More stories

  • in

    Genetic monitoring on the world’s first MSC eco-labeled common octopus (O. vulgaris) fishery in western Asturias, Spain

    FAO. El estado mundial de la pesca y la acuicultura 2020 (FAO, 2020).
    Google Scholar 
    Jackson, J. B. C. Historical overfishing and the recent collapse of coastal ecosystems. Science 293, 629–637 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S. & de Young, B. Cascading effects of overfishing marine systems. Trends Ecol. Evol. 20, 579–581 (2005).Article 
    PubMed 

    Google Scholar 
    Coll, M., Libralato, S., Tudela, S., Palomera, I. & Pranovi, F. Ecosystem overfishing in the ocean. PLoS ONE 3, e3881 (2008).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson, M. S. & Lowe, M. R. Implications of cumulative impacts to estuarine and marine habitat quality for fish and invertebrate resources. Rev. Fish. Sci. 17, 505–523 (2009).Article 

    Google Scholar 
    Claudet, J. & Fraschetti, S. Human-driven impacts on marine habitats: A regional meta-analysis in the Mediterranean Sea. Biol. Cons. 143, 2195–2206 (2010).Article 

    Google Scholar 
    Smith, V. H., Tilman, G. D. & Nekola, J. C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 100, 179–196 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Derraik, J. G. B. The pollution of the marine environment by plastic debris: A review. Mar. Pollut. Bull. 44, 842–852 (2002).Article 
    CAS 
    PubMed 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).Article 
    PubMed 

    Google Scholar 
    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).Article 

    Google Scholar 
    Wojnarowska, M., Sołtysik, M. & Prusak, A. Impact of eco-labelling on the implementation of sustainable production and consumption. Environ. Impact Assess. Rev. 86, 106505 (2021).Article 

    Google Scholar 
    Yan, H. F. et al. Overfishing and habitat loss drive range contraction of iconic marine fishes to near extinction. Sci. Adv. 7, 6026 (2021).Article 
    ADS 

    Google Scholar 
    Bastardie, F. et al. Spatial planning for fisheries in the Northern Adriatic: Working toward viable and sustainable fishing. Ecosphere 8, e01696 (2017).Article 

    Google Scholar 
    Arkema, K. K. et al. Integrating fisheries management into sustainable development planning. Ecol. Soc. 24, 0201 (2019).Article 

    Google Scholar 
    Aguión, A. et al. Establishing a governance threshold in small-scale fisheries to achieve sustainability. Ambio. https://doi.org/10.1007/s13280-021-01606-x (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gudmundsson, E. & Wessells, C. R. Ecolabeling seafood for sustainable production: Implications for fisheries management. Mar. Resour. Econ. 15, 97–113 (2000).Article 

    Google Scholar 
    FAO. Guidelines for the Ecolabelling of Fish and Fishery Products from Marine Capture Fisheries. Revision 1 (FAO, 2009).
    Google Scholar 
    Hilborn, R. & Ovando, D. Reflections on the success of traditional fisheries management. ICES J. Mar. Sci. 71, 1040–1046 (2014).Article 

    Google Scholar 
    Casey, J., Jardim, E. & Martinsohn, J. T. H. The role of genetics in fisheries management under the E.U. common fisheries policy. J. Fish Biol. 89, 2755–2767 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    MSC. MSC Fisheries Standard v2.01. https://www.msc.org/docs/default-source/default-document-library/for-business/program-documents/fisheries-program-documents/msc-fisheries-standard-v2-01.pdf?sfvrsn=8ecb3272_9 (2018).Costello, C. et al. Status and solutions for the world’s unassessed fisheries. Science 338, 517–520 (2012).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. PNAS 117, 2218–2224 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Worm, B. & Branch, T. A. The future of fish. Trends Ecol. Evol. 27, 594–599 (2012).Article 
    PubMed 

    Google Scholar 
    Palomares, M. L. D. et al. Fishery biomass trends of exploited fish populations in marine ecoregions, climatic zones and ocean basins. Estuar. Coast. Shelf Sci. 243, 106896 (2020).Article 

    Google Scholar 
    Ihssen, P. E. et al. Stock identification: Materials and methods. Can. J. Fish. Aquat. Sci. 38, 1838–1855 (1981).Article 

    Google Scholar 
    Carvalho, G. R. & Hauser, L. Molecular genetics and the stock concept in fisheries. In Molecular Genetics in Fisheries (eds Carvalho, G. R. & Pitcher, T. J.) 55–79 (Springer, 1995).Chapter 

    Google Scholar 
    Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gough, C. L. A., Dewar, K. M., Godley, B. J., Zafindranosy, E. & Broderick, A. C. Evidence of overfishing in small-scale fisheries in Madagascar. Front. Mar. Sci. 7, 317 (2020).Article 

    Google Scholar 
    Widjaja, S. et al. Illegal, Unreported and Unregulated Fishing and Associated Drivers 60 (2020).Walters, C. & Martell, S. J. D. Stock assessment needs for sustainable fisheries management. Bull. Mar. Sci. 70, 629–638 (2002).
    Google Scholar 
    Moreira, A. A., Tomás, A. R. G. & Hilsdorf, A. W. S. Evidence for genetic differentiation of Octopus vulgaris (Mollusca, Cephalopoda) fishery populations from the southern coast of Brazil as revealed by microsatellites. J. Exp. Mar. Biol. Ecol. 407, 34–40 (2011).Article 

    Google Scholar 
    Allendorf, F. W., Ryman, N. & Utter, F. M. Genetics and fishery management. In Population Genetics and Fishery Management 1–19 (1987).Oosthuizen, A., Jiwaji, M. & Shaw, P. Genetic analysis of the Octopus vulgaris population on the coast of South Africa. S. Afr. J. Sci. 100, 603–607 (2004).CAS 

    Google Scholar 
    Botsford, L. W., Castilla, J. C. & Peterson, C. H. The management of fisheries and marine ecosystems. Science 277, 509–515 (1997).Article 
    CAS 

    Google Scholar 
    Hilborn, R., Orensanz, J. M. & Parma, A. M. Institutions, incentives and the future of fisheries. Philos. Trans. R. Soc. B Biol. Sci. 360, 47. https://doi.org/10.1098/rstb.2004.1569 (2005).Article 

    Google Scholar 
    Ovenden, J. R., Berry, O., Welch, D. J., Buckworth, R. C. & Dichmont, C. M. Ocean’s eleven: A critical evaluation of the role of population, evolutionary and molecular genetics in the management of wild fisheries. Fish Fish. 16, 125–159 (2015).Article 

    Google Scholar 
    Aguirre-Sarabia, I. et al. Evidence of stock connectivity, hybridization, and misidentification in white anglerfish supports the need of a genetics-informed fisheries management framework. Evol. Appl. 14, 2221 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grover, A. & Sharma, P. C. Development and use of molecular markers: Past and present. Crit. Rev. Biotechnol. 36, 290 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Valenzuela-Quiñonez, F. How fisheries management can benefit from genomics? Brief. Funct. Genom. 15, 352–357 (2016).Article 

    Google Scholar 
    Khoufi, W., Jabeur, C. & Bakhrouf, A. Stock assessment of the common octopus (Octopus vulgaris) in Monastir; the Mid-eastern Coast of Tunisia. Int. J. Mar. Sci. 2, 1 (2012).
    Google Scholar 
    Pita, C. et al. Fisheries for common octopus in Europe: Socioeconomic importance and management. Fish. Res. 235, 105820 (2021).Article 

    Google Scholar 
    Melis, R. et al. Genetic population structure and phylogeny of the common octopus Octopus vulgaris Cuvier, 1797 in the western Mediterranean Sea through nuclear and mitochondrial markers. Hydrobiologia 807, 277–296 (2018).Article 
    CAS 

    Google Scholar 
    De Luca, D., Catanese, G., Procaccini, G. & Fiorito, G. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic diversity and population structure. PLoS ONE 11, e0149496 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernández-Rueda, P. & García-Flórez, L. Octopus vulgaris (Mollusca: Cephalopoda) fishery management assessment in Asturias (north-west Spain). Fish. Res. 83, 351–354 (2007).Article 

    Google Scholar 
    Gobierno del Principado de Asturias. BOPA núm. 233 de 03-XII-2021, Vol. 233 (2021).Roa-Ureta, R. H. et al. Estimation of the spawning stock and recruitment relationship of Octopus vulgaris in Asturias (Bay of Biscay) with generalized depletion models: Implications for the applicability of MSY. ICES J. Mar. Sci. https://doi.org/10.1093/icesjms/fsab113 (2021).Article 

    Google Scholar 
    González, A. F., Macho, G., de Novoa, J. & García, M. Western Asturias Octopus Traps Fishery of Artisanal Cofradías 181 (2015).Sánchez, J. L. F., Fernández Polanco, J. M. & Llorente García, I. Evidence of price premium for MSC-certified products at fishers’ level: The case of the artisanal fleet of common octopus from Asturias (Spain). Mar. Policy 119, 104098 (2020).Article 

    Google Scholar 
    Murphy, J. M., Balguerías, E., Key, L. N. & Boyle, P. R. Microsatellite DNA markers discriminate between two Octopus vulgaris (Cephalopoda: Octopoda) fisheries along the northwest African coast. Bull. Mar. Sci. 71, 545–553 (2002).
    Google Scholar 
    Cabranes, C., Fernandez-Rueda, P. & Martínez, J. L. Genetic structure of Octopus vulgaris around the Iberian Peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J. Mar. Sci. 65, 12–16 (2008).Article 

    Google Scholar 
    Quinteiro, J., Rodríguez-Castro, J., Rey-Méndez, M. & González-Henríquez, N. Phylogeography of the insular populations of common octopus, Octopus vulgaris Cuvier, 1797, in the Atlantic Macaronesia. PLoS ONE 15, e0230294 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greatorex, E. C. et al. Microsatellite markers for investigating population structure in Octopus vulgaris (Mollusca: Cephalopoda). Mol. Ecol. 9, 641–642 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    De Luca, D., Catanese, G., Fiorito, G. & Procaccini, G. A new set of pure microsatellite loci in the common octopus Octopus vulgaris Cuvier, 1797 for multiplex PCR assay and their cross-amplification in O. maya Voss & Solís Ramírez, 1966. Conserv. Genet. Resour. 7, 299–301 (2015).Article 

    Google Scholar 
    Zuo, Z., Zheng, X., Liu, C. & Li, Q. Development and characterization of 17 polymorphic microsatellite loci in Octopus vulgaris Cuvier, 1797. Conserv. Genet. Resour. 4, 367–369 (2012).Article 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358 (1984).CAS 
    PubMed 

    Google Scholar 
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nei, M. & Takezaki, N. Estimation of Genetic Distances and Phylogenetic Trees from DNA Analysis 8 (1983).Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Waples, R. S. Separating the wheat from the chaff: Patterns of genetic differentiation in high gene flow species. J. Hered. 89, 438–450 (1998).Article 

    Google Scholar 
    Taboada, F. G. & Anadón, R. Patterns of change in sea surface temperature in the North Atlantic during the last three decades: Beyond mean trends. Clim. Change 115, 419–431 (2012).Article 
    ADS 

    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sinclair, M. & Valdimarsson, G. Responsible Fisheries in the Marine Ecosystem (CABI, 2003).Book 

    Google Scholar 
    Pinsky, M. L. & Palumbi, S. R. Meta-analysis reveals lower genetic diversity in overfished populations. Mol. Ecol. 23, 29–39 (2014).Article 
    PubMed 

    Google Scholar 
    Bradbury, I. R., Laurel, B., Snelgrove, P. V. R., Bentzen, P. & Campana, S. E. Global patterns in marine dispersal estimates: The influence of geography, taxonomic category and life history. Proc. R. Soc. B Biol. Sci. 275, 1803–1809 (2008).Article 

    Google Scholar 
    Waples, R. S. Testing for Hardy-Weinberg proportions: Have we lost the plot? J. Hered. 106, 1–19 (2015).Article 
    PubMed 

    Google Scholar 
    Casu, M. et al. Genetic structure of Octopus vulgaris (Mollusca, Cephalopoda) from the Mediterranean Sea as revealed by a microsatellite locus. Ital. J. Zool. 69, 295–300 (2002).Article 

    Google Scholar 
    Fadhlaoui-Zid, K. et al. Genetic structure of Octopus vulgaris (Cephalopoda, Octopodidae) in the central Mediterranean Sea inferred from the mitochondrial COIII gene. C.R. Biol. 335, 625–636 (2012).Article 
    PubMed 

    Google Scholar 
    Queiroga, H. et al. Oceanographic and behavioural processes affecting invertebrate larval dispersal and supply in the western Iberia upwelling ecosystem. Prog. Oceanogr. 74, 174–191 (2007).Article 
    ADS 

    Google Scholar 
    Mereu, M. et al. Mark–recapture investigation on Octopus vulgaris specimens in an area of the central western Mediterranean Sea. J. Mar. Biol. Assoc. U.K. 95, 131–138 (2015).Article 
    ADS 

    Google Scholar 
    Mereu, M. et al. Movement estimation of Octopus vulgaris Cuvier, 1797 from mark recapture experiment. J. Exp. Mar. Biol. Ecol. 470, 64–69 (2015).Article 

    Google Scholar 
    Roura, Á. et al. Life strategies of cephalopod paralarvae in a coastal upwelling system (NW Iberian Peninsula): Insights from zooplankton community and spatio-temporal analyses. Fish. Oceanogr. 25, 241–258 (2016).Article 

    Google Scholar 
    Moreno, A. et al. Essential habitats for pre-recruit Octopus vulgaris along the Portuguese coast. Fish. Res. 152, 74–85 (2014).Article 
    ADS 

    Google Scholar 
    Chédia, J., Widien, K. & Amina, B. Role of sea surface temperature and rainfall in determining the stock and fishery of the common octopus (Octopus vulgaris, Mollusca, Cephalopoda) in Tunisia. Mar. Ecol. 31, 431–438 (2010).Article 
    ADS 

    Google Scholar 
    Otero, J. et al. Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Mar. Ecol. Prog. Ser. 362, 181–192 (2008).Article 
    ADS 

    Google Scholar 
    Hedgecock, D. & Pudovkin, A. I. A. I. Sweepstakes reproductive success in highly fecund marine fish and shellfish: A review and commentary. Bull. Mar. Sci. 87, 971–1002 (2011).Article 

    Google Scholar 
    Kalinowski, S. T. & Waples, R. S. Relationship of effective to census size in fluctuating populations. Conserv. Biol. 16, 129–136 (2002).Article 
    PubMed 

    Google Scholar 
    Sonderblohm, C. P., Pereira, J. & Erzini, K. Environmental and fishery-driven dynamics of the common octopus (Octopus vulgaris) based on time-series analyses from leeward Algarve, southern Portugal. ICES J. Mar. Sci. 71, 2231–2241 (2014).Article 

    Google Scholar 
    Sonderblohm, C. P. et al. Participatory assessment of management measures for Octopus vulgaris pot and trap fishery from southern Portugal. Mar. Policy 75, 133–142 (2017).Article 

    Google Scholar 
    Arkhipkin, A. I. et al. Stock assessment and management of cephalopods: Advances and challenges for short-lived fishery resources. ICES J. Mar. Sci. 78, 714–730 (2021).Article 

    Google Scholar 
    Franklin, I. R. Evolutionary change in small populations. In Conservation Biology: An Evolutionary-Ecological Perspective (eds Soulé, M. E. & Wilcox, B. A.) 395 (Sinauer Associates, 1980).
    Google Scholar 
    Slatkin, M. Rare alleles as indicators of gene flow. Evolution 39, 53–65 (1985).Article 
    PubMed 

    Google Scholar 
    Holleley, C. E. & Geerts, P. G. Multiplex manager 1.0: A cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46, 511–517 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paradis, E. Pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419–420 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).Article 

    Google Scholar 
    Adamack, A. T. & Gruber, B. PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol. Evol. 5, 384–387 (2014).Article 

    Google Scholar 
    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-STATISTICS. J. Hered. 86, 485–486 (1995).Article 

    Google Scholar 
    Rice, W. R. Analyzing tables of statistical tests. Evolution 43, 223 (1989).Article 
    PubMed 

    Google Scholar 
    Piry, S., Luikart, G. & Cornuet, J. M. M. Bottleneck: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 90, 502–503 (1999).Article 

    Google Scholar 
    Luikart, G., Allendorf, F. W., Cornuet, J.-M.M. & Sherwin, W. B. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J. Hered. https://doi.org/10.1093/jhered/89.3.238 (1998).Article 
    PubMed 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Besnier, F. & Glover, K. A. ParallelStructure: A R package to distribute parallel runs of the population genetics program STRUCTURE on multi-core computers. PLoS ONE 8, e70651 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gilbert, K. J. et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2012.05754.x (2012).Article 
    PubMed 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. Structure harvester: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Takezaki, N., Nei, M. & Tamura, K. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing some other quantities. Mol. Biol. Evol. 31, 1622–1624 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive tree of life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dray, S. & Dufour, A.-B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Slatkin, M. Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47, 264–279 (1993).Article 
    PubMed 

    Google Scholar 
    Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19, 233–257 (1967).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples, R. S. A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121, 379–391 (1989).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katsanevakis, S. & Verriopoulos, G. Seasonal population dynamics of Octopus vulgaris in the eastern Mediterranean. ICES J. Mar. Sci. 63, 151–160 (2006).Article 

    Google Scholar 
    Jereb, P. et al. Cephalopod Biology and Fisheries in Europe: II Species Accounts 360 (ICES, 2015).
    Google Scholar  More

  • in

    Effects of moisture and density-dependent interactions on tropical tree diversity

    Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann. Missouri Bot. Gard. 75, 1–34 (1988).Article 

    Google Scholar 
    Givnish, T. J. On the causes of gradients in tropical tree diversity. J. Ecol. 87, 193–210 (1999).Article 

    Google Scholar 
    Janzen, D. H. Herbivores and the number of tree species in tropical forests. Am. Nat. 104, 501–528 (1970).Article 

    Google Scholar 
    Connell, J. H. in Dynamics of Populations (eds Den Boer, P. J. & Gradwell, G. R.) 298–312 (PUDOC, 1971).Esquivel-Muelbert, A. et al. Seasonal drought limits tree species across the Neotropics. Ecography 40, 618–629 (2017).Article 

    Google Scholar 
    Gillett, J. B. Pest pressure, an underestimated factor in evolution. Syst. Assoc. Publ. 4, 37–46 (1962).
    Google Scholar 
    Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Condit, R., Engelbrecht, B. M. J., Pino, D., Pérez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA 110, 5064–5068 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).Article 

    Google Scholar 
    Harrison, S., Spasojevic, M. J. & Li, D. Climate and plant community diversity in space and time. Proc. Natl Acad. Sci. USA 117, 4464–4470 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milici, V. R., Dalui, D., Mickley, J. G. & Bagchi, R. Responses of plant–pathogen interactions to precipitation: Implications for tropical tree richness in a changing world. J. Ecol. 108, 1800–1809 (2020).Article 

    Google Scholar 
    Mangan, S. A. et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature 466, 752–755 (2010).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gripenberg, S. et al. Testing for enemy-mediated density-dependence in the mortality of seedlings: field experiments with five Neotropical tree species. Oikos 123, 185–193 (2014).Article 

    Google Scholar 
    Bagchi, R. et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506, 85–88 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fricke, E. C., Tewksbury, J. J. & Rogers, H. S. Multiple natural enemies cause distance-dependent mortality at the seed-to-seedling transition. Ecol. Lett. 17, 593–598 (2014).Article 
    PubMed 

    Google Scholar 
    Augspurger, C. K. & Kelly, C. K. Pathogen mortality of tropical tree seedlings: experimental studies of the effects of dispersal distance, seedling density, and light conditions. Oecologia 61, 211–217 (1984).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Eck, J. L., Stump, S. M., Delavaux, C. S., Mangan, S. A. & Comita, L. S. Evidence of within-species specialization by soil microbes and the implications for plant community diversity. Proc. Natl Acad. Sci. USA 116, 7371–7376 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kishimoto-Yamada, K. & Itioka, T. How much have we learned about seasonality in tropical insect abundance since Wolda (1988)? Entomol. Sci. 18, 407–419 (2015).Article 

    Google Scholar 
    Huberty, A. F. & Denno, R. F. Plant water stress and its consequences for herbivorous insects: a new synthesis. Ecology 85, 1383–1398 (2004).Article 

    Google Scholar 
    Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Castañeda, G. The world and its shades of green: a meta-analysis on trophic cascades across temperature and precipitation gradients. Glob. Ecol. Biogeogr. 22, 118–130 (2013).Article 

    Google Scholar 
    Janzen, D. H. & Schoener, T. W. Differences in insect abundance and diversity between wetter and drier sites during a tropical dry season. Ecology 49, 96–110 (1968).Article 

    Google Scholar 
    Sturrock, R. N. et al. Climate change and forest diseases. Plant Pathol 60, 133–149 (2011).Article 

    Google Scholar 
    Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).Article 

    Google Scholar 
    Swinfield, T., Lewis, O. T., Bagchi, R. & Freckleton, R. P. Consequences of changing rainfall for fungal pathogen-induced mortality in tropical tree seedlings. Ecol. Evol. 2, 1408–1413 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jactel, H. et al. Drought effects on damage by forest insects and pathogens: a meta-analysis. Glob. Chang. Biol. 18, 267–276 (2012).Article 
    ADS 

    Google Scholar 
    Maharjan, S. K. et al. Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient. Biotropica 43, 552–561 (2011).Article 

    Google Scholar 
    Klironomos, J. N. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417, 67–70 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Petermann, J. S., Fergus, A. J. F., Turnbull, L. A. & Schmid, B. Janzen–Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology 89, 2399–2406 (2008).Article 
    PubMed 

    Google Scholar 
    Chesson, P. Updates on mechanisms of maintenance of species diversity. J. Ecol. 106, 1773–1794 (2018).Article 

    Google Scholar 
    Barabás, G., Michalska-Smith, M. J. & Allesina, S. The effect of intra- and interspecific competition on coexistence in multispecies communities. Am. Nat. 188, E1–E12 (2016).Article 
    PubMed 

    Google Scholar 
    Lebrija-Trejos, E., Wright, S. J., Hernández, A. & Reich, P. B. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology 95, 940–951 (2014).Article 
    PubMed 

    Google Scholar 
    Lebrija-Trejos, E., Reich, P. B., Hernández, A. & Wright, S. J. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecol. Lett. 19, 1071–1080 (2016).Article 
    PubMed 

    Google Scholar 
    Green, P. T., Harms, K. E. & Connell, J. H. Nonrandom, diversifying processes are disproportionately strong in the smallest size classes of a tropical forest. Proc. Natl Acad. Sci. USA 111, 18649–18654 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Comita, L. S. et al. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 102, 845–856 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moles, A. T. & Westoby, M. What do seedlings die from and what are the implications for evolution of seed size? Oikos 106, 193–199 (2004).Article 

    Google Scholar 
    Paine, C. E. T., Harms, K. E., Schnitzer, S. A. & Carson, W. P. Weak competition among tropical tree seedlings: implications for species coexistence. Biotropica 40, 432–440 (2008).Article 

    Google Scholar 
    Weissflog, A., Markesteijn, L., Lewis, O. T., Comita, L. S. & Engelbrecht, B. M. J. Contrasting patterns of insect herbivory and predation pressure across a tropical rainfall gradient. Biotropica 50, 302–311 (2018).Article 

    Google Scholar 
    Brenes-Arguedas, T., Coley, P. D. & Kursar, T. A. Pests vs. drought as determinants of plant distribution along a tropical rainfall gradient. Ecology 90, 1751–1761 (2009).Article 
    PubMed 

    Google Scholar 
    Gaviria, J. & Engelbrecht, B. M. J. Effects of drought, pest pressure and light availability on seedling establishment and growth: their role for distribution of tree species across a tropical rainfall gradient. PLoS ONE 10, e0143955 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spear, E. R., Coley, P. D. & Kursar, T. A. Do pathogens limit the distributions of tropical trees across a rainfall gradient? J. Ecol. 103, 165–174 (2015).Article 

    Google Scholar 
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Chang. Biol. 22, 2329–2352 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Riutta, T. et al. Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biol. Biochem. 49, 124–131 (2012).Article 
    CAS 

    Google Scholar 
    Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489 (2011).Article 

    Google Scholar 
    Krishnadas, M. & Comita, L. S. Edge effects on seedling diversity are mediated by impacts of fungi and insects on seedling recruitment but not survival. Front. Glob. Chang. 2, 76 (2019).Article 

    Google Scholar 
    Garcia, R. A., Cabeza, M., Rahbek, C. & Araujo, M. B. Multiple dimensions of climate change and their implications for biodiversity. Science 344, 1247579 (2014).Article 
    PubMed 

    Google Scholar 
    Uriarte, M., Muscarella, R. & Zimmerman, J. K. Environmental heterogeneity and biotic interactions mediate climate impacts on tropical forest regeneration. Glob. Chang. Biol. 24, e692–e704 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bachelot, B., Kobe, R. K. & Vriesendorp, C. Negative density-dependent mortality varies over time in a wet tropical forest, advantaging rare species, common species, or no species. Oecologia 179, 853–861 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Zhu, Y. et al. Density‐dependent survival varies with species life‐history strategy in a tropical forest. Ecol. Lett. 21, 506–515 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wright, S. J., Calderón, O., Hernandéz, A. & Muller-Landau, H. C. Annual and spatial variation in seedfall and seedling recruitment in a neotropical forest. Ecology 86, 848–860 (2005).Article 

    Google Scholar 
    Condit, R. Tropical Forest Census Plots https://doi.org/10.1007/978-3-662-03664-8 (Springer, 1998).Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry season soil water potential maps of a 50 hectare tropical forest plot on Barro Colorado Island, Panama. Sci. Data 6, 63 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garwood, N. C. in The Ecology of a Tropical Forest: Seasonal Rhythms and Long-term Changes (eds Leigh, E. G., Rand, A. S. & Windsor, D. M.) 173–185 (Smithsonian Institution Press, 1982).Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference https://doi.org/10.1007/b97636 (Springer, 2004).Muller-Landau, H. C. et al. Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecol. Lett. 9, 575–588 (2006).Article 
    PubMed 

    Google Scholar 
    Detto, M., Visser, M. D., Wright, S. J. & Pacala, S. W. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 22, 1923–1939 (2019).Article 
    PubMed 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).Article 
    PubMed 

    Google Scholar 
    Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for confirmatory hypothesis testing: keep it maximal. J. Mem. Lang. 68, 255–278 (2013).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Bates, D. et al. Package ‘lme4’ Reference Manual https://cran.r-project.org/web/packages/lme4/lme4.pdf (2021).Wilkinson, G. N. & Rogers, C. E. Symbolic description of factorial models for analysis of variance. Appl. Stat. 22, 392 (1973).Article 

    Google Scholar 
    Afshartous, D. & Preston, R. A. Key results of interaction models with centering. J. Stat. Educ. https://doi.org/10.1080/10691898.2011.11889620 (2011).Cohen, J. Statistical Power Analysis for the Behavioral Sciences https://doi.org/10.1016/C2013-0-10517-X (Elsevier, 1977).Steiger, J. H. Tests for comparing elements of a correlation matrix. Psychol. Bull. 87, 245–251 (1980).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing https://www.R-project.org/ (2016).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models https://CRAN.R-project.org/package=nlme (2020).Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-level/Mixed) Regression Models https://CRAN.R-project.org/package=DHARMa (2021).Lebrija-Trejos, E., Wright, S. J. & Hernández, A. Moisture, Density-dependent Interactions, and Tropical Tree Diversity https://figshare.com/s/a4d2dbb2a73b3eb09f9f (2022).Kupers, S. J., Wirth, C., Engelbrecht, B. M. J. & Rüger, N. Dry Season Soil Water Potential Maps of a 50 Hectare Tropical Forest Plot on Barro Colorado Island, Panama https://doi.org/10.6084/m9.figshare.7611005.v1 (2019).Paton, S. Barro Colorado Island, Lutz Catchment, Soil Moisture, Manual https://doi.org/10.25573/data.10042517.v1 (2019). More

  • in

    Harnessing soil biodiversity to promote human health in cities

    UNDESA. World urbanization prospects. Demographic Research 12, 1–103 (2018).Oke, C. et al. Cities should respond to the biodiversity extinction crisis. npj Urban Sustain. 1, 11 (2021).Article 

    Google Scholar 
    World Bank. A catalogue of nature-based solutions for urban resilience. www.worldbank.org (2021).Elmqvist, T. et al. Benefits of restoring ecosystem services in urban areas. Curr. Opin. Environ. Sustain. 14, 101–108 (2015).Article 

    Google Scholar 
    Aerts, R., Honnay, O. & Van Nieuwenhuyse, A. Biodiversity and human health: Mechanisms and evidence of the positive health effects of diversity in nature and green spaces. Br. Med. Bull. 127, 5–22 (2018).Article 

    Google Scholar 
    Reyes-Riveros, R. et al. Linking public urban green spaces and human well-being: A systematic review. Urban For. Urban Green 61, 127105 (2021).Article 

    Google Scholar 
    Bardgett, R. D. & Van Der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).Article 
    CAS 

    Google Scholar 
    Mehring, A. S. & Levin, L. A. Potential roles of soil fauna in improving the efficiency of rain gardens used as natural stormwater treatment systems. J. Appl. Ecol. 52, 1445–1454 (2015).Article 

    Google Scholar 
    Brevik, E. C. et al. Soil and human health: current status and future needs. Air, Soil Water Res. 13, 1–23 (2020).Article 

    Google Scholar 
    Silver, W. L., Perez, T., Mayer, A. & Jones, A. R. The role of soil in the contribution of food and feed. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200181 (2021).Article 
    CAS 

    Google Scholar 
    De Deyn, G. B. & Kooistra, L. The role of soils in habitat creation, maintenance and restoration. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200170 (2021).Article 

    Google Scholar 
    Samaddar, S. et al. Role of soil in the regulation of human and plant pathogens: Soils’ contributions to people. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200179 (2021).Article 

    Google Scholar 
    Thiele-Bruhn, S. The role of soils in provision of genetic, medicinal and biochemical resources. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200183 (2021).Article 
    CAS 

    Google Scholar 
    O’Riordan, R., Davies, J., Stevens, C., Quinton, J. N. & Boyko, C. The ecosystem services of urban soils: A review. Geoderma 395, 115076 (2021).Article 

    Google Scholar 
    Banerjee, S. & Heijden, M. G. A. Soil microbiomes and one health. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-022-00779-w (2022).Schmidt, D. J. et al. Urbanization erodes ectomycorrhizal fungal diversity and may cause microbial communities to converge. Nat. Ecol. Evol. 1, 0123 (2017).Article 

    Google Scholar 
    Geisen, S., Wall, D. H. & van der Putten, W. H. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 29, R1036–R1044 (2019).Article 
    CAS 

    Google Scholar 
    Fenoglio, M. S., Rossetti, M. R. & Videla, M. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Glob. Ecol. Biogeogr. 29, 1412–1429 (2020).Article 

    Google Scholar 
    Guilland, C., Maron, P. A., Damas, O. & Ranjard, L. Biodiversity of urban soils for sustainable cities. Environ. Chem. Lett. 16, 1267–1282 (2018).Article 
    CAS 

    Google Scholar 
    Milano, V. et al. The effect of urban park landscapes on soil Collembola diversity: A Mediterranean case study. Landsc. Urban Plan. 180, 135–147 (2018).Article 

    Google Scholar 
    Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116 (2018).Article 
    CAS 

    Google Scholar 
    Zhu, Y. G. et al. Soil biota, antimicrobial resistance and planetary health. Environ. Int. 131, 105059 (2019).Article 

    Google Scholar 
    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity: A monitoring and indicator system can inform policy. Science 371, 239–241 (2021).Article 
    CAS 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B Biol. Sci. 281, 20141988 (2014).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).Article 
    CAS 

    Google Scholar 
    Braaker, S., Ghazoul, J., Obrist, M. K. & Moretti, M. Habitat connectivity shapes urban arthropod communities: the key role of green roofs. Ecology 95, 1010–1021 (2014).Article 
    CAS 

    Google Scholar 
    Lin, B. B., Philpott, S. M. & Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 16, 189–201 (2015).Article 

    Google Scholar 
    Baruch, Z. et al. Increased plant species richness associates with greater soil bacterial diversity in urban green spaces. Environ. Res. 196, 110425 (2021).Article 
    CAS 

    Google Scholar 
    Robinson, J. M. et al. Vertical stratification in urban green space aerobiomes. Environ. Health Perspect. 128, 1–12 (2020).Article 

    Google Scholar 
    Robinson, J. M. et al. Exposure to airborne bacteria depends upon vertical stratification and vegetation complexity. Sci. Rep. 11, 9516 (2021).Article 
    CAS 

    Google Scholar 
    Nugent, A. & Allison, S. D. A framework for soil microbial ecology in urban ecosystems. Ecosphere 13, 1–20 (2022).Article 

    Google Scholar 
    Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Chang. Biol. 22, 228–236 (2016).Article 

    Google Scholar 
    Li, X. et al. Management effects on soil nematode abundance differ among functional groups and land-use types at a global scale. J. Anim. Ecol. 91, 1770–1780 (2022).Article 

    Google Scholar 
    McKinney, M. L. Effects of urbanization on species richness: A review of plants and animals. Urban Ecosyst. 11, 161–176 (2008).Article 

    Google Scholar 
    Piano, E. et al. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Chang. Biol. 26, 1196–1211 (2020).Article 

    Google Scholar 
    Joimel, S. et al. Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosyst. 22, 553–566 (2019).Article 

    Google Scholar 
    Ge, B., Mehring, A. S. & Levin, L. A. Urbanization alters belowground invertebrate community structure in semi-arid regions: A comparison of lawns, biofilters and sage scrub. Landsc. Urban Plan. 192, 103664 (2019).Article 

    Google Scholar 
    Tóth, Z. & Hornung, E. Taxonomic and functional response of millipedes (Diplopoda) to urban soil disturbance in a metropolitan area. Insects 11, 25 (2020).Article 

    Google Scholar 
    Selhorst, A. & Lal, R. Net carbon sequestration potential and emissions in home lawn turfgrasses of the United States. Environ. Manage. 51, 198–208 (2013).Article 

    Google Scholar 
    Cividini, S. & Montesanto, G. Aggregative behavior and intraspecific communication mediated by substrate-borne vibrations in terrestrial arthropods: An exploratory study in two species of woodlice. Behav. Process. 157, 422–430 (2018).Article 

    Google Scholar 
    Bray, N., Thompson, G. L., Fahey, T., Kao-Kniffin, J. & Wickings, K. Soil macroinvertebrates alter the fate of root and rhizosphere carbon and nitrogen in a turfgrass lawn. Soil Biol. Biochem. 148, 107903 (2020).Article 
    CAS 

    Google Scholar 
    Barthod, J., Dignac, M. F. & Rumpel, C. Effect of decomposition products produced in the presence or absence of epigeic earthworms and minerals on soil carbon stabilization. Soil Biol. Biochem. 160, 108308 (2021).Article 
    CAS 

    Google Scholar 
    Aquino, R. S. S. et al. Filamentous fungi vectored by ants (Hymenoptera: Formicidae) in a public hospital in north-eastern Brazil. J. Hosp. Infect. 83, 200–204 (2013).Article 
    CAS 

    Google Scholar 
    Hodges, M. N. & McKinney, M. L. Urbanization impacts on land snail community composition. Urban Ecosyst. 21, 721–735 (2018).Article 

    Google Scholar 
    Saeki, I., Niwa, S., Osada, N., Azuma, W. & Hiura, T. Contrasting effects of urbanization on arboreal and ground-dwelling land snails: role of trophic interactions and habitat fragmentation. Urban Ecosyst. 23, 603–614 (2020).Article 

    Google Scholar 
    Buczkowski, G. & Bertelsmeier, C. Invasive termites in a changing climate: A global perspective. Ecol. Evol. 7, 974–985 (2017).Article 

    Google Scholar 
    Ford, A. E. S., Graham, H. & White, P. C. L. Integrating human and ecosystem health through ecosystem services frameworks. Ecohealth 12, 660–671 (2015).Article 

    Google Scholar 
    Wall, D. H., Nielsen, U. N. & Six, J. Soil biodiversity and human health. Nature 528, 69–76 (2015).Article 
    CAS 

    Google Scholar 
    Wei, Z. et al. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5, 1–12 (2019).Article 

    Google Scholar 
    Song, C., Jin, K. & Raaijmakers, J. M. Designing a home for beneficial plant microbiomes. Curr. Opin. Plant Biol. 62, 102025 (2021).Article 
    CAS 

    Google Scholar 
    Neiderud, C. J. How urbanization affects the epidemiology of emerging infectious diseases. African J. Disabil. 5, 27060 (2015).
    Google Scholar 
    Liddicoat, C. et al. Can bacterial indicators of a grassy woodland restoration inform ecosystem assessment and microbiota-mediated human health? Environ. Int. 129, 105–117 (2019).Article 

    Google Scholar 
    Baumgardner, D. J. Soil-related bacterial and fungal infections. J. Am. Board Fam. Med. 25, 734–744 (2012).Article 

    Google Scholar 
    Khan, N. A. Acanthamoeba: Biology and increasing importance in human health. FEMS Microbiol. Rev. 30, 564–595 (2006).Article 

    Google Scholar 
    Lindsay, R. G., Watters, G., Johnson, R., Ormonde, S. E. & Snibson, G. R. Acanthamoeba keratitis and contact lens wear. Clin. Exp. Optom. 90, 351–360 (2007).Article 

    Google Scholar 
    Fields, Barry, Robert, Benson & Besser, R. Legionella and Legionnaires’ Disease: 25 Years of Investigation – Comparative study of selective media for isolation of Legionella pneumophila from potable water. Clin. Microbiol. Rev. 15, 506 (2002).Article 

    Google Scholar 
    Van Elsas, J. D. et al. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109, 1159–1164 (2012).Article 

    Google Scholar 
    Chen, X. D. et al. Soil biodiversity and biogeochemical function in managed ecosystems. Soil Res. 58, 1–20 (2019).Article 

    Google Scholar 
    Hernando-Amado, S., Coque, T. M., Baquero, F. & Martínez, J. L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019).Article 
    CAS 

    Google Scholar 
    Wang, F. H. et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation. Environ. Sci. Technol. 48, 9079–9085 (2014).Article 
    CAS 

    Google Scholar 
    Cave, R., Cole, J. & Mkrtchyan, H. V. Surveillance and prevalence of antimicrobial resistant bacteria from public settings within urban built environments: Challenges and opportunities for hygiene and infection control. Environ. Int. 157, 106836 (2021).Article 
    CAS 

    Google Scholar 
    Alharbi, J. S., Alawadhi, Q. & Leather, S. R. Monomorium ant is a carrier for pathogenic and potentially pathogenic bacteria. BMC Res. Notes 12, 230 (2019).Article 

    Google Scholar 
    Guimaraes, A. J., Gomes, K. X., Cortines, J. R., Peralta, J. M. & Peralta, R. H. S. Acanthamoeba spp. as a universal host for pathogenic microorganisms: One bridge from environment to host virulence. Microbiol. Res. 193, 30–38 (2016).Article 

    Google Scholar 
    Vieira, A., Ramesh, A., Seddon, A. M. & Karlyshev, A. V. CmeABC multidrug efflux pump promotes Campylobacter jejuni survival and multiplication in Acanthamoeba polyphaga. Appl. Environ. Microbiol. 83, 1–13 (2017).Article 

    Google Scholar 
    Wyres, K. L. & Holt, K. E. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol. 45, 131–139 (2018).Article 
    CAS 

    Google Scholar 
    Holt, K. E. et al. Genomic analysis of diversity, population structure, virulence, and antimicrobial resistance in Klebsiella pneumoniae, an urgent threat to public health. Proc. Natl. Acad. Sci. USA 112, E3574–E3581 (2015).Article 
    CAS 

    Google Scholar 
    Bethony, J. et al. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367, 1521–1532 (2006).Pullan, R. L., Smith, J. L., Jasrasaria, R. & Brooker, S. J. Global numbers of infection and disease burden of soil-transmitted helminth infections in 2010. Parasites and Vectors 7, 1–19 (2014).Article 

    Google Scholar 
    Kemp, S. F. et al. Expanding habitat of the imported fire ant (Solenopsis invicta): A public health concern. J. Allergy Clin. Immunol. 105, 683–691 (2000).Article 
    CAS 

    Google Scholar 
    Estrada-Peña, A. & Jongejan, F. Ticks feeding on humans: a review of records on human-biting Ixodoidea with special reference to pathogen transmission Climate, niche, ticks, and models: what they are and how we should interpret them. Exp. Appl. Acarol. 23, 685–715 (1999).Article 

    Google Scholar 
    Nasir, S., Akram, W., Khan, R. R., Arshad, M. & Nasir, I. Paederusbeetles: The agent of human dermatitis. J. Venom. Anim. Toxins Incl. Trop. Dis. 21, 1–6 (2015).Article 

    Google Scholar 
    Santos, M. N. Research on termites in urban areas: approaches and gaps. https://doi.org/10.1007/s11252-020-00944-0 (2020).National Academies of Sciences, Engineering, and M. Advancing urban sustainability in China and the United States. (The National Academies Press, https://doi.org/10.17226/25794 2020).Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).Article 
    CAS 

    Google Scholar 
    Velasco, E., Segovia, E., Choong, A. M. F., Lim, B. K. Y. & Vargas, R. Carbon dioxide dynamics in a residential lawn of a tropical city. J. Environ. Manage. 280, 111752 (2021).Article 
    CAS 

    Google Scholar 
    Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).Article 

    Google Scholar 
    Jiao, S., Lu, Y. & Wei, G. Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems. Glob. Chang. Biol. 28, 140–153 (2022).Article 
    CAS 

    Google Scholar 
    Hu, J. et al. Rhizosphere microbiome functional diversity and pathogen invasion resistance build up during plant development. Environ. Microbiol. 22, 5005–5018 (2020).Article 

    Google Scholar 
    Jayaraman, S. et al. Disease-suppressive soils—beyond food production: a critical review. J. Soil Sci. Plant Nutr. 21, 1437–1465 (2021).Article 

    Google Scholar 
    Chen, Q. L. et al. Loss of soil microbial diversity exacerbates spread of antibiotic resistance. Soil Ecol. Lett. 1, 3–13 (2019).Article 

    Google Scholar 
    Innocenti, G. & Sabatini, M. A. Collembola and plant pathogenic, antagonistic and arbuscular mycorrhizal fungi: a review. Bull. Insectology 71, 71–76 (2018).
    Google Scholar 
    Jones, M. S. et al. Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens. Biol. Control 137, 104020 (2019).Huang, K. et al. Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresour. Technol. 297, 122451 (2020).Article 
    CAS 

    Google Scholar 
    Li, G., Sun, G. X., Ren, Y., Luo, X. S. & Zhu, Y. G. Urban soil and human health: a review. Eur. J. Soil Sci. 69, 196–215 (2018).Article 

    Google Scholar 
    Cachada, A., Pato, P., Rocha-Santos, T., da Silva, E. F. & Duarte, A. C. Levels, sources and potential human health risks of organic pollutants in urban soils. Sci. Total Environ. 430, 184–192 (2012).Article 
    CAS 

    Google Scholar 
    Chen, M. et al. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols, and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 33, 745–755 (2015).Article 
    CAS 

    Google Scholar 
    González Henao, S. & Ghneim-Herrera, T. Heavy metals in soils and the remediation potential of bacteria associated With the plant microbiome. Front. Environ. Sci. 9, 1–17 (2021).Article 

    Google Scholar 
    Meynet, P. et al. Effect of activated carbon amendment on bacterial community structure and functions in a PAH impacted urban soil. Environ. Sci. Technol. 46, 5057–5066 (2012).Article 
    CAS 

    Google Scholar 
    Xiong, W., Delgado-Baquerizo, M., Shen, Q. & Geisen, S. Pedogenesis shapes predator-prey relationships within soil microbiomes. Sci. Total Environ. 828, 154405 (2022).Article 
    CAS 

    Google Scholar 
    Duan, G. et al. Interactions among soil biota and their applications in synergistic bioremediation of heavy-metal contaminated soils. Shengwu Gongcheng Xuebao/Chinese J. Biotechnol. 36, 455–470 (2020).CAS 

    Google Scholar 
    Beesley, L. & Dickinson, N. Carbon and trace element fluxes in the pore water of an urban soil following green waste compost, woody and biochar amendments, inoculated with the earthworm Lumbricus terrestris. Soil Biol. Biochem. 43, 188–196 (2011).Article 
    CAS 

    Google Scholar 
    Zhu, D. et al. Deciphering potential roles of earthworms in mitigation of antibiotic resistance in the soils from diverse ecosystems. Environ. Sci. Technol. 55, 7445–7455 (2021).Article 
    CAS 

    Google Scholar 
    Bowers, R. M., McLetchie, S., Knight, R. & Fierer, N. Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J. 5, 601–612 (2011).Article 
    CAS 

    Google Scholar 
    Selway, C. A. et al. Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environ. Int. 145, 106084 (2020).Article 

    Google Scholar 
    Ottman, N. et al. Soil exposure modifies the gut microbiota and supports immune tolerance in a mouse model. J. Allergy Clin. Immunol. 143, 1198–1206.e12 (2019).Article 
    CAS 

    Google Scholar 
    Roslund, M. I. et al. Long-term biodiversity intervention shapes health-associated commensal microbiota among urban day-care children. Environ. Int. 157, 106811 (2021).Article 

    Google Scholar 
    Roslund, M. I. et al. A Placebo-controlled double-blinded test of the biodiversity hypothesis of immune-mediated diseases: Environmental microbial diversity elicits changes in cytokines and increase in T regulatory cells in young children. Ecotoxicol. Environ. Saf. 242, 113900 (2022).Rook, G., Bäckhed, F., Levin, B. R., McFall-Ngai, M. J. & McLean, A. R. Evolution, human-microbe interactions, and life history plasticity. Lancet 390, 521–530 (2017).Article 

    Google Scholar 
    Flandroy, L. et al. The impact of human activities and lifestyles on the interlinked microbiota and health of humans and of ecosystems. Sci. Total Environ. 627, 1018–1038 (2018).Article 
    CAS 

    Google Scholar 
    Reber, S. O. et al. Immunization with a heat-killed preparation of the environmental bacterium Mycobacterium vaccae promotes stress resilience in mice. Proc. Natl. Acad. Sci. USA 113, E3130–E3139 (2016).Article 
    CAS 

    Google Scholar 
    Ege, M. J. Exposure to environmental microorganisms and childhood asthma. N. Engl. J. Med. 364, 701–9 (2011).Article 
    CAS 

    Google Scholar 
    Stein, M. M. et al. Innate immunity and asthma risk in amish and hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).Article 
    CAS 

    Google Scholar 
    Roslund, M. I. et al. Environmental Studies biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci. Adv. 6, eaba2578 (2020).Article 
    CAS 

    Google Scholar 
    Hanski, I. et al. Environmental biodiversity, human microbiota, and allergy are interrelated. Proc. Natl. Acad. Sci. USA 109, 8334–8339 (2012).Article 
    CAS 

    Google Scholar 
    Franklin, P. J. Indoor air quality and respiratory health of children. Paediatr. Respir. Rev. 8, 281–286 (2007).Article 

    Google Scholar 
    Adams, R. I. et al. Microbial exposures in moisture-damaged schools and associations with respiratory symptoms in students: A multi-country environmental exposure study. Indoor Air 31, 1952–1966 (2021).Article 
    CAS 

    Google Scholar 
    Dunn, R. R., Reese, A. T. & Eisenhauer, N. Biodiversity–ecosystem function relationships on bodies and in buildings. Nat. Ecol. Evol. 3, 7–9 (2019).Article 

    Google Scholar 
    Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).Article 
    CAS 

    Google Scholar 
    Flies, E. J., Clarke, L. J., Brook, B. W. & Jones, P. Urbanisation reduces the abundance and diversity of airborne microbes – but what does that mean for our health? A systematic review. Sci. Total Environ. 738, 140337 (2020).Article 
    CAS 

    Google Scholar 
    Berg, G., Mahnert, A. & Moissl-Eichinger, C. Beneficial effects of plant-associated microbes on indoor microbiomes and human health? Front. Microbiol. 5, 1–5 (2014).Article 

    Google Scholar 
    Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 1–13 (2018).Article 

    Google Scholar 
    Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).Article 
    CAS 

    Google Scholar 
    Sonnenburg, E. D. & Sonnenburg, J. L. The ancestral and industrialized gut microbiota and implications for human health. Nat. Rev. Microbiol. 17, 383–390 (2019).Article 
    CAS 

    Google Scholar 
    Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).Article 
    CAS 

    Google Scholar 
    Blum, W. E. H., Zechmeister-Boltenstern, S. & Keiblinger, K. M. Does soil contribute to the human gut microbiome? Microorganisms 7, 287 (2019).Article 

    Google Scholar 
    Liddicoat, C. et al. Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Sci. Total Environ. 701, 134684 (2020).Article 
    CAS 

    Google Scholar 
    Tun, H. M. et al. Exposure to household furry pets influences the gut microbiota of infants at 3-4 months following various birth scenarios. Microbiome 5, 1–14 (2017).Article 

    Google Scholar 
    Brame, J. E., Liddicoat, C., Abbott, C. A. & Breed, M. F. The potential of outdoor environments to supply beneficial butyrate-producing bacteria to humans. Sci. Total Environ. 777, 146063 (2021).Article 
    CAS 

    Google Scholar 
    Elmqvist, T. et al. Urbanization, biodiversity and ecosystem services: challenges and opportunities: a global assessment. https://doi.org/10.1007/978-94-007-7088-1_23 (2013).Breed, M. F. et al. Ecosystem Restoration: A Public Health Intervention. Ecohealth 18, 269–271 (2021).Article 

    Google Scholar 
    Aronson, M. F. J. et al. Biodiversity in the city: key challenges for urban green space management. Front. Ecol. Environ. 15, 189–196 (2017).Article 

    Google Scholar 
    Contos, P., Wood, J. L., Murphy, N. P. & Gibb, H. Rewilding with invertebrates and microbes to restore ecosystems: Present trends and future directions. Ecol. Evol. 11, 7187–7200 (2021).Article 

    Google Scholar 
    Auclerc, A. et al. Fostering the use of soil invertebrate traits to restore ecosystem functioning. Geoderma 424, 116019 (2022).Article 

    Google Scholar 
    Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. 28, S322–S334 (2020).Article 

    Google Scholar  More

  • in

    Geographical variability of bacterial communities of cryoconite holes of Andean glaciers

    In this study, we provide the first description of the bacterial communities of cryoconite holes from South American glaciers, in particular from both small high-elevation glaciers of the Central Andes in the Santiago Metropolitan Region (Chile), and from the tongues of two large glaciers in Patagonian Andes that reach low altitudes. These pieces of information fill a large geographical gap in our knowledge of glacier environments because this is the first description of the microbial communities of supraglacial environments in South America, a continent with about 30,000 km2 covered by ice29. Results showed that the large Patagonian glaciers (Exploradores and Perito Moreno) had the highest oxygen concentrations, while Iver and East Iver had the lowest ones and Morado an intermediate value. This pattern could be related to the different altitudes of the glaciers. Indeed, since water temperature in cryoconite holes is always quite low and stable at all altitudes, oxygen solubility in these environments is related to the atmospheric partial pressure of oxygen that decreases at increasing altitude30. This result is consistent with [O2] values we found in our samples. Indeed, Exploradores and Perito Moreno are located in Patagonia at low altitudes ( 40%), whereas mining is also an additional important black carbon source50. Their similarity can therefore derive also from being exposed to the same general ecological conditions, including high UV radiation, oxidative stress, anthropic pressures, and probably, also from similar sources of bacteria. These results therefore highlight that correlative studies like the present ones can hardly disentangle the effects of geographical positions and ecological conditions on the structure of cryoconite hole bacterial communities, and further studies should be designed to add insight into this still open question.Analyses of alpha diversity indices indicated that cryoconite holes on Exploradores glacier showed the highest richness and evenness. Samples on the Exploradores were collected close to the glacier terminus, surrounded by a rich evergreen broadleaf vegetation, and in an area with abundant supraglacial debris and frequented by tourists. The higher biodiversity of this large, low-altitude glacier, compared to that of the small, high-altitude Iver and East Iver glaciers is not surprising, as the rich evergreen broadleaf forest that surrounds the tongue of the first glacier can be the source of a richer and more diverse bacterial community than the bare ground surrounding the other ones. However, it is more surprising that the alpha biodiversity of the large, low-altitude Perito Moreno was intermediate and similar to that of the Morado glacier. Interestingly, Perito Moreno was the southernmost glacier among those we collected, and was surrounded by a less diverse forest, dominated by southern beeches, Nothofagus ssp. than that of Exploradores, while Morado was the glacier where samples were collected at the lowest altitude among the three glaciers near Santiago. We may therefore speculate that a broad gradient related to altitude and general climate conditions of the area surrounding the glacier may somehow affect its biodiversity. For instance, among the most abundant orders, Cytophagales were more abundant on high than on low-elevation glaciers (Fig. 5b). A similar pattern was observed for the Micrococcales and Chitinophagales (Fig. 5c–k) with the only exception of Iver.In summary, we provide the first-ever description of the bacterial communities of cryoconite holes of glaciers in South America, specifically in the Southern Andes. This study thus fills an important gap of knowledge as almost no information was previously available on the cryoconite holes of this continent, and opens the possibility of future biogeography analyses including samples from almost every important glacial area of the world. The five glaciers we investigated are still a too small sample for thoroughly assessing the ecological processes that control cryoconite hole bacterial communities, and a larger set of environmental variables should also be considered, but we hope this study can be the basis for further investigations aiming at a deeper understanding of these extreme environments. More

  • in

    Adaptive photoperiod interpretation modulates phenological timing in Atlantic salmon

    Bradshaw, W. E. & Holzapfel, C. M. Evolution of animal photoperiodism. Annu. Rev. Ecol. Evol. System. 2007, 1–25 (2007).Article 

    Google Scholar 
    Way, M., Hopkins, B. & Smith, P. Photoperiodism and diapause in insects. Nature 164, 615–615 (1949).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bromage, N., Porter, M. & Randall, C. Reproductive Biotechnology in Finfish Aquaculture 63–98 (Elsevier, 2001).Book 

    Google Scholar 
    Weil, Z. M. & Crews, D. Photoperiodism in Amphibians and Reptiles (ed. Nelson, R. J. et al.) 399–419 (Oxford University Press, 2010).Vera, L., Davie, A., Taylor, J. & Migaud, H. Differential light intensity and spectral sensitivities of Atlantic salmon, European sea bass and Atlantic cod pineal glands ex vivo. Gen. Comp. Endocrinol. 165, 25–33 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smith, K. A., Schoen, M. W. & Czeisler, C. A. Adaptation of human pineal melatonin suppression by recent photic history. J. Clin. Endocrinol. Metabol. 89, 3610–3614 (2004).Article 
    CAS 

    Google Scholar 
    Refinetti, R. Enhanced circadian photoresponsiveness after prolonged dark adaptation in seven species of diurnal and nocturnal rodents. Physiol. Behav. 90, 431–437 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chang, A.-M., Scheer, F. A. & Czeisler, C. A. The human circadian system adapts to prior photic history. J. Physiol. 589, 1095–1102 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aschoff, J. & Daan, S. Human time perception in temporal isolation: Effects of illumination intensity. Chronobiol. Int. 14, 585–596 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tast, A. et al. The photophase light intensity does not affect the scotophase melatonin response in the domestic pig. Anim. Reprod. Sci. 65, 283–290 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Migaud, H. et al. A comparative ex vivo and in vivo study of day and night perception in teleosts species using the melatonin rhythm. J. Pineal Res. 41, 42–52 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nisembaum, L. G., Martin, P., Lecomte, F. & Falcón, J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J. Neuroendocrinol. 33, e12955 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M. et al. Lack of circadian regulation of in vitro melatonin release from the pineal organ of salmonid teleosts. Gen. Comp. Endocrinol. 154, 91–97 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Iigo, M., Azuma, T. & Iwata, M. Lack of circadian regulation of melatonin rhythms in the sockeye salmon (Oncorhynchus nerka) in vivo and in vitro. Zool. Sci. 24, 67–70 (2007).Article 
    CAS 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Diurnal expression of clock genes in pineal gland and brain and plasma levels of melatonin and cortisol in Atlantic salmon parr and smolts. Chronobiol. Int. 27, 1697–1714 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Fjelldal, P. G., Hansen, T. & Huang, T. Continuous light and elevated temperature can trigger maturation both during and immediately after smoltification in male Atlantic salmon (Salmo salar). Aquaculture 321, 93–100 (2011).Article 

    Google Scholar 
    Leclercq, E., Taylor, J., Sprague, M. & Migaud, H. The potential of alternative lighting-systems to suppress pre-harvest sexual maturation of 1+ Atlantic salmon (Salmo salar) post-smolts reared in commercial sea-cages. Aquacult. Eng. 44, 35–47 (2011).Article 

    Google Scholar 
    Fjelldal, P. G. et al. Development of supermale and all-male Atlantic salmon to research the vgll3 allele-puberty link. BMC Genet. 21, 1–13 (2020).Article 

    Google Scholar 
    Ricker, W. E. Computation and interpretation of biological statistics of fish populations. Bull. Fisher. Res. 191, 1–382 (1975).
    Google Scholar 
    Fjelldal, P. G. et al. Sexual maturation and smoltification in domesticated Atlantic salmon (Salmo salar L.)-is there a developmental conflict?. Physiol. Rep. 6, e13809 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, Aka Least-Squares Means. R package version 1. 4. 3. 01 (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Huang, T., Ruoff, P. & Fjelldal, P. G. Effect of continuous light on daily levels of plasma melatonin and cortisol and expression of clock genes in pineal gland, brain, and liver in Atlantic salmon postsmolts. Chronobiol. Int. 27, 1715–1734 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Davie, A., Minghetti, M. & Migaud, H. Seasonal variations in clock-gene expression in Atlantic salmon (Salmo salar). Chronobiol. Int. 26, 379–395 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Max, M. & Menaker, M. Regulation of melatonin production by light, darkness, and temperature in the trout pineal. J. Comp. Physiol. Part A 170, 479–489 (1992).CAS 

    Google Scholar 
    Randall, C. & Bromage, N. Photoperiodic history determines the reproductive response of rainbow trout to changes in daylength. J. Comp. Physiol. Part A 183, 651–660 (1998).Article 

    Google Scholar 
    Randall, C., Bromage, N., Duston, J. & Symes, J. Photoperiod-induced phase-shifts of the endogenous clock controlling reproduction in the rainbow trout: A circannual phase-response curve. Reproduction 112, 399–405 (1998).Article 
    CAS 

    Google Scholar 
    Duston, J. & Bromage, N. Photoperiodic mechanisms and rhythms of reproduction in the female rainbow trout. Fish Physiol. Biochem. 2, 35–51 (1986).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duston, J. & Bromage, N. Circannual rhythms of gonadal maturation in female rainbow trout (Oncorhynchus mykiss). J. Biol. Rhythms 6, 49–53 (1991).Article 
    CAS 
    PubMed 

    Google Scholar 
    Taranger, G. L. et al. Abrupt changes in photoperiod affect age at maturity, timing of ovulation and plasma testosterone and oestradiol-17β profiles in Atlantic salmon, Salmo salar. Aquaculture 162, 85–98 (1998).Article 

    Google Scholar 
    Melo, M. C. et al. Salinity and photoperiod modulate pubertal development in Atlantic salmon (Salmo salar). J. Endocrinol. 220, 319–332 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, T. J., Fjelldal, P. G., Folkedal, O., Vågseth, T. & Oppedal, F. Effects of light source and intensity on sexual maturation, growth and swimming behaviour of Atlantic salmon in sea cages. Aquac. Environ. Interact. 9, 193–204 (2017).Article 

    Google Scholar 
    Oppedal, F., Taranger, G. L., Juell, J.-E., Fosseidengen, J. E. & Hansen, T. Light intensity affects growth and sexual maturation of Atlantic salmon (Salmo salar) postsmolts in sea cages. Aquat. Living Resour. 10, 351–357 (1997).Article 

    Google Scholar 
    Harvey, A. C. et al. Inferring Atlantic salmon post-smolt migration patterns using genetic assignment. R. Soc. Open Sci. 6, 190426 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, J. J., Gurarie, E., Bracis, C., Burke, B. J. & Laidre, K. L. Modeling climate change impacts on phenology and population dynamics of migratory marine species. Ecol. Model. 264, 83–97 (2013).Article 

    Google Scholar 
    Ljungstrӧm, G., Langbehn, T. J. & Jørgensen, C. Light and energetics at seasonal extremes limit poleward range shifts. Nat. Clim. Chang. 11, 530–536 (2021).Article 
    ADS 

    Google Scholar 
    Naish, K. A. & Hard, J. J. Bridging the gap between the genotype and the phenotype: Linking genetic variation, selection and adaptation in fishes. Fish Fish. 9, 396–422 (2008).Article 

    Google Scholar 
    Lehnert, S. J. et al. Genomic signatures and correlates of widespread population declines in salmon. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar  More

  • in

    Above-ground tree carbon storage in response to nitrogen deposition in the U.S. is heterogeneous and may have weakened

    Forest Inventory dataTree growth, tree survival, and plot-level basal area data were compiled from the Forest Inventory and Analysis (FIA) program database (accessed on January 24, 2017, FIA phase 2 manual version 6.1; http://www.fia.fs.fed.us/). Aboveground tree biomass was estimated from tree diameter measurements44 and then multiplied by 0.5 to estimate aboveground C. Tree growth rates were calculated from the difference in estimated aboveground C between the latest and first live measurement of every tree and divided by the elapsed time between measurements to the day. Tree species that had at least 2000 individual trees after the data filters were applied were retained for further growth and survival evaluation. The probability of tree survival was calculated using the first measurement to the last measurement of a plot. Trees that were alive at both measurements were assigned a value of 1 (survived) and trees alive at the first and dead at the last measurement were assigned a value of 0 (dead). The duration between the first and last measurement was used to determine the annual probability of tree survival. Trees that were recorded as dead at both measurement inventories and trees that were harvested were excluded from the survival analysis.Predictor data: Climate, deposition, size, and competitionThere were six predictors that were related to the response rate of growth or survival for each individual tree: mean annual temperature, mean annual precipitation, mean annual total nitrogen deposition, mean annual total S deposition, tree size, and plot-level competition.To obtain total N and S deposition rates for each tree, we used spatially modeled N and S deposition data from the National Atmospheric Deposition Program’s Total Deposition Science Committee32. Annual N and S deposition rates were then averaged from the first year of measurement to the last year of measurement for every tree so that each tree had an individualized average N deposition based on the remeasurement years, and each species had an individualized range of average N deposition exposure based on its distribution. Monthly mean temperature and precipitation values were obtained in a gridded (4 x 4 km) format from the PRISM Climate Group at Oregon State45 for the contiguous US and averaged between measurement periods for each tree in a similar manner. Tree size was represented by estimated aboveground tree C (previously described). Because the climate and deposition predictors were tailored to each plot, the years assessed varied by plot, but spanned 2000–2016. Thus, the results from the earlier study6 used conditions from the 1980–1990s, whereas the results from this study used more recent environmental and stand conditions. Tree competition was represented by a combination two factors: (1) plot basal area and (2) the basal area of trees larger than the focal tree being modeled. How all six variables were statistically modeled is discussed below.Modeling tree growth and survivalWe developed in ref. 20 multiple models to predict tree growth (G; kg C year−1) and survival (P(s); annual probability of survival). Our growth model (Eq. 1 and 2) assumes that there is a potential maximum growth rate (a) that is modified by up to six predictors in our study (which are multipliers from 0 to 1): temperature (T), precipitation (P), N deposition (N), S deposition (S), tree size (m), and competition. The potential full growth model included all six terms (Eq. 1 for the general form and Eq. 2 for the specific form). The size effect was modeled as a power function (z) based on the aboveground biomass (m). N deposition may affect the allometric relationships between tree diameter and aboveground tree biomass46, but these relationships are not yet accounted for in U.S. inventories44. Competition between trees was modeled as a function of plot basal area (BA) and the basal area of trees larger than that of the tree of interest (BAL) similar to the methods of47. The environmental factors (N deposition, S deposition, temperature, precipitation) were modeled as two-term lognormal functions (e.g., t1 and t2 for temperature effects, n1 and n2 for nitrogen deposition effects). The two-term lognormal functions allowed for flexibility in both the location of the peak (determined by t1 for temperature, for example), and the steepness of the curve (determined by t2 for temperature, for example). Thus, the full growth model is presented in Eq. 2.$$G=potentialgrowthratetimes competitiontimes temperaturetimes precipitationtimes {S}_{dep}times {N}_{dep}$$
    (1)
    $$G=a* {m}^{z}* {e}^{({c}_{1}* BAL+{c}_{2}* {{{{mathrm{ln}}}}}(BA))}* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}$$
    (2)
    We examined a total of five different growth models: (1) a full model with the size, competition, climate, S deposition, and N deposition terms (Eq. 2); (2) a model with all terms except the N deposition term; (3) a model with all terms except the S deposition term; (4) a model with all terms but without S and N deposition terms; and (5) a null model that estimated a single parameter for the mean growth parameter (a in Eq. 2).The annual probability of survival (P(s)) was estimated similarly as for growth, except that the probability was a function of time and we explored two different representations for competition. The general form of the model is shown in Eq. 3, and the full survival model in Eqs. 4, 5 for the two competition forms.$$P(s)={[acdot {{{{{rm{size}}}}}}times competitiontimes temperaturetimes precipitationtimes {N}_{dep}times {S}_{dep}]}^{time}$$
    (3)
    $$P(s)= {left[a* [((1-z{c}_{1}{e}^{-z{c}_{2}* m})* {e}^{-z{c}_{3}* {m}^{z{c}_{4}}})({e}^{-b{r}_{1}* B{A}_{ratio}{,}^{br2}* B{A}^{b{r}_{3}}})]vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}}^{time}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (4)
    $$P(s)= {left[a* left({e}^{-0.5* {left(frac{ln(m/{m}_{1})}{{m}_{2}}right)}^{2}* -0.5* {left(frac{ln(BA/b{a}_{1})}{b{a}_{2}}right)}^{2}* -0.5* {left(frac{ln(BAL+1/b{l}_{1}+1)}{b{l}_{2}}right)}^{2}}right)vphantom{{left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}}right.}\ {left.* {e}^{-0.5* {left(frac{ln(T/{t}_{1})}{{t}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(P/{p}_{1})}{{p}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(N/{n}_{1})}{{n}_{2}}right)}^{2}}* {e}^{-0.5* {left(frac{ln(S/{s}_{1})}{{s}_{2}}right)}^{2}}right]}^{time}$$
    (5)
    A total of nine survival models were examined: four using the formulation for size and competition in Eq. 4 (with the same combinations of predictors as above for growth), four using formulation for size and competition in Eq. 5, and a null survival model in which a mean annual estimate of survival (a) was raised to the exponent of the elapsed time.Parameters for each of the growth and survival models above were fit for a given species using maximum likelihood estimates through simulated annealing with 100,000 iterations via the likelihood package (v2.1.1) in Program R. Akaike’s Information Criteria (AIC) was estimated for all models. The best model was the model with the lowest AIC, and statistically indistinguishable models are those with a delta AIC  More

  • in

    Adjusting time-of-day and depth of fishing provides an economically viable solution to seabird bycatch in an albacore tuna longline fishery

    Ferretti, F., Worm, B., Britten, G., Heithaus, M. & Lotze, H. Patterns and ecosystem consequences of shark declines in the ocean. Ecol. Lett. 13, 1055–1071 (2010).PubMed 

    Google Scholar 
    Heithaus, M. et al. Seagrasses in the age of sea turtle conservation and shark overfishing. Front. Mar. Sci. 1, 1–6 (2014).Article 

    Google Scholar 
    Estes, J. et al. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Env. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Anderson, O. et al. Global seabird bycatch in longline fisheries. Endanger. Species Res. 14, 91–106 (2011).Article 

    Google Scholar 
    Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537 (2019).Article 

    Google Scholar 
    Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183 (2016).Article 

    Google Scholar 
    Werner, T., Kraus, S., Read, A. & Zollett, E. Fishing techniques to reduce the bycatch of threatened marine animals. Mar. Technol. Soc. J. 40, 50–68 (2006).Article 

    Google Scholar 
    Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish Biol. Fish. 27, 881–908 (2017).Article 

    Google Scholar 
    Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49 (2005).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS ONE 9, e84499 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juan-Jorda, M., Murua, H., Arrizabalaga, H., Dulvy, N. & Restrepo, V. Report card on ecosystem-based fisheries management in tuna regional fisheries management organizations. Fish Fish. 19, 321–339 (2018).Article 

    Google Scholar 
    ACAP. Review and best practice advice for reducing the impact of pelagic longline fisheries on seabirds. Agreement on the Conservation of Albatrosses and Petrels, Hobart, Australia (2019).Crespo, P. & Crawford, R. Bycatch and the Marine Stewardship Council (MSC): A Review of the Efficacy of the MSC Certification Scheme in Tackling the Bycatch of Non-target Species (Birdlife International, 2019).
    Google Scholar 
    Nakano, H., Okazaki, M. & Okamoto, H. Analysis of catch depth by species for tuna longline fishery based on catch by branch lines. Bull. Nat. Res. Inst. Far Seas Fish. 34, 43–62 (1997).
    Google Scholar 
    Musyl, M. et al. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 109, 341–368 (2011).
    Google Scholar 
    Gabr, M. & El-Haweet, A. Pelagic longline fishery for albacore in the Mediterranean Sea off Egypt. Turk. J. Fish. Aquat. Sci. 12, 735–741 (2012).Article 

    Google Scholar 
    MEC. Marine Stewardship Council Public Certification Report. French Polynesia Albacore and Yellowfin Longline Fishery. ME Certification Ltd., Lymington, UK (2018).Gilman, E. et al. Robbing Peter to pay Paul: Replacing unintended cross-taxa conflicts with intentional tradeoffs by moving from piecemeal to integrated fisheries bycatch management. Rev. Fish Biol. Fish. 29, 93–123 (2019).Article 

    Google Scholar 
    SCS. Tri Marine Atlantic albacore (Thunnus alalunga) Longline Fishery. MSC Fishery Assessment Report. SCS Global Services, Emeryville, USA (2022).Gilman, E. et al. Phylogeny explains capture mortality of sharks and rays in pelagic longline fisheries: A global meta-analytic synthesis. Sci. Rep. https://doi.org/10.1038/s41598-022-21976-w (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    WCPFC. Conservation and Management Measure to Mitigate the Impact of Fishing for Highly Migratory Fish Stocks on Seabirds. CMM 2018-03. Western and Central Pacific Fisheries Commission, Kolonia, Federated States of Micronesia (2018).IATTC. Resolution to Mitigate the Impact on Seabirds of Fishing for Species Covered by the IATTC. Resolution C-11-02. Inter-American Tropical Tuna Commission, La Jolla, USA (2011).Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).Article 

    Google Scholar 
    Huang, H. Incidental catch of seabirds and sea turtles by Taiwanese longline fleets in the Pacific Ocean. Fish. Res. 170, 179–189 (2015).Article 

    Google Scholar 
    Jimenez, S. et al. Towards mitigation of seabird bycatch: Large-scale effectiveness of night setting and tori lines across multiple pelagic longline fleets. Bio. Cons. 247, 108642 (2020).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2022–1. Online resource www.iucnredlist.org. ISSN 2307–8235. International Union for the Conservation of Nature, Gland, Switzerland (2022).Gilman, E., Castejon, V., Loganimoce, E. & Chaloupka, M. Capability of a pilot fisheries electronic monitoring system to meet scientific and compliance monitoring objectives. Mar. Policy 113, 103792 (2020).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M. & Sieben, C. Ecological risk assessment of a data-limited fishery using an ensemble of approaches. Mar. Policy 133, 104752 (2021).Article 

    Google Scholar 
    WPRFMC. Appendix 5. Fact Sheets on Seabird Bycatch Mitigation Methods for Pelagic Longline Fisheries. Report of the Workshop to Review Seabird Bycatch Mitigation Measures for Hawaii’s Pelagic Longline Fisheries. ISBN: 978–1–944827–37–3. Western Pacific Regional Fishery Management Council, Honolulu (2019).Melvin, E., Dietrich, K., Suryan, R. & Fitzgerald, S. Lessons from seabird conservation in Alaskan longline fisheries. Cons. Biol. 33, 842–852 (2019).Article 

    Google Scholar 
    Ward, P. & Myers, R. Inferring the depth distribution of catchability for pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. Fish. Aquat. Sci. 62, 1130–1142 (2005).Article 

    Google Scholar 
    Rice, P., Goodyear, C., Prince, E., Snodgrass, D. & Serafy, J. Use of catenary geometry to estimate hook depth during near-surface pelagic longline fishing: Theory versus practice. N. Am. J. Fish. Manag. 27, 1148–1161 (2007).Article 

    Google Scholar 
    Zhou, C. & Brothers, N. Interaction frequency of seabirds with longline fisheries: Risk factors and implications for management. ICES J. Mar. Sci. 78, 1278–1287 (2021).Article 

    Google Scholar 
    Childers, J., Snyder, S. & Kohin, S. Migration and behavior of juvenile North Pacific albacore (Thunnus alalunga). Fish. Oceanogr. 20, 157–173 (2011).Article 

    Google Scholar 
    Cosgrove, R., Arregui, I., Arrizabalaga, H., Goni, N. & Sheridan, M. New insights to behavior of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish. Res. 150, 89–99 (2014).Article 

    Google Scholar 
    Williams, et al. Vertical behavior and diet of albacore tuna (Thunnus alalunga) vary with latitude in the South Pacific Ocean. Deep -Sea Res. II 113, 154–169 (2015).Punt, A., Butterworth, D., de Moor, C., De Oliveira, J. & Haddon, M. Management strategy evaluation: Best practices. Fish Fish. 17, 303–334 (2016).Article 

    Google Scholar 
    Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Soc. Ser. A 182, 1–14 (2019).MathSciNet 

    Google Scholar 
    Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).Fahrmeir, L. & Lang, S. Bayesian inference for generalised additive mixed models based on Markov random field priors. Appl. Stat. 50, 201–220 (2001).
    Google Scholar 
    Yao, Y., Vehtari, A., Simpson, D. & Gelman, A. Using stacking to average Bayesian predictive distributions (with Discussion). Bayesian Anal. 13, 917–1003 (2018).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Fávero, L., Hair, J., Souza, R., Albergaria, M. & Brugni, T. Zero-inflated generalized linear mixed models: a better way to understand data relationships. Mathematics 9, 1100 (2021).Article 

    Google Scholar 
    Gilman, E. et al. Tori lines mitigate seabird bycatch in a pelagic longline fishery. Rev. Fish Biol. Fish. 31, 653–666 (2021).Article 

    Google Scholar 
    Makowski, D., Ben-Shachar, M. & Lüdecke, D. bayestestR: Describing effects and their uncertainty, existence and significance within the Bayesian framework. J. Open Source Softw. 4, 1541 (2019).Article 
    ADS 

    Google Scholar 
    Yau, K., Wang, K. & Lee, A. Zero-Inflated negative binomial mixed regression modeling of over-dispersed count data with extra zeros. Biom. J. 45, 437–452 (2003).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Congdon, P. Applied Bayesian Modelling. Wiley and Sons Ltd, UK. (2003).Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90 (2020).Article 
    PubMed 

    Google Scholar 
    Carpenter, B. et al. Stan: a probabilistic programming language. J. Stat. Softw. 76, 1–32 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28 (2017).
    Google Scholar 
    Ott, M., Plummer, M. & Roos, M. How vague is vague? How informative is informative? Reference analysis for Bayesian meta-analysis. Stat. Med. 40, 4505–4521 (2021).Article 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vehtari, A., Gelman, A., Simpson, D., Carpenter, B. & Bürkner, P. Rank-normalization, folding, and localization: an improved Rhat for assessing convergence of MCMC (with Discussion). Bayesian Anal. 16, 667–718 (2021).Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Kruschke, J. & Liddell, T. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychon. Bull. Rev. 25, 178–206 (2018).Article 
    PubMed 

    Google Scholar 
    Lenth, R. Least-squares means: the R package lsmeans. J. Stat. Softw. 69, 1–33 (2016).Article 

    Google Scholar 
    Lenth R (2020) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.2-1. https://CRAN.R-project.org/package=emmeans More

  • in

    Environmental variables and machine learning models to predict cetacean abundance in the Central-eastern Mediterranean Sea

    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. & Kent, J. M. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cuttelod, A., García, V., Abdul Malak, D., Temple, H. & Katariya, V. The Mediterranean: A biodiversity hotspot under threat. In Wildl. a Chang. World an Anal. 2008 IUCN Red List Threat. Species 89–101 (2008).Coll, M. et al. The biodiversity of the Mediterranean Sea: Estimates, patterns, and threats. PLoS ONE 5, e11842–e11842 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coll, M. et al. The Mediterranean Sea under siege: Spatial overlap between marine biodiversity, cumulative threats and marine reserves. Glob. Ecol. Biogeogr. 21, 465–480 (2012).Article 

    Google Scholar 
    Micheli, F. et al. Cumulative human impacts on mediterranean and black sea marine ecosystems: Assessing current pressures and opportunities. PLoS ONE 8, e79889 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F. & Pérez, T. Climate change effects on a miniature ocean: The highly diverse, highly impacted Mediterranean Sea. Trends Ecol. Evol. 25, 250–260 (2010).Article 
    PubMed 

    Google Scholar 
    Tsirintanis, K. et al. Bioinvasion impacts on biodiversity, ecosystem services, and human health in the Mediterranean Sea. Aquatic Invasions, 17(3), 308–352 (2022).Article 

    Google Scholar 
    Sanderson, C. E. & Alexander, K. A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 26, 4284–4301 (2020).Article 
    PubMed 

    Google Scholar 
    EEC, 1992. European Commission. In EU Council Directive 92/43/EEC on the Conservationof Natural Habitats and of Wild Fauna and Flora. Orkesterjournalen L 7–50 206 (1992).Bearzi, G. Interactions between cetacean and fisheries in the Mediterranean Sea. In: G. Notarbartolo di Sciara (Ed.), Cetaceans of the Mediterranean and Black Seas: state of knowledge and conservation strategies. A report to the ACCOBAMS Secretariat, Monaco, 9, 20 (2002). Reeves, R. R., Smith, B. D., Crespo, E. A. & Notarbartolo di Sciara, G. Dolphins, Whales and Porpoises : 2002–2010 Conservation Action Plan for the world’s Cetaceans (2003).Dolman, S., Evans, P., Ritter, F., Simmonds, M. & Swabe, J. Implications of new technical measures regulation for cetacean bycatch in European waters. Mar. Policy 124, 1043 (2020).
    Google Scholar 
    Carlucci, R. et al. Managing multiple pressures for cetaceans’ conservation with an Ecosystem-Based Marine Spatial Planning approach. J. Environ. Manage. 287, 112240 (2021).Article 
    PubMed 

    Google Scholar 
    Carlucci, R. et al. Assessment of cetacean–fishery interactions in the marine food web of the Gulf of Taranto (Northern Ionian Sea, Central Mediterranean Sea). Rev. Fish Biol. Fish. 31, 135–156 (2020).Article 

    Google Scholar 
    Fossi, C. & Lauriano, G. Impacts of shipping on the biodiversity of large marine vertebrates: Persistent organic pollutants, sewage and debris. Marit. Traffic Eff. Biodivers. Mediterr. Sea Rev Impacts Prior. Areas Mitig. Meas. 3, 65–73 (2008).
    Google Scholar 
    Cardellicchio, N. Persistent contaminants in dolphins: An indication of chemical pollution in the mediterranean sea. Water Sci. Technol. 32, 331–340 (1995).Article 
    CAS 

    Google Scholar 
    Fossi, M. C., Panti, C., Baini, M. & Lavers, J. L. A review of plastic-associated pressures: Cetaceans of the Mediterranean Sea and Eastern Australian Shearwaters as case studies. Front. Mar. Sci. 5, 125 (2018).Article 

    Google Scholar 
    Marsili, L., Jiménez, B. & Borrell, A. Persistent Organic Pollutants in Cetaceans Living in a Hotspot Area (Elsevier, 2018).Book 

    Google Scholar 
    Dolman, S. J., Evans, P. G. H., Notarbartolo-di-Sciara, G. & Frisch, H. Active sonar, beaked whales and European regional policy. Mar. Pollut. Bull. 63, 27–34 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    di Sciara, G. N. et al. Place-based approaches to marine mammal conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 85–100 (2016).Article 

    Google Scholar 
    Holcer, D., Fortuna, C. M., Mackelworth, P., Cebrian, D. & Requena Moreno, S. Adriatic Sea: Important Areas for Conservation of Cetaceans, Sea Turtles and Giant Devil Rays (2015).Carlucci, R. et al. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Ecol. Indic. 69, 707–721 (2016).Article 

    Google Scholar 
    Carlucci, R., Ricci, P., Cipriano, G. & Fanizza, C. Abundance, activity and critical habitat of the striped dolphin Stenella coeruleoalba in the Gulf of Taranto (northern Ionian Sea, central Mediterranean Sea). Aquat. Conserv. Freshw. Ecosyst. 28, 324–336 (2018).Article 

    Google Scholar 
    Carlucci, R. et al. Random Forest population modelling of striped and common-bottlenose dolphins in the Gulf of Taranto (Northern Ionian Sea, Central-eastern Mediterranean Sea). Estuar. Coast. Shelf Sci. 204, 177–192 (2018).Article 

    Google Scholar 
    Arcangeli, A., Campana, I. & Bologna, M. A. Influence of seasonality on cetacean diversity, abundance, distribution and habitat use in the western Mediterranean Sea: Implications for conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 995–1010 (2017).Article 

    Google Scholar 
    Panigada, S. et al. Estimating cetacean density and abundance in the Central and Western Mediterranean Sea through aerial surveys: Implications for Management. Deep. Res. Part II-Top. Stud. Oceanogr. 141, 41–58 (2017).Article 

    Google Scholar 
    Mannocci, L. et al. Assessing cetacean surveys throughout the Mediterranean Sea: A gap analysis in environmental space. Sci. Rep. 8, 1 (2018).Article 
    CAS 

    Google Scholar 
    Panigada, S. et al. Estimates of Abundance and Distribution of Cetaceans, Marine Mega-Fauna and Marine Litter in the Mediterranean Sea from 2018–2019 surveys. ACCOBAMS vol. ACCOBAMS S (2021).Paiu, R.-M. et al. Estimates of abundance and distribution of cetaceans in the Black Sea from 2019 surveys. ACCOBAMS 54, 45 (2021).
    Google Scholar 
    Azzolin, M. et al. Spatial distribution modelling of striped dolphin (Stenella coeruleoalba) at different geographical scales within the EU Adriatic and Ionian Sea Region, central-eastern Mediterranean Sea. Aquat. Conserv. Freshw. Ecosyst. 30, 1194–1207 (2020).Article 

    Google Scholar 
    Renò, V. et al. A SIFT-based software system for the photo-identification of the Risso’s dolphin. Ecol. Inform. 50, 95–101 (2019).Article 

    Google Scholar 
    Maglietta, R. et al. DolFin: an innovative digital platform for studying Risso’s dolphins in the Northern Ionian Sea (North-eastern Central Mediterranean). Sci. Rep. 8, 17185 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammond, P. S. et al. Estimating the abundance of marine mammal populations. Front. Mar. Sci. 8, 96 (2021).Article 

    Google Scholar 
    Fontaine, M. C. et al. History of expansion and anthropogenic collapse in a top marine predator of the Black Sea estimated from genetic data. Proc. Natl. Acad. Sci. 109, E2569–E2576 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alter, S. E., Rynes, E. & Palumbi, S. R. DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc. Natl. Acad. Sci. 104, 15162–15167 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chavez-Rosales, S., Palka, D. L., Garrison, L. P. & Josephson, E. A. Environmental predictors of habitat suitability and occurrence of cetaceans in the western North Atlantic Ocean. Sci. Rep. 9, 5833 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buckland, S. et al. Introduction to Distance Sampling: Estimating Abundance of Biological Populations (Oxford University Press, 2001).MATH 

    Google Scholar 
    Buckland, S. T. et al. Advanced Distance Sampling: Estimating Abundance of Biological Populations (OUP Oxford, 2004).MATH 

    Google Scholar 
    Laake, J. S. T., Buckland, E. A., Rexstad, T. A., Marques, C. S. & Oedekoven, F. Distance sampling: Methods and applications. Biometrics 72, 1389–1390 (2016).Article 

    Google Scholar 
    Hammond, P. S., Mizroch, S. A. & Donovan, G. P. Individual recognition of cetaceans: Use of photo-identification and other techniques to estimate population parameters. In Incorporating the Proceedings of the Symposium and Workshop on Individual Recognition and the Estimation of Cetacean Population Parameters (1990).Sandercock, B. K. Handbook of capture-recapture analysis. Biometrics 62, 1276–1277 (2006).Article 

    Google Scholar 
    Hammond, P. S. Mark-Recapture. In Encyclopedia of Marine Mammals (Third Edition) (eds Würsig, B. et al.) 580–584 (Academic Press, 2018).Pless, E., Saarman, N. P., Powell, J. R., Caccone, A. & Amatulli, G. A machine-learning approach to map landscape connectivity in Aedes aegypti with genetic and environmental data. Proc. Natl. Acad. Sci. 118, 9 (2021).Article 

    Google Scholar 
    Belanger, C. L. et al. Global environmental predictors of benthic marine biogeographic structure. Proc. Natl. Acad. Sci. 109, 14046–14051 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. USA 114, 12202–12207 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, D. L., Burt, M. L., Rexstad, E. A. & Thomas, L. Spatial models for distance sampling data: Recent developments and future directions. Methods Ecol. Evol. 4, 1001–1010 (2013).Article 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.) 43, 1261–1277 (2020).Article 

    Google Scholar 
    Redfern, J. V. et al. Techniques for cetacean-habitat modeling. Mar. Ecol. Prog. Ser. 310, 271–295 (2006).Article 

    Google Scholar 
    Hastie, T. J. & Tibshirani, R. J. Generalized Additive Models (Taylor & Francis, 1990).MATH 

    Google Scholar 
    Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).MATH 

    Google Scholar 
    Friedman, J. H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 29, 1189–1232 (2001).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 
    MATH 

    Google Scholar 
    Vapnik, N.V. Statistical Learning Theory (1998).Culley, C., Vijayakumar, S., Zampieri, G. & Angione, C. A mechanism-aware and multiomic machine-learning pipeline characterizes yeast cell growth. Proc. Natl. Acad. Sci. 117, 18869–18879 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, B. M. et al. Robust predictions of specialized metabolism genes through machine learning. Proc. Natl. Acad. Sci. 116, 2344–2353 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Renò, V. et al. Combined color semantics and deep learning for the automatic detection of dolphin dorsal fins. Electronics 9, 75 (2020).Article 

    Google Scholar 
    Maglietta, R., Milella, A., Caccia, M. & Bruzzone, G. A vision-based system for robotic inspection of marine vessels. Signal Image Video Process. 12, 471–478 (2018).Article 

    Google Scholar 
    Maglietta, R. et al. Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm. Pattern Anal. Appl. 19, 579–591 (2016).Article 
    MathSciNet 
    PubMed 

    Google Scholar 
    Ancona, N., Maglietta, R. & Stella, E. Data representations and generalization error in kernel based learning machines. Pattern Recognit. 39, 1588–1603 (2006).Article 
    MATH 

    Google Scholar 
    Martín, B., González-Arias, J. & Vicente-Virseda, J. A. Machine learning as a successful approach for predicting complex spatial temporal patterns in animal species abundance. Anim. Biodivers. Conserv. 2021, 25 (2021).
    Google Scholar 
    Dimauro, G. et al. A novel approach for biofilm detection based on a convolutional neural network. Electronics 9, 88 (2020).Article 

    Google Scholar 
    Inglese, P. et al. Multiple RF classifier for the hippocampus segmentation: Method and validation on EADC-ADNI Harmonized Hippocampal Protocol. Phys. Med. 31(8), 1085–1091 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maglietta, R. et al. Convolutional neural networks for Risso’s Dolphins identification. IEEE Access 8, 80195–80206 (2020).Article 

    Google Scholar 
    Conference on Biological Diversity—Nagoya 2010 European Parliament resolution of 7 October 2010 on the EU strategic objectives for the 10th Meeting of the Conference of the Parties to the Convention on Biological Diversity (CBD), to be held in Nagoya (2010).EU. In Commission Decision (EU) 2017/848 of 17 May 2017 Laying Down Criteria and Methodological Standards on Good Environmental Status of Marine Waters and Specifications and Standardised Methods for Monitoring and Assessment, and Repealing Decision 2 (2017).European Commission. Directive 2014/89/EU of the European Parliament and of the Council of 23 July 2014 establishing a framework for maritime spatial planning. In Off. J. Eur. Union 2014, L 257, 135; MSFD (2008/56/EC) (2014).Muckenhirn, A., Baş, A. A. & Richard, F.-J. Assessing the influence of environmental and physiographic parameters on common bottlenose dolphin (Tusiops truncatus) distribution in the southern Adriatic Sea. In Proc. 1st Int. Electron. Conf. Biol. Divers. Ecol. Evol. (2021).Correia, A. et al. Predicting Cetacean Distributions in the Eastern North Atlantic to Support Marine Management. Front. Mar. Sci. 8, 256 (2021).Article 

    Google Scholar 
    Redfern, J. V., Barlow, J., Ballance, L. T., Gerrodette, T. & Becker, E. A. Absence of scale dependence in dolphin-habitat models for the eastern tropical Pacific Ocean. Mar. Ecol. Prog. Ser. 363, 1–14 (2008).Article 

    Google Scholar 
    Kruse, S. L. Aspects of the Biology, Ecology, and Behavior of Risso’s dolphins (Grampus griseus) off the California Coast (University of California, Santa Cruz, 1989).Kruse, S., Caldwell, D. K., Caldwell, M. C., Ridgway, S. H. & Harrison, R. Risso’s dolphin Grampus griseus (G. Cuvier, 1812). Handb. Mar. Mamm. Sec. B Dolphins Porpoises 6, 12 (1999).
    Google Scholar 
    Gómez-de-Segura, A., Hammond, P. S. & Raga, J. A. Influence of environmental factors on small cetacean distribution in the Spanish Mediterranean. J. Mar. Biol. Assoc. UK 88, 1185–1192 (2008).Article 

    Google Scholar 
    Pitchford, J. et al. Predictive spatial modelling of seasonal bottlenose dolphin (Tursiops truncatus) distributions in the Mississippi Sound: Seasonal spatial distributions of bottlenose dolphins. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 289–306 (2015).Article 

    Google Scholar 
    La Manna, G., Ronchetti, F. & Sarà, G. Predicting common bottlenose dolphin habitat preference to dynamically adapt management measures from a Marine Spatial Planning perspective. Ocean Coast. Manag. 130, 317–327 (2016).Article 

    Google Scholar 
    Becker, E. A. et al. Predicting cetacean abundance and distribution in a changing climate. Divers. Distrib. 25, 626–643 (2019).Article 

    Google Scholar 
    Cañadas, A. & Hammond, P. S. Abundance and habitat preferences of the short-beaked common dolphin Delphinus delphis in the southwestern Mediterranean: Implications for conservation. Endanger. Spec. Res. 4, 309–331 (2008).Article 

    Google Scholar 
    Mannocci, L. et al. Predicting cetacean and seabird habitats across a productivity gradient in the South Pacific gyre. Prog. Oceanogr. 120, 383–398 (2014).Article 

    Google Scholar 
    Carretta, J. V. Estimates of Marine Mammal, Sea Turtle, and Seabird Bycatch in the California Large-Mesh Drift Gillnet Fishery: 1990–2019 U.S. Department of Commerce, NOAA Technical Memorandum NMFS-SWFSC-654.
    https://doi.org/10.25923/7emj-za90 (2021).Rustam, F. et al. A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis. PLoS ONE 16, e0245909 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    D’Addabbo, A. & Maglietta, R. Parallel selective sampling method for imbalanced and large data classification. Pattern Recognit. Lett. 62, 61–67 (2015).Article 

    Google Scholar 
    Dimauro, G. et al. An intelligent non-invasive system for automated diagnosis of anemia exploiting a novel dataset. Artif. Intell. Med. 136, 102477 (2023).Article 
    PubMed 

    Google Scholar 
    Spooner, A. et al. A comparison of machine learning methods for survival analysis of high-dimensional clinical data for dementia prediction. Sci. Rep. 10, 20410 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becker, E. A. et al. Performance evaluation of cetacean species distribution models developed using generalized additive models and boosted regression trees. Ecol. Evol. 10, 5759–5784 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kosicki, J. Z. Generalised additive models and random forest approach as effective methods for predictive species density and functional species richness. Environ. Ecol. Stat. 27, 273–292 (2020).Article 
    CAS 

    Google Scholar 
    Barreto, J. et al. Drone-monitoring: Improving the detectability of threatened marine megafauna. Drones 5, 14 (2021).Article 

    Google Scholar 
    Sarr, J.-M.A. et al. Complex data labeling with deep learning methods: Lessons from fisheries acoustics. ISA Trans. 109, 113–125 (2021).Article 
    PubMed 

    Google Scholar 
    Capezzuto, F. et al. The bathyal benthopelagic fauna in the north-western Ionian Sea: Structure, patterns and interactions. Chem. Ecol. 26, 199–217 (2010).Article 

    Google Scholar 
    Harris, P. & Whiteway, T. Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar. Geol. 285, 69–86 (2011).Article 

    Google Scholar 
    Pescatore, T. & Senatore, M. R. A comparison between a present.day (Taranto Gulf) and a Miocene (Irpinian Basin) foredeep of the Southern Apennine (Italy). Spec. Publ. 1986, 169–182 (1986).
    Google Scholar 
    Rossi, S. & Gabbianelli, G. Geomorfologia del Golfo di Taranto. Ital. J. Geosci. 97, 423–437 (1978).
    Google Scholar 
    Federico, I. et al. Observational evidence of the basin-wide gyre reversal in the Gulf of Taranto. Geophys. Res. Lett. 47, 1030 (2020).Article 

    Google Scholar 
    Carlucci, R., Battista-Capezzuto, F., Serena, F. & Sion, L. Occurrence of the basking shark Cetorhinus maximus (Gunnerus, 1765) (Lamniformes: Cetorhinidae) in the central-eastern Mediterranean Sea. Ital. J. Zool. 81, 280–286 (2014).Article 

    Google Scholar 
    Matarrese, R., Chiaradia, M. T., Tijani, K., Morea, A. & Carlucci, R. Chlorophyll A multi-temporal analysis in coastal waters with MODIS data. Eur. J. Remote Sens. 2011, 39–48 (2011).
    Google Scholar 
    Civitarese, G., Gačić, M., Lipizer, M. & Eusebi-Borzelli, G. L. On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean). Biogeosciences 7, 3987–3997 (2010).Article 
    CAS 

    Google Scholar 
    Pinardi, N. et al. Marine rapid environmental assessment in the hack{newline} Gulf of Taranto: A multiscale approach. Nat. Hazards Earth Syst. Sci. 16, 2623–2639 (2016).Article 

    Google Scholar 
    Ciancia, E. et al. Investigating the chlorophyll-a variability in the Gulf of Taranto (North-western Ionian Sea) by a multi-temporal analysis of MODIS-Aqua Level 3/Level 2 data. Cont. Shelf Res. 155, 34–44 (2018).Article 

    Google Scholar 
    Trotta, F., Pinardi, N., Fenu, E., Grandi, A. & Lyubartsev, V. Multi-nest high-resolution model of submesoscale circulation features in the Gulf of Taranto. Ocean Dyn. 67, 1609–1625 (2017).Article 

    Google Scholar 
    Federico, I. et al. Coastal ocean forecasting with an unstructured grid model in the southern Adriatic and northern Ionian seas. Nat. Hazards Earth Syst. Sci. 17, 45–59 (2017).Article 

    Google Scholar 
    Trotta, F. et al. A relocatable ocean modeling platform for downscaling to shelf-coastal areas to support disaster risk reduction. Front. Mar. Sci. 8, 103 (2021).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air-sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).Article 

    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 1515–1532 (1997).Article 

    Google Scholar 
    Cushman-Roisin, B., Gacić, M., Poulain, P. M. & Artegiani, A. Physical Oceanography of the Adriatic Sea (2001).Escudier, R. et al. Mediterranean sea production centre MEDSEA_MULTIYEAR_PHY_006_004 (2021).Clementi, E. et al. Mediterranean sea physical analysis and forecast (CMEMS MED-Currents, EAS6 system) (Version 1) set. In Copernicus Monitoring Environment Marine Service (CMEMS) (2021).Madec, G. NEMO Ocean Engine (2008).Dobricic, S. & Nadia, P. An oceanographic three-dimensional variational data assimilation scheme. Ocean Model 22, 89–105 (2008).Article 

    Google Scholar 
    Roquet, F., Madec, G., McDougall, T. J. & Barker, P. M. Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard. Ocean Model 90, 29–43 (2015).Article 

    Google Scholar 
    IOC, SCOR & IAPSO. In The International Thermodynamic Equation of Seawater—2010: Calculation and Use of Thermodynamic Properties 196 (2010).MEDSEA_MULTIYEAR_BGC_006_008 (2020).Mediterranean Sea Monthly and Daily Reprocessed Surface Chlorophyll Concentration from Multi Satellite observations + SeaWiFS daily climatology (2020).Volpe, G. et al. Mediterranean ocean colour Level 3 operational multi-sensor processing. Ocean Sci. 25, 1527–1532 (2019).
    Google Scholar 
    Berthon, J.-F. & Zibordi, G. Bio-optical relationships for the northern Adriatic Sea. Int. J. Remote Sens. 25, 1527–1532 (2004).Article 

    Google Scholar 
    De Dominicis, M. et al. A relocatable ocean model in support of environmental emergencies. Ocean Dyn. 64, 667–688 (2014).Article 

    Google Scholar 
    Freund, Y. & Schapire, R. E. A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55, 119–139 (1997).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wu, J. et al. Hyperparameter optimization for machine learning models based on bayesian optimizationb. J. Electron. Sci. Technol. 17, 26–40 (2019).
    Google Scholar 
    Yang, L. & Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 415, 295–316 (2020).Article 

    Google Scholar  More