Current extinction rate in European freshwater gastropods greatly exceeds that of the late Cretaceous mass extinction
1.Darwall, W. et al. The alliance for freshwater life: a global call to unite efforts for freshwater biodiversity science and conservation. Aquat. Conserv. 28, 1015–1022 (2018).Article
Google Scholar
2.Green, P. A. et al. Freshwater ecosystem services supporting humans: pivoting from water crisis to water solutions. Global Environ. Chang. 34, 108–118 (2015).Article
Google Scholar
3.EEA (European Environment Agency). The European environment — state and outlook 2020. Knowledge for transition to a sustainable Europe (Publications Office of the European Union, Luxembourg, 2019).4.Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biol. Rev. 81, 163–182 (2006).Article
Google Scholar
5.Régnier, C., Fontaine, B. & Bouchet, P. Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv. Biol. 23, 1214–1221 (2009).Article
Google Scholar
6.Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article
CAS
Google Scholar
7.Burkhead, N. M. Extinction rates in North American freshwater fishes, 1900–2010. BioScience 62, 798–808 (2012).Article
Google Scholar
8.Poff, N. L., Olden, J. D. & Strayer, D. L. Climate change and freshwater fauna extinction risk. 309–336. In: Hannah, L. (ed.) Saving a million species (Island Press/Center for Resource Economics, Washington, 2012).9.De Grave, S. et al. Dead shrimp blues: a global assessment of extinction risk in freshwater shrimps (Crustacea: Decapoda: Caridea). PLoS ONE 10, e0120198 (2015).Article
CAS
Google Scholar
10.Böhm, M. et al. The conservation status of the world’s freshwater molluscs. Hydrobiologia (2020) https://doi.org/10.1007/s10750-020-04385-w.11.Albert, J. S. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021).Article
Google Scholar
12.Andermann, T., Faurby, S., Turvey, S. T., Antonelli, A. & Silvestro, D. The past and future human impact on mammalian diversity. Sci. Adv. 6, eabb2313 (2020).Article
Google Scholar
13.Dudgeon, D. Freshwater biodiversity: status, threats and conservation (Cambridge University Press, Cambridge, 2020).14.WWF (World Wildlife Fund). Living Planet Report – 2020: Bending the curve of biodiversity loss (WWF, Gland, 2020).15.Döll, P. & Zhang, J. Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci 14, 783–799 (2010).Article
Google Scholar
16.Janse, J. H. et al. GLOBIO-Aquatic, a global model of human impact on the biodiversity of inland aquatic ecosystems. Environ. Sci. Policy 48, 99–114 (2015).Article
Google Scholar
17.Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).CAS
Article
Google Scholar
18.Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article
Google Scholar
19.Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 1214–1218 (2010).CAS
Article
Google Scholar
20.Wang, J.-G., Wu, F.-Y., Tan, X.-C. & Liu, C.-Z. Magmatic evolution of the Western Myanmar Arc documented by U-Pb and Hf isotopes in detrital zircon. Tectonophysics 612–613, 97–105 (2014).Article
CAS
Google Scholar
21.Mills, B. J. W. et al. Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Res. 67, 172–186 (2019).CAS
Article
Google Scholar
22.Shukla, P. R. et al. (eds) Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems (IPCC, Geneva, 2019).23.Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary. Science 363, 866–870 (2019).CAS
Article
Google Scholar
24.Hull, P. M. et al. On impact and volcanism across the Cretaceous-Paleogene boundary. Science 367, 266–272 (2020).CAS
Article
Google Scholar
25.Robertson, D. S., Lewis, W. M., Sheehan, P. M. & Toon, O. B. K-Pg extinction patterns in marine and freshwater environments: the impact winter model. J. Geophys. Res. Biogeosci. 118, 1006–1014 (2013).Article
Google Scholar
26.Balian, E. V., Segers, H., Lévêque, C. & Martens, K. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595, 627–637 (2008).Article
Google Scholar
27.Darwall, W., Seddon, M., Clausnitzer, V. & Cumberlidge, N. Freshwater invertebrate life. 26–32. In: Collen, B., Böhm, M., Kemp, R. & Baillie, J. E. M. (eds). Spineless: status and trends of the world’s invertebrates (Zoological Society of London, London, 2012).28.Strong, E. E., Gargominy, O., Ponder, W. F. & Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 595, 149–166 (2008).Article
Google Scholar
29.Neubauer, T. A., Harzhauser, M., Georgopoulou, E., Kroh, A. & Mandic, O. Tectonics, climate, and the rise and demise of continental aquatic species richness hotspots. Proc. Natl. Acad. Sci. USA 112, 11478–11483 (2015).CAS
Article
Google Scholar
30.Cuttelod, A., Seddon, M. & Neubert, E. European red list of non-marine molluscs (Publications Office of the European Union, Luxembourg, 2011).31.Cordellier, M., Pfenninger, A., Streit, B. & Pfenninger, M. Assessing the effects of climate change on the distribution of pulmonate freshwater snail biodiversity. Mar. Biol. 159, 2519–2531 (2012).Article
Google Scholar
32.Markovic, D. et al. Europe’s freshwater biodiversity under climate change: distribution shifts and conservation needs. Divers. Distrib. 20, 1097–1107 (2014).Article
Google Scholar
33.Georgopoulou, E., Neubauer, T. A., Harzhauser, M., Kroh, A. & Mandic, O. Distribution patterns of European lacustrine gastropods: a result of environmental factors and deglaciation history. Hydrobiologia 775, 69–82 (2016).Article
Google Scholar
34.IUCN (International Union for Conservation of Nature). The IUCN red list of threatened species. Version 2020-1. https://www.iucnredlist.org (2020).35.Andermann, T., Faurby, S., Cooke, R., Silvestro, D. & Antonelli, A. iucn_sim: a new program to simulate future extinctions based on IUCN threat status. Ecography 44, 162–176 (2021).Article
Google Scholar
36.Neubauer, T. A., Harzhauser, M., Kroh, A., Georgopoulou, E. & Mandic, O. A gastropod-based biogeographic scheme for the European Neogene freshwater systems. Earth-Sci. Rev. 143, 98–116 (2015).Article
Google Scholar
37.Sheehan, P. M., Coorough, P. J. & Fastovsky, D. E. Biotic selectivity during the K/T and Late Ordovician extinction events. Geol. Soc. Spec. Pap. 307, 477–489 (1996).
Google Scholar
38.MacLeod, N. et al. The Cretaceous-Tertiary biotic transition. J. Geol. Soc. 154, 265–292 (1997).Article
Google Scholar
39.Vajda, V. & Bercovici, A. The global vegetation pattern across the Cretaceous–Paleogene mass extinction interval: a template for other extinction events. Global Planet. Change 122, 29–49 (2014).Article
Google Scholar
40.Silvestro, D., Cascales-Miñana, B., Bacon, C. D. & Antonelli, A. Revisiting the origin and diversification of vascular plants through a comprehensive Bayesian analysis of the fossil record. New Phytol. 207, 425–436 (2015).Article
Google Scholar
41.Henderson, J. Fossil non-marine Mollusca of North America. Geol. Soc. Spec. Pap. 3, 1–313 (1935).
Google Scholar
42.Steffen, W. et al. Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. USA 115, 8252–8259 (2018).CAS
Article
Google Scholar
43.Bown, P. R., Lees, J. A. & Young, J. R. Calcareous nannoplankton evolution and diversity through time. 481–508. In: Thierstein, H. R. & Young, J. R. (eds). Coccolithophores (Springer, Berlin, 2004).44.Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).CAS
Article
Google Scholar
45.Naeem, S., Duffy, J. E. & Zavaleta, E. The functions of biological diversity in an age of extinction. Science 336, 1401–1406 (2012).CAS
Article
Google Scholar
46.Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).CAS
Article
Google Scholar
47.Cowie, R. H., Régnier, C., Fontaine, B. & Bouchet, P. Measuring the sixth extinction: what do mollusks tell us? Nautilus 131, 3–41 (2017).
Google Scholar
48.Georgopoulou, E. et al. Beginning of a new age: How did freshwater gastropods respond to the Quaternary climate change in Europe? Quat. Sci. Rev. 149, 269–278 (2016).Article
Google Scholar
49.Csapó, H. et al. Successful post-glacial colonization of Europe by single lineage of freshwater amphipod from its Pannonian Plio-Pleistocene diversification hotspot. Sci. Rep. 10, 18695 (2020).Article
CAS
Google Scholar
50.Davis, M., Faurby, S. & Svenning, J.-C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. USA 115, 11262–11267 (2018).CAS
Article
Google Scholar
51.Lowery, C. M. & Fraass, A. J. Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction. Nat. Ecol. Evol. 3, 900–904 (2019).Article
Google Scholar
52.Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).CAS
Article
Google Scholar
53.Thompson, P. L., Rayfield, B. & Gonzalez, A. Loss of habitat and connectivity erodes species diversity, ecosystem functioning, and stability in metacommunity networks. Ecography 40, 98–108 (2017).Article
Google Scholar
54.Pimiento, C. et al. Selective extinction against redundant species buffers functional diversity. Proc. R. Soc. B 287, 20201162 (2020).Article
Google Scholar
55.Cao, W. et al. Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences 14, 5425–5439 (2017).Article
Google Scholar
56.Martinson, G. G. Mezozoiskie i Kainozoiskie Molliuski kontinentalnykh otlozhenii Sibirskoi Platformy Zabaikalia i Mongolii. Trudy Baikal’skoy Limnologicheskoy Stantzii Akademii Nauk SSSR 19, 1–332 (1961).
Google Scholar
57.Pan, H. Mesozoic and Cenozoic fossil Gastropoda from Yunnan. 83-152. In: Nanjing Institute of Geology and Palaeontology (Ed.). Mesozoic Fossils from Yunnan. 2 (Science Press, Beijing, 1977).58.Payne, J. L., Bush, A. M., Heim, N. A., Knope, M. L. & McCauly, D. J. Ecological selectivity of the emerging mass extinction in the oceans. Science 353, 1284–1286 (2016).CAS
Article
Google Scholar
59.Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J. & Allmon, W. D. The generification of the fossil record. Paleobiology 40, 511–528 (2014).Article
Google Scholar
60.Silvestro, D., Salamin, N., Antonelli, A. & Meyer, X. Improved estimation of macroevolutionary rates from fossil data using a Bayesian framework. Paleobiology 45, 546–570 (2019).Article
Google Scholar
61.Plummer, M. et al. coda: Output analysis and diagnostics for MCMC. R package version 0.19-3. https://cran.r-project.org/web/packages/coda/index.html (2019).62.R Core Team. R: A language and environment for statistical computing. Version 3.6.3. R Foundation for Statistical Computing, Vienna. http://www.R-project.org (2020).63.Chamberlain, S. rredlist: ‘IUCN’ red list client. R package version 0.6.0. http://CRAN.R-project.org/package=rredlist (2020)64.Bandel, K. & Riedel, F. The late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Ann. Naturhist. Mus. Wien Ser. A 96, 1–65 (1994).
Google Scholar More