Climate-trait relationships exhibit strong habitat specificity in plant communities across Europe
Bjorkman, A. D. et al. Plant functional trait change across a warming tundra biome. Nature 562, 57–62 (2018).ADS
CAS
Google Scholar
Sabatini, F. M. et al. Global patterns of vascular plant alpha diversity. Nat. Commun. 13, 4683 (2022).ADS
CAS
Google Scholar
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
Google Scholar
Chapin, F. S. III et al. Consequences of changing biodiversity. Nature 405, 234–242 (2000).CAS
Google Scholar
Garnier, E., Navas, M.-L. & Grigulis, K. Plant functional diversity. Organism traits, community structure, and ecosystem properties (Oxford University Press, Oxford, New York, NY, 2016).Funk, J. L. et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol. Rev. Camb. Philos. Soc. 92, 1156–1173 (2017).
Google Scholar
Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS
Google Scholar
Adler, P. B. et al. Functional traits explain variation in plant life history strategies. Proc. Natl. Acad. Sci. U.S.A. 111, 740–745 (2014).ADS
CAS
Google Scholar
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).ADS
CAS
Google Scholar
Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl. Acad. Sci. U. S. A. 113, 230–235 (2016).ADS
Google Scholar
Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).ADS
CAS
Google Scholar
Shipley, B. et al. Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180, 923–931 (2016).ADS
Google Scholar
Bruelheide, H. et al. Global trait-environment relationships of plant communities. Nat. Ecol. Evol. 2, 1906–1917 (2018).
Google Scholar
McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).
Google Scholar
Miller, J. E. D., Damschen, E. I. & Ives, A. R. Functional traits and community composition: A comparison among community‐weighted means, weighted correlations, and multilevel models. Methods Ecol. Evol. 10, 415–425 (2019).
Google Scholar
Guerin, G. R. et al. Environmental associations of abundance-weighted functional traits in Australian plant communities. Basic Appl. Ecol. 58, 98–109 (2021).
Google Scholar
Walter, H. Vegetation of the earth and ecological systems of the geo-biosphere (Springer-Verlag, Berlin, Germany, 1985).Ordoñez, J. C. et al. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Glob. Ecol. Biogeogr. 18, 137–149 (2009).
Google Scholar
Simpson, A. H., Richardson, S. J. & Laughlin, D. C. Soil-climate interactions explain variation in foliar, stem, root and reproductive traits across temperate forests. Glob. Ecol. Biogeogr. 25, 964–978 (2016).
Google Scholar
Cubino, J. P. et al. The leaf economic and plant size spectra of European forest understory vegetation. Ecography 44, 1311–1324 (2021).
Google Scholar
Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007).
Google Scholar
Herben, T., Klimešová, J. & Chytrý, M. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Funct. Ecol. 32, 799–808 (2018).
Google Scholar
Linder, H. P. et al. Biotic modifiers, environmental modulation and species distribution models. J. Biogeogr. 39, 2179–2190 (2012).
Google Scholar
Gross, N. et al. Linking individual response to biotic interactions with community structure: a trait-based framework. Funct. Ecol. 23, 1167–1178 (2009).
Google Scholar
Ordonez, A. & Svenning, J.-C. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders. Sci. Rep. 7, 42988 (2017).ADS
CAS
Google Scholar
Kemppinen, J. et al. Consistent trait–environment relationships within and across tundra plant communities. Nat. Ecol. Evol. 5, 458–467 (2021).
Google Scholar
Chytrý, M. et al. European Vegetation Archive (EVA): an integrated database of European vegetation plots. Appl. Veg. Sci. 19, 173–180 (2016).
Google Scholar
Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. EnviDat, https://doi.org/10.16904/envidat.228 (2018).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).
Google Scholar
Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change. Biol. 26, 119–188 (2020).ADS
Google Scholar
Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi-trait test of the leaf-height-seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2010).
Google Scholar
Davies, C. E., Moss, D. & Hill, M. O. EUNIS Habitat Classification Revised 2004. Report to: European Environment Agency, European Topic Centre on Nature Protection and Biodiversity, 2004.Chytrý, M. et al. EUNIS Habitat Classification: Expert system, characteristic species combinations and distribution maps of European habitats. Appl. Veg. Sci. 23, 648–675 (2020).
Google Scholar
Pausas, J. G. & Bond, W. J. Humboldt and the reinvention of nature. J. Ecol. 107, 1031–1037 (2019).
Google Scholar
Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences 12, 5339–5352 (2015).ADS
Google Scholar
Fang, J. et al. Precipitation patterns alter growth of temperate vegetation. Geophys. Res. Lett. 32, 81 (2005).
Google Scholar
Butler, E. E. et al. Mapping local and global variability in plant trait distributions. Proc. Natl. Acad. Sci. U.S.A. 114, E10937–E10946 (2017).ADS
CAS
Google Scholar
Gong, H. & Gao, J. Soil and climatic drivers of plant SLA (specific leaf area). Glob. Ecol. Conserv. 20, e00696 (2019).
Google Scholar
Laughlin, D. C. et al. Root traits explain plant species distributions along climatic gradients yet challenge the nature of ecological trade-offs. Nat. Ecol. Evol. 5, 1–12 (2021).
Google Scholar
Carmona, C. P. et al. Fine-root traits in the global spectrum of plant form and function. Nature 597, 683–687 (2021).ADS
CAS
Google Scholar
Ding, J., Travers, S. K. & Eldridge, D. J. Occurrence of Australian woody species is driven by soil moisture and available phosphorus across a climatic gradient. J. Veg. Sci. 32, e13095 (2021).
Google Scholar
Falster, D. S. & Westoby, M. Plant height and evolutionary games. Trends Ecol. Evol. 18, 337–343 (2003).
Google Scholar
Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature 529, 204–207 (2016).ADS
CAS
Google Scholar
McLachlan, A. & Brown, A. C. Coastal Dune Ecosystems and Dune/Beach Interactions. In The Ecology of Sandy Shores (Elsevier), 251–271 (2006).Cui, E., Weng, E., Yan, E. & Xia, J. Robust leaf trait relationships across species under global environmental changes. Nat. Commun. 11, 1–9 (2020).ADS
Google Scholar
Cain, S. A. Life-Forms and Phytoclimate. Bot. Rev. 16, 1–32 (1950).
Google Scholar
Yu, S. et al. Shift of seed mass and fruit type spectra along longitudinal gradient: high water availability and growth allometry. Biogeosciences 18, 655–667 (2021).ADS
Google Scholar
Murray, B. R., Brown, A. H. D., Dickman, C. R. & Crowther, M. S. Geographical gradients in seed mass in relation to climate. J. Biogeogr. 31, 379–388 (2004).
Google Scholar
Metz, J. et al. Plant survival in relation to seed size along environmental gradients: a long-term study from semi-arid and Mediterranean annual plant communities. J. Ecol. 98, 697–704 (2010).
Google Scholar
Tao, S., Guo, Q., Li, C., Wang, Z. & Fang, J. Global patterns and determinants of forest canopy height. Ecology 97, 3265–3270 (2016).
Google Scholar
Gonzalez, P., Neilson, R. P., Lenihan, J. M. & Drapek, R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 19, 755–768 (2010).
Google Scholar
Feeley, K. J., Bravo-Avila, C., Fadrique, B., Perez, T. M. & Zuleta, D. Climate-driven changes in the composition of New World plant communities. Nat. Clim. Chang. 10, 965–970 (2020).ADS
CAS
Google Scholar
Bruelheide, H. et al. sPlot—A new tool for global vegetation analyses. J. Veg. Sci. 30, 161–186 (2019).
Google Scholar
Schrodt, F. et al. BHPMF—a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).
Google Scholar
Shan, H. et al. Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization (Proceedings of the 29 th International Conference on Machine Learning, Edinburgh, Scotland, UK, 2012).Chytrý, M. et al. EUNIS-ESy, version 2021-06-01, https://doi.org/10.5281/zenodo.4812736 (2021).Wood, S. N., Pya, N. & Säfken, B. Smoothing Parameter and Model Selection for General Smooth Models. J. Am. Stat. Assoc. 111, 1548–1563 (2016).MathSciNet
CAS
Google Scholar
Wood, S. N. Generalized Additive Models. An Introduction with R, Second Edition (CRC Press, Portland, Oregon, USA, 2017).Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).
Google Scholar
Johnson, P. C. Extension of Nakagawa & Schielzeth’s R2GLMM to random slopes models. Methods Ecol. Evol. 5, 944–946 (2014).
Google Scholar
R. Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2022).Lenth, R. V. et al. emmeans: estimated marginal means, aka least-squares means; R package version 1.6.2-1 (2021).Lüdecke, D. ggeffects: tidy data frames of marginal effects from regression models. J. Open Source Softw. 3, 772 (2018).ADS
Google Scholar
Hijmans, R.J., Phillips, S., Leathwick, J. & Elith, J. dismo: species distribution modelling; R package version 1.3-3 (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag New York, 2016).Kambach, S. Habitat-specificity of climate-trait relationships in plant communities across Europe. github.com/StephanKambach, version 1.0; https://doi.org/10.5281/zenodo.7404176 (2022).Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009).
Google Scholar
Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).
Google Scholar
Zheng, J., Guo, Z. & Wang, X. Seed mass of angiosperm woody plants better explained by life history traits than climate across China. Sci. Rep. 7, 2741 (2017).ADS
Google Scholar
Saatkamp, A. et al. A research agenda for seed-trait functional ecology. N. Phytol. 221, 1764–1775 (2019).
Google Scholar
Freschet, G. T. et al. Climate, soil and plant functional types as drivers of global fine‐root trait variation. J. Ecol. 105, 1182–1196 (2017).
Google Scholar
Weigelt, A. et al. An integrated framework of plant form and function: The belowground perspective. N. Phytol. 232, 42–59 (2021).
Google Scholar More