1.Chiappe, L. M. in Encyclopedia of Dinosaurs (eds Currie, P. J. & Padian, K.) 32–38 (Academic, 1997).2.Mayr, G. Avian Evolution: The Fossil Record of Birds and its Paleobiological Significance (Wiley, 2017).3.O’Connor, J. K. The trophic habits of early birds. Palaeogeogr. Palaeoclimatol. Palaeoecol. 513, 178–195 (2019).Article
Google Scholar
4.Benton, M. J. Vertebrate Palaeontology (Wiley, 2015).5.Chatterjee, S. The Rise of Birds: 225 Million Years of Evolution (Johns Hopkins Univ. Press, 2015).6.Chiappe, L. M. & Qingjin, M. Birds of Stone Chinese Avian Fossils from the Age of Dinosaurs (Johns Hopkins Univ. Press, 2016).7.Ksepka, D. T., Grande, L. & Mayr, G. Oldest finch-beaked birds reveal parallel ecological radiations in the earliest evolution of passerines. Curr. Biol. 29, 657–663 (2019).CAS
PubMed
Article
Google Scholar
8.O’Connor, J. K. & Zhou, Z. The evolution of the modern avian digestive system: insights from paravian fossils from the Yanliao and Jehol biotas. Palaeontology 63, 13–27 (2020).Article
Google Scholar
9.Zhou, Z., Barrett, P. M. & Hilton, J. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421, 807–814 (2003).CAS
PubMed
Article
Google Scholar
10.Zhou, Z. & Zhang, F. A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418, 405–409 (2002).CAS
PubMed
Article
Google Scholar
11.Zheng, X. et al. Fossil evidence of avian crops from the Early Cretaceous of China. Proc. Natl Acad. Sci. USA 108, 15904–15907 (2011).CAS
PubMed
Article
Google Scholar
12.Miller, C. V. et al. Disassociated rhamphotheca of fossil bird Confuciusornis informs early beak reconstruction, stress regime, and developmental patterns. Commun. Biol. 3, 519 (2020).PubMed
PubMed Central
Article
Google Scholar
13.Miller, C. & Pittman, M. The diet of early birds based on modern and fossil evidence and a new framework for its reconstruction. ESSOAr https://doi.org/10.1002/essoar.10504068.2 (2020).Article
Google Scholar
14.Wang, M., Wang, X., Wang, Y. & Zhou, Z. A new basal bird from China with implications for morphological diversity in early birds. Sci. Rep. 6, 19700 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
15.Zanno, L. E. & Makovicky, P. J. Herbivorous ecomorphology and specialization patterns in theropod dinosaur evolution. Proc. Natl Acad. Sci. USA 108, 232–237 (2011).CAS
PubMed
Article
Google Scholar
16.Karasov, W. H. & Douglas, A. E. Comparative digestive physiology. Compr. Physiol. 3, 741–783 (2013).PubMed
PubMed Central
Google Scholar
17.Karasov, W. H., Martinez del Rio, C. & Caviedes-Vidal, E. Ecological physiology of diet and digestive systems. Annu. Rev. Physiol. 73, 69–93 (2011).CAS
PubMed
Article
Google Scholar
18.Miller, S. A. & Harley, J. P. Zoology (McGraw-Hill, 2016).19.Corring, T. The adaptation of digestive enzymes to the diet: its physiological significance. Reprod. Nutr. Dev. 20, 1217–1235 (1980).CAS
PubMed
Article
Google Scholar
20.German, D. P., Horn, M. H. & Gawlicka, A. Digestive enzyme activities in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Physiol. Biochem. Zool. 77, 789–804 (2004).CAS
PubMed
Article
Google Scholar
21.Hidalgo, M., Urea, E. & Sanz, A. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170, 267–283 (1998).Article
Google Scholar
22.Karasov, W. H. & Diamond, J. M. Interplay between physiology and ecology in digestion: intestinal nutrient transporters vary within and between species according to diet. BioScience 38, 602–611 (1988).CAS
Article
Google Scholar
23.Hecker, N., Sharma, V. & Hiller, M. Convergent gene losses illuminate metabolic and physiological changes in herbivores and carnivores. Proc. Natl Acad. Sci. USA 116, 3036–3041 (2019).CAS
PubMed
Article
Google Scholar
24.Schondube, J. E., Herrera-M, L. G. & del Rio, C. M. Diet and the evolution of digestion and renal function in phyllostomid bats. Zoology 104, 59–73 (2001).CAS
PubMed
Article
Google Scholar
25.Wang, Z. et al. Evolution of digestive enzyme genes associated with dietary diversity of crabs. Genetica 148, 87–99 (2020).CAS
PubMed
Article
Google Scholar
26.Wang, Z. et al. Evolution of digestive enzymes and RNASE1 provides insights into dietary switch of cetaceans. Mol. Biol. Evol. 33, 3144–3157 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
27.Mayo Clinic. Encyclopedia of Foods: a Guide to Healthy Nutrition (Academic, 2002).28.Chen, Y.-H. & Zhao, H. Evolution of digestive enzymes and dietary diversification in birds. PeerJ 7, e6840 (2019).PubMed
PubMed Central
Article
CAS
Google Scholar
29.Wu, Y. et al. Genomic bases underlying the adaptive radiation of core landbirds. Preprint at bioRxiv https://doi.org/10.1101/2020.07.29.222281 (2020).30.Wu, Y. & Wang, H. Convergent evolution of bird-mammal shared characteristics for adapting to nocturnality. Proc. Biol. Sci. 286, 20182185 (2019).PubMed
PubMed Central
Google Scholar
31.Wu, Y., Wang, H. & Hadly, E. A. Invasion of ancestral mammals into dim-light environments inferred from adaptive evolution of the phototransduction genes. Sci. Rep. 7, 46542 (2017).CAS
PubMed
PubMed Central
Article
Google Scholar
32.Wu, Y., Wang, H., Wang, H. & Feng, J. Arms race of temporal partitioning between carnivorous and herbivorous mammals. Sci. Rep. 8, 1713 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
33.Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS
Article
Google Scholar
34.Naim, H. Y., Sterchi, E. & Lentze, M. Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J. Biol. Chem. 263, 7242–7253 (1988).CAS
PubMed
Article
PubMed Central
Google Scholar
35.Boll, W., Wagner, P. & Mantei, N. Structure of the chromosomal gene and cDNAs coding for lactase-phlorizin hydrolase in humans with adult-type hypolactasia or persistence of lactase. Am. J. Hum. Genet. 48, 889–902 (1991).CAS
PubMed
PubMed Central
Google Scholar
36.Furuta, H. et al. Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35. 2 by fluorescence in situ hybridization. Genomics 36, 206–209 (1996).CAS
PubMed
Article
PubMed Central
Google Scholar
37.Wright, E., Hirayama, B. & Loo, D. Active sugar transport in health and disease. J. Intern. Med. 261, 32–43 (2007).CAS
PubMed
Article
PubMed Central
Google Scholar
38.Cura, A. J. & Carruthers, A. Role of monosaccharide transport proteins in carbohydrate assimilation, distribution, metabolism, and homeostasis. Compr. Physiol. 2, 863–914 (2012).PubMed
PubMed Central
Google Scholar
39.Douard, V. & Ferraris, R. P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab. 295, E227–E237 (2008).CAS
PubMed
PubMed Central
Article
Google Scholar
40.Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Asp. Med. 34, 121–138 (2013).CAS
Article
Google Scholar
41.Li, Y. et al. N-myc downstream-regulated gene 2, a novel estrogen-targeted gene, is involved in the regulation of Na+/K+-ATPase. J. Biol. Chem. 286, 32289–32299 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
42.Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu. Rev. Nutr. 34, 281–303 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
43.Izar, M. C., Tegani, D. M., Kasmas, S. H. & Fonseca, F. A. Phytosterols and phytosterolemia: gene–diet interactions. Genes Nutr. 6, 17–26 (2011).CAS
PubMed
Article
PubMed Central
Google Scholar
44.Takeuchi, K. & Reue, K. Biochemistry, physiology, and genetics of GPAT, AGPAT, and lipin enzymes in triglyceride synthesis. Am. J. Physiol. Endocrinol. Metab. 296, E1195–E1209 (2009).CAS
PubMed
PubMed Central
Article
Google Scholar
45.Mangaraj, M., Nanda, R. & Panda, S. Apolipoprotein AI a molecule of diverse function. Indian J. Clin. Biochem. 31, 253–259 (2016).CAS
PubMed
Article
PubMed Central
Google Scholar
46.Qu, J., Ko, C.-W., Tso, P. & Bhargava, A. Apolipoprotein A-IV: a multifunctional protein involved in protection against atherosclerosis and diabetes. Cells 8, 319 (2019).CAS
PubMed Central
Article
Google Scholar
47.Hazard, S. E. & Patel, S. B. Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols. Pflug. Arch. 453, 745–752 (2007).CAS
Article
Google Scholar
48.Frølund, S., Holm, R., Brodin, B. & Nielsen, C. U. The proton‐coupled amino acid transporter, SLC36A1 (hPAT1), transports Gly‐Gly, Gly‐Sar and other Gly‐Gly mimetics. Br. J. Pharm. 161, 589–600 (2010).Article
CAS
Google Scholar
49.Szabó, A., Pilsak, C., Bence, M., Witt, H. & Sahin-Tóth, M. Complex formation of human proelastases with procarboxypeptidases A1 and A2. J. Biol. Chem. 291, 17706–17716 (2016).PubMed
PubMed Central
Article
CAS
Google Scholar
50.Crisman, J. M., Zhang, B., Norman, L. P. & Bond, J. S. Deletion of the mouse meprin β metalloprotease gene diminishes the ability of leukocytes to disseminate through extracellular matrix. J. Immunol. 172, 4510–4519 (2004).CAS
PubMed
Article
Google Scholar
51.Erşahin, Ç., Szpaderska, A. M., Orawski, A. T. & Simmons, W. H. Aminopeptidase P isozyme expression in human tissues and peripheral blood mononuclear cell fractions. Arch. Biochem. Biophys. 435, 303–310 (2005).PubMed
Article
CAS
Google Scholar
52.Higuchi, Y. et al. Mutations in MME cause an autosomal‐recessive Charcot–Marie–Tooth disease type 2. Ann. Neurol. 79, 659–672 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
53.Lambeir, A.-M., Durinx, C., Scharpé, S. & De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab Sci. 40, 209–294 (2003).CAS
PubMed
Article
Google Scholar
54.Tipnis, S. R. et al. A human homolog of angiotensin-converting enzyme cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 275, 33238–33243 (2000).CAS
PubMed
Article
Google Scholar
55.Yamamoto, K. K. et al. Isolation of a cDNA encoding a human serum marker for acute pancreatitis. Identification of pancreas-specific protein as pancreatic procarboxypeptidase B. J. Biol. Chem. 267, 2575–2581 (1992).CAS
PubMed
Article
Google Scholar
56.Liang, R. et al. Human intestinal H+/peptide cotransporter cloning, functional expression, and chromosomal localization. J. Biol. Chem. 270, 6456–6463 (1995).CAS
PubMed
Article
Google Scholar
57.Johansson, B. B. et al. The role of the carboxyl ester lipase (CEL) gene in pancreatic disease. Pancreatology 18, 12–19 (2018).CAS
PubMed
Article
Google Scholar
58.Shen, W.-J., Azhar, S. & Kraemer, F. B. SR-B1: a unique multifunctional receptor for cholesterol influx and efflux. Annu. Rev. Physiol. 80, 95–116 (2018).CAS
PubMed
Article
PubMed Central
Google Scholar
59.Stahl, A. et al. Identification of the major intestinal fatty acid transport protein. Mol. Cell 4, 299–308 (1999).CAS
PubMed
Article
PubMed Central
Google Scholar
60.Hussain, M. M., Rava, P., Walsh, M., Rana, M. & Iqbal, J. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. 9, 14 (2012).CAS
Article
Google Scholar
61.Ludvik, A. E. et al. HKDC1 is a novel hexokinase involved in whole-body glucose use. Endocrinology 157, 3452–3461 (2016).CAS
PubMed
PubMed Central
Article
Google Scholar
62.Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).CAS
PubMed
Article
Google Scholar
63.Wang, N. & Tall, A. R. Regulation and mechanisms of ATP-binding cassette transporter A1-mediated cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 1178–1184 (2003).CAS
PubMed
Article
Google Scholar
64.Wang, G., Bonkovsky, H. L., de Lemos, A. & Burczynski, F. J. Recent insights into the biological functions of liver fatty acid binding protein 1. J. Lipid Res. 56, 2238–2247 (2015).CAS
PubMed
PubMed Central
Article
Google Scholar
65.Tousignant, K. D. et al. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol. Cancer Res. 17, 1166–1179 (2019).CAS
PubMed
Article
Google Scholar
66.Cui, X.-L., Schlesier, A. M., Fisher, E. L., Cerqueira, C. & Ferraris, R. P. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway. Am. J. Physiol. Gastrointest. Liver Physiol. 288, G1310–G1320 (2005).CAS
PubMed
Article
Google Scholar
67.Cappello, A. R., Curcio, R., Lappano, R., Maggiolini, M. & Dolce, V. The physiopathological role of the exchangers belonging to the SLC37 family. Front. Chem. 6, 122 (2018).PubMed
PubMed Central
Article
CAS
Google Scholar
68.Nesbitt, S. J. The early evolution of archosaurs: relationships and the origin of major clades. Bull. Am. Mus. Nat. Hist. 352, 1–292 (2011).Article
Google Scholar
69.Yahia, E. M. Fruit and Vegetable Phytochemicals: Chemistry and Human Health (Wiley, 2018).70.Caviedes-Vidal, E. et al. The digestive adaptation of flying vertebrates: high intestinal paracellular absorption compensates for smaller guts. Proc. Natl Acad. Sci. USA 104, 19132–19137 (2007).CAS
PubMed
Article
Google Scholar
71.Frei, S. et al. Comparative digesta retention patterns in ratites. Auk 132, 119–131 (2015).Article
Google Scholar
72.Price, E. R., Brun, A., Caviedes-Vidal, E. & Karasov, W. H. Digestive adaptations of aerial lifestyles. Physiology 30, 69–78 (2015).CAS
PubMed
Article
Google Scholar
73.Larson, D. W., Brown, C. M. & Evans, D. C. Dental disparity and ecological stability in bird-like dinosaurs prior to the end-Cretaceous mass extinction. Curr. Biol. 26, 1325–1333 (2016).CAS
PubMed
Article
Google Scholar
74.Matsukawa, M., Shibata, K., Sato, K., Xing, X. & Lockley, M. G. The Early Cretaceous terrestrial ecosystems of the Jehol Biota based on food-web and energy-flow models. Biol. J. Linn. Soc. 113, 836–853 (2014).Article
Google Scholar
75.Wolff, R. L. et al. Abietoid seed fatty acid composition—a review of the genera Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga and preliminary inferences on the taxonomy of Pinaceae. Lipids 37, 17–26 (2002).CAS
PubMed
Article
Google Scholar
76.Wolff, R. L., Pédrono, F., Pasquier, E. & Marpeau, A. M. General characteristics of Pinus spp. Sseed fatty acid compositions, and importance of Δ5‐olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35, 1–22 (2000).CAS
PubMed
Article
Google Scholar
77.Friis, E. M., Crane, P. R. & Pedersen, K. R. Early Flowers and Angiosperm Evolution (Cambridge Univ. Press, 2011).78.Clench, M. H. & Mathias, J. R. The avian cecum: a review. Wilson Bull. 107, 93–121 (1995).
Google Scholar
79.Li, Z. et al. Ultramicrostructural reductions in teeth: implications for dietary transition from non-avian dinosaurs to birds. BMC Evol. Biol. 20, 46 (2020).PubMed
PubMed Central
Article
Google Scholar
80.Ma, W., Pittman, M., Lautenschlager, S., Meade, L. E. & Xu, X. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 229–249 (Scientific Publications of the American Museum of Natural History, 2020).81.Barrett, P. M. Paleobiology of herbivorous dinosaurs. Annu. Rev. Earth Planet Sci. 42, 207–230 (2014).CAS
Article
Google Scholar
82.Zanno, L. E., Gillette, D. D., Albright, L. B. & Titus, A. L. A new North American therizinosaurid and the role of herbivory in ‘predatory’dinosaur evolution. Proc. R. Soc. B 276, 3505–3511 (2009).PubMed
Article
Google Scholar
83.Cowen, R. History to Life (Wiley, 2013).84.You, H.-l et al. A nearly modern amphibious bird from the Early Cretaceous of northwestern China. Science 312, 1640–1643 (2006).CAS
PubMed
Article
Google Scholar
85.Xu, X. et al. An integrative approach to understanding bird origins. Science 346, 1253293 (2014).PubMed
Article
CAS
Google Scholar
86.Brusatte, S. L. Dinosaur Paleobiology (Wiley, 2012).87.Button, K., You, H., Kirkland, J. I. & Zanno, L. Incremental growth of therizinosaurian dental tissues: implications for dietary transitions in Theropoda. PeerJ 5, e4129 (2017).PubMed
PubMed Central
Article
CAS
Google Scholar
88.Han, G. et al. A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance. Nat. Commun. 5, 4382 (2014).CAS
PubMed
Article
Google Scholar
89.O’Connor, J. et al. Microraptor with ingested lizard suggests non-specialized digestive function. Curr. Biol. 29, 2423–2429 (2019).PubMed
Article
CAS
Google Scholar
90.O’Connor, J., Zhou, Z. & Xu, X. Additional specimen of Microraptor provides unique evidence of dinosaurs preying on birds. Proc. Natl Acad. Sci. USA 108, 19662–19665 (2011).PubMed
Article
Google Scholar
91.Xu, X., You, H., Du, K. & Han, F. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475, 465–470 (2011).CAS
PubMed
Article
Google Scholar
92.Wang, S., Stiegler, J., Wu, P. & Chuong, C.-M. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 205–228 (Scientific Publications of the American Museum of Natural History, 2020).93.Farlow, J. O. & Holtz, T. R. The fossil record of predation in dinosaurs. Paleontol. Soc. Pap. 8, 251–266 (2002).Article
Google Scholar
94.Pittman, M. et al. in Pennaraptoran Theropod Dinosaurs: Past Progress and New Frontiers (eds Pittman, M. & Xu, X.) 37–95 (Scientific Publications of the American Museum of Natural History, 2020).95.Benson, R. B. et al. Rates of dinosaur body mass evolution indicate 170 million years of sustained ecological innovation on the avian stem lineage. PLoS Biol. 12, e1001853 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
96.Lee, M. S., Cau, A., Naish, D. & Dyke, G. J. Sustained miniaturization and anatomical innovation in the dinosaurian ancestors of birds. Science 345, 562–566 (2014).CAS
PubMed
Article
Google Scholar
97.O’Connor, J. & Zhou, Z. Early evolution of the biological bird: perspectives from new fossil discoveries in China. J. Ornithol. 156, 333–342 (2015).Article
Google Scholar
98.Zhou, Z. & Zhang, F. A precocial avian embryo from the Lower Cretaceous of China. Science 306, 653 (2004).CAS
PubMed
Article
Google Scholar
99.Mayr, G. Evolution of avian breeding strategies and its relation to the habitat preferences of Mesozoic birds. Evol. Ecol. 31, 131–141 (2017).Article
Google Scholar
100.Arendt, J. D. Adaptive intrinsic growth rates: an integration across taxa. Q. Rev. Biol. 72, 149–177 (1997).Article
Google Scholar
101.Jackson, B. E., Segre, P. & Dial, K. P. Precocial development of locomotor performance in a ground-dwelling bird (Alectoris chukar): negotiating a three-dimensional terrestrial environment. Proc. R. Soc. B 276, 3457–3466 (2009).PubMed
Article
Google Scholar
102.Colquhoun, I. Comparing the impact of predators on the activity patterns of lemurids and ceboids. Folia Primatol. 77, 143–165 (2006).Article
Google Scholar
103.Maor, R., Dayan, T., Ferguson-Gow, H. & Jones, K. E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 1, 1889–1895 (2017).PubMed
Article
Google Scholar
104.Wu, Y. Evolutionary origin of nocturnality in birds. eLS 1, 483–489 (2020).Article
Google Scholar
105.Xu, X., Zhou, Z. & Wang, X. The smallest known non-avian theropod dinosaur. Nature 408, 705–708 (2000).CAS
PubMed
Article
Google Scholar
106.Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).CAS
PubMed
Article
Google Scholar
107.Gong, E., Martin, L. D., Burnham, D. A. & Falk, A. R. The birdlike raptor Sinornithosaurus was venomous. Proc. Natl Acad. Sci. USA 107, 766–768 (2010).CAS
PubMed
Article
Google Scholar
108.Sullivan, C., Xu, X. & O’Connor, J. K. Complexities and novelties in the early evolution of avian flight, as seen in the Mesozoic Yanliao and Jehol Biotas of Northeast China. Palaeoworld 26, 212–229 (2017).Article
Google Scholar
109.Pei, R. et al. Potential for powered flight neared by most close avialan relatives, but few crossed its thresholds. Curr. Biol. 30, 4033–4046 (2020).CAS
PubMed
Article
Google Scholar
110.Turner, A. H., Pol, D., Clarke, J. A., Erickson, G. M. & Norell, M. A. A basal dromaeosaurid and size evolution preceding avian flight. Science 317, 1378–1381 (2007).CAS
PubMed
Article
Google Scholar
111.Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).CAS
PubMed
Article
Google Scholar
112.Gittleman, J. L. Carnivore body size: ecological and taxonomic correlates. Oecologia 67, 540–554 (1985).PubMed
Article
Google Scholar
113.Radloff, F. G. & Du Toit, J. T. Large predators and their prey in a southern African savanna: a predator’s size determines its prey size range. J. Anim. Ecol. 73, 410–423 (2004).Article
Google Scholar
114.Vézina, A. F. Empirical relationships between predator and prey size among terrestrial vertebrate predators. Oecologia 67, 555–565 (1985).PubMed
Article
Google Scholar
115.Rezende, E. L., Bacigalupe, L. D., Nespolo, R. F. & Bozinovic, F. Shrinking dinosaurs and the evolution of endothermy in birds. Sci. Adv. 6, eaaw4486 (2020).PubMed
PubMed Central
Article
Google Scholar
116.Seebacher, F. Dinosaur body temperatures: the occurrence of endothermy and ectothermy. Paleobiology 29, 105–122 (2003).Article
Google Scholar
117.Chatterjee, S. & Templin, R. in Feathered Dragons: Studies on the Transition from Dinosaurs to Birds (eds Currie, P. J., Kopplehaus, E. B., Shugar, M. A. & Wright, J. L.) 251–281 (Indiana Univ. Press, 2004).118.Hedenström, A. How birds became airborne. Trends Ecol. Evol. 14, 375–376 (1999).PubMed
Article
Google Scholar
119.Dudley, R. et al. Gliding and the functional origins of flight: biomechanical novelty or necessity? Annu. Rev. Ecol. Evol. Syst. 38, 179–201 (2007).Article
Google Scholar
120.Clemente, C. & Wilson, R. Speed and maneuverability jointly determine escape success during simulated games of escape behaviour. Behav. Ecol. 27, 45–54 (2016).Article
Google Scholar
121.Caro, T. Antipredator Defenses in Birds and Mammals (Univ. Chicago Press, 2005).122.Van den Hout, P. J., Mathot, K. J., Maas, L. R. & Piersma, T. Predator escape tactics in birds: linking ecology and aerodynamics. Behav. Ecol. 21, 16–25 (2010).Article
Google Scholar
123.Wright, N. A., Steadman, D. W. & Witt, C. C. Predictable evolution toward flightlessness in volant island birds. Proc. Natl Acad. Sci. USA 113, 4765–4770 (2016).CAS
PubMed
Article
Google Scholar
124.Wang, M., Zhou, Z. & Sullivan, C. A fish-eating enantiornithine bird from the Early Cretaceous of China provides evidence of modern avian digestive features. Curr. Biol. 26, 1170–1176 (2016).CAS
PubMed
Article
Google Scholar
125.Zheng, X. et al. New specimens of Yanornis indicate a piscivorous diet and modern alimentary canal. PLoS ONE 9, e95036 (2014).PubMed
PubMed Central
Article
CAS
Google Scholar
126.Zhou, Z., Zhang, F. & Li, Z. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. R. Soc. B 277, 219–227 (2010).PubMed
Article
Google Scholar
127.Meredith, R. W., Zhang, G., Gilbert, M. T. P., Jarvis, E. D. & Springer, M. S. Evidence for a single loss of mineralized teeth in the common avian ancestor. Science 346, 1254390 (2014).PubMed
Article
CAS
Google Scholar
128.Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).PubMed
Article
Google Scholar
129.Lima, S. L., Valone, T. J. & Caraco, T. Foraging-efficiency-predation-risk trade-off in the grey squirrel. Anim. Behav. 33, 155–165 (1985).Article
Google Scholar
130.Verdolin, J. L. Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behav. Ecol. Sociobiol. 60, 457–464 (2006).Article
Google Scholar
131.Yang, T.-R. & Sander, P. M. The origin of the bird’s beak: new insights from dinosaur incubation periods. Biol. Lett. 14, 20180090 (2018).PubMed
PubMed Central
Article
Google Scholar
132.Zhou, Y.-C., Sullivan, C. & Zhang, F. Negligible effect of tooth reduction on body mass in Mesozoic birds. Vert. Palas 57, 38–50 (2019).
Google Scholar
133.Louchart, A. & Viriot, L. From snout to beak: the loss of teeth in birds. Trends Ecol. Evol. 26, 663–673 (2011).PubMed
Article
Google Scholar
134.Randall, D., Burggren, W. & French, K. Eckert Animal Physiology: Mechanisms and Adaptations (W. H. Freeman, 1997).135.Davit‐Béal, T., Tucker, A. S. & Sire, J. Y. Loss of teeth and enamel in tetrapods: fossil record, genetic data and morphological adaptations. J. Anat. 214, 477–501 (2009).PubMed
PubMed Central
Article
Google Scholar
136.Gill, F. & Donsker, D. IOC World Bird List (v8.2). https://doi.org/10.14344/IOC.ML.8.2 (2018).137.Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS
PubMed
PubMed Central
Article
Google Scholar
138.Crawford, N. G. et al. A phylogenomic analysis of turtles. Mol. Phylogenet. Evol. 83, 250–257 (2015).PubMed
Article
Google Scholar
139.Guillon, J.-M., Guéry, L., Hulin, V. & Girondot, M. A large phylogeny of turtles (Testudines) using molecular data. Contrib. Zool. 81, 147–158 (2012).Article
Google Scholar
140.Jønsson, K. A. & Fjeldså, J. A phylogenetic supertree of oscine passerine birds (Aves: Passeri). Zool. Scr. 35, 149–186 (2006).Article
Google Scholar
141.McKay, B. D., Barker, F. K., Mays, H. L. Jr, Doucet, S. M. & Hill, G. E. A molecular phylogenetic hypothesis for the manakins (Aves: Pipridae). Mol. Phylogenet. Evol. 55, 733–737 (2010).PubMed
Article
PubMed Central
Google Scholar
142.Oaks, J. R. A time‐calibrated species tree of Crocodylia reveals a recent radiation of the true crocodiles. Evolution 65, 3285–3297 (2011).PubMed
Article
Google Scholar
143.Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).PubMed
PubMed Central
Article
CAS
Google Scholar
144.Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331 (2014).CAS
PubMed
PubMed Central
Article
Google Scholar
145.Wilman, H. et al. EltonTraits 1.0: species‐level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).Article
Google Scholar
146.Brusatte, S. L., O’Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. Curr. Biol. 25, R888–R898 (2015).CAS
PubMed
Article
Google Scholar More