More stories

  • in

    Atmospheric–ocean coupling drives prevailing and synchronic dispersal patterns of marine species with long pelagic durations

    Guichard, F., Levin, S. A., Hastings, A. & Siegel, D. Toward a dynamic metacommunity approach to marine reserve theory. BioScience 54(11), 1003. https://doi.org/10.1641/0006-3568(2004)054[1003:tadmat]2.0.co;2 (2004).Article 

    Google Scholar 
    Wieters, E. A., Gaines, S. D., Navarrete, S. A., Blanchette, C. A. & Menge, B. A. Scales of dispersal and the biogeography of marine predator-prey interactions. Am. Nat. 171(3), 405–417. https://doi.org/10.1086/527492 (2008).Article 

    Google Scholar 
    Martínez-Moreno, J. et al. Global changes in oceanic mesoscale currents over the satellite altimetry record. Nat. Clim. Changehttps://doi.org/10.1038/s41558-021-01006-9 (2021).Article 

    Google Scholar 
    van Gennip, S. J. et al. Going with the flow: The role of ocean circulation in global marine ecosystems under a changing climate. Glob. Change Biol. 23(7), 2602–2617. https://doi.org/10.1111/gcb.13586 (2017).Article 
    ADS 

    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. U.S.A. 104(4), 1266–1271. https://doi.org/10.1073/pnas.0603422104 (2007).Article 
    ADS 
    CAS 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1(1), 443–466. https://doi.org/10.1146/annurev.marine.010908.163757 (2009).Article 

    Google Scholar 
    Ospina-Alvarez, A., Parada, C. & Palomera, I. Vertical migration effects on the dispersion and recruitment of European anchovy larvae: From spawning to nursery areas. Ecol. Model. 231, 65–79. https://doi.org/10.1016/j.ecolmodel.2012.02.001 (2012).Article 

    Google Scholar 
    Selkoe, K. A. & Toonen, R. J. Marine connectivity: A new look at pelagic larval duration and genetic metrics of dispersal. Mar. Ecol. Prog. Ser. 436, 291–305. https://doi.org/10.3354/meps09238 (2011).Article 
    ADS 

    Google Scholar 
    Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. U.S.A. 105(26), 8974–8979. https://doi.org/10.1073/pnas.0802544105 (2008).Article 
    ADS 

    Google Scholar 
    De Lestang, S. et al. What caused seven consecutive years of low puerulus settlement in the western rock lobster fishery of Western Australia?. ICES J. Mar. Sci. 72, i49–i58. https://doi.org/10.1093/icesjms/fsu177 (2015).Article 

    Google Scholar 
    Linnane, A. et al. Evidence of large-scale spatial declines in recruitment patterns of southern rock lobster Jasus edwardsii, across south-eastern Australia. Fish. Res. 105(3), 163–171. https://doi.org/10.1016/j.fishres.2010.04.001 (2010).Article 

    Google Scholar 
    Briones-Fourzán, P., Candela, J. & Lozano-Álvarez, E. Postlarval settlement of the spiny lobster Panulirus argus along the Caribbean coast of Mexico: Patterns, influence of physical factors, and possible sources of origin. Limnol. Oceanogr. 53(3), 970–985. https://doi.org/10.4319/lo.2008.53.3.0970 (2008).Article 
    ADS 

    Google Scholar 
    Haury, L. R., McGowan, J. A. & Wiebe, P. H. Patterns and processes in the time-space scales of plankton distributions. In Spatial Pattern in Plankton Communities (ed. Steele, J. H.) 277–327 (Springer US, 1978). https://doi.org/10.1007/978-1-4899-2195-6_12.Cowen, R. K., Paris, C. B. & Srinivasan, A. Scaling of connectivity in marine populations. Science 311(5760), 522–527. https://doi.org/10.1126/science.1122039 (2006).Article 
    ADS 
    CAS 

    Google Scholar 
    Kavanaugh, M. T. et al. Seascapes as a new vernacular for pelagic ocean monitoring, management and conservation. ICES J. Mar. Sci. 73(7), 1839–1850. https://doi.org/10.1093/icesjms/fsw086 (2016).Article 

    Google Scholar 
    Ospina-Alvarez, A., Weidberg, N., Aiken, C. M. & Navarrete, S. A. Larval transport in the upwelling ecosystem of central Chile: The effects of vertical migration, developmental time and coastal topography on recruitment. Prog. Oceanogr. 168, 82–99. https://doi.org/10.1016/j.pocean.2018.09.016 (2018) http://www.sciencedirect.com/science/article/pii/S0079661117300800.Article 
    ADS 

    Google Scholar 
    Palumbi, S. Population genetics, demographic connectivity, and the design of marine reserves. Ecol. Appl. 13(1 Supplement), S146–S158 (2003).Article 

    Google Scholar 
    Barahona, M. et al. Environmental and demographic factors influence the spatial genetic structure of an intertidal barnacle in central-northern Chile. Mar. Ecol. Prog. Ser. 612, 151–165. https://doi.org/10.3354/meps12855 (2019) http://www.int-res.com/abstracts/meps/v612/p151-165/.Article 
    ADS 

    Google Scholar 
    Spanier, E. et al. A concise review of lobster utilization by worldwide human populations from prehistory to the modern era. ICES J. Mar. Sci. 72(May), i7–i21. https://doi.org/10.1093/icesjms/fsv066 (2015).Article 

    Google Scholar 
    IUCN. Palinurus elephas: Goñi, R.: The IUCN Red List of Threatened Species 2014: e.T169975A1281221. Tech. Rep., International Union for Conservation of Nature (2013). http://www.iucnredlist.org/details/169975/0. Type: dataset.Canepa, A. et al. Pelagia noctiluca in the mediterranean sea (eds Pitt, K. A. & Lucas, C. H.) In Jellyfish Blooms, Vol. 9789400770 237–266 (Springer Netherlands, 2014). https://doi.org/10.1007/978-94-007-7015-7_11.Bosch-Belmar, M. et al. Jellyfish blooms perception in Mediterranean finfish aquaculture. Mar. Policy 76, 1–7. https://doi.org/10.1016/j.marpol.2016.11.005 (2017).Article 

    Google Scholar 
    Exceltur. Impactur baleares 2014. Tech. Rep., EXCELTUR – Govern de les Illes Balears, Madrid (2014).Vignudelli, S., Gasparini, G. P., Astraldi, M. & Schiano, M. E. A possible influence of the North Atlantic Oscillation on the circulation of the Western Mediterranean Sea. Geophys. Res. Lett. 26(5), 623–626. https://doi.org/10.1029/1999GL900038 (1999).Article 
    ADS 

    Google Scholar 
    Somot, S. et al. Characterizing, modelling and understanding the climate variability of the deep water formation in the North-Western Mediterranean Sea. Clim. Dyn. 51(3), 1179–1210. https://doi.org/10.1007/s00382-016-3295-0 (2018).Article 

    Google Scholar 
    Díaz, D., Marí, M., Abelló, P. & Demestre, M. Settlement and juvenile habitat of the European spiny lobster Palinurus elephas (Crustacea: Decapoda: Palinuridae) in the Western Mediterranean Sea. Sci. Mar. 65(4), 347–356. https://doi.org/10.3989/scimar.2001.65n4347 (2001).Article 

    Google Scholar 
    Muñoz, A. et al. Exploration of the inter-annual variability and multi-scale environmental drivers of European spiny lobster, Palinurus elephas (Decapoda: Palinuridae) settlement in the NW Mediterranean. Mar. Ecol.https://doi.org/10.1111/maec.12654 (2021).Article 

    Google Scholar 
    Malej, A. & Malej, M. Population dynamics of the jellyfish Pelagia noctiluca (Forsskal, 1775) In Marine Eutrophication and Population Dynamics (eds Colombo, G., Ferrari, I., V., C. & R., R.) 215–219 (Olsen and Olsen, 1992).Ottmann, D. et al. Abundance of Pelagia noctiluca early life stages in the western Mediterranean Sea scales with surface chlorophyll. Mar. Ecol. Prog. Ser. 658, 75–88. https://doi.org/10.3354/meps13423 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Benedetti-Cecchi, L. et al. Deterministic factors overwhelm stochastic environmental fluctuations as drivers of jellyfish outbreaks. PLoS One 10(10), 1–16. https://doi.org/10.1371/journal.pone.0141060 (2015).Article 
    CAS 

    Google Scholar 
    Licandro, P. et al. A blooming jellyfish in the northeast Atlantic and Mediterranean. Biol. Lett. 6(5), 688–691. https://doi.org/10.1098/rsbl.2010.0150 (2010).Article 
    CAS 

    Google Scholar 
    Goy, J., Morand, P. & Etienne, M. Long-term fluctuations of Pelagia noctiluca (Cnidaria, Scyphomedusa) in the western Mediterranean Sea. Prediction by climatic variables. Deep Sea Res. Part A Oceanogr. Res. Pap. 36(2), 269–279 (1989). https://doi.org/10.1016/0198-0149(89)90138-6 .Yahia, M. N. D. et al. Are the outbreaks timing of Pelagia noctiluca (Forsskal, 1775) getting more frequent in the Mediterranean basin?. ICES Cooper. Res. Rep. 300, 8–14 (2010).
    Google Scholar 
    Ferraris, M. et al. Distribution of Pelagia noctiluca (Cnidaria, Scyphozoa) in the Ligurian Sea (NW Mediterranean Sea). J. Plankton Res. 34(10), 874–885. https://doi.org/10.1093/plankt/fbs049 (2012).Article 

    Google Scholar 
    Millot, C. Circulation in the Western Mediterranean Sea. J. Mar. Syst. 20(1–4), 423–442. https://doi.org/10.1016/S0924-7963(98)00078-5 (1999).Article 

    Google Scholar 
    Galarza, J. A. et al. The influence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species. Proc. Natl. Acad. Sci. 106(5), 1473–1478. https://doi.org/10.1073/pnas.0806804106 (2009).Article 
    ADS 

    Google Scholar 
    Fernández de Puelles, M. L. & Molinero, J. C. Decadal changes in hydrographic and ecological time-series in the Balearic Sea (western Mediterranean), identifying links between climate and zooplankton. ICES J. Mar. Sci. 65(3), 311–317. https://doi.org/10.1093/icesjms/fsn017 (2008).Article 

    Google Scholar 
    Arsouze, T. et al. CIESM (ed.) Sensibility analysis of the Western Mediterranean Transition inferred by four companion simulations. (ed. CIESM) EGU General Assembly Conference Abstracts, Vol. 1 of EGU General Assembly Conference Abstracts, 13073 (2013).Amores, A., Jordà, G., Arsouze, T. & Le Sommer, J. Up to what extent can we characterize ocean eddies using present-day gridded altimetric products?. J. Geophys. Res. Oceans 123(10), 7220–7236. https://doi.org/10.1029/2018JC014140 (2018).Article 
    ADS 

    Google Scholar 
    Waldman, R. et al. Impact of the mesoscale dynamics on ocean deep convection: The 2012–2013 case study in the northwestern mediterranean sea. J. Geophys. Res. Oceans 122(11), 8813–8840. https://doi.org/10.1002/2016JC012587 (2017).Article 
    ADS 

    Google Scholar 
    Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Softw. 23(9), 1210–1214. https://doi.org/10.1016/j.envsoft.2008.02.005 (2008).Article 

    Google Scholar 
    Brickman, D. & Smith, P. C. Lagrangian stochastic modeling in coastal oceanography. J. Atmos. Ocean. Technol. 19(1), 83–99. https://doi.org/10.1175/1520-0426(2002)0192.0.CO;2 (2002).Article 
    ADS 

    Google Scholar 
    Goñi, R. & Latrouite, D. Review of the biology, ecology and fisheries of Palinurus spp. species of European waters: Palinurus elephas (Fabricius, 1787) and Palinurus mauritanicus (Gruvel, 1911). Cahiers de Biol. Mar. 46(2), 127–142 (2005).
    Google Scholar 
    Bjornsson, H. & Venegas, S. A manual for EOF and SVD analyses of climatic data. Tech. Rep. CCGCR Report No. 97-1, McGill s Centre for Climate and Global Change Research (C2GCR) (1997).Herrmann, M., Somot, S., Sevault, F., Estournel, C. & Déqué, M. Modeling the deep convection in the northwestern mediterranean sea using an eddy-permitting and an eddy-resolving model: Case study of winter 1986–1987. J. Geophys. Res. Oceans 113(C4) (2008). https://doi.org/10.1029/2006JC003991.Hersbach, H. et al. ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 10, 252–266 (2019). https://doi.org/10.24381/cds.f17050d7 .Bernard, P., Berline, L. & Gorsky, G. Long term (1981–2008) monitoring of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) on Mediterranean Coasts (Principality of Monaco and French Riviera). J. Oceanogr. Res. Data 4(1), 1–10 (2011).
    Google Scholar 
    Kough, A. S., Paris, C. B. & Butler, M. J. IV. Larval connectivity and the international management of fisheries. PLoS One 8(6), 1–12. https://doi.org/10.1371/journal.pone.0064970 (2013).Article 
    CAS 

    Google Scholar 
    Sandvik, H. et al. Modelled drift patterns of fish larvae link coastal morphology to seabird colony distribution. Nat. Commun. 7(May), 1–8. https://doi.org/10.1038/ncomms11599 (2016).Article 
    CAS 

    Google Scholar 
    Notarbartolo-Di-Sciara, G., Agardy, T., Hyrenbach, D., Scovazzi, T. & Van Klaveren, P. The Pelagos Sanctuary for Mediterranean marine mammals. Aquat. Conserv. Mar. Freshw. Ecosyst. 18(4), 367–391. https://doi.org/10.1002/aqc.855 (2008).Article 

    Google Scholar 
    Astraldi, M., Gasparini, G. P., Vetrano, a. & Vignudelli, S. Hydrographic characteristics and interannual variability of water masses in the central Mediterranean: A sensitivity test for long-term changes in the Mediterranean Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 49(4), 661–680 (2002). https://doi.org/10.1016/S0967-0637(01)00059-0 .Muffett, K. & Miglietta, M. P. Planktonic associations between medusae (classes Scyphozoa and Hydrozoa) and epifaunal crustaceans. PeerJ 9, e11281. https://doi.org/10.7717/peerj.11281 (2021) https://peerj.com/articles/11281.Article 

    Google Scholar 
    Stopar, K., Ramšak, A., Trontelj, P. & Malej, A. Lack of genetic structure in the jellyfish Pelagia noctiluca (Cnidaria: Scyphozoa: Semaeostomeae) across European seas. Mol. Phylogenet. Evol. 57(1), 417–428. https://doi.org/10.1016/j.ympev.2010.07.004 (2010).Article 
    CAS 

    Google Scholar 
    Berline, L., Zakardjian, B., Molcard, A., Ourmières, Y. & Guihou, K. Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. Mar. Pollut. Bull. 70(1–2), 90–99. https://doi.org/10.1016/j.marpolbul.2013.02.016 (2013).Article 
    CAS 

    Google Scholar 
    Prieto, L., Macías, D., Peliz, A. & Ruiz, J. Portuguese Man-of-War (Physalia physalis) in the Mediterranean: A permanent invasion or a casual appearance? Sci. Rep. 5 (2015). https://doi.org/10.1038/srep11545.Houghton, J. D. R. et al. Identification of genetically and oceanographically distinct blooms of jellyfish. J. R. Soc. Interface 10(80), 20120920–20120920. https://doi.org/10.1098/rsif.2012.0920 (2013).Article 

    Google Scholar 
    Segura-García, I. et al. Reconstruction of larval origins based on genetic relatedness and biophysical modeling. Sci. Rep. 9(1), 1–9. https://doi.org/10.1038/s41598-019-43435-9 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Elphie, H., Raquel, G., David, D. & Serge, P. Detecting immigrants in a highly genetically homogeneous spiny lobster population (Palinurus elephas) in the northwest Mediterranean Sea. Ecol. Evol. 2(10), 2387–2396. https://doi.org/10.1002/ece3.349 (2012).Article 

    Google Scholar 
    Babbucci, M. et al. Population structure, demographic history, and selective processes: Contrasting evidences from mitochondrial and nuclear markers in the European spiny lobster Palinurus elephas (Fabricius, 1787). Mol. Phylogenet. Evol. 56(3), 1040–1050. https://doi.org/10.1016/j.ympev.2010.05.014 (2010).Article 
    CAS 

    Google Scholar 
    Cau, A. et al. European spiny lobster recovery from overfishing enhanced through active restocking in Fully Protected Areas. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-49553-8 .Macias, D., Garcia-Gorriz, E. & Stips, A. Deep winter convection and phytoplankton dynamics in the NW Mediterranean Sea under present climate and future (Horizon 2030) scenarios. Sci. Rep. 8(1), 1–15. https://doi.org/10.1038/s41598-018-24965-0 (2018).Article 
    CAS 

    Google Scholar  More

  • in

    Global patterns of water storage in the rooting zones of vegetation

    Teuling, A. J., Seneviratne, S. I., Williams, C. & Troch, P. A. Observed timescales of evapotranspiration response to soil moisture. Geophys. Res. Lett. 33, L23403 (2006).Gao, H. et al. Climate controls how ecosystems size the root zone storage capacity at catchment scale. Geophys. Res. Lett. 41, 7916–7923 (2014).Article 

    Google Scholar 
    Milly, P. C. D. Climate, soil water storage, and the average annual water balance. Water Resour. Res. 30, 2143–2156 (1994).Article 

    Google Scholar 
    Hahm, W. J. et al. Low subsurface water storage capacity relative to annual rainfall decouples Mediterranean plant productivity and water use from rainfall variability. Geophys. Res. Lett. 46, 6544–6553 (2019).Article 

    Google Scholar 
    Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci. Rev. 99, 125–161 (2010).Article 

    Google Scholar 
    Thompson, S. E. et al. Comparative hydrology across AmeriFlux sites: the variable roles of climate, vegetation, and groundwater. Water Resour. Res. 47, W00J07 (2011).Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA 114, 10572–10577 (2017).Article 

    Google Scholar 
    Hain, C. R., Crow, W. T., Anderson, M. C. & Tugrul Yilmaz, M. Diagnosing neglected soil moisture source–sink processes via a thermal infrared-based two-source energy balance model. J. Hydrometeorol. 16, 1070–1086 (2015).Article 

    Google Scholar 
    Rempe, D. M. & Dietrich, W. E. Direct observations of rock moisture, a hidden component of the hydrologic cycle. Proc. Natl Acad. Sci. USA 115, 2664–2669 (2018).Article 

    Google Scholar 
    Dawson, T. E., Jesse Hahm, W. & Crutchfield-Peters, K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. N. Phytol. 226, 666–671 (2020).Article 

    Google Scholar 
    McCormick, E. L. et al. Widespread woody plant use of water stored in bedrock. Nature 597, 225–229 (2021).Article 

    Google Scholar 
    Maxwell, R. M. & Condon, L. E. Connections between groundwater flow and transpiration partitioning. Science 353, 377–380 (2016).Article 

    Google Scholar 
    Schlemmer, L., Schär, C., Lüthi, D. & Strebel, L. A groundwater and runoff formulation for weather and climate models. J. Adv. Model. Earth Syst. 10, 1809–1832 (2018).Article 

    Google Scholar 
    Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).Article 

    Google Scholar 
    Koirala, S. et al. Global distribution of groundwater–vegetation spatial covariation. Geophys. Res. Lett. 44, 4134–4142 (2017).Article 

    Google Scholar 
    Esteban, E. J. L., Castilho, C. V., Melgaço, K. L. & Costa, F. R. C. The other side of droughts: wet extremes and topography as buffers of negative drought effects in an Amazonian forest. N. Phytol. 229, 1995–2006 (2021).Article 

    Google Scholar 
    Liu, Y., Konings, A. G., Kennedy, D. & Gentine, P. Global coordination in plant physiological and rooting strategies in response to water stress. Glob. Biogeochem. Cycles 35, e2020GB006758 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. The global biogeography of roots. Ecol. Monogr. 72, 311–328 (2002).Article 

    Google Scholar 
    Canadell, J. et al. Maximum rooting depth of vegetation types at the global scale. Oecologia 108, 583–595 (1996).Article 

    Google Scholar 
    Weaver, J. E. & Darland, R. W. Soil–root relationships of certain native grasses in various soil types. Ecol. Monogr. 19, 303–338 (1949).Article 

    Google Scholar 
    Chitra-Tarak, R. et al. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. N. Phytol. 231, 1798–1813 (2021).Article 

    Google Scholar 
    Schenk, H. J. & Jackson, R. B. Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma 126, 129–140 (2005).Article 

    Google Scholar 
    Franklin, O. et al. Organizing principles for vegetation dynamics. Nat. Plants 6, 444–453 (2020).Article 

    Google Scholar 
    Kleidon, A. & Heimann, M. A method of determining rooting depth from a terrestrial biosphere model and its impacts on the global water and carbon cycle. Glob. Change Biol. 4, 275–286 (1998).Article 

    Google Scholar 
    Schymanski, S. J., Sivapalan, M., Roderick, M. L., Hutley, L. B. & Beringer, J. An optimality-based model of the dynamic feedbacks between natural vegetation and the water balance. Water Resour. Res. 45, W01412 (2009).Wang-Erlandsson, L. et al. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 20, 1459–1481 (2016).Article 

    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).Article 

    Google Scholar 
    Anderson, M. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 60, 195–216 (1997).Article 

    Google Scholar 
    Hain, C. R. & Anderson, M. C. Estimating morning change in land surface temperature from MODIS day/night observations: applications for surface energy balance modeling. Geophys. Res. Lett. 44, 9723–9733 (2017).Article 

    Google Scholar 
    Tumber-Dávila, S. J., Schenk, H. J., Du, E. & Jackson, R. B. Plant sizes and shapes above- and belowground and their interactions with climate. New Phytol. https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.18031 (2022).Harmonized World Soil Database Version 1.0 (FAO, 2008).Wieder, W. Regridded Harmonized World Soil Database Version 1.2 (ORNL DAAC, 2014); https://doi.org/10.3334/ORNLDAAC/1247Balland, V., Pollacco, J. A. P. & Arp, P. A. Modeling soil hydraulic properties for a wide range of soil conditions. Ecol. Model. 219, 300–316 (2008).Article 

    Google Scholar 
    Agee, E. et al. Root lateral interactions drive water uptake patterns under water limitation. Adv. Water Resour. 151, 103896 (2021).Article 

    Google Scholar 
    Krakauer, N. Y., Li, H. & Fan, Y. Groundwater flow across spatial scales: importance for climate modeling. Environ. Res. Lett. 9, 034003 (2014).Article 

    Google Scholar 
    Stoy, P. C. et al. Reviews and syntheses: turning the challenges of partitioning ecosystem evaporation and transpiration into opportunities. Biogeosciences 16, 3747–3775 (2019).Article 

    Google Scholar 
    Jackson, R. B., Moore, L. A., Hoffmann, W. A., Pockman, W. T. & Linder, C. R. Ecosystem rooting depth determined with caves and DNA. Proc. Natl Acad. Sci. USA 96, 11387–11392 (1999).Article 

    Google Scholar 
    Pelletier, J. D. et al. A gridded global data set of soil, intact regolith, and sedimentary deposit thicknesses for regional and global land surface modeling. J. Adv. Model. Earth Syst. 8, 41–65 (2016).Article 

    Google Scholar 
    Parmesan, C. & Hanley, M. E. Plants and climate change: complexities and surprises. Ann. Bot. 116, 849–864 (2015).Article 

    Google Scholar 
    Pendergrass, A. G., Knutti, R., Lehner, F., Deser, C. & Sanderson, B. M. Precipitation variability increases in a warmer climate. Sci. Rep. 7, 17966 (2017).Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).Article 

    Google Scholar 
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).Article 

    Google Scholar 
    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).Article 

    Google Scholar 
    Fisher, J. B. et al. ECOSTRESS: NASA’s next generation mission to measure evapotranspiration from the international space station. Water Resour. Res. 56, e2019WR026058 (2020).Article 

    Google Scholar 
    Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).Article 

    Google Scholar 
    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Orth, R., Koster, R. D. & Seneviratne, S. I. Inferring soil moisture memory from streamflow observations using a simple water balance model. J. Hydrometeorol. 14, 1773–1790 (2013).Article 

    Google Scholar 
    Stocker, B. cwd v.1.0: R package for cumulative water deficit calculation. Zenodo https://doi.org/10.5281/zenodo.5359053 (2021).Zhang, Y. et al. Model-based analysis of the relationship between sun-induced chlorophyll fluorescence and gross primary production for remote sensing applications. Remote Sens. Environ. 187, 145–155 (2016).Article 

    Google Scholar 
    Duveiller, G. et al. A spatially downscaled sun-induced fluorescence global product for enhanced monitoring of vegetation productivity. Earth Syst. Sci. Data 12, 1101–1116 (2020).Article 

    Google Scholar 
    Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 6, 2803–2823 (2013).Article 

    Google Scholar 
    Köhler, P., Guanter, L. & Joiner, J. A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data. Atmos. Meas. Tech. 8, 2589–2608 (2015).Article 

    Google Scholar 
    Jiang, B. et al. Validation of the surface daytime net radiation product from version 4.0 GLASS product suite. IEEE Geosci. Remote Sens. Lett. 16, 509–513 (2019).Article 

    Google Scholar 
    Muggeo, V. M. R. Estimating regression models with unknown break-points. Stat. Med. 22, 3055–3071 (2003).Article 

    Google Scholar 
    Gilleland, E. & Katz, R. W. extRemes 2.0: an extreme value analysis package in R. J. Stat. Softw. 72, 1–39 (2016).Marthews, T. R., Dadson, S. J., Lehner, B., Abele, S. & Gedney, N. High-resolution global topographic index values for use in large-scale hydrological modelling. Hydrol. Earth Syst. Sci. 19, 91–104 (2015).Article 

    Google Scholar 
    Etopo1, Global 1 Arc-Minute Ocean Depth and Land Elevation from the US National Geophysical Data Center (NGDC) (National Geophysical Data Center, NESDIS, NOAA and US Department of Commerce, 2011); https://doi.org/10.5065/D69Z92Z5Beven, K. J. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. J. 24, 43–69 (1979).Article 

    Google Scholar 
    Hansen, M. C., Townshend, J. R. G., DeFries, R. S. & Carroll, M. Estimation of tree cover using MODIS data at global, continental and regional/local scales. Int. J. Remote Sens. 26, 4359–4380 (2005).Article 

    Google Scholar 
    Stocker, B. D. Global rooting zone water storage capacity and rooting depth estimates. Zenodo https://doi.org/10.5281/zenodo.5515246 (2021).Stocker, B. stineb/mct: v3.0: re-submission to Nature Geoscience. Zenodo https://doi.org/10.5281/zenodo.6239187 (2022). More

  • in

    The applicability of species sensitivity distributions to the development of generic doses for phytosanitary irradiation

    Pimentel, D., Zuniga, R. & Morrison, D. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol. Econ. https://doi.org/10.1016/j.ecolecon.2004.10.002 (2005).Article 

    Google Scholar 
    Linders, T. E. W. et al. Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. J. Ecol. https://doi.org/10.1111/1365-2745.13268 (2019).Article 

    Google Scholar 
    Campbell, F. T. The science of risk assessment for phytosanitary regulation and the impact of changing trade regulations. Bioscience https://doi.org/10.1641/0006-3568(2001)051[0148:TSORAF]2.0.CO;2 (2001).Article 

    Google Scholar 
    Paini, D. R. et al. Global threat to agriculture from invasive species. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1602205113 (2016).Article 

    Google Scholar 
    Westphal, M. I., Browne, M., MacKinnon, K. & Noble, I. The link between international trade and the global distribution of invasive alien species. Biol. Invasions https://doi.org/10.1007/s10530-007-9138-5 (2008).Article 

    Google Scholar 
    Hennessey, M. et al. Phytosanitary Treatments. In The Handbook of Plant Biosecurity (eds Gordh, G. & Mckirdy, S.) 269–308 (Springer, Dordrecht, 2014).
    Google Scholar 
    Melvin Couey, H. & Chew, V. Confidence limits and sample size in quarantine research. J. Econ. Entomol. 79, 887–890 (1986).
    Google Scholar 
    Schortemeyer, M. et al. Appropriateness of probit-9 in the development of quarantine treatments for timber and timber commodities. J. Econ. Entomol. 104, 717–731 (2011).CAS 

    Google Scholar 
    Haack, R. A., Uzunovic, A., Hoover, K. & Cook, J. A. Seeking alternatives to probit 9 when developing treatments for wood packaging materials under ISPM No. 15. EPPO Bull. 41, 39–45 (2011).
    Google Scholar 
    Liqudio, N. J., Griffin, R. L. & Vick, K. W. Quarantine security for commodities: current approaches and potential strategies. In Proceedings of Joint Workshops of the Agricultural Research Service and the Animal and Plant Health Inspection Service, June 5–9 and July 31 -August 5, 1995 56 (1997).Follett, P. A. Phytosanitary irradiation for fresh horticultural commodities: Generic treatments, current issues, and next steps. Stewart Postharvest Rev. 3, 1–7 (2014).MathSciNet 

    Google Scholar 
    Hallman, G. J. & Loaharanu, P. Generic ionizing radiation quarantine treatments against fruit flies (Diptera: Tephritidae) proposed. J. Econ. Entomol. 95, 893–901 (2002).
    Google Scholar 
    Follett, P. A. & Armstrong, J. W. Revised irradiation doses to control melon fly, mediterranean fruit fly, and oriental fruit fly (Diptera: Tephritidae) and a generic dose for tephritid fruit flies. J. Econ. Entomol. 97, 1254–1262 (2004).
    Google Scholar 
    Follett, P. A. & Snook, K. Irradiation for quarantine control of the invasive light brown apple moth (Lepidoptera: Tortricidae) and a generic dose for tortricid eggs and larvae. J. Econ. Entomol. 105, 1971–1978 (2013).
    Google Scholar 
    Hallman, G. J., Arthur, V., Blackburn, C. M. & Parker, A. G. The case for a generic phytosanitary irradiation dose of 250Gy for Lepidoptera eggs and larvae. Radiat. Phys. Chem. 89, 70–75 (2013).ADS 
    CAS 

    Google Scholar 
    Hallman, G. J. Generic phytosanitary irradiation dose of 300 Gy proposed for the Insecta excluding pupal and adult Lepidoptera. Florida Entomol. 99, 206–210 (2016).
    Google Scholar 
    IPPC. ISPM 28. Annex 39. Irradiation treatment for the genus Anastrepha. 1–6 (2021).IPPC. ISPM 28. Annex 7. Irradiation Treatment for fruit flies of the family Tephritidae (generic). 1–6 (2021).Posthuma, L., Suter, G. W. & Traas, T. P. Species sensitivity distributions in ecotoxicology. Species sensitivity distributions in ecotoxicology (CRC Press, 2002). https://doi.org/10.1201/9781420032314.Book 

    Google Scholar 
    Newman, M. C. et al. Applying species-sensitivity distributions in ecological risk assessment: Assumptions of distribution type and sufficient numbers of species. Environ. Toxicol. Chem. 19, 508–515 (2000).CAS 

    Google Scholar 
    van Straalen, N. M. & van Leeuwen, C. J. European history of species sensitivity distributions. In Species Sensitivity Distributions in Ecotoxicology 43–60 (CRC Press, 2001). Doi:https://doi.org/10.1201/9781420032314.ch3.ANZECC & ARMCANZ. Australian and New Zealand guidelines for fresh and marine water quality. aquatic ecosystems. Aust. New Zeal. Environ. Conserv. Counc. Agric. Resour. Manag. Counc. Aust. New Zeal. 1–103 (2000).Aldenberg, T. & Jaworska, J. S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions. Ecotoxicol. Environ. Saf. 46, 1–18 (2000).CAS 

    Google Scholar 
    Hallman, G. J. Generic phytosanitary irradiation treatment for “true weevils” (Coleoptera: Curculionidae) infesting fresh commodities. Florida Entomol. 99, 197–201 (2016).
    Google Scholar 
    Follett, P. A. Irradiation for quarantine control of coffee berry borer, hypothenemus hampei (coleoptera: Curculionidae: Scolytinae) in coffee and a proposed generic dose for snout beetles (coleoptera: Curculionoidea). J. Econ. Entomol. 111, 1633–1637 (2018).CAS 

    Google Scholar 
    Earle, N. W., Simmons, L. A. & Nilakhe, S. S. Laboratory studies of sterility and competitiveness of boll weevils irradiated in an atmosphere of nitrogen, carbon dioxide, or air. J. Econ. Entomol. 72, 687–691 (1979).
    Google Scholar 
    Follett, P. A., McQuate, G. T., Sylva, C. D. & Swedman, A. Sensitivity of the quarantine pest rough Sweetpotato weevil, Blosyrus asellus to postharvest irradiation treatment. Proc. Hawaiian Entomol. Soc. 48, 23–27 (2016).
    Google Scholar 
    Hallman, G. J. Ionizing irradiation quarantine treatment against plum curculio (Coleoptera: Curculionidae). J. Econ. Entomol. 96, 1399–1404 (2003).
    Google Scholar 
    Jacklin, S. W., Richardson, E. C. & Yonce, C. E. Substerilizing doses of gamma irradiation to produce population suppression in plum curculio1. J. Econ. Entomol. 63, 1053–1057 (1970).
    Google Scholar 
    Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Control of harmful insects in timbers by irradiation: doses required for sterilization and inhibition of emergence of the minute pine bark beetle, Cryphalus fulvus. Jpn. J. Appl. Entomol. Zool. 18, 52–58 (1974).
    Google Scholar 
    Follett, P. A. Irradiation as a methyl bromide alternative for postharvest control of Omphisa anastomosalis (Lepidoptera: Pyralidae) and euscepes postfasciatus and cylas formicarius elegantulus (Coleoptera: Curculionidae) in sweet potatoes. J. Econ. Entomol. 99, 32–37 (2006).
    Google Scholar 
    Gould, W. P. & Hallman, G. J. Irradiation disinfestation of diaprepes root weevil (Coleoptera: Curculionidae) and papaya fruit fly (Diptera: Tephritidae). Florida Entomol. 87, 391–392 (2004).
    Google Scholar 
    van Haandel, A. et al. Tolerance of Hylurgus ligniperda (F.) (Coleoptera: Scolytinae) and Arhopalus ferus (Mulsant) (Coleoptera: Cerambycidae) to ionising radiation: a comparison with existing generic radiation phytosanitary treatments. New Zeal. J. For. Sci. 47, 1–9 (2017).Burgess, E. E. & Bennett, S. E. Sterilization of the male alfalfa weevil (Hypera postica: Curculionidae) by X-Radiation. J. Econ. Entomol. 59, 268–270 (1966).
    Google Scholar 
    Wood, D. L. & Stark, R. W. The effects of gamma radiation on the biology and behavior of adult ips confusus (LeConte) (Coleoptera: Scolytidae). Can. Entomol. 98, 1–10 (1966).
    Google Scholar 
    Wang, X. et al. Effect of X-ray (9 MeV) irradiation on the development and propagation of Ips sexdentatus. Plant Quar. 25, 28–31 (2011).
    Google Scholar 
    Zhan, G. et al. Effect of irradiation on development and propagation of larch bark beetle (Coleoptera: Scolytoidea). J. Nucl. Agric. Sci. 25, 1200–1205 (2011).
    Google Scholar 
    Gerstle, C. & Sazo, L. Efecto de las radiaciones de Cesio 137 sobre la fertilidad de hembras de Naupactus xanthographus (Germar) (Coleoptera: Curculionidae). Cienc. e Investig. Agrar. 16, 69–73 (1989).
    Google Scholar 
    Manoto, E. C., Obra, G. B., Reyes, M. R. & Resilva, S. S. Irradiation as a quarantine treatment for ornamentals. IAEA-Tecdoc 1082, 81–91 (1999).
    Google Scholar 
    Duvenhage, A. J. & Johnson, S. A. The potential of irradiation as a postharvest disinfestation treatment against phlyctinus callosus (Coleoptera: Curculionidae). J. Econ. Entomol. 107, 154–160 (2014).CAS 

    Google Scholar 
    Jaynes, A. & Godwin, P. A. Sterilization of the white-pine weevil with gamma radiation. J. Econ. Entomol. 50, 393–395 (1957).CAS 

    Google Scholar 
    Aldryhim, Y. N. & Adam, E. E. Efficacy of gamma irradiation against Sitophilus granarius (L.) (Coleoptera: Curculionidae). J. Stored Prod. Res. 35, 225–232 (1999).
    Google Scholar 
    Follett, P. A. et al. Irradiation quarantine treatment for control of Sitophilus oryzae (Coleoptera: Curculionidae) in rice. J. Stored Prod. Res. 52, 63–67 (2013).
    Google Scholar 
    Hu, T., Chen, C. C. & Peng, W. K. Lethal effect of gamma irradiation on Sitophilus zeamais (Coleoptera: Curculionidae). Formos. Entomol. 23, 145–150 (2003).
    Google Scholar 
    Arthur, V. & Wiendl, F. M. Comportamento e competitividade sexual de adultos de Sphenophorus levis Vaurie, 1978 (col., Curculionidae), uma praga da cana-de-açucar, irradiados com radiações gama do cobaldo-60. Brazilian J. Agric. 68, 57–66 (1993).
    Google Scholar 
    Obra, G. B., Resilva, S. S., Follett, P. A. & Lorenzana, L. R. J. Large-scale confirmatory tests of a phytosanitary irradiation treatment against Sternochetus frigidus (Coleoptera: Curculionidae) in Philippine mango. J. Econ. Entomol. 107, 161–165 (2014).
    Google Scholar 
    Seo, S. T. et al. Mango weevil: Cobalt-60 γ-irradiation of packaged mangoes. J. Econ. Entomol. 67, 504–505 (1974).
    Google Scholar 
    Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Effects of gamma radiation on Xyleborus perforans (Wollaston) pupae and adults. J. Pestic. Sci. 2, 413–420 (1977).
    Google Scholar 
    Yoshida, T., Fukami, J. I., Fukunaga, K. & Matsuyama, A. Control of the harmful insects in timbers by irradiation: Doses required for kill, sterilization and inhibition of emergence in three species of ambrosia beetles (Xyleborini) in Japan. Jpn. J. Appl. Entomol. Zool. 19, 193–202 (1975).
    Google Scholar 
    Follett, P. A. & McQuate, G. T. Accelerated development of quarantine treatments for insects on poor hosts. J. Econ. Entomol. https://doi.org/10.1603/0022-0493-94.5.1005 (2001).Article 

    Google Scholar 
    Plazzi, F., Ferrucci, R. R. & Passamonti, M. Phylogenetic representativeness: A new method for evaluating taxon sampling in evolutionary studies. BMC Bioinform. 11, 1–15 (2010).
    Google Scholar 
    Moore, D. R. J., Priest, C. D., Galic, N., Brain, R. A. & Rodney, S. I. Correcting for phylogenetic autocorrelation in species sensitivity distributions. Integr. Environ. Assess. Manag. 16, (2020).Carr, G. J. & Belanger, S. E. SSDs revisited: Part I—A framework for sample size guidance on species sensitivity distribution analysis. Environ. Toxicol. Chem. 38, 1514–1525 (2019).CAS 

    Google Scholar 
    Wheeler, J. R., Grist, E. P. M., Leung, K. M. Y., Morritt, D. & Crane, M. Species sensitivity distributions: Data and model choice. Mar. Pollut. Bull. 45, 192–202 (2002).CAS 

    Google Scholar 
    Duboudin, C., Ciffroy, P. & Magaud, H. Acute-to-chronic species sensitivity distribution extrapolation. Environ. Toxicol. Chem. 23, 1774–1785 (2004).CAS 

    Google Scholar 
    Esteves, S. M. et al. Can we predict diatoms herbicide sensitivities with phylogeny? Influence of intraspecific and interspecific variability. Ecotoxicology 26, 1065–1077 (2017).CAS 

    Google Scholar 
    Hiki, K. & Iwasaki, Y. Can we reasonably predict chronic species sensitivity distributions from acute species sensitivity distributions?. Environ. Sci. Technol. 54, 13131–13136 (2020).ADS 
    CAS 

    Google Scholar 
    Baird, D. J. & Van den Brink, P. J. Using biological traits to predict species sensitivity to toxic substances. Ecotoxicol. Environ. Saf. 67, 296–301 (2007).CAS 

    Google Scholar 
    Guénard, G., von der Ohe, P. C., Walker, S. C., Lek, S. & Legendre, P. Using phylogenetic information and chemical properties to predict species tolerances to pesticides. Proc. R. Soc. B Biol. Sci. 281, 1–9 (2014).
    Google Scholar 
    Larras, F., Keck, F., Montuelle, B., Rimet, F. & Bouchez, A. Linking diatom sensitivity to herbicides to phylogeny: A step forward for biomonitoring?. Environ. Sci. Technol. 48, 1921–1930 (2014).ADS 
    CAS 

    Google Scholar 
    Hayashi, T. I. & Kashiwagi, N. A bayesian method for deriving species-sensitivity distributions: Selecting the best-fit tolerance distributions of taxonomic groups. Hum. Ecol. Risk Assess. 16, 251–263 (2010).CAS 

    Google Scholar 
    Xu, F. L. et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecol. Indic. 54, 227–237 (2015).CAS 

    Google Scholar 
    Dowse, R., Tang, D., Palmer, C. G. & Kefford, B. J. Risk assessment using the species sensitivity distribution method: Data quality versus data quantity. Environ. Toxicol. Chem. 32, 1360–1369 (2013).CAS 

    Google Scholar 
    Dias, V. S. et al. Relative tolerance of three morphotypes of the anastrepha fraterculus complex (Diptera: Tephritidae) to cold phytosanitary Treatment. J. Econ. Entomol. 113, 1176–1182 (2020).CAS 

    Google Scholar 
    Myers, S. W., Cancio-Martinez, E., Hallman, G. J., Fontenot, E. A. & Vreysen, M. J. B. Relative tolerance of six Bactrocera (Diptera: Tephritidae) species to phytosanitary cold treatment. J. Econ. Entomol. 109, 2341–2347 (2016).
    Google Scholar 
    Gazit, Y., Akiva, R. & Gavriel, S. Cold tolerance of the Mediterranean fruit fly in date and mandarin. J. Econ. Entomol. 107, 1745–1750 (2014).
    Google Scholar 
    Zhao, J. et al. Gamma radiation as a phytosanitary treatment against larvae and pupae of Bactrocera dorsalis (Diptera: Tephritidae) in guava fruits. Food Control 72, 360–366 (2017).
    Google Scholar 
    Thorley, J. & Schwarz, C. ssdtools: An R package to fit Species sensitivity distributions. J. Open Sour. Softw. 3, 1–2 (2018).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoritic Approach 2nd edn. (Springer, 2002). https://doi.org/10.1007/978-0-387-22456-5_7.Book 
    MATH 

    Google Scholar 
    Mazucheli, J., Menezes, A. F. B. & Nadarajah, S. mle.tools: An R package for maximum likelihood bias correction. R. J. 9, 268–290 (2017).
    Google Scholar 
    Cox, D. R. & Snell, E. J. A general definition of residuals. J. R. Stat. Soc. Ser. B 30, 248–265 (1968).MathSciNet 
    MATH 

    Google Scholar 
    Follett, P. A. Irradiation as a quarantine treatment for mango seed weevil (Coleoptera: Curculionidae). Proc. Hawaii. Entomol. Soc. 35, 95–100 (2001).
    Google Scholar  More

  • in

    Chemotaxis increases metabolic exchanges between marine picophytoplankton and heterotrophic bacteria

    Aylward, F. O. et al. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc. Natl Acad. Sci. USA 112, 5443–5448 (2015).Article 
    CAS 

    Google Scholar 
    Fuhrman, J. A. Microbial community structure and its functional implications. Nature 459, 193–199 (2009).Article 
    CAS 

    Google Scholar 
    Amin, S. A., Parker, M. S. & Armbrust, E. V. Interactions between diatoms and bacteria. Microbiol. Mol. Biol. Rev. 76, 667–684 (2012).Article 
    CAS 

    Google Scholar 
    Mayali, X. Metabolic interactions between bacteria and phytoplankton. Front. Microbiol. 9, 727 (2018).Article 

    Google Scholar 
    Amin, S. A. et al. Photolysis of iron–siderophore chelates promotes bacterial–algal mutualism. Proc. Natl Acad. Sci. USA 106, 17071–17076 (2009).Amin, S. A. et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522, 98 (2015).Article 
    CAS 

    Google Scholar 
    Durham, B. P. et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc. Natl Acad. Sci. USA 112, 453 (2015).Article 
    CAS 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628 (2012).Article 
    CAS 

    Google Scholar 
    Bell, W. & Mitchell, R. Chemotactic and growth responses of marine bacteria to algal extracellular products. Biol. Bull. 143, 265–277 (1972).Article 

    Google Scholar 
    Azam, F. & Ammerman, J. W. in Flows of Energy and Materials in Marine Ecosystems 345–360 (Springer, 1984).Mitchell, J. G., Okubo, A. & Fuhrman, J. A. Microzones surrounding phytoplankton form the basis for a stratified marine microbial ecosystem. Nature 316, 58–59 (1985).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C., Syit, D. A., Grossart, H.-P. & Ullrich, M. S. Chemotaxis of Marinobacter adhaerens and its impact on attachment to the diatom Thalassiosira weissflogii. Appl. Environ. Microbiol. 78, 6900–6907 (2012).Article 
    CAS 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019).Article 
    CAS 

    Google Scholar 
    Seymour, J. R., Ahmed, T., Durham, W. M. & Stocker, R. Chemotactic response of marine bacteria to the extracellular products of Synechococcus and Prochlorococcus. Aquat. Microb. Ecol. 59, 161–168 (2010).Article 

    Google Scholar 
    Smriga, S., Fernandez, V. I., Mitchell, J. G. & Stocker, R. Chemotaxis toward phytoplankton drives organic matter partitioning among marine bacteria. Proc. Natl Acad. Sci. USA 113, 1576–1581 (2016).Article 
    CAS 

    Google Scholar 
    Flombaum, P., Wang, W.-L., Primeau, F. W. & Martiny, A. C. Global picophytoplankton niche partitioning predicts overall positive response to ocean warming. Nat. Geosci. 13, 116–120 (2020).Article 
    CAS 

    Google Scholar 
    Christie-Oleza, J. A., Sousoni, D., Lloyd, M., Armengaud, J. & Scanlan, D. J. Nutrient recycling facilitates long-term stability of marine microbial phototroph–heterotroph interactions. Nat. Microbiol. 2, 17100 (2017).Article 
    CAS 

    Google Scholar 
    Morris, J. J., Kirkegaard, R., Szul, M. J., Johnson, Z. I. & Zinser, E. R. Facilitation of robust growth of Prochlorococcus colonies and dilute liquid cultures by ‘helper’ heterotrophic bacteria. Appl. Environ. Microbiol. 74, 4530–4534 (2008).Article 
    CAS 

    Google Scholar 
    Sher, D., Thompson, J. W., Kashtan, N., Croal, L. & Chisholm, S. W. Response of Prochlorococcus ecotypes to co-culture with diverse marine bacteria. ISME J. 5, 1125–1132 (2011).Article 
    CAS 

    Google Scholar 
    Aharonovich, D. & Sher, D. Transcriptional response of Prochlorococcus to co-culture with a marine Alteromonas: differences between strains and the involvement of putative infochemicals. ISME J. 10, 2892–2906 (2016).Article 
    CAS 

    Google Scholar 
    Jackson, G. A. Simulating chemosensory responses of marine microorganisms. Limnol. Oceanogr. 32, 1253–1266 (1987).Article 
    CAS 

    Google Scholar 
    Gärdes, A., Iversen, M. H., Grossart, H.-P., Passow, U. & Ullrich, M. S. Diatom-associated bacteria are required for aggregation of Thalassiosira weissflogii. ISME J. 5, 436–445 (2011).Article 

    Google Scholar 
    Al-Wahaib, D., Al-Bader, D., Al-Shaikh Abdou, D. K., Eliyas, M. & Radwan, S. S. Consistent occurrence of hydrocarbonoclastic Marinobacter strains in various cultures of picocyanobacteria from the Arabian Gulf: promising associations for biodegradation of marine oil pollution. J. Mol. Microbiol. Biotechnol. 26, 261–268 (2016).CAS 

    Google Scholar 
    Raina, J.-B. et al. Subcellular tracking reveals the location of dimethylsulfoniopropionate in microalgae and visualises its uptake by marine bacteria. eLife 6, e23008 (2017).Article 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).Article 

    Google Scholar 
    Gärdes, A. et al. Complete genome sequence of Marinobacter adhaerens type strain (HP15), a diatom-interacting marine microorganism. Stand. Genom. Sci. 3, 97–107 (2010).Article 

    Google Scholar 
    Moore, L. R., Post, A. F., Rocap, G. & Chisholm, S. W. Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol. Oceanogr. 47, 989–996 (2002).Article 
    CAS 

    Google Scholar 
    Wawrik, B., Callaghan, A. V. & Bronk, D. A. Use of inorganic and organic nitrogen by Synechococcus spp. and diatoms on the West Florida shelf as measured using stable isotope probing. Appl. Environ. Microbiol. 75, 6662–6670 (2009).Article 
    CAS 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).Article 
    CAS 

    Google Scholar 
    Raina, J.-B. et al. Chemotaxis shapes the microscale organization of the ocean’s microbiome. Nature 605, 132–138 (2022).Article 
    CAS 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).Article 
    CAS 

    Google Scholar 
    Myklestad, S. M. in Marine Chemistry (ed. Wangersky, P. J.) 111–148 (Springer Berlin Heidelberg, 2000).Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020).Article 
    CAS 

    Google Scholar 
    Stocker, R., Seymour, J. R., Samadani, A., Hunt, D. E. & Polz, M. F. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc. Natl Acad. Sci. USA 105, 4209–4214 (2008).Article 
    CAS 

    Google Scholar 
    Buitenhuis, E. et al. MAREDAT: towards a world atlas of MARine Ecosystem DATa. Earth Syst. Sci. Data 5, 227–239 (2013).Article 

    Google Scholar 
    Raina, J.-B. et al. Symbiosis in the microbial world: from ecology to genome evolution. Biol. Open 7, bio032524 (2018).Article 

    Google Scholar 
    Giardina, M. et al. Quantifying inorganic nitrogen assimilation by Synechococcus using bulk and single-cell mass spectrometry: a comparative study. Front. Microbiol. 9, 2847 (2018).Article 

    Google Scholar 
    Berges, J. A., Franklin, D. J. & Harrison, P. J. Evolution of an artificial seawater medium: improvements in enriched seawater, artificial water over the last two decades. J. Phycol. 37, 1138–1145 (2001).Article 

    Google Scholar 
    Guillard, R. R. L. in Culture of Marine Invertebrate Animals: Proceedings—1st Conference on Culture of Marine Invertebrate Animals Greenport (eds Walter, L. S. & Matoira, H. C.) 29–60 (Springer US, 1975).Kaeppel, E. C., Gärdes, A., Seebah, S., Grossart, H.-P. & Ullrich, M. S. Marinobacter adhaerens sp. nov., isolated from marine aggregates formed with the diatom Thalassiosira weissflogii. Int. J. Syst. Evolut. Microbiol. 62, 124–128 (2012).Article 
    CAS 

    Google Scholar 
    Sonnenschein, E. C. et al. Development of a genetic system for Marinobacter adhaerens HP15 involved in marine aggregate formation by interacting with diatom cells. J. Microbiol. Methods 87, 176–183 (2011).Article 
    CAS 

    Google Scholar 
    Marie, D., Partensky, F., Jacquet, S. & Vaulot, D. Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl. Environ. Microbiol. 63, 186–193 (1997).Article 
    CAS 

    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).Article 
    CAS 

    Google Scholar 
    Hillion, F., Kilburn, M., Hoppe, P., Messenger, S. & Weber, P. K. The effect of QSA on S, C, O and Si isotopic ratio measurements. Geochim. Cosmochim. Acta 72, A377 (2008).
    Google Scholar 
    Popa, R. et al. Carbon and nitrogen fixation and metabolite exchange in and between individual cells of Anabaena oscillarioides. ISME J. 1, 354–360 (2007).Article 
    CAS 

    Google Scholar 
    Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).Article 
    CAS 

    Google Scholar 
    Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. JoVE https://doi.org/10.3791/61062 (2020).Ihaka, R. & Gentleman, R. R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5, 299–314 (1996).
    Google Scholar 
    Xie, L., Lu, C. & Wu, X.-L. Marine bacterial chemoresponse to a stepwise chemoattractant stimulus. Biophys. J. 108, 766–774 (2015).Article 
    CAS 

    Google Scholar 
    Son, K., Guasto, J. S. & Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 9, 494–498 (2013).Article 
    CAS 

    Google Scholar 
    Lee, C. & Bada, J. L. Amino acids in equatorial Pacific Ocean water. Earth Planet. Sci. Lett. 26, 61–68 (1975).Article 
    CAS 

    Google Scholar 
    Yamashita, Y. & Tanoue, E. Distribution and alteration of amino acids in bulk DOM along a transect from bay to oceanic waters. Mar. Chem. 82, 145–160 (2003).Article 
    CAS 

    Google Scholar 
    Menden-Deuer, S. & Lessard, E. J. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45, 569–579 (2000).Article 
    CAS 

    Google Scholar 
    Mullin, M. M., Sloan, P. R. & Eppley, R. W. Relationship between carbon content, cell volume and area in phytoplankton. Limnol. Oceanogr. 11, 307–311 (1966).Article 

    Google Scholar  More

  • in

    Integrated biochar solutions can achieve carbon-neutral staple crop production

    Martin-Roberts, E. et al. Carbon capture and storage at the end of a lost decade. One Earth 4, 1569–1584 (2021).Article 
    ADS 

    Google Scholar 
    Liu, Z. et al. Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. 3, 141–155 (2022).Article 
    ADS 

    Google Scholar 
    Wang, F. et al. Technologies and perspectives for achieving carbon neutrality. Innovation 2, 100180 (2021).CAS 

    Google Scholar 
    Third National Communication of Climate Change in the People’s Republic of China (Ministry of Ecology and Environment of the People’s Republic of China, 2018).Chen, X. et al. Producing more grain with lower environmental costs. Nature 514, 486–489 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Cui, Z. et al. Pursuing sustainable productivity with millions of smallholder farmers. Nature 555, 363–366 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Liu, B. et al. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2, 570–577 (2021).Article 

    Google Scholar 
    Jiang, Y. et al. Water management to mitigate the global warming potential of rice systems: a global meta-analysis. Field Crops Res. 234, 47–54 (2019).Article 

    Google Scholar 
    Shang, Z. et al. Can cropland management practices lower net greenhouse emissions without compromising yield? Glob. Change Biol. 27, 4657–4670 (2021).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Change Biol. 23, 1917–1925 (2016).Article 
    ADS 

    Google Scholar 
    Ju, X. et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc. Natl Acad. Sci. USA 106, 3041–3046 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Wang, B. et al. Four pathways towards carbon neutrality by controlling net greenhouse gas emissions in Chinese cropland. Resour. Conserv. Recycl. 186, 106576 (2022).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Trade-offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems. Glob. Change Biol. 12, 5919–5932 (2018).Article 

    Google Scholar 
    Zhao, Y. et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands. Proc. Natl Acad. Sci. USA 115, 4045–4050 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Yan, X., Akiyama, H., Yagi, K. & Akimoto, H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change guidelines. Glob. Biogeochemical Cycles 23, GB2002 (2009).Jiang, Y. et al. Acclimation of methane emissions from rice paddy fields to straw addition. Sci. Adv. 5, eaau9038 (2019).Article 
    ADS 

    Google Scholar 
    Chen, Z. et al. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials. Environ. Pollut. 284, 117176 (2021).Article 
    CAS 

    Google Scholar 
    Lugato, E., Leip, A. & Jones, A. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions. Nat. Clim. Change 8, 219–223 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L., Wang, S. & Yan, X. Effects of long-term straw incorporation on the net global warming potential and the net economic benefit in a rice-wheat cropping system in China. Agric. Ecosyst. Environ. 197, 118–127 (2014).Article 

    Google Scholar 
    Xia, L., Ti, C., Li, B., Xia, Y. & Yan, X. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential. Sci. Total Environ. 556, 116–125 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y. et al. Restoring abandoned farmland to mitigate climate change on a full Earth. One Earth 3, 176–186 (2020).Article 
    ADS 

    Google Scholar 
    Lehmann, J. et al. Biochar in climate change mitigation. Nat. Geosci. 14, 883–892 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Woolf, D., Amonette, J. E., Street-Perrott, F. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 1, 56 (2010).Article 
    ADS 

    Google Scholar 
    Jeffery, S., Verheijen, F. G., Kammann, C. & Abalos, D. Biochar effects on methane emissions from soils: a meta-analysis. Soil Biol. Biochem. 101, 251–258 (2016).Article 
    CAS 

    Google Scholar 
    Schmidt, H. P. et al. Biochar in agriculture – a systematic review of 26 global meta-analyses. GCB Bioenergy 13, 1708–1730 (2021).Article 
    CAS 

    Google Scholar 
    Cayuela, M. L. et al. Biochar and denitrification in soils: when, how much and why does biochar reduce N2O emissions? Sci. Rep. 3, 1732 (2013).Article 

    Google Scholar 
    He, Y. et al. Effects of biochar application on soil greenhouse gas fluxes: a meta-analysis. GCB Bioenergy 9, 743–755 (2017).Article 
    CAS 

    Google Scholar 
    Liu, Q. et al. Biochar application as a tool to decrease soil nitrogen losses (NH3 volatilization, N2O emissions, and N leaching) from croplands: options and mitigation strength in a global perspective. Glob. Change Biol. 25, 2077–2093 (2019).Article 
    ADS 

    Google Scholar 
    He, X. et al. Effects of pyrolysis temperature on the physicochemical properties of gas and biochar obtained from pyrolysis of crop residues. Energy 143, 746–756 (2018).Article 
    CAS 

    Google Scholar 
    Yang, Q. et al. Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nat. Commun. 12, 1698 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    IPCC Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).Ritchie, H., Roser, M. & Rosado, P. CO2 and Greenhouse Gas Emissions (Our World in Data, 2020); https://ourworldindata.org/co2-and-other-greenhouse-gas-emissionsLiu, Y. et al. A quantitative review of the effects of biochar application on rice yield and nitrogen use efficiency in paddy fields: a meta-analysis. Sci. Total Environ. 830, 154792 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Cassman, K. G. & Grassini, P. A global perspective on sustainable intensification research. Nat. Sustain. 3, 262–268 (2020).Article 

    Google Scholar 
    Gu, B. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Yang, Y., Reilly, E. C., Jungers, J. M., Chen, J. & Smith, T. M. Climate benefits of increasing plant diversity in perennial bioenergy crops. One Earth 1, 434–445 (2019).Article 
    ADS 

    Google Scholar 
    Weller, S. et al. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycling Agroecosyst. 101, 37–53 (2015).Article 
    CAS 

    Google Scholar 
    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Change 8, 325–332 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Zhang, X., Bai, X., Fu, B. & Chen, D. Four steps to food security for swelling cities. Nature 566, 31–33 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Gu, B., Ju, X., Chang, J., Ge, Y. & Vitousek, P. M. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl Acad. Sci. USA 112, 8792–8797 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Lee, X. J., Ong, H. C., Gan, Y. Y., Chen, W. H. & Mahlia, T. M. I. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production. Energy Convers. Manag. 210, 112707 (2020).Article 
    CAS 

    Google Scholar 
    Nevzorova, T. & Kutcherov, V. Barriers to the wider implementation of biogas as a source of energy: a state-of-the-art review. Energy Strategy Rev. 26, 100414 (2019).Article 

    Google Scholar 
    Xia, S. et al. Pyrolysis behavior and economics analysis of the biomass pyrolytic polygeneration of forest farming waste. Bioresource Technol. 270, 189–197 (2018).Article 
    CAS 

    Google Scholar 
    Liu, Z., Niu, W., Chu, H., Zhou, T. & Niu, Z. Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioResources 13, 3429–3446 (2018).Article 
    CAS 

    Google Scholar 
    Hengeveld, E. J., Bekkering, J., van Gemert, W. J. T. & Broekhuis, A. A. Biogas infrastructures from farm to regional scale, prospects of biogas transport grids. Biomass Bioenergy 86, 43–52 (2016).Article 

    Google Scholar 
    Ansari, S. H. et al. Incorporation of solar-thermal energy into a gasification process to co-produce bio-fertilizer and power. Environ. Pollut. 266, 115103 (2020).Article 
    CAS 

    Google Scholar 
    Yang, S. I., Wu, M. S. & Hsu, T. C. Spray combustion characteristics of kerosene/bio-oil part I: experimental study. Energy 119, 26–36 (2017).Article 
    CAS 

    Google Scholar 
    Xia, L. et al. Elevated CO2 negates O3 impacts on terrestrial carbon and nitrogen cycles. One Earth 4, 1752–1763 (2022).Article 
    ADS 

    Google Scholar 
    Gu, B. et al. Atmospheric reactive nitrogen in China: sources, recent trends, and damage costs. Environ. Sci. Technol. 46, 9420–9427 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Xia, L. et al. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer. Biogeosciences 13, 4569–4579 (2016).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe

    Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS 
    CAS 

    Google Scholar 
    Sabatini, F. M. et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 13, 4683 (2022).ADS 
    CAS 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).CAS 

    Google Scholar 
    Garnier, E., Navas, M.-L. & Grigulis, K. Plant functional diversity. Organism traits, community structure, and ecosystem properties (Oxford University Press, Oxford, New York, NY, 2016).Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 92, 1156–1173 (2017).
    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 

    Google Scholar 
    Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. 111, 740–745 (2014).ADS 
    CAS 

    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS 
    CAS 

    Google Scholar 
    Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A. 113, 230–235 (2016).ADS 

    Google Scholar 
    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS 
    CAS 

    Google Scholar 
    Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).ADS 

    Google Scholar 
    Bruelheide, H. et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
    Google Scholar 
    Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10, 415–425 (2019).
    Google Scholar 
    Guerin, G. R. et al. Environmental associations of abundance-weighted functional traits in Australian plant communities. Basic Appl. Ecol. 58, 98–109 (2021).
    Google Scholar 
    Walter, H. Vegetation of the earth and ecological systems of the geo-biosphere (Springer-Verlag, Berlin, Germany, 1985).Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
    Google Scholar 
    Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).
    Google Scholar 
    Cubino, J. P. et al. The leaf economic and plant size spectra of European forest understory vegetation. Ecography 44, 1311–1324 (2021).
    Google Scholar 
    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).
    Google Scholar 
    Herben, T., Klimešová, J. & Chytrý, M. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Funct. Ecol. 32, 799–808 (2018).
    Google Scholar 
    Linder, H. P. et al. Biotic modifiers, environmental modulation and species distribution models. J. Biogeogr. 39, 2179–2190 (2012).
    Google Scholar 
    Gross, N. et al. Linking individual response to biotic interactions with community structure: a trait-based framework. Funct. Ecol. 23, 1167–1178 (2009).
    Google Scholar 
    Ordonez, A. & Svenning, J.-C. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Sci. Rep. 7, 42988 (2017).ADS 
    CAS 

    Google Scholar 
    Kemppinen, J. et al. Consistent trait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 5, 458–467 (2021).
    Google Scholar 
    Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).
    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. EnviDat, https://doi.org/10.16904/envidat.228 (2018).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
    Google Scholar 
    Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change. Biol. 26, 119–188 (2020).ADS 

    Google Scholar 
    Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2010).
    Google Scholar 
    Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency, European Topic Centre on Nature Protection and Biodiversity, 2004.Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675 (2020).
    Google Scholar 
    Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).
    Google Scholar 
    Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).ADS 

    Google Scholar 
    Fang, J. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, 81 (2005).
    Google Scholar 
    Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl. Acad. Sci. U.S.A. 114, E10937–E10946 (2017).ADS 
    CAS 

    Google Scholar 
    Gong, H. & Gao, J. Soil and climatic drivers of plant SLA (specific leaf area). Glob. Ecol. Conserv. 20, e00696 (2019).
    Google Scholar 
    Laughlin, D. C. et al. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 5, 1–12 (2021).
    Google Scholar 
    Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).ADS 
    CAS 

    Google Scholar 
    Ding, J., Travers, S. K. & Eldridge, D. J. Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. J. Veg. Sci. 32, e13095 (2021).
    Google Scholar 
    Falster, D. S. & Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 18, 337–343 (2003).
    Google Scholar 
    Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).ADS 
    CAS 

    Google Scholar 
    McLachlan, A. & Brown, A. C. Coastal Dune Ecosystems and Dune/Beach Interactions. In The Ecology of Sandy Shores (Elsevier), 251–271 (2006).Cui, E., Weng, E., Yan, E. & Xia, J. Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 11, 1–9 (2020).ADS 

    Google Scholar 
    Cain, S. A. Life-Forms and Phytoclimate. Bot. Rev. 16, 1–32 (1950).
    Google Scholar 
    Yu, S. et al. Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry. Biogeosciences 18, 655–667 (2021).ADS 

    Google Scholar 
    Murray, B. R., Brown, A. H. D., Dickman, C. R. & Crowther, M. S. Geographical gradients in seed mass in relation to climate. J. Biogeogr. 31, 379–388 (2004).
    Google Scholar 
    Metz, J. et al. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 98, 697–704 (2010).
    Google Scholar 
    Tao, S., Guo, Q., Li, C., Wang, Z. & Fang, J. Global patterns and determinants of forest canopy height. Ecology 97, 3265–3270 (2016).
    Google Scholar 
    Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).
    Google Scholar 
    Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970 (2020).ADS 
    CAS 

    Google Scholar 
    Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).
    Google Scholar 
    Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
    Google Scholar 
    Shan, H. et al. Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization (Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012).Chytrý, M. et al. EUNIS-ESy, version 2021-06-01, https://doi.org/10.5281/zenodo.4812736 (2021).Wood, S. N., Pya, N. & Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).MathSciNet 
    CAS 

    Google Scholar 
    Wood, S. N. Generalized Additive Models. An Introduction with R, Second Edition (CRC Press, Portland, Oregon, USA, 2017).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
    Google Scholar 
    Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).
    Google Scholar 
    R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means; R package version 1.6.2-1 (2021).Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).ADS 

    Google Scholar 
    Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modelling; R package version 1.3-3 (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).Kambach, S. Habitat-specificity of climate-trait relationships in plant communities across Europe. github.com/StephanKambach, version 1.0; https://doi.org/10.5281/zenodo.7404176 (2022).Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
    Google Scholar 
    Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).
    Google Scholar 
    Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).ADS 

    Google Scholar 
    Saatkamp, A. et al. A research agenda for seed-trait functional ecology. N. Phytol. 221, 1764–1775 (2019).
    Google Scholar 
    Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine‐root trait variation. J. Ecol. 105, 1182–1196 (2017).
    Google Scholar 
    Weigelt, A. et al. An integrated framework of plant form and function: The belowground perspective. N. Phytol. 232, 42–59 (2021).
    Google Scholar  More

  • in

    Intra-individual variation of hen movements is associated with later keel bone fractures in a quasi-commercial aviary

    Rufener, C. et al. Keel bone fractures are associated with individual mobility of laying hens in an aviary system. Appl. Anim. Behav. Sci. 217, 48–56 (2019).
    Google Scholar 
    Rentsch, A. K., Rufener, C. B., Spadavecchia, C., Stratmann, A. & Toscano, M. J. Laying hen’s mobility is impaired by keel bone fractures and does not improve with paracetamol treatment. Appl. Anim. Behav. Sci. 216, 19–25 (2019).
    Google Scholar 
    Rodriguez-Aurrekoetxea, A. & Estevez, I. Use of space and its impact on the welfare of laying hens in a commercial free-range system. Poult. Sci. 95, 2503–2513 (2016).CAS 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).
    Google Scholar 
    Campbell, D. L. M., Talk, A. C., Loh, Z. A., Dyall, T. R. & Lee, C. Spatial cognition and range use in free-range laying hens. Animals 8, 26 (2018).
    Google Scholar 
    de Jager, M., Weissing, F. J., Herman, P. M. J., Nolet, B. A. & van de Koppel, J. Lévy walks evolve through interaction between movement and environmental complexity. Science 1979(332), 1551–1553 (2011).
    Google Scholar 
    Krause, J., James, R. & Croft, D. P. Personality in the context of social networks. Philos. Trans. R. Soc. B Biol. Sci. 365, 4099–4106 (2010).CAS 

    Google Scholar 
    Ihwagi, F. W. et al. Poaching lowers elephant path tortuosity: Implications for conservation. J. Wildl. Manag. 83, 1022–1031 (2019).
    Google Scholar 
    Shaw, A. K. Causes and consequences of individual variation in animal movement. Mov. Ecol. 8, 1–12 (2020).
    Google Scholar 
    Matthews, S. G., Miller, A. L., Plötz, T. & Kyriazakis, I. Automated tracking to measure behavioural changes in pigs for health and welfare monitoring. Sci. Rep. 7, 1–12 (2017).CAS 

    Google Scholar 
    Berger-Tal, O. & Saltz, D. Using the movement patterns of reintroduced animals to improve reintroduction success. Curr. Zool. 60, 515–526 (2014).
    Google Scholar 
    Stuber, E. F., Carlson, B. S. & Jesmer, B. R. Spatial personalities: A meta-analysis of consistent individual differences in spatial behavior. Behav. Ecol. https://doi.org/10.1093/BEHECO/ARAB147 (2022).Article 

    Google Scholar 
    Sirovnik, J., Würbel, H. & Toscano, M. J. Feeder space affects access to the feeder, aggression, and feed conversion in laying hens in an aviary system. Appl. Anim. Behav. Sci. 198, 75–82 (2018).
    Google Scholar 
    Sirovnik, J., Voelkl, B., Keeling, L. J., Würbel, H. & Toscano, M. J. Breakdown of the ideal free distribution under conditions of severe and low competition. Behav. Ecol. Sociobiol. 75, 1–11 (2021).
    Google Scholar 
    Becot, L., Bedere, N., Burlot, T., Coton, J. & le Roy, P. Nest acceptance, clutch, and oviposition traits are promising selection criteria to improve egg production in cage-free system. PLoS ONE 16, e0251037 (2021).CAS 

    Google Scholar 
    Thompson, M. J., Evans, J. C., Parsons, S. & Morand-Ferron, J. Urbanization and individual differences in exploration and plasticity. Behav. Ecol. 29, 1415–1425 (2018).
    Google Scholar 
    Stamps, J. & Groothuis, T. G. G. The development of animal personality: Relevance, concepts and perspectives. Biol. Rev. 85, 301–325 (2010).
    Google Scholar 
    Salinas-Melgoza, A., Salinas-Melgoza, V. & Wright, T. F. Behavioral plasticity of a threatened parrot in human-modified landscapes. Biol. Conserv. 159, 303–312 (2013).
    Google Scholar 
    Stamps, J. A., Briffa, M. & Biro, P. A. Unpredictable animals: Individual differences in intraindividual variability (IIV). Anim. Behav. 83, 1325–1334 (2012).
    Google Scholar 
    Hertel, A. G., Royauté, R., Zedrosser, A. & Mueller, T. Biologging reveals individual variation in behavioural predictability in the wild. J. Anim. Ecol. 90, 723–737 (2021).
    Google Scholar 
    Biro, P. A. & Adriaenssens, B. Predictability as a personality trait: Consistent differences in intraindividual behavioral variation. Am. Nat. 182, 621–629 (2013).
    Google Scholar 
    Henriksen, R. et al. Intra-individual behavioural variability: A trait under genetic control. Int. J. Mol. Sci. 21, 8069 (2020).CAS 

    Google Scholar 
    Rufener, C. et al. Finding hens in a haystack: Consistency of movement patterns within and across individual laying hens maintained in large groups. Sci. Rep. 8, (2018).Campbell, D. L. M., Karcher, D. M. & Siegford, J. M. Location tracking of individual laying hens housed in aviaries with different litter substrates. Appl. Anim. Behav. 184, 74–79 (2016).
    Google Scholar 
    Weeks, C. A. & Nicol, C. J. Behavioural needs, priorities and preferences of laying hens. Worlds Poult. Sci. J. 62, 296–307 (2006).
    Google Scholar 
    Hartcher, K. M. & Jones, B. The welfare of layer hens in cage and cage-free housing systems. Worlds Poult. Sci. J. 73, 767–782 (2017).
    Google Scholar 
    Zeltner, E. & Hirt, H. Effect of artificial structuring on the use of laying hen runs in a free-range system. Br. Poult. Sci. 44, 533–537 (2010).
    Google Scholar 
    Stratmann, A. et al. Modification of aviary design reduces incidence of falls, collisions and keel bone damage in laying hens. Appl. Anim. Behav. Sci. 165, 112–123 (2015).
    Google Scholar 
    Vandekerchove, D., Herdt, P., Laevens, H. & Pasmans, F. Colibacillosis in caged layer hens: Characteristics of the disease and the aetiological agent. Avian Pathol. 33, 117–125 (2004).CAS 

    Google Scholar 
    Montalcini, C. M., Voelkl, B., Gómez, Y., Gantner, M. & Toscano, M. J. Evaluation of an active LF tracking system and data processing methods for livestock precision farming in the poultry sector. Sensors 22, 659 (2022).ADS 

    Google Scholar 
    Revelle, W. Procedures for psychological, psychometric, and personality research. (2021).Kaiser, H. F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20, 141–151 (1960).
    Google Scholar 
    Rufener, C., Baur, S., Stratmann, A. & Toscano, M. J. A reliable method to assess keel bone fractures in laying hens from radiographs using a tagged visual analogue scale. Front. Vet. Sci. 5, 124 (2018).
    Google Scholar 
    Tauson, R., Kjaer, J., Maria, G. A., Cepero, R. & Holm, K.-E. The creation of a common scoring system for the integument and health of laying hens: Applied scoring of integument and health in laying hens. Final report Health from the Laywell project. https://www.laywel.eu/web/pdf/deliverables%2031-33%20health.pdf (2005).Hertel, A. G. et al. A guide for studying among-individual behavioral variation from movement data in the wild. Mov. Ecol. 8, (2020).Nakagawa, S. & Schielzeth, H. Repeatability for Gaussian and non-Gaussian data: A practical guide for biologists. Biol. Rev. 85, 935–956 (2010).
    Google Scholar 
    Dingemanse, N. J., Kazem, A. J. N., Réale, D. & Wright, J. Behavioural reaction norms: Animal personality meets individual plasticity. Trends Ecol. Evol. 25, 81–89 (2010).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J Stat Softw 67, (2015).Cleasby, I. R., Nakagawa, S. & Schielzeth, H. Quantifying the predictability of behaviour: Statistical approaches for the study of between-individual variation in the within-individual variance. Methods Ecol. Evol. 6, 27–37 (2015).
    Google Scholar 
    Bürkner, P.-C. brms: An R package for bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).
    Google Scholar 
    Vehtari, A., Gelman, A. & Gabry, J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432 (2017).MathSciNet 
    MATH 

    Google Scholar 
    Gelman, A. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–472 (1992).MATH 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Houslay, T. M. & Wilson, A. J. Avoiding the misuse of BLUP in behavioural ecology. Behav. Ecol. 28, 948–952 (2017).
    Google Scholar 
    Hertel, A. G., Niemelä, P. T., Dingemanse, N. J. & Mueller, T. Don’t poke the bear: Using tracking data to quantify behavioural syndromes in elusive wildlife. Anim. Behav. 147, 91–104 (2019).
    Google Scholar 
    Spiegel, O., Leu, S. T., Bull, C. M. & Sih, A. What’s your move? Movement as a link between personality and spatial dynamics in animal populations. Ecol. Lett. 20, 3–18 (2017).ADS 

    Google Scholar 
    Bell, A. M., Hankison, S. J. & Laskowski, K. L. The repeatability of behaviour: A meta-analysis. Anim. Behav. 77, 771–783 (2009).
    Google Scholar 
    Occhiuto, F., Vázquez-Diosdado, J. A., Carslake, C. & Kaler, J. Personality and predictability in farmed calves using movement and space-use behaviours quantified by ultra-wideband sensors. R. Soc. Open Sci. 9, (2022).Moinard, C. et al. Accuracy of laying hens in jumping upwards and downwards between perches in different light environments. Appl. Anim. Behav. Sci. 85, 77–92 (2004).
    Google Scholar 
    Baur, S., Rufener, C., Toscano, M. J. & Geissbühler, U. Radiographic evaluation of keel bone damage in laying hens—Morphologic and temporal observations in a longitudinal study. Front. Vet. Sci. 1, 129 (2020).
    Google Scholar 
    Cordiner, L. S. & Savory, C. J. Use of perches and nestboxes by laying hens in relation to social status, based on examination of consistency of ranking orders and frequency of interaction. Appl. Anim. Behav. Sci. 71, 305–317 (2001).
    Google Scholar 
    Rufener, C. & Makagon, M. M. Keel bone fractures in laying hens: A systematic review of prevalence across age, housing systems, and strains. J. Anim. Sci. 98, S36–S51 (2020).
    Google Scholar 
    Nasr, M. A. F., Nicol, C. J., Wilkins, L. & Murrell, J. C. The effects of two non-steroidal anti-inflammatory drugs on the mobility of laying hens with keel bone fractures. Vet. Anaesth. Analg. 42, 197–204 (2015).CAS 

    Google Scholar 
    Nasr, M., Murrell, J., Wilkins, L. J. & Nicol, C. J. The effect of keel fractures on egg-production parameters, mobility and behaviour in individual laying hens. Anim. Welf. 21, 127–135 (2012).CAS 

    Google Scholar 
    Koolhaas, J. M. & van Reenen, C. G. Animal behavior and well-being symposium: Interaction between coping style/personality, stress, and welfare: Relevance for domestic farm animals. J. Anim. Sci. 94, 2284–2296 (2016).CAS 

    Google Scholar 
    Coppens, C. M., de Boer, S. F. & Koolhaas, J. M. Coping styles and behavioural flexibility: Towards underlying mechanisms. Philos. Trans. R. Soc. B Biol. Sci. 365, 4021 (2010).
    Google Scholar 
    Koolhaas, J. M., de Boer, S. F., Coppens, C. M. & Buwalda, B. Neuroendocrinology of coping styles: Towards understanding the biology of individual variation. Front. Neuroendocrinol. 31, 307–321 (2010).CAS 

    Google Scholar 
    Finkemeier, M.-A., Langbein, J. & Puppe, B. Personality research in mammalian farm animals: Concepts, measures, and relationship to welfare. Front. Vet. Sci. 5, 131 (2018).
    Google Scholar 
    Martin, J. G. A., Pirotta, E., Petelle, M. B. & Blumstein, D. T. Genetic basis of between-individual and within-individual variance of docility. J. Evol. Biol. 30, 796–805 (2017).CAS 

    Google Scholar 
    Prentice, P. M., Houslay, T. M., Martin, J. G. A. & Wilson, A. J. Genetic variance for behavioural ‘predictability’ of stress response. J. Evol. Biol. 33, 642–652 (2020).
    Google Scholar  More

  • in

    A report card approach to describe temporal and spatial trends in parameters for coastal seagrass habitats

    Costanza, R. et al. Twenty years of ecosystem services: How far have we come and how far do we still need to go?. Ecosyst. Serv. 28, 1–16. https://doi.org/10.1016/j.ecoser.2017.09.008 (2017).Article 

    Google Scholar 
    Harwell, M. A. et al. Conceptual framework for assessing ecosystem health. Integr. Environ. Assess. Manag. 15, 544–564. https://doi.org/10.1002/ieam.4152 (2019).Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952. https://doi.org/10.1126/science.1149345 (2008).Article 
    ADS 
    CAS 

    Google Scholar 
    Roca, G. et al. Response of seagrass indicators to shifts in environmental stressors: A global review and management synthesis. Ecol. Ind. 63, 310–323. https://doi.org/10.1016/j.ecolind.2015.12.007 (2016).Article 

    Google Scholar 
    Westgate, M. J., Likens, G. E. & Lindenmayer, D. B. Adaptive management of biological systems: A review. Biol. Cons. 158, 128–139. https://doi.org/10.1016/j.biocon.2012.08.016 (2013).Article 

    Google Scholar 
    Logan, M. et al. Ecosystem health report cards: An overview of frameworks and analytical methodologies. Ecol. Indic. 113, 105834. https://doi.org/10.1016/j.ecolind.2019.105834 (2020).Article 

    Google Scholar 
    Dennison, W. C., Lookingbill, T. R., Carruthers, T. J., Hawkey, J. M. & Carter, S. L. An eye-opening approach to developing and communicating integrated environmental assessments. Front. Ecol. Environ. 5, 307–314. https://doi.org/10.1890/1540-9295(2007)5[307:AEATDA]2.0.CO;2 (2007).Article 

    Google Scholar 
    Harwell, M. A. et al. A framework for an ecosystem integrity report card: examples from south Florida show how an ecosystem report card links societal values and scientific information. Bioscience 49, 543–556. https://doi.org/10.2307/1313475 (1999).Article 

    Google Scholar 
    Collier, C. J. et al. An evidence-based approach for setting desired state in a complex Great Barrier Reef seagrass ecosystem: A case study from Cleveland Bay. Environ. Sustain. Indic. 7, 100042. https://doi.org/10.1016/j.indic.2020.100042 (2020).Article 

    Google Scholar 
    Coles, R. G. et al. Seagrass: Ecology, Uses and Threats (Nova Science Publishers, Inc., 2011).
    Google Scholar 
    Grech, A. et al. A comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ. Res. Lett. 7, 024006. https://doi.org/10.1088/1748-9326/7/2/024006 (2012).Article 
    ADS 

    Google Scholar 
    Lambert, V. M. et al. Connecting targets for catchment sediment loads to ecological outcomes for seagrass using multiple lines of evidence. Mar. Pollut. Bull. https://doi.org/10.1016/j.marpolbul.2021.112494 (2021).Article 

    Google Scholar 
    Adams, M. P. et al. Predicting seagrass decline due to cumulative stressors. Environ. Model. Softw. 130, 104717. https://doi.org/10.1016/j.envsoft.2020.104717 (2020).Article 

    Google Scholar 
    Chartrand, K. M., Szabó, M., Sinutok, S., Rasheed, M. A. & Ralph, P. J. Living at the margins: The response of deep-water seagrasses to light and temperature renders them susceptible to acute impacts. Mar. Environ. Res. 136, 126–138. https://doi.org/10.1016/j.marenvres.2018.02.006 (2018).Article 
    CAS 

    Google Scholar 
    Chartrand, K., Bryant, C., Carter, A., Ralph, P. & Rasheed, M. Light thresholds to prevent dredging impacts on the Great Barrier Reef seagrass, Zostera muelleri spp. capricorni. Front. Mar. Sci. 3, 17. https://doi.org/10.3389/fmars.2016.00106 (2016).Article 

    Google Scholar 
    Abal, E. & Dennison, W. Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Mar. Freshwater Res. 47, 763–771. https://doi.org/10.1071/MF9960763 (1996).Article 
    CAS 

    Google Scholar 
    Dennison, W. et al. Assessing water quality with submersed aquatic vegetation: Habitat requirements as barometers of Chesapeake Bay health. Bioscience 43, 86–94. https://doi.org/10.2307/1311969 (1993).Article 

    Google Scholar 
    Carter, A. B., Collier, C., Coles, R., Lawrence, E. & Rasheed, M. A. Community-specific, “desired” states for seagrasses through cycles of loss and recovery. J. Environ. Manag. 314, 115059. https://doi.org/10.1016/j.jenvman.2022.115059 (2022).Article 

    Google Scholar 
    Kaldy, J. E., Brown, C. A. & Pacella, S. R. Carbon limitation in response to nutrient loading in an eelgrass mesocosm: Influence of water residence time. Mar. Ecol. Prog. Ser. 689, 1–17. https://doi.org/10.3354/meps14061 (2022).Article 
    CAS 

    Google Scholar 
    Carter, A. B. et al. A spatial analysis of seagrass habitat and community diversity in the Great Barrier Reef World Heritage Area. Sci. Rep. https://doi.org/10.1038/s41598-021-01471-4 (2021).Article 

    Google Scholar 
    Kenworthy, W. J., Wyllie-Echeverria, S., Coles, R. G., Pergent, G. & Pergent-Martini, C. Seagrasses: Biology, Ecology and Conservation 595–623 (Springer, 2006).
    Google Scholar 
    Hayes, M. A. et al. The differential importance of deep and shallow seagrass to nekton assemblages of the great barrier reef. Diversity 12, 292. https://doi.org/10.3390/d12080292 (2020).Article 

    Google Scholar 
    Marsh, H., O’Shea, T. J. & Reynolds, J. E. III. Ecology and Conservation of the Sirenia: Dugongs and Manatees Vol. 18 (Cambridge University Press, 2011).Book 

    Google Scholar 
    Scott, A. L. et al. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Front. Plant Sci. 9, 1–10. https://doi.org/10.3389/fpls.2018.00127 (2018).Article 

    Google Scholar 
    York, P. H., Macreadie, P. I. & Rasheed, M. A. Blue carbon stocks of Great Barrier Reef deep-water seagrasses. Biol. Lett. 14, 20180529. https://doi.org/10.1098/rsbl.2018.0529 (2018).Article 
    CAS 

    Google Scholar 
    Unsworth, R. K., Collier, C. J., Waycott, M., Mckenzie, L. J. & Cullen-Unsworth, L. C. A framework for the resilience of seagrass ecosystems. Mar. Pollut. Bull. 100, 34–46. https://doi.org/10.1016/j.marpolbul.2015.08.016 (2015).Article 
    CAS 

    Google Scholar 
    Madden, C. J., Rudnick, D. T., McDonald, A. A., Cunniff, K. M. & Fourqurean, J. W. Ecological indicators for assessing and communicating seagrass status and trends in Florida Bay. Ecol. Ind. 9, S68–S82. https://doi.org/10.1016/j.ecolind.2009.02.004 (2009).Article 
    CAS 

    Google Scholar 
    York, P. et al. Dynamics of a deep-water seagrass population on the Great Barrier Reef: Annual occurrence and response to a major dredging program. Sci. Rep. 5, 13167. https://doi.org/10.1038/srep13167 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Rasheed, M. A., McKenna, S. A., Carter, A. B. & Coles, R. G. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 83, 491–499. https://doi.org/10.1016/j.marpolbul.2014.02.013 (2014).Article 
    CAS 

    Google Scholar 
    Smith, T., Chartrand, K., Wells, J., Carter, A. & Rasheed, M. Seagrasses in Port Curtis and Rodds Bay 2019 Annual long-term monitoring and whole port survey. 71, https://www.tropwater.com/wp-content/uploads/2022/10/20-64-Annual-Seagrass-monitoring-in-Port-Curtis-and-Rodds-Bay-2019.pdf (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/64, James Cook University, Cairns, 2020).Ruaro, R., Gubiani, E. A., Hughes, R. M. & Mormul, R. P. Global trends and challenges in multimetric indices of biological condition. Ecol. Indic. 110, 105862. https://doi.org/10.1016/j.ecolind.2019.105862 (2020).Article 

    Google Scholar 
    Kilminster, K. et al. Unravelling complexity in seagrass systems for management: Australia as a microcosm. Sci. Total Environ. 534, 97–109. https://doi.org/10.1016/j.scitotenv.2015.04.061 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Collier, C. J., Chartrand, K., Honchin, C., Fletcher, A. & Rasheed, M. Light thresholds for seagrasses of the GBR: a synthesis and guiding document. Including knowledge gaps and future priorities. 41, http://nesptropical.edu.au/wp-content/uploads/2016/05/NESP-TWQ-3.3-FINAL-REPORTa.pdf (Report to the National Environmental Science Programme, Cairns, 2016).Bryant, C., Jarvis, J. C., York, P. & Rasheed, M. Gladstone Healthy Harbour Partnership Pilot Report Card; ISP011: Seagrass., 74, https://researchonline.jcu.edu.au/44549/ (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 14/53, James Cook University, Cairns, 2014).McIntosh, E. J. et al. Designing report cards for aquatic health with a whole-of-system approach: Gladstone Harbour in the Great Barrier Reef. Ecol. Ind. 102, 623–632. https://doi.org/10.1016/j.ecolind.2019.03.012 (2019).Article 

    Google Scholar 
    Birch, W. & Birch, M. Succession and pattern of tropical intertidal seagrasses in Cockle Bay, Queensland, Australia: A decade of observations. Aquat. Bot. 19, 343–367. https://doi.org/10.1016/0304-3770(84)90048-2 (1984).Article 

    Google Scholar 
    Rasheed, M. A. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: The role of sexual and asexual reproduction. J. Exp. Mar. Biol. Ecol. 310, 13–45. https://doi.org/10.1016/j.jembe.2004.03.022 (2004).Article 

    Google Scholar 
    Christiaen, B., Lehrter, J., Goff, J. & Cebrian, J. Functional implications of changes in seagrass species composition in two shallow coastal lagoons. Mar. Ecol. Prog. Ser. 557, 11. https://doi.org/10.3354/meps11847 (2016).Article 

    Google Scholar 
    Hyndes, G. A., Kendrick, A. J., MacArthur, L. D. & Stewart, E. Differences in the species- and size-composition of fish assemblages in three distinct seagrass habitats with differing plant and meadow structure. Mar. Biol. 142, 1195–1206. https://doi.org/10.1007/s00227-003-1010-2 (2003).Article 

    Google Scholar 
    Ray, B. R., Johnson, M. W., Cammarata, K. & Smee, D. L. Changes in seagrass species composition in Northwestern Gulf of Mexico Estuaries: Effects on associated seagrass Fauna. PLoS ONE 9, e107751. https://doi.org/10.1371/journal.pone.0107751 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 11. https://doi.org/10.1016/j.coastaleng.2013.11.005 (2014).Article 

    Google Scholar 
    Lavery, P. S., Mateo, M. -Á., Serrano, O. & Rozaimi, M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS ONE 8, e73748. https://doi.org/10.1371/journal.pone.0073748 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Coles, R. G. et al. The Great Barrier Reef World Heritage Area seagrasses: Managing this iconic Australian ecosystem resource for the future. Estuar. Coast. Shelf Sci. 153, A1–A12. https://doi.org/10.1016/j.ecss.2014.07.020 (2015).Article 
    ADS 

    Google Scholar 
    Smith, T. M., Reason, C., McKenna, S. & Rasheed, M. A. Seagrasses in Port Curtis and Rodds Bay 2020. Annual long-term monitoring. 54, https://www.dropbox.com/s/f5yb6bjjpbvc1f2/21%2016%20Smith%20et%20al%202021%20Annual%20Seagrass%20monitoring%20in%20Port%20Curtis%20and%20Rodds%20Bay%202020_Final%20version.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/16, James Cook University, Cairns, 2021).Windle, J., Rolfe, J. & Pascoe, S. Assessing recreational benefits as an economic indicator for an industrial harbour report card. Ecol. Ind. 80, 224–231. https://doi.org/10.1016/j.ecolind.2017.05.036 (2017).Article 

    Google Scholar 
    Scott, A. & Rasheed, M. A. Port of Karumba long-term annual seagrass monitoring 2020. 28, https://www.dropbox.com/s/fwtys67ljssbp9t/21%2005%20Scott%20%26%20Rasheed%202021%20FINAL%202020%20Karumba%20Long-term%20seagrass%20monitoring%20report%20low%20res.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/05, James Cook University, Cairns, 2021).
    Google Scholar 
    Smith, T., Reason, C., McKenna, S. & Rasheed, M. Port of Weipa long‐term seagrass monitoring program, 2000 ‐ 2020. 49, https://www.dropbox.com/s/ghqy3bmn9p8jbsi/20%2058%20Smith%20et%20al%202020%20Port%20of%20Weipa%20Annual%20Long%20Term%20Seagrass%20Monitoring%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 20/58, James Cook University, Cairns, 2020).Reason, C. L., Smith, T. M. & Rasheed, M. A. Seagrass habitat of Cairns Harbour and Trinity Inlet: Cairns Shipping Development Program and Annual Monitoring Report 2020. 54, https://www.dropbox.com/s/m7xtrytjjip3a42/21%2009%20Final_Cairns%20Harbour%20Seagrass%20Monitoring%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/09, James Cook University, Cairns, 2021).Reason, C. L., York, P. H. & Rasheed, M. A. Seagrass habitat of Mourilyan Harbour: Annual monitoring report – 2020. 36, https://www.dropbox.com/s/kg3toxmlifh62tg/21%2010%20Mourilyan%20Harbour%20seagrass%20monitoring%20report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/10, James Cook University, Cairns, 2021).McKenna, S., Wilkinson, J., Chartrand, K. & Van De Wetering, C. Port of Townsville Seagrass Monitoring Program: 2020. 62, https://www.dropbox.com/s/n8nsx8ts93fgr36/21%2014%20Final%20POTL%20Annual%20Seagrass%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/14, James Cook University, Cairns, 2021).McKenna, S. A., van de Wetering, C., Wilkinson, J. & Rasheed, M. A. Port of Abbot Point long-term seagrass monitoring program: 2020. 35, https://www.dropbox.com/s/l5a5l7pkikcjrfb/21%2025%20McKenna%20et%20al%20Port%20of%20Abbot%20Point%20Long-term%20seagrass%20Monitoring%20report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/25, James Cook University, Cairns, 2021).York, P. H. & Rasheed, M. A. Annual Seagrass Monitoring in the Mackay-Hay Point Region – 2020. 42, https://www.dropbox.com/s/u45yezm3984lw1a/21%2020%20Hay%20Point%20and%20Mackay%20Seagrass%20Final%20Report%202020.pdf?dl=0 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/20, James Cook University, Cairns, 2021).van de Wetering, C., Carter, A. B. & Rasheed, M. A. Mackay-Whitsunday-Isaac Seagrass Monitoring 2017–2020: Marine Inshore South Zone. 30, https://researchonline.jcu.edu.au/70923/ (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/06, James Cook University, Cairns, 2021).Carter, A. B. et al. Torres Strait Seagrass 2021 Report Card. 76, https://researchonline.jcu.edu.au/70797/ (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 21/13, James Cook University, Cairns, 2021).Gladstone Ports Corporation. Port of Gladstone. https://www.gpcl.com.au/port-of-gladstone (2022).Sawynok, B., Venables, B. & Pinto, U. Incorporating a fish recruitment indicator into a health report card: A case study from Gladstone Harbour, Australia. Ecol. Indic. 115, 106329. https://doi.org/10.1016/j.ecolind.2020.106329 (2020).Article 

    Google Scholar 
    Pascoe, S. et al. Developing a social, cultural and economic report card for a regional industrial harbour. PLoS ONE 11, e0148271. https://doi.org/10.1371/journal.pone.0148271 (2016).Article 
    CAS 

    Google Scholar 
    Chartrand, K. M., Bryant, C. V., Sozou, A., Ralph, P. J. & Rasheed, M. A. Final Report: Deep‐water seagrass dynamics ‐ Light requirements, seasonal change and mechanisms of recruitment. 67, https://www.dropbox.com/sh/mo8dcq1322qv5c3/AAAgu3lEnJsLgxdawXaOltu-a/2017?dl=0&preview=17+16+Final+Report+Deep-water+seagrass+dynamics.pdf&subfolder_nav_tracking=1 (Centre for Tropical Water & Aquatic Ecosystem Research (TropWATER) Publication 17/16, James Cook University, Cairns, 2017).Kirkman, H. Decline of seagrass in northern areas of Moreton Bay, Queensland. Aquat. Bot. 5, 63–76. https://doi.org/10.1016/0304-3770(78)90047-5 (1978).Article 

    Google Scholar 
    Mellors, J. E. An evaluation of a rapid visual technique for estimating seagrass biomass. Aquat. Bot. 42, 67–73. https://doi.org/10.1016/0304-3770(91)90106-F (1991).Article 

    Google Scholar 
    Emmer, I. et al. Methodology for tidal wetland and seagrass restoration VM0033, version 2.0. https://verra.org/wp-content/uploads/2018/03/VM0033-Methodology-for-Tidal-Wetland-and-Seagrass-Restoration-v2.0-30Sep21-1.pdf (2021). More