More stories

  • in

    A millennium of trophic stability in Atlantic cod (Gadus morhua): transition to a lower and converging trophic niche in modern times

    1.Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    2.Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Lotze, H. K. et al. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    5.Erlandson, J. M. & Rick, T. C. Archaeology meets marine ecology: The antiquity of maritime cultures and human impacts on marine fisheries and ecosystems. Ann. Rev. Mar. Sci. 2, 231–251 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.McClenachan, L., Ferretti, F. & Baum, J. K. From archives to conservation: Why historical data are needed to set baselines for marine animals and ecosystems. Conserv. Lett. 5, 349–359 (2012).Article 

    Google Scholar 
    7.Misarti, N., Finney, B. P., Maschner, H. & Wooller, M. J. Changes in northeast Pacific marine ecosystems over the last 4500 years: Evidence from stable isotope analysis of bone collagen from archaeological middens. Holocene 19, 1139–1151 (2009).ADS 
    Article 

    Google Scholar 
    8.Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern Pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, 35–39 (2012).
    Google Scholar 
    9.Szpak, P., Orchard, T. J., Mckechnie, I. & Gröcke, D. R. Historical ecology of late Holocene sea otters (Enhydra lutris) from northern British Columbia: Isotopic and zooarchaeological perspectives. J. Archaeol. Sci. 39, 1553–1571 (2012).Article 

    Google Scholar 
    10.McKechnie, I. et al. Archaeological data provide alternative hypotheses on Pacific herring (Clupea pallasii) distribution, abundance, and variability. Proc. Natl. Acad. Sci. USA 111, E807–E816 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Orton, D. C. Archaeology as a tool for understanding past marine resource use and its impact. In Perspectives on Oceans Past (eds Schwerdtner Máñez, K. & Poulsen, B.) 47–69 (Springer, 2016).
    Google Scholar 
    12.Barrett, J. H., Locker, A. M. & Roberts, C. M. The origins of intensive marine fishing in medieval Europe: The English evidence. Proc. R. Soc. Lond. B. 271, 2417–2421 (2004).Article 

    Google Scholar 
    13.Edvardsson, R. The Role of Marine Resources in the Medieval Economy of Vestfirðir, Iceland (CUNY, 2019).
    Google Scholar 
    14.Post, D. M. Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology 83, 703–718 (2002).Article 

    Google Scholar 
    15.Wada, E., Kabaya, Y. & Kurihara, Y. Stable isotopic structure of aquatic ecosystems. J. Biosci. 18, 483–499 (1993).CAS 
    Article 

    Google Scholar 
    16.Trueman, C. N., MacKenzie, K. M. & Palmer, M. R. Identifying migrations in marine fishes through stable-isotope analysis. J. Fish. Biol. 81, 826–847 (2012).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    17.Minagawa, M. & Wada, E. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta. 48, 1135–1140 (1984).ADS 
    CAS 
    Article 

    Google Scholar 
    18.Newsome, S. D. et al. Historic decline in primary productivity in western Gulf of Alaska and eastern Bering Sea: Isotopic analysis of northern fur seal teeth. Mar. Ecol. Prog. Ser. 332, 211–224 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    19.Guiry, E. J. et al. Lake Ontario salmon (Salmo salar) were not migratory: A long-standing historical debate solved through stable isotope analysis. Sci. Rep. 6, 1–7 (2016).Article 
    CAS 

    Google Scholar 
    20.Emslie, S. D. & Patterson, W. P. Abrupt recent shift in δ13C and δ15N values in Adélie Penguin eggshell in Antarctica. Proc. Natl. Acad. Sci. USA 104, 11666–11669 (2007).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    21.Emslie, S. D., Polito, M. J. & Patterson, W. P. Stable isotope analysis of ancient and modern Gentoo penguin egg membrane and the krill surplus hypothesis in Antarctica. Antarct. Sci. 25, 213–218 (2013).ADS 
    Article 

    Google Scholar 
    22.Drinkwater, K. F. The regime shift of the 1920s and 1930s in the North Atlantic. Prog. Oceanogr. 68, 134–151 (2006).ADS 
    Article 

    Google Scholar 
    23.Ástþórsson, Ó. S., Gíslason, Á. & Jónsson, S. Climate variability and the Icelandic marine ecosystem. Deep-Sea Res. PT II(54), 2456–2477 (2007).ADS 
    Article 

    Google Scholar 
    24.Edvardsson, R., Bárðarson, H., Patterson, W. P., Timsic, S. & Ólafsdóttir, G. Á. Change in Atlantic cod migrations and adaptability of early land-based fishers to severe climate variation in the North Atlantic. Quat. Res. (In press).25.Dahl-Jensen, D. et al. Past temperatures directly from the Greenland ice sheet. Science 282, 268–271 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    26.Ogilvie, A. E. & Jonsson, T. The Iceberg in the Mist: Northern Research in Pursuit of a Little Age (Kluwer Academic, 2001).Book 

    Google Scholar 
    27.Jiang, H., Eiríksson, J., Schulz, M., Knudsen, K. L. & Seidenkrantz, M. S. Evidence for solar forcing of sea-surface temperature on the North Icelandic Shelf during the late Holocene. Geology 33, 73–76 (2005).ADS 
    Article 

    Google Scholar 
    28.Vinther, B. M. et al. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 29, 522–538 (2010).ADS 
    Article 

    Google Scholar 
    29.Patterson, W. P., Dietrich, K. A., Holmden, C. & Andrews, J. T. Two millennia of North Atlantic seasonality and implications for Norse colonies. Proc. Natl. Acad. Sci. USA 107, 5306–5310 (2010).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    30.Geffen, A. J. et al. High-latitude climate variability and its effect on fisheries resources as revealed by fossil cod otoliths. ICES J. Mar. Sci. 68, 1081–1089 (2011).Article 

    Google Scholar 
    31.Ólafsdóttir, G. Á., Westfall, K. M., Edvardsson, R. & Pálsson, S. Historical DNA reveals the demographic history of Atlantic cod (Gadus morhua) in medieval and early modern Iceland. Proc. R. Soc. Lond. B. 281, 20132976 (2014).
    Google Scholar 
    32.Ólafsdóttir, G. Á., Pétursdóttir, G., Bárðarson, H. & Edvardsson, R. A millennium of north-east Atlantic cod juvenile growth trajectories inferred from archaeological otoliths. PLoS One 12, e0187134 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    33.Pinnegar, J. K. & Engelhard, G. H. The ‘shifting baseline’phenomenon: A global perspective. Rev. Fish Biol. Fish. 18, 1–16 (2008).Article 

    Google Scholar 
    34.Jackson, J. B. et al. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    35.Pauly, D., Christensen, V., Dalsgaard, J., Froese, R. & Torres, F. Fishing down marine food webs. Science 279, 860–863 (1998).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Kindsvater, H. K. & Palkovacs, E. P. Predicting eco-evolutionary impacts of fishing on body size and trophic role of Atlantic cod. Copeia 105, 475–482 (2017).Article 

    Google Scholar 
    37.Persson, A. & Hansson, L. A. Diet shift in fish following competitive release. CJFAS 56, 70–78 (1999).
    Google Scholar 
    38.Saporiti, F. et al. Longer and less overlapping food webs in anthropogenically disturbed marine ecosystems: Confirmations from the past. PLoS One 9, e103132 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    39.Bas, M. et al. Back to the future? Late Holocene marine food web structure in a warm climatic phase as a predictor of trophodynamics in a warmer South-Western Atlantic Ocean. Glob. Change Biol. 25, 404–419 (2019).ADS 
    Article 

    Google Scholar 
    40.Casey, M. M. & Post, D. M. The problem of isotopic baseline: Reconstructing the diet and trophic position of fossil animals. Earth-Sci. Rev. 106, 131–148 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    41.Bas, M. & Cardona, L. Effects of skeletal element identity, delipidation and demineralization on the analysis of stable isotope ratios of C and N in fish bone. J. Fish. Biol. 92, 420–437 (2018).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    42.Harrison, R. The Siglunes 2011/12 Archaeofauna. Interim Report on the Fishing Station’s Sampled Faunal Remains. (http://www.nabohome.org/uploads/ramonah/RH_Siglunes_Faunal_Report_5_30_2014.pdf (2014).43.Lárusdóttir, B., Roberts, H. M., Þorgeirsdóttir, S. S., Harrison, R. & Sigurgeirsson, Á. Siglunes. Archaeological investigations in 2011. http://www.nabohome.org/uploads/ramonah/FS480-11121_Siglunes_2011.pdf (2012).44.Leyden, J. J., Wassenaar, L. I., Hobson, K. A. & Walker, E. G. Stable hydrogen isotopes of bison bone collagen as a proxy for Holocene climate on the Northern Great Plains. Palaeogeogr. Palaeoclimatol. Palaeoecol. 239, 87–99 (2006).Article 

    Google Scholar 
    45.Craig, H. Standard for reporting concentration of deuterium and oxygen-18 in natural waters. Science 133, 1702–1703 (1961).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    46.DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).ADS 
    CAS 
    Article 

    Google Scholar 
    47.Hilton, G. M. et al. A stable isotopic investigation into the causes of decline in a sub-Antarctic predator, the rockhopper penguin Eudyptes chrysocome. Glob. Change Biol. 12, 611–625 (2006).ADS 
    Article 

    Google Scholar 
    48.Szpak, P., Metcalfe, J. Z. & Macdonald, R. A. Best practices for calibrating and reporting stable isotope measurements in archaeology. J. Archaeol. Sci. Rep. 13, 609–616 (2017).
    Google Scholar 
    49.Gruber, N. et al. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect. Glob. Biogeochem. Cycles 13, 307–335 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    50.Quay, P., Sonnerup, R., Westby, T., Stutsman, J. & Mcnichol, A. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob. Biogeochem. Cycles 17, 1–20 (2003).Article 
    CAS 

    Google Scholar 
    51.Quay, P. D., Tilbrook, B. & Wong, C. S. Oceanic uptake of fossil fuel CO2: Carbon-13 evidence. Science 256, 74–79 (1992).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.1 (2020).53.Jackson, A. L., Inger, R., Parnell, A. C. & Bearhop, S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J. Anim. Ecol. 80, 595–602 (2011).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Layman, C. A. et al. Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biol. Rev. 87, 545–562 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    55.Swanson, H. K. et al. A new probabilistic method for quantifying n-dimensional ecological niches and niche overlap. Ecology 96, 318–324 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    56.Þór, J. Þ. British Trawlers in Icelandic Waters: History of British Steam Trawling off Iceland, 1889–1916, and the Anglo-Icelandic Fisheries Dispute, 1896–1897 (Fjölvi, 1992).
    Google Scholar 
    57.Þór, J. Þ. Saga Sjávarútvegs á Íslandi. 1902–1939 Vélaöld (Bókaútgáfan Hólar, 2003).
    Google Scholar 
    58.Gill, A. B. The dynamics of prey choice in fish: The importance of prey size and satiation. J. Fish. Biol. 63, 105–116 (2003).Article 

    Google Scholar 
    59.Jennings, S. Size-based analyses of aquatic food webs. In Aquatic Food Webs: An Ecosystem Approach (eds Belgrano, A. et al.) 86–97 (Oxford University Press, 2005).Chapter 

    Google Scholar 
    60.Zenteno, L. et al. Dietary consistency of male South American sea lions (Otaria flavescens) in southern Brazil during three decades inferred from stable isotope analysis. Mar. Biol. 162, 275–289 (2015).CAS 
    Article 

    Google Scholar 
    61.Vales, D. G. et al. Holocene changes in the trophic ecology of an apex marine predator in the South Atlantic Ocean. Oecologia 183, 555–570 (2017).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Bas, M. et al. Predicting habitat use by the Argentine hake Merluccius hubbsi in a warmer world: Inferences from the Middle Holocene. Oecologia 193, 461–474 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    63.Sharpe, D. M. & Chapman, L. J. Niche expansion in a resilient endemic species following introduction of a novel top predator. Freshw. Biol. 59, 2539–2554 (2014).Article 

    Google Scholar 
    64.Jaworski, A. & Ragnarsson, S. Á. Feeding habits of demersal fish in Icelandic waters: A multivariate approach. ICES J. Mar. Sci. 63, 1682–1694 (2006).Article 

    Google Scholar 
    65.Law, R. Fishing, selection, and phenotypic evolution. ICES J. Mar. Sci. 57, 659–668 (2000).Article 

    Google Scholar 
    66.Romanuk, T. N., Hayward, A. & Hutchings, J. A. Trophic level scales positively with body size in fishes. Glob. Ecol. Biogeogr. 20, 231–240 (2011).Article 

    Google Scholar 
    67.Jennings, S. & Van Der Molen, J. Trophic levels of marine consumers from nitrogen stable isotope analysis: Estimation and uncertainty. ICES J. Mar. Sci. 72, 2289–2300 (2015).Article 

    Google Scholar 
    68.MFRI. Atlantic cod Gadus morhua (MFRI Assessment Reports 2020). Marine and Freshwater Research Institute. https://www.hafogvatn.is/static/extras/images/01-cod_tr_isl1232625.pdf (2020).69.Thorsteinsson, V., Pálsson, Ó. K., Tómasson, G. G., Jónsdóttir, I. G. & Pampoulie, C. Consistency in the behaviour types of the Atlantic cod: Repeatability, timing of migration and geo-location. Mar. Ecol. Prog. Ser. 462, 251–260 (2012).ADS 
    Article 

    Google Scholar  More

  • in

    Upper limits to sustainable organic wheat yields

    1.Goulding, K., Trewavas, A. & Giller, K. E. Feeding the world: a contribution to the debate. World Agric. 2, 32–38 (2011).
    Google Scholar 
    2.Muller, A. et al. Strategies for feeding the world more sustainably with organic agriculture. Nat. Commun. 8, 1–13 (2017).CAS 
    Article 

    Google Scholar 
    3.Epule, T. E. Organic Farming 1–16 (Elsevier, 2019).Book 

    Google Scholar 
    4.FAO. FAO Statistical Pocketbook 2015: World Food and Agriculture. Food and Agriculture Organization; ISBN 978-92-5-108802-9. http://www.fao.org/documents/card/en/c/383d384a-28e6-47b3-a1a2-2496a9e017b2/. Accessed 30 November 2016, 2015.5.Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. The Lancet 393, 447–492 (2019).Article 

    Google Scholar 
    6.Hazell, P. & Wood, S. Drivers of change in global agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 495–515 (2008).Article 

    Google Scholar 
    7.Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    8.Ladha, J. et al. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 6, 19355 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    9.de Ponti, T., Rijk, B. & Van Ittersum, M. K. The crop yield gap between organic and conventional agriculture. Agric. Syst. 108, 1–9 (2012).Article 

    Google Scholar 
    10.Seufert, V., Ramankutty, N. & Foley, J. A. Comparing the yields of organic and conventional agriculture. Nature 485, 229–232 (2012).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    11.Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. Lond. B Biol. Sci. 282, 20141396 (2015).
    Google Scholar 
    12.Connor, D. J. Organically grown crops do not a cropping system make and nor can organic agriculture nearly feed the world. Field Crops Res. 144, 145–147. https://doi.org/10.1016/j.fcr.2012.12.013 (2013).Article 

    Google Scholar 
    13.Berry, P. M. et al. Is the productivity of organic farms restricted by the supply of available nitrogen?. Soil Use Manag. 18, 248–255 (2002).Article 

    Google Scholar 
    14.Adamtey, N. et al. Productivity, profitability and partial nutrient balance in maize-based conventional and organic farming systems in Kenya. Agric. Ecosyst. Environ. 235, 61–79 (2016).Article 

    Google Scholar 
    15.Poudel, D., Horwath, W., Lanini, W., Temple, S. & Van Bruggen, A. Comparison of soil N availability and leaching potential, crop yields and weeds in organic, low-input and conventional farming systems in northern California. Agric. Ecosyst. Environ. 90, 125–137 (2002).CAS 
    Article 

    Google Scholar 
    16.Kravchenko, A. N., Snapp, S. S. & Robertson, G. P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Nat. Acad. Sci. 114, 926–931 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    17.Tittonell, P. & Giller, K. E. When yield gaps are poverty traps: the paradigm of ecological intensification in African smallholder agriculture. Field Crops Res. 143, 76–90 (2013).Article 

    Google Scholar 
    18.David, C., Jeuffroy, M., Henning, J. & Meynard, J. Yield variation in organic winter wheat: a diagnostic study in the Southeast of France. Agron. Sust. Dev. 25, 213 (2005).Article 

    Google Scholar 
    19.Köpke, U. Nutrient management in organic farming systems—The Case of Nitrogen. Biol. Agr. Hort. 11, 15–29 (1995).Article 

    Google Scholar 
    20.Watson, C. A., Atkinson, D., Gosling, P., Jackson, L. R. & Rayns, F. W. Managing soil fertility in organic farming systems. Soil Use Manag. 18, 239–247 (2002).Article 

    Google Scholar 
    21.Watson, C. et al. A review of farm-scale nutrient budgets for organic farms as a tool for management of soil fertility. Soil Use Manag. 18, 264–273 (2002).Article 

    Google Scholar 
    22.Nimmo, J., Lynch, D. & Owen, J. Quantification of nitrogen inputs from biological nitrogen fixation to whole farm nitrogen budgets of two dairy farms in Atlantic Canada. Nutr. Cycl. Agroecosyst. 96, 93–105 (2013).Article 

    Google Scholar 
    23.Van Kessel, C. & Hartley, C. Agricultural management of grain legumes: has it led to an increase in nitrogen fixation?. Field Crops Res. 65, 165–181 (2000).Article 

    Google Scholar 
    24.Herridge, D. F., Peoples, M. B. & Boddey, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311, 1–18 (2008).CAS 
    Article 

    Google Scholar 
    25.Smith, O. M. et al. Organic farming provides reliable environmental benefits but increases variability in crop yields: A global meta-analysis. Front. Sustain. Food Syst. 3, 82 (2019).Article 

    Google Scholar 
    26.Becker, M., Ali, M., Ladha, J. & Ottow, J. Agronomic and economic evaluation of Sesbania rostrata green manure establishment in irrigated rice. Field Crops Res. 40, 135–141 (1995).Article 

    Google Scholar 
    27.Ventura, W. & Watanabe, I. Green manure production of Azolla microphylla and Sesbania rostrata and their long-term effects on rice yields and soil fertility. Biol. Fert. Soils 15, 241–248 (1993).CAS 
    Article 

    Google Scholar 
    28.Bussink, D. & Oenema, O. Ammonia volatilization from dairy farming systems in temperate areas: a review. Nutr. Cycl. Agroecosyst. 51, 19–33 (1998).Article 

    Google Scholar 
    29.Fillery, I. The fate of biologically fixed nitrogen in legume-based dryland farming systems: a review. Anim. Prod. Sci. 41, 361–381 (2001).CAS 
    Article 

    Google Scholar 
    30.Oenema, O., Witzke, H., Klimont, Z., Lesschen, J. & Velthof, G. Integrated assessment of promising measures to decrease nitrogen losses from agriculture in EU-27. Agric. Ecosyst. Environ. 133, 280–288 (2009).CAS 
    Article 

    Google Scholar 
    31.Graham, P. H. & Vance, C. P. Legumes: Importance and constraints to greater use. Plant Physiol. 131, 872–877 (2003).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    32.Cassman, K., Whitney, A. & Stockinger, K. Root growth and dry matter distribution of soybean as affected by phosphorus stress, nodulation, and nitrogen source. Crop Sci. 20, 239–244 (1980).CAS 
    Article 

    Google Scholar 
    33.Gunawardena, S., Danso, S. & Zapata, F. Phosphorus requirement and sources of nitrogen in three soybean (Glycine max) genotypes, Bragg, nts 382 and Chippewa. Plant Soil 151, 1–9 (1993).CAS 
    Article 

    Google Scholar 
    34.Scherer, H., Pacyna, S., Manthey, N. & Schulz, M. Sulphur supply to peas (Pisum sativum L.) influences symbiotic N2 fixation. Plant Soil Environ. 52, 72–77 (2006).CAS 
    Article 

    Google Scholar 
    35.Anderson, A. & Spencer, D. Molybdenum in nitrogen metabolism of legumes and non-legumes. Aust. J. Sci. Res. 3, 414–430 (1950).CAS 

    Google Scholar 
    36.Fuchs, J. G. et al. Evaluation of the causes of legume yield depression syndrome using an improved diagnostic tool. Appl. Soil Ecol. 79, 26–36 (2014).Article 

    Google Scholar 
    37.Cassmann, K. G., Dobermann, A. & Walters, D. T. Agroecosystems, nitrogen use efficiency and nitrogen management. J. Human Environ. 31, 132–140 (2002).Article 

    Google Scholar 
    38.Kramer, A. W., Doane, T. A., Horwath, W. R. & van Kessel, C. Combining fertilizer and organic inputs to synchronize N supply in alternative cropping systems in California. Agric. Ecosyst. Envir. 91, 233–243 (2002).Article 

    Google Scholar 
    39.Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 144, 31–43 (2006).Article 

    Google Scholar 
    40.van Bruggen, A. H. C. Plant disease severity in high-input compared to reduced-input and organic farming systems. Plant Dis. 79, 976–984 (1995).Article 

    Google Scholar 
    41.Zehnder, G. et al. Arthropod pest management in organic crops. Annu. Rev. Entomol. 52, 57–80 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Bond, W. & Grundy, A. C. Non-chemical weed management in organic farming systems. Weed Res. 41, 383–405 (2001).Article 

    Google Scholar 
    43.Bouwman, A. F., Beusen, A. H. W. & Billen, G. Human alteration of the global nitrogen and phosphorus soil balances for the period 1970–2050. Glob. Biogeochem. Cycl. 23, 99. https://doi.org/10.1029/2009GB003576 (2009).CAS 
    Article 

    Google Scholar 
    44.Lu, C. C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth System Sci. Data 9, 181 (2017).Article 
    ADS 

    Google Scholar 
    45.Smil, V. Nitrogen in crop production: An account of global flows. Glob. Biogeochem. Cycl. 13, 647–662 (1999).CAS 
    Article 
    ADS 

    Google Scholar 
    46.Crews, T. & Peoples, M. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agric. Ecosyst. Envir. 102, 279–297 (2004).Article 

    Google Scholar 
    47.Köpke, U. & Nemecek, T. Ecological services of faba bean. Field Crops Res. 115, 217–233. https://doi.org/10.1016/j.fcr.2009.10.012 (2010).Article 

    Google Scholar 
    48.Vance, C. P. Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol. 127, 390–397 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    49.Peterson, T. A. & Russelle, M. P. Alfalfa and the nitrogen cycle in the Corn Belt. J. Soil Water Conserv. 46, 229–235 (1991).
    Google Scholar 
    50.Peoples, M., Herridge, D. & Ladha, J. Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production?. Plant Soil 174, 3–28 (1995).CAS 
    Article 

    Google Scholar 
    51.Sanchez, P. A. Soil fertility and hunger in Africa. Science 295, 2019–2020 (2002).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    52.Hole, D. G. et al. Does organic farming benefit biodiversity?. Biol. Cons. 122, 113–130 (2005).Article 

    Google Scholar 
    53.Mäder, P. et al. Soil fertility and biodiversity in organic farming. Science 296, 1694–1697 (2002).PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    54.Banerjee, S. et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 13, 1722–1736 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    55.Kijlstra, A. & Eijck, I. Animal health in organic livestock production systems: A review. NJAS-Wagen. J. Life Sci. 54, 77–94 (2006).Article 

    Google Scholar 
    56.Kramer, S. B., Reganold, J. P., Glover, J. D., Bohannan, B. J. M. & Mooney, H. A. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. PNAS 103, 4522–4527 (2006).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    57.Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    58.Brussaard, L. et al. Reconciling biodiversity conservation and food security: scientific challenges for a new agriculture. Curr. Opin. Environ. Sust. 2, 34–42 (2010).Article 

    Google Scholar 
    59.Pretty, J. Agricultural sustainability: concepts, principles and evidence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 447–465 (2008).PubMed 
    Article 

    Google Scholar 
    60.Tilman, D. & Clark, M. Global diets link environmental sustainability and human health. Nature 515, 518–522 (2014).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    61.Haas, G., Wetterich, F. & Kopke, U. Comparing intensive, extensified and organic grassland farming in southern Germany by process life cycle assessment. Agric. Ecosyst. Envir. 83, 43–53 (2001).Article 

    Google Scholar 
    62.Stevens, C. J. et al. Nitrogen deposition threatens species richness of grasslands across Europe. Environ. Pollut. 158, 2940–2945. https://doi.org/10.1016/j.envpol.2010.06.006 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Primary production ultimately limits fisheries economic performance

    1.Kildow, J. T. & McIlgorm, A. The importance of estimating the contribution of the oceans to national economies. Mar. Policy 34, 367–374 (2010).Article 

    Google Scholar 
    2.Lam, V. W. Y., Cheung, W. W. L., Reygondeau, G. & Sumaila, U. R. Projected change in global fisheries revenues under climate change. Sci. Rep. 6, 32607 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Link, J. S. & Marshak, A. R. Characterizing and comparing marine fisheries ecosystems in the United States: Determinants of success in moving toward ecosystem-based fisheries management. Rev. Fish Biol. Fish. 29, 23–70 (2019).Article 

    Google Scholar 
    4.National Marine Fisheries Service. Fisheries Economics of the United States, 2016. US Dept. of Commerce, NOAA Tech. Memo. NMFS-F/SPO-187 (2018).5.Jennings, S., Lee, J. & Hiddink, J. G. Assessing fishery footprints and the trade-offs between landings value, habitat sensitivity, and fishing impacts to inform marine spatial planning and an ecosystem approach. ICES J. Mar. Sci. 69, 1053–1063 (2012).Article 

    Google Scholar 
    6.Link, J. S. & Watson, R. A. Global ecosystem overfishing: Clear delineation within real limits to production. Sci. Adv. 5, eaav0474 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    7.Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    8.Stock, C. A. et al. Reconciling fisheries catch and ocean productivity. Proc. Natl. Acad. Sci. USA 114, E1441–E1449 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    9.Friedland, K. D. et al. Pathways between primary production and fisheries yields of large marine ecosystems. PLoS ONE 7, e28945 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    11.Hornborg, S. et al. Ecosystem-based fisheries management requires broader performance indicators for the human dimension. Mar. Policy 108, 103639 (2019).Article 

    Google Scholar 
    12.Marshall, K. N. et al. Ecosystem-based fisheries management for social–ecological systems: Renewing the focus in the United States with next generation fishery ecosystem plans. Conserv. Lett. 11, e12367 (2018).Article 

    Google Scholar 
    13.Link, J. Ecosystem-Based Fisheries Management: Confronting Tradeoffs (Cambridge University Press, 2010).Book 

    Google Scholar 
    14.Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    15.Pauly, D. & Christensen, V. Primary production required to sustain global fisheries. Nature 374, 255–257 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    16.Chassot, E. et al. Global marine primary production constrains fisheries catches. Ecol. Lett. 13, 495–505 (2010).PubMed 
    Article 

    Google Scholar 
    17.Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    18.Murawski, S. A. Definitions of overfishing from an ecosystem perspective. ICES J. Mar. Sci. 57, 649–658 (2000).Article 

    Google Scholar 
    19.Breitburg, D. L. et al. Nutrient enrichment and fisheries exploitation: Interactive effects on estuarine living resources and their management. Hydrobiologia 629, 31–47 (2009).CAS 
    Article 

    Google Scholar 
    20.Hondorp, D. W., Breitburg, D. L. & Davias, L. A. Eutrophication and fisheries: Separating the effects of nitrogen loads and hypoxia on the pelagic-to-demersal ratio and other measures of landings composition. Mar. Coast. Fish. 2, 339–361 (2010).Article 

    Google Scholar 
    21.Link, J. S. et al. Emergent properties delineate marine ecosystem perturbation and recovery. Trends Ecol. Evol. 30, 649–661 (2015).PubMed 
    Article 

    Google Scholar 
    22.Tam, J. C. et al. Comparing apples to oranges: Common trends and thresholds in anthropogenic and environmental pressures across multiple marine ecosystems. Front. Mar. Sci. 4, 282 (2017).Article 

    Google Scholar 
    23.Link, J. S. et al. Marine ecosystem assessment in a fisheries management context. Can. J. Fish. Aquat. Sci. 59, 1429–1440 (2002).Article 

    Google Scholar 
    24.Garcia, S. M., Rice, J. & Charles, A. Governance of Marine Fisheries and Biodiversity Conservation: Interaction and Co-evolution (Wiley-Blackwell, 2014).Book 

    Google Scholar 
    25.Colloca, F. et al. Rebuilding Mediterranean fisheries: A new paradigm for ecological sustainability. Fish Fish. 14, 89–109 (2013).Article 

    Google Scholar 
    26.National Oceanic and Atmospheric Administration (NOAA), Office for Coastal Management (OCM), NOAA Report on the US Marine Economy. NOAA OCM. 23p. https://coast.noaa.gov/digitalcoast/training/econreport.html (2020).27.Teh, L. C. & Sumaila, U. R. Contribution of marine fisheries to worldwide employment. Fish Fish. 14, 77–88 (2013).Article 

    Google Scholar 
    28.Laterra, P. et al. How are jobs and ecosystem services linked at the local scale?. Ecosyst. Serv. 35, 207–218 (2019).Article 

    Google Scholar 
    29.Barange, M. et al. Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nat. Clim. Change 4, 211–216 (2014).ADS 
    Article 

    Google Scholar 
    30.Graham, N. A. et al. Human disruption of coral reef trophic structure. Curr. Biol. 27, 231–236 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    31.Koslow, J. A. & Davison, P. C. Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and-independent time series. Environ. Dev. 17, 23–32 (2016).Article 

    Google Scholar 
    32.Kahru, M., Kudela, R., Manzano-Sarabia, M. & Mitchell, B. G. Trends in primary production in the California Current detected with satellite data. J. Geophys. Res. Oceans 114, C02004 (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    33.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Defining trends and thresholds in responses of ecological indicators to fishing and environmental pressures. ICES J. Mar. Sci. 70, 755–767 (2013).Article 

    Google Scholar 
    34.Large, S. I., Fay, G., Friedland, K. D. & Link, J. S. Critical points in ecosystem responses to fishing and environmental pressures. Mar. Ecol. Progr. Ser. 521, 1–17 (2015).ADS 
    Article 

    Google Scholar 
    35.Fogarty, M. J. & Murawski, S. A. Large-scale disturbance and the structure of marine systems: Fishery impacts on Georges Bank. Ecol. Appl. 8(sp1), S6–S22 (1998).Article 

    Google Scholar 
    36.Cheung, W. W. L. et al. Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Glob. Change Biol. 16, 24–35 (2010).ADS 
    Article 

    Google Scholar 
    37.Sumaila, U. R., Cheung, W. W. L., Lam, V. W. Y., Pauly, D. & Herrick, S. Climate change impacts on the biophysics and economics of world fisheries. Nat. Clim. Change 1, 449–456 (2011).ADS 
    Article 

    Google Scholar 
    38.Chavez, F. P., Messié, M. & Pennington, J. T. Marine primary production in relation to climate variability and change. Annu. Rev. Mar. Sci. 3, 227–260 (2010).ADS 
    Article 

    Google Scholar 
    39.Banse, K. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea. In Primary Productivity and Biogeochemical Cycles in the Sea (eds Falkowski, P. G. et al.) 409–440 (Springer, 1992).Chapter 

    Google Scholar 
    40.Murray, C. J. et al. Past, present and future eutrophication status of the Baltic Sea. Front. Mar. Sci. 6, 2 (2019).Article 

    Google Scholar 
    41.Möllmann, C. Effects of climate change and fisheries on the marine ecosystem of the Baltic Sea. In Oxford Research Encyclopedia of Climate Science (ed. Möllmann, C.) (University Press, 2019). https://doi.org/10.1093/acrefore/9780190228620.013.682.Chapter 

    Google Scholar 
    42.Intergovernmental Oceanographic Commission (IOC-UNESCO) and United Nations Environmental Program (UNEP). Large Marine Ecosystems: Status and Trends (United Nations Environment Programme UNEP, 2016).
    Google Scholar 
    43.Sangha, K. K., Stoeckl, N., Crossman, N. & Costanza, R. A state-wide economic assessment of coastal and marine ecosystem services to inform sustainable development policies in the Northern Territory, Australia. Mar. Policy 107, 103595 (2019).Article 

    Google Scholar 
    44.Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl. Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.McGowan, J. A., Bograd, S. J., Lynn, R. J. & Miller, A. J. The biological response to the 1977 regime shift in the California Current. Deep Sea Res. Pt. II 50(14–16), 2567–2582 (2003).ADS 
    Article 

    Google Scholar 
    46.Beaugrand, G. The North Sea regime shift: Evidence, causes, mechanisms and consequences. Prog. Oceanogr. 60(2–4), 245–262 (2004).ADS 
    Article 

    Google Scholar 
    47.Kirkman, S. P. et al. Regime shifts in demersal assemblages of the Benguela Current Large Marine Ecosystem: A comparative assessment. Fish. Oceanogr. 24(S1), 15–30 (2015).Article 

    Google Scholar 
    48.Link, J. S., Watson, R. A., Pranovi, F. & Libralato, S. Comparative production of fisheries yields and ecosystem overfishing in African Large Marine Ecosystems. Environ. Devel. 36, 100529 (2020).Article 

    Google Scholar 
    49.Ye, Y. et al. Rebuilding global fisheries: The World Summit Goal, costs and benefits. Fish Fish. 14, 174–185 (2013).Article 

    Google Scholar 
    50.Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    51.Ding, Q., Chen, X., Hilborn, R. & Chen, Y. Vulnerability to impacts of climate change on marine fisheries and food security. Mar. Policy 83, 55–61 (2017).Article 

    Google Scholar 
    52.NOAA Fisheries. NMFS Headquarters Ecosystem Based Fisheries Management Implementation Plan (NOAA Fisheries, 2019).
    Google Scholar 
    53.Witherell, D., Pautzke, C. & Fluharty, D. An ecosystem-based approach for Alaska groundfish fisheries. ICES J. Mar. Sci. 57, 771–777 (2000).Article 

    Google Scholar 
    54.National Aeronautics and Space Administration (NASA). NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua Data. NASA OB.DAAC, Greenbelt, MD, USA. (2014)55.Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    56.Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    57.Peters, R. et al. Habitat science is a fundamental element in an ecosystem-based fisheries management framework: an update to the Marine Fisheries Habitat Assessment Improvement Plan. US Dept. of Commerce, NOAA. NOAA Tech. Memo. NMFS-F/SPO-181. (2018).58.Cannizzaro, J. P. & Carder, K. L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 101, 13–24 (2006).ADS 
    Article 

    Google Scholar 
    59.Reid, R. N., Almeida, F. P., & Zetlin, C. A. Essential fish habitat source document: Fishery-independent surveys, data sources, and methods. NOAA Tech. Memo. NMFS NE 122. (1999).60.Stauffer, G. NOAA Protocols for Groundfish Bottom Trawl Surveys of the Nation’s Fishery Resources. US Dep. Commerce, NOAA Tech. Memo. NMFS-F/SPO-65. (2004).61.National Ocean Economics Program. State of the US Ocean and Coastal Economies 2016 Update. Middlebury Institute of International Studies at Monterey, Center for the Blue Economy. (2016).62.Craig, M. T. et al. Status review report of Pacific bluefin tuna (Thunnus orientalis). NOAA Tech. Memo. NMFS-SWFSC-587. (2017).63.National Oceanic and Atmospheric Administration (NOAA). Spatial trends in coastal socioeconomics (STICS): Coastal county definitions. NOAA. 12p. https://coast.noaa.gov/htdata/SocioEconomic/NOAA_CoastalCountyDefinitions.pdf (2013).64.National Oceanic and Atmospheric Administration (NOAA). NOAA Office of Coast Survey maritime zones of the United States. NOAA. (2021). https://nauticalcharts.noaa.gov/data/us-maritime-limits-and-boundaries.html.65.Watson, R. A. A database of global marine commercial, small-scale, illegal and unreported fisheries catch 1950–2014. Sci. Data 4, 1–9 (2017).Article 

    Google Scholar 
    66.NOAA Fisheries. National marine fisheries service—2nd quarter 2017 update. NOAA Fisheries 53p. (2017). More

  • in

    Analysis of spatiotemporal changes of agricultural land after the Second World War in Czechia

    1.Haddaway, N. R., Styles, D. & Pullin, A. S. Environmental impacts of farm land abandonment in high altitude/mountain regions: A systematic map of the evidence. Environ. Evid. 2(1), 18. https://doi.org/10.1186/2047-2382-2-18 (2013).Article 

    Google Scholar 
    2.Bender, O., Boehmer, H. J., Jens, D. & Schumacher, K. P. Analysis of land-use change in a sector of Upper Franconia (Bavaria, Germany) since 1850 using land register records. Landsc. Ecol. 20(2), 149–163. https://doi.org/10.1007/s10980-003-1506-7 (2005).Article 

    Google Scholar 
    3.Biró, M., Szitár, K., Horváth, F., Bagi, I. & Molnár, Z. Detection of long-term landscape changes and trajectories in a Pannonian sand region: Comparing land-cover and habitat-based approaches at two spatial scales. Community Ecol. 14(2), 219–230. https://doi.org/10.1556/ComEc.14.2013.2.12 (2013).Article 

    Google Scholar 
    4.Schulp, C. J. E., Levers, C., Kuemmerle, T., Tieskens, K. F. & Verburg, P. H. Mapping and modelling past and future land use change in Europe’s cultural landscapes. Land Use Policy 80, 332–344. https://doi.org/10.1016/j.landusepol.2018.04.030 (2019).Article 

    Google Scholar 
    5.González Díaz, J. A., Celaya, R., Fernández García, R., Osoro, K. & Rosa García, R. Dynamics of rural landscapes in marginal areas of northern Spain: Past, present, and future. Land Degrad. Dev. 30, 141–150. https://doi.org/10.1002/ldr.3201 (2018).Article 

    Google Scholar 
    6.Hersperger, A. M., Gennaio, M.-P., Verburg, P. H., & Buergi, M. Linking land change with driving forces and actors: Four conceptual models. Ecol. Soci. 15(4) (2010). Retrieved from http://apps.webofknowledge.com.infozdroje.czu.cz/full_record.do?product=UA&search_mode=GeneralSearch&qid=1&SID=R1PQ9zBCVnF6m2Wcyo8&page=1&doc=2.7.Khromykh, V. & Khromykh, O. Analysis of spatial structure and dynamics of Tom Valley landscapes based on GIS, digital elevation model and remote sensing. Proc. Soc. Behav. Sci. 120, 811–815. https://doi.org/10.1016/j.sbspro.2014.02.165 (2014).Article 

    Google Scholar 
    8.Kienast, F. Analysis of historic landscape patterns with a geographical information system? A methodological outline. Landsc. Ecol. 8(2), 103–118. https://doi.org/10.1007/BF00141590 (1993).Article 

    Google Scholar 
    9.Matsushita, B., Xu, M. & Fukushima, T. Characterizing the changes in landscape structure in the Lake Kasumigaura Basin, Japan using a high-quality GIS dataset. Landsc. Urban Plan. 78(3), 241–250. https://doi.org/10.1016/j.landurbplan.2005.08.003 (2006).Article 

    Google Scholar 
    10.Plieninger, T. et al. Patterns and drivers of scattered tree loss in agricultural landscapes: Orchard meadows in Germany (1968–2009). PLoS ONE https://doi.org/10.1371/journal.pone.0126178 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Swetnam, R. D. Rural land use in England and Wales between 1930 and 1998: Mapping trajectories of change with a high resolution spatio-temporal dataset. Landsc. Urban Plan. 81(1–2), 91–103. https://doi.org/10.1016/j.landurbplan.2006.10.013 (2007).Article 

    Google Scholar 
    12.Eurostat. Life in Cities. Urban Europe—Statistics on Cities, Towns and Suburbs. (Publications Office of the European Union, 2016). https://doi.org/10.2785/9112013.Fernández Ales, R. Effect of economic development on landscape structure and function in the Province of Seville (SW Spain) and its consequences on conservation. In Land Abandonment and Its Role in Conservation, Options Mediterraneennes, Serie A, Seminaires Mediterraneens Vol. 15 (eds Baudry, J. & Bunce, R. G. H.) 61–69 (Options Méditerranéennes, 1991).
    Google Scholar 
    14.Falcucci, A., Maiorano, L. & Boitana, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 22, 617–631 (2007).Article 

    Google Scholar 
    15.Antrop, M. Why landscapes of the past are important for the future. Landsc. Urban Plan. https://doi.org/10.1016/j.landurbplan.2003.10.002 (2004).Article 

    Google Scholar 
    16.Janečková Molnárová, K., Skřivanová, Z., Kalivoda, O. & Sklenička, P. Rural identity and landscape aesthetics in exurbia: Some issues to resolve from a Central European perspective. Morav. Geogr. Rep. 25(1), 2–12. https://doi.org/10.1515/mgr-2017-0001 (2017).Article 

    Google Scholar 
    17.Bičík, I., Jeleček, L. & Štěpánek, V. Land-use changes and their social driving forces in Czechia in the 19th and 20th centuries. Land Use Policy 18(1), 65–73. https://doi.org/10.1016/S0264-8377(00)00047-8 (2001).Article 

    Google Scholar 
    18.Lipsky, Z. The changing face of the Czech rural landscape. Landsc. Urban Plan. 31(1–3), 39–45. https://doi.org/10.1016/0169-2046(94)01034-6 (1995).Article 

    Google Scholar 
    19.Prishchepov, A. V., Radeloff, C. V., Baumann, M., Kemmerle, T. & Müller, D. Effects of institutional changes on land use: Agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Enivron. Res. Lett. 7, 024021. https://doi.org/10.1088/1748-9326/7/2/024021 (2012).Article 

    Google Scholar 
    20.Forman, T. T. R. & Godron, M. Landscape Ecology (Wiley, 1986).
    Google Scholar 
    21.Míchal, I. Ekologická Stabilita (Veronica, 1994).
    Google Scholar 
    22.Bucala, A. The impact of human activities on land use and land cover changes and environmental processes in the Gorce Mountains (Western Polish Carpathians) in the past 50 years. J. Environ. Manag. 138, 4–14 (2014).Article 

    Google Scholar 
    23.Kozak, J. Forest cover change in the western Carpathians in the past 180 years. A case study in the Orawa region in Poland. Mt. Res. Dev. 23(4), 369–375 (2003).Article 

    Google Scholar 
    24.Latocha, A. Land-use changes and longer-term human–environment interactions in a mountain region (Sudetes Mountains, Poland). Geomorphology 108(1), 48–57. https://doi.org/10.1016/j.geomorph.2008.02.019 (2009).ADS 
    Article 

    Google Scholar 
    25.Prauser, S. & Rees, A. The expulsion of the “German” communities from Eastern Europe at the end of the Second World War (Badia Fiesolana, 2004).
    Google Scholar 
    26.Petráš, R. Reforma správy a národní otázka na počátku první republiky. Historický Obzor: Časopis pro Výuku Dějepisu a Popularizaci Historie 13(5), 133–137 (2002).
    Google Scholar 
    27.Bičík, I. & Kabrda, J. Land use changes in Czech border regions (1845–2000). AUC Geogr. 42, 23–52 (2007).
    Google Scholar 
    28.Staněk, T. & von Arburg, A. Vysídlení Němců a proměny českého pohraničí 1945–1951 (I.) (Vysídlení) (Zdeněk Susa, 2010).
    Google Scholar 
    29.Weber, M. Dědictví krajiny jako výzva pro její současné obyvatele. In Proměny sudetské krajiny, Antikomple (ed. Spurnný, M.) (Nakladatelství Českého lesa, 2006).
    Google Scholar 
    30.Romportl, D., Chuman, T. & Lipsky, Z. Landscape typology of Czechia. Geografie 118(1), 16–39 (2013).Article 

    Google Scholar 
    31.Estel, S. et al. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 163, 312–325. https://doi.org/10.1016/J.RSE.2015.03.028 (2015).ADS 
    Article 

    Google Scholar 
    32.Levers, C., Schneider, M., Prishchepov, A. V., Estel, S. & Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 644, 95–111. https://doi.org/10.1016/J.SCITOTENV.2018.06.326 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    33.Zelinka, V. Continuity and extinction of agricultural land in the sudetes—A case study in the landscape of highlands and mountains. J. Landsc. Ecol. 11(2), 53–66. https://doi.org/10.2478/jlecol-2018-0006 (2018).Article 

    Google Scholar 
    34.ESRI. ArcGIS 10.6 (2017).35.Statistický lexikon obcí v republice Československé. (I). (Ministerstvo vnitra a Státní úřad statistický.Orbis, 1934).36.CENIA. Historické letecké snímky—50. léta. https://www.cenia.cz (2012).37.Bičík, I. et al. Land use changes in the Czech republic 1845–2010 (Springer, 2015).Book 

    Google Scholar 
    38.Demková, K. & Lipský, Z. Změny nelesní dřevinné vegetace v jihozápadní části bílých karpat v letech 1949–2011. Geogr. Sb. CGS 120(1), 64–83 (2015).
    Google Scholar 
    39.Forejt, M., Skalos, J., Pereponova, A., Plieninger, T. & Vojta, J. Changes and continuity of wood-pastures in the lowland landscape in Czechia. Appl. Geogr. 79, 235–244. https://doi.org/10.1016/j.apgeog.2016.12.016 (2017).Article 

    Google Scholar 
    40.ČÚZK. Geoportál ČÚZK—přístup k mapovým produktům a službám resortu. https://geoportal.cuzk.cz/ (2016).41.Skokanová, H. Application of methodological principles for assessment of land use changes trajectories and processes in South-eastern Moravia for the period 1836–2006 Eastern Moravia for the period 1836–2006. Acta Pruhon. 91, 15–21 (2015).
    Google Scholar 
    42.Grossmann, E. B. & Mladenoff, D. J. Open woodland and savanna decline in a mixed-disturbance landscape (1938 to 1998) in the Northwest Wisconsin (USA) Sand Plain. Landsc. Ecol. 22, 43–55 (2007).Article 

    Google Scholar 
    43.Skaloš, J. et al. What are the transitions of woodlands at the landscape level? Change trajectories of forest, non-forest and reclamation woody vegetation elements in a mining landscape in North-western Czech Republic. Appl. Geogr. 58, 206–216. https://doi.org/10.1016/j.apgeog.2015.02.003 (2015).Article 

    Google Scholar 
    44.Raška, P., Zábranský, V., Brázdil, R. & Lamková, J. The late Little Ice Age landslide calamity in North Bohemia: Triggers, impacts and post-landslide development reconstructed from documentary data (case study of the Kozí vrch Hill landslide). Geomorphology 255, 95–107. https://doi.org/10.1016/j.geomorph.2015.12.009 (2016).ADS 
    Article 

    Google Scholar 
    45.Amici, V. et al. Anthropogenic drivers of plant diversity: Perspective on land use change in a dynamic cultural landscape. Biodivers. Conserv. 24(13), 3185–3199. https://doi.org/10.1007/s10531-015-0949-x (2015).Article 

    Google Scholar 
    46.Bürgi, M. et al. Processes and driving forces in changing cultural landscapes across Europe. Landsc. Ecol. 32(11), 2097–2112. https://doi.org/10.1007/s10980-017-0513-z (2017).Article 

    Google Scholar 
    47.Raška, P., Hruška, V. & Kolektiv, A. Adaptabilita a Resilience (Univerzita J.E. Purkyně v Ústí nad Labem, 2014).
    Google Scholar 
    48.CENIA. CORINE Land Cover 2012 Databáze České Republiky (2014).49.Juřena, J. Soumrak nad českým Podkrkonoším: Německá opkuace Novopacka a Jilemnicka v roce 1938. (FORTprint, 2013).50.Czech Geological Survey. Soil Map of Czech Republic (2018).51.Meduna, P. & Sádlo, J. Bezdězsko—Dokesko. Krajina mezi odolností a stagnací. Hist. Geogr. 35(1), 147–160 (2009).
    Google Scholar 
    52.Novák, J., Sádlo, J. & Svobodová-svitavská, H. Unusual vegetation stability in a lowland pine forest area (Doksy region, Czech Republic). Holocene 22(8), 947–955. https://doi.org/10.1177/0959683611434219 (2012).ADS 
    Article 

    Google Scholar 
    53.Klápště, J. Proměna českých zemí ve středověku. (Lidové noviny, 2012).54.Engstová, B. & Petříček, V. Landscape and vegetation in a military area—Past and present. J. Landsc. Stud. 1, 91–102 (2008).
    Google Scholar 
    55.Turner, M. G. & Gardner, R. H. Landscape Ecology in Theory and Practice 2nd edn. (Springer, 2015).
    Google Scholar 
    56.Chytrý, M. (ed.) Vegetace České republiky 1. Travinná a keříčková vegetace (Academia, 2007).
    Google Scholar 
    57.Chytrý, M., Kučera, T., Kočí, M., Grulich, V. & Lustyk, P. Katalog biotopů České republiky (Agentura ochrany přírody a krajiny ČR, 2010).
    Google Scholar  More

  • in

    Organic fertilization improves soil aggregation through increases in abundance of eubacteria and products of arbuscular mycorrhizal fungi

    1.Lal, R. Carbon sequestration in dryland ecosystems. Environ. Manag. 33, 528–544 (2004).Article 

    Google Scholar 
    2.Six, J., Elliot, E. T. & Paustian, K. Soil microaggregate turnover and microaggregate formation: A mechanism for C organic under no-tillage agriculture. Soil Biol. Biochem. 32, 2099–2103 (2000).CAS 
    Article 

    Google Scholar 
    3.Costa, O. Y. A., Raaijmakers, J. M. & Kuramae, E. E. Microbial extracellular polymeric substances: Ecological function and impact on soil aggregation. Front. Microbiol. 9, 1636 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    4.Bronick, C. J. & Lal, R. Soil structure and management: A review. Geoderma 124, 3–22 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    5.Reganold, J. P., Glover, J. D., Andrews, P. K. & Hinman, H. R. Sustainability of three apple production systems. Nature 410, 926–930 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    6.Aziz, I., Mahmood, T. & Islam, K. R. Effect of long term no-till and conventional tillage practices on soil quality. Soil Till. Res. 131, 28–35 (2013).Article 

    Google Scholar 
    7.Gautam, A., Guzman, J., Kovacs, P. & Kumar, S. Manure and inorganic fertilization impacts on soil nutrients, aggregate stability, and organic carbon and nitrogen in different aggregate fractions. Arch. Agron. Soil Sci. https://doi.org/10.1080/03650340.2021.1887480 (2021).Article 

    Google Scholar 
    8.Lin, Y., Ye, G., Liu, D., Fan, J. & Ding, W. Long-term manure application increases soil organic matter and aggregation, and alters microbial community structure and keystone taxa. Soil Biol. Biochem. 134, 187–196 (2019).CAS 
    Article 

    Google Scholar 
    9.Six, J., Bossuyt, H., DeGryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till. Res. 79, 7–31 (2004).Article 

    Google Scholar 
    10.Kumar, R., Rawat, K. S., Singh, J., Singh, A. & Rai, A. Soil aggregation dynamics and carbon sequestration. J. Appl. Nat. Sci. 5, 250–267 (2013).CAS 
    Article 

    Google Scholar 
    11.Lehmann, A., Zheng, W. S. & Rillig, M. C. Soil biota contributions to soil aggregation. Nat. Ecol. Evol. 1, 1828–1835 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    12.Spatafora, J. W. et al. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108(5), 1028–1046 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    13.Miller, R. M. & Jastrow, J. D. Mycorrhizal fungi influence soil structure. In Arbuscular Mycorrhizas: Molecular Biology and Physiology (eds Kapulnik, Y. & Douds, D. D.) 3–18 (Kluwer, 2000).Chapter 

    Google Scholar 
    14.Leifheit, E. E., Veresoglou, S. D., Lehmann, A., Morris, E. K. & Rillig, M. C. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—A meta-analysis. Plant Soil 374, 523–537 (2014).CAS 
    Article 

    Google Scholar 
    15.Lehmann, A., Leifheit, E. F. & Rillig, M. C. Mycorrhizas and Soil Aggregation (Elsevier, 2017).Book 

    Google Scholar 
    16.Bethlenfalvay, G. J., Cantrell, I. C., Mihara, K. L. & Schreiner, R. P. Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol. Fertil. Soil. 28, 356–363 (1999).Article 

    Google Scholar 
    17.Rashid, M. I. et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 183, 26–41 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Velmourougane, K., Prasanna, R. & Saxena, A. K. Agriculturally important microbial biofilms: Present status and future prospects. J. Basic Microbiol. 57, 548–573 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Bomfeti, C. A. et al. Exopolysaccharides produced by the symbiotic nitrogen fixing bacteria of leguminosae. Rev. Bras. Cienc. Sol. 35, 657–671 (2011).CAS 
    Article 

    Google Scholar 
    20.Daynes, C. N., Zhang, N., Saleeba, J. A. & McGee, P. A. Soil aggregates formed in vitro by saprotrophic Trichocomaceae have transient water-stability. Soil Biol. Biochem. 48, 151–161 (2012).CAS 
    Article 

    Google Scholar 
    21.Bystrianský, L. et al. Observations on two microbial life strategies in soil: Planktonic and biofilmforming microorganisms are separable. Soil Biol. Biochem. 136, 107535 (2019).Article 
    CAS 

    Google Scholar 
    22.Rillig, M. C. Arbuscular mycorrhizae, glomalin, and soil aggregation. Can. J. Soil Sci. 84, 355–363 (2004).Article 

    Google Scholar 
    23.Yang, Y., Chuangjun, H., Huang, L., Ban, Y. & Tang, M. The effects of arbuscular mycorrhizal fungi on glomalin-related soil protein distribution, aggregate stability and their relationships with soil properties at different soil depths in lead-zinc contaminated area. PLoS ONE 12, e0182264 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    24.Baldock, J. A. Interactions of organic materials and microorganisms with minerals in the stabilization of soil structure. In Interactions Between Soil Particles and Microorganisms (eds Huang, P. M. et al.) (Wiley, 2002).
    Google Scholar 
    25.Tisdall, J. M. & Oades, J. M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163 (1982).CAS 
    Article 

    Google Scholar 
    26.Martens, D. A. Management and crop residue influence soil aggregate stability. J. Environ. Qual. 29, 723–727 (2000).CAS 
    Article 

    Google Scholar 
    27.Aiken, G. R., McKnight, D. M., Wershaw, R. L. & MacCarthy, P. Humic Substances in Soil, Sediment, and Water (Wiley, 1985).
    Google Scholar 
    28.Jandl, R. & Sletten, R. S. Mineralization of forest soil carbon: Interactions with metals. J. Plant Nutr. Soil Sci. 162, 623–629 (1999).CAS 
    Article 

    Google Scholar 
    29.Bipfubusa, M., Angers, D. A., N’Dayegamiye, A. & Antoun, H. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci. Soc. Am. J. 72, 160–166 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    30.Jiao, Y., Whalen, J. K. & Hendershot, W. H. No-tillage and manure applications increase aggregation and improve nutrient retention in a sandy-loam soil. Geoderma 134, 24–33 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    31.Gielnik, A. et al. Effect of digestate application on microbial respiration and bacterial communities’ diversity during bioremediation of weathered petroleum hydrocarbons contaminate. Sci. Total Environ. 670, 271–281 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    32.Erktan, A., Rillig, M., Carminati, A., Jousset, A. & Scheu, S. Fungal and bacterial predator-prey systems influence soil aggregate formation and stabilization. Geophys. Res. Abstracts 21, 1–1 (2019).
    Google Scholar 
    33.Rillig, M. C. et al. Plant root and mycorrhizal fungal traits for understanding soil aggregation. New Phytol. 205, 1385–1388 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    34.Kandeler, E. Aggregate stability. In Methods in Soil Biology (eds Schiner, F. et al.) (Springer, 1996).
    Google Scholar 
    35.Demyan, M. S. et al. Use of specific peaks obtained by diffuse reflectance Fourier transform mid-infrared spectroscopy to study the composition of organic matter in a Haplic Chernozem. Eur. J. Soil Sci. 63(2), 189–199 (2012).CAS 
    Article 

    Google Scholar 
    36.Körschens, M., Schulz, E. & Behm, R. Hot water extractable carbon and nitrogen of soils as a criterion for their ability of N-release. Zentralbl. Mikrobiol. 145, 305–311 (1990).Article 

    Google Scholar 
    37.Wright, S. & Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586 (1996).ADS 
    CAS 
    Article 

    Google Scholar 
    38.Bradford, M. M. A rapid and senstive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Thonar, C., Erb, A. & Jansa, J. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities—marker design, verification, calibration and field validation. Mol. Ecol. Res. 12, 219–232 (2012).CAS 
    Article 

    Google Scholar 
    40.Simon, L. M., Lalonde, T. D. & Bruns, T. D. Specific amplification of 18S fungal ribosomal genes from vesicular arbuscular endomycorrhizal fungi colonizing roots. Appl. Environ. Microbiol. 58, 291–295 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    41.Lee, J., Lee, S. & Young, J. P. W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 65, 339–349 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    42.Stoeck, T. et al. Multiple marker parallel tag environmental DNA sequencing reveals a highly complex eukaryotic community in marine anoxic water. Mol. Ecol. 19, 21–31 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    43.Ampe, F., Omar, N. B., Moizan, C., Wacher, C. & Guyot, J.-P. Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation independent methods to investigate traditional fermentations. Appl. Environ. Microbiol. 65, 5464–5473 (1999).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    44.Muyzer, G., de Wall, E. C. & Uitterlinden, A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    45.Verhoeven, K. J. F., Simonsen, K. L. & McIntyre, L. M. Implementing false discovery rate control: Increasing your power. Oikos 108, 643–647 (2005).Article 

    Google Scholar 
    46.ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (version 5.10). (Biometris, Wageningen University & Research, 2018). More

  • in

    Chemical cues that attract cannibalistic cane toad (Rhinella marina) larvae to vulnerable embryos

    Parotoid gland extract preparationAdult cane toads (obtained in south-eastern Queensland, December 2018) were killed humanely using the cool/freeze method8 and stored at − 20 °C. Parotoid glands (54 g) excised from 23 thawed toads were macerated in H2O (250 mL) with a commercial blender, and filtered through a bed of Celite 545. The filtrate was concentrated in vacuo at 40 °C, and was partitioned into ethyl acetate (EtOAc) and H2O solubles. The EtOAc extract (750 mg) containing mostly bufagenins (Fig. 1a) was used in the attractant assay without further purification.Figure 1Analytical HPLC (298 nm) chromatogram of extracts obtained from (a) frozen parotoid gland, (b) eggs, (c) early-development tadpole, (d) late-development tadpole and (e) fresh parotoid secretion of cane toads, Rhinella marina [HPLC condition: Agilent Zorbax C8 column, 5 μm, 4.6 × 150 mm, 1 mL/min flow rate 15 min gradient elution from 90% H2O in MeCN, to 100% MeCN, with a constant 0.01% TFA in MeCN modifier]. Highlights: light blue = unspecified bufagenins (MW 400–432); light pink = unspecified bufolipins (MW 630–700); blue = bufagenins 1–5; red = bufotoxins 6–10; pink = bufolipin 11. Structures for 1–11 are shown in Fig. 2, and were assigned on the basis of spectroscopic analysis and comparisons with authentic standards.Full size imageEgg extract preparationCane toad eggs obtained from two laboratory-laid clutches (see method below, Northern Territory, October 2010) were stored at − 20 °C until extraction. Frozen eggs were freeze-dried to yield dry material (1.5 g) that was extracted overnight at room temperature with 90:10 MeOH:H2O (100 mL). The resulting solvent extract was concentrated in vacuo at 40 °C to give a crude material (251 mg) which was partitioned into EtOAc and H2O solubles. The EtOAc (160 mg) extract containing mostly bufagenins and bufolipins (Fig. 1b) was used in the attractant assay without further purification.Early-development tadpole extract preparationEarly developmental stage cane toad tadpoles were collected live from the wild (Northern Territory, March 2010), and stored at − 18 °C until extraction. Frozen tadpoles were freeze-dried to yield dry material (2.6 g) that was extracted overnight at room temperature with 90:10 MeOH:H2O (100 mL). The resulting solvent extract was concentrated in vacuo at 40 °C to give a crude material (1062 mg), which was partitioned into n-BuOH and H2O solubles. The BuOH extract (582 mg) containing mostly bufagenins and bufolipins (Fig. 1c) was used in the attractant assay without further purification.Late-development tadpole extract preparationMid to late developmental stage tadpoles were collected live from the wild (Northern Territory, December 2010), and stored at − 18 °C until extraction. Frozen tadpoles were freeze-dried to give dry material (13.4 g) that was extracted overnight at room temperature with 90:10 MeOH:H2O (100 mL). The resulting solvent extract was concentrated in vacuo at 40 °C to give a crude material (6899 mg), which was partitioned into n-BuOH and H2O solubles. The BuOH extract (3885 mg) containing mostly bufagenins (Fig. 1d) was used in the attractant assay without further purification.Parotoid secretion extract preparationParotoid secretion was obtained from a live adult toad (Northern Territory, August 2011) by mechanical compression of the parotoid gland directly into MeOH, which following concentration in vacuo yielded a crude MeOH extract (26.2 mg). The crude MeOH extract containing mostly bufotoxins (Fig. 1e) was used in the attractant assay without further purification.Pure compounds preparationMarinobufagin (1), marinobufotoxin (6) and suberoyl-l-arginine (13) were obtained from our in-house pure compound library, and their purities were confirmed by LCMS, HRMS and NMR (see Supporting Information for 1H NMR spectra of the pure compounds). Plant cardenolides: digitoxigenin (14), ouabain (15) and digoxin (16) (Fig. 2) were purchased from Sigma Aldrich and were used in the attractant assay without further purification.Figure 2Compounds identified in different stages of cane toad (Rhinella marina) (1–13) and plant derived cardenolides (14–16).Full size imageChemical analysesAnalytical HPLC was performed using an Agilent 1100 series module equipped with a diode array detector on an Agilent Zorbax Stable Bond C8 column (4.6 × 150 mm, 5 μm), 1 mL/min flow rate, 15 min gradient elution from 90% H2O in MeCN to 100% MeCN with a constant 0.01% TFA in MeCN modifier. All analytes were prepared in MeOH stock solutions (1 mg/mL) and an aliquot (10 μL) used for each analysis. HPLC chromatograms were monitored at 298 nm (the α-pyrone chromophore common to all bufadienolides). Compounds 1–12 (Fig. 2) present in the extracts were identified by LC-DAD-ESIMS and comparison with authentic standards (see Supporting Information Table S1). LC-DAD-ESIMS (Liquid Chromatography coupled to Diode Array Detector and Electrospray Ionization Mass Spectra) was acquired using an Agilent 1100 Series LC/MSD mass detector in both positive and negative modes using Agilent Zorbax Stable Bond C8 column (4.6 × 150 mm, 5 μm) with 1 mL/min flow rate, 15 min gradient elution from 90% H2O in MeCN to 100% MeCN with a constant 0.05% formic acid in MeCN modifier.Bait preparationsStock solutions of all attractant extracts were prepared in MeOH (20, 2.0 and 0.20 mg/mL concentrations), with a fixed volume (0.5 mL) of each loaded onto porous ceramic rings (Majestic Aquariums, Sydney, NSW) to give a series of loadings per ceramic ring (10, 1.0 and 0.1 mg) per attractant extract preparation. Stock solutions were also prepared for all pure compound attractants in MeOH (5.0 and 0.5 mM) with a fixed volume (0.5 mL) of each loaded onto porous ceramic rings to give a series of loadings per ceramic ring (2.5 and 0.25 µmoles) per attractant pure compound preparation (marinobufagin, 1.00 and 0.10 mg; digitoxigenin, 0.94 and 0.094 mg; marinobufotoxin, 1.78 and 0.178 mg; ouabain octahydrate, 1.82 and 0.182 mg; digoxin, 1.95 and 0.195 mg; suberoyl-l-arginine, 0.825 and 0.0825 mg per ceramic ring, respectively). Negative controls were ceramic rings loaded with MeOH (0.5 mL/ring) only. All impregnated ceramic rings were left in the fume-hood overnight at room temperature to allow the MeOH to evaporate, and to fix the attractants to the ceramic matrix.Toad breedingAdult toads were collected from the Adelaide River floodplain, near the city of Darwin in tropical Australia, and the animals were held in outdoor enclosures at The University of Sydney Tropical Ecology Research Facility at Middle Point, Northern Territory (12°34.73′S, 131°18.85″E). Breeding was induced by injection of the synthetic gonadotrophin leuprorelin acetate (Lucrin, Abbott Australasia). Females were injected with 0.75 mL doses of 0.25 mg/mL, while males were injected with doses of 0.25 mL4,9. Toads were injected just prior to sunset, and the pairs were placed in 70 L plastic tubs set on an angle with 8 L water. The following morning, eggs were collected and placed in 18 L tanks holding 9 L aerated water. When eggs developed into free-swimming tadpoles (Gosner10 stage 25), tadpoles were transferred to outdoor 750 L mesocosms located in a shaded area. Tadpoles were fed algae wafers (Kyorin, Japan) ad libitum daily, with 50% of the water in mesocosms changed every 3 days. Tadpoles (stage 30–39) were haphazardly selected from mesocosms for use in attraction trials as required.Attraction trialsAttraction trials were conducted in a covered outdoor enclosure exposed to ambient temperature between 0930 and 1700 hours (maximum daily water temperature range over all trials: 26–32 °C). Each trial used plastic pools (1 m diameter) filled with 90 L of well water. Within each pool we placed two plastic traps (175 mm × 120 mm × 70 mm), each of which had a funnel (1 cm diameter) attached to one side. The traps were positioned in the centre of the pool 5 cm apart, with the funnels facing outward. Each pool was stocked with 50 tadpoles from a single clutch. Tadpoles were allowed to settle for 2 h, after which we randomly allocated treatments to traps (i.e., control or chemical). A single bait was added to each trap, and the number of tadpoles within each trap was counted hourly for 6 h. Water temperature was measured at hourly intervals using a hand-held thermometer.Attraction responses to 26 combinations of chemical/concentration were tested, using a total of nine tadpole clutches. Each concentration of each chemical was tested using 4–7 tadpole clutches. The tadpole clutches used for each trial were chosen randomly, with the proviso that they had not been previously tested with the same chemical concentration. Individual tadpoles and baits were used only once in trials.Statistical analysisWe analysed tadpole attraction as a binomial response (trap preference: chemical trap vs control trap) using logistic regression11 in R12, package MASS:glmmPQL). Models were based on the quasibinomial distribution to account for overdispersion of data, with Treatment (control vs. chemical) and Time (hourly intervals) as fixed effects. Random effects were accounted for by nesting trap within pool and responding tadpole clutch. We did not apply Bonferroni corrections to treatment p values due to the highly subjective nature of deciding when to apply such corrections13,14, see both papers for further problems with use of Bonferroni corrections). Rather, we provide unadjusted treatment p values in association with effect sizes (i.e., odds ratio of trap preference; this being a more meaningful indicator of biological significance) to interpret our attraction results13,14.Ethics approvalThis research was approved under permit 6033 from the University of Sydney Animal Care Committee. All methods were performed in accordance with the relevant guidelines and regulations, including ARRIVE guidelines.Consent for publicationAll authors agree to publication of this work. More

  • in

    Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming

    1.Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).Article 

    Google Scholar 
    2.Köchy, M., Hiederer, R. & Freibauer, A. Global distribution of soil organic carbon – Part 1: Masses and frequency distributions of SOC stocks for the tropics, permafrost regions, wetlands, and the world. Soil 1, 351–365 (2015).Article 

    Google Scholar 
    3.Le Quéré, C. et al. Global carbon budget 2013. Earth Syst. Sci. Data 6, 235–263 (2014).Article 

    Google Scholar 
    4.Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).Article 

    Google Scholar 
    5.Bond-Lamberty, B. & Thomson, A. Temperature-associated increases in the global soil respiration record. Nature 464, 579–582 (2010).Article 

    Google Scholar 
    6.Crowther, T. W. et al. Quantifying global soil carbon losses in response to warming. Nature 540, 104–108 (2016).Article 

    Google Scholar 
    7.Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).8.Wieder, W. R., Sulman, B. N., Hartman, M. D., Koven, C. D. & Bradford, M. A. Arctic soil governs whether climate change drives global losses or gains in soil carbon. Geophys. Res. Lett. 46, 14486–14495 (2019).Article 

    Google Scholar 
    9.Guo, X. et al. Gene-informed decomposition model predicts lower soil carbon loss due to persistent microbial adaptation to warming. Nat. Commun. 11, 4897 (2020).Article 

    Google Scholar 
    10.Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).Article 

    Google Scholar 
    11.Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Chang. 6, 791–795 (2016).Article 

    Google Scholar 
    12.Keenan, T. F. & Riley, W. J. Greening of the land surface in the world’s cold regions consistent with recent warming. Nat. Clim. Chang. 8, 825–828 (2018).Article 

    Google Scholar 
    13.Euskirchen, E. S., Mcguire, A. D., Chapin, F. S., Yi, S. & Thompson, C. C. Changes in vegetation in northern Alaska under scenarios of climate change, 2003–2100: implications for climate feedbacks. Ecol. Appl. 19, 1022–1043 (2009).Article 

    Google Scholar 
    14.Conant, R. T. et al. Temperature and soil organic matter decomposition rates – synthesis of current knowledge and a way forward. Glob. Chang. Biol. 17, 3392–3404 (2011).Article 

    Google Scholar 
    15.Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).Article 

    Google Scholar 
    16.Naidu, D. G. & Bagchi, S. Greening of the earth does not compensate for rising soil heterotrophic respiration under climate change. Glob. Chang. Biol. 27, 2029–2038 (2021).Article 

    Google Scholar 
    17.Koven, C. D., Lawrence, D. M. & Riley, W. J. Permafrost carbon–climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl Acad. Sci. USA 112, 3752–3757 (2015).Article 

    Google Scholar 
    18.Xu, X. et al. Plant community structure regulates responses of prairie soil respiration to decadal experimental warming. Glob. Chang. Biol. 21, 3846–3853 (2015).Article 

    Google Scholar 
    19.Melillo, J. M. et al. Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world. Science 358, 101–105 (2017).Article 

    Google Scholar 
    20.Guo, X. et al. Climate warming leads to divergent succession of grassland microbial communities. Nat. Clim. Chang. 8, 813–818 (2018).Article 

    Google Scholar 
    21.Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Chang. 2, 106–110 (2012).Article 

    Google Scholar 
    22.Luo, Y., Wan, S., Hui, D. & Wallace, L. L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).Article 

    Google Scholar 
    23.García-Palacios, P. et al. Pathways regulating decreased soil respiration with warming in a biocrust-dominated dryland. Glob. Chang. Biol. 24, 4645–4656 (2018).Article 

    Google Scholar 
    24.Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).Article 

    Google Scholar 
    25.Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).Article 

    Google Scholar 
    26.Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).Article 

    Google Scholar 
    27.Crowther, T. W. & Bradford, M. A. Thermal acclimation in widespread heterotrophic soil microbes. Ecol. Lett. 16, 469–477 (2013).Article 

    Google Scholar 
    28.Wieder, W. R., Bonan, G. B. & Allison, S. D. Global soil carbon projections are improved by modelling microbial processes. Nat. Clim. Chang. 3, 909–912 (2013).Article 

    Google Scholar 
    29.Mueller, C. W. et al. Large amounts of labile organic carbon in permafrost soils of northern Alaska. Glob. Chang. Biol. 21, 2804–2817 (2015).Article 

    Google Scholar 
    30.Poeplau, C., Kätterer, T., Leblans, N. I. W. & Sigurdsson, B. D. Sensitivity of soil carbon fractions and their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Glob. Chang. Biol. 23, 1316–1327 (2017).Article 

    Google Scholar 
    31.Wang, X. et al. Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration. Glob. Chang. Biol. 20, 3229–3237 (2014).Article 

    Google Scholar 
    32.Carey, J. C. et al. Temperature response of soil respiration largely unaltered with experimental warming. Proc. Natl Acad. Sci. USA 113, 13797–13802 (2016).Article 

    Google Scholar 
    33.Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).Article 

    Google Scholar 
    34.Raich, J. W. & Schlesinger, W. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44, 81–99 (1992).Article 

    Google Scholar 
    35.Jian, J. et al. A restructured and updated global soil respiration database (SRDB-V5). Earth Syst. Sci. Data 13, 255–267 (2021).Article 

    Google Scholar 
    36.Bond-Lamberty, B. & Thomson, A. A global database of soil respiration data. Biogeosciences 7, 1915–1926 (2010).Article 

    Google Scholar 
    37.Rustad, L. E., Huntington, T. G. & Boone, R. D. Controls on soil respiration: Implications for climate change. Biogeochemistry 48, 1–6 (2000).Article 

    Google Scholar 
    38.Hursh, A. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Chang. Biol. 23, 2090–2103 (2017).Article 

    Google Scholar 
    39.Xue, K. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nat. Clim. Chang. 6, 595–600 (2016).Article 

    Google Scholar 
    40.Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS One 12, e0169748 (2017).Article 

    Google Scholar 
    41.Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Chang. 7, 148–152 (2017).Article 

    Google Scholar 
    42.Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).Article 

    Google Scholar 
    43.Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).Article 

    Google Scholar 
    44.Raich, J. W., Russell, A. E., Kitayama, K., Parton, W. & Vitousek, P. M. Temperature influences carbon accumulation in moist tropical forests. Ecology 87, 76–87 (2006).Article 

    Google Scholar 
    45.Parton, W. J., Stewart, J. W. B. & Cole, C. V. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry 5, 109–131 (1988).Article 

    Google Scholar 
    46.Plaza, C. et al. Direct observation of permafrost degradation and rapid soil carbon loss in tundra. Nat. Geosci. 12, 627–631 (2019).Article 

    Google Scholar 
    47.Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Chang. 7, 817–822 (2017).Article 

    Google Scholar 
    48.Kirschbaum, M. U. F. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol. Biochem. 27, 753–760 (1995).Article 

    Google Scholar 
    49.Kirschbaum, M. U. F. The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol. Biochem. 38, 2510–2518 (2006).Article 

    Google Scholar 
    50.Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Change 77, 85–96 (2011).Article 

    Google Scholar 
    51.Serna-Chavez, H. M., Fierer, N. & Van Bodegom, P. M. Global drivers and patterns of microbial abundance in soil. Glob. Ecol. Biogeogr. 22, 1162–1172 (2013).Article 

    Google Scholar 
    52.Xu, X. et al. Global pattern and controls of soil microbial metabolic quotient. Ecol. Monogr. 87, 429–441 (2017).Article 

    Google Scholar 
    53.van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    54.Hashimoto, S. et al. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences 12, 4121–4132 (2015).Article 

    Google Scholar 
    55.Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J. & Wieder, W. R. Applying population and community ecology theory to advance understanding of belowground biogeochemistry. Ecol. Lett. 20, 231–245 (2017).Article 

    Google Scholar 
    56.Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 6, 751–758 (2016).Article 

    Google Scholar 
    57.Trivedi, P., Anderson, I. C. & Singh, B. K. Microbial modulators of soil carbon storage: Integrating genomic and metabolic knowledge for global prediction. Trends Microbiol. 21, 641–651 (2013).Article 

    Google Scholar 
    58.Cavicchioli, R. et al. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586 (2019).Article 

    Google Scholar 
    59.Hutchins, D. A. et al. Climate change microbiology — problems and perspectives. Nat. Rev. Microbiol. 17, 391–396 (2019).Article 

    Google Scholar 
    60.Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 

    Google Scholar 
    61.Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 

    Google Scholar 
    62.Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).Article 

    Google Scholar 
    63.Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S. & Janssens, I. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356 (2015).Article 

    Google Scholar 
    64.Birgander, J., Reischke, S., Jones, D. L. & Rousk, J. Temperature adaptation of bacterial growth and 14C-glucose mineralisation in a laboratory study. Soil Biol. Biochem. 65, 294–303 (2013).Article 

    Google Scholar 
    65.Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 25, 12–24 (2019).Article 

    Google Scholar 
    66.Bradford, M. A. Thermal adaptation of decomposer communities in warming soils. Front. Microbiol. 4, 333 (2013).Article 

    Google Scholar 
    67.Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Chang. 8, 885–889 (2018).Article 

    Google Scholar 
    68.Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Chang. Biol. 19, 252–263 (2013).Article 

    Google Scholar 
    69.Takriti, M. et al. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biol. Biochem. 121, 212–220 (2018).Article 

    Google Scholar 
    70.Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3, 395–398 (2013).Article 

    Google Scholar 
    71.Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Chang. Biol. 26, 3221–3229 (2020).Article 

    Google Scholar 
    72.Bååth, E. Temperature sensitivity of soil microbial activity modeled by the square root equation as a unifying model to differentiate between direct temperature effects and microbial community adaptation. Glob. Chang. Biol. 24, 2850–2861 (2018).Article 

    Google Scholar 
    73.Ratkowsky, D. A., Olley, J., McMeekin, T. A. & Ball, A. Relationship between temperature and growth rate of bacterial cultures. J. Bacteriol. 149, 1–5 (1982).Article 

    Google Scholar 
    74.Rinnan, R., Rousk, J., Yergeau, E., Kowalchuk, G. A. & Bååth, E. Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Glob. Chang. Biol. 15, 2615–2625 (2009).Article 

    Google Scholar 
    75.Roller, B. R. K. & Schmidt, T. M. The physiology and ecological implications of efficient growth. ISME J. 9, 1481–1487 (2015).Article 

    Google Scholar 
    76.Rousk, J., Frey, S. D. & Bååth, E. Temperature adaptation of bacterial communities in experimentally warmed forest soils. Glob. Chang. Biol. 18, 3252–3258 (2012).Article 

    Google Scholar 
    77.Coleman, K. et al. Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81, 29–44 (1997).Article 

    Google Scholar 
    78.Treseder, K. K. et al. Integrating microbial ecology into ecosystem models: Challenges and priorities. Biogeochemistry 109, 7–18 (2012).Article 

    Google Scholar 
    79.Hagerty, S. B. et al. Accelerated microbial turnover but constant growth efficiency with warming in soil. Nat. Clim. Chang. 4, 903–906 (2014).Article 

    Google Scholar 
    80.Steinweg, J. M., Plante, A. F., Conant, R. T., Paul, E. A. & Tanaka, D. L. Patterns of substrate utilization during long-term incubations at different temperatures. Soil Biol. Biochem. 40, 2722–2728 (2008).Article 

    Google Scholar 
    81.Sinsabaugh, R. L. et al. Stoichiometry of microbial carbon use efficiency in soils. Ecol. Monogr. 86, 172–189 (2016).Article 

    Google Scholar 
    82.Ye, J.-S., Bradford, M. A., Dacal, M., Maestre, F. T. & García-Palacios, P. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally. Glob. Chang. Biol. 25, 3354–3364 (2019).Article 

    Google Scholar 
    83.Ye, J. S., Bradford, M. A., Maestre, F. T., Li, F. M. & García-Palacios, P. Compensatory thermal adaptation of soil microbial respiration rates in global croplands. Glob. Biogeochem. Cycles 34, e2019GB006507 (2020).
    Google Scholar 
    84.Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).Article 

    Google Scholar 
    85.Hartley, I. P., Heinemeyer, A. & Ineson, P. Effects of three years of soil warming and shading on the rate of soil respiration: Substrate availability and not thermal acclimation mediates observed response. Glob. Chang. Biol. 13, 1761–1770 (2007).Article 

    Google Scholar 
    86.Hopkins, F. M., Torn, M. S. & Trumbore, S. E. Warming accelerates decomposition of decades-old carbon in forest soils. Proc. Natl Acad. Sci. USA 109, 1753–1751 (2012).Article 

    Google Scholar 
    87.Feng, W. et al. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming. Glob. Chang. Biol. 23, 4765–4776 (2017).Article 

    Google Scholar 
    88.Chen, J. et al. Differential responses of carbon-degrading enzyme activities to warming: Implications for soil respiration. Glob. Chang. Biol. 24, 4816–4826 (2018).Article 

    Google Scholar 
    89.Anthony, M. A., Crowther, T. W., Maynard, D. S., van den Hoogen, J. & Averill, C. Distinct assembly processes and microbial communities constrain soil organic carbon formation. One Earth 2, 349–360 (2020).Article 

    Google Scholar 
    90.Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).Article 

    Google Scholar 
    91.Cotrufo, M. F., Ranalli, M. G., Haddix, M. L., Six, J. & Lugato, E. Soil carbon storage informed by particulate and mineral-associated organic matter. Nat. Geosci. 12, 989–994 (2019).Article 

    Google Scholar 
    92.van Gestel, N. et al. Predicting soil carbon loss with warming. Nature 554, E4–E5 (2018).Article 

    Google Scholar 
    93.Hawkes, C. V., Waring, B. G., Rocca, J. D. & Kivlin, S. N. Historical climate controls soil respiration responses to current soil moisture. Proc. Natl Acad. Sci. USA 114, 6322–6327 (2017).Article 

    Google Scholar 
    94.Ning, D. et al. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 11, 4717 (2020).Article 

    Google Scholar 
    95.Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).Article 

    Google Scholar 
    96.Tifafi, M., Guenet, B. & Hatté, C. Large differences in global and regional total soil carbon stock estimates based on SoilGrids, HWSD, and NCSCD: Intercomparison and evaluation based on field data from USA, England, Wales, and France. Glob. Biogeochem. Cycles 32, 42–56 (2018).Article 

    Google Scholar 
    97.Manzoni, S., Taylor, P., Richter, A., Porporato, A. & Ågren, G. I. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol. 196, 79–91 (2012).Article 

    Google Scholar  More

  • in

    Seagrass Posidonia is impaired by human-generated noise

    1.Potter, J. R. et al. Visual and passive acoustic marine mammal observations and high-frequency seismic source characteristics recorded during a seismic survey. IEEE J. Ocean. Eng. 32, 469–483 (2007).Article 

    Google Scholar 
    2.Hildebrand, J. A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 395, 5–20 (2009).Article 

    Google Scholar 
    3.Richardson, W., Greene, J., Malme, C. & Thomson, D. Marine Mammals and Noise (Academic Press, 1995).4.André, M. The sperm whale sonar: monitoring and use in mitigation of anthropogenic noise effects in the marine environment nuclear instruments and methods in physics research section a accelerators spectrometers detectors and associated equipment. NIM. Phys. Res. A 602, 262–267 (2009).Article 

    Google Scholar 
    5.Lucke, K., Siebert, U., Lepper, P. A. & Blanchet, M.-A. Temporary shift in masked hearing thresholds in a harbor porpoise (Phocoena phocoena) after exposure to seismic airgun stimuli. J. Acoust. Soc. Am. 125, 4060–4070 (2009).Article 

    Google Scholar 
    6.Slabbekoorn, H. et al. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 25, 419–427 (2010).Article 

    Google Scholar 
    7.McCauley, R. D. et al. Widely used marine seismic survey air gun operations negatively impact zooplankton. Nat. Ecol. Evol. 1, 1–8 (2017).Article 

    Google Scholar 
    8.Day, R. D., McCauley, R. D., Fitzgibbon, Q. P., Hartmann, K. & Semmens, J. M. Assessing the impact of marine seismic surveys on Southeast Australian Scallop and Lobster Fisheries https://frdc.com.au/Archived-Reports/FRDC%20Projects/2012-008-DLD.PDF (2016).9.Kunc, H. P., McLaughlin, K. E. & Schmidt, R. Aquatic noise pollution: implications for individuals, populations, and ecosystems. Proc. Biol. Sci. 283, 20160839 (2016).10.Williams, R. et al. Impacts of anthropogenic noise on marine life: publication patterns, new discoveries, and future directions in research and management.Ocean Coast. Manag. 115, 17–24 (2015).Article 

    Google Scholar 
    11.Solé, M. et al. Evidence of cnidarians sensitivity to sound after exposure to low frequency noise underwater sources. Sci. Rep. 6, 37979 (2016).12.Solé, M. et al. Offshore exposure experiments on cuttlefish indicate received sound pressure and particle motion levels associated with acoustic trauma. Sci. Rep. 7, 45899 (2017).13.Solé, M., Monge, M., André, M. & Quero, C. A proteomic analysis of the statocyst endolymph in common cuttlefish (Sepia officinalis): an assessment of acoustic trauma after exposure to sound. Sci. Rep. 9, 9340 (2019).14.Boudouresque, C. F., Mayot, N. & Pergen, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    15.den Hartog, C. The Sea‐grasses of the World (North Holland Publishing Co., 1970).16.Olsen, J. L. et al. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530, 331–335 (2016).CAS 
    Article 

    Google Scholar 
    17.Hemminga, M. & Duarte, C. Seagrass Ecology (Cambridge University Press, 2000).18.Lamb, J. B. et al. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355, 731–733 (2017).CAS 
    Article 

    Google Scholar 
    19.Celdran, D. & Marin, A. Seed photosynthesis enhances Posidonia oceanica seedling growth seed collection. Ecosphere 4, 1–11 (2013).Article 

    Google Scholar 
    20.Jordà, G., Marbà, N. & Duarte, C. M. Mediterranean seagrass vulnerable to regional climate warming. Nat. Clim. Chang. 2, 821–824 (2012).Article 

    Google Scholar 
    21.Boudouresque, C. F., Bernard, G., Pergent, G., Shili, A. & Verlaque, M. Regression of mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot. Mar. 52, 395–418 (2009).Article 

    Google Scholar 
    22.Verduin, J. J., Paling, E. I., Van Keulen, M. & Rivers, L. E. Recovery of donor meadows of Posidonia sinuosa and Posidonia australis contributes to sustainable seagrass transplantation. Int. J. Ecol. https://doi.org/10.1155/2012/837317 (2012).23.Gagliano, M., Mancuso, S. & Robert, D. Towards understanding plant bioacoustics. Trends Plant Sci. 17, 323–325 (2012).CAS 
    Article 

    Google Scholar 
    24.Hashiguchi, Y., Tasaka, M. & Morita, M. T. Mechanism of higher plant gravity sensing. Am. J. Bot. 100, 91–100 (2013).CAS 
    Article 

    Google Scholar 
    25.Pozueta-romero, J. Comparative analysis of mitochondrial translocators. FEBS 287, 62–66 (1991).CAS 
    Article 

    Google Scholar 
    26.Yoder, T., Zheng, H., Todd, P. & Al, E. Amyloplast sedimentation dynamics in maize columella cells support a new model for the gravity-sensing apparatus of roots. Plant Phy. 125, 1045–1060 (2001).CAS 
    Article 

    Google Scholar 
    27.Kuo, J. Morphology, anatomy and histochemistry of the australian seagrasses of the genus Posidonia könig (posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis hook F. Aquat. Bot. 5, 171–190 (1978).Article 

    Google Scholar 
    28.Solé, M., Lenoir, M., Fortuño, J.-M., Van Der Schaar, M. & André, M. A critical period of susceptibility to sound in the sensory cells of cephalopod hatchlings. Biol. Open 7, 033860 (2018).29.Solé, M. et al. Does exposure to noise from human activities compromise sensory information from cephalopod statocysts? Deep. Res. Part II Top. Stud. Oceanogr. 95, 160–181 (2013).30.Slepecky, N., Hamernik, R., Henderson, D. & Al, E. Correlation of audiometric data with changes in cochlear hair cell sterocilia resulting from impulse noise trauma. Acta Otolaryngol. 93, 329–340 (1982).CAS 
    Article 

    Google Scholar 
    31.Avinash, G. B., Nuttall, A.-L. & Raphael, Y. 3-D analysis of F-actin in stereocilia of cochlear hair cells after loud noise exposure. Hear Res. 67, 139–146 (1993).CAS 
    Article 

    Google Scholar 
    32.Tilney, L. G., Saunders, J. C., Egelman, E. & DeRosier, D. J. Changes in the organization of actin filaments in the stereocilia of noise-damaged lizard cochleae. Hear Res. 7, 181–197 (1982).CAS 
    Article 

    Google Scholar 
    33.Han, Y., Wang, X., Chen, J. & Sha, S. H. Noise-induced cochlear F-actin depolymerization is 560 mediated via ROCK2/p-ERM signaling. J. Neurochem. 133, 617–628 (2015).CAS 
    Article 

    Google Scholar 
    34.Wang, J., Dib, M., Lenoir, M. & Al, E. Riluzole rescues cochlear sensory cells from acoustic trauma in the guinea-pig. Neuroscience 111, 635–648 (2002).CAS 
    Article 

    Google Scholar 
    35.Vicente-Torres, M. A. & Schacht, J. A BAD link to mitochondrial cell death in the cochlea of mice with noise-induced hearing loss. J. Neurosci. Res. 83, 1564–1572 (2006).CAS 
    Article 

    Google Scholar 
    36.Gonzalez-Gonzalez, S. The role of mitochondrial oxidative stress in hearing loss.Neurol. Disord. Ther. 1, 1–5 (2017).
    Google Scholar 
    37.Mishra, R. C., Ghosh, R. & Bae, H. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J. Exp. Bot. 6715, 4483–4494 (2016).Article 

    Google Scholar 
    38.van Wijk, K. J. & Kessler, F. Plastoglobuli: Plastid microcompartments with integrated functions in metabolism, plastid developmental transitions, and environmental adaptation. Annu. Rev. Plant Biol. 68, 253–289 (2017).39.Vohník, M., Borovec, O., Župan, I. & Al, E. Anatomically and morphologically unique dark septate endophytic association in the roots of the mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza 25, 663–672 (2015).Article 

    Google Scholar 
    40.Genre, P. & Bonfante, A. Mechanisms underlying benefi cial plant – fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).41.Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis. (Academic Press, Elsevier Ltd., 2008).42.Vohník, M., Borovec, O., Kolaříková, Z., Sudová, R. & Réblová, M. Extensive sampling and high-throughput sequencing reveal posidoniomyces atricolor gen. et sp. (Aigialaceae, Pleosporales) as the dominant root mycobiont of the dominant Mediterranean seagrass Posidonia oceanica. MycoKeys 55, 59–86 (2019).Article 

    Google Scholar 
    43.Pijanowski, B. C. et al. Soundscape ecology: the science of sound in the landscape. Bioscience 61, 203–216 (2011).Article 

    Google Scholar 
    44.Lindseth, A. V. & Lobel, P. S. Underwater soundscape monitoring and fish bioacoustics: a review. Fishes 3, 36 (2018).45.McWilliam, J. N. & Hawkins, A. D. A comparison of inshore marine soundscapes. J. Exp. Mar. Biol. Ecol. 446, 166–176 (2013).Article 

    Google Scholar 
    46.Farina, A. Soundscape Ecology (Springer, 2014).47.Buscaino, G. et al. Temporal patterns in the soundscape of the shallow waters of a mediterranean marine protected area. Sci. Rep. 6, 1–13 (2016).Article 

    Google Scholar 
    48.Solé, M. et al. Ultrastructural damage of Loligo vulgaris and Illex coindetiistatocysts after low frequency sound exposure. PLoS One 8, 1–12 (2013).
    Google Scholar 
    49.André, M. et al. Low-frequency sounds induce acoustic trauma in cephalopods. Front. Ecol. Environ. 9, 489–493 (2011).50.André, M. et al. Contribution to the understanding of particle motion perception in marine invertebrates. Adv. Exp. Med. Biol. 875, 47–55 (2016). More