More stories

  • in

    This baby turtle surprised scientists by swimming against the current

    In 2008, I had just begun volunteering at Equilibrio Azul — a non-profit marine-research and -conservation organization based in Quito — when colleagues discovered a hawksbill sea turtle (Eretmochelys imbricata) nesting at La Playita beach in Ecuador. The eastern Pacific population of hawksbill sea turtles is one of the most endangered in the world and was considered functionally extinct in the region before this turtle and others were observed.That discovery was a tipping point for hawksbill research in Ecuador and throughout the Pacific Ocean. Since 2008, we’ve found about 20 nests each year at La Playita, and one season, we documented 50.We have tagged 11 adult females with satellite transmitters. Previously, most of our understanding of these turtles had been based on observations in the Caribbean, where the reptiles are strictly coral-reef dwellers. But Ecuador’s reefs are mostly rocky, with patches of coral, and we were surprised to see females migrate south to mangroves, mainly for food.
    Women in science
    In this image, we have just attached a transmitter to a baby turtle — a first for hawksbill turtles this young and in the eastern Pacific region. We did not know much about hawksbills at this young age. It is tricky working with baby turtles, because they grow very fast, and the transmitters, which give us location data, can easily fall off. We’ve used cement to glue the devices to the shells of six newborns so far. The longest the transmitters have lasted is three months and the shortest period was only six weeks — but the devices provided our first insights into the ‘lost years’ of sea-turtle biology.Our findings have overturned assumptions that neonates were just carried along by currents. Instead, we found that one-day-old turtles can swim against the current. They aim for a specific direction — north by northwest — as they learn to dive and swim. We tracked one-year-old hawksbills to Costa Rican waters, a journey of roughly 2,000 kilometres, before we lost their signal.Cristina Miranda is a scientific coordinator at Equilibrio Azul in Quito, Ecuador. Interview by Virginia Gewin. More

  • in

    Rapid diversification underlying the global dominance of a cosmopolitan phytoplankton

    Genetic and morphological delineation between G. huxleyi strainsWe first assessed genetic variability through analysis of genomic polymorphism to determine whether distinct genetic lineages exist in G. huxleyi and to test whether these relate to morphotypes. We used 2,086,643 high-quality biallelic single nucleotide polymorphisms (SNPs) retrieved from the 47 clonal culture strains with the best genome sequence coverage ( >20×). A principal component analysis (PCA) and a discriminant analysis in principal component (DAPC) both delineate three well-defined genetic groups, with the distribution of strains being unequal and with no overlap on the principal components (Fig. 1a; Supplementary Fig. S3a,b). With regards to population structure, the DAPC analysis suggested that 3 clusters (K = 3) can be used to depict a genotype membership matrix for each strain (Fig. 1b; Supplementary Fig. S4). As such, it confirmed the three-lineage delineation proposed by the PCA, while illustrating no admixture between lineages.Fig. 1: Relationship between genetic structure and morphotypes in G. huxleyi.a Principal component analysis (PCA) based on 2,086,643 SNPs recovered from 47 G. huxleyi genomes; b Relationship between coalescent species phylogeny (ASTRAL tree based on 1000 supergenes) and DAPC clustering; c Correspondence between morphotypes and lineages within G. huxleyi, and sub-lineages within A1 (scale bar = 4 μm). Variable elements in relation to genotypes are highlighted in the schematics under the SEM pictures; d Distribution of coccolith length for 5 randomly chosen strains representing each clade and sub-clade, with a jittered box-plot on the left and a half-violin plot on the right for each group; e Matrix plot of Bonferroni corrected p-value corresponding to the Dunn-test for the comparison of coccolith length measurements between groups.Full size imagePhylogenetic inference based on alignments with higher mapping coverage only (47 strains) or including sequences with lower mapping coverage (59 strains) all supported segregation of strains into three main lineages, which we term clades A1, A2 and B, with A1 and A2 being more closely related to each other than to B (Fig. 1b; Supplementary Fig. S5a, b). This delineation is congruent with previous studies on the phylogeny of the Gephyrocapsa genus [17, 46, 65]. These clades also correspond to differences in morphotypes (Fig. 1b, c). All strains in clade A1 produce unambiguous A-group coccolith morphotypes (type A and type R). Similarly, all strains in clade B produce unambiguous B-group coccolith morphotypes (type B and type O). Clade A2 is less distinctive, with strains producing lightly calcified type A coccoliths. Some of these strains could be classified as type B/C [66] or C (both regarded as B-group morphotypes), but distinctive by the lower elevation of distal shield elements and by greater degree of calcification of the central area grid (which is reduced and sometimes absent in morphotypes B/C and C). At a finer level, clade A1 is composed of four sub-clades, which we term A1a, A1b, A1c, and A1d. Strains in sub-clades A1a, A1c and A1d all produce coccoliths with type A morphologies and distinctive degrees of calcification: strains in the sub-clade A1a form relatively lightly calcified coccoliths with regular elements, while strains in sub-clades A1c and A1d produce similar moderately calcified coccoliths, sometimes with conspicuous irregularities (inner tube elements overlapping into the central area). Strains in clade A1b produce distinct coccoliths exhibiting A-group morphology but with heavy calcification, including forms with heavily calcified shields which have been termed type R and also forms with heavily calcified central areas which have been referred to as “type A overcalcified”. Some clade A2 strains produce coccoliths with a similar morphology to strains in A1a, indicative of partially cryptic lineages (Supplementary Fig. S2; Supplementary Table S4).The congruence between morphotypes and clades is also supported by significant differences in the length of coccoliths measured between some of the clades (Fig. 1d, e). The morphogroups A and B differ significantly, and insignificant comparison relates to the comparison of sub-clades against the clade A2, which reinforces the closest relationship between A1 and A2. We denote also that the case of A1a and A2 demonstrating no significant difference in coccolith length concurs with the cryptic delineation mentioned above.Based on the clustering analyses and the phylogenetic reconstructions, we tested whether different groupings are distinct species with regards to the null hypothesis “G. huxleyi is a single species”, which correspond to the current state of taxonomy. Species delimitation based on comparison of Marginal Likelihood Estimators (MLE) with Bayes Factors (BF) supported the hypothesis that the three lineages depicted by ordination and phylogenetic reconstructions are distinct species as the best model (Table 1).Table 1 Species delimitation based on Bayes Factor Delimitation (BDF).Full size tableD-statistics calculated to estimate gene flow reveal a non-significant excess of alleles shared between the three lineages (Fig. 2a; Supplementary Table S5). Fbranch statistics, (fb) revealed significant signatures of gene-flow between sub-lineages within A1 associated with correlated estimates in relation to A1a, A2 and B (Fig. 2a) [60]. Signatures on the basal branch of diversification in A1 may correspond to genetic exchanges between A1 and B, with gene-flow signatures attributed to A2 corresponding to correlated estimates due to common ancestry. Recent signatures of gene-flow throughout the evolution of A1 are thus likely associated to the common ancestry between A1a, A2 and B during gene-flow events between the sub-lineages, as supported by the non-significant D statistics between the three lineages. Moreover, the phylogenetic network revealed similar convolutions between A1 sub-lineages but clear separation of the main lineages and longer branches in the A2 lineage (Fig. 2b).Fig. 2: Excess of allele sharing and differentiation in G. huxleyi.a f-branch (fb) statistics between lineages and sub-lineages. The gradient represents the fb score, grey blocks represents tests not consistent with the species tree (for each branch on the topology of the y axis, having itself or a sister taxon as donor on the topology of the x axis); asterisks denote block jack-knifing significance at p  More

  • in

    Publisher Correction: Future temperature extremes threaten land vertebrates

    Authors and AffiliationsJacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, IsraelGopal MuraliMitrani Department of Desert Ecology, The Swiss Institute for Dryland Environments and Energy Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, IsraelGopal Murali & Uri RollDepartment F.-A. Forel for Aquatic and Environmental Sciences, Faculty of Science, University of Geneva, Geneva, SwitzerlandTakuya IwamuraDepartment of Forest Ecosystems and Society, College of Forestry, Oregon State University, Corvallis, OR, USATakuya IwamuraSchool of Zoology, Tel Aviv University, Tel Aviv, IsraelShai MeiriThe Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv, IsraelShai MeiriAuthorsGopal MuraliTakuya IwamuraShai MeiriUri RollCorresponding authorCorrespondence to
    Gopal Murali. More

  • in

    Ocean warming and acidification affect the transitional C:N:P ratio and macromolecular accumulation in the harmful raphidophyte Heterosigma akashiwo

    Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).Fu, F. X., Warner, M. E., Zhang, Y., Feng, Y. & Hutchins, D. A. Effects of Increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (cyanobacteria) 1. J. Phycol. 43, 485–496 (2007).
    Google Scholar 
    Schippers, P., Lürling, M. & Scheffer, M. Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol. Lett. 7, 446–451 (2004).
    Google Scholar 
    Raven, J. A., Gobler, C. J. & Hansen, P. J. Dynamic CO2 and pH levels in coastal, estuarine, and inland waters: Theoretical and observed effects on harmful algal blooms. Harmful Algae 91, 101594 (2020).CAS 

    Google Scholar 
    Gobler, C. J. et al. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proc. Natl Acad. Sci. 114, 4975–4980 (2017).CAS 

    Google Scholar 
    Rost, B., Richter, K. U., Riebesell, U. & Hansen, P. J. Inorganic carbon acquisition in red tide dinoflagellates. Plant, Cell Environ. I 29, 810–822 (2006).CAS 

    Google Scholar 
    Honjo, T. Harmful Red Tides of Heterosigma akashiwo. NOAA Technical Report NMFS. 111, 27–32 (1992).Rensel, J. J. & Haigh, N. Fraser river sockeye salmon marine survival decline and harmful blooms of Heterosigma akashiwo. Harmful Algae 10, 98–115 (2010).
    Google Scholar 
    Herndon, J. & Cochlan, W. P. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: growth and uptake kinetics in laboratory cultures. Harmful Algae 6, 260–270 (2007).
    Google Scholar 
    Haley, S. T., Alexander, H., Juhl, A. R. & Dyhrman, S. T. Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress. Harmful Algae 68, 258–270 (2017).CAS 

    Google Scholar 
    Wang, Z.-h, Liang, Y. & Kang, W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa. Harmful Algae 12, 113–118 (2011).CAS 

    Google Scholar 
    Ji, N. et al. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo (raphidophyceae) bloom. Environ. Microbiol. 20, 1078–1094 (2018).CAS 

    Google Scholar 
    Zhang, H. et al. Functional differences in the blooming phytoplankton Heterosigma akashiwo and Prorocentrum donghaiense revealed by comparative metaproteomics. Appl. Environ. Microbiol. 85, e01425–01419 (2019).CAS 

    Google Scholar 
    Redfield, A. C. The biological control of chemical factors in the environment. Am. Scientist 46, 230A–221 (1958).
    Google Scholar 
    Liefer, J. D. et al. The macromolecular basis of phytoplankton C: N: P under nitrogen starvation. Front. Microbiol. 10, 763 (2019).
    Google Scholar 
    Matsumoto, K., Tanioka, T. & Rickaby, R. Linkages between dynamic phytoplankton C: N: P and the ocean carbon cycle under climate change. Oceanography 33, 44–52 (2020).
    Google Scholar 
    Thrane, J. E., Hessen, D. O. & Andersen, T. Plasticity in algal stoichiometry: Experimental evidence of a temperature‐induced shift in optimal supply N: P ratio. Limnol. Oceanogr. 62, 1346–1354 (2017).CAS 

    Google Scholar 
    Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979–984 (2013).CAS 

    Google Scholar 
    Mittler, R., Finka, A. & Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 37, 118–125 (2012).CAS 

    Google Scholar 
    Dingman, J. E. & Lawrence, J. E. Heat-stress-induced programmed cell death in Heterosigma akashiwo (Raphidophyceae). Harmful Algae 16, 108–116 (2012).
    Google Scholar 
    Whitten, S. T., García-Moreno E, B. & Hilser, V. J. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins. Proc. Natl Acad. Sci. 102, 4282–4287 (2005).CAS 

    Google Scholar 
    Casey, J. R., Grinstein, S. & Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11, 50–61 (2010).CAS 

    Google Scholar 
    Kim, H., Spivack, A. J. & Menden-Deuer, S. pH alters the swimming behaviors of the raphidophyte Heterosigma akashiwo: implications for bloom formation in an acidified ocean. Harmful Algae 26, 1–11 (2013).CAS 

    Google Scholar 
    Hennon, G. M., Williamson, O. M., Limón, M. D. H., Haley, S. T. & Dyhrman, S. T. Non-linear physiology and gene expression responses of harmful alga Heterosigma akashiwo to rising CO2. Protist 170, 38–51 (2019).CAS 

    Google Scholar 
    Xu, H., Jaynes, J. & Ding, X. Combining two-level and three-level orthogonal arrays for factor screening and response surface exploration. Statistica Sin. 24, 269–289 (2014).
    Google Scholar 
    Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. Nat. Geosci. 3, 675–682 (2010).CAS 

    Google Scholar 
    Sterner, R. W. & Elser, J. J. in Ecological Stoichiometry (Princeton university press, 2002).Liu, H. C., Liao, H. T. & Charng, Y. Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738–751 (2011).CAS 

    Google Scholar 
    Geider, R. J. & La Roche, J. J. Redfield revisited: variability of C [ratio] N [ratio] P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1–17 (2002).
    Google Scholar 
    Loladze, I. & Elser, J. J. The origins of the Redfield nitrogen‐to‐phosphorus ratio are in a homoeostatic protein‐to‐rRNA ratio. Ecol. Lett. 14, 244–250 (2011).
    Google Scholar 
    Hennige, S. J., Coyne, K. J., MacIntyre, H., Liefer, J. & Warner, M. E. The photobiology of Heterosigma akashiwo. Photoacclimation, diurnal periodicity, and its ability to rapidly exploit exposure to high light. J. Phycol. 49, 349–360 (2013).CAS 

    Google Scholar 
    Collier, J. L. & Grossman, A. A small polypeptide triggers complete degradation of light‐harvesting phycobiliproteins in nutrient‐deprived cyanobacteria. EMBO J. 13, 1039–1047 (1994).CAS 

    Google Scholar 
    Gordillo, F. J., Jimenez, C., Figueroa, F. L. & Niell, F. X. Influence of elevated CO2 and nitrogen supply on the carbon assimilation performance and cell composition of the unicellular alga Dunaliella viridis. Physiologia Plant. 119, 513–518 (2003).CAS 

    Google Scholar 
    Satoh, E., Watanabe, M. M. & Fujii, T. Photoperiodic regulation of cell division and chloroplast replication in Heterosigma akashiwo. Plant Cell Physiol. 28, 1093–1099 (1987).
    Google Scholar 
    Ashworth, J. et al. Genome-wide diel growth state transitions in the diatom Thalassiosira pseudonana. Proc. Natl Acad. Sci. 110, 7518–7523 (2013).CAS 

    Google Scholar 
    Thangaraj, S. & Sun, J. J. E. M. Transcriptomic reprogramming of the oceanic diatom Skeletonema dohrnii under warming ocean and acidification. Environ. Microbiol. 23, 980–995 (2021).CAS 

    Google Scholar 
    Nakajima, K., Tanaka, A. & Matsuda, Y. SLC4 family transporters in a marine diatom directly pump bicarbonate from seawater. Proc. Natl Acad. Sci. 110, 1767–1772 (2013).CAS 

    Google Scholar 
    Kranz, S. A. et al. Low temperature reduces the energetic requirement for the CO2 concentrating mechanism in diatoms. N. Phytologist 205, 192–201 (2015).CAS 

    Google Scholar 
    Ralston, A. & Shaw, K. Gene expression regulates cell differentiation. Nat. Educ. 1, 127–131 (2008).
    Google Scholar 
    Lobo, I. Environmental influences on gene expression. Nat. Educ. 1, 39 (2008).
    Google Scholar 
    Suzuki, N. et al. Respiratory burst oxidases: the engines of ROS signaling. Curr. Opin. Plant Biol. 14, 691–699 (2011).CAS 

    Google Scholar 
    Saidi, Y., Finka, A. & Goloubinoff, P. Heat perception and signalling in plants: a tortuous path to thermotolerance. N. Phytologist 190, 556–565 (2011).CAS 

    Google Scholar 
    Saidi, Y. et al. The heat shock response in moss plants is regulated by specific calcium-permeable channels in the plasma membrane. Plant Cell 21, 2829–2843 (2009).CAS 

    Google Scholar 
    Zhang, W. et al. Molecular and genetic evidence for the key role of AtCaM3 in heat-shock signal transduction in Arabidopsis. Plant Physiol. 149, 1773–1784 (2009).CAS 

    Google Scholar 
    Li, S. et al. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol. Cells 29, 475–483 (2010).CAS 

    Google Scholar 
    Sangwan, V., Örvar, B. L., Beyerly, J., Hirt, H. & Dhindsa, R. S. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 31, 629–638 (2002).CAS 

    Google Scholar 
    Reddy, A. S., Ali, G. S., Celesnik, H. & Day, I. S. Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23, 2010–2032 (2011).CAS 

    Google Scholar 
    Meiri, D. & Breiman, A. J. Arabidopsis ROF1 (FKBP62) modulates thermotolerance by interacting with HSP90. 1 and affecting the accumulation of HsfA2‐regulated sHSPs. Plant J. 59, 387–399 (2009).CAS 

    Google Scholar 
    Mishkind, M., Vermeer, J. E., Darwish, E. & Munnik, T. J. Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus. Plant J. 60, 10–21 (2009).CAS 

    Google Scholar 
    Zheng, S. Z. et al. Phosphoinositide‐specific phospholipase C9 is involved in the thermotolerance of Arabidopsis. Plant J. 69, 689–700 (2012).CAS 

    Google Scholar 
    Pincus, D. et al. BiP binding to the ER-stress sensor Ire1 tunes the homeostatic behavior of the unfolded protein response. PLoS Biol. 8, e1000415 (2010).
    Google Scholar 
    Sugio, A., Dreos, R., Aparicio, F. & Maule, A. J. The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. Plant Cell 21, 642–654 (2009).CAS 

    Google Scholar 
    Vasseur, F., Pantin, F. & Vile, D. J. P. Cell & Environment. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ. 34, 1563–1576 (2011).CAS 

    Google Scholar 
    Paroutis, P., Touret, N. & Grinstein, S. The pH of the secretory pathway: measurement, determinants, and regulation. J. Physiol. 19, 207–215 (2004).CAS 

    Google Scholar 
    Forgac, M. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology. Nat. Rev. Mol. Cell Biol. 8, 917–929 (2007).CAS 

    Google Scholar 
    Cipriano, D. J. et al. Structure and regulation of the vacuolar ATPases. Biochim. et. Biophys. Acta -Bioenerg. 1777, 599–604 (2008).CAS 

    Google Scholar 
    Abad, M. F. C., Di Benedetto, G., Magalhães, P. J., Filippin, L. & Pozzan, T. Mitochondrial pH monitored by a new engineered green fluorescent protein mutant. J. Biol. Chem. 279, 11521–11529 (2004).CAS 

    Google Scholar 
    McCORMACK, J. G., Halestrap, A. P. & Denton, R. M. Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425 (1990).CAS 

    Google Scholar 
    Garlid, K. D., Sun, X., Paucek, P. & Woldegiorgis, G. in Methods in enzymology Vol. 260 331–348 (Elsevier, 1995).Yamada, E. W. & Huzel, N. J. J. B. Calcium-binding ATPase inhibitor protein of bovine heart mitochondria. Role in ATP synthesis and effect of calcium. Biochemistry 28, 9714–9718 (1989).CAS 

    Google Scholar 
    Moreno-Sánchez, R. Inhibition of oxidative phosphorylation by a Ca2+-induced diminution of the adenine nucleotide translocator. Biochim. et. Biophys. Acta -Bioenerg. 724, 278–285 (1983).
    Google Scholar 
    Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y. & Reed, J. Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat. Cell Biol. 2, 318–325 (2000).CAS 

    Google Scholar 
    Sunda, W. G., Price, N. M. & Morel, F. M. Trace metal ion buffers and their use in culture studies. Algal Cultur. Tech. 4, 35–63 (2005).
    Google Scholar 
    Sun, J. et al. Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo‐nitzschia multiseries. Limnol. Oceanogr. 56, 829–840 (2011).CAS 

    Google Scholar 
    Pierrot, D., Lewis, E. & Wallace, D. J. MS Excel Program Developed for CO2 System Calculations ORNL/CDIAC‐105 (US Dept. of Energy, Oak Ridge, TN, 2006).Wilbur, K. M. & Anderson, N. G. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem. 176, 147–154 (1948).CAS 

    Google Scholar 
    Solórzano, L. & Sharp, J. H. Determination of total dissolved phosphorus and particulate phosphorus in natural waters 1. Limnol. Oceanogr. 25, 754–758 (1980).
    Google Scholar 
    Myklestad, S. M., Skånøy, E. & Hestmann, S. J. Sensitive and rapid method for analysis of dissolved mono-and polysaccharides in seawater. Mar. Chem. 56, 279–286 (1997).CAS 

    Google Scholar 
    Pakulski, J. D. & Benner, R. J. An improved method for the hydrolysis and MBTH analysis of dissolved and particulate carbohydrates in seawater. Mar. Chem. 40, 143–160 (1992).CAS 

    Google Scholar 
    Folch, J. & Lees, M. & Sloane Stanley, G. H. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS 

    Google Scholar 
    Pande, S., Khan, R. P. & Venkitasubramanian, T. Microdetermination of lipids and serum total fatty acids. Anal. Biochem. 6, 415–423 (1963).CAS 

    Google Scholar 
    Lowry, O., Rosebrough, N., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).CAS 

    Google Scholar 
    Berdalet, E., Roldán, C., Olivar, M. P. & Lysnes, K. Quantifying RNA and DNA in planktonic organisms with SYBR Green II and nucleases. Part A. Optimisation of the assay. Sci. Mar. 69, 1–16 (2005).CAS 

    Google Scholar 
    Chomoczynski, P. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloro-form extraction. Anal. Biochem. 162, 156–159 (1987).
    Google Scholar 
    Sañudo-Wilhelmy, S. A. et al. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Phycol. Res. 432, 897–901 (2004).
    Google Scholar 
    Dyhrman, S. T. Nutrients and their acquisition: phosphorus physiology in microalgae. Physiol. Microalgae 155–183 (2016).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 

    Google Scholar 
    Waterhouse, R. M. et al. BUSCO applications from quality assessments to gene prediction and phylogenomics. Mol. Biol. Evol. 35, 543–548 (2018).CAS 

    Google Scholar 
    Pruitt, K. D., Tatusova, T. & Maglott, D. R. J. N. A. R. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65 (2007).CAS 

    Google Scholar 
    Kanehisa, M. & Goto, S. J. N. A. R. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 

    Google Scholar 
    Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).CAS 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
    Google Scholar 
    Wang, L., Feng, Z., Wang, X., Wang, X. & Zhang, X. J. B. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26, 136–138 (2010).
    Google Scholar  More

  • in

    Nocardiopsis changdeensis sp. nov., an endophytic actinomycete isolated from the roots of Eucommia ulmoides Oliv

    Rainey FA, WardRainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Evol Microbiol. 1996;46:1088–92.CAS 

    Google Scholar 
    Goodfellow M, Order XV Streptosporangiales ord. nov. In: Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki K, Ludwig W, Whitman WB (eds), Bergey’s Manual of Systematic Bacteriology vol. 5, 2nd edn., Springer, New York, 2012, p. 1805.Meyer J. Nocardiopsis, a new genus of the order Actinomycetales. Int J Sys Bacteriol. 1976;26:487–93.Article 

    Google Scholar 
    Chen YG, Cui XL, Kroppenstedt RM, Stackebrandt E, Wen ML, et al. Nocardiopsis quinghaiensis sp. nov. isolated from saline soil in China. Int J Syst Evol Microbiol. 2008;58:699–705.Article 
    CAS 

    Google Scholar 
    Chen YG, Zhang YQ, Tang SK, Liu ZX, Xu LH, et al. Nocardiopsis terrae sp. nov., a halophilic actinomycete isolated from saline soil. Antonie van Leeuwenhoek. 2010;98:31–8.Article 

    Google Scholar 
    Pan HQ, Zhang DF, Li L, Jiang Z, Li WJ. Nocardiopsis oceani sp. nov. and nocardiopsis nanhaiensis sp. nov. actinomycetes isolated from marine sediment of the south china sea. Int J Syst Evol Microbiol. 2015;65:3384–91.Article 
    CAS 

    Google Scholar 
    Akhwale JK, Göker M, Rohde M, Schumann P, Boga HI, et al. Nocardiopsis mwathae sp. nov., isolated from the haloalkaline Lake Elmenteita in the African Rift Valley. Antonie van Leeuwenhoek. 2016;109:421–30.Article 
    CAS 

    Google Scholar 
    Schippers A. Nocardiopsis metallicus sp. nov. a metal-leaching actinomycete isolated from an alkaline slag dump. Int J Syst Evol Microbiol. 2002;52:2291–5.CAS 

    Google Scholar 
    Devi AM, Nimaichand S, Hamidah I, Xiao-Tong Z, Bull AT, et al. Nocardiopsis deserti sp. nov. isolated from a high altitude atacama desert soil. Int J Syst Evol Microbiol. 2020;70:3210–8.Article 

    Google Scholar 
    Hamedi J, Mohammadipanah F, Von JM, Potter G, Schumann P, et al. Nocardiopsis sinuspersici sp. nov. isolated from sandy rhizospheric soil. Int J Syst Evol Microbiol. 2010;60:2346–52.Article 
    CAS 

    Google Scholar 
    Zhang YG, Lu XH, Ding YB, Zhou XK, Wan HF, et al. Nocardiopsis rhizosphaerae sp. nov., isolated from rhizosphere soil of Halocnermum strobilaceum (Pall.) Bieb. Int J Syst Evol Microbiol. 2016;66:5129–33.Article 
    CAS 

    Google Scholar 
    Muangham S, Suksaard P, Mingma R, Matsumoto A, Takahashi Y, et al. Nocardiopsis sediminis sp. nov., isolated from mangrove sediment Free. Int J Syst Evol Microbiol. 2016;66:3835–40.Article 
    CAS 

    Google Scholar 
    Qin S, Li J, Chen HH, Zhao GZ, Zhu WY, et al. Isolation, diversity, and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna, China. Appl Environ Microbiol. 2009;75:6176–86.Article 
    CAS 

    Google Scholar 
    Sindhuphak W, Macdonald E. Head actinomycetoma caused by Nocardiopsis dassonvillei. Arch. Dermatol. 1985;121:1332–4.Article 
    CAS 

    Google Scholar 
    Mordarska H, Zakrzewska-Czerwiñska J, Paściak M, Szponar B, Rowiñski S. Rare, suppurative pulmonary infection caused by Nocardiopsis dassonvillei recognized by glycolipid markers. FEMS Immunol Med Microbiol. 1998;21:47–55.Article 
    CAS 

    Google Scholar 
    Bennur T, Kumar AR, Zinjarde SS, Javdekar V. Nocardiopsis species: a potential source of bioactive compounds. J Appl Microbiol. 2016;120:1–16.Article 
    CAS 

    Google Scholar 
    Mo P, Yu YZ, Zhao JR, Gao J. Streptomyces xiangtanensis sp. nov., isolated from a manganese-contaminated soil. Antonie van Leeuwenhoek. 2017;110:297–304.Article 
    CAS 

    Google Scholar 
    Atlas RM In: Parks LC (ed) Handbook of microbiological media. CRC Press, Boca Raton, 1993;pp: 666–72.Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.Article 

    Google Scholar 
    Ridgway R Color standards and color nomenclature. Ridgway, Washington, DC, 1912;pp: 1–43.Ruan JS, Huang Y Rapid identification and systematics of Actinobacteria. Science Press, Beijing, China, 2011;pp: 72–7.Xu LH, Li WJ, Liu ZH, Jiang CL Actinomycetes systematics: principles, methods and practices. Science Press, Beijing, China. 2007;pp: 40–53.MIDI. Sherlock Microbial Identification System Operating Manual, Version 6.0. Newark DE: MIDI Inc. 2005;pp: 1–7.Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.Article 
    CAS 

    Google Scholar 
    Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol. 1970;20:435–43.Article 
    CAS 

    Google Scholar 
    Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol. 1977;100:221–30.Article 
    CAS 

    Google Scholar 
    Kroppenstedt RM Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, England, pp, 1985: 173–99.Kates M Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier, 1986.Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Method Microbiol. 1988;19:161–207.Article 

    Google Scholar 
    Lane, DJ 16S/23S rRNA sequencing. In: nucleic acid techniques in bacterial systematics. Stackebrandt E, Goodfellow M, eds., John Wiley and Sons, New York, NY, pp, 1991: 115–75.Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.Article 
    CAS 

    Google Scholar 
    Saitou N, Nei M. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol Biol Evol. 1987;4:406–25.CAS 

    Google Scholar 
    Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17:368–76.Article 
    CAS 

    Google Scholar 
    Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol. 1971;20:406–16.Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA 7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.Article 
    CAS 

    Google Scholar 
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.Article 

    Google Scholar 
    Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep. 2015;5:8365.Article 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Stevens R, et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014;42:D206–214.Article 
    CAS 

    Google Scholar 
    Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 2019;10:2182.Article 

    Google Scholar 
    Richter M, Rosselló-Móra R, Ckner FOG, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics. 2015;32:929–31.Article 

    Google Scholar 
    Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform. 2013;14:1–14.Article 

    Google Scholar 
    Rodriguez RL, Gunturu S, Harvey WT, Rossello-Mora R, Tiedje JM, et al. The Microbial Genomes Atlas (MiGA) webserver: taxonomicand gene diversity analysis of Archaea and Bacteria at the whole genome level. Nucleic Acids Res. 2018;46:W282–W288.Article 

    Google Scholar 
    Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O. International committee on systematic bacteriology. report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol. 1987;37:463–4.Article 

    Google Scholar 
    Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Nat Acad Sci USA. 2009;106:19126–31.Article 
    CAS 

    Google Scholar 
    Vincent L, Richard D, Olivier G. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol Biol Evol. 2015;32:2798–800.Article 

    Google Scholar 
    Farris JS. Estimating phylogenetictrees from distance matrices. Am Nat. 1972;106:645–68.Article 

    Google Scholar 
    Fang CY, Zhang JL, Pang HC, Li YY, Xin YH, et al. Nocardiopsis flavescens sp. nov., an actinomycete isolated from marine sediment. Int J Syst Evol Microbiol. 2011;61:2640–5.Article 
    CAS 

    Google Scholar  More

  • in

    Joint use of location and acceleration data reveals influences on transitions among habitats in wintering birds

    Goose capture and trackingWe used rocket netting and leg snares to capture white-fronted geese in three regions in Texas (Rolling Plains, Lower Texas Coast, and South Texas Brushlands) and one region in Louisiana (Chenier Plain) from October to February 2016–2018 (Fig. 1). We determined age and sex of individuals by cloacal inversion, rectrices and other plumage characteristics27,28. We fit a solar powered GPS/ACC/Global System for Mobile communication (GSM) neckband tracking device (Cellular Tracking Technologies Versions BT3.0, BT3.5 and BT3.75; 44–54 g; Rio Grande, New Jersey, USA, and Ornitela OrniTrack-N38; 36 g; Vilnius, Lithuania), and an aluminum U.S. Geological Survey Bird Banding Laboratory metal leg band (Supplementary Fig. S1) on each bird. Geese were captured and tagged under USGS Bird Banding Permits #21314 and #23792, and Texas A&M University-Kingsville Institutional Animal Care and Use Committee #2015-09-01B. Captive geese were permitted under TAMUK IACUC #2018-01-11 and United States Fish and Wildlife Service Waterfowl Sale and Disposal permit #MB03808D-0. All applicable field methods were carried out in accordance with relevant guidelines and regulations. All animal handling protocols were approved by TAMUK IACUC committees and the USGS Bird Banding Laboratory. When multiple white-fronted geese were captured simultaneously, devices were only placed on adult females or adult males to eliminate the potential of placing devices on mated pairs, thus biasing independent data collection due to monogamous, long-term pair bonds in white-fronted geese. Location duty cycles were set to collect a GPS location every 30 min (i.e., 48/day) and location accuracy was 7.2 and 6.5 m for CTT and Ornitela devices, respectively. Data were uploaded once daily to respective online user interface websites when within areas of GSM coverage. When not in coverage areas, data were stored onboard the device until birds returned to coverage areas. All devices were equipped with a tri-axial ACC sensor which measured G-force (g; CTT devices) or millivolts (mV; Ornitela devices) at a fixed sampling scheme; CTT BT3.5 and Ornitela devices collected ACC data for a duration of 3 s every 6 min at 10 Hz, while BT3.0 devices collected data for a duration of 10 s every 6 min at 10 Hz. Generation BT3.0 devices were subsampled to match the sampling scheme of 3 s bursts before analyses. Ornitela units measured in mV were converted to G-force. We applied manufacturer- and tag-specific ACC calibration to all units, respectively, by collecting ACC data on each possible rotation for all axes when the device was stationary and applying the calibration to the raw ACC values (see Ref.29 for full calibration procedure). All devices recorded temperature in °C at each GPS fix. We censored GPS and ACC data from the time of release until individuals appeared to resume normal movement activity (i.e., roosting and foraging), as geese typically flew to the nearest wetland immediately after release where they remained without leaving while acclimating to wearing devices, which ranged from 1 to 7 days30. We defined the start of the winter period following a southward migratory movement from staging areas in Canada, without additional migratory movements southward below 40° 0′ 00″ N, or from the time of device deployment (minus device acclimation period) until geese made large northward migratory movements, or 28 February if geese remained in wintering areas.Figure 1Primary wintering regions of the Midcontinent population of greater white-fronted goose (Anser albifrons frontalis) in North America (excluding regions in Mexico). Transmitters were deployed during winters 2016–2018 in the Chenier Plain (Louisiana), Lower Texas Coast, and Rolling/High Plains regions. Geese that made winter movements outside of these defined regions were classified as ‘Other’ regions. Map created using Esri ArcMap (version 10.3.1; www.esri.com).Full size imageLand cover covariatesWe used publicly available spatial landcover data sets (30-m resolution) in combination with remote sensing to create landscape layers using programs Esri ArcMap (version 10.3.1), Erdas Imagine, and Program R (version 3.5.231). We used 2017 and 2018 National Agricultural Statistics Service Cropland Data Layer (CDL) data sets for agricultural crop types and freshwater wetlands, and the 2010 Coastal Change Analysis Program layer for saltwater and coastal wetland classifications29,32. Additionally, we used multi-spectral Landsat 8 Operational Land Imager satellite imagery, with principal component analysis on eight Landsat bands and a normalized difference vegetation index band, and unsupervised classification33,34 to accurately identify and create a spatial layer for peanut fields. We developed this layer for two regions with annual peanut agriculture (i.e., the Rolling/High Plains and South Texas Brushlands) using ground-truthed peanut fields, because the CDL layer did not identify this crop accurately based on our field observations during captures. We achieved  > 90% accuracy of peanut identification for each image independently based on annual ground-truthed observations of peanut fields. Finally, we grouped like-habitat categories to reduce the total number of categories to eight: corn, grass/winter wheat, herbaceous wetlands, other grains (i.e., soybeans, sorghum, and peanuts), rice, woody wetlands, open water/unconsolidated shore and other (Supplementary Table S1). White-fronted geese used several ecologically distinct regions in both winters of our study (Fig. 1), where the landscape composition of specific landcover types varied. To account for regional variability, we added region ID as a categorical variable to all GPS locations. Regions included the MAV, Chenier Plain, Texas Mid-coast, Lower Texas Coast, South Texas Brushlands, Texas Rolling/High Plains, and Other (i.e., locations outside of these identified wintering regions; Fig. 1). We used regional shapefiles of Gulf Coast Joint Venture Initiative Areas (Laguna Madre [Lower Texas Coast], Texas Mid-coast, and Chenier Plain35), and Level III Ecoregions (Mississippi Alluvial Valley, Texas Rolling/High Plains, and South Texas Brushlands36) as boundaries to classify data into regions. Due to insufficient and incompatible spatial layers for Mexico, we limited analyses to locations within the US.Location and acceleration data collectionRemotely determining behaviors of individuals using ACC data is most accurately addressed by developing a training dataset of known behaviors linked with ACC measurements of those behaviors18,37. To develop a training dataset, we collected video footage of two domestic white-fronted geese in Texas, US, and 18 tagged wild Greenland white-fronted geese (A. a. flavirostris) fitted with the same device types and the same data collection scheme, in Wexford, Ireland and Hvanneyri, Iceland during winters 2017–2018. We supplemented wild recordings with behavioral recordings of captive white-fronted geese as a proxy for wild individuals due to difficulty filming wild geese in inclement weather and obstructed video footage, which is common in ACC literature19,20,38,39. To replicate devices placed on wild white-fronted geese and account for potential variation in ACC measurements between device brands, among device versions and individual geese, we deployed three versions of devices used in this study on captive white-fronted geese during filming sessions38,40. We attached tracking devices to captive geese one week prior to video collection to allow geese to adjust to wearing devices. We collected ACC measurements for 3 s bursts, at 1 min intervals, at 10 Hz. We constructed a 149 m2 enclosure in an agricultural field to imitate an environment that wild geese may encounter. We created two enclosure settings allowing captive geese to forage on sprouted winter wheat (~ 2–15 cm) or on a randomly dispersed mixture of grain seeds (corn, wheat, sorghum) to account for both ‘grazing’ of vascular vegetation and ‘gleaning’ of agricultural grains to imitate foraging in wild geese. We used Sony Handycam DCR-SR45 video cameras, matched internal camera clocks with a running Universal Coordinated Time clock, and verbally re-calibrated the current time every 2 min during video footage collection. We filmed 119.5 h of video footage, and matched behavior with recorded ACC measurements by pairing video and device timestamps for each device using JWatcher41 and Program R.We characterized goose behaviors into four categories: ‘stationary’, ‘walk’, and ‘foraging’ from ground-truthed video footage, and ‘flight’ from visual inspection of the ACC data and consecutive GPS tracks during migration where device-measured speed remained  > 4.63 km/h (based on a natural break in the speed density distribution of all GPS locations). Each ACC burst was classified as only one behavior (i.e., a goose that was walking as it foraged was classified as ‘foraging’). We combined wild goose behaviors and captive goose behaviors after identifying minimal differences in ACC burst summary statistics29 for ‘stationary’ and ‘walk’ behaviors. We used ‘graze’ behaviors only from wild geese because of low sample size for captive geese and slight differences in ACC summary statistics between captive and wild geese for this behavior. ‘Glean’ foraging behavior was only classified from captive geese. We then combined ‘graze’ and ‘glean’ behaviors into an overall ‘foraging’ behavior to account for variation in foraging behavior of wild geese, and because machine learning models could not accurately distinguish between the two foraging modes40. We randomly subsampled all behaviors to 150 bursts if our dataset contained at least that many bursts to reduce the risk of artificially increasing prediction accuracy20. We determined there were insufficient differences in ACC signatures between CTT BT3.0 and BT3.5 versions by visual comparison of signatures and summary statistics, and merged all bursts into an overall CTT-specific training data set, and retained CTT- and Ornitela-specific training data sets to account for brand-specific ACC measurement schemes. The final training data sets consisted of 150 stationary, 150 walking, 118 foraging, and 150 flying bursts (CTT), and 150 stationary, 75 walking, 120 foraging, and 150 flying bursts (Ornitela).We used the training data sets to predict behaviors of tagged, wild white-fronted geese during winter with temporally aligned GPS and ACC data. We used a suite of supervised machine-learning algorithms and selected the algorithm with greatest prediction accuracy based on an 80% training, 20% testing sample approach. We tested random forest, support vector machines, K-nearest neighbors, classification and regression trees, and linear discriminant analysis, all with cross validation in Program R18,29,42. We evaluated models using three metrics defined in Ref.42: (1) overall classification accuracy as the percent of classifications in the test data set that were predicted correctly, (2) precision of assignment, the probability that an assigned behavior in the test data set was correct, and (3) model recall, the probability that a sample with a specific behavior in the test data set was correctly classified as that behavior by the model. Random forests provided the highest overall classification accuracy (95.6% for CTT and 96.0% for Ornitela), as well as high precision and recall for each behavior (CTT range 93.1–99.3, Ornitela range 88.9–100.0%), and therefore we labeled behaviors from wild goose ACC data using the random forests.Habitat transition modelOur habitat-transition model required temporally matched GPS and ACC datasets. Therefore, we subset all GPS locations to match the time-series of ACC data per individual because devices typically acquired GPS data longer than ACC data before device failure or individual mortality. For each GPS location, we extracted the landcover type and wintering region from spatial layers and retained temperature recorded from the device. To link classified ACC behaviors to GPS locations, we matched ACC timestamps between two GPS locations with the previous GPS timestamp. That is, all ACC bursts between two GPS locations were assigned backward to the previous GPS location. In this way, an individual’s first location is collected in GPS landcover type A, ACC data are collected in 5 bursts, their behaviors are classified and assigned to the first GPS location A and associated landcover type, followed by collection of GPS location B, in which the subsequent 5 ACC bursts are associated to GPS location/landcover type B. In the case of missing GPS locations, we matched ACC bursts to the previous GPS location only if the ACC timestamps were within 60 min of the GPS timestamp, and ACC bursts occurring greater than 60 min after GPS acquisition were removed until the next GPS fix. To account for temporal variation in habitat-behavior relationships, we calculated two continuous covariates representing time-of-day based on the local time associated with the timestamp of each GPS location for each individual. The variable cos(Diel) represented diurnal (negative values) and nocturnal (positive values) periods, and sin(Time) represented midnight until 11:59 a.m. (positive values) and noon until the following 11:59 p.m. (negative values), where high and low values ranged continuously between 1 and − 143. Our temporally matched time series of GPS and ACC data yielded 53,502 GPS locations linked with 300,348 ACC bursts across both winters.We used a Bayesian Markov model with Pólya-Gamma sampling following43), [cf. Refs.44,45] to determine how transitions between landcover types were influenced by behavior, temperature, time-of-day, and wintering region. The proportion of time spent foraging, walking, and stationary between each successive GPS fix was included as a covariate; flight was not included to reduce multicollinearity due to behavior proportions summing to one. Markov models account for non-independence among observations by assuming that the current state (i.e., landcover type) is dependent upon the previous state, and allow the determination of covariate influences on the probability of transitioning among states through a logistic link function. The transition probability from habitat i to habitat j at time t for individual n is modeled with multinomial logistic regression:$$begin{aligned} & logitleft( {p_{nijt} } right) = logleft( {frac{{p_{nijt} }}{{p_{niJt} }}} right) = mathop sum limits_{{r in {mathcal{R}}_{j} }} beta_{0jr} Ileft( {Region_{nt} = r} right) + beta_{1j} {text{cos}}left( {Diel_{nt} } right) \ & quad + beta_{2j} {text{sin}}left( {Time_{nt} } right) + beta_{3ij} Forage_{nt} + beta_{4ij} Walk_{nt} + beta_{5ij} Stationary_{nt} + beta_{6ij} Temperature_{nt} , \ end{aligned}$$where ({mathcal{R}}_{j}) is the set of wintering regions (r) where habitat (j) occurs, (Regio{n}_{rnt}) indicated wintering region (r), and (mathrm{cos}left({Diel}_{nt}right)) and (mathrm{sin}({Time}_{nt})) were temporal covariates (described above) for habitat j. Quantities ({Forage}_{nt}, {Walk}_{nt},mathrm{ and }{Stationary}_{nt}) were the scaled (mean = 0, standard deviation = 1) proportion of time spent in each behavior between transitions from habitat i to habitat j, and ({Temperature}_{nt}) was scaled ambient temperature (°C) for transitions from habitat i to habitat j. All coefficients for transitions to the baseline habitat (J) were set to 0 (i.e., ({beta }_{0Jr}) for all (r), ({beta }_{1J}), ({beta }_{2J}), ({beta }_{3iJ}), ({beta }_{4iJ}), ({beta }_{5iJ}),({beta }_{6iJ}), for all (i)). We set the baseline habitat (J) as open water/unconsolidated shore because this habitat is used primarily for both nocturnal roosting and diurnal loafing, included all behaviors, and transitions to all other landcover types were frequent in each region.The prior for the set of winter region intercepts for each habitat was:$${beta }_{0jr}sim N({beta }_{0j},{sigma }_{0jr}^{2}),$$for (rin {mathcal{R}}_{j}), ({beta }_{0j}) was the mean intercept, and ({sigma }_{0jr}^{2}) was set to 100. For ({beta }_{0j}), a vague prior mean 0 and σ2 = 100 was used with an assumed normal distribution.The Markov model was executed within a Bayesian framework to robustly quantify uncertainty. The Markov model assumed that data were collected at regular time intervals for both GPS (30 min) and ACC (6 min), however imperfect collection by devices created irregular data sets. Therefore, we subsampled GPS locations and constrained time series data to sequences where GPS locations missing  > 120 min intervals (i.e., 4 locations) were separated into sequences of regular time series data for each individual46. We extended43 by including a mix of both transition-specific effects (i.e., behaviors, temperature) and habitat-specific effects (i.e., wintering region, cos(Diel), and sin(Time)), where transition-specific effects were allowed to vary for a current habitat state, while habitat-specific effects were not. We included a mix of coefficients because initial model runs indicated that some effects were similar regardless of the current habitat (i.e., were habitat- and not transition-specific decisions). We also incorporated a model feature to exclude estimation of transitions that did not occur either within the dataset as a whole or within each specific wintering region because landcover types varied among them by setting those specific transition probabilities to zero. We centered and standardized all behavior and temperature covariates, sampled 50,000 iterations from the model posterior using one chain, and discarded the first 10,000 iterations as burn-in. We assessed model convergence by evaluating trace plots and setting random initial values, examined autocorrelation plots, and Geweke diagnostics using the R package ‘coda’47,48,49. More

  • in

    Aerial transport of bacteria by dust plumes in the Eastern Mediterranean revealed by complementary rRNA/rRNA-gene sequencing

    Katra, I. et al. Richness and diversity in dust stormborne biomes at the Southeast Mediterranean. Sci. Rep. 4, 5265 (2014).CAS 

    Google Scholar 
    Kellogg, C. A. & Griffin, D. W. Aerobiology and the global transport of desert dust. Trends Ecol. Evolution 21, 638–644 (2006).
    Google Scholar 
    Mazar, Y., Cytryn, E., Erel, Y. & Rudich, Y. Effect of dust storms on the atmospheric microbiome in the eastern Mediterranean. Environ. Sci. Technol. 50, 4194–4202 (2016).CAS 

    Google Scholar 
    Gat, D., Mazar, Y., Cytryn, E. & Rudich, Y. Origin-dependent variations in the atmospheric microbiome community in Eastern Mediterranean Dust Storms. Environ. Sci. Technol. 51, 6709–6718 (2017).CAS 

    Google Scholar 
    Lang-Yona, N. et al. Links between airborne microbiome, meteorology, and chemical composition in northwestern Turkey. Sci. Total Environ. 725, 138227 (2020).CAS 

    Google Scholar 
    Gat, D. et al. Size-resolved community structure of bacteria and fungi transported by dust in the Middle East. Front. Microbiol. 12 (2021) https://doi.org/10.3389/fmicb.2021.744117.Hill, T. C. J. et al. Sources of organic ice nucleating particles in soils. Atmos. Chem. Phys. 16, 7195–7211 (2016).CAS 

    Google Scholar 
    Pandey, R. et al. Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci. Adv. 2, e1501630 (2016).
    Google Scholar 
    Fröhlich-Nowoisky, J. et al. Ice nucleation activity in the widespread soil fungus Mortierella alpina. Biogeosciences 12, 1057–1071 (2015).
    Google Scholar 
    Estillore, A. D., Trueblood, J. V. & Grassian, V. H. Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chem. Sci. 7, 6604–6616 (2016).CAS 

    Google Scholar 
    Brodie, E. L. et al. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. 104, 299–304 (2007).CAS 

    Google Scholar 
    Šantl-Temkiv, T. et al. Characterization of airborne ice-nucleation-active bacteria and bacterial fragments. Atmos. Environ. 109, 105–117 (2015).
    Google Scholar 
    Rahav, E., Ovadia, G., Paytan, A. & Herut, B. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition. Geophys. Res. Lett. 43, 719–727 (2016).CAS 

    Google Scholar 
    Failor, K. C., Schmale, D. G., Vinatzer, B. A. & Monteil, C. L. Ice nucleation active bacteria in precipitation are genetically diverse and nucleate ice by employing different mechanisms. ISME J. 11, 2740–2753 (2017).CAS 

    Google Scholar 
    de Araujo, G. G., Rodrigues, F., Gonçalves, F. L. T. & Galante, D. Survival and ice nucleation activity of Pseudomonas syringae strains exposed to simulated high-altitude atmospheric conditions. Sci. Rep. 9, 7768 (2019).
    Google Scholar 
    Lazaridis, M. Bacteria as Cloud Condensation Nuclei (CCN) in the Atmosphere. Atmosphere 10, 786 (2019).CAS 

    Google Scholar 
    Amato, P. et al. Active microorganisms thrive among extremely diverse communities in cloud water. PLOS ONE 12, e0182869 (2017).
    Google Scholar 
    Amato, P. et al. Metatranscriptomic exploration of microbial functioning in clouds. Sci. Rep. 9, 4383 (2019).
    Google Scholar 
    Vaïtilingom, M. et al. Potential impact of microbial activity on the oxidant capacity and organic carbon budget in clouds. Proc. Natl. Acad. Sci. 110, 559–564 (2013).
    Google Scholar 
    Triadó-Margarit, X., Cáliz, J. & Casamayor, E. O. A long-term atmospheric baseline for intercontinental exchange of airborne pathogens. Environ. Int. 158, 106916 (2022).
    Google Scholar 
    Brodie, E. L. et al. Urban aerosols harbor diverse and dynamic bacterial populations. Proc. Natl. Acad. Sci. 104, 299 (2007).CAS 

    Google Scholar 
    Archer, S. D. J. et al. Airborne microbial transport limitation to isolated Antarctic soil habitats. Nat. Microbiol 4, 925–932 (2019).CAS 

    Google Scholar 
    Mayol, E. et al. Long-range transport of airborne microbes over the global tropical and subtropical ocean. Nat. Commun. 8, 201 (2017).
    Google Scholar 
    Favet, J. et al. Microbial hitchhikers on intercontinental dust: catching a lift in Chad. ISME J. 7, 850–867 (2013).CAS 

    Google Scholar 
    Cáliz, J., Triadó-Margarit, X., Camarero, L. & Casamayor, E. O. A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proc. Natl. Acad. Sci. 115, 12229–12234 (2018).
    Google Scholar 
    Du, P., Du, R., Ren, W., Lu, Z. & Fu, P. Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Sci. Total Environ. 610-611, 308–315 (2018).CAS 

    Google Scholar 
    Lang-Yona, N. et al. Links between airborne microbiome, meteorology, and chemical composition in northwestern Turkey. Sci. Total Environ. 725, 138227 (2020).CAS 

    Google Scholar 
    Gong, J., Qi, J., E, B., Yin, Y. & Gao, D. Concentration, viability and size distribution of bacteria in atmospheric bioaerosols under different types of pollution. Environ. Pollut. 257, 113485 (2020).CAS 

    Google Scholar 
    Zhang, T., Li, X., Wang, M., Chen, H. & Yao, M. Time- and size-resolved bacterial aerosol dynamics in highly polluted air: new clues for haze formation mechanism. bioRxiv, 513093 (2019) https://doi.org/10.1101/513093.Wei, M. et al. Size distribution of bioaerosols from biomass burning emissions: Characteristics of bacterial and fungal communities in submicron (PM1.0) and fine (PM2.5) particles. Ecotoxicol. Environ. Saf. 171, 37–46 (2019).CAS 

    Google Scholar 
    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. Isme J. 7, 2061–2068 (2013).CAS 

    Google Scholar 
    Barnard, R. L., Osborne, C. A. & Firestone, M. K. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241 (2013).CAS 

    Google Scholar 
    Schostag, M. et al. Distinct summer and winter bacterial communities in the active layer of Svalbard permafrost revealed by DNA- and RNA-based analyses. Front. Microbiol. 6 (2015) https://doi.org/10.3389/fmicb.2015.00399.Campbell, B. J., Yu, L., Heidelberg, J. F. & Kirchman, D. L. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl Acad. Sci. 108, 12776–12781 (2011).CAS 

    Google Scholar 
    Denef, V. J., Fujimoto, M., Berry, M. A. & Schmidt, M. L. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA Ratios among freshwater lake bacteria. Front. Microbiol.7 (2016) https://doi.org/10.3389/fmicb.2016.00606.Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).CAS 

    Google Scholar 
    Hospodsky, D., Yamamoto, N. & Peccia, J. Accuracy, precision, and method detection limits of quantitative PCR for airborne bacteria and fungi. Appl Environ. Microbiol 76, 7004–7012 (2010).CAS 

    Google Scholar 
    Nieto-Caballero, M., Savage, N., Keady, P. & Hernandez, M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J. Microbiological Methods 157, 1–3 (2019).CAS 

    Google Scholar 
    Behzad, H., Gojobori, T. & Mineta, K. Challenges and opportunities of airborne metagenomics. Genome Biol. Evol. 7, 1216–1226 (2015).CAS 

    Google Scholar 
    Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M. & Finster, K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol. Ecol. 94 (2018) https://doi.org/10.1093/femsec/fiy031.Klein, A. M., Bohannan, B. J. M., Jaffe, D. A., Levin, D. A. & Green, J. L. Molecular evidence for metabolically active bacteria in the atmosphere. Front. Microbiol. 7, 772–772 (2016).
    Google Scholar 
    Amato, P. et al. Active microorganisms thrive among extremely diverse communities in cloud water. PLoS One 12, e0182869 (2017).
    Google Scholar 
    Vellend, B. M. Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206 (2010).
    Google Scholar 
    Bodenheimer, S., Lensky, I. M. & Dayan, U. Characterization of Eastern Mediterranean dust storms by area of origin; North Africa vs. Arabian Peninsula. Atmos. Environ. 198, 158–165 (2019).CAS 

    Google Scholar 
    Kishcha, P., Volpov, E., Starobinets, B., Alpert, P. & Nickovic, S. Dust dry deposition over Israel. Atmosphere 11, 197 (2020).
    Google Scholar 
    Krasnov, H., Katra, I. & Friger, M. Increase in dust storm related PM10 concentrations: A time series analysis of 2001-2015. Environ. Pollut. 213, 36–42 (2016).CAS 

    Google Scholar 
    Zittis, G. et al. Climate change and weather extremes in the eastern Mediterranean and Middle East. Rev. Geophysics 60, e2021RG000762 (2022).
    Google Scholar 
    Griffin, D. W. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol Rev. 20, 459–477 (2007).
    Google Scholar 
    Prospero, J. M. Long-range transport of mineral dust in the global atmosphere: Impact of African dust on the environment of the southeastern United States. Proc. Natl. Acad. Sci. 96, 3396–3403 (1999).CAS 

    Google Scholar 
    Klingmüller, K., Pozzer, A., Metzger, S., Stenchikov, G. L. & Lelieveld, J. Aerosol optical depth trend over the Middle East. Atmos. Chem. Phys. 16, 5063–5073 (2016).
    Google Scholar 
    Notaro, M., Alkolibi, F., Fadda, E. & Bakhrjy, F. Trajectory analysis of Saudi Arabian dust storms. J. Geophys. Res. Atmospheres 118, 6028–6043 (2013).
    Google Scholar 
    Tegen, I. & Schepanski, K. The global distribution of mineral dust. IOP Conf. Ser. Earth Environ. Sci. 7, 012001 (2009).
    Google Scholar 
    Klappenbach, J. A., Saxman, P. R., Cole, J. R. & Schmidt, T. M. rrndb: the Ribosomal RNA Operon Copy Number Database. Nucleic Acids Res. 29, 181–184 (2001).CAS 

    Google Scholar 
    Bremer, H. & Dennis, P. P. Modulation of chemical composition and other parameters of the cell at different exponential growth rates. EcoSal Plus 3 (2008) https://doi.org/10.1128/ecosal.5.2.3.Schneider, D. A., Ross, W. & Gourse, R. L. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol 6, 151–156 (2003).CAS 

    Google Scholar 
    Gralla, J. D. Escherichia coli ribosomal RNA transcription: regulatory roles for ppGpp, NTPs, architectural proteins and a polymerase-binding protein. Mol. Microbiol 55, 973–977 (2005).CAS 

    Google Scholar 
    Oliveira, A. et al. Insight of genus corynebacterium: ascertaining the role of pathogenic and non-pathogenic species. Front. Microbiol. 8, 1937–1937 (2017).
    Google Scholar 
    Wexler, H. M. Bacteroides: the good, the bad, and the nitty-gritty. Clin. Microbiol Rev. 20, 593–621 (2007).CAS 

    Google Scholar 
    Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).
    Google Scholar 
    Magzal, F. et al. Increased physical activity improves gut microbiota composition and reduces short-chain fatty acid concentrations in older adults with insomnia. Sci. Rep. 12, 2265 (2022).CAS 

    Google Scholar 
    Wang, L. et al. Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Mol. Autism 4, 42 (2013).CAS 

    Google Scholar 
    Tavella, T. et al. Elevated gut microbiome abundance of Christensenellaceae, Porphyromonadaceae and Rikenellaceae is associated with reduced visceral adipose tissue and healthier metabolic profile in Italian elderly. Gut microbes 13, 1–19 (2021).
    Google Scholar 
    Bennur, T., Kumar, A. R., Zinjarde, S. & Javdekar, V. Nocardiopsis species: Incidence, ecological roles and adaptations. Microbiological Res. 174, 33–47 (2015).
    Google Scholar 
    Jones, S. E. & Elliot, M. A. Streptomyces exploration: competition, volatile communication and new bacterial behaviours. Trends Microbiol. 25, 522–531 (2017).CAS 

    Google Scholar 
    Gtari, M. et al. Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol. Ecol. 80, 566–577 (2012).CAS 

    Google Scholar 
    Weon, H.-Y. et al. Adhaeribacter aerophilus sp. nov., Adhaeribacter aerolatus sp. nov. and Segetibacter aerophilus sp. nov., isolated from air samples. Int. J. Syst. Evolut. Microbiol. 60, 2424–2429 (2010).CAS 

    Google Scholar 
    Marín, I. et al.) 115-133 (Springer Berlin Heidelberg, 2014).Yoon, J.-H. et al.) 1099-1113 (Springer New York, 2006).Steinberg, J. P. & Burd, E. M. in Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases (Eighth Edition) (eds John E. Bennett, R. Dolin, & M. J. Blaser) 2667-2683.e2664 (W.B. Saunders, 2015).Kelly, D. P., et al.) 232-249 (Springer New York, 2006).Silby, M. W., Winstanley, C., Godfrey, S. A. C., Levy, S. B. & Jackson, R. W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35, 652–680 (2011).CAS 

    Google Scholar 
    Hyeon, J. W. & Jeon, C. O. Roseomonas aerofrigidensis sp. nov., isolated from an air conditioner. Int. J. Syst. Evolut. Microbiol. 67, 4039–4044 (2017).CAS 

    Google Scholar 
    Battista, J. R. & Rainey, F. A. in Bergey’s Manual of Systematics of Archaea and Bacteria 1-13.Angly, F. E. et al. Marine microbial communities of the Great Barrier Reef lagoon are influenced by riverine floodwaters and seasonal weather events. PeerJ 4, e1511 (2016).
    Google Scholar 
    Cárdenas, A., Rodriguez-R, L. M., Pizarro, V., Cadavid, L. F. & Arévalo-Ferro, C. Shifts in bacterial communities of two caribbean reef-building coral species affected by white plague disease. ISME J. 6, 502–512 (2012).
    Google Scholar 
    Kämpfer, P., Lodders, N., Huber, B., Falsen, E. & Busse, H. J. Deinococcus aquatilis sp. nov., isolated from water. Int J. Syst. Evol. Microbiol 58, 2803–2806 (2008).
    Google Scholar 
    Gallego, V., Sánchez-Porro, C., García, M. T. & Ventosa, A. Roseomonas aquatica sp. nov., isolated from drinking water. Int J. Syst. Evol. Microbiol 56, 2291–2295 (2006).CAS 

    Google Scholar 
    Roskin, J., Katra, I. & Blumberg, D. G. Particle-size fractionation of eolian sand along the Sinai–Negev erg of Egypt and Israel. GSA Bull. 126, 47–65 (2014).
    Google Scholar 
    Ganor, E. & Foner, H. A. Mineral dust concentrations, deposition fluxes and deposition velocities in dust episodes over Israel. J. Geophys. Res.: Atmospheres 106, 18431–18437 (2001).CAS 

    Google Scholar 
    Amir, A., Ozel, E., Haberman, Y. & Shental, N. Achieving pan-microbiome biological insights via the dbBact knowledge base. bioRxiv, 2022.2002.2027.482174 (2022) https://doi.org/10.1101/2022.02.27.482174.Eisenhofer, R. et al. Contamination in low microbial biomass microbiome studies: issues and recommendations. Trends Microbiol. 27, 105–117 (2019).CAS 

    Google Scholar 
    Labeda, D. P. & Goodfellow, M. in Bergey’s Manual of Systematics of Archaea and Bacteria 1-7.Rickard, A. H. et al. Adhaeribacter aquaticus gen. nov., sp. nov., a Gram-negative isolate from a potable water biofilm. Int J. Syst. Evol. Microbiol 55, 821–829 (2005).CAS 

    Google Scholar 
    Guo, L. et al. Oligotrophic bacterium Hymenobacter latericoloratus CGMCC 16346 degrades the neonicotinoid imidacloprid in surface water. AMB Express 10, 7 (2020).CAS 

    Google Scholar 
    Philippon, T. et al. Denitrifying bio-cathodes developed from constructed wetland sediments exhibit electroactive nitrate reducing biofilms dominated by the genera Azoarcus and Pontibacter. Bioelectrochemistry 140, 107819 (2021).CAS 

    Google Scholar 
    Jurado, V., Miller, A. Z., Alias-Villegas, C., Laiz, L. & Saiz-Jimenez, C. Rubrobacter bracarensis sp. nov., a novel member of the genus Rubrobacter isolated from a biodeteriorated monument. Syst. Appl Microbiol 35, 306–309 (2012).CAS 

    Google Scholar 
    de Vries, H. J. et al. Isolation and characterization of Sphingomonadaceae from fouled membranes. npj Biofilms Microbiomes 5, 6 (2019).
    Google Scholar 
    Vacca, M. et al. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 8, 573 (2020).CAS 

    Google Scholar 
    Baldani, J. I. et al. in The Prokaryotes: Alphaproteobacteria and Betaproteobacteria (eds Eugene Rosenberg et al.) 919-974 (Springer Berlin Heidelberg, 2014).Dastager, S. G., et al.) 455-498 (Springer Berlin Heidelberg, 2014).Ivanova, N. et al. Complete genome sequence of Geodermatophilus obscurus type strain (G-20). Stand Genom. Sci. 2, 158–167 (2010).
    Google Scholar 
    Alonso-Reyes, D. et al. Genomic Insights of an Andean Multi-resistant Soil Actinobacterium of Biotechnological Interest. bioRxiv, 2020.2012.2021.423370 (2020) https://doi.org/10.1101/2020.12.21.423370.Kumar, C. G. & Sujitha, P. Kocuran, an exopolysaccharide isolated from Kocuria rosea strain BS-1 and evaluation of its in vitro immunosuppression activities. Enzym. Micro. Technol. 55, 113–120 (2014).CAS 

    Google Scholar 
    Raguénès, G. et al. A novel exopolymer-producing bacterium, Paracoccus zeaxanthinifaciens subsp. payriae, isolated from a “kopara” mat located in Rangiroa, an atoll of French Polynesia. Curr. Microbiol 49, 145–151 (2004).
    Google Scholar 
    Bailey, A. C. et al. Draft Genome Sequence of Massilia sp. Strain BSC265, Isolated from Biological Soil Crust of Moab, Utah. Genome Announc 2, e01199–01114 (2014).
    Google Scholar 
    Denef, V. J., Fujimoto, M., Berry, M. A. & Schmidt, M. L. Seasonal succession leads to habitat-dependent differentiation in ribosomal RNA:DNA Ratios among freshwater lake bacteria. Front Microbiol 7, 606 (2016).
    Google Scholar 
    Salazar, G. et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol. Ecol. 24, 5692–5706 (2015).
    Google Scholar 
    Schmidt, M. L., White, J. D. & Denef, V. J. Phylogenetic conservation of freshwater lake habitat preference varies between abundant bacterioplankton phyla. Environ. Microbiol. 18, 1212–1226 (2016).
    Google Scholar 
    Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).
    Google Scholar 
    Doughari, H. J., Ndakidemi, P. A., Human, I. S. & Benade, S. The ecology, biology and pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 26, 101–112 (2011).
    Google Scholar 
    Bläckberg, A., Falk, L., Oldberg, K., Olaison, L. & Rasmussen, M. infective endocarditis due to corynebacterium species: clinical features and antibiotic resistance. Open Forum Infect. Dis. 8 (2021) https://doi.org/10.1093/ofid/ofab055.Zhang, Q. et al. Hymenobacter xinjiangensis sp. nov., a radiation-resistant bacterium isolated from the desert of Xinjiang, China. Int J. Syst. Evol. Microbiol 57, 1752–1756 (2007).CAS 

    Google Scholar 
    Lee, J.-J. et al. Hymenobacter aquaticus sp. nov., a radiation-resistant bacterium isolated from a river. Int. J. Syst. Evolut. Microbiol. 67, 1206–1211 (2017).CAS 

    Google Scholar 
    Alessa, O. et al. Comprehensive comparative genomics and phenotyping of methylobacterium species. Front. Microbiol. 12 (2021) https://doi.org/10.3389/fmicb.2021.740610.Titécat, M., Wallet, F., Vieillard, M. H., Courcol, R. J. & Loïez, C. Ruminococcus gnavus: an unusual pathogen in septic arthritis. Anaerobe 30, 159–160 (2014).
    Google Scholar 
    Weber, B. S., Harding, C. M. & Feldman, M. F. Pathogenic acinetobacter: from the cell surface to infinity and beyond. J. Bacteriol. 198, 880–887 (2015).
    Google Scholar 
    Hacker, E., Antunes, C. A., Mattos-Guaraldi, A. L., Burkovski, A. & Tauch, A. Corynebacterium ulcerans, an emerging human pathogen. Future Microbiol. 11, 1191–1208 (2016).CAS 

    Google Scholar 
    Smith, K. F. & Oram, D. M. in Encyclopedia of Microbiology (Third Edition) (ed Moselio Schaechter) 94-106 (Academic Press, 2009).Kovaleva, J., Degener, J. E. & van der Mei, H. C. Methylobacterium and its role in health care-associated infection. J. Clin. Microbiol 52, 1317–1321 (2014).
    Google Scholar 
    Dyer, J. & Harris, P. Paracoccus yeei—An emerging pathogen or incidental finding? Pathology 52, S123 (2020).
    Google Scholar 
    Moradali, M. F., Ghods, S. & Rehm, B. H. A. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cellular Infect. Microbiol. 7 (2017) https://doi.org/10.3389/fcimb.2017.00039.Ryan, M. P. & Adley, C. C. Sphingomonas paucimobilis: a persistent Gram-negative nosocomial infectious organism. J. Hosp. Infect. 75, 153–157 (2010).CAS 

    Google Scholar 
    Souto, A., Guinda, M., Mera, A. & Pardo, F. Septic arthritis caused by Sphingomonas paucimobilis in an immunocompetent patient. Reumatol. Clin. 8, 378–379 (2012).
    Google Scholar 
    Lanoix, J. P. et al. Sphingomonas paucimobilis bacteremia related to intravenous human immunoglobulin injections. Med Mal. Infect. 42, 37–39 (2012).
    Google Scholar 
    van Bruggen, A. H., Brown, P. R. & Jochimsen, K. N. Corky root of lettuce caused by strains of a gram-negative bacterium from muck soils of Florida, new york, and wisconsin. Appl Environ. Microbiol 55, 2635–2640 (1989).
    Google Scholar 
    VAN BRUGGEN, A. H. C., JOCHIMSEN, K. N. & BROWN, P. R. Rhizomonas suberifaciens gen. nov., sp. nov., the Causal Agent of Corky Root of Lettuce. Int. J. Syst. Evolut. Microbiol. 40, 175–188 (1990).
    Google Scholar 
    Davis, J. H. & Williamson, J. R. Structure and dynamics of bacterial ribosome biogenesis. Philos. Trans. R Soc. Lond. B Biol. Sci. 372 (2017) https://doi.org/10.1098/rstb.2016.0181.Maitra, A. & Dill, K. A. Bacterial growth laws reflect the evolutionary importance of energy efficiency. Proc. Natl Acad. Sci. 112, 406–411 (2015).CAS 

    Google Scholar 
    Klumpp, S. & Hwa, T. Traffic patrol in the transcription of ribosomal RNA. RNA Biol. 6, 392–394 (2009).CAS 

    Google Scholar 
    Jia, Y. et al. Rare taxa exhibit disproportionate cell-level metabolic activity in enriched anaerobic digestion microbial communities. mSystems 4, e00208–e00218 (2019).CAS 

    Google Scholar 
    Zhou, Y. et al. Profiling airborne microbiota in mechanically ventilated buildings across seasons in hong kong reveals higher metabolic activity in low-abundance bacteria. Environ. Sci. Technol. 55, 249–259 (2021).CAS 

    Google Scholar 
    Fessler, M., Gummesson, B., Charbon, G., Svenningsen, S. L. & Sørensen, M. A. Short-term kinetics of rRNA degradation in Escherichia coli upon starvation for carbon, amino acid or phosphate. Mol. Microbiol. 113, 951–963 (2020).CAS 

    Google Scholar 
    Lahtinen, S. J. et al. Degradation of 16S rRNA and attributes of viability of viable but nonculturable probiotic bacteria. Lett. Appl Microbiol 46, 693–698 (2008).CAS 

    Google Scholar 
    Li, R. et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 7, 5752 (2017).
    Google Scholar 
    McKillip, J. L., Jaykus, L. A. & Drake, M. rRNA stability in heat-killed and UV-irradiated enterotoxigenic Staphylococcus aureus and Escherichia coli O157:H7. Appl Environ. Microbiol 64, 4264–4268 (1998).CAS 

    Google Scholar 
    Sheridan, G. E., Masters, C. I., Shallcross, J. A. & MacKey, B. M. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64, 1313–1318 (1998).CAS 

    Google Scholar 
    Villarino, A., Bouvet, O. M., Regnault, B., Martin-Delautre, S. & Grimont, P. A. D. Exploring the frontier between life and death in Escherichia coli: evaluation of different viability markers in live and heat- or UV-killed cells. Res Microbiol 151, 755–768 (2000).CAS 

    Google Scholar 
    Schostag, M. D., Albers, C. N., Jacobsen, C. S. & Priemé, A. Low turnover of soil bacterial rRNA at low temperatures. Front. Microbiol. 11 (2020) https://doi.org/10.3389/fmicb.2020.00962.Emerson, J. B. et al. Schrödinger’s microbes: Tools for distinguishing the living from the dead in microbial ecosystems. Microbiome 5, 86 (2017).
    Google Scholar 
    Wang, Y. et al. Characterizing microbial community viability with RNA-based high-throughput sequencing. Microbiome Version 1, posted 22 Jul, 2022 (2022) https://doi.org/10.21203/rs.3.rs-1870950/v1.Mbareche, H., Veillette, M., Bilodeau, G. J., Duchaine, C. & Schaffner, D. W. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84, e01589–01518 (2018).CAS 

    Google Scholar 
    Pan, M., Lednicky, J. A. & Wu, C.-Y. Collection, particle sizing and detection of airborne viruses. J. Appl. Microbiol. 127, 1596–1611 (2019).CAS 

    Google Scholar 
    Nieto-Caballero, M., Savage, N., Keady, P. & Hernandez, M. High fidelity recovery of airborne microbial genetic materials by direct condensation capture into genomic preservatives. J. Microbiol Methods 157, 1–3 (2019).CAS 

    Google Scholar 
    Šantl-Temkiv, T., Gosewinkel, U., Starnawski, P., Lever, M. & Finster, K. Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiol Ecol 94 (2018) https://doi.org/10.1093/femsec/fiy031.Maki, T. et al. Aeolian dispersal of bacteria associated with desert dust and anthropogenic particles over continental and oceanic surfaces. J. Geophys. Res.: Atmospheres 124, 5579–5588 (2019).
    Google Scholar 
    Gonzalez-Martin, C., Teigell-Perez, N., Valladares, B. & Griffin, D. W. in Advances in Agronomy Vol. 127 (ed Donald Sparks) 1-41 (Academic Press, 2014).Tisch Environmental, I. (2004).Krasnov, H., Katra, I. & Friger, M. Increase in dust storm related PM10 concentrations: A time series analysis of 2001–2015. Environ. Pollut. 213, 36–42 (2016).CAS 

    Google Scholar 
    Varga, G., Újvári, G. & Kovács, J. Spatiotemporal patterns of Saharan dust outbreaks in the Mediterranean Basin. Aeolian Res. 15, 151–160 (2014).
    Google Scholar 
    Dayan, U. & Levy, I. Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel. J. Geophys. Res.: Atmospheres 107, ACL 31-31–ACL 31-12 (2002).
    Google Scholar 
    Klein, A. M., Bohannan, B. J. M., Jaffe, D. A., Levin, D. A. & Green, J. L. Molecular Evidence for Metabolically Active Bacteria in the Atmosphere. Front. Microbiol. 7 (2016) https://doi.org/10.3389/fmicb.2016.00772.Luhung, I. et al. Experimental parameters defining ultra-low biomass bioaerosol analysis. npj Biofilms Microbiomes 7, 37 (2021).CAS 

    Google Scholar 
    Stein, A. F. et al. Noaa’s Hysplit Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorological Soc. 96, 2059–2077 (2015).
    Google Scholar 
    Rolph, G., Stein, A. & Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 95, 210–228 (2017).
    Google Scholar 
    Acker, J. G. & Leptoukh, G. Online analysis enhances use of NASA Earth science data. Eos, Trans. Am. Geophys. Union 88, 14–17 (2007).
    Google Scholar 
    Brauer, S. L. et al. Culturable Rhodobacter and Shewanella species are abundant in estuarine turbidity maxima of the Columbia River. Environ. Microbiol. 13, 589–603 (2011).CAS 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. Isme J. 6, 1621–1624 (2012).CAS 

    Google Scholar 
    Soergel, D. A. W., Dey, N., Knight, R. & Brenner, S. E. Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J. 6, 1440–1444 (2012).CAS 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581 (2016).CAS 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8, e61217 (2013).CAS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 

    Google Scholar 
    Davis, N. M., Proctor, D. M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome 6, 226 (2018).
    Google Scholar 
    Martin-Fernandez, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15 (2015) https://doi.org/10.1177/1471082×14535524.Palarea-Albaladejo, J. & Martin-Fernandez, J. A. zCompositions—R Package for multivariate imputation of left-censored data under a compositional approach. Chemometrics Intell. Lab. Syst. 143, 85–96 (2015).CAS 

    Google Scholar 
    van den Boogaart, K. G. & Tolosana-Delgado, R. “compositions”: A unified R package to analyze compositional data. Comput. Geosci. 34, 320–338 (2008).
    Google Scholar 
    Amato, P. et al. In Microbiology of Aerosols 1–21 (2017).Rao, A. K. & Whitby, K. T. Nonideal collection characteristics of single stage and cascade impactors. Am. Ind. Hyg. Assoc. J. 38, 174–179 (1977).CAS 

    Google Scholar 
    Jari Oksanen, F. G. B. et al. vegan: Community Ecology Package. (2020).Gilmour, S. G. In Wiley StatsRef: Statistics Reference Online.Margolin, B. H. In Wiley StatsRef: Statistics Reference Online.Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLOS Comput. Biol. 17, e1009442 (2021).CAS 

    Google Scholar  More

  • in

    Colombian biodiversity is governed by a rich and diverse policy mix

    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).Article 
    CAS 

    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge for biodiversity conservation. Ambio 22, 151–156 (1993).
    Google Scholar 
    Gadgil, M., Berkes, F. & Folke, C. Indigenous knowledge: from local to global. Ambio 50, 967–969 (2021).Article 

    Google Scholar 
    The IPBES regional assessment report on biodiversity and ecosystem services for the Americas. IPBES https://doi.org/10.5281/zenodo.3236252 (2018).Claes, J. et al. Valuing nature conservation: a methodology for quantifying the benefits of protecting the planet’s natural capital (McKinsey & Company, 2020).Retsa, A., Schelske, O., Wilke, B., Rutherford, G. & de Jong, R. Biodiversity and ecosystem services: a business case for re/insurance (Swiss Re, 2020).Petersson, M. & Stoett, P. Lessons learnt in global biodiversity governance. Int. Environ. Agreem. Polit. Law Econ. 22, 333–352 (2022).
    Google Scholar 
    Dasgupta, P. The economics of biodiversity: the Dasgupta review. GOV.UK www.gov.uk/official-documents. (2021).Furumo, P. R. & Lambin, E. F. Scaling up zero-deforestation initiatives through public-private partnerships: a look inside post-conflict Colombia. Glob. Environ. Change 62, 1–13 (2020).Article 

    Google Scholar 
    Hale, T. & Roger, C. Orchestration and transnational climate governance. Rev. Int. Organ. 9, 59–82 (2014).Article 

    Google Scholar 
    Ring, I. & Barton, D. N. Economic instruments in policy mixes for biodiversity conservation and ecosystem governance. in Handbook of Ecological Economics (eds Martinez-Alier, J. & Muradian, R.) Ch, 17 (Edward Elgar, 2015).Von Essen, M. & Lambin, E. Jurisdictional approaches to sustainable resource use. Front. Ecol. Environ. 19, 159–167 (2021).Article 

    Google Scholar 
    Taylor, C., Pollard, S., Rocks, S. & Angus, A. Selecting policy instruments for better environmental regulation: a critique and future research agenda. Environ. Policy Gov. 22, 268–292 (2012).Article 

    Google Scholar 
    Ring, I. & Schröter-Schlaack, C. Instrument mixes for biodiversity policies. POLICYMIX Report https://policymix.nina.no (2011).Howlett, M. & Rayner, J. Design principles for policy mixes: cohesion and coherence in ‘new governance arrangements’. Policy Soc. 26, 1–18 (2007).
    Google Scholar 
    Soulé, M. The “new conservation”. Conserv. Biol. 27, 895–897 (2013).Article 

    Google Scholar 
    Mace, G. M. Whose conservation? Science 345, 1558–1560 (2014).Article 
    CAS 

    Google Scholar 
    Runhaar, H., Driessen, P. & Uittenbroek, C. Towards a systematic framework for the analysis of environmental policy integration. Environ. Policy Gov. 24, 233–246 (2014).Article 

    Google Scholar 
    Visseren-Hamakers, I. J. Integrative governance: the relationships between governance instruments taking center stage. Environ. Plan. C. Polit. Space 36, 1341–1354 (2018).Article 

    Google Scholar 
    Lafferty, W. & Hovden, E. Environmental policy integration: towards an analytical framework. Environ. Polit. 12, 1–22 (2003).Article 

    Google Scholar 
    Milner-Gulland, E. J. et al. Four steps for the Earth: mainstreaming the post-2020 global biodiversity framework. One Earth 4, 75–87 (2021).Article 

    Google Scholar 
    Decision adopted by the conference of the parties to the Convention on Biological Diversity. 14/3 Mainstreaming biodiversity in the energy and mining, infrastructure, manufacturing and processing sectors. Convention on Biological Diversity https://www.cbd.int/doc/decisions/cop-14/cop-14-dec-03-en.pdf (2018).Update of the zero draft of the post-2020 global biodiversity framework. Convention on Biological Diversity https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdf (2020).Whitehorn, P. R. et al. Mainstreaming biodiversity: a review of national strategies. Biol. Conserv. 235, 157–163 (2019).Article 

    Google Scholar 
    Alpízar, F. et al. Mainstreaming of natural capital and biodiversity into planning and decision-making: cases from Latin America and the Caribbean (IDB, 2020).Daily, G. Nature’s Services (Island Press, 1997).Hill, R. et al. Working with indigenous, local and scientific knowledge in assessments of nature and nature’s linkages with people. Curr. Opin. Environ. Sustain. 43, 8–20 (2020).Article 

    Google Scholar 
    Baptiste, B. et al. Greening peace in Colombia. Nat. Ecol. Evol. 1, 1–3 (2017).Article 

    Google Scholar 
    Biodiversidad en cifras. Instituto Alexander von Humboldt https://cifras.biodiversidad.co/ (2022).Censo nacional de población y vivienda. Estadísticas para grupos étnicos. DANE https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/grupos-etnicos/informacion-tecnica (2018).Boyd, E., Corbera, E. & Estrada, M. UNFCCC negotiations (pre-Kyoto to COP-9): what the process says about the politics of CDM-sinks. Int. Environ. Agreem. Polit. Law Econ. 8, 95–112 (2008).
    Google Scholar 
    Alvarez, C. F. et al. Evaluación nacional de biodiversidad y servicios ecosistémicos: resumen para tomadores de decisión. Instituto Alexander von Humboldt. http://www.humboldt.org.co/images/pdf/10721/RTDFinalv290621.pdf (2021).Lambin, E. F. et al. Effectiveness and synergies of policy instruments for land use governance in tropical regions. Glob. Environ. Change 28, 129–140 (2014).Article 

    Google Scholar 
    Hoban, S. et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 248, 108654 (2020).Article 

    Google Scholar 
    Laikre, L. Genetic diversity is overlooked in international conservation policy implementation. Conserv. Genet. 11, 349–354 (2010).Article 

    Google Scholar 
    Ministerio de Ambiente y Desarrollo Sostenible. Resolución 1912 del 15 de Septiembre de 2017, listado de especies silvestres amenazadas de la diversidad biológica colombiana continental y marino costera en el territorio nacional. (2017). https://www.minambiente.gov.co/wp-content/uploads/2021/10/resolucion-1912-de-2017.pdfNewton, A. C. Biodiversity risks of adopting resilience as a policy goal. Conserv. Lett. 9, 369–376 (2016).Article 

    Google Scholar 
    Jeanrenaud, S. Changing people/nature representations in international conservation discourses. IDS Bull. 33, 111–122 (2002).Article 

    Google Scholar 
    Louder, E. & Wyborn, C. Biodiversity narratives: stories of the evolving conservation landscape. Environ. Conserv. 47, 251–259 (2020).Article 

    Google Scholar 
    Bonilla-Mejía, L. & Higuera-Mendieta, I. Protected areas under weak institutions: evidence from Colombia. World Dev. 122, 585–596 (2019).Article 

    Google Scholar 
    African Development Bank Group et al. Joint statement by the Multilateral Development Banks at Paris, COP21. European Investment Bank https://www.eib.org/attachments/press/joint-mdb-statement-climate_nov-28_final.pdf (2021).Smith, T. et al. Biodiversity means business: reframing global biodiversity goals for the private sector. Conserv. Lett. 13, e12690 (2020).Article 

    Google Scholar 
    Friedman, K., Garcia, S. M. & Rice, J. Mainstreaming biodiversity in fisheries. Mar. Policy 95, 209–220 (2018).Article 

    Google Scholar 
    Turismo de naturaleza, oportunidad para conocer y proteger la biodiversidad de Colombia. MADS https://www.minambiente.gov.co/negocios-verdes/turismo-de-naturaleza-oportunidad-para-conocer-y-proteger-la-biodiversidad-de-colombia/ (2022).Pacheco, P., Schoneveld, G., Dermawan, A., Komarudin, H. & Djama, M. Governing sustainable palm oil supply: disconnects, complementarities, and antagonisms between state regulations and private standards. Regul. Gov. 14, 568–598 (2020).Article 

    Google Scholar 
    Peters, B. G. & Pierre, J. Developments in intergovernmental relations: towards multi-level governance. Policy Polit. 29, 131–135 (2001).Article 

    Google Scholar 
    Lustig, N. Fiscal redistribution in middle income countries. OECD Social, Employment and Migration Working Papers. 171 (2015).Mooney, H. A. & Cleland, E. E. The evolutionary impact of invasive species. Proc. Natl Acad. Sci. USA 98, 5446–5451 (2001).Article 
    CAS 

    Google Scholar 
    Rule of law index 2020. World Justice Project https://worldjusticeproject.org/sites/default/files/documents/WJP-ROLI-2020-Online_0.pdf (2020).Recommendation of the council on policy coherence for sustainable development OECD/LEGAL/0381. OECD https://www.oecd.org/gov/pcsd/recommendation-on-policy-coherence-for-sustainable-development-eng.pdf (2019).Arellana, J., Oviedo, D., Guzman, L. A. & Alvarez, V. Urban transport planning and access inequalities: a tale of two Colombian cities. Res. Transp. Bus. Manag. https://doi.org/10.1016/j.rtbm.2020.100554 (2020).Leyes | Ministerio de Ambiente y Desarrollo Sostenible. MADS https://www.minambiente.gov.co/index.php/normativa/leyes (2021).Cavelier Adarve, I. & Rodríguez Becerra, M. in Nuevos Enfoques para el Estudio de las Relaciones Internacionales de Colombia (eds Tickner A.B. & Bitar, S.) Ch. 4 (Ediciones Uniandes-Universidad de los Andes, 2017).Política Nacional para la Gestión Integral de la biodiversidad y los Servicios Ecosistémicos (PNGIBSE) MADS (2012). https://www.minambiente.gov.co/wp-content/uploads/2021/10/Poli%CC%81tica-Nacional-de-Gestio%CC%81n-Integral-de-la-Biodiver.pdfPotts, J., Wenban-Smith, M. & Turley, L. State of sustainability initiatives review: standards and the extractive economy (IISD, 2018).Junguito Bonnet, R. El papel de los gremios en la economía colombiana. Rev. Desarro. Soc. 82, 103–131 (2019).Article 

    Google Scholar 
    Savvidou, G., Dzebo, A. & Atteridge, A. Aid Atlas: new tool to visualize development finance flows. JSTOR https://www.jstor.org/stable/resrep22982 (2019).BIOFIN- Movilizando recursos para la biodiversidad en Colombia, plan financiero. UNDP https://www.biofin.org/sites/default/files/content/knowledge_products/Plan%20Financiero%20Movilizando%20recursos%20para%20la%20biodiversidad%20en%20Colombia.pdf (2018).Echeverri, A. et al. Data for: a policy mix approach to biodiversity governance in Colombia (Dryad, 2022).Gibbs, G. Analyzing Qualitative Data (SAGE Publications, 2007).Maxwell, J. A. Qualitative Research Design: An Interactive Approach (SAGE Publications, 2012).Gould, R. K. et al. A protocol for eliciting nonmaterial values through a cultural ecosystem services frame. Conserv. Biol. 29, 575–586 (2015).Article 

    Google Scholar 
    Kremen, C. Managing ecosystem services: what do we need to know about their ecology? Ecol. Lett. 8, 468–479 (2005).Article 

    Google Scholar 
    Robinson, J. G. Ethical pluralism, pragmatism, and sustainability in conservation practice. Biol. Conserv. 144, 958–965 (2011).Article 

    Google Scholar 
    Sandbrook, C. What is conservation? Oryx 49, 565–566 (2015).Article 

    Google Scholar 
    Ricotta, C. et al. Measuring the functional redundancy of biological communities: a quantitative guide. Methods Ecol. Evol. 7, 1386–1395 (2016).Article 

    Google Scholar 
    Dı́az, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).Article 

    Google Scholar  More