1.Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E. & Gill, T. E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 40, 2-1–2-31 (2002).
Google Scholar
2.Prospero, J. M. & Lamb, P. J. African droughts and dust transport to the Caribbean: climate change implications. Science 302, 1024–1027 (2003).CAS
Google Scholar
3.Jickells, T. et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. science 308, 67–71 (2005).CAS
Google Scholar
4.Mahowald, N. M. et al. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles 19, https://doi.org/10.1029/2004GB002402 (2005).5.Bristow, C. S., Hudson‐Edwards, K. A. & Chappell, A. Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett. 37, https://doi.org/10.1029/2010GL043486 (2010).6.Rizzolo, J. A. et al. Soluble iron nutrients in Saharan dust over the central Amazon rainforest. Atmos. Chem. Phys. 17, 2673–2687 (2017).CAS
Google Scholar
7.Micheels, A., Eronen, J. & Mosbrugger, V. The Late Miocene climate response to a modern Sahara desert. Glob. Planet. Change 67, 193–204 (2009).
Google Scholar
8.Lohmann, G., Butzin, M. & Bickert, T. Effect of vegetation on the Late Miocene ocean circulation. J. Mar. Sci. Eng. 3, 1311–1333 (2015).
Google Scholar
9.Vinoj, V. et al. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 7, 308–313 (2014).CAS
Google Scholar
10.Dave, P., Bhushan, M. & Venkataraman, C. Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci. Rep. 7, 1–12 (2017).CAS
Google Scholar
11.Besnard, G., de Casas, R., Christin, R. & Vargas, P.-A. P. Phylogenetics of Olea (Oleaceae) based on plastid and nuclear ribosomal DNA sequences: tertiary climatic shifts and lineage differentiation times. Ann. Bot. 104, 143–160 (2009).CAS
Google Scholar
12.Désamoré, A. et al. Out of Africa: north‐westwards Pleistocene expansions of the heather Erica arborea. J. Biogeogr. 38, 164–176 (2011).
Google Scholar
13.Denk, T., Güner, H. T. & Grimm, G. W. From mesic to arid: Leaf epidermal features suggest preadaptation in Miocene dragon trees (Dracaena). Rev. Palaeobot. Palynol. 200, 211–228 (2014).
Google Scholar
14.Mairal, M., Pokorny, L., Aldasoro, J. J., Alarcón, M. & Sanmartín, I. Ancient vicariance and climate‐driven extinction explain continental‐wide disjunctions in Africa: the case of the Rand Flora genus Canarina (Campanulaceae). Mol. Ecol. 24, 1335–1354 (2015).CAS
Google Scholar
15.Douady, C. J. et al. The Sahara as a vicariant agent, and the role of Miocene climatic events, in the diversification of the mammalian order Macroscelidea (elephant shrews). Proc. Natl Acad. Sci. 100, 8325–8330 (2003).CAS
Google Scholar
16.Carranza, S., Arnold, E., Geniez, P., Roca, J. & Mateo, J. Radiation, multiple dispersal and parallelism in the skinks, Chalcides and Sphenops (Squamata: Scincidae), with comments on Scincus and Scincopus and the age of the Sahara Desert. Mol. Phylogenet. Evol. 46, 1071–1094 (2008).CAS
Google Scholar
17.Brito, J. C. et al. Unravelling biodiversity, evolution and threats to conservation in the Sahara‐Sahel. Biol. Rev. 89, 215–231 (2014).
Google Scholar
18.Gonçalves, D. V. et al. The role of climatic cycles and trans-Saharan migration corridors in species diversification: biogeography of Psammophis schokari group in North Africa. Mol. Phylogenet. Evol. 118, 64–74 (2018).
Google Scholar
19.Lado, S., Alves, P. C., Islam, M. Z., Brito, J. C. & Melo-Ferreira, J. The evolutionary history of the Cape hare (Lepus capensis sensu lato): insights for systematics and biogeography. Heredity 123, 634–646 (2019).CAS
Google Scholar
20.Moutinho, A. F. et al. Evolutionary history of two cryptic species of northern African jerboas. BMC Evolut. Biol. 20, 1–16 (2020).
Google Scholar
21.Solounias, N., Plavcan, J., Quade, J. & Witmer, L. in The Evolution of Neogene Terrestrial Ecosystems in Europe (eds Rook, L. et al.) Ch. 22, 436–453 (Cambridge University Press, 1999).22.Thomas, H. Les bovidae (Artiodactyla: Mammalia) du miocene du sous-continent indien, de la peninsule arabique et de l’afrique: Biostratigraphie, biogeographie et ecologie. Palaeogeogr. Palaeoclimatol. Palaeoecol. 45, 251–299 (1984).
Google Scholar
23.Bibi, F. Mio-Pliocene faunal exchanges and African biogeography: the record of fossil bovids. PLoS ONE 6, e16688 (2011).24.Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evolut. Biol. 13, 166 (2013).
Google Scholar
25.Begun, D. R., Nargolwalla, M. C. & Kordos, L. European Miocene hominids and the origin of the African ape and human clade. Evolut. Anthropol. 21, 10–23 (2012).
Google Scholar
26.Kaya, F. et al. The rise and fall of the Old World savannah fauna and the origins of the African savannah biome. Nat. Ecol. Evol. 2, 241–246 (2018).
Google Scholar
27.Vrba, E. S. On the connections between paleoclimate and evolution. In Paleoclimate and evolution, with emphasis on human origins. (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) p. 24–45 (Yale University Press, New Haven and Lopndon, 1995).28.Homke, S., Vergés, J., Garcés, M., Emami, H. & Karpuz, R. Magnetostratigraphy of Miocene–Pliocene Zagros foreland deposits in the front of the Push-e Kush arc (Lurestan Province, Iran). Earth Planet. Sci. Lett. 225, 397–410 (2004).CAS
Google Scholar
29.Alavi, M. Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229, 211–238 (1994).
Google Scholar
30.Berberian, M. Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241, 193–224 (1995).
Google Scholar
31.Mather, A., Stokes, M., Pirrie, D. & Hartley, R. Generation, transport and preservation of armoured mudballs in an ephemeral gully system. Geomorphology 100, 104–119 (2008).
Google Scholar
32.Bachmann, G. H. & Wang, Y. Armoured mud balls as a result of ephemeral fluvial flood in a humid climate: modern example from Guizhou Province, South China. J. Palaeogeogr. 3, 410–418 (2014).
Google Scholar
33.Vicente, A., Expósito, M., Sanjuan, J. & Martín-Closas, C. Small sized charophyte gyrogonites in the Maastrichtian of Coll de Nargó, Eastern Pyrenees: an adaptation to temporary floodplain ponds. Cretac. Research 57, 443–456 (2016).
Google Scholar
34.Fakhari, M. D., Axen, G. J., Horton, B. K., Hassanzadeh, J. & Amini, A. Revised age of proximal deposits in the Zagros foreland basin and implications for Cenozoic evolution of the High Zagros. Tectonophysics 451, 170–185 (2008).
Google Scholar
35.Emami, H. et al. Structure of the Mountain Front Flexure along the Anaran anticline in the Pusht-e Kuh Arc (NW Zagros, Iran): insights from sand box models. Geol. Soc. Lond. Spec. Publ. 330, 155–178 (2010).36.Ewing, S. A. et al. A threshold in soil formation at Earth’s arid–hyperarid transition. Geochim. Cosmochim. Acta 70, 5293–5322 (2006).CAS
Google Scholar
37.Rosenthal, E., Magaritz, M., Ronen, D. & Roded, R. Origin of nitrates in the Negev Desert, Israel. Appl. Geochem 2, 347–354 (1987).CAS
Google Scholar
38.Michalski, G., Böhlke, J. & Thiemens, M. Long term atmospheric deposition as the source of nitrate and other salts in the Atacama Desert, Chile: new evidence from mass-independent oxygen isotopic compositions. Geochim. Cosmochim. Acta 68, 4023–4038 (2004).CAS
Google Scholar
39.Mouthereau, F., Lacombe, O. & Vergés, J. Building the Zagros collisional orogen: timing, strain distribution and the dynamics of Arabia/Eurasia plate convergence. Tectonophysics 532, 27–60 (2012).
Google Scholar
40.Reynolds, R. L. et al. Dust emission from wet and dry playas in the Mojave Desert, USA. Earth Surf. Process. Landf. 32, 1811–1827 (2007).
Google Scholar
41.Cosentino, D. et al. Refining the Mediterranean “Messinian gap” with high-precision U-Pb zircon geochronology, central and northern Italy. Geology 41, 323–326 (2013).CAS
Google Scholar
42.Lisiecki, L. E. & Raymo, M. E. A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, https://doi.org/10.1029/2004PA001071 (2005).43.Tan, N. et al. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth Planet. Sci. Lett. 472, 266–276 (2017).CAS
Google Scholar
44.Miller, K. G. et al. High tide of the warm Pliocene: Implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012).CAS
Google Scholar
45.Ohneiser, C. et al. Antarctic glacio-eustatic contributions to late Miocene Mediterranean desiccation and reflooding. Nat. Commun. 6, 1–10 (2015).
Google Scholar
46.Haywood, A. M., Dowsett, H. J. & Dolan, A. M. Integrating geological archives and climate models for the mid-Pliocene warm period. Nat. Commun. 7, 1–14 (2016).
Google Scholar
47.Manzi, V. et al. Age refinement of the Messinian salinity crisis onset in the Mediterranean. Terra Nova 25, 315–322 (2013).
Google Scholar
48.Ryan, W. B. Decoding the Mediterranean salinity crisis. Sedimentology 56, 95–136 (2009).
Google Scholar
49.Roveri, M. et al. The Messinian Salinity Crisis: past and future of a great challenge for marine sciences. Mar. Geol. 352, 25–58 (2014).
Google Scholar
50.Madof, A. S., Bertoni, C. & Lofi, J. Discovery of vast fluvial deposits provides evidence for drawdown during the late Miocene Messinian salinity crisis. Geology 47, 171–174 (2019).CAS
Google Scholar
51.Krijgsman, W., Stoica, M., Vasiliev, I. & Popov, V. Rise and fall of the Paratethys Sea during the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 290, 183–191 (2010).CAS
Google Scholar
52.van Baak, C. G. et al. Paratethys response to the Messinian salinity crisis. Earth Sci. Rev. 172, 193–223 (2017).
Google Scholar
53.Böhme, M., Ilg, A. & Winklhofer, M. Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 275, 393–401 (2008).
Google Scholar
54.Schuster, M. et al. The age of the Sahara desert. Science 311, 821–821 (2006).CAS
Google Scholar
55.Böhme, M. et al. Messinian age and savannah environment of the possible hominin Graecopithecus from Europe. PLoS ONE 12, e0177347 (2017).56.Böhme, M., Van Baak, C. G., Prieto, J., Winklhofer, M. & Spassov, N. Late Miocene stratigraphy, palaeoclimate and evolution of the Sandanski Basin (Bulgaria) and the chronology of the Pikermian faunal changes. Glob. Planet. Change 170, 1–19 (2018).
Google Scholar
57.Alijani, B. & Harman, J. R. Synoptic climatology of precipitation in Iran. Ann. Assoc. Am. Geogr. 75, 404–416 (1985).
Google Scholar
58.Perșoiu, A., Ionita, M. & Weiss, H. Atmospheric blocking induced by the strengthened Siberian High led to drying in west Asia during the 4.2 ka BP event—a hypothesis. Clim. Past 15, 781–793 (2019).
Google Scholar
59.Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).CAS
Google Scholar
60.Zhongshi, Z., Wang, H., Guo, Z. & Jiang, D. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat? Palaeogeogr. Palaeoclimatol. Palaeoecol. 245, 317–331 (2007).
Google Scholar
61.Najafi, M. S., Sarraf, B., Zarrin, A. & Rasouli, A. Climatology of atmospheric circulation patterns of Arabian dust in western Iran. Environ. Monit. Assess. 189, 473 (2017).
Google Scholar
62.van Baak, C. G., Stoica, M., Grothe, A., Aliyeva, E. & Krijgsman, W. Mediterranean-Paratethys connectivity during the Messinian salinity crisis: the Pontian of Azerbaijan. Glob. Planet. Change 141, 63–81 (2016).
Google Scholar
63.Naidina, O. D. & Richards, K. The Akchagylian stage (late Pliocene-early Pleistocene) in the North Caspian region: Pollen evidence for vegetation and climate change in the Urals-Emba region. Quat. Int. 540, 22–37 (2020).
Google Scholar
64.Burls, N. J. & Fedorov, A. V. Wetter subtropics in a warmer world: contrasting past and future hydrological cycles. Proc. Natl Acad. Sci. 114, 12888–12893 (2017).CAS
Google Scholar
65.Colleoni, F., Cherchi, A., Masina, S. & Brierley, C. M. Impact of global SST gradients on the Mediterranean runoff changes across the Plio‐Pleistocene transition. Paleoceanography 30, 751–767 (2015).
Google Scholar
66.Holbourn, A. E. et al. Late Miocene climate cooling and intensification of southeast Asian winter monsoon. Nat. Commun. 9, 1–13 (2018).CAS
Google Scholar
67.White, S. & Ravelo, A. Dampened El Niño in the early Pliocene warm period. Geophys. Res. Lett. 47, e2019GL085504 (2020).
Google Scholar
68.Tozuka, T., Endo, S. & Yamagata, T. Anomalous Walker circulations associated with two flavors of the Indian Ocean Dipole. Geophys. Res. Lett. 43, 5378–5384 (2016).
Google Scholar
69.Annamalai, H., Okajima, H. & Watanabe, M. Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Niño. J. Clim. 20, 3164–3189 (2007).
Google Scholar
70.Nazemosadat, M., Samani, N., Barry, D. & Molaii Niko, M. ENSO forcing on climate change in Iran: precipitation analysis. Iran. J. Sci. Technol. Trans. B 30, 555–565 (2006).
Google Scholar
71.Trauth, M. H. et al. High-and low-latitude forcing of Plio-Pleistocene East African climate and human evolution. J. Hum. Evol. 53, 475–486 (2007).
Google Scholar
72.Blumenthal, S. A. et al. Aridity and hominin environments. Proc. Natl Acad. Sci. 114, 7331–7336 (2017).CAS
Google Scholar
73.Lebatard, A.-E. et al. Application of the authigenic 10Be/9Be dating method to continental sediments: reconstruction of the Mio-Pleistocene sedimentary sequence in the early hominid fossiliferous areas of the northern Chad Basin. Earth Planet. Sci. Lett. 297, 57–70 (2010).CAS
Google Scholar
74.Tiedemann, R., et al. Proc. ODP, Sci. Results. 241–277.75.Hilgen, F. et al. Integrated stratigraphy and astrochronology of the Messinian GSSP at Oued Akrech (Atlantic Morocco). Earth Planet. Sci. Lett. 182, 237–251 (2000).CAS
Google Scholar
76.Dupont, L. M. & Leroy, S. A. Steps Toward Drier Climatic Conditions in Northwestern Africa during the Upper Pliocene. Paleoclimate and Evolution with Emphasis on Human Origins 289–298 (Yale University Press, 1995)77.Darwin, C. & Bynum, W. F. The Origin of Species by Means of Natural Selection: Or, the Preservation of favored Races in the Struggle for Life (Penguin Harmondsworth, 2009).78.Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).CAS
Google Scholar
79.Gradstein, F. M., Ogg, J. G., Schmitz, M. B. & Ogg, G. M. The Geologic Time Scale 2012. (Elsevier, 2012).80.Epp, T. et al. Vegetation canopy effects on total and dissolved Cl, Br, F and I concentrations in soil and their fate along the hydrological flow path. Sci. Total Environ. 712, 135473 (2020).CAS
Google Scholar
81.Dietze, E. & Dietze, M. Grain-size distribution unmixing using the R package EMMAgeo. E&G-Quat. Sci. J. 68, 29–46 (2019).
Google Scholar
82.Andò, S. Gravimetric separation of heavy minerals in sediments and rocks. Minerals 10, 273 (2020).
Google Scholar
83.Al-Juboury, A. I. & Al-Miamary, F. A. Geochemical variations in heavy minerals as provenance indications: application to the Tigris river sand, northern Iraq. J. Mediter. Earth Sci. 1, 33–45 (2009).
Google Scholar
84.Garzanti, E. et al. The Euphrates-Tigris-Karun river system: Provenance, recycling and dispersal of quartz-poor foreland-basin sediments in arid climate. Earth Sci. Rev. 162, 107–128 (2016).CAS
Google Scholar
85.Philip, G. Mineralogy of the Recent sediments of Tigris and Euphrates rivers and some of the older detrital deposits. J. Sediment. Res. 38, 35–44 (1968).
Google Scholar
86.Skoček, V. & Saadallah, A. Grain-size distribution, carbonate content and heavy minerals in eolian sands, southern desert, Iraq. Sediment. Geol. 8, 29–46 (1972).
Google Scholar
87.Popov, S., Antipov, M., Zastrozhnov, A., Kurina, E. & Pinchuk, T. Sea-level fluctuations on the northern shelf of the Eastern Paratethys in the Oligocene-Neogene. Stratigr. Geol. Correl. 18, 200–224 (2010).
Google Scholar
88.Krijgsman, W. et al. Quaternary time scales for the Pontocaspian domain: interbasinal connectivity and faunal evolution. Earth Sci. Rev. 188, 1–40 (2019).
Google Scholar
89.van Baak, C. G. et al. Messinian events in the Black Sea. Terra Nova 27, 433–441 (2015).
Google Scholar
90.Green, T., Abdullayev, N., Hossack, J., Riley, G. & Roberts, A. M. Sedimentation and Subsidence in the South Caspian Basin, Azerbaijan vol. 312 (Geological Society, London, Special Publications, 2009) 241–260 (2009).91.Abdullayev, N. R., Riley, G. W. & Bowman, A. P. Regional controls on lacustrine sandstone reservoirs: the Pliocene of the South Caspian Basin. (2012).92.Trubikhin, V. Paleomagnetic data for the Pontian. Chronostratigraphie und Neostratotypen–Pontien. Chronostratigraphie und Neostratotypen, Zagreb–Beograd. 76–79 (1989).93.Van Baak, C. G. et al. A magnetostratigraphic time frame for Plio-Pleistocene transgressions in the South Caspian Basin, Azerbaijan. Glob. Planet. Change 103, 119–134 (2013).
Google Scholar
94.Davis, S. N., Fabryka-Martin, J. T. & Wolfsberg, L. E. Variations of bromide in potable ground water in the United States. Ground Water 42, 902–909 (2004).CAS
Google Scholar
95.Davis, S. N., Whittemore, D. O. & Fabryka-Martin, J. Uses of chloride/bromide ratios in studies of potable water. Ground Water 36, 338–350 (1998).CAS
Google Scholar
96.Alcalá, F. J. & Custodio, E. Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J. Hydrol. 359, 189–207 (2008).
Google Scholar
97.Dickson, A. & Goyet, C. Handbook of Methods for the Analysis of the Various Parameters of the Carbon Dioxide System in Sea Water 166–187 (ORNL/CDIAC-74, U. S. Department of Energy, 1994).98.Tan, H., Ma, H., Li, B., Zhang, X. & Xiao, Y. Strontium and boron isotopic constraint on the marine origin of the Khammuane potash deposits in southeastern Laos. Chin. Sci. Bull. 55, 3181–3188 (2010).CAS
Google Scholar
99.Turk, L., Davis, S. & Bingham, C. Hydrogeology of lacustrine sediments, Bonneville Salt Flats, Utah. Econ. Geol. 68, 65–78 (1973).CAS
Google Scholar
100.Sun, S. et al. Bromine content and Br/Cl molar ratio of halite in a core from Laos: implications for origin and environmental changes. Carbon. Evaporites 34, 1107–1115 (2019).CAS
Google Scholar
101.Fomba, K. W. et al. Long-term chemical characterization of tropical and marine aerosols at the CVAO: field studies (2007 to 2011). Atmos. Chem. Phys 14, 3917–3971 (2014).
Google Scholar
102.Manö, S. & Andreae, M. O. Emission of methyl bromide from biomass burning. Science 263, 1255–1257 (1994).
Google Scholar
103.Goni, I., Fellman, E. & Edmunds, W. Rainfall geochemistry in the Sahel region of northern Nigeria. Atmos. Environ. 35, 4331–4339 (2001).CAS
Google Scholar
104.Horst, A. et al. Stable bromine isotopic composition of methyl bromide released from plant matter. Geochim. Cosmochim. Acta 125, 186–195 (2014).CAS
Google Scholar
105.Helder, R. The absorption of labelled chloride and bromide ions by young intact barley plants. Acta Bot. Neerl. 13, 488–506 (1965).
Google Scholar
106.Bowen, H. J. M. Environmental Chemistry of the Elements (Academic Press, 1979).107.Gerritse, R. G. & George, R. J. The role of soil organic matter in the geochemical cycling of chloride and bromide. J. Hydrol. 101, 83–95 (1988).CAS
Google Scholar
108.Wishkerman, A. et al. Abiotic methyl bromide formation from vegetation, and its strong dependence on temperature. Environ. Sci. Technol. 42, 6837–6842 (2008).CAS
Google Scholar
109.Delany, A. C., Pollock, W. H. & Shedlovsky, J. P. Tropospheric aerosol—relative contribution of marine and continental components. J. Geophys. Res. 78, 6249–6265 (1973).CAS
Google Scholar
110.Pérez-Fodich, A. et al. Climate change and tectonic uplift triggered the formation of the Atacama Desert’s giant nitrate deposits. Geology 42, 251–254 (2014).
Google Scholar
111.Reich, M. & Bao, H. M. Nitrate deposits of the Atacama Desert: a marker of long-term hyperaridity. Elements 14, 251–256 (2018).CAS
Google Scholar
112.Erickson, D. J. III & Duce, R. A. On the global flux of atmospheric sea salt. J. Geophys. Res. 93, 14079–14088 (1988).
Google Scholar
113.Murphy, D. M. et al. The distribution of sea-salt aerosol in the global troposphere. Atmos. Chem. Phys. 19, https://doi.org/10.5194/acp-19-4093-2019 (2019).114.Walvoord, M. A. et al. A reservoir of nitrate beneath desert soils. Science 302, 1021–1024 (2003).CAS
Google Scholar
115.Graham, R. C., Hirmas, D. R., Wood, Y. A. & Amrhein, C. Large near-surface nitrate pools in soils capped by desert pavement in the Mojave Desert, California. Geology 36, 259–262 (2008).CAS
Google Scholar
116.Voigt, C., Klipsch, S., Herwartz, D., Chong, G. & Staubwasser, M. The spatial distribution of soluble salts in the surface soil of the Atacama Desert and their relationship to hyperaridity. Glob. Planet. Change 184, 103077 (2020).
Google Scholar
117.Böhlke, J., Ericksen, G. & Revesz, K. Stable isotope evidence for an atmospheric origin of desert nitrate deposits in northern Chile and southern California, USA. chemical. Chem. Geol. 136, 135–152 (1997).
Google Scholar
118.Jin, Z., Zhu, Y., Li, X., Dong, Y. & An, Z. Soil N retention and nitrate leaching in three types of dunes in the Mu Us desert of China. Sci. Rep. 5, 14222 (2015).CAS
Google Scholar
119.Ericksen, G. E., Hosterman, J. W. & Amand, P. S. Chemistry, mineralogy and origin of the clay-hill nitrate deposits, Amargosa River valley, Death Valley region, California, USA. Chem. Geol. 67, 85–102 (1988).CAS
Google Scholar
120.Qin, Y. et al. Massive atmospheric nitrate accumulation in a continental interior desert, northwestern China. Geology 40, 623–626 (2012).CAS
Google Scholar
121.Lybrand, R. A. et al. Nitrate, perchlorate, and iodate co-occur in coastal and inland deserts on Earth. Chemical. Geology 442, 174–186 (2016).CAS
Google Scholar
122.Wood, G. in American Association of Stratigraphic Palynologists Foundation vol. 1 29–50 (1996).123.Wallace, A. The Geographical Distribution of Animals Vol. I & II (Harper and Brothers, 1876).124.Wessel, P. & Luis, J. F. The GMT/MATLAB Toolbox. Geochem. Geophys. Geosyst. 18, 811–823 (2017).
Google Scholar
125.Amante, C. & Eakins, B. ETOPO1 Global Relief Model Converted to PanMap Layer Format (NOAA-National Geophysical Data Center, 2009).126.Flint, A. L., Flint, L. E., Curtis, J. A. & Buesch, D. C. A preliminary water balance model for the Tigris and Euphrates river system. US Geological Survey, Water Budget Report (2011). More