More stories

  • in

    Ostreopsis Schmidt and Coolia Meunier (Dinophyceae, Gonyaulacales) from Cook Islands and Niue (South Pacific Ocean), including description of Ostreopsis tairoto sp. nov.

    Verma, A. et al. The genetic basis of toxin biosynthesis in dinofagellates. Microorganisms 7, 222 (2019).Article 
    CAS 

    Google Scholar 
    Hallegraeff, G. M. Ocean climate change, phytoplankton community responses, and harmful algal blooms: A formidable predictive challenge1. J. Phycol. 46, 220–235 (2010).Article 
    CAS 

    Google Scholar 
    Hoppenrath, M., Murray, S., Chomérat, N., Horiguchi, T. Marine Benthic Dinoflagellates – Unveiling Their Worldwide Biodiversity (Kleine Senckenberg-reihe 54). E. Schweizerbart’sche Verlagbuchhandlung (2014).Luo, Z. et al. Cryptic diversity within the harmful dinoflagellate Akashiwo sanguinea in coastal Chinese waters is related to differentiated ecological niches. Harmful Algae 66, 88–96 (2017).Article 

    Google Scholar 
    Litaker, R. W. et al. Taxonomy of Gambierdiscus including four new species, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri and Gambierdiscus ruetzleri (Gonyaulacales, Dinophyceae). Phycologia 48, 344–390 (2009).Article 

    Google Scholar 
    Hoppenrath, M. et al. Taxonomy and phylogeny of the benthic Prorocentrum species (Dinophyceae)—A proposal and review. Harmful Algae 27, 1–28 (2013).Article 

    Google Scholar 
    Wells, M. L. et al. Future HAB science: Directions and challenges in a changing climate. Harmful Algae 91, 101632 (2020).Article 

    Google Scholar 
    Rhodes, L. World-wide occurrence of the toxic dinoflagellate genus Ostreopsis Schmidt. Toxicon 57, 400–407 (2011).Article 
    CAS 

    Google Scholar 
    Parsons, M. L. et al. Gambierdiscus and Ostreopsis: Reassessment of the state of knowledge of their taxonomy, geography, ecophysiology, and toxicology. Harmful Algae 14, 107–129 (2012).Article 
    CAS 

    Google Scholar 
    Schmidt, J. Preliminary report of the botanical results of the Danish expedition to Siam (1899–1900). Part IV Peridiniales. Bot. Tidsskr. 24, 212–221 (1901).
    Google Scholar 
    Accoroni, S. et al. Ostreopsis fattorussoi sp. nov. (Dinophyceae), a new benthic toxic Ostreopsis species from the eastern Mediterranean Sea. J. Phycol. 52, 1064–1084 (2016).Article 
    CAS 

    Google Scholar 
    Verma, A., Hoppenrath, M., Dorantes-Aranda, J. J., Harwood, D. T. & Murray, S. A. Molecular and phylogenetic characterization of Ostreopsis (Dinophyceae) and the description of a new species, Ostreopsis rhodesae sp. nov., from a subtropical Australian lagoon. Harmful Algae 60, 116–130 (2016).Article 
    CAS 

    Google Scholar 
    Fukuyo, Y. Taxonomical study on benthic dinoflagellates collected in coral reefs. Nippon Suisan Gakk. 47, 967–978 (1981).Article 

    Google Scholar 
    Faust, M. A. Three new Ostreopsis species (Dinophyceae): O. marinus sp. nov., O. belizeanus sp. nov., and O. caribbeanus sp. nov.. Phycologia 38, 92–99 (1999).Article 

    Google Scholar 
    Faust, M. A. & Morton, S. L. Morphology and ecology of the marine dinoflagellate Ostreopsis labens sp. nov. (Dinophyceae). J. Phycol. 31, 456–463 (1995).Article 

    Google Scholar 
    Chomérat, N., Bilien, G., Couté, A. & Quod, J.-P. Reinvestigation of Ostreopsis mascarenensis Quod (Dinophyceae, Gonyaulacales) from Reunion Island (SW Indian Ocean): Molecular phylogeny and emended description. Phycologia 59, 140–153 (2020).Article 

    Google Scholar 
    Boisnoir, A., Bilien, G., Lemée, R. & Chomérat, N. First insights on the diversity of the genus Ostreopsis (Dinophyceae, Gonyaulacales) in Guadeloupe Island, with emphasis on the phylogenetic position of O. heptagona. Eur. J. Protistol. 83, 125875 (2022).Article 

    Google Scholar 
    Chomérat, N. et al. Ostreopsis lenticularis Y. Fukuyo (Dinophyceae, Gonyaulacales) from French Polynesia (South Pacific Ocean): A revisit of its morphology, molecular phylogeny and toxicity. Harmful Algae 84, 95–111 (2019).Article 

    Google Scholar 
    Nguyen-Ngoc, L. et al. Morphological and genetic analyses of Ostreopsis (Dinophyceae, Gonyaulacales, Ostreopsidaceae) species from Vietnamese waters with a re-description of the type species, O. siamensis 1. J. Phycol. 57, 1059–1083 (2021).Article 

    Google Scholar 
    Faust, M. A. Observation of sand-dwelling toxic dinoflagellates (Dinophyceae) from widely differing sites, including two new species. J. Phycol. 31, 996–1003 (1995).Article 

    Google Scholar 
    David, H., Laza-Martínez, A., Miguel, I. & Orive, E. Broad distribution of Coolia monotis and restricted distribution of Coolia cf. canariensis (Dinophyceae) on the Atlantic coast of the Iberian Peninsula. Phycologia 53, 342–352 (2014).Article 

    Google Scholar 
    Rhodes, L. L. et al. Toxic dinoflagellates (Dinophyceae) from Rarotonga Cook Islands. Toxicon 56, 751–758 (2010).Article 
    CAS 

    Google Scholar 
    Meunier, A. Coolia monotis sp. nov. in Mémoires du Musée Royal d’Histoire Naturelle de Belgique. Microplankton Mer Flamande, Méme partie—Les Péridiniens 8, 68–69 (1919).
    Google Scholar 
    Rhodes, L. et al. Epiphytic dinoflagellates in sub-tropical New Zealand, in particular the genus Coolia Meunier. Harmful Algae 34, 36–41 (2014).Article 

    Google Scholar 
    Rhodes, L., Adamson, J., Suzuki, T., Briggs, L. & Garthwaite, I. Toxic marine epiphytic dinoflagellates, Ostreopsis siamensis and Coolia monotis (Dinophyceae), in New Zealand. N. Z. J. Mar. Freshw. Res. 34, 371–383 (2000).Article 

    Google Scholar 
    Fraga, S., Penna, A., Bianconi, I., Paz, B. & Zapata, M. Coolia canariensis sp. nov. (Dinophyceae), a new nontoxic epiuphytic benthic dinoflagellate from the Canary Islands 1. J. Phycol. 44, 1060–1070 (2008).Article 
    CAS 

    Google Scholar 
    Lindemann, E. Abteilung Peridineae (Dinoflagellate). In Die Natürlichen Pflanzenfamilien nebst ihren Gattungen und wichtigeren Arten insbesondere den Nutzpflanzen, 3–104 (1928).Biecheler, B. Recherches sur les Péridiniens. Bulletin biologique de France et de Belgique Supplement 36, 1–149 (1952).
    Google Scholar 
    Balech, E. Étude des dinoflagellés du sable de Roscoff. Revue Algologique, Nouvelle Serie 2, 29–52 (1956).

    Google Scholar 
    Mohammad-Noor, N. et al. Autecology and phylogeny of Coolia tropicalis and Coolia malayensis (Dinophyceae), with emphasis on taxonomy of C. tropicalis based on light microscopy, scanning electron microscopy and LSU r DNA 1. J. Phycol. 49, 536–545 (2013).Article 

    Google Scholar 
    Leaw, C. P., Lim, P. T., Cheng, K. W., Ng, B. K. & Usup, G. Morphology and molecular characterization of a new species of thecate benthic dinoflagellate, Coolia malayensis sp. nov. (Dinophyceae) 1. J. Phycol. 46, 162–171 (2010).Article 
    CAS 

    Google Scholar 
    Ten-Hage, L., Turquet, J., Quod, J. & Couté, A. Coolia areolata sp. nov. (Dinophyceae), a new sand-dwelling dinoflagellate from the southwestern Indian Ocean. Phycologia 39, 377–383 (2000).Article 

    Google Scholar 
    Karafas, S., York, R. & Tomas, C. Morphological and genetic analysis of the Coolia monotis species complex with the introduction of two new species, Coolia santacroce sp. nov. and Coolia palmyrensis sp. nov. (Dinophyceae). Harmful Algae 46, 18–33 (2015).Article 
    CAS 

    Google Scholar 
    David, H., Laza-Martínez, A., Rodríguez, F., Fraga, S. & Orive, E. Coolia guanchica sp. nov.(Dinophyceae) a new epibenthic dinoflagellate from the Canary Islands (NE Atlantic Ocean). Eur. J. Phycol. 55, 76–88 (2020).Article 
    CAS 

    Google Scholar 
    Sato, S. et al. Phylogeography of Ostreopsis along west Pacific coast, with special reference to a novel clade from Japan. PLoS One 6, e27983 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Penna, A. et al. Characterization of Ostreopsis and Coolia (Dinophyceae) isolates in the western Mediterranean Sea based on morphology, toxicity and internal transcribed spacer 5.8 S rDNA sequences. J. Phycol. 41, 212–225 (2005).Article 
    CAS 

    Google Scholar 
    Tawong, W. et al. Distribution and molecular phylogeny of the dinoflagellate genus Ostreopsis in Thailand. Harmful Algae 37, 160–171 (2014).Article 

    Google Scholar 
    Faimali, M. et al. Toxic effects of harmful benthic dinoflagellate Ostreopsis ovata on invertebrate and vertebrate marine organisms. Mar. Environ. Res. 76, 97–107 (2012).Article 
    CAS 

    Google Scholar 
    Tubaro, A. et al. Case definitions for human poisonings postulated to palytoxins exposure. Toxicon 57, 478–495 (2011).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Investigation of the toxin profile of Greek mussels Mytilus galloprovincialis by liquid chromatography mass spectrometry. Toxicon 47, 174–181 (2006).Article 
    CAS 

    Google Scholar 
    Giussani, V. et al. Active role of the mucilage in the toxicity mechanism of the harmful benthic dinoflagellate Ostreopsis cf. ovata. Harmful Algae 44, 46–53 (2015).Article 
    CAS 

    Google Scholar 
    Usami, M. et al. Palytoxin analogs from the dinoflagellate Ostreopsis siamensis. J. Am. Chem. Soc. 117, 5389–5390 (1995).Article 
    CAS 

    Google Scholar 
    Ukena, T. et al. Structure elucidation of ostreocin D, a palytoxin analog isolated from the dinoflagellate Ostreopsis siamensis. Biosci. Biotechnol. Biochem. 65, 2585–2588 (2001).Article 
    CAS 

    Google Scholar 
    Amzil, Z. et al. Ovatoxin-a and palytoxin accumulation in seafood in relation to Ostreopsis cf. ovata blooms on the French Mediterranean coast. Mar. Drugs 10, 477–496 (2012).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Unique toxin profile of a Mediterranean Ostreopsis cf. ovata strain: HR LC-MS n characterization of ovatoxin-f, a new palytoxin congener. Chem. Res. Toxicol. 25, 1243–1252 (2012).Article 
    CAS 

    Google Scholar 
    Laza-Martinez, A., Orive, E. & Miguel, I. Morphological and genetic characterization of benthic dinoflagellates of the genera Coolia, Ostreopsis and Prorocentrum from the south-eastern Bay of Biscay. Eur. J. Phycol. 46, 45–65 (2011).Article 

    Google Scholar 
    Holmes, M. J., Lewis, R. J., Jones, A. & Hoy, A. W. W. Cooliatoxin, the first toxin from Coolia monotis (Dinophyceae). Nat. Toxins 3, 355–362 (1995).Article 
    CAS 

    Google Scholar 
    Rhodes, L. L. & Thomas, A. E. Coolia monotis (Dinophyceae): A toxic epiphytic microalgal species found in New Zealand (Note). N. Z. J. Mar. Freshw. Res. 31, 139–141 (1997).Article 
    CAS 

    Google Scholar 
    Tibiriçá, C. EJd. A. et al. Diversity and toxicity of the genus Coolia Meunier in Brazil, and detection of 44-methyl Gambierone in Coolia tropicalis. Toxins 12, 327 (2020).Article 

    Google Scholar 
    Tillmann, U., Hoppenrath, M. & Gottschling, M. Reliable determination of Prorocentrum micans Ehrenb. (Prorocentrales, Dinophyceae) based on newly collected material from the type locality. Eur. J. Phycol 54, 417–431 (2019).Article 
    CAS 

    Google Scholar 
    Chomérat, N. et al. Taxonomy and toxicity of a bloom-forming Ostreopsis species (Dinophyceae, Gonyaulacales) in Tahiti island (South Pacific Ocean): One step further towards resolving the identity of O. siamensis. Harmful Algae 98, 101888 (2020).Article 

    Google Scholar 
    Rhodes, L. L. et al. The dinoflagellate genera Gambierdiscus and Ostreopsis from subtropical Raoul Island and North Meyer Island, Kermadec Islands. N. Z. J. Mar. Freshw. Res. 51, 490–504 (2017).Article 
    CAS 

    Google Scholar 
    Penna, A. et al. A phylogeographical study of the toxic benthic dinoflagellate genus Ostreopsis Schmidt. J. Biogeogr. 37, 830–841 (2010).Article 

    Google Scholar 
    Zhang, H. et al. Morphology and molecular phylogeny of Ostreopsis cf. ovata and O. lenticularis (Dinophyceae) from Hainan Island South China Sea. Phycol. Res. 66, 3–14 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Carnicer, O., García-Altares, M., Andree, K. B., Diogène, J. & Fernández-Tejedor, M. First evidence of Ostreopsis cf. ovata in the eastern tropical Pacific Ocean Ecuadorian coast. Bot. Mar. 59, 267–274 (2016).
    Google Scholar 
    Nascimento, S. M. et al. Ostreopsis cf. ovata (Dinophyceae) molecular phylogeny, morphology, and detection of ovatoxins in strains and field samples from Brazil. Toxins 12, 70 (2020).Article 
    CAS 

    Google Scholar 
    Caron, D. A. et al. Defining DNA-based operational taxonomic units for microbial-eukaryote ecology. Appl. Environ. Microbiol. 75, 5797–5808 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    McManus, G. B. & Katz, L. A. Molecular and morphological methods for identifying plankton: What makes a successful marriage?. J. Plankton Res. 31, 1119–1129 (2009).Article 
    CAS 

    Google Scholar 
    De Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605 (2015).Article 

    Google Scholar 
    del Campo, J. et al. Ecological and evolutionary significance of novel protist lineages. Eur. J. Protistol. 55, 4–11 (2016).Article 

    Google Scholar 
    Hallegraeff, G. Harmful algal blooms: A global overview. Man. Harmful Mar. Microalgae 33, 1–22 (2003).
    Google Scholar 
    Penna, A., Casabianca, S., Guerra, A. F., Vernesi, C. & Scardi, M. Analysis of phytoplankton assemblage structure in the Mediterranean Sea based on high-throughput sequencing of partial 18S rRNA sequences. Mar. Genom. 36, 49–55 (2017).Article 

    Google Scholar 
    Zarauz, L. & Irigoien, X. Effects of Lugol’s fixation on the size structure of natural nano–microplankton samples, analyzed by means of an automatic counting method. J. Plankton Res. 30, 1297–1303 (2008).Article 

    Google Scholar 
    De Luca, D., Piredda, R., Sarno, D. & Kooistra, W. H. Resolving cryptic species complexes in marine protists: phylogenetic haplotype networks meet global DNA metabarcoding datasets. ISME J. 15, 1931–1942 (2021).Article 

    Google Scholar 
    Wang, Z. et al. Phytoplankton community and HAB species in the South China Sea detected by morphological and metabarcoding approaches. Harmful Algae 118, 102297 (2022).Article 
    CAS 

    Google Scholar 
    Le Bescot, N. et al. Global patterns of pelagic dinoflagellate diversity across protist size classes unveiled by metabarcoding. Environ. Microbiol. 18, 609–626 (2016).Article 

    Google Scholar 
    Hoppenrath, M. Dinoflagellate taxonomy—A review and proposal of a revised classification. Mar. Biodivers. 47, 381–403 (2017).Article 

    Google Scholar 
    Boenigk, J., Ereshefsky, M., Hoef-Emden, K., Mallet, J. & Bass, D. Concepts in protistology: Species definitions and boundaries. Eur. J. Protistol. 48, 96–102 (2012).Article 

    Google Scholar 
    David, H., Laza-Martínez, A., Miguel, I. & Orive, E. Ostreopsis cf. siamensis and Ostreopsis cf. ovata from the Atlantic Iberian Peninsula: Morphological and phylogenetic characterization. Harmful Algae 30, 44–55 (2013).Article 
    CAS 

    Google Scholar 
    Aligizaki, K. & Nikolaidis, G. The presence of the potentially toxic genera Ostreopsis and Coolia (Dinophyceae) in the North Aegean Sea Greece. Harmful Algae 5, 717–730 (2006).Article 

    Google Scholar 
    Selina, M. S. & Orlova, T. Y. First occurrence of the genus Ostreopsis (Dinophyceae) in the Sea of Japan. Bot. Mar. 53, 243–249 (2010).Article 

    Google Scholar 
    Kang, N. S. et al. Morphology and molecular characterization of the epiphytic benthic dinoflagellate Ostreopsis cf. ovata in the temperate waters off Jeju Island Korea. Harmful Algae 27, 98–112 (2013).Article 
    CAS 

    Google Scholar 
    Momigliano, P., Sparrow, L., Blair, D. & Heimann, K. The diversity of Coolia spp. (Dinophyceae Ostreopsidaceae) in the central Great Barrier Reef region. PloS One 8, e79278 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Nguyen, L. N. Morphology and distribution of the three epiphytic dinoflagellate species Coolia monotis, C. tropicalis, and C. canariensis (Ostreopsidaceae, Gonyaulacales, Dinophyceae) from Vietnamese coastal waters. Ocean Sci. 49, 211–221 (2014).Article 

    Google Scholar 
    Verma, A. et al. Functional significance of phylogeographic structure in a toxic benthic marine microbial eukaryote over a latitudinal gradient along the East Australian Current. Ecol. Evol. 10, 6257–6273 (2020).Article 

    Google Scholar 
    Wayne Litaker, R. et al. Recognizing dinoflagellate species using ITS rDNA sequences 1. J. Phycol. 43, 344–355 (2007).Article 

    Google Scholar 
    Kremp, A. et al. Phylogenetic relationships, morphological variation, and toxin patterns in the Alexandrium ostenfeldii (D inophyceae) complex: Implications for species boundaries and identities. J. Phycol. 50, 81–100 (2014).Article 
    CAS 

    Google Scholar 
    Nascimento, S. M., da Silva, R. A., Oliveira, F., Fraga, S. & Salgueiro, F. Morphology and molecular phylogeny of Coolia tropicalis, Coolia malayensis and a new lineage of the Coolia canariensis species complex (Dinophyceae) isolated from Brazil. Eur. J. Phycol. 54, 484–496 (2019).Article 
    CAS 

    Google Scholar 
    Phua, Y. H., Roy, M. C., Lemer, S., Husnik, F. & Wakeman, K. C. Diversity and toxicity of Pacific strains of the benthic dinoflagellate Coolia (Dinophyceae), with a look at the Coolia canariensis species complex. Harmful Algae 109, 102120 (2021).Article 

    Google Scholar 
    Selwood, A. I. et al. A sensitive assay for palytoxins, ovatoxins and ostreocins using LC-MS/MS analysis of cleavage fragments from micro-scale oxidation. Toxicon 60, 810–820 (2012).Article 
    CAS 

    Google Scholar 
    Ciminiello, P. et al. Isolation and structure elucidation of ovatoxin-a, the major toxin produced by Ostreopsis ovata. J. Am. Chem. Soc. 134, 1869–1875 (2012).Article 
    CAS 

    Google Scholar 
    Dell’Aversano, C. et al. Ostreopsis cf. ovata from the Mediterranean area. Variability in toxinprofiles and structural elucidation of unknowns through LC-HRMSn. In Proc. of the 16th International Conference on Harmful Algae, 70–73 (2014).Terajima, T., Uchida, H., Abe, N. & Yasumoto, T. Structure elucidation of ostreocin-A and ostreocin-E1, novel palytoxin analogs produced by the dinoflagellate Ostreopsis siamensis, using LC/Q-TOF MS. Biosci. Biotechnol. Biochem. 83, 381–390 (2019).Article 
    CAS 

    Google Scholar 
    Tartaglione, L. et al. Chemical, molecular, and eco-toxicological investigation of Ostreopsis sp. from Cyprus Island: Structural insights into four new ovatoxins by LC-HRMS/MS. Anal. Bioanal. Chem. 408, 915–932 (2016).Article 
    CAS 

    Google Scholar 
    Murray, J. S. et al. The role of 44-methylgambierone in ciguatera fish poisoning: Acute toxicity, production by marine microalgae and its potential as a biomarker for Gambierdiscus spp. Harmful Algae 97, 101853 (2020).Article 
    CAS 

    Google Scholar 
    Nakajima, I., Oshima, Y. & Yasumoto, T. Toxicity of benthic dinoflagellates found in coral reef. Toxicity of benthic dinoflagellates in Okinawa. Nippon Suisan Gakk. 47, 1029–1033 (1981).Article 

    Google Scholar 
    Boente-Juncal, A. et al. Structure elucidation and biological evaluation of maitotoxin-3, a homologue of gambierone, from Gambierdiscus belizeanus. Toxins 11, 79 (2019).Article 
    CAS 

    Google Scholar 
    Stuart, J. et al. Geographical distribution, molecular and toxin diversity of the dinoflagellate species Gambierdiscus honu in the Pacific region. Harmful Algae 118, 102308 (2022).Article 
    CAS 

    Google Scholar 
    Smith, K. F. et al. A new Gambierdiscus species (Dinophyceae) from Rarotonga, Cook Islands: Gambierdiscus cheloniae sp. nov. Harmful Algae 60, 45–56 (2016).Article 
    CAS 

    Google Scholar 
    Guillard, R. R. L. Culture of Marine Invertebrates Animals 29–60 (Plenum Press, 1975).Book 

    Google Scholar 
    Chomérat, N., iti Gatti, C. M., Nézan, É. & Chinain, M. Studies on the benthic genus Sinophysis (Dinophysales, Dinophyceae) II. S. canaliculata from Rapa Island (French Polynesia). Phycologia 56, 193–203 (2017).Article 

    Google Scholar 
    Abràmoff, M. D., Magalhães, P. J. & Ram, S. J. Image processing with ImageJ. Biophotonics Int. 11, 36–42 (2004).
    Google Scholar 
    Verma, A. et al. Molecular phylogeny, morphology and toxigenicity of Ostreopsis cf. siamensis (Dinophyceae) from temperate south-east Australia. Phycol. Res. 64, 146–159 (2016).Article 
    CAS 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).Article 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).Article 
    CAS 

    Google Scholar 
    Posada, D. & Crandall, K. A. MODELTEST: Testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).Article 
    CAS 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).Article 
    CAS 

    Google Scholar 
    Murray, J. S. et al. Acute toxicity of gambierone and quantitative analysis of gambierones produced by cohabitating benthic dinoflagellates. Toxins 13, 333 (2021).Article 
    CAS 

    Google Scholar 
    Murray, J. S., Boundy, M. J., Selwood, A. I. & Harwood, D. T. Development of an LC-MS/MS method to simultaneously monitor maitotoxins and selected ciguatoxins in algal cultures and P-CTX-1B in fish. Harmful Algae 80, 80–87 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Diverse flower-visiting responses among pollinators to multiple weather variables in buckwheat pollination

    Mooney, H. et al. Biodiversity, climate change, and ecosystem services. Curr. Opin. Environ. Sustain. 1, 46–54 (2009).Article 

    Google Scholar 
    Perrings, C., Duraiappah, A., Larigauderie, A. & Mooney, H. The biodiversity and ecosystem services science-policy interface. Science 331, 1139–1140 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Yachi, S. & Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Proc. Natl. Acad. Sci. USA 96, 1463–1468 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Elmqvist, T. et al. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 1, 488–494 (2003).Article 

    Google Scholar 
    Gonzalez, A. & Loreau, M. The causes and consequences of compensatory dynamics in ecological communities. Annu. Rev. Ecol. Evol. Syst. 40, 393–414 (2009).Article 

    Google Scholar 
    Blüthgen, N. & Klein, A.-M. Functional complementarity and specialisation: The role of biodiversity in plant–pollinator interactions. Basic Appl. Ecol. 12, 282–291 (2011).Article 

    Google Scholar 
    Brittain, C., Kremen, C. & Klein, A. M. Biodiversity buffers pollination from changes in environmental conditions. Glob. Change Biol. 19, 540–547 (2013).Article 
    ADS 

    Google Scholar 
    Rader, R., Reilly, J., Bartomeus, I. & Winfree, R. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops. Glob. Chang. Biol. 19, 3103–3110 (2013).Article 
    ADS 

    Google Scholar 
    Rogers, S. R., Tarpy, D. R. & Burrack, H. J. Bee species diversity enhances productivity and stability in a perennial crop. PLoS ONE 9, e97307 (2014).Article 
    ADS 

    Google Scholar 
    Kühsel, S. & Blüthgen, N. High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat. Commun. 6, 1–10 (2015).Article 

    Google Scholar 
    Knop, E. et al. Rush hours in flower visitors over a day-night cycle. Insect Conserv. Divers. 11, 267–275 (2018).Article 

    Google Scholar 
    Goodwin, E. K., Rader, R., Encinas-Viso, F. & Saunders, M. E. Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian Alpine zone. Environ. Entomol. 50, 348–358 (2021).Article 

    Google Scholar 
    Feit, B. et al. Landscape complexity promotes resilience of biological pest control to climate change. Proc. Biol. Sci. 288, 20210547 (2021).
    Google Scholar 
    Tomas, F., Martínez-Crego, B., Hernán, G. & Santos, R. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Glob. Chang. Biol. 21, 4021–4030 (2015).Article 
    ADS 

    Google Scholar 
    Mori, A. S., Furukawa, T. & Sasaki, T. Response diversity determines the resilience of ecosystems to environmental change. Biol. Rev. 88, 349–364 (2013).Article 

    Google Scholar 
    Cariveau, D. P., Williams, N. M., Benjamin, F. E. & Winfree, R. Response diversity to land use occurs but does not consistently stabilise ecosystem services provided by native pollinators. Ecol. Lett. 16, 903–911 (2013).Article 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608. https://doi.org/10.1126/science.1230200 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013).Article 

    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Klein, A.-M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 274, 303–313 (2007).Article 

    Google Scholar 
    Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: A modelling analysis. Lancet 386, 1964–1972 (2015).Article 

    Google Scholar 
    González-Varo, J. P. et al. Combined effects of global change pressures on animal-mediated pollination. Trends Ecol. Evol. 28, 524–530 (2013).Article 

    Google Scholar 
    Marshall, L. et al. The interplay of climate and land use change affects the distribution of EU bumblebees. Glob. Change Biol. 24, 101–116 (2018).Article 
    ADS 

    Google Scholar 
    Millard, J. et al. Global effects of land-use intensity on local pollinator biodiversity. Nat. Commun. 12, 1–11 (2021).Article 
    ADS 

    Google Scholar 
    Vasiliev, D. & Greenwood, S. The role of climate change in pollinator decline across the Northern Hemisphere is underestimated. Sci. Total Environ. 775, 145788 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Steffan-Dewenter, I., Münzenberg, U., Bürger, C., Thies, C. & Tscharntke, T. Scale-dependent effects of landscape context on three pollinator guilds. Ecology 83, 1421–1432 (2002).Article 

    Google Scholar 
    Hass, A. L. et al. Landscape configurational heterogeneity by small-scale agriculture, not crop diversity, maintains pollinators and plant reproduction in western Europe. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2017.2242 (2018).Article 

    Google Scholar 
    Winfree, R. & Kremen, C. Are ecosystem services stabilized by differences among species? A test using crop pollination. Proc. R. Soc. B Biol. Sci. 276, 229–237 (2009).Article 

    Google Scholar 
    Jauker, F., Diekoetter, T., Schwarzbach, F. & Wolters, V. Pollinator dispersal in an agricultural matrix: Opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landsc. Ecol. 24, 547–555 (2009).Article 

    Google Scholar 
    Weiner, C. N., Werner, M., Linsenmair, K. E. & Blüthgen, N. Land-use impacts on plant–pollinator networks: Interaction strength and specialization predict pollinator declines. Ecology 95, 466–474 (2014).Article 

    Google Scholar 
    Chain-Guadarrama, A., Martínez-Salinas, A., Aristizábal, N. & Ricketts, T. H. Ecosystem services by birds and bees to coffee in a changing climate: A review of coffee berry borer control and pollination. Agric. Ecosyst. Environ. 280, 53–67 (2019).Article 

    Google Scholar 
    Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant–pollinator interactions?. Ecol. Lett. 12, 184–195 (2009).Article 

    Google Scholar 
    Bartomeus, I. et al. Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ 2, e328 (2014).Article 

    Google Scholar 
    Albrecht, M., Schmid, B., Hautier, Y. & Müller, C. B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 279, 4845–4852 (2012).Article 

    Google Scholar 
    Ellis, C. R., Feltham, H., Park, K., Hanley, N. & Goulson, D. Seasonal complementary in pollinators of soft-fruit crops. Basic Appl. Ecol. 19, 45–55 (2017).Article 

    Google Scholar 
    Brittain, C., Williams, N., Kremen, C. & Klein, A.-M. Synergistic effects of non-Apis bees and honey bees for pollination services. Proc. R. Soc. B Biol. Sci. 280, 20122767 (2013).Article 

    Google Scholar 
    Miñarro, M. & Twizell, K. W. Pollination services provided by wild insects to kiwifruit (Actinidia deliciosa). Apidologie 46, 276–285 (2015).Article 

    Google Scholar 
    Senapathi, D., Goddard, M. A., Kunin, W. E. & Baldock, K. C. Landscape impacts on pollinator communities in temperate systems: Evidence and knowledge gaps. Funct. Ecol. 31, 26–37 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kuehn, I., Frenzel, M. & Schweiger, O. Landscape heterogeneity enhances stability of wild bee abundance under highly varying temperature, but not under highly varying precipitation. Landsc. Ecol. 32, 581–593 (2017).Article 

    Google Scholar 
    Papanikolaou, A. D., Kühn, I., Frenzel, M. & Schweiger, O. Semi-natural habitats mitigate the effects of temperature rise on wild bees. J. Appl. Ecol. 54, 527–536 (2017).Article 

    Google Scholar 
    Orford, K. A., Vaughan, I. P. & Memmott, J. The forgotten flies: The importance of non-syrphid Diptera as pollinators. Proc. R. Soc. B Biol. Sci. 282, 20142934 (2015).Article 

    Google Scholar 
    Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 1–3 (2016).Article 

    Google Scholar 
    Taki, H., Okabe, K., Makino, S. I., Yamaura, Y. & Sueyoshi, M. Contribution of small insects to pollination of common buckwheat, a distylous crop. Ann. Appl. Biol. 155, 121–129 (2009).Article 

    Google Scholar 
    Krkošková, B. & Mrazova, Z. Prophylactic components of buckwheat. Food Res. Int. 38, 561–568 (2005).Article 

    Google Scholar 
    Campbell, J. W., Irvin, A., Irvin, H., Stanley-Stahr, C. & Ellis, J. D. Insect visitors to flowering buckwheat, Fagopyrum esculentum (Polygonales: Polygonaceae), in north-central Florida. Fla. Entomol. 99, 264–268 (2016).Article 

    Google Scholar 
    Hadley, N. F. Water Relations of Terrestrial Arthropods (CUP Archive, 1994).
    Google Scholar 
    Sgolastra, F. et al. Temporal activity patterns in a flower visitor community of Dictamnus albus in relation to some biotic and abiotic factors. Bull. Insectol. 69, 291–300 (2016).
    Google Scholar 
    Vicens, N. & Bosch, J. Weather-dependent pollinator activity in an apple orchard, with special reference to Osmia cornuta and Apis mellifera (Hymenoptera: Megachilidae and Apidae). Environ. Entomol. 29, 413–420 (2000).Article 

    Google Scholar 
    Carlucci, M. B., Brancalion, P. H., Rodrigues, R. R., Loyola, R. & Cianciaruso, M. V. Functional traits and ecosystem services in ecological restoration. Restor. Ecol. 28, 1372–1383 (2020).Article 

    Google Scholar 
    Lavorel, S. Plant functional effects on ecosystem services. (2013).Defra. (ed Food and Rural Affairs Department for Environment) (2019).Agency, J. M. Amedas, https://tenki.jp/past/2019/09/amedas/ (2019).Jacquemart, A.-L., Gillet, C. & Cawoy, V. Floral visitors and the importance of honey bee on buckwheat (Fagopyrum esculentum Moench) in central Belgium. J. Hortic. Sci. Biotechnol. 82, 104–108 (2007).Article 

    Google Scholar 
    Taki, H. et al. Effects of landscape metrics on Apis and non-Apis pollinators and seed set in common buckwheat. Basic Appl. Ecol. 11, 594–602 (2010).Article 

    Google Scholar 
    Dray, S., Legendre, P. & Peres-Neto, P. R. Spatial modelling: A comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196, 483–493 (2006).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Numerical Ecology (Elsevier, 2012).MATH 

    Google Scholar 
    Dray S, et al. adespatial: Multivariate Multiscale Spatial Analysis. R package version 0.3-20, https://CRAN.R-project.org/package=adespatial. (2022).Benjamin, F. E., Reilly, J. R. & Winfree, R. Pollinator body size mediates the scale at which land use drives crop pollination services. J. Appl. Ecol. 51, 440–449 (2014).Article 

    Google Scholar 
    Földesi, R. et al. Relationships between wild bees, hoverflies and pollination success in apple orchards with different landscape contexts. Agric. For. Entomol. 18, 68–75 (2016).Article 

    Google Scholar 
    Oksanen J, et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan. (2022)Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Gelman, A., Carlin, J. B., Stern, H. S. & Rubin, D. B. Bayesian Data Analysis (Chapman and Hall/CRC, 1995).Book 
    MATH 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing (2019).Sasaki, H. & Wagatsuma, T. Bumblebees (Apidae: Hymenoptera) are the main pollinators of common buckwheat, Fogopyrum esculentum, in Hokkaido, Japan. Appl. Entomol. Zool. 42, 659–661 (2007).Article 

    Google Scholar 
    Nagano, Y., Miyashita, T., Taki, H. & Yokoi, T. Diversity of co-flowering plants at field margins potentially sustains an abundance of insects visiting buckwheat, Fagopyrum esculentum, in an agricultural landscape. Ecol. Res. 36, 882–891 (2021).Article 

    Google Scholar 
    Samra, S., Samocha, Y., Eisikowitch, D. & Vaknin, Y. Can ants equal honeybees as effective pollinators of the energy crop Jatropha curcas L. under Mediterranean conditions?. Gcb Bioenergy 6, 756–767 (2014).Article 

    Google Scholar 
    Sugiura, N., Miyazaki, S. & Nagaishi, S. A supplementary contribution of ants in the pollination of an orchid, Epipactis thunbergii, usually pollinated by hover flies. Plant Syst. Evol. 258, 17–26 (2006).Article 

    Google Scholar 
    Natsume, K., Hayashi, S. & Miyashita, T. Ants are effective pollinators of common buckwheat Fagopyrum esculentum. Agric. For. Entomol. 24, 446–452 (2022).Article 

    Google Scholar 
    Carvalheiro, L. G., Seymour, C. L., Nicolson, S. W. & Veldtman, R. Creating patches of native flowers facilitates crop pollination in large agricultural fields: Mango as a case study. J. Appl. Ecol. 49, 1373–1383 (2012).Article 

    Google Scholar 
    Michiyama, H., Arikuni, M. & Hirano, T. Effect of air temperature on the growth, flowering and ripening in common buckwheat. In The Procceeding of the 8th ISB (2001)Isbell, F. et al. High plant diversity is needed to maintain ecosystem services. Nature 477, 199-U196. https://doi.org/10.1038/nature10282 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    McCain, C. M. & Colwell, R. K. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 14, 1236–1245 (2011).Article 

    Google Scholar 
    Choi, S.-W. Effects of weather factors on the abundance and diversity of moths in a temperate deciduous mixed forest of Korea. Zool. Sci. 25, 53–58 (2008).Article 

    Google Scholar 
    Feldmeier, S. et al. Climate versus weather extremes: Temporal predictor resolution matters for future rather than current regional species distribution models. Divers. Distrib. 24, 1047–1060 (2018).Article 

    Google Scholar  More

  • in

    Pathways of degradation in rangelands in Northern Tanzania show their loss of resistance, but potential for recovery

    Asner, G. P., Elmore, A. J., Olander, L. P., Martin, R. E. & Harris, A. T. Grazing systems, ecosystem responses, and global change. Annu. Rev. Environ. Resour. 29, 261–299 (2004).Article 

    Google Scholar 
    Millenium Ecosystem Assessment Board. Ecosystems and Human Well-Being: Wetlands and Water: Synthesis (Island Press, Washington, DC, 2005).Lind, J., Sabates-Wheeler, R., Caravani, M., Kuol, L. B. D. & Nightingale, D. M. Newly evolving pastoral and post-pastoral rangelands of Eastern Africa. Pastoralism 10, 24 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffman, T. & Vogel, C. Climate change impacts on African rangelands. Rangelands 30, 12–17 (2008).Article 

    Google Scholar 
    Joyce, L. A. et al. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies. Rangeland Ecol. Manage. 66, 512–528 (2013).Article 

    Google Scholar 
    Stringer, L. C., Reed, M. S., Dougill, A. J., Seely, M. K. & Rokitzki, M. Implementing the UNCCD: Participatory challenges. Nat. Resour. Forum 31, 198–211 (2007).Article 

    Google Scholar 
    Vågen, T.-G., Winowiecki, L. A., Tondoh, J. E., Desta, L. T. & Gumbricht, T. Mapping of soil properties and land degradation risk in Africa using MODIS reflectance. Geoderma 263, 216–225 (2016).Article 
    ADS 

    Google Scholar 
    Stevens, N., Lehmann, C. E. R., Murphy, B. P. & Durigan, G. Savanna woody encroachment is widespread across three continents. Glob. Chang. Biol. 23, 235–244 (2017).Article 
    ADS 
    PubMed 

    Google Scholar 
    Muñoz, P. et al. Land degradation, poverty and inequality (2019).Bond, W. & Keeley, J. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).Article 
    PubMed 

    Google Scholar 
    Lehmann, C. E. R., Archibald, S. A., Hoffmann, W. A. & Bond, W. J. Deciphering the distribution of the savanna biome. New Phytol. 191, 197–209 (2011).Article 
    PubMed 

    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).Article 
    ADS 
    CAS 
    MATH 
    PubMed 

    Google Scholar 
    Fuhlendorf, S. D., Fynn, R. W. S., McGranahan, D. A. & Twidwell, D. Heterogeneity as the basis for rangeland management in Rangeland Systems: Processes, Management and Challenges, Springer Series on Environmental Management (ed. Briske, D. D.), 169–196 (Springer International Publishing, 2017).Liao, C., Agrawal, A., Clark, P. E., Levin, S. A. & Rubenstein, D. I. Landscape sustainability science in the drylands: mobility, rangelands and livelihoods. Landsc. Ecol. 35, 2433–2447 (2020).Article 

    Google Scholar 
    Galvin, K. A. Transitions: pastoralists living with change. Annu. Rev. Anthropol. 38, 185–198 (2009).Article 

    Google Scholar 
    López-i Gelats, F., Fraser, E. D. G., Morton, J. F. & Rivera-Ferre, M. G. What drives the vulnerability of pastoralists to global environmental change? A qualitative meta-analysis. Glob. Environ. Change 39, 258–274 (2016).Obiri, J. F. Invasive plant species and their disaster-effects in dry tropical forests and rangelands of Kenya and Tanzania. Jàmbá: Journal of Disaster Risk Studies 3, 417–428 (2011).Kioko, J., Kiringe, J. W. & Seno, S. O. Impacts of livestock grazing on a savanna grassland in Kenya. J. Arid Land 4, 29–35 (2012).Article 

    Google Scholar 
    Kotiaho, J. S. et al. The IPBES assessment report on land degradation and restoration. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem (2018).Western, D., Mose, V. N., Worden, J. & Maitumo, D. Predicting extreme droughts in savannah Africa: A comparison of proxy and direct measures in detecting biomass fluctuations, trends and their causes. PLoS One 10, e0136516 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, A. Drought under global warming: a review. WIREs Climate Change 2, 45–65 (2011).Article 

    Google Scholar 
    Holechek, J. L., Cibils, A. F., Bengaly, K. & Kinyamario, J. I. Human population growth, African pastoralism, and rangelands: A perspective. Rangeland Ecol. Manage. 70, 273–280 (2017).Article 

    Google Scholar 
    Midgley, G. F. & Bond, W. J. Future of African terrestrial biodiversity and ecosystems under anthropogenic climate change. Nat. Clim. Chang. 5, 823–829 (2015).Article 
    ADS 

    Google Scholar 
    Hill, M. J. & Guerschman, J. P. The MODIS global vegetation fractional cover product 2001–2018: Characteristics of vegetation fractional cover in grasslands and savanna woodlands. Remote Sensing 12, 406 (2020).Article 
    ADS 

    Google Scholar 
    Lake, P. S. Resistance, resilience and restoration. Ecol. Manage. Restor. 14, 20–24 (2013).Article 

    Google Scholar 
    Hodgson, D., McDonald, J. L. & Hosken, D. J. What do you mean, ‘resilient’?. Trends Ecol. Evol. 30, 503–506 (2015).Article 
    PubMed 

    Google Scholar 
    Tilman, D. & Downing, J. A. Biodiversity and stability in grasslands. Nature 367, 363–365 (1994).Article 
    ADS 

    Google Scholar 
    Fedrigo, J. K. et al. Temporary grazing exclusion promotes rapid recovery of species richness and productivity in a long-term overgrazed Campos grassland. Restor. Ecol. 26, 677–685 (2018).Article 

    Google Scholar 
    Ruppert, J. C. et al. Quantifying drylands’ drought resistance and recovery: the importance of drought intensity, dominant life history and grazing regime. Glob. Chang. Biol. 21, 1258–1270 (2015).Article 
    ADS 
    PubMed 

    Google Scholar 
    Homewood, K. M. Policy, environment and development in African rangelands. Environ. Sci. Policy 7, 125–143 (2004).Article 

    Google Scholar 
    Caro, T. & Davenport, T. R. B. Wildlife and wildlife management in Tanzania. Conserv. Biol. 30, 716–723 (2016).Article 
    PubMed 

    Google Scholar 
    Bollig, M. & Schulte, A. Environmental change and pastoral perceptions: degradation and indigenous knowledge in two African pastoral communities. Hum. Ecol. 27, 493–514 (1999).Article 

    Google Scholar 
    Veldhuis, M. P. et al. Cross-boundary human impacts compromise the Serengeti-Mara ecosystem. Science 363, 1424–1428 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Nicholson, S. E. Climate and climatic variability of rainfall over Eastern Africa. Rev. Geophys. 55, 590–635 (2017).Article 
    ADS 

    Google Scholar 
    2012 Population and Housing Census (National Bureau of Statistics, Ministry of Finance, 2013).Kiffner, C., Nagar, S., Kollmar, C. & Kioko, J. Wildlife species richness and densities in wildlife corridors of Northern Tanzania. J. Nat. Conserv. 31, 29–37 (2016).Article 

    Google Scholar 
    Foley, C. A. H. & Faust, L. J. Rapid population growth in an elephant Loxodonta africana population recovering from poaching in Tarangire National Park, Tanzania. Oryx 44, 205–212 (2010).Article 

    Google Scholar 
    Kebacho, L. L. Large-scale circulations associated with recent interannual variability of the short rains over East Africa. Meteorol. Atmos. Phys. 134, 10 (2021).Article 
    ADS 

    Google Scholar 
    Wainwright, C. M., Finney, D. L., Kilavi, M., Black, E. & Marsham, J. H. Extreme rainfall in East Africa, October 2019-January 2020 and context under future climate change. Weather 76, 26–31 (2021).Article 
    ADS 

    Google Scholar 
    Abukari, H. & Mwalyosi, R. B. Comparing pressures on national parks in Ghana and Tanzania: The case of mole and Tarangire National Parks. Global Ecol. Conserv. 15, e00405 (2018).Article 

    Google Scholar 
    Kaswamila, A. An analysis of the contribution of community wildlife management areas on livelihood in Tanzania. Sustain. Natl. Res. Manag. 139–54 (2012).NTRI. Maps | NTRI – Northern Tanzania Rangelands Initiative. https://www.ntri.co.tz/maps/ (2016). Accessed: 2021-3-29.Mworia, J., Kinyamario, J. & John, E. Impact of the invader Ipomoea hildebrandtii on grass biomass, nitrogen mineralisation and determinants of its seedling establishment in Kajiado, Kenya. Afr. J. Range Forage Sci. 25, 11–16 (2008).Article 

    Google Scholar 
    Manyanza, N. M. & Ojija, F. Invasion, impact and control techniques for invasive Ipomoea hildebrandtii on Maasai steppe rangelands. NATO Adv. Sci. Inst. Ser. E Appl. Sci. 17, 12 (2021).Thaiyah, A. G. et al. Acute, sub-chronic and chronic toxicity of Solanum incanum L in sheep in Kenya. Kenya Veterinarian 35, 1–8 (2011).
    Google Scholar 
    Roques, K. G., O’Connor, T. G. & Watkinson, A. R. Dynamics of shrub encroachment in an African savanna: relative influences of fire, herbivory, rainfall and density dependence. J. Appl. Ecol. 38, 268–280 (2001).Article 

    Google Scholar 
    Riginos, C. & Herrick, J. E. Monitoring rangeland health: a guide for pastoralists and other land managers in Eastern Africa. Version II (2010).Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).QGIS Development Team. QGIS Geographic Information System. QGIS Association (2022).Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set] (NASA EOSDIS Land Processes DAAC, 2015).Friedl, M. & Sulla-Menashe, D. MCD12Q1 MODIS/Terra+ Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006 (NASA EOSDIS Land Processes DAAC, 2019).Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC 10 (2015).Funk, C. et al. The climate hazards infrared precipitation with stations–a new environmental record for monitoring extremes. Scientific Data 2, 1–21 (2015).Article 

    Google Scholar 
    Zeileis, A. & Grothendieck, G. zoo: S3 infrastructure for regular and irregular time series. arXiv:math/0505527 (2005).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2016).Scaramuzza, P. & Barsi, J. Landsat 7 scan line corrector-off gap-filled product development in Proceeding of Pecora 16, 23–27 (2005).
    Google Scholar 
    Huete, A. et al. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213 (2002).Article 
    ADS 

    Google Scholar 
    Rikimaru, A., Roy, P. S. & Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 39–47 (2002).Diek, S., Fornallaz, F., Schaepman, M. E. & De Jong, R. Barest pixel composite for agricultural areas using landsat time series. Remote Sensing 9, 1245 (2017).Article 
    ADS 

    Google Scholar 
    Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H. & Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 48, 119–126 (1994).Article 
    ADS 

    Google Scholar 
    Adams, B. et al. Mapping forest composition with Landsat time series: An evaluation of seasonal composites and harmonic regression. Remote Sensing 12, 610 (2020).Article 
    ADS 

    Google Scholar 
    Nwanganga, F. & Chapple, M. Practical machine learning in R (John Wiley and Sons, Indianapolis, 2020).Adam, E., Mutanga, O., Odindi, J. & Abdel-Rahman, E. M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 35, 3440–3458 (2014).Article 

    Google Scholar 
    Mansour, K., Mutanga, O., Adam, E. & Abdel-Rahman, E. M. Multispectral remote sensing for mapping grassland degradation using the key indicators of grass species and edaphic factors. Geocarto Int. 31, 477–491 (2016).Article 

    Google Scholar 
    Hunter, F. D. L., Mitchard, E. T. A., Tyrrell, P. & Russell, S. Inter-Seasonal time series imagery enhances classification accuracy of grazing resource and land degradation maps in a savanna ecosystem. Remote Sensing 12, 198 (2020).Article 
    ADS 

    Google Scholar 
    Yang, L. et al. Estimating surface downward shortwave radiation over china based on the gradient boosting decision tree method. Remote Sensing 10, 185 (2018).Article 
    ADS 

    Google Scholar 
    Pham, T. D. et al. Estimating mangrove Above-Ground biomass using extreme gradient boosting decision trees algorithm with fused Sentinel-2 and ALOS-2 PALSAR-2 data in Can Gio biosphere reserve, Vietnam. Remote Sensing 12, 777 (2020).Article 
    ADS 

    Google Scholar 
    Adobe Inc. Adobe illustrator.Lenth, R. V. emmeans: Estimated marginal means, aka Least-Squares means. R package version 1.5.4 (2021).Royall, R. M. The effect of sample size on the meaning of significance tests. Am. Stat. 40, 313–315 (1986).MATH 

    Google Scholar 
    Rue, H., Martino, S. & Chopin, N. Approximate bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J. R. Stat. Soc. Series B Stat. Methodol. 71, 319–392 (2009).Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Bakka, H. et al. Spatial modelling with R-INLA: A review. arXiv:1802.06350 [stat] (2018).Lobora, A. L. et al. Modelling habitat conversion in Miombo woodlands: Insights from Tanzania. J. Land Use Sci. 1747423X.2017.1331271 (2017).Bright, E. A., Rose, A. N., Urban, M. L. & McKee, J. LandScan 2017 High-Resolution global population data set. Tech. Rep., Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States) (2018).Gilbert, M. et al. Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci Data 5, 180227 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y., Fang, J., Ma, W. & Wang, W. Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys. Res. Lett. 35 (2008).Guo, Q. et al. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Glob. Chang. Biol. 18, 3624–3631 (2012).Article 
    ADS 

    Google Scholar 
    Wang, X., Yue, Y. & Faraway, J. J. Bayesian Regression Modeling with INLA (Chapman and Hall/CRC, 2018).Côté, I. M. & Darling, E. S. Rethinking ecosystem resilience in the face of climate change. PLoS Biol. 8, e1000438 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Loughlin, J. et al. Climate variability and conflict risk in East Africa, 1990–2009. Proc. Natl. Acad. Sci. 109, 18344–18349 (2012).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ongoma, V., Chen, H., Gao, C., Nyongesa, A. M. & Polong, F. Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards 90, 901–920 (2018).Article 

    Google Scholar 
    Homewood, K. & Rodgers, W. A. Pastoralism, conservation and the overgrazing controversy. Conservation in Africa: People, policies and practice 111–128 (1987).Scoones, I. Exploiting heterogeneity: habitat use by cattle in dryland Zimbabwe. J. Arid Environ. 29, 221–237 (1995).Article 
    ADS 

    Google Scholar 
    Goldman, M. J. & Riosmena, F. Adaptive capacity in Tanzanian Maasailand: Changing strategies to cope with drought in fragmented landscapes. Glob. Environ. Change 23, 588–597 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Selemani, I. S. & Others. Communal rangelands management and challenges underpinning pastoral mobility in Tanzania: a review. Livestock Res. Rural Dev. 26, 1–12 (2014).Middleton, N. Rangeland management and climate hazards in drylands: dust storms, desertification and the overgrazing debate. Nat. Hazards 92, 57–70 (2018).Article 

    Google Scholar 
    Sallu, S. M., Twyman, C. & Stringer, L. C. Resilient or vulnerable livelihoods? Assessing livelihood dynamics and trajectories in rural Botswana. Ecology and Society 15 (2010).Oba, G. & Lusigi, W. J. An overview of drought strategies and land use in African pastoral systems (Agricultural Administration Unit, Overseas Development Institute, 1987).Russell, S., Tyrrell, P. & Western, D. Seasonal interactions of pastoralists and wildlife in relation to pasture in an African savanna ecosystem. J. Arid Environ. 154, 70–81 (2018).Article 
    ADS 

    Google Scholar 
    Girvetz, E. et al. Future climate projections in Africa: Where are we headed? In The Climate-Smart Agriculture Papers: Investigating the Business of a Productive, Resilient and Low Emission Future 15–27 (Springer International Publishing, 2019).Lyon, B. & DeWitt, D. G. A recent and abrupt decline in the East African long rains. Geophys. Res. Lett. 39 (2012).Liebmann, B. et al. Climatology and interannual variability of boreal spring wet season precipitation in the Eastern Horn of Africa and implications for its recent decline. J. Clim. 30, 3867–3886 (2017).Article 
    ADS 

    Google Scholar 
    Shongwe, M. E., van Oldenborgh, G. J., van den Hurk, B. & van Aalst, M. Projected changes in mean and extreme precipitation in Africa under global warming. part II: East Africa. J. Clim. 24, 3718–3733 (2011).Dunning, C. M., Black, E. & Allan, R. P. Later wet seasons with more intense rainfall over Africa under future climate change. J. Clim. 31, 9719–9738 (2018).Article 
    ADS 

    Google Scholar 
    Rowell, D. P., Booth, B. B. B., Nicholson, S. E. & Good, P. Reconciling past and future rainfall trends over East Africa. J. Clim. 28, 9768–9788 (2015).Article 
    ADS 

    Google Scholar 
    Vizy, E. K. & Cook, K. H. Mid-Twenty-First-Century changes in extreme events over Northern and Tropical Africa. J. Clim. 25, 5748–5767 (2012).Article 
    ADS 

    Google Scholar 
    Gebremeskel Haile, G. et al. Droughts in East Africa: Causes, impacts and resilience. Earth-Sci. Rev. 193, 146–161 (2019).Kendon, E. J. et al. Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. Nat. Commun. 10, 1794 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finney, D. L. et al. Effects of explicit convection on future projections of mesoscale circulations, rainfall, and rainfall extremes over Eastern Africa. J. Clim. 33, 2701–2718 (2020).Article 
    ADS 

    Google Scholar 
    Prins, H. H. T. & Loth, P. E. Rainfall patterns as background to plant phenology in Northern Tanzania. J. Biogeogr. 15, 451–463 (1988).Article 

    Google Scholar 
    Ngondya, I. B., Treydte, A. C., Ndakidemi, P. A. & Munishi, L. K. Invasive plants: ecological effects, status, management challenges in Tanzania and the way forward. J. Biodivers. Environ. Sci. (JBES) 10, 204–217 (2017).
    Google Scholar 
    Drusch, M. et al. Sentinel-2: ESA’s optical High-Resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36 (2012).Article 
    ADS 

    Google Scholar 
    Rapinel, S. et al. Evaluation of Sentinel-2 time-series for mapping floodplain grassland plant communities. Remote Sens. Environ. 223, 115–129 (2019).Article 
    ADS 

    Google Scholar 
    Li, W. et al. Accelerating savanna degradation threatens the Maasai Mara socio-ecological system. Glob. Environ. Change 60, 102030 (2020).Article 

    Google Scholar 
    Wonkka, C. L., Twidwell, D., Franz, T. E., Taylor, C. A. & Rogers, W. E. Persistence of a severe drought increases desertification but not woody dieback in semiarid savanna. Rangeland Ecol. Manage. 69, 491–498 (2016).Article 

    Google Scholar 
    Vierich, H. I. D. & Stoop, W. A. Changes in West African savanna agriculture in response to growing population and continuing low rainfall. Agric. Ecosyst. Environ. 31, 115–132 (1990).Article 

    Google Scholar 
    Fynn, R. W. S. & O’Connor, T. G. Effect of stocking rate and rainfall on rangeland dynamics and cattle performance in a semi-arid savanna, South Africa. J. Appl. Ecol. 37, 491–507 (2000).Article 

    Google Scholar 
    Wang, S., Chen, W., Xie, S. M., Azzari, G. & Lobell, D. B. Weakly supervised deep learning for segmentation of remote sensing imagery. Remote Sensing 12, 207 (2020).Article 
    ADS 

    Google Scholar 
    Alananga, S., Makupa, E. R., Moyo, K. J., Matotola, U. C. & Mrema, E. F. Land administration practices in Tanzania: A replica of past mistakes. Journal of Property, Planning and Environmental Law (2019).Huggins, C. Village land use planning and commercialization of land in Tanzania. LANDac Research Brief 1 (2016).Stein, H., Maganga, F. P., Odgaard, R., Askew, K. & Cunningham, S. The formal divide: Customary rights and the allocation of credit to agriculture in Tanzania. J. Dev. Stud. 52, 1306–1319 (2016).Article 

    Google Scholar 
    Hall, D. G. M., Reeve, M. J., Thomasson, A. J. & Wright, V. F. Water retention, porosity and density of field soils (No. Tech. Monograph N9, 1977).Moore, D. C. & Singer, M. J. Crust formation effects on soil erosion processes. Soil Sci. Soc. Am. J. 54, 1117–1123 (1990).Article 
    ADS 

    Google Scholar 
    Cotler, H. & Ortega-Larrocea, M. P. Effects of land use on soil erosion in a tropical dry forest ecosystem, Chamela watershed, Mexico. Catena 65, 107–117 (2006).Article 

    Google Scholar 
    Bach, E. M., Baer, S. G., Meyer, C. K. & Six, J. Soil texture affects soil microbial and structural recovery during grassland restoration. Soil Biol. Biochem. 42, 2182–2191 (2010).Article 
    CAS 

    Google Scholar 
    Butz, R. J. Traditional fire management: historical fire regimes and land use change in pastoral East Africa. Int. J. Wildland Fire 18, 442–450 (2009).Article 

    Google Scholar  More

  • in

    Temperature, species identity and morphological traits predict carbonate excretion and mineralogy in tropical reef fishes

    Animal collection and holding for this project was conducted under Marine Research Permit RE-19–28 issued by the Ministry of Natural Resources, Environment, and Tourism of the Republic of Palau (10.03.2019), Marine Research/Collection Permit and Agreement 62 issued by the Koror State Government (08.10.2019), Queensland Government GBRMPA Marine Parks Permit G14/36689.1, Queensland Government DNPRSR Marine Parks Permits QS2014/MAN247 and QS2014/MAN247a, Queensland Government General Fisheries Permit 168991, Queensland Government DAFF Animal Ethics approval CA2013/11/733, approval by The Bahamas Department of Marine Resources, approval by the Animal Care Officer of both the University of Bremen and the Leibniz Centre for Tropical Marine Research (ZMT), and in accordance with UK and Germany animal care guidelines.Sample collectionWe collected fish carbonate samples at four study locations across three tropical and subtropical regions: Eleuthera (24°50’N, 76°20’W), The Bahamas, between 2009 and 201127,37; Heron Reef (23°27’S, 151°55’E) and Moreton Bay (27°29’S, 153°24’E) in Queensland, Australia, in 2014 and 201528; and Koror (7°20’N, 134°28’E), Palau, during November and December 2019. These are located within four distinct marine biogeographic provinces and three realms (Tropical Atlantic, Central Indo-Pacific, and Temperate Australasia)43. At each location fish were collected using barrier nets, dip nets, clove oil or hook and line, and immediately transferred to aquaria facilities at the Cape Eleuthera Institute, Heron Island and Moreton Bay Research Stations, and the Palau International Coral Reef Center. Fish were held in a range of tanks (60, 400, or 1400 L in the Bahamas, 10, 60, 100, 120, or 400 L in Heron Island and Moreton Bay, and 8, 80, 280, or 400 L in Palau) of suitable dimensions for different fish sizes ( 5). Each sample was titrated with 0.01–0.5 N HCl (with continuous aeration with CO2-free air) until the end point (grey-lavender; pH~4.80) was reached and stable for at least 10 min. If the sample was over-titrated (pink), 0.01–0.1 N NaOH was added to titrate back to the end point and the amount of base used was subtracted from the amount of acid. Acid and base were added using an electronic multi-dispenser pipette (Eppendorf Repeater ®E3X, Eppendorf, Hamburg, Germany) with a precision of  ± 1 ({{{{{rm{mu }}}}}})L. Additionally, the pH of several samples was monitored using a pH microelectrode (Mettler Toledo InLab Micro) to ascertain the correctness of the colorimetric end point. The amount of carbonate in the sample was then calculated using Eq. (1). The method was validated using certified reference material (Alkalinity Standard Solution, 25,000 mg/L as CaCO3, HACH) and the accuracy in the determination of solid samples was verified using certified CaCO3 powder (Suprapur, ≥ 99.95% purity, Merck) samples (60–500 ({{{{{rm{mu }}}}}})g) and resulted in 96.53 ± 1.94% accuracy (mean ± SE; n = 8).To compare values obtained with the two titration methods we further analysed 12 samples collected at Lizard Island, Australia, in February 2016. Samples were collected at 24 h intervals from one individual of Lethrinus atkinsoni (f. Lethrinidae, body mass: 245 g), a group of five Lutjanus fulvus (f. Lutjanidae, mean body mass: 21 g), and an individual of Cephalopholis cyanostigma (f. Serranidae, body mass: 295 g), following the procedures described above. During sample collection water temperature ranged from 29.1 °C during the night to 32.6 °C during the day, with an average of ~31 °C, mean salinity was 35.4, and pHNBS ranged from 8.13 to 8.21. To compare the amount of carbonate measured by the two methods we added carbonate samples to 20 ml ultrapure water and disaggregated crystals via sonication. We then used a Metrohm Titrando autotitrator and Metrohm Aquatrode pH electrode to measure initial pH of the suspension of carbonates, then titrated each sample of carbonate in two stages. Firstly, they were titrated down to pH 4.80 using 0.1 M HCl, adding 20 µl increments of acid until this was sufficient to keep pH below 4.80 for 10 min whilst bubbling with CO2-free air. This first stage was comparable to the single end point titration used for samples collected in Palau. Secondly, whilst continuing to bubble with CO2-free air, further acid was added to the sample until it reached pH 3.89 and was stable for 1 min. Then 0.1 M NaOH was added to the samples to return them to the initial pH. For all samples the first end point titration (to pH 4.80) yielded slightly higher values for carbonate content than the second double titration. The ratio between the two methods (single end point/double titration) was 1.08 ± 0.01 (mean ± SE; range: 1.04–1.14; Supplementary Table 2). As we found a small but consistent difference between the two methods, all following analyses were initially performed on the actual data obtained with the double titration for samples from Australia and The Bahamas, and the single end point titration for samples from Palau. Then, to assess the robustness of the results, we repeated the analyses after applying a correction factor of 1.08 to the excretion rates of Palauan fishes (that used the single end point titration method). All results were consistent and robust to the measured difference between the titration methods (Supplementary Figs. 8, 9).Finally, measurements of multiple samples from each individual collected over periods of 18–169 h (median: 64 h) were combined to produce an average individual excretion rate in ({{{{{rm{mu }}}}}})mol h−1. For fish held in groups, carbonate excretion rates per individual (of average biomass) were obtained by averaging the total excretion rate of the group across the sampling period and dividing it by the number of individuals in the tank. Excretion rates obtained from fish groups thus evened the intraspecific variability within tanks, and are therefore more robust than those directly obtained from fish held individually. This aspect was considered in our models by fitting weighted regressions (see the “Statistical modelling” section). In total, we measured the carbonate excretion rates of 382 individual fishes arranged in 192 groups (i.e., independent observations), representing 85 species from 35 families across three tropical regions (180 individuals from 29 species in Australia, 90 individuals from 10 species in the Bahamas, and 112 individuals from 46 species in Palau; Supplementary Table 1).We assume that during the sampling of carbonates fishes were close to their resting metabolic rate and that their carbonate excretion rates are representative of fish at rest. Although the ratio of tank volume to fish volume in our study (median ~660; inter-quartile range ~180–1700) typically greatly exceeds the guideline ideal range for measuring resting metabolic rate (20–50)85, fishes were fasted prior to and throughout sampling, and in most instances their movement was somewhat constrained by tank volume. Fasting reduces metabolic rate in all animals, including fish, as they do not undergo energy-intensive digestive processes and use energy reserves to support vital processes, triggering metabolic changes in many tissues and reducing activity levels86,87. Additionally, other than the carbonate syphoning ( More

  • in

    Experimental evidence of parasite-induced behavioural alterations modulated by food availability in wild capuchin monkeys

    Moore, J. An overview of parasite-induced behavioral alterations – and some lessons from bats. J. Exp. Biol. 216, 11–17 (2012).Article 

    Google Scholar 
    Nunn, C. L. & Altizer, S. Infectious Diseases in Primates: Behavior, Ecology and Evolution (Oxford University Press, 2006).Book 

    Google Scholar 
    Hutchings, M. R., Athanasiadou, S., Kyriazakis, I. & Gordon, I. J. Nutrition and Behaviour Group Symposium on ‘Exploitation of medicinal properties of plants by animals and man through food intake and foraging behaviour’: Can animals use foraging behaviour to combat parasites?. Proc. Nutr. Soc. 62, 361–370 (2003).Article 

    Google Scholar 
    Hawley, D. M., Etienne, R. S., Ezenwa, V. O. & Jolles, A. E. Does animal behavior underlie covariation between hosts’ exposure to infectious agents and susceptibility to infection? Implications for disease dynamics. Integr. Comp. Biol. 51, 528–539 (2011).Article 

    Google Scholar 
    Rimbach, R. et al. Brown spider monkeys (Ateles hybridus): a model for differentiating the role of social networks and physical contact on parasite transmission dynamics. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140110 (2015).Article 

    Google Scholar 
    Friant, S., Ziegler, T. E. & Goldberg, T. L. Changes in physiological stress and behaviour in semi-free-ranging red-capped mangabeys (Cercocebus torquatus) following antiparasitic treatment. Proc. R. Soc. B Biol. Sci. 283, 20161201 (2016).Article 

    Google Scholar 
    Hudson, P. J. & Dobson, A. P. Macroparasites: Observed patterns in naturally fluctuating animal populations. In Ecology of infectious diseases in natural populations (eds Grenfell, B. T. & Dobson, A. P.) 144–176 (Cambridge University Press, 1995). https://doi.org/10.1017/CBO9780511629396.006.Chapter 

    Google Scholar 
    Murray, D. L., Lloyd, B. K. & Cary, J. R. Do parasitism and nutritional status interact to affect production in snowshoe hares?. Ecology 79, 1209–1222 (1998).Article 

    Google Scholar 
    Coop, R. L. & Holmes, P. H. Nutrition and parasite interaction. Int. J. Parasitol. 26, 951–962 (1996).Article 
    CAS 

    Google Scholar 
    Møller, A. P., de Lope, F., Moreno, J., González, G. & Pérez, J. J. Ectoparasites and host energetics: House martin bugs and house martin nestlings. Oecologia 98, 263–268 (1994).Article 
    ADS 

    Google Scholar 
    Munger, J. C. & Karasov, W. H. Sublethal parasites and host energy budgets: Tapeworm infection in white-footed mice. Ecology 70, 904–921 (1989).Article 

    Google Scholar 
    Hicks, O. et al. The energetic cost of parasitism in a wild population. Proc. R. Soc. B Biol. Sci. 285, 20180489 (2018).Article 

    Google Scholar 
    Sánchez, C. A. et al. On the relationship between body condition and parasite infection in wildlife: A review and meta-analysis. Ecol. Lett. 21, 1869–1884 (2018).Article 

    Google Scholar 
    Kyriazakis, I., Tolkamp, B. J. & Hutchings, M. R. Towards a functional explanation for the occurrence of anorexia during parasitic infections. Anim. Behav. 56, 265–274 (1998).Article 
    CAS 

    Google Scholar 
    Hart, B. L. Behavioral adaptations to pathogens and parasites: Five strategies. Neurosci. Biobehav. Rev. 14, 273–294 (1990).Article 
    CAS 

    Google Scholar 
    Lopes, P. C., Block, P. & König, B. Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Sci. Rep. 6, 1–10 (2016).Article 

    Google Scholar 
    Pelletier, F. & Festa-Bianchet, M. Effects of body mass, age, dominance and parasite load on foraging time of bighorn rams. Ovis canadensis. Behav. Ecol. Sociobiol. 56, 546–551 (2004).Article 

    Google Scholar 
    Bonneaud, C. et al. Assessing the cost of mounting an immune response. Am. Nat. 161, 367–379 (2003).Article 

    Google Scholar 
    Hart, B. L. The behavior of sick animals. Vet. Clin. North Am. Small Anim. Pract. 21, 225–237 (1991).Article 
    CAS 

    Google Scholar 
    Poulin, R. Meta-analysis of parasite-induced behavioural changes. Anim. Behav. 48, 137–146 (1994).Article 

    Google Scholar 
    Janson, C. H. Toward an experiemental socioecology of primates. Examples from Argentine brown capuchin monkeys (Cebus apella nigritus). In Adaptive Radiations of Neotropical Primates (eds Janson, C. H. et al.) 309–325 (Plenum Press, 1996).Chapter 

    Google Scholar 
    Robinson, J. G. Seasonal variation in use of time and space by the wedge-capped capuchin monkey, Cebus olivaceus: Implications for foraging theory. Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.431 (1986).Article 

    Google Scholar 
    Saj, T., Sicotte, P. & Paterson, J. D. Influence of human food consumption on the time budget of vervets. Int. J. Primatol. 20, 977–994 (1999).Article 

    Google Scholar 
    Ghai, R. R., Fugère, V., Chapman, C. A., Goldberg, T. L. & Davies, T. J. Sickness behaviour associated with non-lethal infections in wild primates. Proc. Biol. Sci. 282, 20151436 (2015).
    Google Scholar 
    Blersch, R. et al. Sick and tired: Sickness behaviour, polyparasitism and food stress in a gregarious mammal. Behav. Ecol. Sociobiol. 75, 169 (2021).Article 

    Google Scholar 
    Müller-Klein, N. et al. Physiological and social consequences of gastrointestinal nematode infection in a nonhuman primate. Behav. Ecol. 30, 322–335 (2019).Article 

    Google Scholar 
    Chapman, C. A. et al. Social behaviours and networks of vervet monkeys are influenced by gastrointestinal parasites. PLoS ONE 11, e0161113 (2016).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Acute phase responses of passerine birds: characterization and seasonal variation. J. Ornithol. 148, 583–591 (2007).Article 

    Google Scholar 
    Owen-Ashley, N. T. & Wingfield, J. C. Seasonal modulation of sickness behavior in free-living northwestern song sparrows (Melospiza melodia morphna). J. Exp. Biol. 209, 3062–3070 (2006).Article 

    Google Scholar 
    Janson, C. H. & Di Bitetti, M. S. Experimental analysis of food detection in capuchin monkeys: Effects of distance, travel speed, and resource size. Behav. Ecol. Sociobiol. 41, 17–24 (1997).Article 

    Google Scholar 
    Di Bitetti, M. S. Food-associated calls in the tufted capuchin monkey (Cebus apella). PhD Thesis. (Stony Brook University, New York, 2001).Di Bitetti, M. S. & Janson, C. H. Reproductive socioecology of tufted capuchins (Cebus apella nigritus) in Norteastern Argentina. Int. J. Primatol. 22, 127–142 (2001).Article 

    Google Scholar 
    Janson, C., Baldovino, M. C. & Di Bitetti, M. The group life cycle and demography of brown capuchin monkeys (Cebus [apella] nigritus) in Iguazú National Park, Argentina. In Long-Term Field Studies of Primates (eds Kappeler, P. M. & Watts, D. P.) 185–212 (Springer, Berlin, 2012). https://doi.org/10.1007/978-3-642-22514-7_9.Chapter 

    Google Scholar 
    Robinson, J. C. & Galán Saúco, V. Bananas and plantains. (Crop production science in horticulture series N. 19, CAB International, 2010). https://doi.org/10.1079/9781845936587.0000Tiddi, B., Pfoh, R. & Agostini, I. The impact of food provisioning on parasite infection in wild black capuchin monkeys: A network approach. Primates 60, 297–306 (2019).Article 

    Google Scholar 
    Agostini, I., Vanderhoeven, E., Di Bitetti, M. S. & Beldomenico, P. M. Experimental testing of reciprocal effects of nutrition and parasitism in wild black capuchin monkeys. Sci. Rep. 7, 1–11 (2017).Article 

    Google Scholar 
    de Vries, H., Netto, W. J. & Hanegraaf, P. L. H. Matman: a program for the analysis of sociometric matrices and behavioural transition matrices. Behaviour 125, 157–175 (1993).Article 

    Google Scholar 
    Martin, P. & Bateson, P. Measuring Behaviour (Cambridge University Press, 1993). https://doi.org/10.1017/cbo9780511810893.Book 

    Google Scholar 
    Cox, D. D. & Todd, A. C. Survey of gastrointestinal parasitism in Wisconsin dairy cattle. J. Am. Vet. Med. Assoc. 141, 706–709 (1962).CAS 

    Google Scholar 
    Ballweber, L. R., Beugnet, F., Marchiondo, A. A. & Payne, P. A. American association of veterinary parasitologists’ review of veterinary fecal flotation methods and factors influencing their accuracy and use—Is there really one best technique?. Vet. Parasitol. 204, 73–80 (2014).Article 
    CAS 

    Google Scholar 
    Godfrey, S. S. Networks and the ecology of parasite transmission: a framework for wildlife parasitology. Int. J. Parasitol. Parasites Wildl. 2, 235–245 (2013).Article 

    Google Scholar 
    Sosa, S., Sueur, C. & Puga-Gonzalez, I. Network measures in animal social network analysis: Their strengths, limits, interpretations and uses. Methods Ecol. Evol. 2020, 1–12 (2020).
    Google Scholar 
    Sosa, S. et al. A multilevel statistical toolkit to study animal social networks: The Animal Network Toolkit Software (ANTs) R package. Sci. Rep. 10, 12507 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Croft, D. P., Madden, J. R., Franks, D. W. & James, R. Hypothesis testing in animal social networks. Trends Ecol. Evol. 26, 502–507 (2011).Article 

    Google Scholar 
    Farine, D. R. Animal social network inference and permutations for ecologists in R using asnipe. Methods Ecol. Evol. 4, 1187–1194 (2013).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2nd ed). Ecological Modelling (Springer, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-model inference. R package version 1.15.6. 63 (2016). citeulike:11961261Carlton, E. D., Demas, G. E. & French, S. S. Leptin, a neuroendocrine mediator of immune responses, inflammation, and sickness behaviors. Horm. Behav. 62, 272–279 (2012).Article 
    CAS 

    Google Scholar 
    Tizard, I. Sickness behavior, its mechanisms and significance. Anim. Health Res. Rev. 9, 87–99 (2008).Article 

    Google Scholar 
    Inoue, W. & Luheshi, G. N. Acute starvation alters lipopolysaccharide-induced fever in leptin-dependent and -independent mechanisms in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R1709-19 (2010).Article 

    Google Scholar 
    Macdonald, L., Radler, M., Paolini, A. G. & Kent, S. Calorie restriction attenuates LPS-induced sickness behavior and shifts hypothalamic signaling pathways to an antiinflammatory bias. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, 172–184 (2011).Article 

    Google Scholar 
    Wisse, B. E. et al. Physiological regulation of hypothalamic IL-1β gene expression by leptin and glucocorticoids: implications for energy homeostasis. Am. J. Physiol. Endocrinol. Metab. 287, R1107–R1113 (2004).Article 

    Google Scholar 
    Pohl, J., Woodside, B. & Luheshi, G. N. Changes in hypothalamically mediated acute-phase inflammatory responses to lipopolysaccharide in diet-induced obese rats. Endocrinology 150, 4901–4910 (2009).Article 
    CAS 

    Google Scholar 
    Bretscher, P. On analyzing how the Th1/Th2 phenotype of an immune response is determined: classical observations must not be ignored. Front. Immunol. 10, 1–7 (2019).Article 

    Google Scholar 
    Poppi, D. P., Sykes, A. R. & Dynes, R. A. The effect of endoparasitism on host nutrition – the implications for nutrient manipulation. Proc. New Zeal. Soc. Anim. Prod. 50, 237–243 (1990).
    Google Scholar 
    Coulson, G., Cripps, J. K., Garnick, S., Bristow, V. & Beveridge, I. Parasite insight: assessing fitness costs, infection risks and foraging benefits relating to gastrointestinal nematodes in wild mammalian herbivores. Philos. Trans. R. Soc. B Biol. Sci. 373, 197 (2018).Article 

    Google Scholar 
    Worsley-Tonks, K. E. L. & Ezenwa, V. O. Anthelmintic treatment affects behavioural time allocation in a free-ranging ungulate. Anim. Behav. 108, 47–54 (2015).Article 

    Google Scholar 
    Jones, O. R., Anderson, R. M. & Pilkington, J. G. Parasite-induced anorexia in a free-ranging mammalian herbivore: An experimental test using Soay sheep. Can. J. Zool. 84, 685–692 (2006).Article 

    Google Scholar 
    Cripps, J. K., Martin, J. K. & Coulson, G. Anthelmintic treatment does not change foraging strategies of female eastern grey kangaroos, Macropus giganteus. PLoS ONE 11, e0147384 (2016).Article 

    Google Scholar 
    Giles, N. Predation risk and reduced foraging activity in fish: experiments with parasitized and non-parasitized three-spined sticklebacks, Gasterosteus aculeatus L.. J. Fish Biol. 31, 37–44 (1987).Article 

    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Wu, Q. C., Ortega, C. N. & Rohr, J. R. Host resistance and tolerance of parasitic gut worms depend on resource availability. Oecologia 183, 1031–1040 (2017).Article 
    ADS 

    Google Scholar 
    Lopes, P. C., French, S. S., Woodhams, D. C. & Binning, S. A. Metabolic response of dolphins to short-term fasting reveals physiological changes that differ from the traditional fasting model. J. Exp. Biol. 224, jeb225847 (2021).Article 

    Google Scholar 
    Behringer, D. C., Butler, M. J. & Shields, J. D. Ecology: Avoidance of disease by social lobsters. Nature 441, 421 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Poirotte, C. et al. Mandrills use olfaction to socially avoid parasitized conspecifics. Sci. Adv. 3, e1601721 (2017).Article 
    ADS 

    Google Scholar  More

  • in

    Upside down sulphate dynamics in a saline inland lake

    Canfield, D. E.; Kristensen, E.; Thamdrup, B. The Sulfur Cycle. In Advances in Marine Biology; Aquatic Geomicrobiology; Academic Press, 2005; Vol. 48, pp 313–381. https://doi.org/10.1016/S0065-2881(05)48009-8.Jørgensen, B. B., Findlay, A. J. & Pellerin, A. The biogeochemical sulfur cycle of marine sediments. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.00849 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thamdrup, B., Fossing, H. & Jørgensen, B. B. Manganese, iron and sulfur cycling in a coastal marine sediment, Aarhus Bay. Denmark. Geochim. Cosmochim. Acta 58(23), 5115–5129. https://doi.org/10.1016/0016-7037(94)90298-4 (1994).Article 
    ADS 
    CAS 

    Google Scholar 
    Holmer, M. & Storkholm, P. Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw. Biol. 46(4), 431–451. https://doi.org/10.1046/j.1365-2427.2001.00687.x (2001).Article 
    CAS 

    Google Scholar 
    Koschorreck, M. Microbial sulphate reduction at a low PH. FEMS Microbiol. Ecol. 64(3), 329–342. https://doi.org/10.1111/j.1574-6941.2008.00482.x (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kwon, M. J. et al. Impact of organic carbon electron donors on microbial community development under iron- and sulfate-reducing conditions. PLoS ONE 11(1), e0146689. https://doi.org/10.1371/journal.pone.0146689 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fründ, C. & Cohen, Y. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Appl. Environ. Microbiol. 58(1), 70–77. https://doi.org/10.1128/aem.58.1.70-77.1992 (1992).
    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschall, C., Frenzel, P. & Cypionka, H. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch. Microbiol. 159(2), 168–173. https://doi.org/10.1007/BF00250278 (1993).Article 
    CAS 

    Google Scholar 
    Borzenko, S. V., Kolpakova, M. N., Shvartsev, S. L. & Isupov, V. P. Biogeochemical conversion of sulfur species in saline lakes of steppe Altai. J. Oceanol. Limnol. 36(3), 676–686. https://doi.org/10.1007/s00343-018-6293-8 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Häusler, S. et al. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the dead sea. FEMS Microbiol Ecol 90(3), 956–969. https://doi.org/10.1111/1574-6941.12449 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Komor, S. C. Bidirectional sulfate diffusion in saline-lake sediments: Evidence from Devils Lake, Northeast North Dakota. Geology 20(4), 319–322. https://doi.org/10.1130/0091-7613(1992)020%3c0319:BSDISL%3e2.3.CO;2 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Valiente, N. et al. Tracing sulfate recycling in the hypersaline Pétrola Lake (SE Spain): A combined isotopic and microbiological approach. Chem. Geol. 473, 74–89. https://doi.org/10.1016/j.chemgeo.2017.10.024 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Moreira, N., Walter, L., Vasconcelos, C., McKenzie, J. & McCall, P. Role of sulfide oxidation in dolomitization: Sediment and pore-water geochemistry of a modern hypersaline lagoon system. Geology 32(8), 701–704. https://doi.org/10.1130/G20353.1 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Jolly, I. D., McEwan, K. L. & Holland, K. L. A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology. Ecohydrology https://doi.org/10.1002/eco.6 (2008).Article 

    Google Scholar 
    Williams, W. D. Environmental threats to salt lakes and the likely status of inland saline ecosystems in 2025. Environ. Conserv. 29(2), 154–167. https://doi.org/10.1017/S0376892902000103 (2002).Article 

    Google Scholar 
    CHE. Confederación Hidrográfica del Ebro. https://www.chebro.es/ (Accessed 1 June 2022).Comín, F. A., Rodó, X. & Comín, P. Lake Gallocanta (Aragon, NE Spain), a paradigm of fluctuations at different scales of time. Limnetica 8(1), 79–86 (1992).Article 

    Google Scholar 
    Luna, E.; Latorre, B.; Castañeda, C. Rainfall and the Presence of Water in Gallocanta Lake. http://digital.csic.es/handle/10261/117417. (2014).San Roman Saldaña, J.; García Vera, M. Á.; Blasco Herguedas, Ó.; Coloma López, P. Toma de Datos, Modelación y Gestión Del Agua Subterránea En La Cuenca Endorréica de La Laguna de Gallocanta (España); Alicante, Spain, 2005; pp 551–557.Orellana-Macías, J. M., Merchán, D. & Causapé, J. Evolution and assessment of a nitrate vulnerable zone over 20 years: Gallocanta groundwater body (Spain). Hydrogeol. J. https://doi.org/10.1007/s10040-020-02184-0 (2020).Article 

    Google Scholar 
    Gracia, F. J., Gutierrez, F. & Gutierrez, M. Origin and evolution of the Gallocanta Polije (Iberian range, NE Spain). Z. Geomorph. N. F. 46(2), 245–262 (2002).Article 

    Google Scholar 
    García-Vera, M.A.; San Román Saldaña, J.; Blasco Herguedas, O.; Coloma López, P. Hidrogeología de La Laguna de GalIocanta e Implicaciones Ambientales. In M.A. Casterad and C. Castañeda (Eds.). La Laguna de Gallocanta: Medio Natural, Conservación y Teledetección. Memorias de la Real Sociedad Española de Historia Natural. 2009, 7, 79–104.Comín, F. A., Juli, R., Comín, P. & Plana, F. Hydrogeochemistry of Lake Gallocanta (Aragón, NE Spain). Hydrobiologia 197, 51–66. https://doi.org/10.1007/bf00026938 (1990).Article 

    Google Scholar 
    Mayayo, M. J. et al. Sedimentological evolution of the holocene Gallocanta Lake, NE Spain. Limnol. Spain Tribute Kerry Kelts 14, 359–384 (2003).
    Google Scholar 
    Pérez, A. et al. Sedimentary facies distribution and genesis of a recent carbonate-rich Saline Lake: Gallocanta Lake, Iberian Chain, NE Spain. Sediment. Geol. 148(1–2), 185–202. https://doi.org/10.1016/S0037-0738(01)00217-2 (2002).Article 
    ADS 

    Google Scholar 
    Corzo, A. et al. Carbonate mineralogy along a biogeochemical gradient in recent lacustrine sediments of Gallocanta Lake (Spain). Geomicrobiol. J. 22(6), 283–298. https://doi.org/10.1080/01490450500183654 (2005).Article 
    CAS 

    Google Scholar 
    Castañeda, C., Gracia, F. J., Luna, E. & Rodríguez-Ochoa, R. Edaphic and geomorphic evidences of water level fluctuations in Gallocanta Lake, NE Spain. Geoderma 239–240, 265–279. https://doi.org/10.1016/j.geoderma.2014.11.005 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Luzón, A. et al. Holocene environmental changes in the Gallocanta lacustrine basin, Iberian range, NE Spain. Holocene 17(5), 649–663. https://doi.org/10.1177/0959683607078994 (2007).Article 
    ADS 

    Google Scholar 
    Schütt, B. Reconstruction of holocene paleoenvironments in the endorheic basin of laguna de Gallocanta, Central Spain by investigation of mineralogical and geochemical characters from lacustrine sediments. J. Paleolimnol. 20, 217. https://doi.org/10.1023/A:1007924000636 (1998).Article 
    ADS 

    Google Scholar 
    Castañeda, C., Luna, E. & Rabenhorst, M. Reducing conditions in soil of Gallocanta Lake. Northeast Spain. Eur. J. Soil Sci. 68(2), 249–258. https://doi.org/10.1111/ejss.12407 (2017).Article 
    CAS 

    Google Scholar 
    Castañeda, C., Gracia, F. J., Conesa, J. A. & Latorre, B. Geomorphological control of habitat distribution in an intermittent shallow Saline Lake, Gallocanta Lake. NE Spain. Sci. Total Environ. 726, 138601. https://doi.org/10.1016/j.scitotenv.2020.138601 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Comín, F. A., Rodó, X. & Menéndez, M. Spatial heterogeneity of macrophytes in lake Gallocanta (Aragón, NE Spain). Hydrobiologia 267(1–3), 169–178. https://doi.org/10.1007/BF00018799 (1993).Article 

    Google Scholar 
    Castro, O. D. et al. A Contribution to the characterization of ruppia drepanensis (ruppiaceae), a key species of threatened mediterranean Wetlands. Ann. Mo. Bot. Gard. 106, 1–9. https://doi.org/10.3417/2020520 (2021).Article 

    Google Scholar 
    Alonso López, J. A., Alonso López, J. C., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. II. Timing and pattern of daily departures. Ardea 78, 379–388 (1990).
    Google Scholar 
    Alonso López, J. C., Alonso López, J. A., Cantos, F. J. & Bautista, L. M. Spring crane grus grus migration through Gallocanta, Spain. I. Daily Variations in Migration Volume. Ardea 78, 365–378 (1990).
    Google Scholar 
    Orellana-Macías, J. M., Bautista, L. M., Merchán, D., Causapé, J. & Alonso, J. C. Shifts in crane migration phenology associated with climate change in southwestern Europe. Avian Conserv. Ecol. 15(1), 1–13. https://doi.org/10.5751/ACE-01565-150116 (2020).Article 

    Google Scholar 
    Luzón, A., Mayayo, M. J. & Pérez, A. Stable isotope characterisation of co-existing carbonates from the holocene Gallocanta Lake (NE Spain): Palaeolimnological implications. Int. J. Earth Sci. 98(5), 1129–1150. https://doi.org/10.1007/s00531-008-0308-1 (2009).Article 
    CAS 

    Google Scholar 
    Accoe, F. et al. Evolution of the Δ13C signature related to total carbon contents and carbon decomposition rate constants in a soil profile under grassland. Rapid Commun. Mass Spectrom. 16(23), 2184–2189. https://doi.org/10.1002/rcm.767 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Menéndez-Serra, M., Triadó-Margarit, X., Castañeda, C., Herrero, J. & Casamayor, E. O. Microbial composition, potential functional roles and genetic novelty in gypsum-rich and hypersaline soils of Monegros and Gallocanta (Spain). Sci. Total Environ. 650(September), 343–353. https://doi.org/10.1016/j.scitotenv.2018.09.050 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kendall, C. & McDonnell, J. J. Isotope Tracers in Catchment Hydrology 1st edn. (Elsevier, 1999).

    Google Scholar 
    Mayer, B., Fritz, P., Prietzel, J. & Krouse, H. R. The use of stable sulfur and oxygen isotope ratios for interpreting the mobility of sulfate in aerobic forest soils. Appl. Geochem. 10(2), 161–173. https://doi.org/10.1016/0883-2927(94)00054-A (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Otero, N., Canals, À. & Soler, A. Using dual-isotope data to trace the origin and processes of dissolved sulphate: A case study in calders stream (Llobregat Basin, Spain). Aquat. Geochem. 13(2), 109–126. https://doi.org/10.1007/s10498-007-9010-3 (2007).Article 
    CAS 

    Google Scholar 
    Canfield, D. E. Isotope fractionation by natural populations of sulfate-reducing bacteria. Geochim. Cosmochim. Acta 65(7), 1117–1124. https://doi.org/10.1016/S0016-7037(00)00584-6 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Canfield, D. E. Biogeochemistry of sulfur isotopes. Rev. Mineral. Geochem. 43(1), 607–636. https://doi.org/10.2138/gsrmg.43.1.607 (2001).Article 
    CAS 

    Google Scholar 
    Antler, G., Turchyn, A. V., Ono, S., Sivan, O. & Bosak, T. Combined 34S, 33S and 18O isotope fractionations record different intracellular steps of microbial sulfate reduction. Geochim. Cosmochim. Acta 203, 364–380. https://doi.org/10.1016/j.gca.2017.01.015 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Kaplan, I. R. & Rittenberg, S. C. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34(2), 195–212. https://doi.org/10.1099/00221287-34-2-195 (1964).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mangalo, M., Meckenstock, R. U., Stichler, W. & Einsiedl, F. Stable isotope fractionation during bacterial sulfate reduction is controlled by reoxidation of intermediates. Geochim. Cosmochim. Acta 71(17), 4161–4171. https://doi.org/10.1016/j.gca.2007.06.058 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Strebel, O., Böttcher, J. & Fritz, P. Use of isotope fractionation of sulfate-sulfur and sulfate-oxygen to assess bacterial desulfurication in a sandy aquifer. J. Hydrol. 121(1–4), 155–172. https://doi.org/10.1016/0022-1694(90)90230-U (1990).Article 
    ADS 
    CAS 

    Google Scholar 
    Sim, M. S., Bosak, T. & Ono, S. Large sulfur isotope fractionation does not require disproportionation. Science 333(6038), 74–77. https://doi.org/10.1126/science.1205103 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Leavitt, W. D., Halevy, I., Bradley, A. S. & Johnston, D. T. Influence of sulfate reduction rates on the phanerozoic sulfur isotope record. Proc. Natl. Acad. Sci. 110(28), 11244–11249. https://doi.org/10.1073/pnas.1218874110 (2013).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Utrilla, R., Pierre, C., Orti, F. & Pueyo, J. J. Oxygen and sulphur isotope compositions as indicators of the origin of mesozoic and cenozoic evaporites from Spain. Chem. Geol. 102(1), 229–244. https://doi.org/10.1016/0009-2541(92)90158-2 (1992).Article 
    ADS 
    CAS 

    Google Scholar 
    Driessche, A. E. S. V., Canals, A., Ossorio, M., Reyes, R. C. & García-Ruiz, J. M. Unraveling the sulfate sources of (Giant) gypsum crystals using gypsum isotope fractionation factors. J. Geol. https://doi.org/10.1086/684832 (2016).Article 

    Google Scholar 
    Wardlaw, G. D. & Valentine, D. L. Evidence for salt diffusion from sediments contributing to increasing salinity in the Salton sea, California. Hydrobiologia 533(1), 77–85. https://doi.org/10.1007/s10750-004-2395-8 (2005).Article 
    CAS 

    Google Scholar 
    Bak, F. & Pfennig, N. Microbial sulfate reduction in littoral sediment of lake constance. FEMS Microbiol. Lett. 85(1), 31–42. https://doi.org/10.1111/j.1574-6968.1991.tb04695.x (1991).Article 
    CAS 

    Google Scholar 
    Dogramaci, S. S., Herczeg, A. L., Schiff, S. L. & Bone, Y. Controls on Δ34S and Δ18O of dissolved sulfate in aquifers of the murray basin, Australia and their use as indicators of flow processes. Appl. Geochem. 16(4), 475–488. https://doi.org/10.1016/S0883-2927(00)00052-4 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodier. L’analyse de l’eau, eaux naturelles, eaux résiduaires, eau de mer; Dunod, 1976.Romain, T. Tester Les Isotopes Stables de l’azote Des Matières Organiques Fossiles Terrestres Comme Marqueur Paléoclimatique Sur Des Séries Pré-Quaternaires, Université Pierre et Marie Curie – Paris VI, 2015. https://tel.archives-ouvertes.fr/tel-01408071. More

  • in

    Non-synonymous variation and protein structure of candidate genes associated with selection in farm and wild populations of turbot (Scophthalmus maximus)

    Ilker, E. & Hinczewski, M. Modeling the growth of organisms validates a general relation between metabolic costs and natural selection. Phys. Rev. Lett. 122, 238101 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boltaña, S. et al. Influences of thermal environment on fish growth. Ecol. Evol. 7, 6814–6825 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosenfeld, J., Richards, J., Allen, D., Van Leeuwen, T. & Monnet, G. Adaptive trade-offs in fish energetics and physiology: Insights from adaptive differentiation among juvenile salmonids. Can. J. Fish. Aquat. Sci. 77, 1243–1255 (2020).Article 

    Google Scholar 
    Robertson, D. R. & Collin, R. Inter- and intra-specific variation in egg size among reef fishes across the isthmus of Panama. Front. Ecol. Evol. 2, 84 (2015).Article 

    Google Scholar 
    Zueva, K. J., Lumme, J., Veselov, A. E., Kent, M. P. & Primmer, C. R. Genomic signatures of parasite-driven natural selection in north European Atlantic salmon (Salmo salar). Mar. Genom. 39, 26–38 (2018).Article 

    Google Scholar 
    Rajkov, J., El Taher, A., Böhne, A., Salzburger, W. & Egger, B. Gene expression remodelling and immune response during adaptive divergence in an African cichlid fish. Mol. Ecol. 30, 274–296 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Verhille, C. E. et al. Inter-population differences in salinity tolerance and osmoregulation of juvenile wild and hatchery-born Sacramento splittail. Conserv. Physiol. 4, 1–12 (2016).Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase (version Feb 2018). In: Species 2000 & ITIS Catalogue of Life, 2019 Annual Checklist (Roskov Y. et al.). (2018). www.catalogueoflife.org/annual-checklist/2019. ISSN 2405–884X.Karås, P. & Klingsheim, V. Effects of temperature and salinity on embryonic development of turbot (Scophthalmus maximus L.) from the North Sea, and comparisons with Baltic populations. Helgolander Meeresuntersuchungen 51, 241–247 (1997).Article 
    ADS 

    Google Scholar 
    Barbut, L. et al. How larval traits of six flatfish species impact connectivity. Limnol. Oceanogr. 64, 1150–1171 (2019).Article 
    ADS 

    Google Scholar 
    Bouza, C., Presa, P., Castro, J., Sánchez, L. & Martínez, P. Allozyme and microsatellite diversity in natural and domestic populations of turbot (Scophthalmus maximus) in comparison with other Pleuronectiformes. Can. J. Fish. Aquat. Sci. 59, 1460–1473 (2002).Article 
    CAS 

    Google Scholar 
    Nielsen, E. E., Nielsen, P. H., Meldrup, D. & Hansen, M. M. Genetic population structure of turbot (Scophthalmus maximus L.) supports the presence of multiple hybrid zones for marine fishes in the transition zone between the Baltic Sea and the North Sea. Mol. Ecol. 13, 585–595 (2004).Article 
    PubMed 

    Google Scholar 
    Vandamme, S. G. et al. Regional environmental pressure influences population differentiation in turbot (Scophthalmus maximus). Mol. Ecol. 23, 618–636 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vilas, R. et al. A genome scan for candidate genes involved in the adaptation of turbot (Scophthalmus maximus). Mar. Genom. 23, 77–86 (2015).Article 

    Google Scholar 
    Turan, C. et al. Genetics structure analysis of turbot (Scophthalmus maximus, Linnaeus, 1758) in the Black and Mediterranean Seas for application of innovative Management Strategies. Front. Mar. Sci. 6, 740 (2019).Article 

    Google Scholar 
    Ivanova, P. et al. Genetic diversity and morphological characterisation of three turbot (Scophthalmus maximus L., 1758) populations along the Bulgarian Black Sea coast. Nat. Conserv. 43, 123–146 (2021).Article 

    Google Scholar 
    do Prado, F. D. et al. Parallel evolution and adaptation to environmental factors in a marine flatfish: Implications for fisheries and aquaculture management of the turbot (Scophthalmus maximus). Evol. Appl. 11, 1322–1341 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    do Prado, F. D. et al. Tracing the genetic impact of farmed turbot Scophthalmus maximus on wild populations. Aquac. Environ. Interact. 10, 447–463 (2018).Article 

    Google Scholar 
    Robledo, D. et al. Integrating genomic resources of flatfish (Pleuronectiformes) to boost aquaculture production. Comp. Biochem. Physiol. Part D Genom. Proteom. 21, 41–55 (2017).CAS 

    Google Scholar 
    Sánchez-Molano, E. et al. Detection of growth-related QTL in turbot (Scophthalmus maximus). BMC Genomics 12, 473 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Ramilo, S. T. et al. QTL detection for Aeromonas salmonicida resistance related traits in turbot (Scophthalmus maximus). BMC Genom. 12, 541 (2011).Article 

    Google Scholar 
    Robledo, D. et al. Integrative transcriptome, genome and quantitative trait loci resources identify single nucleotide polymorphisms in candidate genes for growth traits in turbot. Int. J. Mol. Sci. 17, 243 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sciara, A. A. et al. Validation of growth-related quantitative trait loci markers in turbot (Scophthalmus maximus) families as a step toward marker assisted selection. Aquaculture 495, 602–610 (2018).Article 

    Google Scholar 
    Ma, A., Huang, Z., Wang, X. & Xu, Y. & Guo, X.,. Identification of quantitative trait loci associated with upper temperature tolerance in turbot, Scophthalmus maximus. Sci. Rep. 11, 1–12 (2021).Article 

    Google Scholar 
    Cui, W. et al. Comparative transcriptomic analysis reveals mechanisms of divergence in osmotic regulation of the turbot Scophthalmus maximus. Fish Physiol. Biochem. 46, 1519–1536 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Identification of the major sex-determining region of turbot (Scophthalmus maximus). Genetics 183, 1443–1452 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martínez, P. et al. A genome-wide association study, supported by a new chromosome-level genome assembly, suggests sox2 as a main driver of the undifferentiatiated ZZ/ZW sex determination of turbot (Scophthalmus maximus). Genomics 113, 1705–1718 (2021).Article 
    PubMed 

    Google Scholar 
    Martínez, P. et al. Turbot (Scophthalmus maximus) genomic resources:application for boosting aquaculture production. Genomics in Aquaculture (Elsevier Inc., 2016). https://doi.org/10.1016/B978-0-12-801418-9.00006-8.Saura, M. et al. Disentangling genetic variation for resistance and endurance to scuticociliatosis in turbot using pedigree and genomic information. Front. Genet. 10, 539 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramburu, O. et al. Genomic signatures after five generations of intensive selective breeding: Runs of homozygosity and genetic diversity in representative domestic and wild populations of turbot (Scophthalmus maximus). Front. Genet. 11, 1–14 (2020).Article 

    Google Scholar 
    Aramburu, O., Blanco, A., Bouza, C. & Martínez, P. Integration of host-pathogen functional genomics data into the chromosome-level genome assembly of turbot (Scophthalmus maximus). Aquaculture 564, 739067 (2023).Article 
    CAS 

    Google Scholar 
    Saul, M. C., Philip, V. M., Reinholdt, L. G. & Chesler, E. J. High-diversity mouse populations for complex traits. Trends Genet. 35, 501–514 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moen, T. et al. Epithelial cadherin determines resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genetics 200, 1313–1326 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pavelin, J. et al. The nedd-8 activating enzyme gene underlies genetic resistance to infectious pancreatic necrosis virus in Atlantic salmon. Genomics 113, 3842–3850 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barson, N. J. et al. Sex-dependent dominance at a single locus maintains variation in age at maturity in salmon. Nature 528, 405–408 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chen, J. et al. Functional differences between TSHR alleles associate with variation in spawning season in Atlantic herring. Commun. Biol. 4, 795 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Imsland, A. K., Brix, O., Nævdal, G. & Samuelsen, E. N. Hemoglobin genotypes in turbot (Scophthalmus maximus Rafinesque), their oxygen affinity properties and relation with growth. Comp. Biochem. Physiol. A Physiol. 116, 157–165 (1997).Article 

    Google Scholar 
    Imsland, A. K., Foss, A., Stefansson, S. O. & Nævdal, G. Hemoglobin genotypes of turbot (Scophthalmus maximus): Consequences for growth and variations in optimal temperature for growth. Fish Physiol. Biochem. 23, 75–81 (2000).Article 
    CAS 

    Google Scholar 
    Andersen, Ø., Rubiolo, J. A., De Rosa, M. C. & Martinez, P. The hemoglobin Gly16β1Asp polymorphism in turbot (Scophthalmus maximus) is differentially distributed across European populations. Fish Physiol. Biochem. 46, 2367–2376 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torrisi, M., Pollastri, G. & Le, Q. Deep learning methods in protein structure prediction. Comput. Struct. Biotechnol. J. 18, 1301–1310 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    AlQuraishi, M. Machine learning in protein structure prediction. Curr. Opin. Chem. Biol. 65, 1–8 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Powder, K. E., Cousin, H., McLinden, G. P. & Craig Albertson, R. A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development. Mol. Biol. Evol. 31, 3113–3124 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lamichhaney, S. et al. Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518, 371–375 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gupta, A. M., Chakrabarti, J. & Mandal, S. Non-synonymous mutations of SARS-CoV-2 leads epitope loss and segregates its variants. Microbes Infect. 22, 598–607 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verde, C. et al. Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochem. J. 389, 297–306 (2005).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearce, R. & Zhang, Y. Toward the solution of the protein structure prediction problem. J. Biol. Chem. 297, 100870 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 9, 40 (2008).Article 

    Google Scholar 
    Pirolli, D. et al. Insights from molecular dynamics simulations: Structural basis for the V567D mutation-induced instability of zebrafish alpha-dystroglycan and comparison with the murine model. PLoS ONE 9, e103866 (2014).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, J., Freddolino, P. L. & Zhang, Y. From Protein Structure to Function with Bioinformatics. In From Protein Structure to Function with Bioinformatics: Second Edition (ed. Rigden, D. J.) (2017). https://doi.org/10.1007/978-94-024-1069-3Baek, M. et al. Accurate prediction of protein structures and interactions using a 3-track neural network. Science 373, 871–876 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castro, J. et al. Potential sources of error in parentage assessment of turbot (Scophthalmus maximus) using microsatellite loci. Aquaculture 242, 119–135 (2004).Article 
    CAS 

    Google Scholar 
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv ID 1303.3997v2 00, 1–3 (2013).Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27, 2987–2993 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Vera, M. et al. Development and validation of single nucleotide polymorphisms (SNPs) markers from two transcriptome 454-runs of turbot (Scophthalmus maximus) using high-throughput genotyping. Int. J. Mol. Sci. 14, 5694–5711 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J. A. & Ong, B. The MassARRAY® system for targeted SNP genotyping. Methods in molecular biology vol. 1492 (2017).Choi, Y. & Chan, A. P. PROVEAN web server: A tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics 31, 2745–2747 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, M. J. Ecology of sea lice parasitic on farmed and wild fish. Trends Parasitol. 22, 475–483 (2006).Article 
    PubMed 

    Google Scholar 
    Blanchet, S., Rey, O. & Loot, G. Evidence for host variation in parasite tolerance in a wild fish population. Evol. Ecol. 24, 1129–1139 (2010).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).Article 
    PubMed 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A Genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A bayesian perspective. Genetics 993, 977–993 (2008).Article 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).Article 
    PubMed 

    Google Scholar 
    Narum, S. R. & Hess, J. E. Comparison of FST outlier tests for SNP loci under selection. Mol. Ecol. Resour. 11, 184–194 (2011).Article 
    PubMed 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl. Acids Res. 25, 3389–3402 (1997).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romero, P. et al. Sequence complexity of disordered protein. Prot. Struct. Funct. Genet. 42, 38–48 (2001).Article 
    CAS 

    Google Scholar 
    Jones, D. T. & Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31, 857–863 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mészáros, B., Erdös, G. & Dosztányi, Z. IUPred2A: Context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucl. Acids Res. 46, W329–W337 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishida, T. & Kinoshita, K. PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucl. Acids Res. 35, W460-464 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ito, N., Komiyama, N. H. & Fermi, G. Structure of deoxyhaemoglobin of the Anctartic fish Pagothenia bernacchi and structural basis of the root effect. J. Mol. Biol. https://doi.org/10.2210/pdb1hbh/pdb (1995).Article 
    PubMed 

    Google Scholar 
    Šali, A. & Blundell, T. L. Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779–815 (1993).Article 
    PubMed 

    Google Scholar 
    Gou, X. et al. Whole-genome sequencing of six dog breeds from continuous altitudes reveals adaptation to high-altitude hypoxia. Genome Res. 24, 1308–1315 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossman, S. R. et al. Identifying recent adaptations in large-scale genomic data. Cell 152, 703–713 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Macpherson, J. M., Sella, G., Davis, J. C. & Petrov, D. A. Genomewide spatial correspondence between nonsynonymous divergence and neutral polymorphism reveals extensive adaptation in Drosophila. Genetics 177, 2083–2099 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Howe, D. G. et al. ZFIN, the Zebrafish model organism database: Increased support for mutants and transgenics. Nucl. Acids Res. 41, 854–860 (2013).Article 

    Google Scholar 
    Huber, C. D., Kim, B. Y., Marsden, C. D. & Lohmueller, K. E. Determining the factors driving selective effects of new nonsynonymous mutations. Proc. Natl. Acad. Sci. USA 114, 4465–4470 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stenson, P. D. et al. The Human Gene Mutation Database (HGMD®): Optimizing its use in a clinical diagnostic or research setting. Hum. Genet. 139, 1197–1207 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naruse, K., Hori, H., Shimizu, N., Kohara, Y. & Takeda, H. Medaka genomics: A bridge between mutant phenotype and gene function. Mech. Dev. 121, 619–628 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chintalapati, M. & Moorjani, P. Evolution of the mutation rate across primates. Curr. Opin. Genet. Dev. 62, 58–64 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Rodin, R. E. et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat. Neurosci. 24, 176–185 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cayuela, H. et al. Thermal adaptation rather than demographic history drives genetic structure inferred by copy number variants in a marine fish. Mol. Ecol. 30, 1624–1641 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kess, T. et al. A putative structural variant and environmental variation associated with genomic divergence across the Northwest Atlantic in Atlantic Halibut. ICES J. Mar. Sci. 78, 2371–2384 (2021).Article 

    Google Scholar 
    Le Moan, A., Bekkevold, D. & Hemmer-Hansen, J. Evolution at two time frames: ancient structural variants involved in post-glacial divergence of the European plaice (Pleuronectes platessa). Heredity (Edinb). 126, 668–683 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruigrok, M. et al. The relative power of structural genomic variation versus SNPs in explaining the quantitative trait growth in the marine teleost Chrysophrys auratus. Genes (Basel). 13, 1129 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De la Herran, R. et al. A chromosome-level genome assembly enables the identification of the follicle stimulating hormone receptor as the master sex determining gene in Solea senegalensis. Mol. Ecol. Resour. 00, 1–19 (2023).
    Google Scholar 
    Harrison, P. W. et al. The FAANG data portal: Global, open-access, “FAIR”, and richly validated genotype to phenotype data for high-quality functional annotation of animal genomes. Front. Genet. 12, 639238 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figueras, A. et al. Whole genome sequencing of turbot (Scophthalmus maximus; Pleuronectiformes): A fish adapted to demersal life. DNA Res. 23, 181–192 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moore, J. S. et al. Conservation genomics of anadromous Atlantic salmon across its North American range: Outlier loci identify the same patterns of population structure as neutral loci. Mol. Ecol. 23, 5680–5697 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Barrio, A. M. et al. The genetic basis for ecological adaptation of the Atlantic herring revealed by genome sequencing. Elife 5, e12081 (2016).Article 

    Google Scholar 
    Pettersson, M. E. et al. A chromosome-level assembly of the Atlantic herring genome-detection of a supergene and other signals of selection. Genome Res. 29, 1919–1928 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bo, J. et al. Opah (Lampris megalopsis) genome sheds light on the evolution of aquatic endothermy. Zool. Res. 43, 26–29 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Resequencing and SNP discovery of Amur ide (Leuciscus waleckii) provides insights into local adaptations to extreme environments. Sci. Rep. 11, 5064 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meng, Z., Hu, P., Lei, J. & Jia, Y. Expression of insulin-like growth factors at mRNA levels during the metamorphic development of turbot (Scophthalmus maximus). Gen. Comp. Endocrinol. 235, 11–17 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ren, H. & Gao, S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: Roles in skeletal muscle growth and differentiation. Gen. Comp. Endocrinol. 167, 344–351 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Duan, C., Ding, J., Li, Q., Tsai, W. & Pozios, K. Insulin-like growth factor binding protein 2 is a growth inhibitory protein conserved in zebrafish. Proc. Natl. Acad. Sci. USA 96, 15274–15279 (1999).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Furqon, A., Gunawan, A., Ulupi, N., Suryati, T. & Sumantri, C. A Polymorphism of Insulin-like growth factor binding protein 2 gene associated with growth and body composition traits in Kampong Chickens. J. Vet. 19, 183 (2018).
    Google Scholar 
    Kibbey, M. M., Jameson, M. J., Eaton, E. M. & Rosenzweig, S. A. Insulin-like growth factor binding protein-2: Contributions of the C-terminal domain to insulin-like growth factor-1 binding. Mol. Pharmacol. 69, 833–845 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Coughlan, J. P. et al. Microsatellite DNA variation in wild populations and farmed strains of turbot from Ireland and Norway: A preliminary study. J. Fish Biol. 52, 916–922 (1998).Article 
    CAS 

    Google Scholar 
    Zhang, H. et al. Characterization and Identification of Single Nucleotide Polymorphism within the IGF-1R gene associated with growth traits of Odontobutis potamophila. J. World Aquac. Soc. 49, 366–379 (2018).Article 
    CAS 

    Google Scholar 
    Guo, L., Yang, S., Li, M. M., Meng, Z. N. & Lin, H. R. 2016) Divergence and polymorphism analysis of IGF1Ra and IGF1Rb from orange-spotted grouper, Epinephelus coioides (Hamilton). Genet. Mol. Res. 15, 1. https://doi.org/10.4238/gmr15048768 (2016).Article 
    CAS 

    Google Scholar 
    Yu, X. et al. Genome-wide association analysis of adaptation to oxygen stress in Nile tilapia (Oreochromis niloticus). BMC Genomics 22, 426 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harano, T. et al. Hemoglobin Kawachi [α44 (CE2) Pro → Arg]: A new hemoglobin variant of high oxygen affinity with amino acid substitution at α1β2 contact. Hemoglobin 6, 43–49 (1982).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alharby, E. et al. A homozygous potentially pathogenic variant in the PAXBP1 gene in a large family with global developmental delay and myopathic hypotonia. Clin. Genet. 92, 579–586 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ceinos, R. M. et al. Differential circadian and light-driven rhythmicity of clock gene expression and behaviour in the turbot, Scophthalmus maximus. PLoS ONE 14, e0219153 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishiwaki-Ohkawa, T. & Yoshimura, T. Molecular basis for regulating seasonal reproduction in vertebrates. J. Endocrinol. 229, R117–R127 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wood, S. H. et al. Circadian clock mechanism driving mammalian photoperiodism. Nat. Commun. 11, 4291 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Piovesan, D. et al. DisProt 7.0: A major update of the database of disordered proteins. Nucl. Acids Res. 45, 219–227 (2017).Article 

    Google Scholar 
    Pajkos, M. & Dosztányi, Z. Chapter Two – Functions of intrinsically disordered proteins through evolutionary lenses. in Dancing Protein Clouds: Intrinsically Disordered Proteins in the Norm and Pathology, Part C (ed. Uversky, V. N. B. T.-P. in M. B. and T. S.) vol. 183 45–74 (Academic Press, 2021).Malagrinò, F. et al. Understanding the binding induced folding of intrinsically disordered proteins by protein engineering: Caveats and pitfalls. Int. J. Mol. Sci. 21, 3484 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doyle, A., Cowan, M. E., Migaud, H., Wright, P. J. & Davie, A. Neuroendocrine regulation of reproduction in Atlantic cod (Gadus morhua): Evidence of Eya3 as an integrator of photoperiodic cues and nutritional regulation to initiate sexual maturation. Comput. Biochem. Physiol. -Part A Mol. Integr. Physiol. 260, 111000 (2021).Silver, S. J., Davies, E. L., Doyon, L. & Rebay, I. Functional dissection of eyes absent reveals new modes of regulation within the retinal determination gene network. Mol. Cell. Biol. 23, 5989–5999 (2003).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin, M. & Mardon, G. Distinct biochemical activities of eyes absent during drosophila eye development. Sci. Rep. 6, 23228 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGowan, K. L., Passow, C. N., Arias-Rodriguez, L., Tobler, M. & Kelley, J. L. Expression analyses of cave mollies (Poecilia mexicana) reveal key genes involved in the early evolution of eye regression. Biol. Lett. 15, 20190554 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, W. et al. Transcriptomic analysis reveals putative osmoregulation mechanisms in the kidney of euryhaline turbot Scophthalmus maximus responded to hypo-saline seawater. J. Oceanol. Limnol. 38, 467–479 (2020).Article 
    CAS 

    Google Scholar 
    Mármol-Sánchez, E., Quintanilla, R., Cardoso, T. F., Jordana Vidal, J. & Amills, M. Polymorphisms of the cryptochrome 2 and mitoguardin 2 genes are associated with the variation of lipid-related traits in Duroc pigs. Sci. Rep. 9, 9025 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takvam, M., Wood, C. M., Kryvi, H. & Nilsen, T. O. Ion transporters and osmoregulation in the didney of teleost fishes as a function of salinity. Front. Physiol. 12, 664588 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engelund, M. B. & Madsen, S. S. The role of aquaporins in the kidney of euryhaline teleosts. Front. Physiol. 2, 51 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nam, B. H. et al. Identification and characterization of the prepro-vasoactive intestinal peptide gene from the teleost Paralichthys olivaceus. Vet. Immunol. Immunopathol. 127, 249–258 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Paladini, F. et al. Age-dependent association of idiopathic achalasia with vasoactive intestinal peptide receptor 1 gene. Neurogastroenterol. Motil. 21, 597–602 (2009).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hosseinpour, L., Nikbin, S., Hedayat-Evrigh, N. & Elyasi-Zarringhabaie, G. Association of polymorphisms of vasoactive intestinal peptide and its receptor with reproductive traits of turkey hens. South Afr. J. Anim. Sci. 50, 345–352 (2020).Article 
    CAS 

    Google Scholar 
    Pereiro, P., Figueras, A. & Novoa, B. A novel hepcidin-like in turbot (Scophthalmus maximus L.) highly expressed after pathogen challenge but not after iron overload. Fish Shellfish Immunol. 32, 879–889 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Zhang, J., Yu, L., Ping, L., Fei, M. & Sun, L. Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol. 38, 127–134 (2014).Article 
    PubMed 

    Google Scholar  More

  • in

    Legally protect marine food web’s lower echelons

    Plankton are microscopic organisms at the base of aquatic food webs and therefore essential to all life on Earth. In our view, international legal protection of plankton is urgently needed because of their high susceptibility to the effects of climate change, including ocean warming and acidification.
    Competing Interests
    The authors declare no competing interests. More