholar 
    52.Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).CAS 
    Article 

    Google Scholar 
    53.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).Article 

    Google Scholar 
    54.Pimiento, C. et al. Selective extinction against redundant species buffers functional diversity. Proc. R. Soc. B 287, 20201162 (2020).Article 

    Google Scholar 
    55.Cao, W. et al. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–5439 (2017).Article 

    Google Scholar 
    56.Martinson, G. G. Mezozoiskie i Kainozoiskie Molliuski kontinentalnykh otlozhenii Sibirskoi Platformy Zabaikalia i Mongolii. Trudy Baikal’skoy Limnologicheskoy Stantzii Akademii Nauk SSSR 19, 1–332 (1961).
    Google Scholar 
    57.Pan, H. Mesozoic and Cenozoic fossil Gastropoda from Yunnan. 83-152. In: Nanjing Institute of Geology and Palaeontology (Ed.). Mesozoic Fossils from Yunnan. 2 (Science Press, Beijing, 1977).58.Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauly, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).CAS 
    Article 

    Google Scholar 
    59.Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J. & Allmon, W. D. The generification of the fossil record. Paleobiology 40, 511–528 (2014).Article 

    Google Scholar 
    60.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article 

    Google Scholar 
    61.Plummer, M. et al. coda: Output analysis and diagnostics for MCMC. R package version 0.19-3. https://cran.r-project.org/web/packages/coda/index.html (2019).62.R Core Team. R: A language and environment for statistical computing. Version 3.6.3. R Foundation for Statistical Computing, Vienna. http://www.R-project.org (2020).63.Chamberlain, S. rredlist: ‘IUCN’ red list client. R package version 0.6.0. http://CRAN.R-project.org/package=rredlist (2020)64.Bandel, K. & Riedel, F. The late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Ann. Naturhist. Mus. Wien Ser. A 96, 1–65 (1994).
    Google Scholar  More

  • in

    Global data on earthworm abundance, biomass, diversity and corresponding environmental properties

    German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Joanne M. Bennett, Rémy Beugnon, Olga Ferlian, Carlos A. Guerra, Birgitta König-Ries, Julia J. Krebs, Ulrich Brose & Nico EisenhauerInstitute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, GermanyHelen R. P. Phillips, Rémy Beugnon, Olga Ferlian, Julia J. Krebs & Nico EisenhauerDepartment of Environmental Science, Saint Mary’s University, Halifax, Nova Scotia, CanadaHelen R. P. Phillips & Erin K. CameronGlobal Soil Biodiversity Initiative and School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallDepartment of Biology, Colorado State University, Fort Collins, CO, 80523, USAElizabeth M. Bach & Diana H. WallUniversidade Positivo, Rua Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR, 81280-330, BrazilMarie L. C. BartzCenter of Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martins de Freitas, 3000-456, Coimbra, PortugalMarie L. C. BartzInstitute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108, Halle (Saale), GermanyJoanne M. Bennett & Carlos A. GuerraCentre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, AustraliaJoanne M. BennettDepartamento de Ecología y Biología Animal, Universidad de Vigo, 36310, Vigo, SpainMaria J. I. BrionesEmbrapa Forestry, Estrada da Ribeira, km. 111, C.P. 231, Colombo, PR, 83411-000, BrazilGeorge G. BrownA.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., 33, Moscow, 119071, RussiaKonstantin B. Gongalsky & Iurii M. LebedevM.V. Lomonosov Moscow State University, Leninskie Gory, 1, Moscow, 119991, RussiaKonstantin B. Gongalsky & Iurii M. LebedevInstitute of Computer Science, Friedrich Schiller University Jena, Ernst-Abbe-Platz 2, 07743, Jena, GermanyBirgitta König-RiesEuropean Commission, Joint Research Centre (JRC), Ispra, ItalyAlberto OrgiazziDepartment of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6700, Wageningen, AB, The NetherlandsKelly S. Ramirez, Wim H. van der Putten & Madhav P. ThakurSenckenberg Museum for Natural History Görlitz, Department of Soil Zoology, 02826, Görlitz, GermanyDavid J. RussellBiometry and Environmental System Analysis, University of Freiburg, Tennenbacher Str. 4, 79106, Freiburg, GermanyBenjamin SchwarzInstitute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, GermanyUlrich BroseCEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, FranceThibaud DecaënsSorbonne Université, Institut d’Ecologie et des Sciences de l’Environnement, 75005, Paris, FrancePatrick LavelleCentre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 09200, Moulis, FranceMichel LoreauSorbonne Université, Institute of Ecology and Environmental Sciences of Paris (UMR 7618 IEES-Paris, CNRS, INRA, UPMC, IRD, UPEC), 4 place Jussieu, 75000, Paris, FranceJérôme MathieuINRA, IRD, Institut d’Ecologie et des Sciences de l’Environnement de Paris, F-75005, Paris, FranceJérôme MathieuDepartment of Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124, Catania, ItalyChristian MulderLaboratory of Nematology, Wageningen University, PO Box 8123, 6700, Wageningen, ES, The NetherlandsWim H. van der PuttenInstitute of Biology, Freie Universität Berlin, 14195, Berlin, GermanyMatthias C. Rillig & Daniel R. LammelInstitute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The NetherlandsFranciska T. de VriesAsian School of the Environment, Nanyang Technological University, Singapore, 639798, SingaporeDavid A. WardleCentre of Biodiversity and Sustainable Landuse, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerSilviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Büsgenweg 1, Göttingen, GermanyChristian AmmerForest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 1, Göttingen, GermanySabine AmmerInstitute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, 3-1-3 Kan-nondai, Tsukuba, Ibaraki, JapanMiwa AraiLand Resource Management and Agricultural Technology, University of Nairobi, Kapenguria Road, Off Naivasha Road, P.O Box 29053, Nairobi, KenyaFredrick O. AyukeRwanda Institute for Conservation Agriculture, KG 541, Kigali, RwandaFredrick O. AyukeHealth & Biosecurity, CSIRO, PO Box 1700, Canberra, AustraliaGeoff H. BakerDepartment of Animal Science, Santa Catarina State University, Chapecó, SC, 89815-630, BrazilDilmar BarettaExperimental Infrastructure Platform (EIP), Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyDietmar Barkusky & Monika JoschkoDépartment de biologie, Université de Sherbrooke, Sherbrooke, Québec, CanadaRobin Beauséjour & Robert L. BradleyGeology Department, FCEFQyN, ICBIA-CONICET (National Scientific and Technical Research Council), National University of Rio Cuarto, Ruta 36 Km, 601, Río Cuarto, ArgentinaJose C. Bedano & Anahí DomínguezDepartment of Ecology, Brandenburg University of Technology, Konrad-Wachsmann-Allee 6, Cottbus, GermanyKlaus BirkhoferEco&Sols, Univ Montpellier, IRD, INRAE, CIRAD, Institut Agro, Montpellier, FranceEric Blanchart & Michel BrossardNatural Resources, Cornell University, Ithaca, NY, USABernd BlosseyEarth Institute, University College Dublin, Belfield, Dublin, 4, IrelandThomas BolgerSchool of Biology and Environmental Science, University College Dublin, Belfield, Dublin, IrelandThomas BolgerDepartment of Entomology, Cornell University, 3132, Comstock Hall, Ithaca, NY, USAJames C. BurtisEMMAH, UMR 1114, INRA, Site Agroparc, Avignon, FranceYvan CapowiezThe School of Agriculture, Food and Wine, The Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, AustraliaTimothy R. CavagnaroFaculty of Forestry, University of Toronto, 33 Willcocks Street, Toronto, CanadaAmy Choi & Sandy M. SmithLaboratoire Écologie et Biologie des Interactions, équipe EES, UMR CNRS 7267, Université de Poitiers, 5 rue Albert Turpain, Poitiers, FranceJulia ClauseUMR ECOBIO (Ecosystems, Biodiversity, Evolution) CNRS-Université de Rennes, Station Biologique, 35380, Paimpont, FranceDaniel Cluzeau & Guénola PérèsECT Oekotoxikologie GmbH, Boettgerstr. 2-14, Floersheim, GermanyAnja CoorsInstitute of Biological, Environmental and Rural Sciences, Aberystwyth Universtiy, Plas Gogerddan, Aberystwyth, SY24 3EE, United KingdomFelicity V. CrottySchool for Agriculture, Food and the Environment, Royal Agricultural University, Stroud Road, Cirencester, GL7 6JS, United KingdomFelicity V. CrottyOdum School of Ecology, University of Georgia, 140 E Green Street, Athens, USAJasmine M. CrumseyDepartment of Biological Sciencies, SUNY Cortland, 1215 Bowers Hall, Cortland, USAAndrea DávalosBiodiversity, Ecology and Evolution, Faculty of Biology, University Complutense of Madrid, José Antonio Novais, 12, Madrid, SpainDarío J. Díaz Cosín, Mónica Gutiérrez López, Juan B. Jesús, Marta Novo & Dolores TrigoYale School of the Environment, Yale University, 370 Prospect St, New Haven, CT, USAAnnise M. DobsonDepartamento de Ciencias Básicas, Universidad Nacional de Luján, Argentina – INEDES (Universidad Nacional de Luján – CONICET), Luján, ArgentinaAndrés Esteban DuhourLouis Bolk Institute, Kosterijland 3-5, Bunnik, The NetherlandsNick van EekerenDepartment of Soil Science, University of Trier, Campus II, Behringstraße 21, Trier, GermanyChristoph EmmerlingDepartamento de Ciencias Básicas, Instituto de Ecología y Desarrollo Sustentable, Universidad Nacional de Luján, Av. Constitución y Ruta 5, Luján, ArgentinaLiliana B. FalcoAnimal Biodiversity and Evolution, Institute of Evolutionary Biology, Passeig Marítim de la Barceloneta 37, Barcelona, SpainRosa FernándezDepartment of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO, USASteven J. Fonte & Tunsisa T. HurissoBiodiversity and Systematic Network, Institute of Ecology A.C., El Haya, Xalapa, Veracruz, 91070, MexicoCarlos FragosoDepartment of Biology, Colorado State University, 200 West Lake Street, Fort Collins, CO, USAAndré L. C. FrancoDepartment of Biological Sciences and Environmental Studies, University of the Philippines Mindanao, Tugbok District, Davao, PhilippinesAbegail FusileroLaboratory of Environmental Toxicology and Aquatic Ecology, Environmental Toxicology Unit – GhEnToxLab, Ghent University, Campus Coupure, Coupure Links 653, Ghent, BelgiumAbegail FusileroCenter for Forest Ecology and Productivity RAS, Profsoyuznaya st. 84/32 bldg. 14, Moscow, RussiaAnna P. GeraskinaRazi University, Kermanshah, IranShaieste Gholami & Ehsan SayadUnited States Department of Agriculture, Forest Service, International Institute of Tropical Forestry, 1201 Ceiba Street, San Juan, Puerto RicoGrizelle GonzálezDepartment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogsmarksgrand 17, 901 83, Umeå, SwedenMichael J. GundaleDepartment of Biology, University of Osijek, Cara Hadrijana 8 A, Osijek, CroatiaBranimir K. Hackenberger & Davorka K. HackenbergerAgriculture engineering, Agroecology Postgraduate Program, Maranhão State University, Avenida Lourenço Vieira da Silva 1000, São Luis, BrazilLuis M. Hernández & Guillaume X. RousseauDepartment of Jobs, Precincts and Regions, Agriculture Victoria, Chiltern Valley Road, Rutherglen, AustraliaJeff R. HirthFaculty of Agriculture, Kyushu University, 394 Tsubakuro, Sasaguri, Fukuoka, 811-2415, JapanTakuo HishiMinnesota Pollution Control Agency, 520 Lafayette Road, St Paul, MN, USAAndrew R. HoldsworthDepartment of Bioscience, Aarhus University, Vejlsøvej 25, Aarhus, DenmarkMartin HolmstrupDepartment of Biological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, USAKristine N. HopfenspergerAgricultura Sociedad y Ambiente, El Colegio de la Frontera Sur, Av. Polígono s/n Cd. Industrial Lerma, Campeche, Campeche, MexicoEsperanza Huerta LwangaSoil Physics and Land Management Group, Wageningen University & Research, Droevendaalsteeg 4, Wageningen, The NetherlandsEsperanza Huerta Lwanga & Loes van SchaikDept. of Biological and Environmental Sciences, University of Jyväskylä, Box 35, Jyväskylä, FinlandVeikko HuhtaCollege of Agriculture, Environmental and Human Sciences, Lincoln University of Missouri, Jefferson City, MO, 65101, USATunsisa T. HurissoSchool of Forest Resources and Conservation, University of Florida, Gainesville, USABasil V. Iannone IIISustainable Development and Environmental Engineering, University of Agricultural Sciences and Veterinary Medicine of Banat “King Michael the 1st of Romania” from Timisoara, Calea Aradului 119, Timisoara, RomaniaMadalina IordacheInstitute for Ecosystem Research, University of Kiel, Olshausenstrasse 40, 24098, Kiel, GermanyUlrich IrmlerTartu College, Tallinn University of Technology, Puiestee 78, Tartu, EstoniaMari IvaskDepartment of Soil and Water Systems, University of Idaho, 875 Perimeter Drive MS, 2340, Moscow, USAJodi L. Johnson-MaynardFaculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa 1, Fukushima, JapanNobuhiro KanekoDepartment of Environment, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica, SlovakiaRadoslava KanianskaUK Centre for Ecology & Hydrology, Library Avenue, Bailrigg, Lancaster, United KingdomAidan M. KeithLand Use and Governance, Leibniz Centre for Agricultural Landscape Research, Eberswalder Str. 84, Müncheberg, GermanyMaria L. KerneckerUFR Sciences de la Nature, UR Gestion Durable des Sols, Université Nangui Abrogoua, Abidjan, Côte d’IvoireArmand W. KonéFaculty of Natural Resources and Marine Sciences, Tarbiat Modares University, 46417-76489, Noor, Mazandaran, IranYahya KoochProduction Systems, Natural Resources Institute Finland, Survontie 9 A, Jyväskylä, FinlandSanna T. KukkonenDepartment of Zoology, Pachhunga University College, Aizawl, Mizoram, IndiaH. LalthanzaraSkolkovo Institute of Science and Technology, 30-1 Bolshoy Boulevard, Moscow, 121205, RussiaIurii M. LebedevSAS, INRAE, Institut Agro, 35042, Rennes, FranceEdith Le CadreTropical Plant and Soil Sciences, College of Tropical Agriculture and Human Resources, University of Hawai’i at Manoa, 3190 Maile Way, St. John 102, Honolulu, USANoa K. LincolnEcologia Aplicada, Instituto de Zoologia y Ecologia Tropical, Universidad Central de Venezuela, Los Chaguaramos, Ciudad Universitaria, Caracas, VenezuelaDanilo López-HernándezDepartment of Natural Resource Ecology and Management, Oklahoma State University, 008C, Ag Hall, Stillwater, USAScott R. Loss & Shishir PaudelUPR Systèmes de Pérennes, CIRAD, Univ Montpellier, TA B-34/02 Avenue Agropolis, Montpellier, FranceRaphael MarichalDepartment of Forest Ecology, Faculty of Forestry and Wood Technology, Czech University of Life Sciences Prague, Kamýcká 129, Prague, Czech RepublicRadim MatulaTochigi Prefectural Museum, 2-2 Mutsumi-cho, Utsunomiya, JapanYukio MinamiyaThuenen-Institute of Biodiversity, Bundesallee 65, Braunschweig, GermanyJan Hendrik MoosThuenen-Institute of Organic Farming, Trenthorst 32, Westerau, GermanyJan Hendrik MoosPlant Biology, Ecology and Earth Science, INDEHESA, University of Extremadura, Plasencia, SpainGerardo MorenoConservación de la Biodiversidad, El Colegio de la Frontera Sur, Av. Rancho, poligono 2 A, Cd. Industrial de Lerma, Campeche, MexicoAlejandro Morón-RíosDepartment of Environmental Systems Science, Faculty of Science and Engineering, Doshisha University, Kyoto, 602-8580, JapanHasegawa MotohiroDepartment of Earth & Environmental Sciences, Division of Forest, Nature and Landscape, KU Leuven, Celestijnenlaan 200E Box, 2411, Leuven, BelgiumBart MuysResearch Institute for Nature and Forest, Gaverstraat 35, 9500, Geraardsbergen, BelgiumJohan NeirynckSchool of Agricultural, Forest and Food Sciences, Bern University of Applied Sciences, Länggasse 85, Zollikofen, SwitzerlandLindsey NorgroveSoil Ecosystems, Natural Resources Institute Finland (Luke), Tietotie 4, Jokioinen, FinlandVisa NuutinenNatural Area Consultants, 1 West Hill School Road, Richford, NY, USAVictoria NuzzoDepartment of Zoology, PSMO College, Tirurangadi, Malappuram, Kerala, India, Malappuram, IndiaP. Mujeeb RahmanCSIRO Ocean and Atmosphere, CSIRO, New Illawarra Road, Lucas Heights, NSW, AustraliaJohan PansuUMR7144 Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, CNRS/Sorbonne Université, Place Georges Teissier, Roscoff, FranceJohan PansuPhipps Conservatory and Botanical Gardens, Pittsburgh, PA, 15213, USAShishir PaudelUMR SAS, INRAE, Institut Agro Agrocampus Ouest, 35000, Rennes, FranceGuénola PérèsForest Ecology and Restoration Group, Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainLorenzo Pérez-Camacho & Salvador RebolloAdaptations du Vivant, CNRS UMR 7179, Muséum National d’Histoire Naturelle, 4 Avenue du Petit Château, Brunoy, FranceJean-François PongeDepartment of Ecology and Ecosystem Management, Technical University of Munich, Emil-Ramann-Str. 2, 85354, Freising, GermanyJörg PrietzelTembotov Institute of Ecology of Mountain Territories, Russian Academy of Sciences, I. Armand, 37a, Nalchik, RussiaIrina B. RapoportCenter of Excellence in Environmental Studies, King Abdulaziz University, P.O Box 80216, Jeddah, 21589, Saudi ArabiaMuhammad Imtiaz RashidGlobal Change Ecology and Evolution Research Group (GloCEE), Department of Life Sciences, University of Alcalá, 28805, Alcalá De Henares, SpainMiguel Á. RodríguezDepartment of Forest Resources, University of Minnesota, 1530, Cleveland Ave. N, St. Paul, USAAlexander M. RothFriends of the Mississippi River, 101 E 5th St. Suite 2000, St Paul, USAAlexander M. RothBiology, Biodiversity and Conservation Postgraduate Program, Federal University of Maranhão, Avenida dos Portugueses 1966, São Luis, BrazilGuillaume X. RousseauInstitute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, Kraków, PolandAnna RozenCollege of Natural Resources, University of Wisconsin, Stevens Point, WI, 54481, USABryant ScharenbrochThe Morton Arboretum, 4100 Illinois Route 53, Lisle, IL, 60532, USABryant ScharenbrochDepartment Engineering for Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth-Allee 100, Potsdam, GermanyMichael SchirrmannSchool of Agriculture and Food Science, University College Dublin, Agriculture and Food Science Centre, Dublin, IrelandOlaf SchmidtUCD Earth Institute, University College Dublin, Dublin, IrelandOlaf SchmidtLandscape Ecology and Environmental Systems Analysis, Institute of Geoecology, Technische Universität Braunschweig, Langer Kamp 19c, Braunschweig, GermanyBoris SchröderDepartment of Ecology, University of Innsbruck, Technikerstrasse 25, Innsbruck, AustriaJulia SeeberInstitute for Alpine Environment, Eurac Research, Viale Druso 1, Bozen/Bolzano, ItalyJulia Seeber & Michael SteinwandterLaboratory of Ecosystem Modelling, Institute of Physicochemical and Biological Problems in Soil Science of the Russian Academy of Sciences, Institutskaya str., 2, Pushchino, RussiaMaxim P. ShashkovLaboratory of Computational Ecology, Institute of Mathematical Problems of Biology RAS – the Branch of Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences, Vitkevicha str., 1, Pushchino, RussiaMaxim P. ShashkovDepartment of Zoology, Khalsa College Amritsar, Amritsar, Punjab, IndiaJaswinder SinghDepartment of Earth and Planetary Sciences, Johns Hopkins University, 3400 N. Charles Street, Baltimore, USAKatalin SzlaveczDepartment of animal biology, edaphology and geology, Faculty of Sciences (Biology), University of La Laguna, La Laguna, Santa Cruz De Tenerife, SpainJosé Antonio TalaveraForest Science, Kochi University, Monobe Otsu 200, Nankoku, JapanJiro TsukamotoJuárez Autonomous University of Tabasco, Nanotechnology Engineering, Multidisciplinary Academic Division of Jalpa de Méndez, Carr. Estatal libre Villahermosa-Comalcalco, Km 27 S/N, C.P. 86205 Jalpa de Méndez, Tabasco, MexicoSheila Uribe-LópezUnit Food & Agriculture, WWF-Netherlands, Driebergseweg 10, Zeist, The NetherlandsAnne W. de ValençaDpto. Ciencias, IS-FOOD, Universidad Pública de Navarra, Edificio Olivos – Campus Arrosadia, Pamplona, SpainIñigo VirtoDepartment of Soil, Water and Climate, University of Minnesota, 1991 Upper Buford Circle, St Paul, USAAdrian A. WackettEarth Innovation Institute, 98 Battery Street Suite 250, San Francisco, USAMatthew W. WarrenUniversity of California Davis, 1 Shields Avenue, Davis, USAEmily R. WebsterNatural Resources & Environmental Management, University of Hawaii at Manoa, 1910 East West Rd, Honolulu, USANathaniel H. WehrNatural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, CanadaJoann K. WhalenThe Nature Conservancy, 4245 Fairfax Drive, Arlington, USAMichael B. WironenAnimal Ecology, Justus Liebig University, Heinrich-Buff-Ring 26, Giessen, GermanyVolkmar WoltersInstitute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, ChinaPengfei WuLaboratory of terrestrial ecosystems, Federal Research Centre “Kola Science Centre of the Russian Academy of Sciences”, Institute of North Industrial Ecology Problems (INEP KSC RAS), Akademgorodok, 14a, Apatity, Murmansk, Province, RussiaIrina V. ZenkovaKey Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, College of Environment and Planning, Henan University, Kaifeng, ChinaWeixin ZhangFaculty of Biological and Environmental Sciences, Post Office Box 65, FI 00014, University of Helsinki, Helsinki, FinlandErin K. CameronThe sWorm workshops were organised by N.E., E.K.C. and H.R.P.P., with funding acquired by N.E., E.K.C. and M.P.T. Data collation and formatting was led by H.R.P.P., with assistance from J.K., M.J.I.B., G.B., K.B.G. and B.S. Harmonisation of earthworm species names was completed by G.B., M.J.I.B., M.L.C.B. and P.L. Advice and feedback on data collation protocols was provided by E.M.B., M.J.I.B., G.B., O.F., C.A.G., B.K.R., A.O., D.R., and D.H.W. Writing of the manuscript was led by H.R.P.P. All authors provided input and comments on the manuscript. The majority of authors provided data to the database. More

  • in

    Balancing carbon storage under elevated CO2

    RESEARCH SUMMARY

    21 May 2021

    Balancing carbon storage under elevated CO2

    A global synthesis of experiments reveals that increases in plant biomass under conditions of elevated CO2 mean that plants need to mine the soil for nutrients, which decreases soil’s ability to store carbon. In forests, elevated CO2 generally seems to greatly increase plant biomass, but not soil carbon. In grasslands, by contrast, it causes small changes in biomass and large increases in soil carbon.

    César Terrer

     ORCID: http://orcid.org/0000-0002-5479-3486

    0

    César Terrer

    Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA; and the Department of Earth System Science, Stanford University, Stanford, CA, USA.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    This is a summary of Terrer, C. et al. A trade-off between plant and soil carbon storage under elevated CO2. Nature https://doi.org/10.1038/s41586-021-03306-8 (2021).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:block;padding-right:20px;padding-left:20px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:10px}.Button-505204839 .readcube-label{color:#069}
    /* style specs end */Subscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-021-01117-5

    References1.van Groenigen, K. J., Qi, X., Osenberg, C. W., Luo, Y. & Hungate, B. A. Science 344, 508–509 (2014PubMedArticle
    Google Scholar2.Jastrow, J. D. et al. Glob. Change Biol. 11, 2057–2064 (2005).Article
    Google Scholar3.Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).Article
    Google Scholar4.Todd-Brown, K. E. O. et al. Biogeoscience 11, 2341–2356 (2014).Article
    Google Scholar5.Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Science 353, 72–74 (2016).PubMedArticle
    Google ScholarDownload references

    Competing Interests
    The author declares no competing interests.

    Latest on:

    Climate sciences

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Climate change

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Contrails: tweaking flight altitude could be a climate win
    Correspondence 18 MAY 21

    Nature-based solutions can help cool the planet — if we act now
    Comment 12 MAY 21

    Ecology

    Our radical changes to Earth’s greenery began long ago — with farms, not factories
    Research Highlight 20 MAY 21

    Controversial forestry experiment will be largest-ever in United States
    News 20 MAY 21

    Overwintering fires in boreal forests
    Article 19 MAY 21

    Jobs from Nature Careers

    All jobs

    Post-Doc – Numerical and microfabrication development of 4D metamaterials for mechanical, acoustic and photonics applications
    Université Bourgogne Franche-Comté (UBFC)
    BESANCON, France

    JOB POST

    Postdoctoral Position – Ecological Modeler
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Postdoctoral Fellow | Zandstra Stem Cell Bioengineering Lab
    The University of British Columbia (UBC)
    Vancouver, Canada

    JOB POST

    Masterthesis / internship (m/f/x)
    Helmholtz Centre for Environmental Research (UFZ)
    Leipzig, Germany

    JOB POST

    Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up

    Access through your institution

    Change institution

    Buy or subscribe

    Related Articles

    Effects of rising CO2 levels on carbon sequestration are coordinated above and below ground

    Subjects

    Climate sciences

    Climate change

    Ecology

    Sign up to Nature Briefing
    An essential round-up of science news, opinion and analysis, delivered to your inbox every weekday.

    Email address

    Yes! Sign me up to receive the daily Nature Briefing email. I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

    Sign up More

  • in

    Publisher Correction: Carbon tariffs

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Controversial forestry experiment will be largest-ever in United States

    A clear-cut slope in the Elliott State Forest, Oregon.Credit: Matthew Betts

    Despite lingering tensions among environmentalists and loggers, a plan to launch the largest forestry experiment in the United States — and perhaps the world — last month cleared a major hurdle. Controversially, the study would allow logging in a new research forest, in an attempt to answer a grand question: in a world where wood remains a necessary resource, but biodiversity is declining, what’s the best way to balance timber production with conservation?“We all love wood, and we all need wood,” says Thomas DeLuca, dean of the College of Forestry at Oregon State University (OSU) in Corvallis. “We have to find ways to produce it sustainably, and this project could help us do that.”
    These scientists are setting a forest on fire — and studying it with drones
    If the project — proposed by DeLuca and other researchers at OSU — launches successfully, the newly created Elliott State Research Forest in southwestern Oregon would occupy a roughly 33,000-hectare parcel of land. This would be divided into more than 40 sections, in which scientists would test several forest-management strategies, some including extensive logging. The advisory committee for the project, which comprises environmentalists, hunters, loggers and members of local Indigenous tribes, approved the latest research proposal on 22 April.The plan comes as US President Joe Biden and other international leaders are strengthening commitments to conserve land and biodiversity before a meeting of the United Nations Convention on Biological Diversity later this year. In time, the Elliott research forest could help policymakers to determine how best to define and implement those pledges, says DeLuca.A contested forestFor decades, the land that makes up the Elliott State Forest has been mired in controversy. Logging is big business in the US Pacific Northwest, and this particular state-owned piece of land contains old-growth forest filled with valuable Douglas firs (Pseudotsuga menziesii) and other trees. Other sections have been actively logged and replanted since 1930. It also hosts threatened species such as the spotted owl (Strix occidentalis) and the marbled murrelet (Brachyramphus marmoratus), a seabird that nests in old-growth forests. In 2012, a lawsuit aimed at protecting the marbled murrelet brought commercial logging in the forest to a halt.

    Source: Deanne Carlson, OSU/Oregon Geospatial Enterprise Office; Design: Nature

    The state of Oregon considered various options for the land, before OSU researchers stepped forward with a plan in 2018. Their proposal to convert the property into a research forest would allow logging to resume at a lower level — but in the service of science and conservation, the scientists say. According to the plan, the profit from logging in the Elliott forest — around US$5 million to $7 million annually, says DeLuca — would help to pay for the experiment’s infrastructure and operations.There are dozens of research forests around the globe, including in the United States, and scientists have used them to study everything from ecology and soils to acid rain and the effects of rising atmospheric carbon dioxide levels. But the Elliott research forest would be larger than most of its predecessors, and advocates say that it would provide scientists with the first opportunity to test ecological forestry at such a large scale.A sea change for forestryAs currently designed, the project would leave more than 40% of the forest — a section of old growth that has been regenerating naturally since the area last burnt, a century and a half ago — untouched by logging. In the remaining area, researchers would run a series of replicated experiments, carrying out 4 types of land management across 40 small watersheds. On some plots, selective logging of individual trees would take place across the entire area. On others, clear-cutting would take place on half of the land, with the other half reserved for conservation. Other types of experimental plot would mix these two approaches (see ‘A grand experiment’). To understand the impacts of each management type, scientists would measure a variety of parameters, including levels of carbon in the forest; stream health; and insect, bird and fish diversity.So far, around 20 OSU researchers are involved in the project’s design, but the university hopes eventually to attract more scientists from across the world, who would run their own projects.

    Old-growth areas such as this one would be protected as reserves under a plan to convert the Elliott State Forest into an experimental forest.Credit: Matthew Betts

    The scale and approach of the experiment proposed by OSU would represent a sea change in forestry research, says Sue Baker, a forest ecologist at the University of Tasmania in Hobart, Australia, who is setting up a retrospective study looking at similar questions in Tasmanian forests. “I can’t think of anything similar anywhere in the world where people have been able to manipulate the forest landscape at this scale,” says Baker.More hurdles aheadSince its creation in 1930, the Elliott State Forest has been legally obliged to generate revenue for Oregon’s public schools through logging. Before OSU can take it over, the state must compensate the school fund to the tune of $221 million (the value of the forest); it has so far allocated less than half of that amount.And other hurdles remain. The university must finish a detailed management plan that will lay out rules governing the forest, and it must craft a separate plan for managing threatened and endangered species; this will need to be approved by the US Fish and Wildlife Service.
    How much can forests fight climate change?
    The OSU team has spent the past few years trying to build a broad — and unlikely — coalition for the effort, through public meetings and engagement with local Indigenous tribes, industry, environmentalists and other members of the project’s advisory panel, whose support will be crucial as state leaders weigh their final decision. But tensions haven’t disappeared entirely. Many environmentalists continue to question the logic of clear-cutting forests that absorb and store carbon in the middle of a climate crisis. Rather than perpetuating a long and damaging legacy of clear-cutting, the Elliott forest could be used to pioneer new forestry methods that restore biodiversity and boost carbon storage, says Josh Laughlin, executive director of Cascadia Wildlands, a conservation group based in Eugene, Oregon. “Let’s not make the same mistakes we’ve made over the past 100 years.”Given OSU’s long-standing ties to the timber industry, and controversies surrounding its management of existing research forests, it will also need to overcome scepticism about its role as a land steward, says Bob Van Dyk, a policy director at the Wild Salmon Center, an environmental group based in Portland, Oregon. In 2019, for instance, OSU’s College of Forestry authorized clear-cutting on 6.5 hectares of one of its forests, felling trees that were hundreds of years old.
    When will the Amazon hit a tipping point?
    DeLuca acknowledges that there have been mistakes in the past, but says the university has a solid academic record, and is committed to building a world-class research facility with the Elliott forest. “If we are able to demonstrate practices that accommodate the broadest array of species while still generating timber for meeting human resource needs, we can have a much larger impact,” says DeLuca.Everything will depend on the final management plan, but for now, Van Dyk and other members of the advisory board have unanimously given a provisional green light to the latest proposal. “It’s a good project, and we don’t get many chances to do something that is truly novel and interesting,” he says. More

  • in

    Our radical changes to Earth’s greenery began long ago — with farms, not factories

    A nineteenth-century illustration of a harvest in ancient Greece. Farming intensified around 2000 BC, when the rate of change in Earth’s plant life sped up. Credit: Docutres/Index/Heritage Images/Alamy

    Ecology
    20 May 2021
    Our radical changes to Earth’s greenery began long ago — with farms, not factories

    Humanity’s imprint on plant species and abundance began roughly 4,000 years ago, when agriculture took off.

    Share on Twitter
    Share on Twitter

    Share on Facebook
    Share on Facebook

    Share via E-Mail
    Share via E-Mail

    Human activity began to transform the number and variety of plant species on Earth thousands of years ago, long before the Industrial Revolution, and might have had an even greater impact on vegetation than did the last ice age.Ice entombed much of the planet from roughly 115,000 to some 20,000 years ago. Then, massive glaciers around the world started to retreat and global temperatures rose, resulting in dramatic alterations to Earth’s ecosystems.To investigate how the abundance and composition of global vegetation changed after that thaw, Ondřej Mottl and Suzette Flantua at the University of Bergen in Norway and their colleagues analysed 1,181 fossilized pollen samples from the past 18,000 years. The pollen came from all continents except Antarctica.The researchers found that global vegetation has been transformed, first by the climate changes that accompanied the end of the last glacial period. However, starting about 4,000 years ago, when agriculture intensified, the pace of change in global vegetation accelerated, reaching or exceeding the rate of change at the end of the most recent ice age.

    Science (2021)

    Ecology More

  • in

    Seasonal change is a major driver of soil resistomes at a watershed scale

    1.D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature. 477, 457–461 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Udikovic-Kolic, N., Wichmann, F., Broderick, N. A. & Handelsman, J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc. Natl Acad. Sci. USA. 111, 15202–15207 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Chen, Q. L. et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 92–93, 1–10 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Gillings, M. R. & Stokes, H. W. Are humans increasing bacterial evolvability? Trends Ecol. Evol. 27, 346–352 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. USA. 110, 3435–3440 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA. 117, 26868–26875 (2020).8.World Health Organization. Antimicrobial resistance: global report on surveillance. World Health Organization. (2014).9.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 337, 1107–1111 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Zhu, G. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. 15, 270–281 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Xiang, Q. et al. Agricultural activities affect the pattern of the resistome within the phyllosphere microbiome in peri-urban environments. J. Hazard Mater. 382, 121068 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wang, F. H. et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 48, 9079–9085 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ding, J. et al. Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. Environ. Int. 124, 145–152 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Zhou, S. Y. et al. Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. Environ. Pollut. 252, 227–235 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Wang, F. H., Qiao, M., Chen, Z., Su, J. Q. & Zhu, Y. G. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J. Hazard Mater. 299, 215–221 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Marti, R. et al. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl. Environ. Microb. 79, 5701–5709 (2013).CAS 
    Article 

    Google Scholar 
    17.Zhu, Y. G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Du, S. et al. Large-scale patterns of soil antibiotic resistome in Chinese croplands. Sci. Total Environ. 712, 136418 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Pruden, A., Pei, R. T., Storteboom, H. & Carlson, K. H. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ. Sci. Technol. 40, 7445–7450 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature. 560, 233–237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Hu, H. W. et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ. Microbiol. 20, 3186–3200 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Han, X. M. et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol. Biochem. 126, 91–102 (2018).CAS 
    Article 

    Google Scholar 
    23.Hu, H. W. et al. Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiol. Ecol. 92, fiv169 (2016).24.Zhang, Y. J. et al. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 231, 1621–1632 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).CAS 
    Article 

    Google Scholar 
    29.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Su, J. Q. et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ. Sci. Technol. 49, 7356–7363 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ouyang, W. Y., Huang, F. Y., Zhao, Y., Li, H. & Su, J. Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl. Microbiol. Biotechnol. 99, 5697–5707 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Roberts D. W. labdsv: ordination and multivariate analysis for ecology. R package version 1.8-0. 2016. https://CRAN.R-project.org/package=labdsv.33.Oksanen J. et al. Vegan: community ecology package. R package version 2.2-0. 2014. http://CRAN.R-project.org/package=vegan.34.Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome. 6, 1–13 (2018).35.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 8, 732–740 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA. 116, 16892–16898 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.De Caceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology. 90, 3566–3574 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Doerks, T., Copley, R. R., Schultz, J., Ponting, C. P. & Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12, 47–56 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Wickham H. ggplot2: elegant graphics for data analysis. (Springer-Verlag, 2009).40.Kassambara A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.2. 2018. https://CRAN.R-project.org/package=ggpubr.41.Ahlmann-Eltze C. ggsignif: significance brackets for ‘ggplot2’. R package version 0.4. 0. 2018. https://CRAN.R-project.org/package=ggsignif.42.Zhao, F. K. et al. Soil contamination with antibiotics in a typical peri-urban area in eastern China: seasonal variation, risk assessment, and microbial responses. J. Environ. Sci. (China). 79, 200–212 (2019).Article 

    Google Scholar 
    43.Zhang, Y., Snow, D. D., Parker, D., Zhou, Z. & Li, X. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environ. Sci. Technol. 47, 10206–10213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Mao, D. et al. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environ. Sci. Technol. 48, 71–78 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Xiang, Q. et al. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. Environ. Pollut. 235, 525–533 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 509, 612–616 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Li, B. et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 2490–2502 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hu, H. W. et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ. Microbiol. 18, 3896–3909 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Birgander, J., Rousk, J. & Olsson, P. A. Comparison of fertility and seasonal effects on grassland microbial communities. Soil Biol. Biochem. 76, 80–89 (2014).CAS 
    Article 

    Google Scholar 
    50.Fournier, B. et al. Higher spatial than seasonal variation in floodplain soil eukaryotic microbial communities. Soil Biol. Biochem. 147, 107842 (2020).CAS 
    Article 

    Google Scholar 
    51.Zhang, K., Delgado-Baquerizo, M., Zhu, Y. G. & Chu, H. Space is more important than season when shaping soil microbial communities at a large spatial scale. Msystems. 5, e00783–19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Ladau, J. & Eloe-Fadrosh, E. A. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 27, 662–669 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Germination response to water availability in populations of Festuca pallescens along a Patagonian rainfall gradient based on hydrotime model parameters

    1.Zárate, M. A. & Tripaldi, A. The aeolian system of central Argentina. Aeolian Res. 3, 401–417 (2012).ADS 
    Article 

    Google Scholar 
    2.Chapin III, F. S. Functional role of growth forms in ecosystem and global processes. In Scaling Physiology Process (ed. Ehleringer J. R. & Field C. B.) 287–312. (Elsevier Inc., 1993). https://doi.org/10.1016/C2009-0-03319-4.
    Google Scholar 
    3.Jump, A. S., Mátyás, C. & Peñuelas, J. The altitude-for-latitude disparity in the rangeretractions of woody species. Trends Ecol. Evol. (Amst.) 24, 694–701. https://doi.org/10.1016/j.tree.2009.06.007 (2009).Article 

    Google Scholar 
    4.Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).Article 

    Google Scholar 
    5.O’Connor, T. Local extinction in perennial grasslands: A life-history approach. Am. Nat. 137, 753–773 (1991).Article 

    Google Scholar 
    6.Rotundo, J. L., Aguiar, M. R. & Benech-Arnold, R. Understanding erratic seedling emergence in perennial grasses using physiological models and field experimentation. Plant Ecol. 216, 143–156 (2015).Article 

    Google Scholar 
    7.Duncan, C., Schultz, N. L., Good, M. K., Lewandrowski, W. & Cook, S. The risk-takers and-avoiders: Germination sensitivity to water stress in an arid zone with unpredictable rainfall. AoB Plants. 11(6), plz066 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Pendleton, B. & Meyer, S. Habitat-correlated variation in blackbrush (Coleogyne ramosissima: Rosaceae) seed germination response. J. Arid Environ. 59, 229–243 (2004).ADS 
    Article 

    Google Scholar 
    9.Chamorro, D. et al. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biol. 19(1), 23–31 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.Bewley, J. D. & Black, M. Seeds. In Seeds. (ed. Bewley, J. D. & Black, M.) 1–33. https://doi.org/10.1007/978-1-4899-1002-8. eBook ISBN978-1-4899-1002-8 (Springer, Boston, MA, 1994).
    Google Scholar 
    11.Bradford, K. J. Water relations in seed germination. In Seed Development and Germination (eds Kigel, J. & Galili, G.) 351–396 (Marcel Dekker Inc, 1995).
    Google Scholar 
    12.Batlla, D. & Benech-Arnold, R. L. The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci. Res. 16(1), 47–59 (2006).Article 
    CAS 

    Google Scholar 
    13.Luna, B. & Chamorro, D. Germination sensitivity to water stress of eight Cistaceae species from the Western Mediterranean. Seed Sci. Res. 26(2), 101 (2016).Article 

    Google Scholar 
    14.Bradford, K. J. Threshold models applied to seed germination ecology. New Phytol. 165, 338–341 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Garcia-Huidobro, J., Monteith, J. & Squire, G. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. J. Exp. Bot. 33, 288–296 (1982).Article 

    Google Scholar 
    16.Bradford, K. J. A water relations analysis of seed germination rates. Plant Physiol. 94, 840–849 (1990).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Bradford, K. J. & Still, D. W. Applications of hydrotime analysis in seed testing. Seed Technol. 26(1), 75–85 (2004).
    Google Scholar 
    18.Gummerson, R. J. The effect of constant temperature and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37, 729–741 (1986).Article 

    Google Scholar 
    19.Bradford, K. J. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50, 248–260 (2002).Article 
    CAS 

    Google Scholar 
    20.Batlla, D. & Agostinelli, A. M. Thermal regulation of secondary dormancy induction in Polygonum aviculare seeds: A quantitative analysis using the hydrotime model. Seed Sci. Res. 27(3), 231–242 (2017).Article 
    CAS 

    Google Scholar 
    21.Farahinia, P., Sadat-Noori, S. A., Mortazavian, M. M., Soltani, E. & Foghi, B. Hydrotime model analysis of Trachyspermum ammi (L.) Sprague seed germination. J. Appl. Res. Med. Aroma. 5, 88–91 (2017).
    Google Scholar 
    22.Wang, R., Bai, Y. & Tanino, K. Germination of winterfat (Eurotia lanata (Pursh) Moq.) seeds at reduced water potentials: Testing assumptions of hydrothermal time model. Environ. Exp. Bot. 53(1), 49–683 (2005).Article 

    Google Scholar 
    23.Alvarado, V. & Bradford, K. J. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25(8), 1061–1069 (2002).Article 

    Google Scholar 
    24.Bakhshandeh, E. & Gholamhossieni, M. Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. J. Plant Growth Regul. 38(4), 1402–1411 (2019).Article 
    CAS 

    Google Scholar 
    25.Bakhshandeh, E. & Jamali, M. Population-based threshold models: A reliable tool for describing aged seeds response of rapeseed under salinity and water stress. Environ. Exp. Bot. 176, 104077 (2020).Article 
    CAS 

    Google Scholar 
    26.Leva, P. E. Variación regional de las características agroecológicas y genéticas de Bromus pictus y Poa ligularis en estepas patagónicas (Universidad Nacional de Buenos Aires, 2010).
    Google Scholar 
    27.Palazzesi, L., Barreda, V. & Prieto, A. Análisis evolutivo de la vegetación cenozoica en las provincias de Chubut y Santa Cruz (Argentina) con especial atención en las comunidades herbáceo-arbustivas. Revista del Museo Argentino de Ciencias Naturales nueva serie 5(2), 151–161 (2014).
    Google Scholar 
    28.León, R. J., Bran, D., Collantes, M., Paruelo, J. M. & Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecol. Austral. 8, 125–144 (1998).
    Google Scholar 
    29.Villalba, R. et al. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim. Change. 59(1), 177–232 (2003).Article 

    Google Scholar 
    30.Godagnone, R., Bran, D. Inventario integrado de los recursos de la Provincia de Río Negro. (INTA, Argentina, Río Negro, 2009).
    Google Scholar 
    31.Soriano, A. La vegetación del Chubut. Revista Argentina de Agronomía. 17, 30–66 (1950).
    Google Scholar 
    32.Bertiller, M. B. & Coronato, F. Seed bank patterns of Festuca pallescens in semiarid Patagonia (Argentina): A possible limit to bunch reestablishment. Biodivers. Conserv. 3(1), 57–67 (1994).Article 

    Google Scholar 
    33.Defossé, G., Bertiller, M. & Robberecht, R. Germination characteristics of Festuca pallescens, a Patagonian bunchgrass with reclamation potential. Seed Sci. Technol. (Switzerland). 23(3), 715–723 (1995).
    Google Scholar 
    34.Bertiller, M. B., Elissalde, N. O., Rostagno, C. M. & Defossé, G. E. Environmental patterns and plant distribution along a precipitation gradient in western Patagonia. J. Arid Environ. 29, 85–97 (1993).Article 

    Google Scholar 
    35.Bran, D., Ayesa, J., López, C. Regiones ecológicas de Río Negro. Comunicación Técnica No 59. (INTA, EEA Bariloche, 2000).
    Google Scholar 
    36.Oliva, G. et al. Monitoring drylands: The MARAS system. J. Arid Environ. 161, 55–63 (2019).ADS 
    Article 

    Google Scholar 
    37.López, A. S., Marchelli, P., Batlla, D., López, D. R. & Arana, M. V. Seed responses to temperature indicate different germination strategies among Festuca pallescens populations from semi-arid environments in North Patagonia. Agric. For. Meteorol. 272, 81–90 (2019).ADS 
    Article 

    Google Scholar 
    38.Gaitán, J. J. et al. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecol. Indic. 34, 181–191 (2013).Article 

    Google Scholar 
    39.Moore, R. P. Tetrazolium tests for diagnosing causes for seed weaknesses and for predicting and understanding performance. In Proceedings of the Association of Official Seed Analysts. Association of Official Seed Analysts, vol. 56, 70–73. https://www.jstor.org/stable/23432057 (1966).40.Michel, B. E. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72(1), 66–70 (1983).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Di Rienzo, J. A., et al. InfoStat versión 2020 & Centro de Transferencia InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.42.Volis, S., Mendlinger, S. & Ward, D. Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133(2), 131–138 (2002).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Krichen, K., Mariem, H. B. & Chaieb, M. Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. S. Afr. J. Bot. 94, 210–217 (2014).Article 

    Google Scholar 
    44.Petrů, M. & Tielbörger, K. Germination behaviour of annual plants under changing climatic conditions: Separating local and regional environmental effects. Oecologia 155(4), 717–728 (2008).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Cavallaro, V. et al. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol. Eng. 95, 557–566 (2016).Article 

    Google Scholar 
    46.Tognetti, P. M., Mazia, N. & Ibáñez, G. Seed local adaptation and seedling plasticity account for Gleditsia triacanthos tree invasion across biomes. Ann. Bot. 124(2), 307–318 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Allen, P. S., Meyer, S. E. & Khan, M. A. Hydrothermal time as a tool in comparative germination studies. In Seed biology: advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999. (ed. Black, M., Bradford, J. K. & Vazquez-Ramos, J.) 401–410. https://doi.org/10.1079/9780851994048.0401 (2000).48.Hu, X. W., Fan, Y., Baskin, C. C., Baskin, J. M. & Wang, Y. R. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am. J. Bot. 102(5), 649–660 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Ramírez-Tobías, H., Peña-Valdivia, C., Trejo, C., Aguirre, J. & Vaquera, H. Seed germination of Agave species as influenced by substrate water potential. Biol. Res. 47, 1–9 (2014).Article 
    CAS 

    Google Scholar 
    50.Couso, L. Mecanismos de tolerancia a sequía y sus efectos sobre la habilidad competitiva de pastos de la estepa patagónica (Universidad Nacional de Buenos Aires, 2011).
    Google Scholar 
    51.López, D. R. Una aproximación Estructural-Funcional 1 del Modelo de Estados y Transiciones para el estudio de la dinámica de la vegetación en estepas de Patagonia norte (Universidad Nacional del Comahue, San Carlos de Bariloche, 2011).
    Google Scholar 
    52.Leva, P. E., Aguiar, M. R. & Premoli, A. C. Latitudinal variation of genecological traits in native grasses of Patagonian rangelands. Aust. J. Bot. 61(6), 475–485 (2013).Article 

    Google Scholar 
    53.López, D. R. & Cavallero, L. The role of nurse functional types in seedling recruitment dynamics of alternative states in rangelands. Acta Oecol. 79, 70–80 (2017).ADS 
    Article 

    Google Scholar 
    54.Coronato, F. R. & Bertiller, M. B. Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia. J. Arid Environ. 34(1), 1–9 (1996).ADS 
    Article 

    Google Scholar 
    55.Coronato, F. R. & Bertiller, B. Climatic controls of soil moisture dynamics in an arid steppe of northern Patagonia, Argentina. Arid Land Res. Manag. 11, 277–288 (1997).
    Google Scholar 
    56.Heber, U., Santarius, K. A. Water stress during freezing. In Water and Plant Life. Ecological Studies (Analysis and Synthesis), vol. 19 (eds. Lange, O. L. et al.) 253–257. https://doi.org/10.1007/978-3-642-66429-8_16 (Springer, Berlin, Heidelberg, 1976).57.López, A. S., López, D. R., Caballe, G., Siffredi, G. L. & Marchelli, P. Local adaptation along a sharp rainfall gradient occurs in a native Patagonian grass, Festuca pallescens, regardless of extensive gene flow. Environ. Exp. Bot. 171, 103933 (2020).Article 
    CAS 

    Google Scholar 
    58.López, A. S., Azpilicueta, M. M., López, D. R., Siffredi, G. L. & Marchelli, P. Phylogenetic relationships and intraspecific diversity of a North Patagonian Fescue: Evidence of differentiation and interspecific introgression at peripheral populations. Folia Geobot. 53, 115–131. https://doi.org/10.1007/s12224-017-9304-1 (2018).Article 

    Google Scholar 
    59.Smith, S., Riley, E., Tiss, J. & Fendenhein, D. Geographical variation in predictive seedling emergence in a perennial desert grass. J. Ecol. 88, 139–149 (2000).Article 

    Google Scholar 
    60.Bohara, H. et al. Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil Tillage Res. 189, 44–51 (2019).Article 

    Google Scholar  More