More stories

  • in

    Seasonal change is a major driver of soil resistomes at a watershed scale

    1.D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature. 477, 457–461 (2011).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    2.Allen, H. K. et al. Call of the wild: antibiotic resistance genes in natural environments. Nat. Rev. Microbiol. 8, 251–259 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    3.Udikovic-Kolic, N., Wichmann, F., Broderick, N. A. & Handelsman, J. Bloom of resident antibiotic-resistant bacteria in soil following manure fertilization. Proc. Natl Acad. Sci. USA. 111, 15202–15207 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    4.Chen, Q. L. et al. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Environ. Int. 92–93, 1–10 (2016).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    5.Gillings, M. R. & Stokes, H. W. Are humans increasing bacterial evolvability? Trends Ecol. Evol. 27, 346–352 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    6.Zhu, Y. G. et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl Acad. Sci. USA. 110, 3435–3440 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    7.Woods, L. C. et al. Horizontal gene transfer potentiates adaptation by reducing selective constraints on the spread of genetic variation. Proc. Natl Acad. Sci. USA. 117, 26868–26875 (2020).8.World Health Organization. Antimicrobial resistance: global report on surveillance. World Health Organization. (2014).9.Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 337, 1107–1111 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    10.Zhu, G. et al. Air pollution could drive global dissemination of antibiotic resistance genes. ISME J. 15, 270–281 (2021).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    11.Xiang, Q. et al. Agricultural activities affect the pattern of the resistome within the phyllosphere microbiome in peri-urban environments. J. Hazard Mater. 382, 121068 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    12.Wang, F. H. et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 48, 9079–9085 (2014).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    13.Ding, J. et al. Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. Environ. Int. 124, 145–152 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    14.Zhou, S. Y. et al. Phyllosphere of staple crops under pig manure fertilization, a reservoir of antibiotic resistance genes. Environ. Pollut. 252, 227–235 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Wang, F. H., Qiao, M., Chen, Z., Su, J. Q. & Zhu, Y. G. Antibiotic resistance genes in manure-amended soil and vegetables at harvest. J. Hazard Mater. 299, 215–221 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    16.Marti, R. et al. Impact of manure fertilization on the abundance of antibiotic-resistant bacteria and frequency of detection of antibiotic resistance genes in soil and on vegetables at harvest. Appl. Environ. Microb. 79, 5701–5709 (2013).CAS 
    Article 

    Google Scholar 
    17.Zhu, Y. G. et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat. Microbiol. 2, 16270 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    18.Du, S. et al. Large-scale patterns of soil antibiotic resistome in Chinese croplands. Sci. Total Environ. 712, 136418 (2020).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    19.Pruden, A., Pei, R. T., Storteboom, H. & Carlson, K. H. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado. Environ. Sci. Technol. 40, 7445–7450 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    20.Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature. 560, 233–237 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    21.Hu, H. W. et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes. Environ. Microbiol. 20, 3186–3200 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    22.Han, X. M. et al. Antibiotic resistance genes and associated bacterial communities in agricultural soils amended with different sources of animal manures. Soil Biol. Biochem. 126, 91–102 (2018).CAS 
    Article 

    Google Scholar 
    23.Hu, H. W. et al. Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. FEMS Microbiol. Ecol. 92, fiv169 (2016).24.Zhang, Y. J. et al. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Environ. Pollut. 231, 1621–1632 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    25.Zhou, J. et al. Reproducibility and quantitation of amplicon sequencing-based detection. ISME J. 5, 1303–1313 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    26.Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    27.Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 26, 2460–2461 (2010).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    28.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73, 5261–5267 (2007).CAS 
    Article 

    Google Scholar 
    29.Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    30.Su, J. Q. et al. Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environ. Sci. Technol. 49, 7356–7363 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Ouyang, W. Y., Huang, F. Y., Zhao, Y., Li, H. & Su, J. Q. Increased levels of antibiotic resistance in urban stream of Jiulongjiang River, China. Appl. Microbiol. Biotechnol. 99, 5697–5707 (2015).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Roberts D. W. labdsv: ordination and multivariate analysis for ecology. R package version 1.8-0. 2016. https://CRAN.R-project.org/package=labdsv.33.Oksanen J. et al. Vegan: community ecology package. R package version 2.2-0. 2014. http://CRAN.R-project.org/package=vegan.34.Jiao, S. et al. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome. 6, 1–13 (2018).35.Sloan, W. T. et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 8, 732–740 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    36.Ning, D., Deng, Y., Tiedje, J. M. & Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl Acad. Sci. USA. 116, 16892–16898 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    37.De Caceres, M. & Legendre, P. Associations between species and groups of sites: indices and statistical inference. Ecology. 90, 3566–3574 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    38.Doerks, T., Copley, R. R., Schultz, J., Ponting, C. P. & Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12, 47–56 (2002).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    39.Wickham H. ggplot2: elegant graphics for data analysis. (Springer-Verlag, 2009).40.Kassambara A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.2. 2018. https://CRAN.R-project.org/package=ggpubr.41.Ahlmann-Eltze C. ggsignif: significance brackets for ‘ggplot2’. R package version 0.4. 0. 2018. https://CRAN.R-project.org/package=ggsignif.42.Zhao, F. K. et al. Soil contamination with antibiotics in a typical peri-urban area in eastern China: seasonal variation, risk assessment, and microbial responses. J. Environ. Sci. (China). 79, 200–212 (2019).Article 

    Google Scholar 
    43.Zhang, Y., Snow, D. D., Parker, D., Zhou, Z. & Li, X. Intracellular and extracellular antimicrobial resistance genes in the sludge of livestock waste management structures. Environ. Sci. Technol. 47, 10206–10213 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    44.Mao, D. et al. Persistence of extracellular DNA in river sediment facilitates antibiotic resistance gene propagation. Environ. Sci. Technol. 48, 71–78 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    45.Xiang, Q. et al. Spatial and temporal distribution of antibiotic resistomes in a peri-urban area is associated significantly with anthropogenic activities. Environ. Pollut. 235, 525–533 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    46.Forsberg, K. J. et al. Bacterial phylogeny structures soil resistomes across habitats. Nature. 509, 612–616 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Li, B. et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 9, 2490–2502 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    48.Hu, H. W. et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ. Microbiol. 18, 3896–3909 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    49.Birgander, J., Rousk, J. & Olsson, P. A. Comparison of fertility and seasonal effects on grassland microbial communities. Soil Biol. Biochem. 76, 80–89 (2014).CAS 
    Article 

    Google Scholar 
    50.Fournier, B. et al. Higher spatial than seasonal variation in floodplain soil eukaryotic microbial communities. Soil Biol. Biochem. 147, 107842 (2020).CAS 
    Article 

    Google Scholar 
    51.Zhang, K., Delgado-Baquerizo, M., Zhu, Y. G. & Chu, H. Space is more important than season when shaping soil microbial communities at a large spatial scale. Msystems. 5, e00783–19 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    52.Ladau, J. & Eloe-Fadrosh, E. A. Spatial, temporal, and phylogenetic scales of microbial ecology. Trends Microbiol. 27, 662–669 (2019).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar  More

  • in

    Germination response to water availability in populations of Festuca pallescens along a Patagonian rainfall gradient based on hydrotime model parameters

    1.Zárate, M. A. & Tripaldi, A. The aeolian system of central Argentina. Aeolian Res. 3, 401–417 (2012).ADS 
    Article 

    Google Scholar 
    2.Chapin III, F. S. Functional role of growth forms in ecosystem and global processes. In Scaling Physiology Process (ed. Ehleringer J. R. & Field C. B.) 287–312. (Elsevier Inc., 1993). https://doi.org/10.1016/C2009-0-03319-4.
    Google Scholar 
    3.Jump, A. S., Mátyás, C. & Peñuelas, J. The altitude-for-latitude disparity in the rangeretractions of woody species. Trends Ecol. Evol. (Amst.) 24, 694–701. https://doi.org/10.1016/j.tree.2009.06.007 (2009).Article 

    Google Scholar 
    4.Donohue, K., Rubio de Casas, R., Burghardt, L., Kovach, K. & Willis, C. G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 41, 293–319 (2010).Article 

    Google Scholar 
    5.O’Connor, T. Local extinction in perennial grasslands: A life-history approach. Am. Nat. 137, 753–773 (1991).Article 

    Google Scholar 
    6.Rotundo, J. L., Aguiar, M. R. & Benech-Arnold, R. Understanding erratic seedling emergence in perennial grasses using physiological models and field experimentation. Plant Ecol. 216, 143–156 (2015).Article 

    Google Scholar 
    7.Duncan, C., Schultz, N. L., Good, M. K., Lewandrowski, W. & Cook, S. The risk-takers and-avoiders: Germination sensitivity to water stress in an arid zone with unpredictable rainfall. AoB Plants. 11(6), plz066 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    8.Pendleton, B. & Meyer, S. Habitat-correlated variation in blackbrush (Coleogyne ramosissima: Rosaceae) seed germination response. J. Arid Environ. 59, 229–243 (2004).ADS 
    Article 

    Google Scholar 
    9.Chamorro, D. et al. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin. Plant Biol. 19(1), 23–31 (2017).PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    10.Bewley, J. D. & Black, M. Seeds. In Seeds. (ed. Bewley, J. D. & Black, M.) 1–33. https://doi.org/10.1007/978-1-4899-1002-8. eBook ISBN978-1-4899-1002-8 (Springer, Boston, MA, 1994).
    Google Scholar 
    11.Bradford, K. J. Water relations in seed germination. In Seed Development and Germination (eds Kigel, J. & Galili, G.) 351–396 (Marcel Dekker Inc, 1995).
    Google Scholar 
    12.Batlla, D. & Benech-Arnold, R. L. The role of fluctuations in soil water content on the regulation of dormancy changes in buried seeds of Polygonum aviculare L. Seed Sci. Res. 16(1), 47–59 (2006).Article 
    CAS 

    Google Scholar 
    13.Luna, B. & Chamorro, D. Germination sensitivity to water stress of eight Cistaceae species from the Western Mediterranean. Seed Sci. Res. 26(2), 101 (2016).Article 

    Google Scholar 
    14.Bradford, K. J. Threshold models applied to seed germination ecology. New Phytol. 165, 338–341 (2005).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    15.Garcia-Huidobro, J., Monteith, J. & Squire, G. Time, temperature and germination of pearl millet (Pennisetum typhoides S. & H.) I. Constant temperature. J. Exp. Bot. 33, 288–296 (1982).Article 

    Google Scholar 
    16.Bradford, K. J. A water relations analysis of seed germination rates. Plant Physiol. 94, 840–849 (1990).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    17.Bradford, K. J. & Still, D. W. Applications of hydrotime analysis in seed testing. Seed Technol. 26(1), 75–85 (2004).
    Google Scholar 
    18.Gummerson, R. J. The effect of constant temperature and osmotic potentials on the germination of sugar beet. J. Exp. Bot. 37, 729–741 (1986).Article 

    Google Scholar 
    19.Bradford, K. J. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 50, 248–260 (2002).Article 
    CAS 

    Google Scholar 
    20.Batlla, D. & Agostinelli, A. M. Thermal regulation of secondary dormancy induction in Polygonum aviculare seeds: A quantitative analysis using the hydrotime model. Seed Sci. Res. 27(3), 231–242 (2017).Article 
    CAS 

    Google Scholar 
    21.Farahinia, P., Sadat-Noori, S. A., Mortazavian, M. M., Soltani, E. & Foghi, B. Hydrotime model analysis of Trachyspermum ammi (L.) Sprague seed germination. J. Appl. Res. Med. Aroma. 5, 88–91 (2017).
    Google Scholar 
    22.Wang, R., Bai, Y. & Tanino, K. Germination of winterfat (Eurotia lanata (Pursh) Moq.) seeds at reduced water potentials: Testing assumptions of hydrothermal time model. Environ. Exp. Bot. 53(1), 49–683 (2005).Article 

    Google Scholar 
    23.Alvarado, V. & Bradford, K. J. A hydrothermal time model explains the cardinal temperatures for seed germination. Plant Cell Environ. 25(8), 1061–1069 (2002).Article 

    Google Scholar 
    24.Bakhshandeh, E. & Gholamhossieni, M. Modelling the effects of water stress and temperature on seed germination of radish and cantaloupe. J. Plant Growth Regul. 38(4), 1402–1411 (2019).Article 
    CAS 

    Google Scholar 
    25.Bakhshandeh, E. & Jamali, M. Population-based threshold models: A reliable tool for describing aged seeds response of rapeseed under salinity and water stress. Environ. Exp. Bot. 176, 104077 (2020).Article 
    CAS 

    Google Scholar 
    26.Leva, P. E. Variación regional de las características agroecológicas y genéticas de Bromus pictus y Poa ligularis en estepas patagónicas (Universidad Nacional de Buenos Aires, 2010).
    Google Scholar 
    27.Palazzesi, L., Barreda, V. & Prieto, A. Análisis evolutivo de la vegetación cenozoica en las provincias de Chubut y Santa Cruz (Argentina) con especial atención en las comunidades herbáceo-arbustivas. Revista del Museo Argentino de Ciencias Naturales nueva serie 5(2), 151–161 (2014).
    Google Scholar 
    28.León, R. J., Bran, D., Collantes, M., Paruelo, J. M. & Soriano, A. Grandes unidades de vegetación de la Patagonia extra andina. Ecol. Austral. 8, 125–144 (1998).
    Google Scholar 
    29.Villalba, R. et al. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Clim. Change. 59(1), 177–232 (2003).Article 

    Google Scholar 
    30.Godagnone, R., Bran, D. Inventario integrado de los recursos de la Provincia de Río Negro. (INTA, Argentina, Río Negro, 2009).
    Google Scholar 
    31.Soriano, A. La vegetación del Chubut. Revista Argentina de Agronomía. 17, 30–66 (1950).
    Google Scholar 
    32.Bertiller, M. B. & Coronato, F. Seed bank patterns of Festuca pallescens in semiarid Patagonia (Argentina): A possible limit to bunch reestablishment. Biodivers. Conserv. 3(1), 57–67 (1994).Article 

    Google Scholar 
    33.Defossé, G., Bertiller, M. & Robberecht, R. Germination characteristics of Festuca pallescens, a Patagonian bunchgrass with reclamation potential. Seed Sci. Technol. (Switzerland). 23(3), 715–723 (1995).
    Google Scholar 
    34.Bertiller, M. B., Elissalde, N. O., Rostagno, C. M. & Defossé, G. E. Environmental patterns and plant distribution along a precipitation gradient in western Patagonia. J. Arid Environ. 29, 85–97 (1993).Article 

    Google Scholar 
    35.Bran, D., Ayesa, J., López, C. Regiones ecológicas de Río Negro. Comunicación Técnica No 59. (INTA, EEA Bariloche, 2000).
    Google Scholar 
    36.Oliva, G. et al. Monitoring drylands: The MARAS system. J. Arid Environ. 161, 55–63 (2019).ADS 
    Article 

    Google Scholar 
    37.López, A. S., Marchelli, P., Batlla, D., López, D. R. & Arana, M. V. Seed responses to temperature indicate different germination strategies among Festuca pallescens populations from semi-arid environments in North Patagonia. Agric. For. Meteorol. 272, 81–90 (2019).ADS 
    Article 

    Google Scholar 
    38.Gaitán, J. J. et al. Evaluating the performance of multiple remote sensing indices to predict the spatial variability of ecosystem structure and functioning in Patagonian steppes. Ecol. Indic. 34, 181–191 (2013).Article 

    Google Scholar 
    39.Moore, R. P. Tetrazolium tests for diagnosing causes for seed weaknesses and for predicting and understanding performance. In Proceedings of the Association of Official Seed Analysts. Association of Official Seed Analysts, vol. 56, 70–73. https://www.jstor.org/stable/23432057 (1966).40.Michel, B. E. Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol. 72(1), 66–70 (1983).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    41.Di Rienzo, J. A., et al. InfoStat versión 2020 & Centro de Transferencia InfoStat. FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar.42.Volis, S., Mendlinger, S. & Ward, D. Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133(2), 131–138 (2002).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    43.Krichen, K., Mariem, H. B. & Chaieb, M. Ecophysiological requirements on seed germination of a Mediterranean perennial grass (Stipa tenacissima L.) under controlled temperatures and water stress. S. Afr. J. Bot. 94, 210–217 (2014).Article 

    Google Scholar 
    44.Petrů, M. & Tielbörger, K. Germination behaviour of annual plants under changing climatic conditions: Separating local and regional environmental effects. Oecologia 155(4), 717–728 (2008).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    45.Cavallaro, V. et al. Evaluation of variability to drought and saline stress through the germination of different ecotypes of carob (Ceratonia siliqua L.) using a hydrotime model. Ecol. Eng. 95, 557–566 (2016).Article 

    Google Scholar 
    46.Tognetti, P. M., Mazia, N. & Ibáñez, G. Seed local adaptation and seedling plasticity account for Gleditsia triacanthos tree invasion across biomes. Ann. Bot. 124(2), 307–318 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    47.Allen, P. S., Meyer, S. E. & Khan, M. A. Hydrothermal time as a tool in comparative germination studies. In Seed biology: advances and applications. Proceedings of the Sixth International Workshop on Seeds, Merida, Mexico, 1999. (ed. Black, M., Bradford, J. K. & Vazquez-Ramos, J.) 401–410. https://doi.org/10.1079/9780851994048.0401 (2000).48.Hu, X. W., Fan, Y., Baskin, C. C., Baskin, J. M. & Wang, Y. R. Comparison of the effects of temperature and water potential on seed germination of Fabaceae species from desert and subalpine grassland. Am. J. Bot. 102(5), 649–660 (2015).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    49.Ramírez-Tobías, H., Peña-Valdivia, C., Trejo, C., Aguirre, J. & Vaquera, H. Seed germination of Agave species as influenced by substrate water potential. Biol. Res. 47, 1–9 (2014).Article 
    CAS 

    Google Scholar 
    50.Couso, L. Mecanismos de tolerancia a sequía y sus efectos sobre la habilidad competitiva de pastos de la estepa patagónica (Universidad Nacional de Buenos Aires, 2011).
    Google Scholar 
    51.López, D. R. Una aproximación Estructural-Funcional 1 del Modelo de Estados y Transiciones para el estudio de la dinámica de la vegetación en estepas de Patagonia norte (Universidad Nacional del Comahue, San Carlos de Bariloche, 2011).
    Google Scholar 
    52.Leva, P. E., Aguiar, M. R. & Premoli, A. C. Latitudinal variation of genecological traits in native grasses of Patagonian rangelands. Aust. J. Bot. 61(6), 475–485 (2013).Article 

    Google Scholar 
    53.López, D. R. & Cavallero, L. The role of nurse functional types in seedling recruitment dynamics of alternative states in rangelands. Acta Oecol. 79, 70–80 (2017).ADS 
    Article 

    Google Scholar 
    54.Coronato, F. R. & Bertiller, M. B. Precipitation and landscape related effects on soil moisture in semi-arid rangelands of Patagonia. J. Arid Environ. 34(1), 1–9 (1996).ADS 
    Article 

    Google Scholar 
    55.Coronato, F. R. & Bertiller, B. Climatic controls of soil moisture dynamics in an arid steppe of northern Patagonia, Argentina. Arid Land Res. Manag. 11, 277–288 (1997).
    Google Scholar 
    56.Heber, U., Santarius, K. A. Water stress during freezing. In Water and Plant Life. Ecological Studies (Analysis and Synthesis), vol. 19 (eds. Lange, O. L. et al.) 253–257. https://doi.org/10.1007/978-3-642-66429-8_16 (Springer, Berlin, Heidelberg, 1976).57.López, A. S., López, D. R., Caballe, G., Siffredi, G. L. & Marchelli, P. Local adaptation along a sharp rainfall gradient occurs in a native Patagonian grass, Festuca pallescens, regardless of extensive gene flow. Environ. Exp. Bot. 171, 103933 (2020).Article 
    CAS 

    Google Scholar 
    58.López, A. S., Azpilicueta, M. M., López, D. R., Siffredi, G. L. & Marchelli, P. Phylogenetic relationships and intraspecific diversity of a North Patagonian Fescue: Evidence of differentiation and interspecific introgression at peripheral populations. Folia Geobot. 53, 115–131. https://doi.org/10.1007/s12224-017-9304-1 (2018).Article 

    Google Scholar 
    59.Smith, S., Riley, E., Tiss, J. & Fendenhein, D. Geographical variation in predictive seedling emergence in a perennial desert grass. J. Ecol. 88, 139–149 (2000).Article 

    Google Scholar 
    60.Bohara, H. et al. Influence of poultry litter and biochar on soil water dynamics and nutrient leaching from a very fine sandy loam soil. Soil Tillage Res. 189, 44–51 (2019).Article 

    Google Scholar  More

  • in

    Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes

    1.Lane, R.S. Ekosystemy leśne Kalifornii jako obszary podwyższonego ryzyka zakażenia krętkami boreliozy z Lyme in Vademecum wybranych chorób odzwierzęcych w środowisku leśnym (ed. Skorupski, M., Wierzbicka, A.) 9–22 (Katedra Łowiectwa i Ochrony Lasu. Poznań, Poland, 2012).2.Siuda, K. Kleszcze Polski (Acari: Ixodida). cz. II Systematyka i rozmieszczenie. (Wydawnictwo Naukowe PWN, Warszawa. Poznań, Poland, 1993).3.Piesman, J. & Gern, L. Lyme borreliosis in Europe and North America. Parasitology 129, 191–220. https://doi.org/10.1017/S0031182003004694 (2004).Article 

    Google Scholar 
    4.ECDC. European Centre for Disease Prevention and Control: Second Expert Consultation on Tick-borne Diseases with Emphasis on Lyme Borreliosis and Tick-borne Encephalitis. http://www.ecdc.europa.eu/en/publications/publications/tick-borne-diseases-meeting-report.pdf (2012).5.Welc-Falęciak, R. et al. Co-infection and genetic diversity of tick-borne pathogens in roe deer from Poland. Vector-Borne Zoonotic Dis 13(5), 277–288. https://doi.org/10.1371/journal.pone.000433610.1089/vbz.2012.1136 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    6.Welc-Falęciak, R. et al. Rickettsiaceae and Anaplasmataceae infections in Ixodes ricinus ticks from urban and natural forested areas of Poland. Parasites Vectors 7, 121. https://doi.org/10.1371/journal.pone.000433610.1186/1756-3305-7-121 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    7.ECDC. European Centre for Disease Prevention and Control: Lyme Borreliosisin Europe. http://www.ecdc.europa.eu/en/healthtopics/vectors/world-health-day-2014/Documents/factsheet-lyme-borreliosis.pdf (2014).8.Rizzoli, A. et al. Lyme borreliosis in Europe. Euro Surveill. 16(27), 19906. http://www.eurosurveillance.org/ViewArticle.aspx? (2011).9.Burbaite, L. & Csányi, S. Roe deer population and harvest changes in Europe. Est. J. Ecol. 58(3), 169–180. https://doi.org/10.3176/eco.2009.3.02 (2009).Article 

    Google Scholar 
    10.Rizzoli, A., Hauffe, H. C., Tagliapietra, V., Netelerm, M. & Rosà, R. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS ONE 4(2), e4336. https://doi.org/10.1371/journal.pone.0004336 (2009).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    11.Jaenson, T. G. T., Jaenson, D. G. E., Eisen, L., Petersson, E. & Lindgren, E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasites Vectors 5, 8 (2012).Article 

    Google Scholar 
    12.Andersen, N. S. et al. Reduction in human Lyme neuroborreliosis associated with a major epidemic among roe deer. Ticks Tick-borne Dis. 9, 379–381. https://doi.org/10.1016/j.ttbdis.2017.12.002 (2018).Article 
    PubMed 

    Google Scholar 
    13.Carpi, G., Cagnacci, F., Neteler, M. & Rizzoli, A. Tick infestation on roe deer in relation to geographic and remotely sensed climatic variables in a tick-borne encephalitis endemic area. Epidemiol. Infect. 136, 1416–1424. https://doi.org/10.1017/S0950268807000039 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    14.Zejda, J. & Bauerova, Z. Home range of field roe deer. Acta Sc. Nat. 19, 1–43 (1985).
    Google Scholar 
    15.Cibien, C., Bideau, E., Boisaubert, B. & Maublanc, M. L. Influence of habitat characteristic on winter social organization in field roe deer. Acta Theriol. 34, 219–226 (1989).Article 

    Google Scholar 
    16.Pielowski, Z. Sarna. (Wydawnictwo Świat, Warszawa, Poland, 1999).17.Siuda, K. Kleszcze (Acari: Ixodida) Polski. Część I. Zagadnienia ogólne. (Wydawnictwo Naukowe PWN, Warszawa, Poland, 1991).18.Kamieniarz, R. Struktura krajobrazu rolniczego a funkcjonowanie populacji sarny polnej. Rozprawy naukowe Uniwersytetu Przyrodniczego w Poznaniu, 463. (Poznań, Poland, 2013).19.Kadulski, S. Występowanie stawonogów pasożytniczych na łownych Lagomorpha i Artiodactyla Polski—próba syntezy. Zeszyty Naukowe Uniwersytet Gdański. Rozprawy i monografie. (Wydawnictwo Uniwersytet Gdański. Gdańsk, Poland, 1989).20.Sugar, L. Health status and parasitic infections in three Hungarian populations of roe deer Capreolus capreolus. In Global trends in Wildlife Management. 18th IUGB Congress (ed. Bobek, B., Perzanowski, K. and Regelin, W.L.) 269–271. (Jagiellonian University Kraków, Poland, Wydawnictwo Świat Press, Kraków-Warszawa, Poland, 1991).21.Jędrysiak, D. Stawonogi pasożytnicze sarny europejskiej Capreolus capreolus (L.) z terenów Pojezierzy Południowobałtyckich. PhD thesis, (Uniwersytet Gdański, Gdańsk, Poland, 2006).22.Kiffner, C., Lӧdige, C., Alings, M., Vor, T. & Rühe, F. Abundance estimation of Ixodes ricinus ticks (Acari: Ixodidae) on roe deer (Capreolus capreolus). Exp. Appl. Acarol. 52, 73–84. https://doi.org/10.1007/s10493-010-9341-4 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    23.Kiffner, C., Lӧdige, C., Alings, M., Vor, T. & Rühe, F. Attachment site selection of ticks on roe deer. Exp. Appl. Acarol. 53, 79–84. https://doi.org/10.1007/s10493-010-9378-4 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    24.Tälleklint, L. & Jaenson, T. G. T. Infestation of mammals by Ixodes ricinus ticks (Acari: Ixodidae) in south-central Sweden. Exp. Appl. Acarol. 21, 755–771. https://doi.org/10.1371/journal.pone.000433610.1023/A%3A1018473122070 (1997).Article 
    PubMed 

    Google Scholar 
    25.Vázquez, L. et al. Tick infestation (Acari: Ixodidae) in roe deer (Capreolus capreolus) from northwestern Spain: population dynamics and risk stratification. Exp. Appl. Acarol. 53, 399–409. https://doi.org/10.1371/journal.pone.000433610.1007/s10493-010-9403-7 (2011).Article 
    PubMed 

    Google Scholar 
    26.Adamska, M. Infestation of game animals from north−western Poland by common tick (Ixodes ricinus) (Acari. Ixododa. Ixodidae). Ann. Parasitol. 54(1), 31–36 (2008).
    Google Scholar 
    27.Michalik, J. et al. Roe deer (Capreolus capreolus): important hosts for Ixodes ricinus reproduction in forest ecosystems of the Wielkopolska province, west-central Poland. In Stawonogi. Oddziaływanie na żywiciela (ed. Buczek, A. & Błaszak, C.) 87–91 (Wydawnictwo Akapit Lublin, Poland, 2008).28.Vor, T., Kiffner, C., Hagedorn, P., Nidrig, M. & Rühe, F. Tick burden on European roe deer (Capreolus capreolus). Exp. Appl. Acarol. 51, 405–417. https://doi.org/10.1371/journal.pone.000433610.1007/s10493-010-9337-0 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    29.Ivanović, I. et al. Hard tick (Acari: Ixodidae) co-infestation of roe deer (Capreolus capreolus Linnaeus, 1758) in vojvodina hunting resort (Serbia). Sci. Pap. Ser. D. Anim Sci LIX, 326–329 (2016).
    Google Scholar 
    30.Dominguez, G. North Spain (Burgos) wild mammals ectoparasites. Parasite 11, 267–272. https://doi.org/10.1051/parasite/2004113267 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    31.Liebisch, A.& Walter, G. Untersuchungen von Zecken bei Haus- und Wildtieren in Deutschland. Zum Vorkommen und zur Biologie der Igelzecke (Ixodes hexagonus) und der Fuchszecke (Ixodes canisuga). Deut. Tierärztl. Woch. 93, 447–450 (1986).32.Król, N. et al. Tick burden on European roe deer (Capreolus capreolus) from Saxony, Germany, and detection of tick-borne encephalitis virus in attached ticks. Parasitol. Res. 119, 1387–1392. https://doi.org/10.1016/j.ttbdis.2014.06.007 (2020).Article 
    PubMed 

    Google Scholar 
    33.Plan urządzania lasu dla nadleśnictwa Podanin, obręby: Margonin. Podanin. Na lata 2012–2021. (BULiGL oddz. w Szczecinku, Poland, 2012).34.Dudziński, M. & Dudziński, J. Studium uwarunkowań i kierunków zagospodarowania przestrzennego gminy Czempiń. Załącznik nr 1 do Uchwały Rady Miejskiej. (Czempiń, 2018).35.Rozporządzenia Ministra Środowiska z dnia marca 2005 r. w sprawie określenia okresów polowań na zwierzęta łowne. Dz. U. Nr 48, poz. 459 (2005).36.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Ausria (2021). https://www.R-project.org.37.Brooks, M.E. at al.glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. The R Journal 9(2), 378–400 https://doi.org/10.32614/RJ-2017-066 (2017)38.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).39.Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. (2017) lmerTest: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82,13. https://doi.org/10.18637/jss.v082.i13 (2017).40.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.3.5.1. https://CRAN.R-project.org/package=emmeans (2019). More

  • in

    Contrasting metabolic strategies of two co-occurring deep-sea octocorals

    1.Watling, L., France, S. C., Pante, E. & Simpson, A. Biology of Deep-Water Octocorals. Advances in Marine Biology Vol. 60 (Elsevier, Amsterdam, 2011).
    Google Scholar 
    2.Sánchez, J. A. Diversity and Evolution of Octocoral Animal Forests at Both Sides of Tropical America. in Marine Animal Forests (ed. Rossi, S., Bramanti, L., Gori, A., & Orejas, C) 1–33 (Springer, 2016).3.Rossi, S., Bramanti, L., Gori, A. and Orejas, C. Marine animal forests: the ecology of benthic biodiversity hotspots. 1-1366. (Springer International Publishing, 2017)4.Cairns, S. D. Studies on western Atlantic Octocorallia (Gorgonacea: Primnoidae). Part 8: New records of Primnoidae from the New England and Corner Rise Seamounts. Proceedings of the Biological Society of Washington120(2), 243–263 (2007).5.Freiwald, A. and Roberts, J.M. Cold-water corals and ecosystems. (Springer, 2005)6.Buhl-Mortensen, L. & Buhl-Mortensen, P. Cold Temperate Coral Habitats. in Corals in a Changing World (2018).7.Braga-Henriques, A. et al. Diversity, distribution and spatial structure of the cold-water coral fauna of the Azores (NE Atlantic). Biogeosciences 10, 4009–4036 (2013).ADS 
    Article 

    Google Scholar 
    8.Íris, S., Andre, F., Filipe, M. P., Gui, M. & Marina, C.-S. Census of Octocorallia (Cnidaria: Anthozoa) of the Azores (NE Atlantic) with a nomenclature update. Zootaxa 4550, 451 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    9.Tempera, F. et al. Mapping condor seamount seafloor environment and associated biological assemblages (Azores, NE Atlantic). Seafloor Geomorphol. Benthic Habitat https://doi.org/10.1016/B978-0-12-385140-6.00059-1 (2012).Article 

    Google Scholar 
    10.Andrews, A., Stone, R., Lundstrom, C. & DeVogelaere, A. Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating. Mar. Ecol. Prog. Ser. 397, 173–185 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    11.Neves, B. D. M., Edinger, E., Layne, G. D. & Wareham, V. E. Decadal longevity and slow growth rates in the deep-water sea pen Halipteris finmarchica (Sars, 1851) (Octocorallia: Pennatulacea): implications for vulnerability and recovery from anthropogenic disturbance. Hydrobiologia 759, 147–170 (2015).CAS 
    Article 

    Google Scholar 
    12.FAO. International guidelines for the management of deep-sea fisheries in the High Seas. (2009).13.OSPAR. Background document for coral gardens, Biodiversity Series, Publication Number: 15486/2010. (2010).14.Kim, K. & Lasker, H. R. Allometry of resource capture in colonial cnidarians and constraints on modular growth. Funct. Ecol. 12, 646–654 (1998).Article 

    Google Scholar 
    15.Gori, A. et al. Effects of food availability on the sexual reproduction and biochemical composition of the Mediterranean gorgonian Paramuricea clavata. J. Exp. Mar. Bio. Ecol. 444, 38–45 (2013).Article 

    Google Scholar 
    16.Coma, R. & Ribes, M. Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101, 205–215 (2003).Article 

    Google Scholar 
    17.Nisbet, R. M., Muller, E. B., Lika, K. & Kooijman, S. A. L. M. From molecules to ecosystems through dynamic energy budget models. J. Anim. Ecol. 69, 913–926 (2008).Article 

    Google Scholar 
    18.Sebens, K., Sarà, G. & Nishizaki, M. Energetics, Particle Capture, and Growth Dynamics of Benthic Suspension Feeders. in Marine Animal Forests 813–854 (Springer, 2017).19.Ribes, M., Coma, R. & Gili, J. M. Heterogeneous feeding in benthic suspension feeders: The natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar. Ecol. Prog. Ser. 183, 125–137 (1999).ADS 
    Article 

    Google Scholar 
    20.Orejas, C., Gili, J. M. & Arntz, W. Role of small-plankton communities in the diet of two Antarctic octocorals (Primnoisis antarctica and Primnoella sp.). Mar. Ecol. Prog. Ser. 250, 105–116 (2003).ADS 
    Article 

    Google Scholar 
    21.Ribes, M., Coma, R. & Rossi, S. Natural feeding of the temperate asymbiotic octocoral-gorgonian Leptogorgia sarmentosa (Cnidaria: Octocorallia). Mar. Ecol. Prog. Ser. 254, 141–150 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    22.Cocito, S. et al. Nutrient acquisition in four Mediterranean gorgonian species. Mar. Ecol. Prog. Ser. 473, 179–188 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    23.Leal, M. C. et al. Temporal changes in the trophic ecology of the asymbiotic gorgonian Leptogorgia virgulata. Mar. Biol. 161, 2191–2197 (2014).Article 

    Google Scholar 
    24.Fabricius, K. E., Benayahu, Y. & Genin, A. Herbivory in Asymbiotic Soft Corals. Science (80-) 268, 90–92 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    25.Rossi, S., Ribes, M., Coma, R. & Gili, J. M. Temporal variability in Zooplankton prey capture rate of the passive suspension feeder Leptogorgia sarmentosa (Cnidaria: Octocorallia), a case study. Mar. Biol. 144, 89–99 (2004).Article 

    Google Scholar 
    26.Coma, R., Llorente-Llurba, E., Serrano, E., Gili, J. M. & Ribes, M. Natural heterotrophic feeding by a temperate octocoral with symbiotic zooxanthellae: a contribution to understanding the mechanisms of die-off events. Coral Reefs 34, 549–560 (2015).ADS 
    Article 

    Google Scholar 
    27.Orejas, C., Gili, J., López-González, P. & Arntz, W. Feeding strategies and diet composition of four Antarctic cnidarian species. Polar Biol. 24, 620–627 (2001).Article 

    Google Scholar 
    28.Sherwood, O. A., Jamieson, R. E., Edinger, E. N. & Wareham, V. E. Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects . Deep. Res. Part I Oceanogr. Res. Pap. 55, 1392–1402 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    29.Kiriakoulakis, K. et al. Lipids and nitrogen isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their nutrition. in Cold-Water Corals and Ecosystems 715–729 (Springer, 2005).30.Naumann, M. S., Tolosa, I., Taviani, M., Grover, R. & Ferrier-Pagès, C. Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs 34, 1165–1175 (2015).ADS 
    Article 

    Google Scholar 
    31.Naumann, M. S., Orejas, C., Wild, C. & Ferrier-Pagès, C. First evidence for zooplankton feeding sustaining key physiological processes in a scleractinian cold-water coral. J. Exp. Biol. 214, 3570–3576 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Sherwood, O. et al. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.: a new archive of surface processes. Mar. Ecol. Prog. Ser. 301, 135–148 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    33.Imbs, A. B., Demidkova, D. A. & Dautova, T. N. Lipids and fatty acids of cold-water soft corals and hydrocorals: a comparison with tropical species and implications for coral nutrition. Mar. Biol. 163, 202 (2016).Article 
    CAS 

    Google Scholar 
    34.Salvo, F., Hamoutene, D., Hayes, V. E. W., Edinger, E. N. & Parrish, C. C. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses. Coral Reefs 37, 157–171 (2018).ADS 
    Article 

    Google Scholar 
    35.Davies, A. J. et al. Downwelling and deep-water bottom currents as food supply mechanisms to the cold-water coral Lophelia pertusa (Scleractinia) at the Mingulay Reef Complex. Limnol. Oceanogr. 54, 620–629 (2009).ADS 
    Article 

    Google Scholar 
    36.Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 1–8 (2015).Article 
    CAS 

    Google Scholar 
    37.Fabricius, K. E., Genin, A. & Benayahu, Y. Flow-dependent herbivory and growth in zoxanthellae-free soft corals. Limnol. Oceanogr. 40, 1290–1301 (1995).ADS 
    Article 

    Google Scholar 
    38.Widdig, A. & Schlichter, D. Phytoplankton: a significant trophic source for soft corals?. Helgol. Mar. Res. 55, 198–211 (2001).ADS 
    Article 

    Google Scholar 
    39.Colaço, A., Giacomello, E., Porteiro, F. & Menezes, G. M. Trophodynamic studies on the Condor seamount (Azores, Portugal, North Atlantic) . Deep. Res. Part II Top. Stud. Oceanogr. 98, 178–189 (2013).ADS 
    Article 

    Google Scholar 
    40.Addamo, A. M. et al. Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0654-8 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    41.Mueller, C. E., Larsson, A. I., Veuger, B., Middelburg, J. J. & van Oevelen, D. Opportunistic feeding on various organic food sources by the cold-water coral Lophelia pertusa. Biogeosciences 11, 123–133 (2014).ADS 
    Article 

    Google Scholar 
    42.Roushdy, H. & Hansen, V. Filtration of phytoplankton by the octocoral Alcyonium digitatum. Nature 190, 649–650 (1961).ADS 
    Article 

    Google Scholar 
    43.Sorokin, Y. Biomass, metabolic rates and feeding of some common reef zoantharians and octocorals. Aust. J. Mar. Freshw. Resour. 42, 729–741 (1991).Article 

    Google Scholar 
    44.Seemann, J. The use of 13C and 15N isotope labeling techniques to assess heterotrophy of corals. J. Exp. Mar. Biol. Ecol. 442, 88–95 (2013).CAS 
    Article 

    Google Scholar 
    45.Orejas, C. et al. The effect of flow speed and food size on the capture efficiency and feeding behaviour of the cold-water coral Lophelia pertusa. J. Exp. Mar. Biol. Ecol. 481, 34–40 (2016).Article 

    Google Scholar 
    46.Carmo, V. et al. Variability of zooplankton communities at Condor seamount and surrounding areas, Azores (NE Atlantic) . Deep. Sea Res. Part II Top. Stud. Oceanogr. 98, 63–74 (2013).ADS 
    Article 

    Google Scholar 
    47.Gori, A., Grover, R., Orejas, C., Sikorski, S. & Ferrier-Pagès, C. Uptake of dissolved free amino acids by four cold-water coral species from the Mediterranean Sea . Deep. Sea Res. Part II Top. Stud. Oceanogr. 99, 42–50 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    48.Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Science of the Anthropocene vol. 5 (2017).49.Migné, A. & Davoult, D. Experimental nutrition in the soft coral Alcyonium digitatum (Cnidaria: Octocorallia): Removal rate of phytoplankton and zooplankton. Cah. Biol. Mar. 43, 9–16 (2002).
    Google Scholar 
    50.Sebens, K. P. & Koehl, M. A. R. Predation on zooplankton by the benthic anthozoans Alcyonium siderium (Alcyonacea) and Metridium senile (Actiniaria) in the New England subtidal. Mar. Biol. 81, 255–271 (1984).Article 

    Google Scholar 
    51.Gili, J.-M., Coma, R., Orejas, C., López-González, P. & Zabala, M. Are Antarctic suspension-feeding communities different from those elsewhere in the world?. Polar Biol. 24, 473–485 (2001).Article 

    Google Scholar 
    52.Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): evidence for summer-autumn feeding constraints. Mar. Biol. 149, 643–651 (2006).CAS 
    Article 

    Google Scholar 
    53.Coma, R., Ribes, M., Gili, J.-M. & Zabala, M. Seasonality in coastal benthic ecosystems. Trends Ecol. Evol. 15, 448–453 (2000).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    54.Bythell, J. C. & Wild, C. Biology and ecology of coral mucus release. J. Exp. Mar. Biol. Ecol. 408, 88–93 (2011).Article 

    Google Scholar 
    55.Brooke, S., Holmes, M. & Young, C. Sediment tolerance of two different morphotypes of the deep-sea coral Lophelia pertusa from the Gulf of Mexico. Mar. Ecol. Prog. Ser. 390, 137–144 (2009).ADS 
    Article 

    Google Scholar 
    56.Larsson, A. I., van Oevelen, D., Purser, A. & Thomsen, L. Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar. Pollut. Bull. 70, 176–188 (2013).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    57.Ragnarsson, S. Á. et al. The impact of anthropogenic activity on cold-water corals. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots 989–1023 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_27.58.Rix, L. et al. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Sci. Rep. 6, 18715 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    59.Lampert, W. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23, 831–834 (1978).ADS 
    CAS 
    Article 

    Google Scholar 
    60.Moller, E. F. Sloppy feeding in marine copepods: prey-size-dependent production of dissolved organic carbon. J. Plankton Res. 27, 27–35 (2004).Article 
    CAS 

    Google Scholar 
    61.Burton, T., Killen, S. S., Armstrong, J. D. & Metcalfe, N. B. What causes intraspecific variation in resting metabolic rate and what are its ecological consequences?. Proc. R. Soc. B Biol. Sci. 278, 3465–3473 (2011).CAS 
    Article 

    Google Scholar 
    62.Burgess, S. C. et al. Metabolic scaling in modular animals. Invertebr. Biol. 136, 456–472 (2017).Article 

    Google Scholar 
    63.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. 64, 1651–1671 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    64.Okie, J. G. et al. Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proc. R. Soc. B Biol. Sci. 282, 20142630 (2015).Article 

    Google Scholar 
    65.van Oevelen, D. et al. The cold-water coral community as hotspot of carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnol. Oceanogr. 54, 1829–1844 (2009).ADS 
    Article 

    Google Scholar 
    66.Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 37 (2015).Article 

    Google Scholar 
    67.Coppari, M., Zanella, C. & Rossi, S. The importance of coastal gorgonians in the blue carbon budget. Sci. Rep. 9, 1–12 (2019).CAS 
    Article 

    Google Scholar 
    68.Moller, E. F. & Nielsen, T. G. Production of bacterial substrate by marine copepods: effect of phytoplankton biomass and cell size. J. Plankton Res. 23, 527–536 (2001).Article 

    Google Scholar 
    69.Titelman, J., Riemann, L., Holmfeldt, K. & Nilsen, T. Copepod feeding stimulates bacterioplankton activities in a low phosphorus system. Aquat. Biol. 2, 131–141 (2008).Article 

    Google Scholar 
    70.Violle, C. & Jiang, L. Towards a trait-based quantification of species niche. J. Plant Ecol. 2, 87–93 (2009).Article 

    Google Scholar 
    71.Yesson, C. et al. Global habitat suitability of cold-water octocorals. J. Biogeogr. 39, 1278–1292 (2012).Article 

    Google Scholar 
    72.Kearney, M., Simpson, S. J., Raubenheimer, D. & Helmuth, B. Modelling the ecological niche from functional traits. Philos. Trans. R. Soc. B Biol. Sci. 365, 3469–3483 (2010).Article 

    Google Scholar 
    73.Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    74.Evans, T. G., Diamond, S. E. & Kelly, M. W. Mechanistic species distribution modelling as a link between physiology and conservation. Conservation Physiology 3, cov056 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    75.Johnson, J. Y. Description of a new species of flexible coral belonging to the genus Juncella, obtained at Madeira. Proc. Zool. Soc. London 505–506 (1863).76.Weinberg, S. & Grasshoff, M. Gorgonias. El Mar Mediterraneo. Fauna, Flora, Ecologia. II/1. Guia Sistematica y de Identificacion. (Ediciones Omega, 2003).77.Carpine, C. & Grasshoff, M. Les gorgonaires de la Méditerranée. Bull. l’Institut Océanographique 1–140 (1975).78.Brito, A. & Ocaña, O. Corales de las Islas Canarias. (2004).79.Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).Article 

    Google Scholar 
    80.Tempera, F. et al. Mapping the Condor seamount seafloor environment and associated biological assemblages (Azores, NE Atlantic). In Seafloor geomorphology as benthic habitat: geohab atlas of seafloor geomorphic features and benthic habitats (eds Harris, P. T. & Baker, E. K.) 807–818 (Elsevier, Amsterdam, 2012).
    Google Scholar 
    81.Santos, M. et al. Phytoplankton variability and oceanographic conditions at Condor seamount, Azores (NE Atlantic) . Deep. Sea Res. Part II Top. Stud. Oceanogr. 98, 52–62 (2013).ADS 
    Article 

    Google Scholar 
    82.Sorokin, Y. I. On the feeding of some scleractinian corals with bacteria and dissolved organic matter. Limnol. Oceanogr. 18, 380–386 (1973).ADS 
    CAS 
    Article 

    Google Scholar 
    83.Maier, S. R. et al. Survival under conditions of variable food availability: Resource utilization and storage in the cold-water coral Lophelia pertusa. Limnol. Oceanogr. https://doi.org/10.1002/lno.11142 (2019).Article 

    Google Scholar 
    84.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    85.Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, New York , 2009).MATH 
    Book 

    Google Scholar 
    86.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    87.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: linear and Nonlinear mixed effects models. R package version 3.1–140. (2019). More

  • in

    Bat responses to changes in forest composition and prey abundance depend on landscape matrix and stand structure

    1.Watling, J. I. et al. Support for the habitat amount hypothesis from a global synthesis of species density studies. Ecol. Lett. 23, 674–681 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    2.Song, X.-P. et al. Global land change from 1982 to 2016. Nature 560, 639–643 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    3.Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    4.Ćosović, M., Bugalho, M. N., Thom, D. & Borges, J. G. Stand structural characteristics are the most practical biodiversity indicators for forest management planning in Europe. Forests 11, 343 (2020).Article 

    Google Scholar 
    5.Bouvet, A. et al. Effects of forest structure, management and landscape on bird and bat communities. Environ. Conserv. 43, 148–160 (2016).Article 

    Google Scholar 
    6.Froidevaux, J. S., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).ADS 
    Article 

    Google Scholar 
    7.Fuentes-Montemayor, E. et al. Species mobility and landscape context determine the importance of local and landscape-level attributes. Ecol. Appl. 27, 1541–1554 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    8.Jung, K., Kaiser, S., Böhm, S., Nieschulze, J. & Kalko, E. K. Moving in three dimensions: effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J. Appl. Ecol. 49, 523–531 (2012).Article 

    Google Scholar 
    9.Langridge, J., Pisanu, B., Laguet, S., Archaux, F. & Tillon, L. The role of complex vegetation structures in determining hawking bat activity in temperate forests. For. Ecol. Manag. 448, 559–571 (2019).Article 

    Google Scholar 
    10.Müller, J. et al. From ground to above canopy—Bat activity in mature forests is driven by vegetation density and height. For. Ecol. Manag. 306, 179–184 (2013).Article 

    Google Scholar 
    11.Renner, S. C. et al. Divergent response to forest structure of two mobile vertebrate groups. For. Ecol. Manag. 415, 129–138 (2018).Article 

    Google Scholar 
    12.Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Fragmented woodlands in agricultural landscapes: the influence of woodland character and landscape context on bats and their insect prey. Agr. Ecosyst. Environ. 172, 6–15 (2013).Article 

    Google Scholar 
    13.Rachwald, A., Boratyński, J. S., Krawczyk, J., Szurlej, M. & Nowakowski, W. K. Natural and anthropogenic factors influencing the bat community in commercial tree stands in a temperate lowland forest of natural origin (Białowieża Forest). For. Ecol. Manag. 479, 118544 (2021).Article 

    Google Scholar 
    14.Alder, D., Poore, A., Norrey, J., Newson, S. & Marsden, S. Irregular silviculture positively influences multiple bat species in a lowland temperate broadleaf woodland. For. Ecol. Manag. 118786, 1613 (2020).
    Google Scholar 
    15.Carr, A., Zeale, M. R., Weatherall, A., Froidevaux, J. S. & Jones, G. Ground-based and LiDAR-derived measurements reveal scale-dependent selection of roost characteristics by the rare tree-dwelling bat Barbastella barbastellus. For. Ecol. Manag. 417, 237–246 (2018).Article 

    Google Scholar 
    16.Kortmann, M. et al. Beauty and the beast: how a bat utilizes forests shaped by outbreaks of an insect pest. Anim. Conserv. 21, 21–30 (2018).Article 

    Google Scholar 
    17.Ruczyński, I., Nicholls, B., MacLeod, C. & Racey, P. Selection of roosting habitats by Nyctalus noctula and Nyctalus leisleri in Białowieża Forest—adaptive response to forest management?. For. Ecol. Manag. 259, 1633–1641 (2010).Article 

    Google Scholar 
    18.Ober, H. K. & Hayes, J. P. Influence of forest riparian vegetation on abundance and biomass of nocturnal flying insects. For. Ecol. Manag. 256, 1124–1132 (2008).Article 

    Google Scholar 
    19.Russo, D. et al. Identifying key research objectives to make European forests greener for bats. Front. Ecol. Evol. 4, 87 (2016).Article 

    Google Scholar 
    20.Kaňuch, P. et al. Relating bat species presence to habitat features in natural forests of Slovakia (Central Europe). Mamm. Biol. 73, 147–155 (2008).Article 

    Google Scholar 
    21.Kirkpatrick, L. et al. Bat use of commercial coniferous plantations at multiple spatial scales: management and conservation implications. Biol. Cons. 206, 1–10 (2017).Article 

    Google Scholar 
    22.Vasko, V. et al. Within-season changes in habitat use of forest-dwelling boreal bats. Ecol. Evol. 10, 4164–4174 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    23.Węgiel, A. et al. The foraging activity of bats in managed pine forests of different ages. Eur. J. Forest Res. 138, 383–396 (2019).Article 

    Google Scholar 
    24.Bender, M. J., Castleberry, S. B., Miller, D. A. & Wigley, T. B. Site occupancy of foraging bats on landscapes of managed pine forest. For. Ecol. Manag. 336, 1–10 (2015).Article 

    Google Scholar 
    25.Apoznański, G. et al. Use of coniferous plantations by bats in western Poland during summer. Balt. For. 26, 232 (2020).Article 

    Google Scholar 
    26.Buchholz, S., Kelm, V. & Ghanem, S. J. Mono-specific forest plantations are valuable bat habitats: implications for wind energy development. Eur. J. Wildl. Res. 67, 1–12 (2021).Article 

    Google Scholar 
    27.Charbonnier, Y. et al. Deciduous trees increase bat diversity at stand and landscape scales in mosaic pine plantations. Landscape Ecol. 31, 291–300 (2016).Article 

    Google Scholar 
    28.Arroyo‐Rodríguez, V. et al. Designing optimal human‐modified landscapes for forest biodiversity conservation. Ecol. Lett. In Press. (2020).29.Dunning, J. B., Danielson, B. J. & Pulliam, H. R. Ecological processes that affect populations in complex landscapes. Oikos 15, 169–175 (1992).Article 

    Google Scholar 
    30.Hatfield, J. H. et al. Mediation of area and edge effects in forest fragments by adjacent land use. Conserv. Biol. 34, 395–404 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    31.Barbaro, L. et al. Biotic predictors complement models of bat and bird responses to climate and tree diversity in European forests. Proc. R. Soc. B 286, 20182193 (2019).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    32.Ethier, K. & Fahrig, L. Positive effects of forest fragmentation, independent of forest amount, on bat abundance in eastern Ontario, Canada. Landsc. Ecol. 26, 865–876 (2011).Article 

    Google Scholar 
    33.Rodríguez-San Pedro, A. & Simonetti, J. A. The relative influence of forest loss and fragmentation on insectivorous bats: does the type of matrix matter?. Landsc. Ecol. 30, 1561–1572 (2015).Article 

    Google Scholar 
    34.Charbonnier, Y. M. et al. Bat and bird diversity along independent gradients of latitude and tree composition in European forests. Oecologia 182, 529–537 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    35.Dietz, C., Nill, D. & von Helversen, O. Bats of Britain, Europe and Northwest Africa. (A & C Black, 2009).36.Law, B., Park, K. J. & Lacki, M. J. in Bats in the Anthropocene: conservation of bats in a changing world (eds Christian C Voigt & T Kingston) 105–150 (Springer, 2016).37.Carr, A., Weatherall, A. & Jones, G. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. For. Ecol. Manag. 457, 117682 (2020).Article 

    Google Scholar 
    38.Müller, J. et al. Aggregative response in bats: prey abundance versus habitat. Oecologia 169, 673–684 (2012).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    39.Ware, R. L., Garrod, B., Macdonald, H. & Allaby, R. G. Guano morphology has the potential to inform conservation strategies in British bats. PLoS ONE 15, e0230865 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    40.Kirkpatrick, L., Bailey, S. & Park, K. J. Negative impacts of felling in exotic spruce plantations on moth diversity mitigated by remnants of deciduous tree cover. For. Ecol. Manag. 404, 306–315 (2017).Article 

    Google Scholar 
    41.Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Factors influencing moth assemblages in woodland fragments on farmland: implications for woodland management and creation schemes. Biol. Cons. 153, 265–275 (2012).Article 

    Google Scholar 
    42.Rainho, A., Augusto, A. M. & Palmeirim, J. M. Influence of vegetation clutter on the capacity of ground foraging bats to capture prey. J. Appl. Ecol. 47, 850–858 (2010).Article 

    Google Scholar 
    43.Blakey, R. V., Law, B. S., Kingsford, R. T. & Stoklosa, J. Terrestrial laser scanning reveals below-canopy bat trait relationships with forest structure. Remote Sens. Environ. 198, 40–51 (2017).ADS 
    Article 

    Google Scholar 
    44.Laforge, A. et al. Landscape composition and life-history traits influence bat movement and space use: analysis of 30 years of published telemetry data. (Submitted).45.Tews, J. et al. Animal species diversity driven by habitat heterogeneity/diversity: the importance of keystone structures. J. Biogeogr. 31, 79–92 (2004).Article 

    Google Scholar 
    46.Summerville, K. S. & Crist, T. O. Contrasting effects of habitat quantity and quality on moth communities in fragmented landscapes. Ecography 27, 3–12 (2004).Article 

    Google Scholar 
    47.Vinet, O., Sane, F. & Chaigne, A. Radiopistage de la barbastelle (Barbastella barbastellus) en forêt domaniale de l’Aigoual. (Nimes, France, 2013).
    48.Obrist, M. K. et al. Response of bat species to sylvo-pastoral abandonment. For. Ecol. Manag. 261, 789–798 (2011).Article 

    Google Scholar 
    49.Norberg, U. M. & Rayner, J. M. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 316, 335–427 (1987).ADS 
    Article 

    Google Scholar 
    50.Swift, S. & Racey, P. Gleaning as a foraging strategy in Natterer’s bat Myotis nattereri. Behav. Ecol. Sociobiol. 52, 408–416 (2002).Article 

    Google Scholar 
    51.Brigham, R., Grindal, S., Firman, M. & Morissette, J. The influence of structural clutter on activity patterns of insectivorous bats. Can. J. Zool. 75, 131–136 (1997).Article 

    Google Scholar 
    52.Bender, M. J., Perea, S., Castleberry, S. B., Miller, D. A. & Wigley, T. B. Influence of insect abundance and vegetation structure on site-occupancy of bats in managed pine forests. For. Ecol. Manag. 482, 118839 (2021).Article 

    Google Scholar 
    53.Ancillotto, L. et al. The importance of non-forest landscapes for the conservation of forest bats: lessons from barbastelles (Barbastella barbastellus). Biodivers. Conserv. 24, 171–185 (2015).Article 

    Google Scholar 
    54.Plank, M., Fiedler, K. & Reiter, G. Use of forest strata by bats in temperate forests. J. Zool. 286, 154–162 (2012).Article 

    Google Scholar 
    55.Kusch, J., Weber, C., Idelberger, S. & Koob, T. Foraging habitat preferences of bats in relation to food supply and spatial vegetation structures in a western European low mountain range forest. Folia Zool. 53, 113–128 (2004).
    Google Scholar 
    56.Siemers, B. M. & Schnitzler, H.-U. Natterer’s bat (Myotis nattereri Kuhl, 1818) hawks for prey close to vegetation using echolocation signals of very broad bandwidth. Behav. Ecol. Sociobiol. 47, 400–412 (2000).Article 

    Google Scholar 
    57.Arrizabalaga-Escudero, A. et al. Trophic requirements beyond foraging habitats: the importance of prey source habitats in bat conservation. Biol. Conserv. 191, 512–519 (2015).Article 

    Google Scholar 
    58.Carr, A. et al. Moths consumed by the Barbastelle Barbastella barbastellus require larval host plants that occur within the bat’s foraging habitats. Acta Chiropterologica 22, 257–269 (2021).
    Google Scholar 
    59.van der Plas, F. et al. Continental mapping of forest ecosystem functions reveals a high but unrealised potential for forest multifunctionality. Ecol. Lett. 21, 31–42 (2018).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    60.Lindenmayer, D., Franklin, J. & Fischer, J. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol. Conserv. 131, 433–445 (2006).Article 

    Google Scholar 
    61.Wolters, V., Bengtsson, J. & Zaitsev, A. S. Relationship among the species richness of different taxa. Ecology 87, 1886–1895 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    62.Larrieu, L. et al. Cost-efficiency of cross-taxon surrogates in temperate forests. Ecol. Ind. 87, 56–65 (2018).Article 

    Google Scholar 
    63.Westgate, M. J., Tulloch, A. I., Barton, P. S., Pierson, J. C. & Lindenmayer, D. B. Optimal taxonomic groups for biodiversity assessment: a meta-analytic approach. Ecography 40, 539–548 (2017).Article 

    Google Scholar 
    64.Larrieu, L. et al. Assessing the potential of routine stand variables from multi-taxon data as habitat surrogates in European temperate forests. Ecol. Ind. 104, 116–126 (2019).Article 

    Google Scholar 
    65.Bitterlich, W. The relascope idea. Relative measurements in forestry. Farnham Royal: Commonwealth Agricultural Bureaux, Slough. (1984).
    66.Bachelot, B. Sky: canopy openness analyzer package. R package version 1.0. https://cran.r-project.org/web/packages/Sky/index.html. (2016).67.R Development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. (2019).68.Blondel, J. & Cuvillier, R. Une méthode simple et rapide pour décrire les habitats d’oiseaux: le stratiscope. Oikos 29, 326–331 (1977).Article 

    Google Scholar 
    69.Hesselbarth, M. H., Sciaini, M., With, K. A., Wiegand, K. & Nowosad, J. landscapemetrics: an open-source R tool to calculate landscape metrics. Ecography 42, 1648–1657 (2019).Article 

    Google Scholar 
    70.Froidevaux, J. S., Zellweger, F., Bollmann, K. & Obrist, M. K. Optimizing passive acoustic sampling of bats in forests. Ecol. Evol. 4, 4690–4700 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    71.Bas, Y., Bas, D. & Julien, J.-F. Tadarida: a toolbox for animal detection on acoustic recordings. J. Open Res. Softw. 5, 6 (2017).Article 

    Google Scholar 
    72.Barré, K. et al. Accounting for automated identification errors in acoustic surveys. Methods Ecol. Evol. 10, 1171–1188 (2019).Article 

    Google Scholar 
    73.Russo, D., Ancillotto, L. & Jones, G. Bats are still not birds in the digital era: echolocation call variation and why it matters for bat species identification. Can. J. Zool. 96, 63–78 (2018).Article 

    Google Scholar 
    74.Obrist, M. K., Boesch, R. & Flückiger, P. F. Variability in echolocation call design of 26 Swiss bat species: consequences, limits and options for automated field identification with a synergetic pattern recognition approach. Mammalia 68, 307–322 (2004).Article 

    Google Scholar 
    75.Barataud, M. Acoustic ecology of european bats: species identification, study of their habitats and foraging behaviour. Paris: Muséum national d’Histoire naturelle & Mèze: Biotope (Inventaires & biodiversité) 352, 115 (2015).
    Google Scholar 
    76.Truxa, C. & Fiedler, K. Attraction to light-from how far do moths (Lepidoptera) return to weak artificial sources of light?. Eur. J. Entomol. 109, 1053 (2012).Article 

    Google Scholar 
    77.Froidevaux, J. S., Fialas, P. C. & Jones, G. Catching insects while recording bats: impacts of light trapping on acoustic sampling. Remote Sens. Ecol. Conserv. 4, 240–247 (2018).Article 

    Google Scholar 
    78.Andreas, M., Reiter, A., Cepáková, E. & Uhrin, M. Body size as an important factor determining trophic niche partitioning in three syntopic rhinolophid bat species. Biologia 68, 170–175 (2013).Article 

    Google Scholar 
    79.Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R J. 9, 378–400 (2017).Article 

    Google Scholar 
    80.Burnham, K. P. & Anderson, D. R. A practical information-theoretic approach. Model Sel. Multimodel Inference 2, 15 (2002).MATH 

    Google Scholar 
    81.Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    82.Hartig, F. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.3.2.0. https://cran.r-project.org/web/packages/DHARMa/index.html. (2017).83.Mazerolle, M. J. AICcmodavg. R package version 2.3-1. https://cran.r-project.org/web/packages/AICcmodavg/index.html. (2020).84.Grueber, C., Nakagawa, S., Laws, R. & Jamieson, I. Multimodel inference in ecology and evolution: challenges and solutions. J. Evol. Biol. 24, 699–711 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    85.Nakagawa, S. & Cuthill, I. C. Effect size, confidence interval and statistical significance: a practical guide for biologists. Biol. Rev. 82, 591–605 (2007).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    86.Arnold, T. W. Uninformative parameters and model selection using Akaike’s Information Criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    87.Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.0. https://cran.r-project.org/web/packages/emmeans/index.html. (2020). More

  • in

    Impact of natural salt lick on the home range of Panthera tigris at the Royal Belum Rainforest, Malaysia

    1.Hamdan, A. et al. A preliminary study of mirror-induced self-directed behaviour on wildlife at the Royal Belum Rainforest Malaysia. Sci. Rep. 10, 14105. https://doi.org/10.1038/s41598-020-71047-1 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    2.Lazarus, B. A. et al. Topographical differences impacting wildlife dynamics at natural salt licks in the Royal Belum Rainforest. Asian J. Conserv. Biol. 8(2), 97–101 (2019).
    Google Scholar 
    3.Brightsmith, D. J., Taylor, J. & Phillips, T. D. The roles of soil characteristics and toxin adsorption in avian geophagy. Biotropica 40, 766–774 (2008).Article 

    Google Scholar 
    4.Ayotte, J. B., Parker, K. L., Arocena, J. & Gillingham, M. P. Chemical composition of lick soils: functions of soil ingestion by four ungulate species. J. Mammal. 87(5), 878–888 (2006).Article 

    Google Scholar 
    5.Matsubayashi, H. et al. Importance of natural licks for mammals in Bornean Inland Tropical Rainforest. Ecol. Res. 22, 742 (2006).Article 

    Google Scholar 
    6.Tracy, B. F. & McNaughton, S. J. Elemental analysis of mineral licks from the Serengeti National Park, the Konza Prairie and Yellowstone National Park. Ecography 18, 91–94 (1995).Article 

    Google Scholar 
    7.Razali, N. B. et al. Physical factors at salt licks influenced the frequency of wildlife visitation in the Malaysian tropical rainforest. Trop. Zool. 33(3), 83–96. https://doi.org/10.4081/tz.2020.69 (2020).Article 

    Google Scholar 
    8.Owen-Smith, N. & Mills, M. Predator-prey size relationships in an African large-mammal food web. J. Anim. Ecol. 77, 173–183 (2008).Article 

    Google Scholar 
    9.Mathers, K. L., Rice, S. P. & Wood, P. J. Predator, prey, and substrate interactions: the role of faunal activity and substrate characteristics. Ecosphere 10(1), e02545 (2019).Article 

    Google Scholar 
    10.Sobral, M. et al. Mammal diversity influences the carbon cycle through trophic interactions in the Amazon. Nat. Ecol. Evol. 1, 1670–1676 (2017).Article 

    Google Scholar 
    11.Stevens, A. Dynamics of predation. Nat. Educ. Knowl. 3(10), 46 (2010).
    Google Scholar 
    12.Lima, S. T. Putting predators back into behavioral predator–prey interactions. Trends Ecol. Evol. 17(2), 70–75 (2002).Article 

    Google Scholar 
    13.Cuyper, A. D. et al. Predator size and prey size–gut capacity ratios determine kill frequency and carcass production in terrestrial carnivorous mammals. Oikos https://doi.org/10.1111/oik.05488 (2018).Article 

    Google Scholar 
    14.Terborgh, J. et al. Ecological meltdown in predator-free forest fragments. Science 294(5548), 1923–1926 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    15.Couturier, S. & Barrete, C. The behaviour of moose at natural mineral springs in Quebec. Can. J. Zool. 66, 522–528 (1987).Article 

    Google Scholar 
    16.Ruggiero, R. D. & Fay, J. M. Utilization of termitarium soils by elephants and its ecological implications. Afr. J. Ecol. 32, 222–232 (1994).Article 

    Google Scholar 
    17.Shahfiz, M. A. et al. Checklist of vertebrates at Primary Linkages 2 (PL2) of the central forest spine ecological corridor in Belum Temengor Forest Reserves, Perak, Peninsular Malaysia. Malays. For. 82(2), 463–485 (2019).
    Google Scholar 
    18.Liyana, N. M., Othman, Z., Wahid, A. R. & Hakimie, A. A. Habitat suitability prediction model of wildlife at Royal Belum State Park using geographical information system. Int. J. Geoinform. 12(2), 1–8 (2016).
    Google Scholar 
    19.Kawanishi, K. et al. The Malayan tiger. In In Noyes Series in Animal Behavior, Ecology, Conservation and Management, Tigers of the World 2nd edn (eds Tilson, R. & Nyhus, P. J.) 367–376 (William Andrew Publishing, Norwich, 2010).
    Google Scholar 
    20.Lynam, A. J., Laidlaw, R., Wan Noordin, W. S., Elagupillay, S. & Bennett, E. L. Assessing the conservation status of the tiger Panthera tigris at priority sites in Peninsular Malaysia. Oryx 41(4), 454–462. https://doi.org/10.1017/S0030605307001019 (2007).Article 

    Google Scholar 
    21.Kawanishi, K., Rayan, M. D., Gumal, M. T. & Shepherd, C. R. Extinction process of the sambar in Peninsular Malaysia. Deer Spec. Group Newsl. N. 26, 48–59 (2014).
    Google Scholar 
    22.Simcharoen, A. et al. Female tiger Panthera tigris home range size and prey abundance: important metrics for management. Oryx 48(3), 370–377. https://doi.org/10.1017/S0030605312001408 (2014).Article 

    Google Scholar 
    23.Kedri, K. et al. Distribution and ecology of Rafflesia in Royal Belum state park, Perak, Malaysia. Int. J. Eng. Technol. 7(229), 292–296 (2018).Article 

    Google Scholar 
    24.Misni, A., Rauf, A., Rasam, A. & Buyadi, A. S. N. Spatial analysis of habitat conservation for hornbills: a case study of Royal Belum-Temengor forest complex in Perak Sate Park Malaysia. Pertanika J. Soc. Sci. Hum. 25(S), 11–20 (2017).
    Google Scholar 
    25.Rovero, F., Zimmermann, F., Berzi, D. & Meek, P. Which camera trap type and how many do I need? A review of camera features and study designs for a range of wildlife research applications. Hystrix 2, 6318 (2013).
    Google Scholar 
    26.Liu, N., Zhao, Q., Zhang, N., Cheng, X., & Zhu, J. Pose-guided complementary features learning for Amur tiger re-identification, in 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea (South), 286–293. https://doi.org/10.1109/ICCVW.2019.00038 (2019).27.Sharma, S., Jhala, Y. & Sawarkar, V. B. Identification of individual tigers (Panthera tigris) from their pugmarks. J. Zool. 267, 9–18 (2005).Article 

    Google Scholar 
    28.Cho, Y. et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat. Commun. 4, 2433 (2013).ADS 
    Article 

    Google Scholar 
    29.Kerley, L. L. Using dogs for tiger conservation and research. Integr. Zool. 5, 390–396 (2010).Article 

    Google Scholar 
    30.Li, S., Li, J., Tang, H., Qian, R., & Lin, W. ATRW: a benchmark for Amur tiger re-identification in the wild, in Proceedings of the 28th ACM International Conference on Multimedia (MM ’20), October 12–16, 2020, Seattle, WA, USA. https://doi.org/10.1145/3394171.3413569 (ACM, New York, NY, USA, 2020).31.Shi, C. et al. Amur tiger stripes: Individual identification based on deep convolutional neural network. Integr. Zool. 15(6), 461–470 (2020).Article 

    Google Scholar 
    32.McCullough, D. R., Pei, K. C. J. & Wang, Y. Home range, activity patterns, and habitat relations of Reeves’ muntjacs in Taiwan. J. Wildl. Manag. 64(2), 430. https://doi.org/10.2307/3803241 (2000).Article 

    Google Scholar 
    33.Chatterjee, D., Sankar, K., Qureshi, Q., Malik, P. K. & Nigam, P. Ranging pattern and habitat use of sambar (Rusa unicolor) in Sariska Tiger Reserve, Rajasthan, western India. DSG Newsl. 26, 60–71 (2014).
    Google Scholar 
    34.Garza, S. J., Tabak, M. A., Miller, R. S., Farnsworth, M. L. & Burdett, C. L. Abiotic and biotic influences on home-range size of wild pigs (Sus scrofa). J. Mammal. 99(1), 97–107. https://doi.org/10.1093/jmammal/gyx154 (2018).Article 

    Google Scholar 
    35.Sankar, K. et al. Home range, habitat use and food habits of re-introduced gaur (Bos gaurus gaurus) in Bandhavgarh Tiger Reserve, Central India. Trop. Conserv. Sci. 6(1), 50–69 (2013).Article 

    Google Scholar 
    36.Simcharoen, A. et al. Ecological Factors that influence sambar (Rusa unicolor) distribution and abundance in western Thailand: Implications for tiger conservation. Raffles Bull. Zool. 62, 100–106 (2014).
    Google Scholar 
    37.Mark Rayan, D. & Linkie, M. Managing threatened ungulates in logged-primary forest mosaics in Malaysia. PLoS ONE 15(12), e0243932. https://doi.org/10.1371/journal.pone.0243932 (2020).CAS 
    Article 

    Google Scholar 
    38.McClure, M. L. et al. Modeling and mapping the probability of occurrence of invasive wild pigs across the contiguous United States. PLoS ONE 10(8), e0133771. https://doi.org/10.1371/journal.pone.0133771 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    39.Ickes, K. Hyper-abundance of native wild pigs (Sus scrofa) in a lowland dipterocarp rain forest of Peninsular Malaysia. Biotropica 33(4), 682–690 (2001).Article 

    Google Scholar 
    40.Saunders, G. & McLeod, S. Predicting home range size from the body mass or population densities of feral pigs, sus scrofa (Artiodactyla: Suidae). Aust. J. Ecol. 24, 538–543 (1999).Article 

    Google Scholar 
    41.Abrams, P. A. & Matsuda, H. Prey adaptation as a cause of predator-prey cycles. Evolution 51, 1742–1750 (1997).Article 

    Google Scholar 
    42.Zhang, C., Minghai, Z. & Philip, S. Does prey density limit Amur tiger (Panthera tigris altaica) recovery in north-eastern China. Wildl. Biol. 19(4), 452–461 (2013).Article 

    Google Scholar 
    43.Majumder, A. et al. Home ranges of Bengal tiger (Panthera tigris tigris L.) in Pench Tiger Reserve, Madhya Pradesh, Central India. Wildl. Biol. Pract. 8, 36–49 (2012).
    Google Scholar  More

  • in

    Marine signature taxa and core microbial community stability along latitudinal and vertical gradients in sediments of the deepest freshwater lake

    1.UNDP-GEF. The ecological atlas of the Baikal basin. United Nations Office for Project Sercives (UNOPS). 2015. p 145. http://baikal.iwlearn.org/en.2.Moore MV, Hampton SE, Izmest’eva LR, Silow EA, Peshkova EV, Pavlov BK. Climate change and the world’s “Sacred Sea”—Lake Baikal, Siberia. Bioscience. 2009;59:405–17.Article 

    Google Scholar 
    3.Granin NG, Aslamov IA, Kozlov VV, Makarov MM, Kirillin G, McGinnis DF, et al. Methane hydrate emergence from Lake Baikal: direct observations, modelling, and hydrate footprints in seasonal ice cover. Sci Rep. 2019;9:19361.CAS 
    Article 

    Google Scholar 
    4.Glöckner FO, Zaichikov E, Belkova N, Denissova L, Pernthaler J, Pernthaler A, et al. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Appl Environ Microbiol. 2000;66:5053–65.Article 

    Google Scholar 
    5.Kurilkina MI, Zakharova YR, Galachyants YP, Petrova DP, Bukin YS, Domysheva VM et al. Bacterial community composition in the water column of the deepest freshwater Lake Baikal as determined by next-generation sequencing. FEMS Microbiol Ecol. 2016;92:fiw094.6.Zakharenko AS, Galachyants YP, Morozov IV, Shubenkova OV, Morozov AA, Ivanov VG, et al. Bacterial communities in areas of oil and methane seeps in pelagic of Lake Baikal. Micro Ecol. 2019;78:269–85.CAS 
    Article 

    Google Scholar 
    7.Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, et al. High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. FEMS Microbiol Ecol. 2017;93:10.Article 

    Google Scholar 
    8.David GM, Moreira D, Reboul G, Annenkova NV, Galindo LJ, Bertolino P, et al. Environmental drivers of plankton protist communities along latitudinal and vertical gradients in the oldest and deepest freshwater lake. Environ Microbiol. 2021;23:1436–51.CAS 
    Article 

    Google Scholar 
    9.Annenkova NV, Giner CR, Logares R. Tracing the origin of planktonic protists in an ancient lake. Microorganisms. 2020;8:543.10.Lomakina AV, Mamaeva EV, Galachyants YP, Petrova DP, Pogodaeva TV, Shubenkova OV, et al. Diversity of archaea in bottom sediments of the discharge areas with oil- and gas-bearing fluids in Lake Baikal. Geomicrobiol J. 2018;35:50–63.CAS 
    Article 

    Google Scholar 
    11.Castelle CJ, Brown CT, Anantharaman K, Probst AJ, Huang RH, Banfield JF. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat Rev Microbiol. 2018;16:629–45.CAS 
    Article 

    Google Scholar 
    12.Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH. Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proc Natl Acad Sci USA. 2008;105:10583–1058.CAS 
    Article 

    Google Scholar 
    13.Spring S, Bunk B, Sproer C, Rohde M, Klenk HP. Genome biology of a novel lineage of planctomycetes widespread in anoxic aquatic environments. Environ Microbiol. 2018;20:2438–55.CAS 
    Article 

    Google Scholar 
    14.Podosokorskaya OA, Kadnikov VV, Gavrilov SN, Mardanov AV, Merkel AY, Karnachuk OV, et al. Characterization of Melioribacter roseus gen. nov., sp. nov., a novel facultatively anaerobic thermophilic cellulolytic bacterium from the class Ignavibacteria, and a proposal of a novel bacterial phylum Ignavibacteriae. Environ Microbiol. 2013;15:1759–71.CAS 
    Article 

    Google Scholar 
    15.Dombrowski N, Seitz KW, Teske AP, Baker BJ. Genomic insights into potential interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments. Microbiome 2017;5:106.Article 

    Google Scholar 
    16.Roberts SL, Swann GEA, McGowan S, Panizzo VN, Vologina EG, Sturm M, et al. Diatom evidence of 20th century ecosystem change in Lake Baikal, Siberia. PLoS One. 2018;13:e0208765.Article 

    Google Scholar 
    17.Mukherjee I, Hodoki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano SI. Widespread dominance of kinetoplastids and unexpected presence of diplonemids in deep freshwater lakes. Front Microbiol. 2019;10:2375.Article 

    Google Scholar 
    18.Zemskaya TI, Cabello-Yeves PJ, Pavlova ON, Rodriguez-Valera F. Microorganisms of Lake Baikal—the deepest and most ancient lake on Earth. Appl Microbiol Biotechnol. 2020;104:6079–90.19.Sheik CS, Jain S, Dick GJ. Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 2014;16:304–17.CAS 
    Article 

    Google Scholar 
    20.Paver SF, Muratore D, Newton RJ, Coleman ML. Reevaluating the salty divide: phylogenetic specificity of transitions between marine and freshwater systems. mSystems. 2018; 3:e00232–18. More

  • in

    Quantitative trait locus analysis of parasitoid counteradaptation to symbiont-conferred resistance

    Host and parasitoid linesBlack bean aphids (A. fabae) were reared on their host plant Vicia faba (Fabaceae) in a climate chamber at 22 °C with a 16-h photoperiod to ensure clonal reproduction. Two sublines of A. fabae clone A06-407 were used: the original A06-407 clone, which was free of any known defensive endosymbionts, and the modified A06-407 clone harboring the H. defensa strain H76 (Vorburger et al. 2009; Dennis et al. 2017). The original (H. defensa negative) and the modified (H. defensa positive, harboring the H. defensa strain H76) aphid lines are in the following called H− and H+, respectively.We used two experimentally evolved populations of the parasitoid wasp L. fabarum. One was adapted to the presence of Hamiltonella in host aphids, the other was not. Wasp populations were established by Dennis et al. (2017) from a mixture of nine collections of sexually reproducing, haplo-diploid L. fabarum from six locations across Switzerland. Experimental evolution was conducted by rearing wasps exclusively on H− or H+ aphids, leading to counteradaptation in the H+ treatment; wasps reared on H+ aphids evolved an improved ability to parasitize H+ aphids compared to wasps reared on H− aphids (see Dennis et al. 2017 for more details). After maintaining treatments for 24 generations in 4 replicate populations each, replicates were combined and treatments were continued unreplicated at a population size of 200 individuals (see Rossbacher and Vorburger 2020 for details). Until the onset of the experiments presented here, parasitoid populations had been reared for approximately 140 generations on either H− or H+ aphids (since September 2013). At this point, the population reared on H+ aphids was able to parasitize H+ aphids nearly as well as H− aphids, whereas the population reared on H− aphids was only able to parasitize H− aphids but not H+ aphids. In the following, we refer to the wasp population adapted to H+ aphids as R ( = Resistant to Hamiltonella) and to the population adapted to H− aphids as S ( = Susceptible to Hamiltonella).Experiment 1: characterization of general inheritance patternsTo determine whether the evolved ability to parasitize H+ aphids is mainly determined by the larval or the maternal genotype, and whether it shows a dominant or recessive inheritance pattern, crossing experiments were combined with no-choice bioassays over two generations of wasps. In the first generation, all possible combinations of males and females from the R and S populations were crossed in order to quantify their ability to reproduce on H+ aphids (Table 1). Assuming that this ability is governed by a single Mendelian locus with two alleles (R and S), which are fixed in the respective populations (likely an oversimplification), allowed us to postulate three mutually exclusive hypotheses (H1–H3) that make different predictions for the outcome of these crosses (Table 1). To indicate genotypes and ploidy, crosses are depicted in the following as, e.g., RR × S, meaning that a (diploid) female from the R population was crossed with a (haploid) male from the S population.Table 1 Prediction of female offspring survival and reproduction in experimental crosses of evolved Lysiphlebus fabarum populations under three different hypotheses.Full size table(H1) The counteradaptation is larval and dominant. Under H1, RR × R, RR × S, and SS × R crosses are expected to produce female offspring on H+ aphids, as homozygous RR and heterozygous RS female larvae would be of the R phenotype and thus counteradapted. Homozygous SS daughters from SS × S crosses would fail to develop. If the counteradaptation was larval but inherited in an intermediate rather than dominant fashion, the expectation remains the same as under H1, albeit with the possibility that RR × S and SS × R crosses produce fewer female offspring than RR × R crosses.(H2) The counteradaptation is larval and recessive. Under H2, only RR × R crosses would produce female offspring on H+ aphids. RR × S, SS × R, and SS × S crosses are expected to not produce any female offspring as their heterozygous (RS) or homozygous (SS) daughters would be of the S phenotype and thus not counteradapted.(H3) The counteradaptation is maternal. Under H3, the RR × R and RR × S crosses are expected to produce female offspring and the SS × R and SS × S crosses are not, as the genotype of the mother is decisive for offspring survival. If both maternal and larval effects were at play, the sex ratio in offspring from the RR×S crosses is expected to be male biased compared to RR × R crosses, due to a disadvantage of RS larvae compared to RR larvae, while haploid male larvae have an R genotype in either case.To isolate wasps prior to use in experiments, mummies (parasitized aphids approaching parasitoid emergence) were collected and stored individually in 1.5 ml Eppendorf tubes. Thus, adult wasps had never encountered another wasp or aphid before (naive virgins). Zero-to-3 days after hatching, the wasps were paired and given 20–120 min for mating in 1.5 ml Eppendorf tubes. Although there was no control whether mating occurred in the given amount of time, mating was usually observed within the first 30 s of having wasp pairs in the same tube. Then the wasps were released on a caged plant with an aphid colony consisting of a known number of 0–48-h-old H+ aphid nymphs. The mean ± standard deviation (SD) number of aphid nymphs provided per cross was 43.5 ± 14.9. Adult wasps were removed from colonies 24 h after release. Nine days after adding wasps, plants were enclosed in cellophane bags and left to dry out at 22 °C for hatching and subsequent sexing and counting of wasp offspring. Differences in numbers of female offspring between the different crosses of the first generation were analyzed with Mann–Whitney U tests. A generalized linear model (GLM) was used to analyze differences in sex ratios. Statistical analyses were performed using R version 3.5.2 (R Core Team 2018).Because findings from the first generation of crosses supported H3 (see “Results”), two extensions of H3 (H3.1 and H3.2) were tested in a second generation of crosses to determine whether the maternal counteradaptation was dominant or recessive (Table 1). To this end, we tested the ability of 20 virgin female offspring from 10 RR × S crosses (i.e., heterozygous RS females) to reproduce on H+ aphids. The mean ± SD number of aphid nymphs provided per RS female was 21.9 ± 9.5.(H3.1) The counteradaptation is maternal and dominant. Under H3.1, RS females are expected to reproduce successfully on H+ aphids, because they are of the R phenotype. They are expected to produce only male offspring as they are virgins (arrhenotokous parthenogenesis). This scenario is indistinguishable from cytoplasmic inheritance, which would require further examination.(H3.2) The counteradaptation is maternal and recessive. Under H3.2, RS females are not expected to reproduce on H+ aphids, because they are of the S phenotype.Experiment 2: crosses and phenotyping for QTL studyTo obtain a mapping population and phenotype data, a crossing scheme similar to the one by Pannebakker et al. (2011) was realized (Fig. 1). The crossing design relied on two main assumptions: First, we assumed that the alleles responsible for the counteradaptation are fixed in alternative states in the R and S populations. Second, due to the findings from the first experiment, we assumed the counteradaptation to be recessive and determined by the maternal genotype (see “Results”). In the first generation (P generation), a single S female was crossed with an R male to produce heterozygous female RS offspring (F1 generation). F1 females were allowed to reproduce as naive virgins to produce a recombinant male-only mapping population (F2 generation, Fig. 1A). F2 males were then backcrossed into the R background (each male with one RR female) to produce F3 female offspring for phenotyping (Fig. 1B). All reproduction up to the emergence of F3 females took place on H− aphids (Fig. 1) to avoid any selection. P individuals, F1 females and F2 males were stored in 1.5 ml Eppendorf tubes at −80 °C for subsequent genotyping.Fig. 1: Experimental crossing procedure for QTL analysis.Crossing design used to obtain a F2 mapping population for genotyping (A) and a F3 population for phenotyping (B). In a first step, two P generation individuals (parents), a diploid female from the symbiont-susceptible population, and a haploid male from the symbiont-resistant population were crossed to obtain 17 heterozygous F1 hybrid females. F1 hybrid females were allowed to reproduce as virgins—i.e., arrhenotokous parthenogenesis—to obtain 354 recombinant F2 males (mapping population), which were either carrying the S (susceptible) or the R (resistant) genotype. Recombinant F2 males were backcrossed with females of the resistant population to produce semi-recombinant F3 females. Sister F3 females have identical chromosomes of paternal origin and are thus considered clonal sibships. Two hundred and forty-four clonal sibships consisting of one to two sister F3 females were allowed to reproduce as virgins on a colony of symbiont-protected (H+) aphid hosts for phenotyping. Bar colors represent genomic regions originating from different parental populations and letters under sex symbols indicate the ploidy levels and genotypes.Full size imagePhenotyping was conducted by letting naive virgin F3 females oviposit for 24 h on colonies with a known number of approximately 24–72-h-old H+ aphid nymphs and subsequently counting their offspring as previously described. The average ± SD number of aphid nymphs provided was 40.9 ± 13.6. Wasps were added to the aphid colonies in an open Eppendorf tube. If possible, two sister F3 females from the same recombinant F2 father were added to each aphid colony in order to reduce the occurrence of false negatives, i.e., random failures to reproduce that are unrelated to the females’ genotype, e.g., due to harmful handling or death before oviposition. F3 sister females are identical concerning their paternal chromosome set and share the same R population background concerning their maternal chromosome set. They are considered clonal sibships (Pannebakker et al. 2011).The phenotype we measured was the number of wasp offspring produced per H+ aphid colony. This measure exhibited strong variation and zero inflation. To improve its value as a proxy for counteradaptation, the measure was corrected for certain variables in the phenotyping set-up that could have influenced offspring production independent of the F3 genotype. We used the zeroinfl function of the R-package pscl (Zeileis et al. 2008) to fit the following full model by zero-inflated Poisson regression:n_offspring ~ n_nymphs + n_wasps_added + all_removed + any_found_dead + any_in_tube | n_nymphs + n_wasps_added + all_removed + any_found_dead + any_in_tubewhere n_offspring is the number of offspring wasps produced, n_nymphs is the number of aphid nymphs, i.e., potential hosts, provided, n_wasps_added is a factor describing whether one or two wasps were added to the aphid colony, all_removed is a factor describing whether all wasps could be recovered 24 h after adding them to the aphid colony, any_found_dead is a factor describing whether any of the wasps were dead after 24 h, and any_in_tube is a factor describing whether any of the wasps were found in the tube rather than on the plant after 24 h. Parameters before and after the | symbol are components of the Poisson and the zero-inflation part of the model, respectively. The full model was reduced to a minimal model by performing backwards elimination with the function be.zerofinl from the R-package mpath (Wang 2020). The final minimal model was:n_offspring ~ n_nymphs + all_removed + any_in_tube | n_wasps_added + any_in_tube.Residuals of the minimal model were used as the corrected count phenotype for QTL mapping. We also assessed offspring presence presence/absence as an additional binary phenotype. Due to its simplicity, a binary phenotype may be less prone to environmental variation and more appropriate if counteradaptation is a Mendelian trait.DNA extraction and sequencingDNA extraction from 354 F2 males, 17 F1 females, and the two P individuals was performed adapting the LGC-sbeadex Livestock D protocol (LGC Genomics, Berlin, Germany). In addition to these experimental individuals, 30 wasps from an asexual, isofemale line of L. fabarum (line CV17-84) were processed to quantify genotyping error. Due to their mode of reproduction and maintenance at small population size, CV17-84 individuals are expected to be genetically nearly identical. F2, F1, and P individuals and three pools of 10 CV17-84 wasps each were crushed in liquid nitrogen prior to lysis. Extraction from individual samples was downscaled and included the following adaptations: lysis was done with PN buffer during 2 h at 60 °C with 1:10 protease solution, the lysate was incubated with binding mix during 20 min and elution was done at 60 °C. Extraction from pooled samples was, besides doubling the amount of protease, done following the manual. DNA concentration of each sample was measured using a Spark 10 M Multimode Microplate Reader (Tecan, Switzerland). Quality of DNA obtained with the used protocols was tested on a Nanodrop spectrophotometer (Thermo Fisher Scientific, USA) and on agarose gels. ddRAD library preparation was adapted from the protocol by Peterson et al. (2012). Restriction enzymes MfeI and TaqI were used for double digestion of up to 50 ng DNA per sample. After ligation of barcoded adapters to each individual sample, samples were combined in 12 pools with 24–36 samples each. Eleven pools contained one sample of 50 ng DNA from the CV17-84 wasps and 23–35 other samples (F2, F1, or P). Fragment size selection was performed on each pool with AMPure XP beads (Beckman Coulter, USA) (0.6× and 0.09×) and followed by selection of biotinylated P2 adapters. This was followed by PCR with KAPA HiFi HotStart ReadyMix (Roche, Switzerland) to amplify DNA and add 12 different Illumina primers to identify pools. Pools were then purified and combined into a final library. Mean fragment size of the library was 606 bp, as measured with the 2200 TapeStation (Agilent, USA), which corresponds to a mean insert size of 470 bp. The library was sequenced in a single lane of an SP flow cell on an Illumina NovaSeq 6000 System with 2 × 150 bp paired-end sequencing (at Functional Genomic Center, Zürich). A total of 307.2 million paired-end reads were obtained from P, F1, and F2 individuals and 11 CV17-84 control samples.GenotypingWe used the dDocent pipeline (Puritz et al. 2014; Puritz et al. 2014) for genotyping. Reads were demultiplexed with the process_radtags function of the STACKS package (v 2.14, Catchen et al. 2013) with disabled filtering of degraded cut sites, which led to 304.2 million demultiplexed paired-end reads. BWA-MEM (v 0.7.17, Li and Durbin 2010) was used with default settings to map reads to the reference genome of L. fabarum (Lf_genome_V1.0.fa, Dennis et al. 2020). On average (±SD), 1.585 (±1.058) million reads were assigned per sample during demultiplexing. out of which an average of 81.66% were mapped and retained after filtering for mapping quality (Supplementary Table S1). We called 547,092 variants using freebayes (v 1.3.1, Garrison and Marth 2012) with the default settings from dDocent pipeline specifying population (corresponding to the generation P, F1, F2, or CV17-84) and ploidy of individuals. The VCF-file was then split into a dataset containing 355 haploid individuals, i.e., males (one P, 354 F2) and a dataset with 29 diploid individuals i.e., females (1 P, 11 CV17-84, 17 F1). The dataset with diploids was filtered following the dDocent filtering pipeline up until removing indels, retaining 2456 single-nucleotide polymorphisms (SNPs). The following changes were made to the tutorial: the minimum quality score (–minQ) was set to 20, the minimum mean depth (–min-meanDP) was set to 10, and the maximum mean depth (–max-meanDP) was set to 400. The haploid dataset was then transformed to allelic primitives and filtered to contain only the 2456 SNPs that were retained in the diploid dataset. The VCF files containing haploid and diploid samples were then transformed to SNP tables using samtools (v 1.9, Li et al. 2009) and custom bash scripts. A custom R-script was then used to filter the SNP tables and create an input file for linkage mapping with MSTmap (Wu et al. 2008). The retained SNPs are homozygous in the mother, biallelic among the two parent individuals, and known in both parent individuals. Additionally, we tested for segregation distortion, removing SNPs that deviate significantly from an allele frequency of 50% based on a chi-square test with Bonferroni-corrected false-discovery rate of 5%. For each allele in each offspring (F2) male, alleles were recoded as “A” for maternal, “B” for paternal, and “U” for unknown. SNPs missing in >50% of individuals and individuals with >50% unknown genotypes were removed. The dataset used for linkage mapping contained 351 F2 individuals and 1838 SNPs of which 3 were removed by MSTmap internal filters leading to a final dataset of 1835 SNPs contained in the linkage map.Quantification of genotyping errorGenotyping error rate was quantified by counting mismatches between the supposedly identical genotypes of 11 CV17-84 DNA samples that were sequenced as part of 11 different pools. The 1835 SNPs used for QTL mapping were used as a template to filter SNPs in the dataset with CV17-84 individuals with vcftools (–positions flag). A SNP table containing CV17-84 genotypes was then analyzed in R to quantify genotyping error. For each pair of CV17-84 samples, the proportion of genotype mismatches was counted and averaged over all comparisons to obtain an estimate of mean genotyping error. Unknown genotypes were not counted as mismatch. The mean percentage of pairwise mismatches among the 11 CV17-84 samples ranged from 0.8392 to 1.706% with an average of 1.207%. The average mismatch measure was employed as an estimate for the genotyping error during analyses with R/qtl (Broman et al. 2003).Linkage map and QTL mappingLinkage mapping was performed with MSTmap (Wu et al. 2008) using the following settings: population_type = DH, distance_function = kosambi, cut_off_p_value = 0.000001, no_map_dist = 15.0, no_map_size = 2, missing_threshold = 0.25, estimation_before_clustering = no, detect_bad_data = yes, objective_function = COUNT. The resulting distance matrix was processed with R to contain only marker locations, Linkage group (LG) ID, and map distance. The new linkage map was edited in order to use the same LG IDs and orientations as in the linkage map by Dennis et al. (2020).Phenotype data, genotype data, and the new linkage map were merged with a custom R script to produce an input file for R/qtl (Broman et al. 2003). After reading the dataset with R/qtl, its cross type was transformed to recombinant-inbred by selfing (convert2riself function) because this expects no heterozygotes and genotype frequencies at 0.5, which fits our crossing scheme. We tested for duplicated genotypes ( >90% similarity between individuals), checked for switched markers using the checkAlleles function, and plotted recombination fractions (Supplementary Fig. S1), none of which indicated any problems. Intermarker distance was estimated with the est.map function, setting map function to “kosambi” and tolerance to 10−4. The resulting map was used as new linkage map with cM as map unit. Conditional genotype probabilities were calculated at a step size of 0.1 cM. The scanone function was used to calculate logarithmic of the odds (LOD) scores over the genome using the default (EM) algorithm with nonparametric and binary model for the corrected count phenotype and the additional binary phenotype, respectively. Significance thresholds were calculated by conducting 1000 permutations and choosing a 5% cut-off corresponding to the significance threshold at an alpha of 5%. The 95% approximate Bayes confidence interval was then calculated for the chromosome with significant LOD score. After simulating genotypes 1000 times with a step size of 0.1 cM and pulling genotype probabilities at the peak LOD, the explained phenotypic variance was estimated with the fitqtl function.Candidate gene identificationAs RADseq loci are usually short and represent a small proportion of the genome, they are unlikely located in candidate genes themselves. The 95% approximate Bayes confidence interval of the single significant QTL we identified includes all markers on scaffold tig00000002, upwards of 311,170 (bp). Thus, we considered tig00000002 from position 311,170 on as region for searching candidate genes. Gene annotations were retrieved from the recently published L. fabarum genome (Dennis et al. 2020). In addition, we identified putative venom and toxin genes in the L. fabarum genome in order to explore this function among candidate genes. To do so, we collected venom protein sequences from several parasitoid wasp species: Nasonia vitripennis (Danneels et al. 2010), Chelonus inanitus (Vincent et al. 2010), Microplitis demolitor (Burke and Strand 2014), Fopius arisanus (Geib et al. 2017), Diachasma alloeum (Tvedte et al. 2019), Cotesia congregata (Gauthier et al. 2021), Leptopilina boulardi, Leptopilina heterotoma (Goecks et al. 2013), and Aphidius ervi (Colinet et al. 2014); and retrieved candidate animal toxin proteins (7151 sequences) from the UniProt Animal Toxin Annotation Program database (UATdb, Jungo et al. 2012). These proteins were then matched to L. fabarum proteins by blastp (-e-value  More